Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.190.6.2
      1  1.190.6.2       mrg /*	$NetBSD: subr_pool.c,v 1.190.6.2 2012/06/02 11:09:33 mrg Exp $	*/
      2        1.1        pk 
      3        1.1        pk /*-
      4      1.183        ad  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
      5      1.183        ad  *     The NetBSD Foundation, Inc.
      6        1.1        pk  * All rights reserved.
      7        1.1        pk  *
      8        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10      1.134        ad  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     11        1.1        pk  *
     12        1.1        pk  * Redistribution and use in source and binary forms, with or without
     13        1.1        pk  * modification, are permitted provided that the following conditions
     14        1.1        pk  * are met:
     15        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     16        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     17        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     19        1.1        pk  *    documentation and/or other materials provided with the distribution.
     20        1.1        pk  *
     21        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     32        1.1        pk  */
     33       1.64     lukem 
     34       1.64     lukem #include <sys/cdefs.h>
     35  1.190.6.2       mrg __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.190.6.2 2012/06/02 11:09:33 mrg Exp $");
     36       1.24    scottr 
     37      1.141      yamt #include "opt_ddb.h"
     38       1.28   thorpej #include "opt_lockdebug.h"
     39        1.1        pk 
     40        1.1        pk #include <sys/param.h>
     41        1.1        pk #include <sys/systm.h>
     42      1.135      yamt #include <sys/bitops.h>
     43        1.1        pk #include <sys/proc.h>
     44        1.1        pk #include <sys/errno.h>
     45        1.1        pk #include <sys/kernel.h>
     46  1.190.6.1       mrg #include <sys/vmem.h>
     47        1.1        pk #include <sys/pool.h>
     48       1.20   thorpej #include <sys/syslog.h>
     49      1.125        ad #include <sys/debug.h>
     50      1.134        ad #include <sys/lockdebug.h>
     51      1.134        ad #include <sys/xcall.h>
     52      1.134        ad #include <sys/cpu.h>
     53      1.145        ad #include <sys/atomic.h>
     54        1.3        pk 
     55      1.187  uebayasi #include <uvm/uvm_extern.h>
     56        1.3        pk 
     57        1.1        pk /*
     58        1.1        pk  * Pool resource management utility.
     59        1.3        pk  *
     60       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     61       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     62       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     63       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     64       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     65       1.88       chs  * header. The memory for building the page list is either taken from
     66       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     67       1.88       chs  * an internal pool of page headers (`phpool').
     68        1.1        pk  */
     69        1.1        pk 
     70        1.3        pk /* List of all pools */
     71      1.173     rmind static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     72      1.134        ad 
     73        1.3        pk /* Private pool for page header structures */
     74       1.97      yamt #define	PHPOOL_MAX	8
     75       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     76      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     77      1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     78        1.3        pk 
     79       1.62     bjh21 #ifdef POOL_SUBPAGE
     80       1.62     bjh21 /* Pool of subpages for use by normal pools. */
     81       1.62     bjh21 static struct pool psppool;
     82       1.62     bjh21 #endif
     83       1.62     bjh21 
     84       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
     85       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
     86       1.98      yamt 
     87       1.98      yamt /* allocator for pool metadata */
     88      1.134        ad struct pool_allocator pool_allocator_meta = {
     89  1.190.6.1       mrg 	.pa_alloc = pool_page_alloc_meta,
     90  1.190.6.1       mrg 	.pa_free = pool_page_free_meta,
     91  1.190.6.1       mrg 	.pa_pagesz = 0
     92       1.98      yamt };
     93       1.98      yamt 
     94        1.3        pk /* # of seconds to retain page after last use */
     95        1.3        pk int pool_inactive_time = 10;
     96        1.3        pk 
     97        1.3        pk /* Next candidate for drainage (see pool_drain()) */
     98       1.23   thorpej static struct pool	*drainpp;
     99       1.23   thorpej 
    100      1.134        ad /* This lock protects both pool_head and drainpp. */
    101      1.134        ad static kmutex_t pool_head_lock;
    102      1.134        ad static kcondvar_t pool_busy;
    103        1.3        pk 
    104      1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    105      1.178      elad static kmutex_t pool_allocator_lock;
    106      1.178      elad 
    107      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    108      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    109      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    110       1.99      yamt 
    111        1.3        pk struct pool_item_header {
    112        1.3        pk 	/* Page headers */
    113       1.88       chs 	LIST_ENTRY(pool_item_header)
    114        1.3        pk 				ph_pagelist;	/* pool page list */
    115       1.88       chs 	SPLAY_ENTRY(pool_item_header)
    116       1.88       chs 				ph_node;	/* Off-page page headers */
    117      1.128  christos 	void *			ph_page;	/* this page's address */
    118      1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    119      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    120      1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    121       1.97      yamt 	union {
    122       1.97      yamt 		/* !PR_NOTOUCH */
    123       1.97      yamt 		struct {
    124      1.102       chs 			LIST_HEAD(, pool_item)
    125       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    126       1.97      yamt 		} phu_normal;
    127       1.97      yamt 		/* PR_NOTOUCH */
    128       1.97      yamt 		struct {
    129      1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    130       1.97      yamt 		} phu_notouch;
    131       1.97      yamt 	} ph_u;
    132        1.3        pk };
    133       1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    134      1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    135        1.3        pk 
    136        1.1        pk struct pool_item {
    137        1.3        pk #ifdef DIAGNOSTIC
    138       1.82   thorpej 	u_int pi_magic;
    139       1.33       chs #endif
    140      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    141        1.3        pk 	/* Other entries use only this list entry */
    142      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    143        1.3        pk };
    144        1.3        pk 
    145       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    146       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    147       1.53   thorpej 
    148       1.43   thorpej /*
    149       1.43   thorpej  * Pool cache management.
    150       1.43   thorpej  *
    151       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    152       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    153       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    154       1.43   thorpej  * necessary.
    155       1.43   thorpej  *
    156      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    157      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    158      1.134        ad  * object from the pool, it calls the object's constructor and places it
    159      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    160      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    161      1.134        ad  * to persist in constructed form while freed to the cache.
    162      1.134        ad  *
    163      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    164      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    165      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    166      1.134        ad  * its entirety.
    167       1.43   thorpej  *
    168       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    169       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    170       1.43   thorpej  * from it.
    171       1.43   thorpej  */
    172       1.43   thorpej 
    173      1.142        ad static struct pool pcg_normal_pool;
    174      1.142        ad static struct pool pcg_large_pool;
    175      1.134        ad static struct pool cache_pool;
    176      1.134        ad static struct pool cache_cpu_pool;
    177        1.3        pk 
    178      1.189     pooka pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    179      1.189     pooka 
    180      1.145        ad /* List of all caches. */
    181      1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    182      1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    183      1.145        ad 
    184      1.162        ad int pool_cache_disable;		/* global disable for caching */
    185      1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    186      1.145        ad 
    187      1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    188      1.162        ad 				    void *);
    189      1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    190      1.162        ad 				    void **, paddr_t *, int);
    191      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    192      1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    193      1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    194      1.134        ad static void	pool_cache_xcall(pool_cache_t);
    195        1.3        pk 
    196       1.42   thorpej static int	pool_catchup(struct pool *);
    197      1.128  christos static void	pool_prime_page(struct pool *, void *,
    198       1.55   thorpej 		    struct pool_item_header *);
    199       1.88       chs static void	pool_update_curpage(struct pool *);
    200       1.66   thorpej 
    201      1.113      yamt static int	pool_grow(struct pool *, int);
    202      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    203      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    204        1.3        pk 
    205       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    206       1.88       chs 	void (*)(const char *, ...));
    207       1.42   thorpej static void pool_print1(struct pool *, const char *,
    208       1.42   thorpej 	void (*)(const char *, ...));
    209        1.3        pk 
    210       1.88       chs static int pool_chk_page(struct pool *, const char *,
    211       1.88       chs 			 struct pool_item_header *);
    212       1.88       chs 
    213      1.135      yamt static inline unsigned int
    214       1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    215       1.97      yamt     const void *v)
    216       1.97      yamt {
    217       1.97      yamt 	const char *cp = v;
    218      1.135      yamt 	unsigned int idx;
    219       1.97      yamt 
    220       1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    221      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    222       1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    223       1.97      yamt 	return idx;
    224       1.97      yamt }
    225       1.97      yamt 
    226      1.110     perry static inline void
    227       1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    228       1.97      yamt     void *obj)
    229       1.97      yamt {
    230      1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    231      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    232      1.135      yamt 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    233       1.97      yamt 
    234      1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    235      1.135      yamt 	*bitmap |= mask;
    236       1.97      yamt }
    237       1.97      yamt 
    238      1.110     perry static inline void *
    239       1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    240       1.97      yamt {
    241      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    242      1.135      yamt 	unsigned int idx;
    243      1.135      yamt 	int i;
    244       1.97      yamt 
    245      1.135      yamt 	for (i = 0; ; i++) {
    246      1.135      yamt 		int bit;
    247       1.97      yamt 
    248      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    249      1.135      yamt 		bit = ffs32(bitmap[i]);
    250      1.135      yamt 		if (bit) {
    251      1.135      yamt 			pool_item_bitmap_t mask;
    252      1.135      yamt 
    253      1.135      yamt 			bit--;
    254      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    255      1.135      yamt 			mask = 1 << bit;
    256      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    257      1.135      yamt 			bitmap[i] &= ~mask;
    258      1.135      yamt 			break;
    259      1.135      yamt 		}
    260      1.135      yamt 	}
    261      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    262      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    263       1.97      yamt }
    264       1.97      yamt 
    265      1.135      yamt static inline void
    266      1.141      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    267      1.135      yamt {
    268      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    269      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    270      1.135      yamt 	int i;
    271      1.135      yamt 
    272      1.135      yamt 	for (i = 0; i < n; i++) {
    273      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    274      1.135      yamt 	}
    275      1.135      yamt }
    276      1.135      yamt 
    277      1.110     perry static inline int
    278       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    279       1.88       chs {
    280      1.121      yamt 
    281      1.121      yamt 	/*
    282      1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    283      1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    284      1.121      yamt 	 */
    285      1.121      yamt 
    286       1.88       chs 	if (a->ph_page < b->ph_page)
    287      1.121      yamt 		return (1);
    288      1.121      yamt 	else if (a->ph_page > b->ph_page)
    289       1.88       chs 		return (-1);
    290       1.88       chs 	else
    291       1.88       chs 		return (0);
    292       1.88       chs }
    293       1.88       chs 
    294       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    295       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    296       1.88       chs 
    297      1.141      yamt static inline struct pool_item_header *
    298      1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    299      1.141      yamt {
    300      1.141      yamt 	struct pool_item_header *ph, tmp;
    301      1.141      yamt 
    302      1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    303      1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    304      1.141      yamt 	if (ph == NULL) {
    305      1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    306      1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    307      1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    308      1.141      yamt 		}
    309      1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    310      1.141      yamt 	}
    311      1.141      yamt 
    312      1.141      yamt 	return ph;
    313      1.141      yamt }
    314      1.141      yamt 
    315        1.3        pk /*
    316      1.121      yamt  * Return the pool page header based on item address.
    317        1.3        pk  */
    318      1.110     perry static inline struct pool_item_header *
    319      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    320        1.3        pk {
    321       1.88       chs 	struct pool_item_header *ph, tmp;
    322        1.3        pk 
    323      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    324      1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    325      1.121      yamt 	} else {
    326      1.128  christos 		void *page =
    327      1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    328      1.121      yamt 
    329      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    330      1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    331      1.121      yamt 		} else {
    332      1.121      yamt 			tmp.ph_page = page;
    333      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    334      1.121      yamt 		}
    335      1.121      yamt 	}
    336        1.3        pk 
    337      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    338      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    339      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    340       1.88       chs 	return ph;
    341        1.3        pk }
    342        1.3        pk 
    343      1.101   thorpej static void
    344      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    345      1.101   thorpej {
    346      1.101   thorpej 	struct pool_item_header *ph;
    347      1.101   thorpej 
    348      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    349      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    350      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    351      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    352      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    353      1.101   thorpej 	}
    354      1.101   thorpej }
    355      1.101   thorpej 
    356        1.3        pk /*
    357        1.3        pk  * Remove a page from the pool.
    358        1.3        pk  */
    359      1.110     perry static inline void
    360       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    361       1.61       chs      struct pool_pagelist *pq)
    362        1.3        pk {
    363        1.3        pk 
    364      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    365       1.91      yamt 
    366        1.3        pk 	/*
    367        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    368        1.3        pk 	 */
    369        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    370        1.6   thorpej #ifdef DIAGNOSTIC
    371        1.6   thorpej 		if (pp->pr_nidle == 0)
    372        1.6   thorpej 			panic("pr_rmpage: nidle inconsistent");
    373       1.20   thorpej 		if (pp->pr_nitems < pp->pr_itemsperpage)
    374       1.20   thorpej 			panic("pr_rmpage: nitems inconsistent");
    375        1.6   thorpej #endif
    376        1.6   thorpej 		pp->pr_nidle--;
    377        1.6   thorpej 	}
    378        1.7   thorpej 
    379       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    380       1.20   thorpej 
    381        1.7   thorpej 	/*
    382      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    383        1.7   thorpej 	 */
    384       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    385       1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    386       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    387      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    388      1.101   thorpej 
    389        1.7   thorpej 	pp->pr_npages--;
    390        1.7   thorpej 	pp->pr_npagefree++;
    391        1.6   thorpej 
    392       1.88       chs 	pool_update_curpage(pp);
    393        1.3        pk }
    394        1.3        pk 
    395        1.3        pk /*
    396       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    397       1.94    simonb  */
    398       1.94    simonb void
    399      1.117      yamt pool_subsystem_init(void)
    400       1.94    simonb {
    401  1.190.6.1       mrg 	size_t size;
    402  1.190.6.1       mrg 	int idx;
    403       1.94    simonb 
    404      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    405      1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    406      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    407      1.134        ad 
    408  1.190.6.1       mrg 	/*
    409  1.190.6.1       mrg 	 * Initialize private page header pool and cache magazine pool if we
    410  1.190.6.1       mrg 	 * haven't done so yet.
