Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.194
      1  1.194      para /*	$NetBSD: subr_pool.c,v 1.194 2012/02/04 22:11:42 para Exp $	*/
      2    1.1        pk 
      3    1.1        pk /*-
      4  1.183        ad  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010
      5  1.183        ad  *     The NetBSD Foundation, Inc.
      6    1.1        pk  * All rights reserved.
      7    1.1        pk  *
      8    1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9   1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  1.134        ad  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     11    1.1        pk  *
     12    1.1        pk  * Redistribution and use in source and binary forms, with or without
     13    1.1        pk  * modification, are permitted provided that the following conditions
     14    1.1        pk  * are met:
     15    1.1        pk  * 1. Redistributions of source code must retain the above copyright
     16    1.1        pk  *    notice, this list of conditions and the following disclaimer.
     17    1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     19    1.1        pk  *    documentation and/or other materials provided with the distribution.
     20    1.1        pk  *
     21    1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22    1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23    1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24    1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25    1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26    1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27    1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28    1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29    1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30    1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31    1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     32    1.1        pk  */
     33   1.64     lukem 
     34   1.64     lukem #include <sys/cdefs.h>
     35  1.194      para __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.194 2012/02/04 22:11:42 para Exp $");
     36   1.24    scottr 
     37  1.141      yamt #include "opt_ddb.h"
     38   1.25   thorpej #include "opt_pool.h"
     39   1.24    scottr #include "opt_poollog.h"
     40   1.28   thorpej #include "opt_lockdebug.h"
     41    1.1        pk 
     42    1.1        pk #include <sys/param.h>
     43    1.1        pk #include <sys/systm.h>
     44  1.135      yamt #include <sys/bitops.h>
     45    1.1        pk #include <sys/proc.h>
     46    1.1        pk #include <sys/errno.h>
     47    1.1        pk #include <sys/kernel.h>
     48    1.1        pk #include <sys/malloc.h>
     49  1.191      para #include <sys/vmem.h>
     50    1.1        pk #include <sys/pool.h>
     51   1.20   thorpej #include <sys/syslog.h>
     52  1.125        ad #include <sys/debug.h>
     53  1.134        ad #include <sys/lockdebug.h>
     54  1.134        ad #include <sys/xcall.h>
     55  1.134        ad #include <sys/cpu.h>
     56  1.145        ad #include <sys/atomic.h>
     57    1.3        pk 
     58  1.187  uebayasi #include <uvm/uvm_extern.h>
     59    1.3        pk 
     60    1.1        pk /*
     61    1.1        pk  * Pool resource management utility.
     62    1.3        pk  *
     63   1.88       chs  * Memory is allocated in pages which are split into pieces according to
     64   1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     65   1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     66   1.88       chs  * for empty, full and partially-full pages respectively. The individual
     67   1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     68   1.88       chs  * header. The memory for building the page list is either taken from
     69   1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     70   1.88       chs  * an internal pool of page headers (`phpool').
     71    1.1        pk  */
     72    1.1        pk 
     73    1.3        pk /* List of all pools */
     74  1.173     rmind static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     75  1.134        ad 
     76    1.3        pk /* Private pool for page header structures */
     77   1.97      yamt #define	PHPOOL_MAX	8
     78   1.97      yamt static struct pool phpool[PHPOOL_MAX];
     79  1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     80  1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     81    1.3        pk 
     82   1.62     bjh21 #ifdef POOL_SUBPAGE
     83   1.62     bjh21 /* Pool of subpages for use by normal pools. */
     84   1.62     bjh21 static struct pool psppool;
     85   1.62     bjh21 #endif
     86   1.62     bjh21 
     87   1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
     88   1.98      yamt static void pool_page_free_meta(struct pool *, void *);
     89   1.98      yamt 
     90   1.98      yamt /* allocator for pool metadata */
     91  1.134        ad struct pool_allocator pool_allocator_meta = {
     92  1.191      para 	.pa_alloc = pool_page_alloc_meta,
     93  1.191      para 	.pa_free = pool_page_free_meta,
     94  1.191      para 	.pa_pagesz = 0
     95   1.98      yamt };
     96   1.98      yamt 
     97    1.3        pk /* # of seconds to retain page after last use */
     98    1.3        pk int pool_inactive_time = 10;
     99    1.3        pk 
    100    1.3        pk /* Next candidate for drainage (see pool_drain()) */
    101   1.23   thorpej static struct pool	*drainpp;
    102   1.23   thorpej 
    103  1.134        ad /* This lock protects both pool_head and drainpp. */
    104  1.134        ad static kmutex_t pool_head_lock;
    105  1.134        ad static kcondvar_t pool_busy;
    106    1.3        pk 
    107  1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    108  1.178      elad static kmutex_t pool_allocator_lock;
    109  1.178      elad 
    110  1.135      yamt typedef uint32_t pool_item_bitmap_t;
    111  1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    112  1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    113   1.99      yamt 
    114    1.3        pk struct pool_item_header {
    115    1.3        pk 	/* Page headers */
    116   1.88       chs 	LIST_ENTRY(pool_item_header)
    117    1.3        pk 				ph_pagelist;	/* pool page list */
    118   1.88       chs 	SPLAY_ENTRY(pool_item_header)
    119   1.88       chs 				ph_node;	/* Off-page page headers */
    120  1.128  christos 	void *			ph_page;	/* this page's address */
    121  1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    122  1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    123  1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    124   1.97      yamt 	union {
    125   1.97      yamt 		/* !PR_NOTOUCH */
    126   1.97      yamt 		struct {
    127  1.102       chs 			LIST_HEAD(, pool_item)
    128   1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    129   1.97      yamt 		} phu_normal;
    130   1.97      yamt 		/* PR_NOTOUCH */
    131   1.97      yamt 		struct {
    132  1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    133   1.97      yamt 		} phu_notouch;
    134   1.97      yamt 	} ph_u;
    135    1.3        pk };
    136   1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    137  1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    138    1.3        pk 
    139    1.1        pk struct pool_item {
    140    1.3        pk #ifdef DIAGNOSTIC
    141   1.82   thorpej 	u_int pi_magic;
    142   1.33       chs #endif
    143  1.134        ad #define	PI_MAGIC 0xdeaddeadU
    144    1.3        pk 	/* Other entries use only this list entry */
    145  1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    146    1.3        pk };
    147    1.3        pk 
    148   1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    149   1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    150   1.53   thorpej 
    151   1.43   thorpej /*
    152   1.43   thorpej  * Pool cache management.
    153   1.43   thorpej  *
    154   1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    155   1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    156   1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    157   1.43   thorpej  * necessary.
    158   1.43   thorpej  *
    159  1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    160  1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    161  1.134        ad  * object from the pool, it calls the object's constructor and places it
    162  1.134        ad  * into a cache group.  When a cache group frees an object back to the
    163  1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    164  1.134        ad  * to persist in constructed form while freed to the cache.