    411  1.190.6.1       mrg 	 */
    412  1.190.6.1       mrg 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    413  1.190.6.1       mrg 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    414  1.190.6.1       mrg 		int nelem;
    415  1.190.6.1       mrg 		size_t sz;
    416  1.190.6.1       mrg 
    417  1.190.6.1       mrg 		nelem = PHPOOL_FREELIST_NELEM(idx);
    418  1.190.6.1       mrg 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    419  1.190.6.1       mrg 		    "phpool-%d", nelem);
    420  1.190.6.1       mrg 		sz = sizeof(struct pool_item_header);
    421  1.190.6.1       mrg 		if (nelem) {
    422  1.190.6.1       mrg 			sz = offsetof(struct pool_item_header,
    423  1.190.6.1       mrg 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    424  1.190.6.1       mrg 		}
    425  1.190.6.1       mrg 		pool_init(&phpool[idx], sz, 0, 0, 0,
    426  1.190.6.1       mrg 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    427      1.117      yamt 	}
    428  1.190.6.1       mrg #ifdef POOL_SUBPAGE
    429  1.190.6.1       mrg 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    430  1.190.6.1       mrg 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    431  1.190.6.1       mrg #endif
    432  1.190.6.1       mrg 
    433  1.190.6.1       mrg 	size = sizeof(pcg_t) +
    434  1.190.6.1       mrg 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    435  1.190.6.1       mrg 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    436  1.190.6.1       mrg 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    437  1.190.6.1       mrg 
    438  1.190.6.1       mrg 	size = sizeof(pcg_t) +
    439  1.190.6.1       mrg 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    440  1.190.6.1       mrg 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    441  1.190.6.1       mrg 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    442      1.134        ad 
    443      1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    444  1.190.6.1       mrg 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    445      1.134        ad 
    446      1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    447  1.190.6.1       mrg 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    448       1.94    simonb }
    449       1.94    simonb 
    450       1.94    simonb /*
    451        1.3        pk  * Initialize the given pool resource structure.
    452        1.3        pk  *
    453        1.3        pk  * We export this routine to allow other kernel parts to declare
    454  1.190.6.2       mrg  * static pools that must be initialized before kmem(9) is available.
    455        1.3        pk  */
    456        1.3        pk void
    457       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    458      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    459        1.3        pk {
    460      1.116    simonb 	struct pool *pp1;
    461       1.92     enami 	size_t trysize, phsize;
    462      1.134        ad 	int off, slack;
    463        1.3        pk 
    464      1.116    simonb #ifdef DEBUG
    465      1.116    simonb 	/*
    466      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    467      1.116    simonb 	 * added to the list of all pools.
    468      1.116    simonb 	 */
    469      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    470      1.116    simonb 		if (pp == pp1)
    471      1.116    simonb 			panic("pool_init: pool %s already initialised",
    472      1.116    simonb 			    wchan);
    473      1.116    simonb 	}
    474      1.116    simonb #endif
    475      1.116    simonb 
    476       1.66   thorpej 	if (palloc == NULL)
    477       1.66   thorpej 		palloc = &pool_allocator_kmem;
    478      1.112     bjh21 #ifdef POOL_SUBPAGE
    479      1.112     bjh21 	if (size > palloc->pa_pagesz) {
    480      1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    481      1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    482      1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    483      1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    484      1.112     bjh21 	}
    485       1.66   thorpej #endif /* POOL_SUBPAGE */
    486      1.180   mlelstv 	if (!cold)
    487      1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    488      1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    489      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    490       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    491       1.66   thorpej 
    492       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    493       1.66   thorpej 
    494      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    495       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    496       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    497        1.4   thorpej 	}
    498      1.180   mlelstv 	if (!cold)
    499      1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    500        1.3        pk 
    501        1.3        pk 	if (align == 0)
    502        1.3        pk 		align = ALIGN(1);
    503       1.14   thorpej 
    504      1.120      yamt 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    505       1.14   thorpej 		size = sizeof(struct pool_item);
    506        1.3        pk 
    507       1.78   thorpej 	size = roundup(size, align);
    508       1.66   thorpej #ifdef DIAGNOSTIC
    509       1.66   thorpej 	if (size > palloc->pa_pagesz)
    510      1.121      yamt 		panic("pool_init: pool item size (%zu) too large", size);
    511       1.66   thorpej #endif
    512       1.35        pk 
    513        1.3        pk 	/*
    514        1.3        pk 	 * Initialize the pool structure.
    515        1.3        pk 	 */
    516       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    517       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    518       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    519      1.134        ad 	pp->pr_cache = NULL;
    520        1.3        pk 	pp->pr_curpage = NULL;
    521        1.3        pk 	pp->pr_npages = 0;
    522        1.3        pk 	pp->pr_minitems = 0;
    523        1.3        pk 	pp->pr_minpages = 0;
    524        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    525       1.20   thorpej 	pp->pr_roflags = flags;
    526       1.20   thorpej 	pp->pr_flags = 0;
    527       1.35        pk 	pp->pr_size = size;
    528        1.3        pk 	pp->pr_align = align;
    529        1.3        pk 	pp->pr_wchan = wchan;
    530       1.66   thorpej 	pp->pr_alloc = palloc;
    531       1.20   thorpej 	pp->pr_nitems = 0;
    532       1.20   thorpej 	pp->pr_nout = 0;
    533       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    534       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    535       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    536       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    537       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    538       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    539       1.68   thorpej 	pp->pr_drain_hook = NULL;
    540       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    541      1.125        ad 	pp->pr_freecheck = NULL;
    542        1.3        pk 
    543        1.3        pk 	/*
    544        1.3        pk 	 * Decide whether to put the page header off page to avoid
    545       1.92     enami 	 * wasting too large a part of the page or too big item.
    546       1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    547       1.92     enami 	 * a returned item with its header based on the page address.
    548       1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    549       1.92     enami 	 * size as the threshold (XXX: tune)
    550       1.92     enami 	 *
    551       1.92     enami 	 * However, we'll put the header into the page if we can put
    552       1.92     enami 	 * it without wasting any items.
    553       1.92     enami 	 *
    554       1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    555        1.3        pk 	 */
    556       1.92     enami 	pp->pr_itemoffset = ioff %= align;
    557       1.92     enami 	/* See the comment below about reserved bytes. */
    558       1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    559       1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    560      1.121      yamt 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    561       1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    562       1.97      yamt 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    563        1.3        pk 		/* Use the end of the page for the page header */
    564       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    565       1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    566        1.2        pk 	} else {
    567        1.3        pk 		/* The page header will be taken from our page header pool */
    568        1.3        pk 		pp->pr_phoffset = 0;
    569       1.66   thorpej 		off = palloc->pa_pagesz;
    570       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    571        1.2        pk 	}
    572        1.1        pk 
    573        1.3        pk 	/*
    574        1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    575        1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    576        1.3        pk 	 * appropriate positioning of each item.
    577        1.3        pk 	 */
    578        1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    579       1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    580       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    581       1.97      yamt 		int idx;
    582       1.97      yamt 
    583       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    584       1.97      yamt 		    idx++) {
    585       1.97      yamt 			/* nothing */
    586       1.97      yamt 		}
    587       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    588       1.97      yamt 			/*
    589       1.97      yamt 			 * if you see this panic, consider to tweak
    590       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    591       1.97      yamt 			 */
    592       1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    593       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    594       1.97      yamt 		}
    595       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    596       1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    597       1.97      yamt 		pp->pr_phpool = &phpool[0];
    598       1.97      yamt 	}
    599       1.97      yamt #if defined(DIAGNOSTIC)
    600       1.97      yamt 	else {
    601       1.97      yamt 		pp->pr_phpool = NULL;
    602       1.97      yamt 	}
    603       1.97      yamt #endif
    604        1.3        pk 
    605        1.3        pk 	/*
    606        1.3        pk 	 * Use the slack between the chunks and the page header
    607        1.3        pk 	 * for "cache coloring".
    608        1.3        pk 	 */
    609        1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    610        1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    611        1.3        pk 	pp->pr_curcolor = 0;
    612        1.3        pk 
    613        1.3        pk 	pp->pr_nget = 0;
    614        1.3        pk 	pp->pr_nfail = 0;
    615        1.3        pk 	pp->pr_nput = 0;
    616        1.3        pk 	pp->pr_npagealloc = 0;
    617        1.3        pk 	pp->pr_npagefree = 0;
    618        1.1        pk 	pp->pr_hiwat = 0;
    619        1.8   thorpej 	pp->pr_nidle = 0;
    620      1.134        ad 	pp->pr_refcnt = 0;
    621        1.3        pk 
    622      1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    623      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    624      1.134        ad 	pp->pr_ipl = ipl;
    625        1.1        pk 
    626      1.145        ad 	/* Insert into the list of all pools. */
    627      1.181   mlelstv 	if (!cold)
    628      1.134        ad 		mutex_enter(&pool_head_lock);
    629      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    630      1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    631      1.145        ad 			break;
    632      1.145        ad 	}
    633      1.145        ad 	if (pp1 == NULL)
    634      1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    635      1.145        ad 	else
    636      1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    637      1.181   mlelstv 	if (!cold)
    638      1.134        ad 		mutex_exit(&pool_head_lock);
    639      1.134        ad 
    640      1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    641      1.181   mlelstv 	if (!cold)
    642      1.134        ad 		mutex_enter(&palloc->pa_lock);
    643      1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    644      1.181   mlelstv 	if (!cold)
    645      1.134        ad 		mutex_exit(&palloc->pa_lock);
    646        1.1        pk }
    647        1.1        pk 
    648        1.1        pk /*
    649        1.1        pk  * De-commision a pool resource.
    650        1.1        pk  */
    651        1.1        pk void
    652       1.42   thorpej pool_destroy(struct pool *pp)
    653        1.1        pk {
    654      1.101   thorpej 	struct pool_pagelist pq;
    655        1.3        pk 	struct pool_item_header *ph;
    656       1.43   thorpej 
    657      1.101   thorpej 	/* Remove from global pool list */
    658      1.134        ad 	mutex_enter(&pool_head_lock);
    659      1.134        ad 	while (pp->pr_refcnt != 0)
    660      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    661      1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    662      1.101   thorpej 	if (drainpp == pp)
    663      1.101   thorpej 		drainpp = NULL;
    664      1.134        ad 	mutex_exit(&pool_head_lock);
    665      1.101   thorpej 
    666      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    667      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    668       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    669      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    670       1.66   thorpej 
    671      1.178      elad 	mutex_enter(&pool_allocator_lock);
    672      1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    673      1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    674      1.178      elad 	mutex_exit(&pool_allocator_lock);
    675      1.178      elad 
    676      1.134        ad 	mutex_enter(&pp->pr_lock);
    677      1.101   thorpej 
    678      1.134        ad 	KASSERT(pp->pr_cache == NULL);
    679        1.3        pk 
    680        1.3        pk #ifdef DIAGNOSTIC
    681       1.20   thorpej 	if (pp->pr_nout != 0) {
    682       1.80    provos 		panic("pool_destroy: pool busy: still out: %u",
    683       1.20   thorpej 		    pp->pr_nout);
    684        1.3        pk 	}
    685        1.3        pk #endif
    686        1.1        pk 
    687      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    688      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    689      1.101   thorpej 
    690        1.3        pk 	/* Remove all pages */
    691      1.101   thorpej 	LIST_INIT(&pq);
    692       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    693      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    694      1.101   thorpej 
    695      1.134        ad 	mutex_exit(&pp->pr_lock);
    696        1.3        pk 
    697      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    698      1.134        ad 	cv_destroy(&pp->pr_cv);
    699      1.134        ad 	mutex_destroy(&pp->pr_lock);
    700        1.1        pk }
    701        1.1        pk 
    702       1.68   thorpej void
    703       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    704       1.68   thorpej {
    705       1.68   thorpej 
    706       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    707       1.68   thorpej #ifdef DIAGNOSTIC
    708       1.68   thorpej 	if (pp->pr_drain_hook != NULL)
    709       1.68   thorpej 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    710       1.68   thorpej #endif
    711       1.68   thorpej 	pp->pr_drain_hook = fn;
    712       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    713       1.68   thorpej }
    714       1.68   thorpej 
    715       1.88       chs static struct pool_item_header *
    716      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    717       1.55   thorpej {
    718       1.55   thorpej 	struct pool_item_header *ph;
    719       1.55   thorpej 
    720       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    721      1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    722      1.134        ad 	else
    723       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    724       1.55   thorpej 
    725       1.55   thorpej 	return (ph);
    726       1.55   thorpej }
    727        1.1        pk 
    728        1.1        pk /*
    729      1.134        ad  * Grab an item from the pool.
    730        1.1        pk  */
    731        1.3        pk void *
    732       1.56  sommerfe pool_get(struct pool *pp, int flags)
    733        1.1        pk {
    734        1.1        pk 	struct pool_item *pi;
    735        1.3        pk 	struct pool_item_header *ph;
    736       1.55   thorpej 	void *v;
    737        1.1        pk 
    738        1.2        pk #ifdef DIAGNOSTIC
    739      1.184     rmind 	if (pp->pr_itemsperpage == 0)
    740      1.184     rmind 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
    741      1.184     rmind 		    "pool not initialized?", pp->pr_wchan);
    742      1.185     rmind 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
    743      1.185     rmind 	    !cold && panicstr == NULL)
    744      1.184     rmind 		panic("pool '%s' is IPL_NONE, but called from "
    745      1.184     rmind 		    "interrupt context\n", pp->pr_wchan);
    746      1.184     rmind #endif
    747      1.155        ad 	if (flags & PR_WAITOK) {
    748      1.154      yamt 		ASSERT_SLEEPABLE();
    749      1.155        ad 	}
    750        1.1        pk 
    751      1.134        ad 	mutex_enter(&pp->pr_lock);
    752       1.20   thorpej  startover:
    753       1.20   thorpej 	/*
    754       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    755       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    756       1.20   thorpej 	 * the pool.
    757       1.20   thorpej 	 */
    758       1.20   thorpej #ifdef DIAGNOSTIC
    759       1.34   thorpej 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    760      1.134        ad 		mutex_exit(&pp->pr_lock);
    761       1.20   thorpej 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    762       1.20   thorpej 	}
    763       1.20   thorpej #endif
    764       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    765       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    766       1.68   thorpej 			/*
    767       1.68   thorpej 			 * Since the drain hook is going to free things
    768       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    769       1.68   thorpej 			 * and check the hardlimit condition again.
    770       1.68   thorpej 			 */
    771      1.134        ad 			mutex_exit(&pp->pr_lock);
    772       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    773      1.134        ad 			mutex_enter(&pp->pr_lock);
    774       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    775       1.68   thorpej 				goto startover;
    776       1.68   thorpej 		}
    777       1.68   thorpej 
    778       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    779       1.20   thorpej 			/*
    780       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
    781       1.20   thorpej 			 * it be?
    782       1.20   thorpej 			 */
    783       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
    784      1.134        ad 			cv_wait(&pp->pr_cv, &pp->pr_lock);
    785       1.20   thorpej 			goto startover;
    786       1.20   thorpej 		}
    787       1.31   thorpej 
    788       1.31   thorpej 		/*
    789       1.31   thorpej 		 * Log a message that the hard limit has been hit.
    790       1.31   thorpej 		 */
    791       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
    792       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
    793       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
    794       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    795       1.21   thorpej 
    796       1.21   thorpej 		pp->pr_nfail++;
    797       1.21   thorpej 
    798      1.134        ad 		mutex_exit(&pp->pr_lock);
    799       1.20   thorpej 		return (NULL);
    800       1.20   thorpej 	}
    801       1.20   thorpej 
    802        1.3        pk 	/*
    803        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
    804        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
    805        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
    806        1.3        pk 	 * has no items in its bucket.
    807        1.3        pk 	 */
    808       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
    809      1.113      yamt 		int error;
    810      1.113      yamt 
    811       1.20   thorpej #ifdef DIAGNOSTIC
    812       1.20   thorpej 		if (pp->pr_nitems != 0) {
    813      1.134        ad 			mutex_exit(&pp->pr_lock);
    814       1.20   thorpej 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    815       1.20   thorpej 			    pp->pr_wchan, pp->pr_nitems);
    816       1.80    provos 			panic("pool_get: nitems inconsistent");
    817       1.20   thorpej 		}
    818       1.20   thorpej #endif
    819       1.20   thorpej 
    820       1.21   thorpej 		/*
    821       1.21   thorpej 		 * Call the back-end page allocator for more memory.
    822       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
    823       1.21   thorpej 		 * may block.
    824       1.21   thorpej 		 */
    825      1.113      yamt 		error = pool_grow(pp, flags);
    826      1.113      yamt 		if (error != 0) {
    827       1.21   thorpej 			/*
    828       1.55   thorpej 			 * We were unable to allocate a page or item
    829       1.55   thorpej 			 * header, but we released the lock during
    830       1.55   thorpej 			 * allocation, so perhaps items were freed
    831       1.55   thorpej 			 * back to the pool.  Check for this case.
    832       1.21   thorpej 			 */
    833       1.21   thorpej 			if (pp->pr_curpage != NULL)
    834       1.21   thorpej 				goto startover;
    835       1.15        pk 
    836      1.117      yamt 			pp->pr_nfail++;
    837      1.134        ad 			mutex_exit(&pp->pr_lock);
    838      1.117      yamt 			return (NULL);
    839        1.1        pk 		}
    840        1.3        pk 
    841       1.20   thorpej 		/* Start the allocation process over. */
    842       1.20   thorpej 		goto startover;
    843        1.3        pk 	}
    844       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
    845       1.97      yamt #ifdef DIAGNOSTIC
    846       1.97      yamt 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
    847      1.134        ad 			mutex_exit(&pp->pr_lock);
    848       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
    849       1.97      yamt 		}
    850       1.97      yamt #endif
    851       1.97      yamt 		v = pr_item_notouch_get(pp, ph);
    852       1.97      yamt 	} else {
    853      1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    854       1.97      yamt 		if (__predict_false(v == NULL)) {
    855      1.134        ad 			mutex_exit(&pp->pr_lock);
    856       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
    857       1.97      yamt 		}
    858       1.20   thorpej #ifdef DIAGNOSTIC
    859       1.97      yamt 		if (__predict_false(pp->pr_nitems == 0)) {
    860      1.134        ad 			mutex_exit(&pp->pr_lock);
    861       1.97      yamt 			printf("pool_get: %s: items on itemlist, nitems %u\n",
    862       1.97      yamt 			    pp->pr_wchan, pp->pr_nitems);
    863       1.97      yamt 			panic("pool_get: nitems inconsistent");
    864       1.97      yamt 		}
    865       1.65     enami #endif
    866       1.56  sommerfe 
    867       1.65     enami #ifdef DIAGNOSTIC
    868       1.97      yamt 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    869       1.97      yamt 			panic("pool_get(%s): free list modified: "
    870       1.97      yamt 			    "magic=%x; page %p; item addr %p\n",
    871       1.97      yamt 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    872       1.97      yamt 		}
    873        1.3        pk #endif
    874        1.3        pk 
    875       1.97      yamt 		/*
    876       1.97      yamt 		 * Remove from item list.
    877       1.97      yamt 		 */
    878      1.102       chs 		LIST_REMOVE(pi, pi_list);
    879       1.97      yamt 	}
    880       1.20   thorpej 	pp->pr_nitems--;
    881       1.20   thorpej 	pp->pr_nout++;
    882        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    883        1.6   thorpej #ifdef DIAGNOSTIC
    884       1.34   thorpej 		if (__predict_false(pp->pr_nidle == 0))
    885        1.6   thorpej 			panic("pool_get: nidle inconsistent");
    886        1.6   thorpej #endif
    887        1.6   thorpej 		pp->pr_nidle--;
    888       1.88       chs 
    889       1.88       chs 		/*
    890       1.88       chs 		 * This page was previously empty.  Move it to the list of
    891       1.88       chs 		 * partially-full pages.  This page is already curpage.
    892       1.88       chs 		 */
    893       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
    894       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    895        1.6   thorpej 	}
    896        1.3        pk 	ph->ph_nmissing++;
    897       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    898       1.21   thorpej #ifdef DIAGNOSTIC
    899       1.97      yamt 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
    900      1.102       chs 		    !LIST_EMPTY(&ph->ph_itemlist))) {
    901      1.134        ad 			mutex_exit(&pp->pr_lock);
    902       1.21   thorpej 			panic("pool_get: %s: nmissing inconsistent",
    903       1.21   thorpej 			    pp->pr_wchan);
    904       1.21   thorpej 		}
    905       1.21   thorpej #endif
    906        1.3        pk 		/*
    907       1.88       chs 		 * This page is now full.  Move it to the full list
    908       1.88       chs 		 * and select a new current page.
    909        1.3        pk 		 */
    910       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
    911       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    912       1.88       chs 		pool_update_curpage(pp);
    913        1.1        pk 	}
    914        1.3        pk 
    915        1.3        pk 	pp->pr_nget++;
    916       1.20   thorpej 
    917       1.20   thorpej 	/*
    918       1.20   thorpej 	 * If we have a low water mark and we are now below that low
    919       1.20   thorpej 	 * water mark, add more items to the pool.
    920       1.20   thorpej 	 */
    921       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    922       1.20   thorpej 		/*
    923       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
    924       1.20   thorpej 		 * to try again in a second or so?  The latter could break
    925       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
    926       1.20   thorpej 		 */
    927       1.20   thorpej 	}
    928       1.20   thorpej 
    929      1.134        ad 	mutex_exit(&pp->pr_lock);
    930      1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    931      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
    932        1.1        pk 	return (v);
    933        1.1        pk }
    934        1.1        pk 
    935        1.1        pk /*
    936       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
    937        1.1        pk  */
    938       1.43   thorpej static void
    939      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    940        1.1        pk {
    941        1.1        pk 	struct pool_item *pi = v;
    942        1.3        pk 	struct pool_item_header *ph;
    943        1.3        pk 
    944      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    945      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
    946      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    947       1.61       chs 
    948       1.30   thorpej #ifdef DIAGNOSTIC
    949       1.34   thorpej 	if (__predict_false(pp->pr_nout == 0)) {
    950       1.30   thorpej 		printf("pool %s: putting with none out\n",
    951       1.30   thorpej 		    pp->pr_wchan);
    952       1.30   thorpej 		panic("pool_put");
    953       1.30   thorpej 	}
    954       1.30   thorpej #endif
    955        1.3        pk 
    956      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    957        1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    958        1.3        pk 	}
    959       1.28   thorpej 
    960        1.3        pk 	/*
    961        1.3        pk 	 * Return to item list.
    962        1.3        pk 	 */
    963       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
    964       1.97      yamt 		pr_item_notouch_put(pp, ph, v);
    965       1.97      yamt 	} else {
    966        1.2        pk #ifdef DIAGNOSTIC
    967       1.97      yamt 		pi->pi_magic = PI_MAGIC;
    968        1.3        pk #endif
    969       1.32       chs #ifdef DEBUG
    970       1.97      yamt 		{
    971       1.97      yamt 			int i, *ip = v;
    972       1.32       chs 
    973       1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    974       1.97      yamt 				*ip++ = PI_MAGIC;
    975       1.97      yamt 			}
    976       1.32       chs 		}
    977       1.32       chs #endif
    978       1.32       chs 
    979      1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    980       1.97      yamt 	}
    981       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
    982        1.3        pk 	ph->ph_nmissing--;
    983        1.3        pk 	pp->pr_nput++;
    984       1.20   thorpej 	pp->pr_nitems++;
    985       1.20   thorpej 	pp->pr_nout--;
    986        1.3        pk 
    987        1.3        pk 	/* Cancel "pool empty" condition if it exists */
    988        1.3        pk 	if (pp->pr_curpage == NULL)
    989        1.3        pk 		pp->pr_curpage = ph;
    990        1.3        pk 
    991        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
    992        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
    993      1.134        ad 		cv_broadcast(&pp->pr_cv);
    994        1.3        pk 	}
    995        1.3        pk 
    996        1.3        pk 	/*
    997       1.88       chs 	 * If this page is now empty, do one of two things:
    998       1.21   thorpej 	 *
    999       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1000       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1001       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1002       1.90   thorpej 	 *	    CLAIM.
   1003       1.21   thorpej 	 *
   1004       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1005       1.88       chs 	 *
   1006       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1007       1.88       chs 	 * page if one is available).
   1008        1.3        pk 	 */
   1009        1.3        pk 	if (ph->ph_nmissing == 0) {
   1010        1.6   thorpej 		pp->pr_nidle++;
   1011       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1012      1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1013      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1014        1.3        pk 		} else {
   1015       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1016       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1017        1.3        pk 
   1018       1.21   thorpej 			/*
   1019       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1020       1.21   thorpej 			 * be idle for some period of time before it can
   1021       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1022       1.21   thorpej 			 * ping-pong'ing for memory.
   1023      1.151      yamt 			 *
   1024      1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1025      1.151      yamt 			 * a problem for our usage.
   1026       1.21   thorpej 			 */
   1027      1.151      yamt 			ph->ph_time = time_uptime;
   1028        1.1        pk 		}
   1029       1.88       chs 		pool_update_curpage(pp);
   1030        1.1        pk 	}
   1031       1.88       chs 
   1032       1.21   thorpej 	/*
   1033       1.88       chs 	 * If the page was previously completely full, move it to the
   1034       1.88       chs 	 * partially-full list and make it the current page.  The next
   1035       1.88       chs 	 * allocation will get the item from this page, instead of
   1036       1.88       chs 	 * further fragmenting the pool.