    165  1.134        ad  *
    166  1.134        ad  * The pool references each cache, so that when a pool is drained by the
    167  1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    168  1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    169  1.134        ad  * its entirety.
    170   1.43   thorpej  *
    171   1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    172   1.43   thorpej  * the complexity of cache management for pools which would not benefit
    173   1.43   thorpej  * from it.
    174   1.43   thorpej  */
    175   1.43   thorpej 
    176  1.142        ad static struct pool pcg_normal_pool;
    177  1.142        ad static struct pool pcg_large_pool;
    178  1.134        ad static struct pool cache_pool;
    179  1.134        ad static struct pool cache_cpu_pool;
    180    1.3        pk 
    181  1.189     pooka pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    182  1.189     pooka 
    183  1.145        ad /* List of all caches. */
    184  1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    185  1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    186  1.145        ad 
    187  1.162        ad int pool_cache_disable;		/* global disable for caching */
    188  1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    189  1.145        ad 
    190  1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    191  1.162        ad 				    void *);
    192  1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    193  1.162        ad 				    void **, paddr_t *, int);
    194  1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    195  1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    196  1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    197  1.134        ad static void	pool_cache_xcall(pool_cache_t);
    198    1.3        pk 
    199   1.42   thorpej static int	pool_catchup(struct pool *);
    200  1.128  christos static void	pool_prime_page(struct pool *, void *,
    201   1.55   thorpej 		    struct pool_item_header *);
    202   1.88       chs static void	pool_update_curpage(struct pool *);
    203   1.66   thorpej 
    204  1.113      yamt static int	pool_grow(struct pool *, int);
    205  1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    206  1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    207    1.3        pk 
    208   1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    209   1.88       chs 	void (*)(const char *, ...));
    210   1.42   thorpej static void pool_print1(struct pool *, const char *,
    211   1.42   thorpej 	void (*)(const char *, ...));
    212    1.3        pk 
    213   1.88       chs static int pool_chk_page(struct pool *, const char *,
    214   1.88       chs 			 struct pool_item_header *);
    215   1.88       chs 
    216    1.3        pk /*
    217   1.52   thorpej  * Pool log entry. An array of these is allocated in pool_init().
    218    1.3        pk  */
    219    1.3        pk struct pool_log {
    220    1.3        pk 	const char	*pl_file;
    221    1.3        pk 	long		pl_line;
    222    1.3        pk 	int		pl_action;
    223   1.25   thorpej #define	PRLOG_GET	1
    224   1.25   thorpej #define	PRLOG_PUT	2
    225    1.3        pk 	void		*pl_addr;
    226    1.1        pk };
    227    1.1        pk 
    228   1.86      matt #ifdef POOL_DIAGNOSTIC
    229    1.3        pk /* Number of entries in pool log buffers */
    230   1.17   thorpej #ifndef POOL_LOGSIZE
    231   1.17   thorpej #define	POOL_LOGSIZE	10
    232   1.17   thorpej #endif
    233   1.17   thorpej 
    234   1.17   thorpej int pool_logsize = POOL_LOGSIZE;
    235    1.1        pk 
    236  1.110     perry static inline void
    237   1.42   thorpej pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    238    1.3        pk {
    239  1.179   mlelstv 	int n;
    240    1.3        pk 	struct pool_log *pl;
    241    1.3        pk 
    242   1.20   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    243    1.3        pk 		return;
    244    1.3        pk 
    245  1.179   mlelstv 	if (pp->pr_log == NULL) {
    246  1.179   mlelstv 		if (kmem_map != NULL)
    247  1.179   mlelstv 			pp->pr_log = malloc(
    248  1.179   mlelstv 				pool_logsize * sizeof(struct pool_log),
    249  1.179   mlelstv 				M_TEMP, M_NOWAIT | M_ZERO);
    250  1.179   mlelstv 		if (pp->pr_log == NULL)
    251  1.179   mlelstv 			return;
    252  1.179   mlelstv 		pp->pr_curlogentry = 0;
    253  1.179   mlelstv 		pp->pr_logsize = pool_logsize;
    254  1.179   mlelstv 	}
    255  1.179   mlelstv 
    256    1.3        pk 	/*
    257    1.3        pk 	 * Fill in the current entry. Wrap around and overwrite
    258    1.3        pk 	 * the oldest entry if necessary.
    259    1.3        pk 	 */
    260  1.179   mlelstv 	n = pp->pr_curlogentry;
    261    1.3        pk 	pl = &pp->pr_log[n];
    262    1.3        pk 	pl->pl_file = file;
    263    1.3        pk 	pl->pl_line = line;
    264    1.3        pk 	pl->pl_action = action;
    265    1.3        pk 	pl->pl_addr = v;
    266    1.3        pk 	if (++n >= pp->pr_logsize)
    267    1.3        pk 		n = 0;
    268    1.3        pk 	pp->pr_curlogentry = n;
    269    1.3        pk }
    270    1.3        pk 
    271    1.3        pk static void
    272   1.42   thorpej pr_printlog(struct pool *pp, struct pool_item *pi,
    273   1.42   thorpej     void (*pr)(const char *, ...))
    274    1.3        pk {
    275    1.3        pk 	int i = pp->pr_logsize;
    276    1.3        pk 	int n = pp->pr_curlogentry;
    277    1.3        pk 
    278  1.179   mlelstv 	if (pp->pr_log == NULL)
    279    1.3        pk 		return;
    280    1.3        pk 
    281    1.3        pk 	/*
    282    1.3        pk 	 * Print all entries in this pool's log.