   1037       1.21   thorpej 	 */
   1038       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1039       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1040       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1041       1.21   thorpej 		pp->pr_curpage = ph;
   1042       1.21   thorpej 	}
   1043       1.43   thorpej }
   1044       1.43   thorpej 
   1045       1.56  sommerfe void
   1046       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1047       1.56  sommerfe {
   1048      1.101   thorpej 	struct pool_pagelist pq;
   1049      1.101   thorpej 
   1050      1.101   thorpej 	LIST_INIT(&pq);
   1051       1.56  sommerfe 
   1052      1.134        ad 	mutex_enter(&pp->pr_lock);
   1053      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1054      1.134        ad 	mutex_exit(&pp->pr_lock);
   1055       1.56  sommerfe 
   1056      1.102       chs 	pr_pagelist_free(pp, &pq);
   1057       1.56  sommerfe }
   1058       1.57  sommerfe 
   1059       1.74   thorpej /*
   1060      1.113      yamt  * pool_grow: grow a pool by a page.
   1061      1.113      yamt  *
   1062      1.113      yamt  * => called with pool locked.
   1063      1.113      yamt  * => unlock and relock the pool.
   1064      1.113      yamt  * => return with pool locked.
   1065      1.113      yamt  */
   1066      1.113      yamt 
   1067      1.113      yamt static int
   1068      1.113      yamt pool_grow(struct pool *pp, int flags)
   1069      1.113      yamt {
   1070      1.113      yamt 	struct pool_item_header *ph = NULL;
   1071      1.113      yamt 	char *cp;
   1072      1.113      yamt 
   1073      1.134        ad 	mutex_exit(&pp->pr_lock);
   1074      1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1075      1.113      yamt 	if (__predict_true(cp != NULL)) {
   1076      1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1077      1.113      yamt 	}
   1078      1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1079      1.113      yamt 		if (cp != NULL) {
   1080      1.113      yamt 			pool_allocator_free(pp, cp);
   1081      1.113      yamt 		}
   1082      1.134        ad 		mutex_enter(&pp->pr_lock);
   1083      1.113      yamt 		return ENOMEM;
   1084      1.113      yamt 	}
   1085      1.113      yamt 
   1086      1.134        ad 	mutex_enter(&pp->pr_lock);
   1087      1.113      yamt 	pool_prime_page(pp, cp, ph);
   1088      1.113      yamt 	pp->pr_npagealloc++;
   1089      1.113      yamt 	return 0;
   1090      1.113      yamt }
   1091      1.113      yamt 
   1092      1.113      yamt /*
   1093       1.74   thorpej  * Add N items to the pool.
   1094       1.74   thorpej  */
   1095       1.74   thorpej int
   1096       1.74   thorpej pool_prime(struct pool *pp, int n)
   1097       1.74   thorpej {
   1098       1.75    simonb 	int newpages;
   1099      1.113      yamt 	int error = 0;
   1100       1.74   thorpej 
   1101      1.134        ad 	mutex_enter(&pp->pr_lock);
   1102       1.74   thorpej 
   1103       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1104       1.74   thorpej 
   1105       1.74   thorpej 	while (newpages-- > 0) {
   1106      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1107      1.113      yamt 		if (error) {
   1108       1.74   thorpej 			break;
   1109       1.74   thorpej 		}
   1110       1.74   thorpej 		pp->pr_minpages++;
   1111       1.74   thorpej 	}
   1112       1.74   thorpej 
   1113       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1114       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1115       1.74   thorpej 
   1116      1.134        ad 	mutex_exit(&pp->pr_lock);
   1117      1.113      yamt 	return error;
   1118       1.74   thorpej }
   1119       1.55   thorpej 
   1120       1.55   thorpej /*
   1121        1.3        pk  * Add a page worth of items to the pool.
   1122       1.21   thorpej  *
   1123       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1124        1.3        pk  */
   1125       1.55   thorpej static void
   1126      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1127        1.3        pk {
   1128        1.3        pk 	struct pool_item *pi;
   1129      1.128  christos 	void *cp = storage;
   1130      1.125        ad 	const unsigned int align = pp->pr_align;
   1131      1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1132       1.55   thorpej 	int n;
   1133       1.36        pk 
   1134      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1135       1.91      yamt 
   1136       1.66   thorpej #ifdef DIAGNOSTIC
   1137      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1138      1.150     skrll 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1139       1.36        pk 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1140       1.66   thorpej #endif
   1141        1.3        pk 
   1142        1.3        pk 	/*
   1143        1.3        pk 	 * Insert page header.
   1144        1.3        pk 	 */
   1145       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1146      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1147        1.3        pk 	ph->ph_page = storage;
   1148        1.3        pk 	ph->ph_nmissing = 0;
   1149      1.151      yamt 	ph->ph_time = time_uptime;
   1150       1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1151       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1152        1.3        pk 
   1153        1.6   thorpej 	pp->pr_nidle++;
   1154        1.6   thorpej 
   1155        1.3        pk 	/*
   1156        1.3        pk 	 * Color this page.
   1157        1.3        pk 	 */
   1158      1.141      yamt 	ph->ph_off = pp->pr_curcolor;
   1159      1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1160        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1161        1.3        pk 		pp->pr_curcolor = 0;
   1162        1.3        pk 
   1163        1.3        pk 	/*
   1164        1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1165        1.3        pk 	 */
   1166        1.3        pk 	if (ioff != 0)
   1167      1.128  christos 		cp = (char *)cp + align - ioff;
   1168        1.3        pk 
   1169      1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1170      1.125        ad 
   1171        1.3        pk 	/*
   1172        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1173        1.3        pk 	 */
   1174        1.3        pk 	n = pp->pr_itemsperpage;
   1175       1.20   thorpej 	pp->pr_nitems += n;
   1176        1.3        pk 
   1177       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1178      1.141      yamt 		pr_item_notouch_init(pp, ph);
   1179       1.97      yamt 	} else {
   1180       1.97      yamt 		while (n--) {
   1181       1.97      yamt 			pi = (struct pool_item *)cp;
   1182       1.78   thorpej 
   1183       1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1184        1.3        pk 
   1185       1.97      yamt 			/* Insert on page list */
   1186      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1187        1.3        pk #ifdef DIAGNOSTIC
   1188       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1189        1.3        pk #endif
   1190      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1191      1.125        ad 
   1192      1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1193       1.97      yamt 		}
   1194        1.3        pk 	}
   1195        1.3        pk 
   1196        1.3        pk 	/*
   1197        1.3        pk 	 * If the pool was depleted, point at the new page.
   1198        1.3        pk 	 */
   1199        1.3        pk 	if (pp->pr_curpage == NULL)
   1200        1.3        pk 		pp->pr_curpage = ph;
   1201        1.3        pk 
   1202        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1203        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1204        1.3        pk }
   1205        1.3        pk 
   1206       1.20   thorpej /*
   1207       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1208       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1209       1.20   thorpej  *
   1210       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1211       1.20   thorpej  *
   1212       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1213       1.20   thorpej  * with it locked.
   1214       1.20   thorpej  */
   1215       1.20   thorpej static int
   1216       1.42   thorpej pool_catchup(struct pool *pp)
   1217       1.20   thorpej {
   1218       1.20   thorpej 	int error = 0;
   1219       1.20   thorpej 
   1220       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1221      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1222      1.113      yamt 		if (error) {
   1223       1.20   thorpej 			break;
   1224       1.20   thorpej 		}
   1225       1.20   thorpej 	}
   1226      1.113      yamt 	return error;
   1227       1.20   thorpej }
   1228       1.20   thorpej 
   1229       1.88       chs static void
   1230       1.88       chs pool_update_curpage(struct pool *pp)
   1231       1.88       chs {
   1232       1.88       chs 
   1233       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1234       1.88       chs 	if (pp->pr_curpage == NULL) {
   1235       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1236       1.88       chs 	}
   1237      1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1238      1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1239       1.88       chs }
   1240       1.88       chs 
   1241        1.3        pk void
   1242       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1243        1.3        pk {
   1244       1.15        pk 
   1245      1.134        ad 	mutex_enter(&pp->pr_lock);
   1246       1.21   thorpej 
   1247        1.3        pk 	pp->pr_minitems = n;
   1248       1.15        pk 	pp->pr_minpages = (n == 0)
   1249       1.15        pk 		? 0
   1250       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1251       1.20   thorpej 
   1252       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1253       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1254       1.20   thorpej 		/*
   1255       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1256       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1257       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1258       1.20   thorpej 		 */
   1259       1.20   thorpej 	}
   1260       1.21   thorpej 
   1261      1.134        ad 	mutex_exit(&pp->pr_lock);
   1262        1.3        pk }
   1263        1.3        pk 
   1264        1.3        pk void
   1265       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1266        1.3        pk {
   1267       1.15        pk 
   1268      1.134        ad 	mutex_enter(&pp->pr_lock);
   1269       1.21   thorpej 
   1270       1.15        pk 	pp->pr_maxpages = (n == 0)
   1271       1.15        pk 		? 0
   1272       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1273       1.21   thorpej 
   1274      1.134        ad 	mutex_exit(&pp->pr_lock);
   1275        1.3        pk }
   1276        1.3        pk 
   1277       1.20   thorpej void
   1278       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1279       1.20   thorpej {
   1280       1.20   thorpej 
   1281      1.134        ad 	mutex_enter(&pp->pr_lock);
   1282       1.20   thorpej 
   1283       1.20   thorpej 	pp->pr_hardlimit = n;
   1284       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1285       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1286       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1287       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1288       1.20   thorpej 
   1289       1.20   thorpej 	/*
   1290       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1291       1.21   thorpej 	 * release the lock.
   1292       1.20   thorpej 	 */
   1293       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1294       1.20   thorpej 		? 0
   1295       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1296       1.21   thorpej 
   1297      1.134        ad 	mutex_exit(&pp->pr_lock);
   1298       1.20   thorpej }
   1299        1.3        pk 
   1300        1.3        pk /*
   1301        1.3        pk  * Release all complete pages that have not been used recently.
   1302      1.184     rmind  *
   1303      1.184     rmind  * Might be called from interrupt context.
   1304        1.3        pk  */
   1305       1.66   thorpej int
   1306       1.56  sommerfe pool_reclaim(struct pool *pp)
   1307        1.3        pk {
   1308        1.3        pk 	struct pool_item_header *ph, *phnext;
   1309       1.61       chs 	struct pool_pagelist pq;
   1310      1.151      yamt 	uint32_t curtime;
   1311      1.134        ad 	bool klock;
   1312      1.134        ad 	int rv;
   1313        1.3        pk 
   1314      1.184     rmind 	if (cpu_intr_p() || cpu_softintr_p()) {
   1315      1.184     rmind 		KASSERT(pp->pr_ipl != IPL_NONE);
   1316      1.184     rmind 	}
   1317      1.184     rmind 
   1318       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1319       1.68   thorpej 		/*
   1320       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1321       1.68   thorpej 		 */
   1322       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1323       1.68   thorpej 	}
   1324       1.68   thorpej 
   1325      1.134        ad 	/*
   1326      1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1327      1.157        ad 	 * to block.
   1328      1.134        ad 	 */
   1329      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1330      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1331      1.134        ad 		KERNEL_LOCK(1, NULL);
   1332      1.134        ad 		klock = true;
   1333      1.134        ad 	} else
   1334      1.134        ad 		klock = false;
   1335      1.134        ad 
   1336      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1337      1.134        ad 	if (pp->pr_cache != NULL)
   1338      1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1339      1.134        ad 
   1340      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1341      1.134        ad 		if (klock) {
   1342      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1343      1.134        ad 		}
   1344       1.66   thorpej 		return (0);
   1345      1.134        ad 	}
   1346       1.68   thorpej 
   1347       1.88       chs 	LIST_INIT(&pq);
   1348       1.43   thorpej 
   1349      1.151      yamt 	curtime = time_uptime;
   1350       1.21   thorpej 
   1351       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1352       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1353        1.3        pk 
   1354        1.3        pk 		/* Check our minimum page claim */
   1355        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1356        1.3        pk 			break;
   1357        1.3        pk 
   1358       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1359  1.190.6.1       mrg 		if (curtime - ph->ph_time < pool_inactive_time)
   1360       1.88       chs 			continue;
   1361       1.21   thorpej 
   1362       1.88       chs 		/*
   1363       1.88       chs 		 * If freeing this page would put us below
   1364       1.88       chs 		 * the low water mark, stop now.
   1365       1.88       chs 		 */
   1366       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1367       1.88       chs 		    pp->pr_minitems)
   1368       1.88       chs 			break;
   1369       1.21   thorpej 
   1370       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1371        1.3        pk 	}
   1372        1.3        pk 
   1373      1.134        ad 	mutex_exit(&pp->pr_lock);
   1374      1.134        ad 
   1375      1.134        ad 	if (LIST_EMPTY(&pq))
   1376      1.134        ad 		rv = 0;
   1377      1.134        ad 	else {
   1378      1.134        ad 		pr_pagelist_free(pp, &pq);
   1379      1.134        ad 		rv = 1;
   1380      1.134        ad 	}
   1381      1.134        ad 
   1382      1.134        ad 	if (klock) {
   1383      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1384      1.134        ad 	}
   1385       1.66   thorpej 
   1386      1.134        ad 	return (rv);
   1387        1.3        pk }
   1388        1.3        pk 
   1389        1.3        pk /*
   1390      1.134        ad  * Drain pools, one at a time.  This is a two stage process;
   1391      1.134        ad  * drain_start kicks off a cross call to drain CPU-level caches
   1392      1.134        ad  * if the pool has an associated pool_cache.  drain_end waits
   1393      1.134        ad  * for those cross calls to finish, and then drains the cache
   1394      1.134        ad  * (if any) and pool.
   1395      1.131        ad  *
   1396      1.134        ad  * Note, must never be called from interrupt context.
   1397        1.3        pk  */
   1398        1.3        pk void
   1399      1.134        ad pool_drain_start(struct pool **ppp, uint64_t *wp)
   1400        1.3        pk {
   1401        1.3        pk 	struct pool *pp;
   1402      1.134        ad 
   1403      1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1404        1.3        pk 
   1405       1.61       chs 	pp = NULL;
   1406      1.134        ad 
   1407      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1408      1.134        ad 	mutex_enter(&pool_head_lock);
   1409      1.134        ad 	do {
   1410      1.134        ad 		if (drainpp == NULL) {
   1411      1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1412      1.134        ad 		}
   1413      1.134        ad 		if (drainpp != NULL) {
   1414      1.134        ad 			pp = drainpp;
   1415      1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1416      1.134        ad 		}
   1417      1.134        ad 		/*
   1418      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1419      1.134        ad 		 * one pool in the system being active.
   1420      1.134        ad 		 */
   1421      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1422      1.134        ad 	pp->pr_refcnt++;
   1423      1.134        ad 	mutex_exit(&pool_head_lock);
   1424      1.134        ad 
   1425      1.134        ad 	/* If there is a pool_cache, drain CPU level caches. */
   1426      1.134        ad 	*ppp = pp;
   1427      1.134        ad 	if (pp->pr_cache != NULL) {
   1428      1.134        ad 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1429      1.134        ad 		    pp->pr_cache, NULL);
   1430      1.134        ad 	}
   1431      1.134        ad }
   1432      1.134        ad 
   1433      1.186     pooka bool
   1434      1.134        ad pool_drain_end(struct pool *pp, uint64_t where)
   1435      1.134        ad {
   1436      1.186     pooka 	bool reclaimed;
   1437      1.134        ad 
   1438      1.134        ad 	if (pp == NULL)
   1439      1.186     pooka 		return false;
   1440      1.134        ad 
   1441      1.134        ad 	KASSERT(pp->pr_refcnt > 0);
   1442      1.134        ad 
   1443      1.134        ad 	/* Wait for remote draining to complete. */
   1444      1.134        ad 	if (pp->pr_cache != NULL)
   1445      1.134        ad 		xc_wait(where);
   1446      1.134        ad 
   1447      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1448      1.186     pooka 	reclaimed = pool_reclaim(pp);
   1449      1.134        ad 
   1450      1.134        ad 	/* Finally, unlock the pool. */
   1451      1.134        ad 	mutex_enter(&pool_head_lock);
   1452      1.134        ad 	pp->pr_refcnt--;
   1453      1.134        ad 	cv_broadcast(&pool_busy);
   1454      1.134        ad 	mutex_exit(&pool_head_lock);
   1455      1.186     pooka 
   1456      1.186     pooka 	return reclaimed;
   1457        1.3        pk }
   1458        1.3        pk 
   1459        1.3        pk /*
   1460        1.3        pk  * Diagnostic helpers.
   1461        1.3        pk  */
   1462       1.21   thorpej 
   1463       1.25   thorpej void
   1464      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1465      1.108      yamt {
   1466      1.108      yamt 	struct pool *pp;
   1467      1.108      yamt 
   1468      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1469      1.108      yamt 		pool_printit(pp, modif, pr);
   1470      1.108      yamt 	}
   1471      1.108      yamt }
   1472      1.108      yamt 
   1473      1.108      yamt void
   1474       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1475       1.25   thorpej {
   1476       1.25   thorpej 
   1477       1.25   thorpej 	if (pp == NULL) {
   1478       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1479       1.25   thorpej 		return;
   1480       1.25   thorpej 	}
   1481       1.25   thorpej 
   1482       1.25   thorpej 	pool_print1(pp, modif, pr);
   1483       1.25   thorpej }
   1484       1.25   thorpej 
   1485       1.21   thorpej static void
   1486      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1487       1.97      yamt     void (*pr)(const char *, ...))
   1488       1.88       chs {
   1489       1.88       chs 	struct pool_item_header *ph;
   1490       1.88       chs #ifdef DIAGNOSTIC
   1491       1.88       chs 	struct pool_item *pi;
   1492       1.88       chs #endif
   1493       1.88       chs 
   1494       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1495      1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1496      1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1497       1.88       chs #ifdef DIAGNOSTIC
   1498       1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1499      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1500       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1501       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1502       1.97      yamt 					    pi, pi->pi_magic);
   1503       1.97      yamt 				}
   1504       1.88       chs 			}
   1505       1.88       chs 		}
   1506       1.88       chs #endif
   1507       1.88       chs 	}
   1508       1.88       chs }
   1509       1.88       chs 
   1510       1.88       chs static void
   1511       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1512        1.3        pk {
   1513       1.25   thorpej 	struct pool_item_header *ph;
   1514      1.134        ad 	pool_cache_t pc;
   1515      1.134        ad 	pcg_t *pcg;
   1516      1.134        ad 	pool_cache_cpu_t *cc;
   1517      1.134        ad 	uint64_t cpuhit, cpumiss;
   1518       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1519       1.25   thorpej 	char c;
   1520       1.25   thorpej 
   1521       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1522       1.25   thorpej 		if (c == 'l')
   1523       1.25   thorpej 			print_log = 1;
   1524       1.25   thorpej 		if (c == 'p')
   1525       1.25   thorpej 			print_pagelist = 1;
   1526       1.44   thorpej 		if (c == 'c')
   1527       1.44   thorpej 			print_cache = 1;
   1528       1.25   thorpej 	}
   1529       1.25   thorpej 
   1530      1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1531      1.134        ad 		(*pr)("POOL CACHE");
   1532      1.134        ad 	} else {
   1533      1.134        ad 		(*pr)("POOL");
   1534      1.134        ad 	}
   1535      1.134        ad 
   1536      1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1537       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1538       1.25   thorpej 	    pp->pr_roflags);
   1539       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1540       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1541       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1542       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1543       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1544       1.25   thorpej 
   1545      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1546       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1547       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1548       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1549       1.25   thorpej 
   1550       1.25   thorpej 	if (print_pagelist == 0)
   1551       1.25   thorpej 		goto skip_pagelist;
   1552       1.25   thorpej 
   1553       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1554       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1555       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1556       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1557       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1558       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1559       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1560       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1561       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1562       1.88       chs 
   1563       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1564       1.25   thorpej 		(*pr)("\tno current page\n");
   1565       1.25   thorpej 	else
   1566       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1567       1.25   thorpej 
   1568       1.25   thorpej  skip_pagelist:
   1569       1.25   thorpej 	if (print_log == 0)
   1570       1.25   thorpej 		goto skip_log;
   1571       1.25   thorpej 
   1572       1.25   thorpej 	(*pr)("\n");
   1573        1.3        pk 
   1574       1.25   thorpej  skip_log:
   1575       1.44   thorpej 
   1576      1.102       chs #define PR_GROUPLIST(pcg)						\
   1577      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1578      1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1579      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1580      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1581      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1582      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1583      1.102       chs 			    (unsigned long long)			\
   1584      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1585      1.102       chs 		} else {						\
   1586      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1587      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1588      1.102       chs 		}							\
   1589      1.102       chs 	}
   1590      1.102       chs 
   1591      1.134        ad 	if (pc != NULL) {
   1592      1.134        ad 		cpuhit = 0;
   1593      1.134        ad 		cpumiss = 0;
   1594      1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1595      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1596      1.134        ad 				continue;
   1597      1.134        ad 			cpuhit += cc->cc_hits;
   1598      1.134        ad 			cpumiss += cc->cc_misses;
   1599      1.134        ad 		}
   1600      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1601      1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1602      1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1603      1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1604      1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1605      1.134        ad 		    pc->pc_contended);
   1606      1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1607      1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1608      1.134        ad 		if (print_cache) {
   1609      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1610      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1611      1.134        ad 			    pcg = pcg->pcg_next) {
   1612      1.134        ad 				PR_GROUPLIST(pcg);
   1613      1.134        ad 			}
   1614      1.134        ad 			(*pr)("\tempty cache groups:\n");
   1615      1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1616      1.134        ad 			    pcg = pcg->pcg_next) {
   1617      1.134        ad 				PR_GROUPLIST(pcg);
   1618      1.134        ad 			}
   1619      1.103       chs 		}
   1620       1.44   thorpej 	}
   1621      1.102       chs #undef PR_GROUPLIST
   1622       1.88       chs }
   1623       1.88       chs 
   1624       1.88       chs static int
   1625       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1626       1.88       chs {
   1627       1.88       chs 	struct pool_item *pi;
   1628      1.128  christos 	void *page;
   1629       1.88       chs 	int n;
   1630       1.88       chs 
   1631      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1632      1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1633      1.121      yamt 		if (page != ph->ph_page &&
   1634      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1635      1.121      yamt 			if (label != NULL)
   1636      1.121      yamt 				printf("%s: ", label);
   1637      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1638      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1639      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1640      1.121      yamt 				ph, page);
   1641      1.121      yamt 			return 1;
   1642      1.121      yamt 		}
   1643       1.88       chs 	}
   1644        1.3        pk 
   1645       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1646       1.97      yamt 		return 0;
   1647       1.97      yamt 
   1648      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1649       1.88       chs 	     pi != NULL;
   1650      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1651       1.88       chs 
   1652       1.88       chs #ifdef DIAGNOSTIC
   1653       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1654       1.88       chs 			if (label != NULL)
   1655       1.88       chs 				printf("%s: ", label);
   1656       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1657      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1658       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1659      1.121      yamt 				n, pi);
   1660       1.88       chs 			panic("pool");
   1661       1.88       chs 		}
   1662       1.88       chs #endif
   1663      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1664      1.121      yamt 			continue;
   1665      1.121      yamt 		}
   1666      1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1667       1.88       chs 		if (page == ph->ph_page)
   1668       1.88       chs 			continue;
   1669       1.88       chs 
   1670       1.88       chs 		if (label != NULL)
   1671       1.88       chs 			printf("%s: ", label);
   1672       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1673       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1674       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1675       1.88       chs 			n, pi, page);
   1676       1.88       chs 		return 1;
   1677       1.88       chs 	}
   1678       1.88       chs 	return 0;
   1679        1.3        pk }
   1680        1.3        pk 
   1681       1.88       chs 
   1682        1.3        pk int
   1683       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1684        1.3        pk {
   1685        1.3        pk 	struct pool_item_header *ph;
   1686        1.3        pk 	int r = 0;
   1687        1.3        pk 
   1688      1.134        ad 	mutex_enter(&pp->pr_lock);
   1689       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1690       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1691       1.88       chs 		if (r) {
   1692       1.88       chs 			goto out;
   1693       1.88       chs 		}
   1694       1.88       chs 	}
   1695       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1696       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1697       1.88       chs 		if (r) {
   1698        1.3        pk 			goto out;
   1699        1.3        pk 		}
   1700       1.88       chs 	}
   1701       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1702       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1703       1.88       chs 		if (r) {
   1704        1.3        pk 			goto out;
   1705        1.3        pk 		}
   1706        1.3        pk 	}
   1707       1.88       chs 
   1708        1.3        pk out:
   1709      1.134        ad 	mutex_exit(&pp->pr_lock);
   1710        1.3        pk 	return (r);
   1711       1.43   thorpej }
   1712       1.43   thorpej 
   1713       1.43   thorpej /*
   1714       1.43   thorpej  * pool_cache_init:
   1715       1.43   thorpej  *
   1716       1.43   thorpej  *	Initialize a pool cache.
   1717      1.134        ad  */
   1718      1.134        ad pool_cache_t
   1719      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1720      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   1721      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1722      1.134        ad {
   1723      1.134        ad 	pool_cache_t pc;
   1724      1.134        ad 
   1725      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   1726      1.134        ad 	if (pc == NULL)
   1727      1.134        ad 		return NULL;
   1728      1.134        ad 
   1729      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1730      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   1731      1.134        ad 
   1732      1.134        ad 	return pc;
   1733      1.134        ad }
   1734      1.134        ad 
   1735      1.134        ad /*
   1736      1.134        ad  * pool_cache_bootstrap:
   1737       1.43   thorpej  *
   1738      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   1739      1.134        ad  *	provides initial storage.