    283    1.3        pk 	 */
    284    1.3        pk 	while (i-- > 0) {
    285    1.3        pk 		struct pool_log *pl = &pp->pr_log[n];
    286    1.3        pk 		if (pl->pl_action != 0) {
    287   1.25   thorpej 			if (pi == NULL || pi == pl->pl_addr) {
    288   1.25   thorpej 				(*pr)("\tlog entry %d:\n", i);
    289   1.25   thorpej 				(*pr)("\t\taction = %s, addr = %p\n",
    290   1.25   thorpej 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    291   1.25   thorpej 				    pl->pl_addr);
    292   1.25   thorpej 				(*pr)("\t\tfile: %s at line %lu\n",
    293   1.25   thorpej 				    pl->pl_file, pl->pl_line);
    294   1.25   thorpej 			}
    295    1.3        pk 		}
    296    1.3        pk 		if (++n >= pp->pr_logsize)
    297    1.3        pk 			n = 0;
    298    1.3        pk 	}
    299    1.3        pk }
    300   1.25   thorpej 
    301  1.110     perry static inline void
    302   1.42   thorpej pr_enter(struct pool *pp, const char *file, long line)
    303   1.25   thorpej {
    304   1.25   thorpej 
    305   1.34   thorpej 	if (__predict_false(pp->pr_entered_file != NULL)) {
    306   1.25   thorpej 		printf("pool %s: reentrancy at file %s line %ld\n",
    307   1.25   thorpej 		    pp->pr_wchan, file, line);
    308   1.25   thorpej 		printf("         previous entry at file %s line %ld\n",
    309   1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    310   1.25   thorpej 		panic("pr_enter");
    311   1.25   thorpej 	}
    312   1.25   thorpej 
    313   1.25   thorpej 	pp->pr_entered_file = file;
    314   1.25   thorpej 	pp->pr_entered_line = line;
    315   1.25   thorpej }
    316   1.25   thorpej 
    317  1.110     perry static inline void
    318   1.42   thorpej pr_leave(struct pool *pp)
    319   1.25   thorpej {
    320   1.25   thorpej 
    321   1.34   thorpej 	if (__predict_false(pp->pr_entered_file == NULL)) {
    322   1.25   thorpej 		printf("pool %s not entered?\n", pp->pr_wchan);
    323   1.25   thorpej 		panic("pr_leave");
    324   1.25   thorpej 	}
    325   1.25   thorpej 
    326   1.25   thorpej 	pp->pr_entered_file = NULL;
    327   1.25   thorpej 	pp->pr_entered_line = 0;
    328   1.25   thorpej }
    329   1.25   thorpej 
    330  1.110     perry static inline void
    331   1.42   thorpej pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    332   1.25   thorpej {
    333   1.25   thorpej 
    334   1.25   thorpej 	if (pp->pr_entered_file != NULL)
    335   1.25   thorpej 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    336   1.25   thorpej 		    pp->pr_entered_file, pp->pr_entered_line);
    337   1.25   thorpej }
    338    1.3        pk #else
    339   1.25   thorpej #define	pr_log(pp, v, action, file, line)
    340   1.25   thorpej #define	pr_printlog(pp, pi, pr)
    341   1.25   thorpej #define	pr_enter(pp, file, line)
    342   1.25   thorpej #define	pr_leave(pp)
    343   1.25   thorpej #define	pr_enter_check(pp, pr)
    344   1.59   thorpej #endif /* POOL_DIAGNOSTIC */
    345    1.3        pk 
    346  1.135      yamt static inline unsigned int
    347   1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    348   1.97      yamt     const void *v)
    349   1.97      yamt {
    350   1.97      yamt 	const char *cp = v;
    351  1.135      yamt 	unsigned int idx;
    352   1.97      yamt 
    353   1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    354  1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    355   1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    356   1.97      yamt 	return idx;
    357   1.97      yamt }
    358   1.97      yamt 
    359  1.110     perry static inline void
    360   1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    361   1.97      yamt     void *obj)
    362   1.97      yamt {
    363  1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    364  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    365  1.135      yamt 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    366   1.97      yamt 
    367  1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    368  1.135      yamt 	*bitmap |= mask;
    369   1.97      yamt }
    370   1.97      yamt 
    371  1.110     perry static inline void *
    372   1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    373   1.97      yamt {
    374  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    375  1.135      yamt 	unsigned int idx;
    376  1.135      yamt 	int i;
    377   1.97      yamt 
    378  1.135      yamt 	for (i = 0; ; i++) {
    379  1.135      yamt 		int bit;
    380   1.97      yamt 
    381  1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    382  1.135      yamt 		bit = ffs32(bitmap[i]);
    383  1.135      yamt 		if (bit) {
    384  1.135      yamt 			pool_item_bitmap_t mask;
    385  1.135      yamt 
    386  1.135      yamt 			bit--;
    387  1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    388  1.135      yamt 			mask = 1 << bit;
    389  1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    390  1.135      yamt 			bitmap[i] &= ~mask;
    391  1.135      yamt 			break;
    392  1.135      yamt 		}
    393  1.135      yamt 	}
    394  1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    395  1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    396   1.97      yamt }
    397   1.97      yamt 
    398  1.135      yamt static inline void
    399  1.141      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    400  1.135      yamt {
    401  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    402  1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    403  1.135      yamt 	int i;
    404  1.135      yamt 
    405  1.135      yamt 	for (i = 0; i < n; i++) {
    406  1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    407  1.135      yamt 	}
    408  1.135      yamt }
    409  1.135      yamt 
    410  1.110     perry static inline int
    411   1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    412   1.88       chs {
    413  1.121      yamt 
    414  1.121      yamt 	/*
    415  1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    416  1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    417  1.121      yamt 	 */
    418  1.121      yamt 
    419   1.88       chs 	if (a->ph_page < b->ph_page)
    420  1.121      yamt 		return (1);
    421  1.121      yamt 	else if (a->ph_page > b->ph_page)
    422   1.88       chs 		return (-1);
    423   1.88       chs 	else
    424   1.88       chs 		return (0);
    425   1.88       chs }
    426   1.88       chs 
    427   1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    428   1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    429   1.88       chs 
    430  1.141      yamt static inline struct pool_item_header *
    431  1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    432  1.141      yamt {
    433  1.141      yamt 	struct pool_item_header *ph, tmp;
    434  1.141      yamt 
    435  1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    436  1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    437  1.141      yamt 	if (ph == NULL) {
    438  1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    439  1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    440  1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    441  1.141      yamt 		}
    442  1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    443  1.141      yamt 	}
    444  1.141      yamt 
    445  1.141      yamt 	return ph;
    446  1.141      yamt }
    447  1.141      yamt 
    448    1.3        pk /*
    449  1.121      yamt  * Return the pool page header based on item address.
    450    1.3        pk  */
    451  1.110     perry static inline struct pool_item_header *
    452  1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    453    1.3        pk {
    454   1.88       chs 	struct pool_item_header *ph, tmp;
    455    1.3        pk 
    456  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    457  1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    458  1.121      yamt 	} else {
    459  1.128  christos 		void *page =
    460  1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    461  1.121      yamt 
    462  1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    463  1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    464  1.121      yamt 		} else {
    465  1.121      yamt 			tmp.ph_page = page;
    466  1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    467  1.121      yamt 		}
    468  1.121      yamt 	}
    469    1.3        pk 
    470  1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    471  1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    472  1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    473   1.88       chs 	return ph;
    474    1.3        pk }
    475    1.3        pk 
    476  1.101   thorpej static void
    477  1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    478  1.101   thorpej {
    479  1.101   thorpej 	struct pool_item_header *ph;
    480  1.101   thorpej 
    481  1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    482  1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    483  1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    484  1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    485  1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    486  1.101   thorpej 	}
    487  1.101   thorpej }
    488  1.101   thorpej 
    489    1.3        pk /*
    490    1.3        pk  * Remove a page from the pool.