   1740       1.43   thorpej  */
   1741       1.43   thorpej void
   1742      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1743      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   1744      1.134        ad     struct pool_allocator *palloc, int ipl,
   1745      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1746       1.43   thorpej     void *arg)
   1747       1.43   thorpej {
   1748      1.134        ad 	CPU_INFO_ITERATOR cii;
   1749      1.145        ad 	pool_cache_t pc1;
   1750      1.134        ad 	struct cpu_info *ci;
   1751      1.134        ad 	struct pool *pp;
   1752      1.134        ad 
   1753      1.134        ad 	pp = &pc->pc_pool;
   1754      1.134        ad 	if (palloc == NULL && ipl == IPL_NONE)
   1755      1.134        ad 		palloc = &pool_allocator_nointr;
   1756      1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1757      1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1758       1.43   thorpej 
   1759      1.134        ad 	if (ctor == NULL) {
   1760      1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   1761      1.134        ad 	}
   1762      1.134        ad 	if (dtor == NULL) {
   1763      1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   1764      1.134        ad 	}
   1765       1.43   thorpej 
   1766      1.134        ad 	pc->pc_emptygroups = NULL;
   1767      1.134        ad 	pc->pc_fullgroups = NULL;
   1768      1.134        ad 	pc->pc_partgroups = NULL;
   1769       1.43   thorpej 	pc->pc_ctor = ctor;
   1770       1.43   thorpej 	pc->pc_dtor = dtor;
   1771       1.43   thorpej 	pc->pc_arg  = arg;
   1772      1.134        ad 	pc->pc_hits  = 0;
   1773       1.48   thorpej 	pc->pc_misses = 0;
   1774      1.134        ad 	pc->pc_nempty = 0;
   1775      1.134        ad 	pc->pc_npart = 0;
   1776      1.134        ad 	pc->pc_nfull = 0;
   1777      1.134        ad 	pc->pc_contended = 0;
   1778      1.134        ad 	pc->pc_refcnt = 0;
   1779      1.136      yamt 	pc->pc_freecheck = NULL;
   1780      1.134        ad 
   1781      1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   1782      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1783      1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   1784      1.142        ad 	} else {
   1785      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1786      1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   1787      1.142        ad 	}
   1788      1.142        ad 
   1789      1.134        ad 	/* Allocate per-CPU caches. */
   1790      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1791      1.134        ad 	pc->pc_ncpu = 0;
   1792      1.139        ad 	if (ncpu < 2) {
   1793      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   1794      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   1795      1.137        ad 	} else {
   1796      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   1797      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   1798      1.137        ad 		}
   1799      1.134        ad 	}
   1800      1.145        ad 
   1801      1.145        ad 	/* Add to list of all pools. */
   1802      1.145        ad 	if (__predict_true(!cold))
   1803      1.134        ad 		mutex_enter(&pool_head_lock);
   1804      1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1805      1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1806      1.145        ad 			break;
   1807      1.145        ad 	}
   1808      1.145        ad 	if (pc1 == NULL)
   1809      1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1810      1.145        ad 	else
   1811      1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1812      1.145        ad 	if (__predict_true(!cold))
   1813      1.134        ad 		mutex_exit(&pool_head_lock);
   1814      1.145        ad 
   1815      1.145        ad 	membar_sync();
   1816      1.145        ad 	pp->pr_cache = pc;
   1817       1.43   thorpej }
   1818       1.43   thorpej 
   1819       1.43   thorpej /*
   1820       1.43   thorpej  * pool_cache_destroy:
   1821       1.43   thorpej  *
   1822       1.43   thorpej  *	Destroy a pool cache.
   1823       1.43   thorpej  */
   1824       1.43   thorpej void
   1825      1.134        ad pool_cache_destroy(pool_cache_t pc)
   1826       1.43   thorpej {
   1827  1.190.6.1       mrg 
   1828  1.190.6.1       mrg 	pool_cache_bootstrap_destroy(pc);
   1829  1.190.6.1       mrg 	pool_put(&cache_pool, pc);
   1830  1.190.6.1       mrg }
   1831  1.190.6.1       mrg 
   1832  1.190.6.1       mrg /*
   1833  1.190.6.1       mrg  * pool_cache_bootstrap_destroy:
   1834  1.190.6.1       mrg  *
   1835  1.190.6.1       mrg  *	Destroy a pool cache.
   1836  1.190.6.1       mrg  */
   1837  1.190.6.1       mrg void
   1838  1.190.6.1       mrg pool_cache_bootstrap_destroy(pool_cache_t pc)
   1839  1.190.6.1       mrg {
   1840      1.134        ad 	struct pool *pp = &pc->pc_pool;
   1841      1.175       jym 	u_int i;
   1842      1.134        ad 
   1843      1.134        ad 	/* Remove it from the global list. */
   1844      1.134        ad 	mutex_enter(&pool_head_lock);
   1845      1.134        ad 	while (pc->pc_refcnt != 0)
   1846      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   1847      1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1848      1.134        ad 	mutex_exit(&pool_head_lock);
   1849       1.43   thorpej 
   1850       1.43   thorpej 	/* First, invalidate the entire cache. */
   1851       1.43   thorpej 	pool_cache_invalidate(pc);
   1852       1.43   thorpej 
   1853      1.134        ad 	/* Disassociate it from the pool. */
   1854      1.134        ad 	mutex_enter(&pp->pr_lock);
   1855      1.134        ad 	pp->pr_cache = NULL;
   1856      1.134        ad 	mutex_exit(&pp->pr_lock);
   1857      1.134        ad 
   1858      1.134        ad 	/* Destroy per-CPU data */
   1859      1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1860      1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   1861      1.134        ad 
   1862      1.134        ad 	/* Finally, destroy it. */
   1863      1.134        ad 	mutex_destroy(&pc->pc_lock);
   1864      1.134        ad 	pool_destroy(pp);
   1865      1.134        ad }
   1866      1.134        ad 
   1867      1.134        ad /*
   1868      1.134        ad  * pool_cache_cpu_init1:
   1869      1.134        ad  *
   1870      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   1871      1.134        ad  */
   1872      1.134        ad static void
   1873      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1874      1.134        ad {
   1875      1.134        ad 	pool_cache_cpu_t *cc;
   1876      1.137        ad 	int index;
   1877      1.134        ad 
   1878      1.137        ad 	index = ci->ci_index;
   1879      1.137        ad 
   1880      1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   1881      1.134        ad 
   1882      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1883      1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   1884      1.134        ad 		return;
   1885      1.134        ad 	}
   1886      1.134        ad 
   1887      1.134        ad 	/*
   1888      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   1889      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   1890      1.134        ad 	 */
   1891      1.134        ad 	if (pc->pc_ncpu == 0) {
   1892      1.134        ad 		cc = &pc->pc_cpu0;
   1893      1.134        ad 		pc->pc_ncpu = 1;
   1894      1.134        ad 	} else {
   1895      1.134        ad 		mutex_enter(&pc->pc_lock);
   1896      1.134        ad 		pc->pc_ncpu++;
   1897      1.134        ad 		mutex_exit(&pc->pc_lock);
   1898      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1899      1.134        ad 	}
   1900      1.134        ad 
   1901      1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1902      1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1903      1.134        ad 	cc->cc_cache = pc;
   1904      1.137        ad 	cc->cc_cpuindex = index;
   1905      1.134        ad 	cc->cc_hits = 0;
   1906      1.134        ad 	cc->cc_misses = 0;
   1907      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   1908      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1909      1.134        ad 
   1910      1.137        ad 	pc->pc_cpus[index] = cc;
   1911       1.43   thorpej }
   1912       1.43   thorpej 
   1913      1.134        ad /*
   1914      1.134        ad  * pool_cache_cpu_init:
   1915      1.134        ad  *
   1916      1.134        ad  *	Called whenever a new CPU is attached.
   1917      1.134        ad  */
   1918      1.134        ad void
   1919      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   1920       1.43   thorpej {
   1921      1.134        ad 	pool_cache_t pc;
   1922      1.134        ad 
   1923      1.134        ad 	mutex_enter(&pool_head_lock);
   1924      1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1925      1.134        ad 		pc->pc_refcnt++;
   1926      1.134        ad 		mutex_exit(&pool_head_lock);
   1927       1.43   thorpej 
   1928      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   1929       1.43   thorpej 
   1930      1.134        ad 		mutex_enter(&pool_head_lock);
   1931      1.134        ad 		pc->pc_refcnt--;
   1932      1.134        ad 		cv_broadcast(&pool_busy);
   1933      1.134        ad 	}
   1934      1.134        ad 	mutex_exit(&pool_head_lock);
   1935       1.43   thorpej }
   1936       1.43   thorpej 
   1937      1.134        ad /*
   1938      1.134        ad  * pool_cache_reclaim:
   1939      1.134        ad  *
   1940      1.134        ad  *	Reclaim memory from a pool cache.
   1941      1.134        ad  */
   1942      1.134        ad bool
   1943      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   1944       1.43   thorpej {
   1945       1.43   thorpej 
   1946      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   1947      1.134        ad }
   1948       1.43   thorpej 
   1949      1.136      yamt static void
   1950      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   1951      1.136      yamt {
   1952      1.136      yamt 
   1953      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   1954      1.136      yamt 	pool_put(&pc->pc_pool, object);
   1955      1.136      yamt }
   1956      1.136      yamt 
   1957      1.134        ad /*
   1958      1.134        ad  * pool_cache_destruct_object:
   1959      1.134        ad  *
   1960      1.134        ad  *	Force destruction of an object and its release back into
   1961      1.134        ad  *	the pool.
   1962      1.134        ad  */
   1963      1.134        ad void
   1964      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   1965      1.134        ad {
   1966      1.134        ad 
   1967      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   1968      1.136      yamt 
   1969      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   1970       1.43   thorpej }
   1971       1.43   thorpej 
   1972      1.134        ad /*
   1973      1.134        ad  * pool_cache_invalidate_groups:
   1974      1.134        ad  *
   1975      1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   1976      1.134        ad  */
   1977      1.102       chs static void
   1978      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   1979      1.102       chs {
   1980      1.134        ad 	void *object;
   1981      1.134        ad 	pcg_t *next;
   1982      1.134        ad 	int i;
   1983      1.134        ad 
   1984      1.134        ad 	for (; pcg != NULL; pcg = next) {
   1985      1.134        ad 		next = pcg->pcg_next;
   1986      1.134        ad 
   1987      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   1988      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   1989      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   1990      1.134        ad 		}
   1991      1.102       chs 
   1992      1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   1993      1.142        ad 			pool_put(&pcg_large_pool, pcg);
   1994      1.142        ad 		} else {
   1995      1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   1996      1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   1997      1.142        ad 		}
   1998      1.102       chs 	}
   1999      1.102       chs }
   2000      1.102       chs 
   2001       1.43   thorpej /*
   2002      1.134        ad  * pool_cache_invalidate:
   2003       1.43   thorpej  *
   2004      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2005      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2006      1.176   thorpej  *
   2007      1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2008      1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2009      1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2010       1.43   thorpej  */
   2011      1.134        ad void
   2012      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2013      1.134        ad {
   2014      1.134        ad 	pcg_t *full, *empty, *part;
   2015      1.182     rmind #if 0
   2016      1.176   thorpej 	uint64_t where;
   2017      1.176   thorpej 
   2018      1.177       jym 	if (ncpu < 2 || !mp_online) {
   2019      1.176   thorpej 		/*
   2020      1.176   thorpej 		 * We might be called early enough in the boot process
   2021      1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2022      1.176   thorpej 		 * In this case, simply gather the local CPU's cache now
   2023      1.176   thorpej 		 * since it will be the only one running.
   2024      1.176   thorpej 		 */
   2025      1.176   thorpej 		pool_cache_xcall(pc);
   2026      1.176   thorpej 	} else {
   2027      1.176   thorpej 		/*
   2028      1.176   thorpej 		 * Gather all of the CPU-specific caches into the
   2029      1.176   thorpej 		 * global cache.
   2030      1.176   thorpej 		 */
   2031      1.176   thorpej 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
   2032      1.176   thorpej 		xc_wait(where);
   2033      1.176   thorpej 	}
   2034      1.182     rmind #endif
   2035      1.134        ad 	mutex_enter(&pc->pc_lock);
   2036      1.134        ad 	full = pc->pc_fullgroups;
   2037      1.134        ad 	empty = pc->pc_emptygroups;
   2038      1.134        ad 	part = pc->pc_partgroups;
   2039      1.134        ad 	pc->pc_fullgroups = NULL;
   2040      1.134        ad 	pc->pc_emptygroups = NULL;
   2041      1.134        ad 	pc->pc_partgroups = NULL;
   2042      1.134        ad 	pc->pc_nfull = 0;
   2043      1.134        ad 	pc->pc_nempty = 0;
   2044      1.134        ad 	pc->pc_npart = 0;
   2045      1.134        ad 	mutex_exit(&pc->pc_lock);
   2046      1.134        ad 
   2047      1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2048      1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2049      1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2050      1.134        ad }
   2051      1.134        ad 
   2052      1.175       jym /*
   2053      1.175       jym  * pool_cache_invalidate_cpu:
   2054      1.175       jym  *
   2055      1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2056      1.175       jym  *	identified by its associated index.
   2057      1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2058      1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2059      1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2060      1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2061      1.175       jym  *	may result in an undefined behaviour.
   2062      1.175       jym  */
   2063      1.175       jym static void
   2064      1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2065      1.175       jym {
   2066      1.175       jym 	pool_cache_cpu_t *cc;
   2067      1.175       jym 	pcg_t *pcg;
   2068      1.175       jym 
   2069      1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2070      1.175       jym 		return;
   2071      1.175       jym 
   2072      1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2073      1.175       jym 		pcg->pcg_next = NULL;
   2074      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2075      1.175       jym 	}
   2076      1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2077      1.175       jym 		pcg->pcg_next = NULL;
   2078      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2079      1.175       jym 	}
   2080      1.175       jym 	if (cc != &pc->pc_cpu0)
   2081      1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2082      1.175       jym 
   2083      1.175       jym }
   2084      1.175       jym 
   2085      1.134        ad void
   2086      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2087      1.134        ad {
   2088      1.134        ad 
   2089      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2090      1.134        ad }
   2091      1.134        ad 
   2092      1.134        ad void
   2093      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2094      1.134        ad {
   2095      1.134        ad 
   2096      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2097      1.134        ad }
   2098      1.134        ad 
   2099      1.134        ad void
   2100      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2101      1.134        ad {
   2102      1.134        ad 
   2103      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2104      1.134        ad }
   2105      1.134        ad 
   2106      1.134        ad void
   2107      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2108      1.134        ad {
   2109      1.134        ad 
   2110      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2111      1.134        ad }
   2112      1.134        ad 
   2113      1.162        ad static bool __noinline
   2114      1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2115      1.134        ad 		    paddr_t *pap, int flags)
   2116       1.43   thorpej {
   2117      1.134        ad 	pcg_t *pcg, *cur;
   2118      1.134        ad 	uint64_t ncsw;
   2119      1.134        ad 	pool_cache_t pc;
   2120       1.43   thorpej 	void *object;
   2121       1.58   thorpej 
   2122      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2123      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2124      1.168      yamt 
   2125      1.134        ad 	pc = cc->cc_cache;
   2126      1.134        ad 	cc->cc_misses++;
   2127       1.43   thorpej 
   2128      1.134        ad 	/*
   2129      1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2130      1.134        ad 	 * from the cache.
   2131      1.134        ad 	 */
   2132      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2133      1.134        ad 		ncsw = curlwp->l_ncsw;
   2134      1.134        ad 		mutex_enter(&pc->pc_lock);
   2135      1.134        ad 		pc->pc_contended++;
   2136       1.43   thorpej 
   2137      1.134        ad 		/*
   2138      1.134        ad 		 * If we context switched while locking, then
   2139      1.134        ad 		 * our view of the per-CPU data is invalid:
   2140      1.134        ad 		 * retry.
   2141      1.134        ad 		 */
   2142      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2143      1.134        ad 			mutex_exit(&pc->pc_lock);
   2144      1.162        ad 			return true;
   2145       1.43   thorpej 		}
   2146      1.102       chs 	}
   2147       1.43   thorpej 
   2148      1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2149       1.43   thorpej 		/*
   2150      1.134        ad 		 * If there's a full group, release our empty
   2151      1.134        ad 		 * group back to the cache.  Install the full
   2152      1.134        ad 		 * group as cc_current and return.
   2153       1.43   thorpej 		 */
   2154      1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2155      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2156      1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2157      1.134        ad 			pc->pc_emptygroups = cur;
   2158      1.134        ad 			pc->pc_nempty++;
   2159       1.87   thorpej 		}
   2160      1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2161      1.134        ad 		cc->cc_current = pcg;
   2162      1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2163      1.134        ad 		pc->pc_hits++;
   2164      1.134        ad 		pc->pc_nfull--;
   2165      1.134        ad 		mutex_exit(&pc->pc_lock);
   2166      1.162        ad 		return true;
   2167      1.134        ad 	}
   2168      1.134        ad 
   2169      1.134        ad 	/*
   2170      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2171      1.134        ad 	 * path: fetch a new object from the pool and construct
   2172      1.134        ad 	 * it.
   2173      1.134        ad 	 */
   2174      1.134        ad 	pc->pc_misses++;
   2175      1.134        ad 	mutex_exit(&pc->pc_lock);
   2176      1.162        ad 	splx(s);
   2177      1.134        ad 
   2178      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2179      1.134        ad 	*objectp = object;
   2180      1.162        ad 	if (__predict_false(object == NULL))
   2181      1.162        ad 		return false;
   2182      1.125        ad 
   2183      1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2184      1.134        ad 		pool_put(&pc->pc_pool, object);
   2185      1.134        ad 		*objectp = NULL;
   2186      1.162        ad 		return false;
   2187       1.43   thorpej 	}
   2188       1.43   thorpej 
   2189      1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2190      1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2191       1.43   thorpej 
   2192      1.134        ad 	if (pap != NULL) {
   2193      1.134        ad #ifdef POOL_VTOPHYS
   2194      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2195      1.134        ad #else
   2196      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2197      1.134        ad #endif
   2198      1.102       chs 	}
   2199       1.43   thorpej 
   2200      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2201      1.162        ad 	return false;
   2202       1.43   thorpej }
   2203       1.43   thorpej 
   2204       1.43   thorpej /*
   2205      1.134        ad  * pool_cache_get{,_paddr}:
   2206       1.43   thorpej  *
   2207      1.134        ad  *	Get an object from a pool cache (optionally returning
   2208      1.134        ad  *	the physical address of the object).
   2209       1.43   thorpej  */
   2210      1.134        ad void *
   2211      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2212       1.43   thorpej {
   2213      1.134        ad 	pool_cache_cpu_t *cc;
   2214      1.134        ad 	pcg_t *pcg;
   2215      1.134        ad 	void *object;
   2216       1.60   thorpej 	int s;
   2217       1.43   thorpej 
   2218      1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2219      1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2220      1.190       jym 	    "pool '%s' is IPL_NONE, but called from interrupt context\n",
   2221      1.190       jym 	    pc->pc_pool.pr_wchan);
   2222      1.184     rmind 
   2223      1.155        ad 	if (flags & PR_WAITOK) {
   2224      1.154      yamt 		ASSERT_SLEEPABLE();
   2225      1.155        ad 	}
   2226      1.125        ad 
   2227      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2228      1.162        ad 	s = splvm();
   2229      1.165      yamt 	while (/* CONSTCOND */ true) {
   2230      1.134        ad 		/* Try and allocate an object from the current group. */
   2231      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2232      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2233      1.134        ad 	 	pcg = cc->cc_current;
   2234      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2235      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2236      1.162        ad 			if (__predict_false(pap != NULL))
   2237      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2238      1.148      yamt #if defined(DIAGNOSTIC)
   2239      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2240      1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2241      1.134        ad 			KASSERT(object != NULL);
   2242      1.163        ad #endif
   2243      1.134        ad 			cc->cc_hits++;
   2244      1.162        ad 			splx(s);
   2245      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2246      1.134        ad 			return object;
   2247       1.43   thorpej 		}
   2248       1.43   thorpej 
   2249       1.43   thorpej 		/*
   2250      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2251      1.134        ad 		 * it with the current group and allocate from there.
   2252       1.43   thorpej 		 */
   2253      1.134        ad 		pcg = cc->cc_previous;
   2254      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2255      1.134        ad 			cc->cc_previous = cc->cc_current;
   2256      1.134        ad 			cc->cc_current = pcg;
   2257      1.134        ad 			continue;
   2258       1.43   thorpej 		}
   2259       1.43   thorpej 
   2260      1.134        ad 		/*
   2261      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2262      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2263      1.162        ad 		 * no more objects are available, it will return false.
   2264      1.134        ad 		 * Otherwise, we need to retry.
   2265      1.134        ad 		 */
   2266      1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2267      1.165      yamt 			break;
   2268      1.165      yamt 	}
   2269       1.43   thorpej 
   2270      1.134        ad 	return object;
   2271       1.51   thorpej }
   2272       1.51   thorpej 
   2273      1.162        ad static bool __noinline
   2274      1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2275       1.51   thorpej {
   2276      1.163        ad 	pcg_t *pcg, *cur;
   2277      1.134        ad 	uint64_t ncsw;
   2278      1.134        ad 	pool_cache_t pc;
   2279       1.51   thorpej 
   2280      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2281      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2282      1.168      yamt 
   2283      1.134        ad 	pc = cc->cc_cache;
   2284      1.171        ad 	pcg = NULL;
   2285      1.134        ad 	cc->cc_misses++;
   2286       1.43   thorpej 
   2287      1.171        ad 	/*
   2288      1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2289      1.171        ad 	 * while still unlocked.
   2290      1.171        ad 	 */
   2291      1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2292      1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2293      1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2294      1.171        ad 		}
   2295      1.171        ad 		if (__predict_true(pcg != NULL)) {
   2296      1.171        ad 			pcg->pcg_avail = 0;
   2297      1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2298      1.171        ad 		}
   2299      1.171        ad 	}
   2300      1.171        ad 
   2301      1.162        ad 	/* Lock the cache. */
   2302      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2303      1.164        ad 		ncsw = curlwp->l_ncsw;
   2304      1.134        ad 		mutex_enter(&pc->pc_lock);
   2305      1.134        ad 		pc->pc_contended++;
   2306      1.162        ad 
   2307      1.163        ad 		/*
   2308      1.163        ad 		 * If we context switched while locking, then our view of
   2309      1.163        ad 		 * the per-CPU data is invalid: retry.
   2310      1.163        ad 		 */
   2311      1.163        ad 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2312      1.163        ad 			mutex_exit(&pc->pc_lock);
   2313      1.171        ad 			if (pcg != NULL) {
   2314      1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2315      1.171        ad 			}
   2316      1.163        ad 			return true;
   2317      1.163        ad 		}
   2318      1.162        ad 	}
   2319      1.102       chs 
   2320      1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2321      1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2322      1.171        ad 		pcg = pc->pc_emptygroups;
   2323      1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2324      1.163        ad 		pc->pc_nempty--;
   2325      1.134        ad 	}
   2326      1.130        ad 
   2327      1.162        ad 	/*
   2328      1.162        ad 	 * If there's a empty group, release our full group back
   2329      1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2330      1.162        ad 	 * and return.
   2331      1.162        ad 	 */
   2332      1.163        ad 	if (pcg != NULL) {
   2333      1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2334      1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2335      1.146        ad 			cc->cc_previous = pcg;
   2336      1.146        ad 		} else {
   2337      1.162        ad 			cur = cc->cc_current;
   2338      1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2339      1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2340      1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2341      1.146        ad 				pc->pc_fullgroups = cur;
   2342      1.146        ad 				pc->pc_nfull++;
   2343      1.146        ad 			}
   2344      1.146        ad 			cc->cc_current = pcg;
   2345      1.146        ad 		}
   2346      1.163        ad 		pc->pc_hits++;
   2347      1.134        ad 		mutex_exit(&pc->pc_lock);
   2348      1.162        ad 		return true;
   2349      1.102       chs 	}
   2350      1.105  christos 
   2351      1.134        ad 	/*
   2352      1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2353      1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2354      1.162        ad 	 * the object here and now.
   2355      1.134        ad 	 */
   2356      1.134        ad 	pc->pc_misses++;
   2357      1.134        ad 	mutex_exit(&pc->pc_lock);
   2358      1.162        ad 	splx(s);
   2359      1.162        ad 	pool_cache_destruct_object(pc, object);
   2360      1.105  christos 
   2361      1.162        ad 	return false;
   2362      1.134        ad }
   2363      1.102       chs 
   2364       1.43   thorpej /*
   2365      1.134        ad  * pool_cache_put{,_paddr}:
   2366       1.43   thorpej  *
   2367      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2368      1.134        ad  *	physical address of the object).
   2369       1.43   thorpej  */
   2370      1.101   thorpej void
   2371      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2372       1.43   thorpej {
   2373      1.134        ad 	pool_cache_cpu_t *cc;
   2374      1.134        ad 	pcg_t *pcg;
   2375      1.134        ad 	int s;
   2376      1.101   thorpej 
   2377      1.172      yamt 	KASSERT(object != NULL);
   2378      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2379      1.101   thorpej 
   2380      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2381      1.162        ad 	s = splvm();
   2382      1.165      yamt 	while (/* CONSTCOND */ true) {
   2383      1.134        ad 		/* If the current group isn't full, release it there. */
   2384      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2385      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2386      1.134        ad 	 	pcg = cc->cc_current;
   2387      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2388      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2389      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2390      1.134        ad 			pcg->pcg_avail++;
   2391      1.134        ad 			cc->cc_hits++;
   2392      1.162        ad 			splx(s);
   2393      1.134        ad 			return;
   2394      1.134        ad 		}
   2395       1.43   thorpej 
   2396      1.134        ad 		/*
   2397      1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2398      1.134        ad 		 * it with the current group and try again.
   2399      1.134        ad 		 */
   2400      1.134        ad 		pcg = cc->cc_previous;
   2401      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2402      1.134        ad 			cc->cc_previous = cc->cc_current;
   2403      1.134        ad 			cc->cc_current = pcg;
   2404      1.134        ad 			continue;
   2405      1.134        ad 		}
   2406       1.43   thorpej 
   2407      1.134        ad 		/*
   2408      1.134        ad 		 * Can't free to either group: try the slow path.
   2409      1.134        ad 		 * If put_slow() releases the object for us, it
   2410      1.162        ad 		 * will return false.  Otherwise we need to retry.
   2411      1.134        ad 		 */
   2412      1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2413      1.165      yamt 			break;
   2414      1.165      yamt 	}
   2415       1.43   thorpej }
   2416       1.43   thorpej 
   2417       1.43   thorpej /*
   2418      1.134        ad  * pool_cache_xcall:
   2419       1.43   thorpej  *
   2420      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2421      1.134        ad  *	Run within a cross-call thread.