    491    1.3        pk  */
    492  1.110     perry static inline void
    493   1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    494   1.61       chs      struct pool_pagelist *pq)
    495    1.3        pk {
    496    1.3        pk 
    497  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    498   1.91      yamt 
    499    1.3        pk 	/*
    500    1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    501    1.3        pk 	 */
    502    1.6   thorpej 	if (ph->ph_nmissing == 0) {
    503    1.6   thorpej #ifdef DIAGNOSTIC
    504    1.6   thorpej 		if (pp->pr_nidle == 0)
    505    1.6   thorpej 			panic("pr_rmpage: nidle inconsistent");
    506   1.20   thorpej 		if (pp->pr_nitems < pp->pr_itemsperpage)
    507   1.20   thorpej 			panic("pr_rmpage: nitems inconsistent");
    508    1.6   thorpej #endif
    509    1.6   thorpej 		pp->pr_nidle--;
    510    1.6   thorpej 	}
    511    1.7   thorpej 
    512   1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    513   1.20   thorpej 
    514    1.7   thorpej 	/*
    515  1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    516    1.7   thorpej 	 */
    517   1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    518   1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    519   1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    520  1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    521  1.101   thorpej 
    522    1.7   thorpej 	pp->pr_npages--;
    523    1.7   thorpej 	pp->pr_npagefree++;
    524    1.6   thorpej 
    525   1.88       chs 	pool_update_curpage(pp);
    526    1.3        pk }
    527    1.3        pk 
    528    1.3        pk /*
    529   1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    530   1.94    simonb  */
    531   1.94    simonb void
    532  1.117      yamt pool_subsystem_init(void)
    533   1.94    simonb {
    534  1.192     rmind 	size_t size;
    535  1.191      para 	int idx;
    536   1.94    simonb 
    537  1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    538  1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    539  1.134        ad 	cv_init(&pool_busy, "poolbusy");
    540  1.134        ad 
    541  1.191      para 	/*
    542  1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    543  1.191      para 	 * haven't done so yet.
    544  1.191      para 	 */
    545  1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    546  1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    547  1.191      para 		int nelem;
    548  1.191      para 		size_t sz;
    549  1.191      para 
    550  1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    551  1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    552  1.191      para 		    "phpool-%d", nelem);
    553  1.191      para 		sz = sizeof(struct pool_item_header);
    554  1.191      para 		if (nelem) {
    555  1.191      para 			sz = offsetof(struct pool_item_header,
    556  1.191      para 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    557  1.191      para 		}
    558  1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    559  1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    560  1.117      yamt 	}
    561  1.191      para #ifdef POOL_SUBPAGE
    562  1.191      para 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    563  1.191      para 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    564  1.191      para #endif
    565  1.191      para 
    566  1.191      para 	size = sizeof(pcg_t) +
    567  1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    568  1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    569  1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    570  1.191      para 
    571  1.191      para 	size = sizeof(pcg_t) +
    572  1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    573  1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    574  1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    575  1.134        ad 
    576  1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    577  1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    578  1.134        ad 
    579  1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    580  1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    581   1.94    simonb }
    582   1.94    simonb 
    583   1.94    simonb /*
    584    1.3        pk  * Initialize the given pool resource structure.
    585    1.3        pk  *
    586    1.3        pk  * We export this routine to allow other kernel parts to declare
    587    1.3        pk  * static pools that must be initialized before malloc() is available.
    588    1.3        pk  */
    589    1.3        pk void
    590   1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    591  1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    592    1.3        pk {
    593  1.116    simonb 	struct pool *pp1;
    594   1.92     enami 	size_t trysize, phsize;
    595  1.134        ad 	int off, slack;
    596    1.3        pk 
    597  1.116    simonb #ifdef DEBUG
    598  1.116    simonb 	/*
    599  1.116    simonb 	 * Check that the pool hasn't already been initialised and
    600  1.116    simonb 	 * added to the list of all pools.
    601  1.116    simonb 	 */
    602  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    603  1.116    simonb 		if (pp == pp1)
    604  1.116    simonb 			panic("pool_init: pool %s already initialised",
    605  1.116    simonb 			    wchan);
    606  1.116    simonb 	}
    607  1.116    simonb #endif
    608  1.116    simonb 
    609   1.25   thorpej #ifdef POOL_DIAGNOSTIC
    610   1.25   thorpej 	/*
    611   1.25   thorpej 	 * Always log if POOL_DIAGNOSTIC is defined.
    612   1.25   thorpej 	 */
    613   1.25   thorpej 	if (pool_logsize != 0)
    614   1.25   thorpej 		flags |= PR_LOGGING;
    615   1.25   thorpej #endif
    616   1.25   thorpej 
    617   1.66   thorpej 	if (palloc == NULL)
    618   1.66   thorpej 		palloc = &pool_allocator_kmem;
    619  1.112     bjh21 #ifdef POOL_SUBPAGE
    620  1.112     bjh21 	if (size > palloc->pa_pagesz) {
    621  1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    622  1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    623  1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    624  1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    625  1.112     bjh21 	}
    626   1.66   thorpej #endif /* POOL_SUBPAGE */
    627  1.180   mlelstv 	if (!cold)
    628  1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    629  1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    630  1.112     bjh21 		if (palloc->pa_pagesz == 0)
    631   1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    632   1.66   thorpej 
    633   1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    634   1.66   thorpej 
    635  1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    636   1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    637   1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    638    1.4   thorpej 	}
    639  1.180   mlelstv 	if (!cold)
    640  1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    641    1.3        pk 
    642    1.3        pk 	if (align == 0)
    643    1.3        pk 		align = ALIGN(1);
    644   1.14   thorpej 
    645  1.120      yamt 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    646   1.14   thorpej 		size = sizeof(struct pool_item);
    647    1.3        pk 
    648   1.78   thorpej 	size = roundup(size, align);
    649   1.66   thorpej #ifdef DIAGNOSTIC
    650   1.66   thorpej 	if (size > palloc->pa_pagesz)
    651  1.121      yamt 		panic("pool_init: pool item size (%zu) too large", size);
    652   1.66   thorpej #endif
    653   1.35        pk 
    654    1.3        pk 	/*
    655    1.3        pk 	 * Initialize the pool structure.
    656    1.3        pk 	 */
    657   1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    658   1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    659   1.88       chs 	LIST_INIT(&pp->pr_partpages);
    660  1.134        ad 	pp->pr_cache = NULL;
    661    1.3        pk 	pp->pr_curpage = NULL;
    662    1.3        pk 	pp->pr_npages = 0;
    663    1.3        pk 	pp->pr_minitems = 0;
    664    1.3        pk 	pp->pr_minpages = 0;
    665    1.3        pk 	pp->pr_maxpages = UINT_MAX;
    666   1.20   thorpej 	pp->pr_roflags = flags;
    667   1.20   thorpej 	pp->pr_flags = 0;
    668   1.35        pk 	pp->pr_size = size;
    669    1.3        pk 	pp->pr_align = align;
    670    1.3        pk 	pp->pr_wchan = wchan;
    671   1.66   thorpej 	pp->pr_alloc = palloc;
    672   1.20   thorpej 	pp->pr_nitems = 0;
    673   1.20   thorpej 	pp->pr_nout = 0;
    674   1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    675   1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    676   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    677   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    678   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    679   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    680   1.68   thorpej 	pp->pr_drain_hook = NULL;
    681   1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    682  1.125        ad 	pp->pr_freecheck = NULL;
    683    1.3        pk 
    684    1.3        pk 	/*
    685    1.3        pk 	 * Decide whether to put the page header off page to avoid
    686   1.92     enami 	 * wasting too large a part of the page or too big item.
    687   1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    688   1.92     enami 	 * a returned item with its header based on the page address.
    689   1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    690   1.92     enami 	 * size as the threshold (XXX: tune)
    691   1.92     enami 	 *
    692   1.92     enami 	 * However, we'll put the header into the page if we can put
    693   1.92     enami 	 * it without wasting any items.
    694   1.92     enami 	 *
    695   1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    696    1.3        pk 	 */
    697   1.92     enami 	pp->pr_itemoffset = ioff %= align;
    698   1.92     enami 	/* See the comment below about reserved bytes. */
    699   1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    700   1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    701  1.121      yamt 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    702   1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    703   1.97      yamt 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    704    1.3        pk 		/* Use the end of the page for the page header */
    705   1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    706   1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    707    1.2        pk 	} else {
    708    1.3        pk 		/* The page header will be taken from our page header pool */
    709    1.3        pk 		pp->pr_phoffset = 0;
    710   1.66   thorpej 		off = palloc->pa_pagesz;
    711   1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    712    1.2        pk 	}
    713    1.1        pk 
    714    1.3        pk 	/*
    715    1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    716    1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    717    1.3        pk 	 * appropriate positioning of each item.
    718    1.3        pk 	 */
    719    1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    720   1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    721   1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    722   1.97      yamt 		int idx;
    723   1.97      yamt 
    724   1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    725   1.97      yamt 		    idx++) {
    726   1.97      yamt 			/* nothing */
    727   1.97      yamt 		}
    728   1.97      yamt 		if (idx >= PHPOOL_MAX) {
    729   1.97      yamt 			/*
    730   1.97      yamt 			 * if you see this panic, consider to tweak
    731   1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    732   1.97      yamt 			 */
    733   1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    734   1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    735   1.97      yamt 		}
    736   1.97      yamt 		pp->pr_phpool = &phpool[idx];
    737   1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    738   1.97      yamt 		pp->pr_phpool = &phpool[0];
    739   1.97      yamt 	}
    740   1.97      yamt #if defined(DIAGNOSTIC)
    741   1.97      yamt 	else {
    742   1.97      yamt 		pp->pr_phpool = NULL;
    743   1.97      yamt 	}
    744   1.97      yamt #endif
    745    1.3        pk 
    746    1.3        pk 	/*
    747    1.3        pk 	 * Use the slack between the chunks and the page header
    748    1.3        pk 	 * for "cache coloring".
    749    1.3        pk 	 */
    750    1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    751    1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    752    1.3        pk 	pp->pr_curcolor = 0;
    753    1.3        pk 
    754    1.3        pk 	pp->pr_nget = 0;
    755    1.3        pk 	pp->pr_nfail = 0;
    756    1.3        pk 	pp->pr_nput = 0;
    757    1.3        pk 	pp->pr_npagealloc = 0;
    758    1.3        pk 	pp->pr_npagefree = 0;
    759    1.1        pk 	pp->pr_hiwat = 0;
    760    1.8   thorpej 	pp->pr_nidle = 0;
    761  1.134        ad 	pp->pr_refcnt = 0;
    762    1.3        pk 
    763  1.179   mlelstv 	pp->pr_log = NULL;
    764   1.25   thorpej 
    765   1.25   thorpej 	pp->pr_entered_file = NULL;
    766   1.25   thorpej 	pp->pr_entered_line = 0;
    767    1.3        pk 
    768  1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    769  1.134        ad 	cv_init(&pp->pr_cv, wchan);
    770  1.134        ad 	pp->pr_ipl = ipl;
    771    1.1        pk 
    772  1.145        ad 	/* Insert into the list of all pools. */
    773  1.181   mlelstv 	if (!cold)
    774  1.134        ad 		mutex_enter(&pool_head_lock);
    775  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    776  1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    777  1.145        ad 			break;
    778  1.145        ad 	}
    779  1.145        ad 	if (pp1 == NULL)
    780  1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    781  1.145        ad 	else
    782  1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    783  1.181   mlelstv 	if (!cold)
    784  1.134        ad 		mutex_exit(&pool_head_lock);
    785  1.134        ad 
    786  1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    787  1.181   mlelstv 	if (!cold)
    788  1.134        ad 		mutex_enter(&palloc->pa_lock);
    789  1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    790  1.181   mlelstv 	if (!cold)
    791  1.134        ad 		mutex_exit(&palloc->pa_lock);
    792    1.1        pk }
    793    1.1        pk 
    794    1.1        pk /*
    795    1.1        pk  * De-commision a pool resource.