   2422       1.43   thorpej  */
   2423       1.43   thorpej static void
   2424      1.134        ad pool_cache_xcall(pool_cache_t pc)
   2425       1.43   thorpej {
   2426      1.134        ad 	pool_cache_cpu_t *cc;
   2427      1.134        ad 	pcg_t *prev, *cur, **list;
   2428      1.162        ad 	int s;
   2429      1.134        ad 
   2430      1.162        ad 	s = splvm();
   2431      1.162        ad 	mutex_enter(&pc->pc_lock);
   2432      1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2433      1.134        ad 	cur = cc->cc_current;
   2434      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2435      1.134        ad 	prev = cc->cc_previous;
   2436      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2437      1.162        ad 	if (cur != &pcg_dummy) {
   2438      1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2439      1.134        ad 			list = &pc->pc_fullgroups;
   2440      1.134        ad 			pc->pc_nfull++;
   2441      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2442      1.134        ad 			list = &pc->pc_emptygroups;
   2443      1.134        ad 			pc->pc_nempty++;
   2444      1.134        ad 		} else {
   2445      1.134        ad 			list = &pc->pc_partgroups;
   2446      1.134        ad 			pc->pc_npart++;
   2447      1.134        ad 		}
   2448      1.134        ad 		cur->pcg_next = *list;
   2449      1.134        ad 		*list = cur;
   2450      1.134        ad 	}
   2451      1.162        ad 	if (prev != &pcg_dummy) {
   2452      1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2453      1.134        ad 			list = &pc->pc_fullgroups;
   2454      1.134        ad 			pc->pc_nfull++;
   2455      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2456      1.134        ad 			list = &pc->pc_emptygroups;
   2457      1.134        ad 			pc->pc_nempty++;
   2458      1.134        ad 		} else {
   2459      1.134        ad 			list = &pc->pc_partgroups;
   2460      1.134        ad 			pc->pc_npart++;
   2461      1.134        ad 		}
   2462      1.134        ad 		prev->pcg_next = *list;
   2463      1.134        ad 		*list = prev;
   2464      1.134        ad 	}
   2465      1.134        ad 	mutex_exit(&pc->pc_lock);
   2466      1.134        ad 	splx(s);
   2467        1.3        pk }
   2468       1.66   thorpej 
   2469       1.66   thorpej /*
   2470       1.66   thorpej  * Pool backend allocators.
   2471       1.66   thorpej  *
   2472       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2473       1.66   thorpej  * and any additional draining that might be needed.
   2474       1.66   thorpej  *
   2475       1.66   thorpej  * We provide two standard allocators:
   2476       1.66   thorpej  *
   2477       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2478       1.66   thorpej  *
   2479       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2480       1.66   thorpej  *	in interrupt context.
   2481       1.66   thorpej  */
   2482       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2483       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2484       1.66   thorpej 
   2485      1.112     bjh21 #ifdef POOL_SUBPAGE
   2486      1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2487  1.190.6.1       mrg 	.pa_alloc = pool_page_alloc,
   2488  1.190.6.1       mrg 	.pa_free = pool_page_free,
   2489  1.190.6.1       mrg 	.pa_pagesz = 0
   2490      1.112     bjh21 };
   2491      1.112     bjh21 #else
   2492       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2493  1.190.6.1       mrg 	.pa_alloc = pool_page_alloc,
   2494  1.190.6.1       mrg 	.pa_free = pool_page_free,
   2495  1.190.6.1       mrg 	.pa_pagesz = 0
   2496       1.66   thorpej };
   2497      1.112     bjh21 #endif
   2498       1.66   thorpej 
   2499      1.112     bjh21 #ifdef POOL_SUBPAGE
   2500      1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2501  1.190.6.1       mrg 	.pa_alloc = pool_page_alloc,
   2502  1.190.6.1       mrg 	.pa_free = pool_page_free,
   2503  1.190.6.1       mrg 	.pa_pagesz = 0
   2504      1.112     bjh21 };
   2505      1.112     bjh21 #else
   2506       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2507  1.190.6.1       mrg 	.pa_alloc = pool_page_alloc,
   2508  1.190.6.1       mrg 	.pa_free = pool_page_free,
   2509  1.190.6.1       mrg 	.pa_pagesz = 0
   2510       1.66   thorpej };
   2511      1.112     bjh21 #endif
   2512       1.66   thorpej 
   2513       1.66   thorpej #ifdef POOL_SUBPAGE
   2514       1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2515       1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2516       1.66   thorpej 
   2517      1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2518  1.190.6.1       mrg 	.pa_alloc = pool_subpage_alloc,
   2519  1.190.6.1       mrg 	.pa_free = pool_subpage_free,
   2520  1.190.6.1       mrg 	.pa_pagesz = POOL_SUBPAGE
   2521      1.112     bjh21 };
   2522      1.112     bjh21 
   2523      1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2524  1.190.6.1       mrg 	.pa_alloc = pool_subpage_alloc,
   2525  1.190.6.1       mrg 	.pa_free = pool_subpage_free,
   2526  1.190.6.1       mrg 	.pa_pagesz = POOL_SUBPAGE
   2527       1.66   thorpej };
   2528       1.66   thorpej #endif /* POOL_SUBPAGE */
   2529       1.66   thorpej 
   2530      1.117      yamt static void *
   2531      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2532       1.66   thorpej {
   2533      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2534       1.66   thorpej 	void *res;
   2535       1.66   thorpej 
   2536      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2537      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2538       1.66   thorpej 		/*
   2539      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2540      1.117      yamt 		 * In other cases, the hook will be run in
   2541      1.117      yamt 		 * pool_reclaim().
   2542       1.66   thorpej 		 */
   2543      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2544      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2545      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2546       1.66   thorpej 		}
   2547      1.117      yamt 	}
   2548      1.117      yamt 	return res;
   2549       1.66   thorpej }
   2550       1.66   thorpej 
   2551      1.117      yamt static void
   2552       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2553       1.66   thorpej {
   2554       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2555       1.66   thorpej 
   2556       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2557       1.66   thorpej }
   2558       1.66   thorpej 
   2559       1.66   thorpej void *
   2560      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2561       1.66   thorpej {
   2562  1.190.6.1       mrg 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2563  1.190.6.1       mrg 	vmem_addr_t va;
   2564  1.190.6.1       mrg 	int ret;
   2565  1.190.6.1       mrg 
   2566  1.190.6.1       mrg 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2567  1.190.6.1       mrg 	    vflags | VM_INSTANTFIT, &va);
   2568       1.66   thorpej 
   2569  1.190.6.1       mrg 	return ret ? NULL : (void *)va;
   2570       1.66   thorpej }
   2571       1.66   thorpej 
   2572       1.66   thorpej void
   2573      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2574       1.66   thorpej {
   2575       1.66   thorpej 
   2576  1.190.6.1       mrg 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2577       1.98      yamt }
   2578       1.98      yamt 
   2579       1.98      yamt static void *
   2580      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2581       1.98      yamt {
   2582  1.190.6.1       mrg 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2583  1.190.6.1       mrg 	vmem_addr_t va;
   2584  1.190.6.1       mrg 	int ret;
   2585       1.98      yamt 
   2586  1.190.6.1       mrg 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2587  1.190.6.1       mrg 	    vflags | VM_INSTANTFIT, &va);
   2588  1.190.6.1       mrg 
   2589  1.190.6.1       mrg 	return ret ? NULL : (void *)va;
   2590       1.98      yamt }
   2591       1.98      yamt 
   2592       1.98      yamt static void
   2593      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2594       1.98      yamt {
   2595       1.98      yamt 
   2596  1.190.6.1       mrg 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2597       1.66   thorpej }
   2598       1.66   thorpej 
   2599       1.66   thorpej #ifdef POOL_SUBPAGE
   2600       1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2601       1.66   thorpej void *
   2602       1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2603       1.66   thorpej {
   2604      1.134        ad 	return pool_get(&psppool, flags);
   2605       1.66   thorpej }
   2606       1.66   thorpej 
   2607       1.66   thorpej void
   2608       1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2609       1.66   thorpej {
   2610       1.66   thorpej 	pool_put(&psppool, v);
   2611       1.66   thorpej }
   2612       1.66   thorpej 
   2613      1.112     bjh21 #endif /* POOL_SUBPAGE */
   2614      1.141      yamt 
   2615      1.141      yamt #if defined(DDB)
   2616      1.141      yamt static bool
   2617      1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2618      1.141      yamt {
   2619      1.141      yamt 
   2620      1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   2621      1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2622      1.141      yamt }
   2623      1.141      yamt 
   2624      1.143      yamt static bool
   2625      1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2626      1.143      yamt {
   2627      1.143      yamt 
   2628      1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2629      1.143      yamt }
   2630      1.143      yamt 
   2631      1.143      yamt static bool
   2632      1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2633      1.143      yamt {
   2634      1.143      yamt 	int i;
   2635      1.143      yamt 
   2636      1.143      yamt 	if (pcg == NULL) {
   2637      1.143      yamt 		return false;
   2638      1.143      yamt 	}
   2639      1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   2640      1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2641      1.143      yamt 			return true;
   2642      1.143      yamt 		}
   2643      1.143      yamt 	}
   2644      1.143      yamt 	return false;
   2645      1.143      yamt }
   2646      1.143      yamt 
   2647      1.143      yamt static bool
   2648      1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2649      1.143      yamt {
   2650      1.143      yamt 
   2651      1.143      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2652      1.143      yamt 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2653      1.143      yamt 		pool_item_bitmap_t *bitmap =
   2654      1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2655      1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2656      1.143      yamt 
   2657      1.143      yamt 		return (*bitmap & mask) == 0;
   2658      1.143      yamt 	} else {
   2659      1.143      yamt 		struct pool_item *pi;
   2660      1.143      yamt 
   2661      1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2662      1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   2663      1.143      yamt 				return false;
   2664      1.143      yamt 			}
   2665      1.143      yamt 		}
   2666      1.143      yamt 		return true;
   2667      1.143      yamt 	}
   2668      1.143      yamt }
   2669      1.143      yamt 
   2670      1.141      yamt void
   2671      1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2672      1.141      yamt {
   2673      1.141      yamt 	struct pool *pp;
   2674      1.141      yamt 
   2675      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2676      1.141      yamt 		struct pool_item_header *ph;
   2677      1.141      yamt 		uintptr_t item;
   2678      1.143      yamt 		bool allocated = true;
   2679      1.143      yamt 		bool incache = false;
   2680      1.143      yamt 		bool incpucache = false;
   2681      1.143      yamt 		char cpucachestr[32];
   2682      1.141      yamt 
   2683      1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2684      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2685      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2686      1.141      yamt 					goto found;
   2687      1.141      yamt 				}
   2688      1.141      yamt 			}
   2689      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2690      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2691      1.143      yamt 					allocated =
   2692      1.143      yamt 					    pool_allocated(pp, ph, addr);
   2693      1.143      yamt 					goto found;
   2694      1.143      yamt 				}
   2695      1.143      yamt 			}
   2696      1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2697      1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   2698      1.143      yamt 					allocated = false;
   2699      1.141      yamt 					goto found;
   2700      1.141      yamt 				}
   2701      1.141      yamt 			}
   2702      1.141      yamt 			continue;
   2703      1.141      yamt 		} else {
   2704      1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2705      1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2706      1.141      yamt 				continue;
   2707      1.141      yamt 			}
   2708      1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   2709      1.141      yamt 		}
   2710      1.141      yamt found:
   2711      1.143      yamt 		if (allocated && pp->pr_cache) {
   2712      1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   2713      1.143      yamt 			struct pool_cache_group *pcg;
   2714      1.143      yamt 			int i;
   2715      1.143      yamt 
   2716      1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2717      1.143      yamt 			    pcg = pcg->pcg_next) {
   2718      1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   2719      1.143      yamt 					incache = true;
   2720      1.143      yamt 					goto print;
   2721      1.143      yamt 				}
   2722      1.143      yamt 			}
   2723      1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2724      1.143      yamt 				pool_cache_cpu_t *cc;
   2725      1.143      yamt 
   2726      1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2727      1.143      yamt 					continue;
   2728      1.143      yamt 				}
   2729      1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2730      1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2731      1.143      yamt 					struct cpu_info *ci =
   2732      1.170        ad 					    cpu_lookup(i);
   2733      1.143      yamt 
   2734      1.143      yamt 					incpucache = true;
   2735      1.143      yamt 					snprintf(cpucachestr,
   2736      1.143      yamt 					    sizeof(cpucachestr),
   2737      1.143      yamt 					    "cached by CPU %u",
   2738      1.153    martin 					    ci->ci_index);
   2739      1.143      yamt 					goto print;
   2740      1.143      yamt 				}
   2741      1.143      yamt 			}
   2742      1.143      yamt 		}
   2743      1.143      yamt print:
   2744      1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2745      1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   2746      1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2747      1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   2748      1.143      yamt 		    pp->pr_wchan,
   2749      1.143      yamt 		    incpucache ? cpucachestr :
   2750      1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   2751      1.141      yamt 	}
   2752      1.141      yamt }
   2753      1.141      yamt #endif /* defined(DDB) */
   2754