    796    1.1        pk  */
    797    1.1        pk void
    798   1.42   thorpej pool_destroy(struct pool *pp)
    799    1.1        pk {
    800  1.101   thorpej 	struct pool_pagelist pq;
    801    1.3        pk 	struct pool_item_header *ph;
    802   1.43   thorpej 
    803  1.101   thorpej 	/* Remove from global pool list */
    804  1.134        ad 	mutex_enter(&pool_head_lock);
    805  1.134        ad 	while (pp->pr_refcnt != 0)
    806  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    807  1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    808  1.101   thorpej 	if (drainpp == pp)
    809  1.101   thorpej 		drainpp = NULL;
    810  1.134        ad 	mutex_exit(&pool_head_lock);
    811  1.101   thorpej 
    812  1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    813  1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    814   1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    815  1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    816   1.66   thorpej 
    817  1.178      elad 	mutex_enter(&pool_allocator_lock);
    818  1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    819  1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    820  1.178      elad 	mutex_exit(&pool_allocator_lock);
    821  1.178      elad 
    822  1.134        ad 	mutex_enter(&pp->pr_lock);
    823  1.101   thorpej 
    824  1.134        ad 	KASSERT(pp->pr_cache == NULL);
    825    1.3        pk 
    826    1.3        pk #ifdef DIAGNOSTIC
    827   1.20   thorpej 	if (pp->pr_nout != 0) {
    828   1.25   thorpej 		pr_printlog(pp, NULL, printf);
    829   1.80    provos 		panic("pool_destroy: pool busy: still out: %u",
    830   1.20   thorpej 		    pp->pr_nout);
    831    1.3        pk 	}
    832    1.3        pk #endif
    833    1.1        pk 
    834  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    835  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    836  1.101   thorpej 
    837    1.3        pk 	/* Remove all pages */
    838  1.101   thorpej 	LIST_INIT(&pq);
    839   1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    840  1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    841  1.101   thorpej 
    842  1.134        ad 	mutex_exit(&pp->pr_lock);
    843    1.3        pk 
    844  1.101   thorpej 	pr_pagelist_free(pp, &pq);
    845    1.3        pk 
    846   1.59   thorpej #ifdef POOL_DIAGNOSTIC
    847  1.179   mlelstv 	if (pp->pr_log != NULL) {
    848    1.3        pk 		free(pp->pr_log, M_TEMP);
    849  1.179   mlelstv 		pp->pr_log = NULL;
    850  1.179   mlelstv 	}
    851   1.59   thorpej #endif
    852  1.134        ad 
    853  1.134        ad 	cv_destroy(&pp->pr_cv);
    854  1.134        ad 	mutex_destroy(&pp->pr_lock);
    855    1.1        pk }
    856    1.1        pk 
    857   1.68   thorpej void
    858   1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    859   1.68   thorpej {
    860   1.68   thorpej 
    861   1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    862   1.68   thorpej #ifdef DIAGNOSTIC
    863   1.68   thorpej 	if (pp->pr_drain_hook != NULL)
    864   1.68   thorpej 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    865   1.68   thorpej #endif
    866   1.68   thorpej 	pp->pr_drain_hook = fn;
    867   1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    868   1.68   thorpej }
    869   1.68   thorpej 
    870   1.88       chs static struct pool_item_header *
    871  1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    872   1.55   thorpej {
    873   1.55   thorpej 	struct pool_item_header *ph;
    874   1.55   thorpej 
    875   1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    876  1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    877  1.134        ad 	else
    878   1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    879   1.55   thorpej 
    880   1.55   thorpej 	return (ph);
    881   1.55   thorpej }
    882    1.1        pk 
    883    1.1        pk /*
    884  1.134        ad  * Grab an item from the pool.
    885    1.1        pk  */
    886    1.3        pk void *
    887   1.59   thorpej #ifdef POOL_DIAGNOSTIC
    888   1.42   thorpej _pool_get(struct pool *pp, int flags, const char *file, long line)
    889   1.56  sommerfe #else
    890   1.56  sommerfe pool_get(struct pool *pp, int flags)
    891   1.56  sommerfe #endif
    892    1.1        pk {
    893    1.1        pk 	struct pool_item *pi;
    894    1.3        pk 	struct pool_item_header *ph;
    895   1.55   thorpej 	void *v;
    896    1.1        pk 
    897    1.2        pk #ifdef DIAGNOSTIC
    898  1.184     rmind 	if (pp->pr_itemsperpage == 0)
    899  1.184     rmind 		panic("pool_get: pool '%s': pr_itemsperpage is zero, "
    900  1.184     rmind 		    "pool not initialized?", pp->pr_wchan);
    901  1.185     rmind 	if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE &&
    902  1.185     rmind 	    !cold && panicstr == NULL)
    903  1.184     rmind 		panic("pool '%s' is IPL_NONE, but called from "
    904  1.184     rmind 		    "interrupt context\n", pp->pr_wchan);
    905  1.184     rmind #endif
    906  1.155        ad 	if (flags & PR_WAITOK) {
    907  1.154      yamt 		ASSERT_SLEEPABLE();
    908  1.155        ad 	}
    909    1.1        pk 
    910  1.134        ad 	mutex_enter(&pp->pr_lock);
    911   1.25   thorpej 	pr_enter(pp, file, line);
    912   1.20   thorpej 
    913   1.20   thorpej  startover:
    914   1.20   thorpej 	/*
    915   1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    916   1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    917   1.20   thorpej 	 * the pool.
    918   1.20   thorpej 	 */
    919   1.20   thorpej #ifdef DIAGNOSTIC
    920   1.34   thorpej 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    921   1.25   thorpej 		pr_leave(pp);
    922  1.134        ad 		mutex_exit(&pp->pr_lock);
    923   1.20   thorpej 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    924   1.20   thorpej 	}
    925   1.20   thorpej #endif
    926   1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    927   1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    928   1.68   thorpej 			/*
    929   1.68   thorpej 			 * Since the drain hook is going to free things
    930   1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    931   1.68   thorpej 			 * and check the hardlimit condition again.
    932   1.68   thorpej 			 */
    933   1.68   thorpej 			pr_leave(pp);
    934  1.134        ad 			mutex_exit(&pp->pr_lock);
    935   1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    936  1.134        ad 			mutex_enter(&pp->pr_lock);
    937   1.68   thorpej 			pr_enter(pp, file, line);
    938   1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    939   1.68   thorpej 				goto startover;
    940   1.68   thorpej 		}
    941   1.68   thorpej 
    942   1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    943   1.20   thorpej 			/*
    944   1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
    945   1.20   thorpej 			 * it be?
    946   1.20   thorpej 			 */
    947   1.20   thorpej 			pp->pr_flags |= PR_WANTED;
    948   1.25   thorpej 			pr_leave(pp);
    949  1.134        ad 			cv_wait(&pp->pr_cv, &pp->pr_lock);
    950   1.25   thorpej 			pr_enter(pp, file, line);
    951   1.20   thorpej 			goto startover;
    952   1.20   thorpej 		}
    953   1.31   thorpej 
    954   1.31   thorpej 		/*
    955   1.31   thorpej 		 * Log a message that the hard limit has been hit.
    956   1.31   thorpej 		 */
    957   1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
    958   1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
    959   1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
    960   1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    961   1.21   thorpej 
    962   1.21   thorpej 		pp->pr_nfail++;
    963   1.21   thorpej 
    964   1.25   thorpej 		pr_leave(pp);
    965  1.134        ad 		mutex_exit(&pp->pr_lock);
    966   1.20   thorpej 		return (NULL);
    967   1.20   thorpej 	}
    968   1.20   thorpej 
    969    1.3        pk 	/*
    970    1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
    971    1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
    972    1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
    973    1.3        pk 	 * has no items in its bucket.
    974    1.3        pk 	 */
    975   1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
    976  1.113      yamt 		int error;
    977  1.113      yamt 
    978   1.20   thorpej #ifdef DIAGNOSTIC
    979   1.20   thorpej 		if (pp->pr_nitems != 0) {
    980  1.134        ad 			mutex_exit(&pp->pr_lock);
    981   1.20   thorpej 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    982   1.20   thorpej 			    pp->pr_wchan, pp->pr_nitems);
    983   1.80    provos 			panic("pool_get: nitems inconsistent");
    984   1.20   thorpej 		}
    985   1.20   thorpej #endif
    986   1.20   thorpej 
    987   1.21   thorpej 		/*
    988   1.21   thorpej 		 * Call the back-end page allocator for more memory.
    989   1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
    990   1.21   thorpej 		 * may block.
    991   1.21   thorpej 		 */
    992   1.25   thorpej 		pr_leave(pp);
    993  1.113      yamt 		error = pool_grow(pp, flags);
    994  1.113      yamt 		pr_enter(pp, file, line);
    995  1.113      yamt 		if (error != 0) {
    996   1.21   thorpej 			/*
    997   1.55   thorpej 			 * We were unable to allocate a page or item
    998   1.55   thorpej 			 * header, but we released the lock during
    999   1.55   thorpej 			 * allocation, so perhaps items were freed
   1000   1.55   thorpej 			 * back to the pool.  Check for this case.
   1001   1.21   thorpej 			 */
   1002   1.21   thorpej 			if (pp->pr_curpage != NULL)
   1003   1.21   thorpej 				goto startover;
   1004   1.15        pk 
   1005  1.117      yamt 			pp->pr_nfail++;
   1006   1.25   thorpej 			pr_leave(pp);
   1007  1.134        ad 			mutex_exit(&pp->pr_lock);
   1008  1.117      yamt 			return (NULL);
   1009    1.1        pk 		}
   1010    1.3        pk 
   1011   1.20   thorpej 		/* Start the allocation process over. */
   1012   1.20   thorpej 		goto startover;
   1013    1.3        pk 	}
   1014   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1015   1.97      yamt #ifdef DIAGNOSTIC
   1016   1.97      yamt 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1017   1.97      yamt 			pr_leave(pp);
   1018  1.134        ad 			mutex_exit(&pp->pr_lock);
   1019   1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1020   1.97      yamt 		}
   1021   1.97      yamt #endif
   1022   1.97      yamt 		v = pr_item_notouch_get(pp, ph);
   1023   1.97      yamt #ifdef POOL_DIAGNOSTIC
   1024   1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1025   1.97      yamt #endif
   1026   1.97      yamt 	} else {
   1027  1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1028   1.97      yamt 		if (__predict_false(v == NULL)) {
   1029   1.97      yamt 			pr_leave(pp);
   1030  1.134        ad 			mutex_exit(&pp->pr_lock);
   1031   1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1032   1.97      yamt 		}
   1033   1.20   thorpej #ifdef DIAGNOSTIC
   1034   1.97      yamt 		if (__predict_false(pp->pr_nitems == 0)) {
   1035   1.97      yamt 			pr_leave(pp);
   1036  1.134        ad 			mutex_exit(&pp->pr_lock);
   1037   1.97      yamt 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1038   1.97      yamt 			    pp->pr_wchan, pp->pr_nitems);
   1039   1.97      yamt 			panic("pool_get: nitems inconsistent");
   1040   1.97      yamt 		}
   1041   1.65     enami #endif
   1042   1.56  sommerfe 
   1043   1.65     enami #ifdef POOL_DIAGNOSTIC
   1044   1.97      yamt 		pr_log(pp, v, PRLOG_GET, file, line);
   1045   1.65     enami #endif
   1046    1.3        pk 
   1047   1.65     enami #ifdef DIAGNOSTIC
   1048   1.97      yamt 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1049   1.97      yamt 			pr_printlog(pp, pi, printf);
   1050   1.97      yamt 			panic("pool_get(%s): free list modified: "
   1051   1.97      yamt 			    "magic=%x; page %p; item addr %p\n",
   1052   1.97      yamt 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1053   1.97      yamt 		}
   1054    1.3        pk #endif
   1055    1.3        pk 
   1056   1.97      yamt 		/*
   1057   1.97      yamt 		 * Remove from item list.
   1058   1.97      yamt 		 */
   1059  1.102       chs 		LIST_REMOVE(pi, pi_list);
   1060   1.97      yamt 	}
   1061   1.20   thorpej 	pp->pr_nitems--;
   1062   1.20   thorpej 	pp->pr_nout++;
   1063    1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1064    1.6   thorpej #ifdef DIAGNOSTIC
   1065   1.34   thorpej 		if (__predict_false(pp->pr_nidle == 0))
   1066    1.6   thorpej 			panic("pool_get: nidle inconsistent");
   1067    1.6   thorpej #endif
   1068    1.6   thorpej 		pp->pr_nidle--;
   1069   1.88       chs 
   1070   1.88       chs 		/*
   1071   1.88       chs 		 * This page was previously empty.  Move it to the list of
   1072   1.88       chs 		 * partially-full pages.  This page is already curpage.
   1073   1.88       chs 		 */
   1074   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1075   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1076    1.6   thorpej 	}
   1077    1.3        pk 	ph->ph_nmissing++;
   1078   1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1079   1.21   thorpej #ifdef DIAGNOSTIC
   1080   1.97      yamt 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1081  1.102       chs 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1082   1.25   thorpej 			pr_leave(pp);
   1083  1.134        ad 			mutex_exit(&pp->pr_lock);
   1084   1.21   thorpej 			panic("pool_get: %s: nmissing inconsistent",
   1085   1.21   thorpej 			    pp->pr_wchan);
   1086   1.21   thorpej 		}
   1087   1.21   thorpej #endif
   1088    1.3        pk 		/*
   1089   1.88       chs 		 * This page is now full.  Move it to the full list
   1090   1.88       chs 		 * and select a new current page.
   1091    1.3        pk 		 */
   1092   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1093   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1094   1.88       chs 		pool_update_curpage(pp);
   1095    1.1        pk 	}
   1096    1.3        pk 
   1097    1.3        pk 	pp->pr_nget++;
   1098  1.111  christos 	pr_leave(pp);
   1099   1.20   thorpej 
   1100   1.20   thorpej 	/*
   1101   1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1102   1.20   thorpej 	 * water mark, add more items to the pool.
   1103   1.20   thorpej 	 */
   1104   1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1105   1.20   thorpej 		/*
   1106   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1107   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1108   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1109   1.20   thorpej 		 */
   1110   1.20   thorpej 	}
   1111   1.20   thorpej 
   1112  1.134        ad 	mutex_exit(&pp->pr_lock);
   1113  1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1114  1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1115    1.1        pk 	return (v);
   1116    1.1        pk }
   1117    1.1        pk 
   1118    1.1        pk /*
   1119   1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1120    1.1        pk  */
   1121   1.43   thorpej static void
   1122  1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1123    1.1        pk {
   1124    1.1        pk 	struct pool_item *pi = v;
   1125    1.3        pk 	struct pool_item_header *ph;
   1126    1.3        pk 
   1127  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1128  1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1129  1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1130   1.61       chs 
   1131   1.30   thorpej #ifdef DIAGNOSTIC
   1132   1.34   thorpej 	if (__predict_false(pp->pr_nout == 0)) {
   1133   1.30   thorpej 		printf("pool %s: putting with none out\n",
   1134   1.30   thorpej 		    pp->pr_wchan);
   1135   1.30   thorpej 		panic("pool_put");
   1136   1.30   thorpej 	}
   1137   1.30   thorpej #endif
   1138    1.3        pk 
   1139  1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1140   1.25   thorpej 		pr_printlog(pp, NULL, printf);
   1141    1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1142    1.3        pk 	}
   1143   1.28   thorpej 
   1144    1.3        pk 	/*
   1145    1.3        pk 	 * Return to item list.
   1146    1.3        pk 	 */
   1147   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1148   1.97      yamt 		pr_item_notouch_put(pp, ph, v);
   1149   1.97      yamt 	} else {
   1150    1.2        pk #ifdef DIAGNOSTIC
   1151   1.97      yamt 		pi->pi_magic = PI_MAGIC;
   1152    1.3        pk #endif
   1153   1.32       chs #ifdef DEBUG
   1154   1.97      yamt 		{
   1155   1.97      yamt 			int i, *ip = v;
   1156   1.32       chs 
   1157   1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1158   1.97      yamt 				*ip++ = PI_MAGIC;
   1159   1.97      yamt 			}
   1160   1.32       chs 		}
   1161   1.32       chs #endif
   1162   1.32       chs 
   1163  1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1164   1.97      yamt 	}
   1165   1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1166    1.3        pk 	ph->ph_nmissing--;
   1167    1.3        pk 	pp->pr_nput++;
   1168   1.20   thorpej 	pp->pr_nitems++;
   1169   1.20   thorpej 	pp->pr_nout--;
   1170    1.3        pk 
   1171    1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1172    1.3        pk 	if (pp->pr_curpage == NULL)
   1173    1.3        pk 		pp->pr_curpage = ph;
   1174    1.3        pk 
   1175    1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1176    1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1177  1.134        ad 		cv_broadcast(&pp->pr_cv);
   1178    1.3        pk 	}
   1179    1.3        pk 
   1180    1.3        pk 	/*
   1181   1.88       chs 	 * If this page is now empty, do one of two things:
   1182   1.21   thorpej 	 *
   1183   1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1184   1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1185   1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1186   1.90   thorpej 	 *	    CLAIM.
   1187   1.21   thorpej 	 *
   1188   1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1189   1.88       chs 	 *
   1190   1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1191   1.88       chs 	 * page if one is available).
   1192    1.3        pk 	 */
   1193    1.3        pk 	if (ph->ph_nmissing == 0) {
   1194    1.6   thorpej 		pp->pr_nidle++;
   1195   1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1196  1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1197  1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1198    1.3        pk 		} else {
   1199   1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1200   1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1201    1.3        pk 
   1202   1.21   thorpej 			/*
   1203   1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1204   1.21   thorpej 			 * be idle for some period of time before it can
   1205   1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1206   1.21   thorpej 			 * ping-pong'ing for memory.
   1207  1.151      yamt 			 *
   1208  1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1209  1.151      yamt 			 * a problem for our usage.
   1210   1.21   thorpej 			 */
   1211  1.151      yamt 			ph->ph_time = time_uptime;
   1212    1.1        pk 		}
   1213   1.88       chs 		pool_update_curpage(pp);
   1214    1.1        pk 	}
   1215   1.88       chs 
   1216   1.21   thorpej 	/*
   1217   1.88       chs 	 * If the page was previously completely full, move it to the
   1218   1.88       chs 	 * partially-full list and make it the current page.  The next
   1219   1.88       chs 	 * allocation will get the item from this page, instead of
   1220   1.88       chs 	 * further fragmenting the pool.
   1221   1.21   thorpej 	 */
   1222   1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1223   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1224   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1225   1.21   thorpej 		pp->pr_curpage = ph;
   1226   1.21   thorpej 	}
   1227   1.43   thorpej }
   1228   1.43   thorpej 
   1229   1.43   thorpej /*
   1230  1.134        ad  * Return resource to the pool.
   1231   1.43   thorpej  */
   1232   1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1233   1.43   thorpej void
   1234   1.43   thorpej _pool_put(struct pool *pp, void *v, const char *file, long line)
   1235   1.43   thorpej {
   1236  1.101   thorpej 	struct pool_pagelist pq;
   1237  1.101   thorpej 
   1238  1.101   thorpej 	LIST_INIT(&pq);
   1239   1.43   thorpej 
   1240  1.134        ad 	mutex_enter(&pp->pr_lock);
   1241   1.43   thorpej 	pr_enter(pp, file, line);
   1242   1.43   thorpej 
   1243   1.56  sommerfe 	pr_log(pp, v, PRLOG_PUT, file, line);
   1244   1.56  sommerfe 
   1245  1.101   thorpej 	pool_do_put(pp, v, &pq);
   1246   1.21   thorpej 
   1247   1.25   thorpej 	pr_leave(pp);
   1248  1.134        ad 	mutex_exit(&pp->pr_lock);
   1249  1.101   thorpej 
   1250  1.102       chs 	pr_pagelist_free(pp, &pq);
   1251    1.1        pk }
   1252   1.57  sommerfe #undef pool_put
   1253   1.59   thorpej #endif /* POOL_DIAGNOSTIC */
   1254    1.1        pk 
   1255   1.56  sommerfe void
   1256   1.56  sommerfe pool_put(struct pool *pp, void *v)
   1257   1.56  sommerfe {
   1258  1.101   thorpej 	struct pool_pagelist pq;
   1259  1.101   thorpej 
   1260  1.101   thorpej 	LIST_INIT(&pq);
   1261   1.56  sommerfe 
   1262  1.134        ad 	mutex_enter(&pp->pr_lock);
   1263  1.101   thorpej 	pool_do_put(pp, v, &pq);
   1264  1.134        ad 	mutex_exit(&pp->pr_lock);
   1265   1.56  sommerfe 
   1266  1.102       chs 	pr_pagelist_free(pp, &pq);
   1267   1.56  sommerfe }
   1268   1.57  sommerfe 
   1269   1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1270   1.57  sommerfe #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1271   1.56  sommerfe #endif
   1272   1.74   thorpej 
   1273   1.74   thorpej /*
   1274  1.113      yamt  * pool_grow: grow a pool by a page.
   1275  1.113      yamt  *
   1276  1.113      yamt  * => called with pool locked.
   1277  1.113      yamt  * => unlock and relock the pool.
   1278  1.113      yamt  * => return with pool locked.
   1279  1.113      yamt  */
   1280  1.113      yamt 
   1281  1.113      yamt static int
   1282  1.113      yamt pool_grow(struct pool *pp, int flags)
   1283  1.113      yamt {
   1284  1.113      yamt 	struct pool_item_header *ph = NULL;
   1285  1.113      yamt 	char *cp;
   1286  1.113      yamt 
   1287  1.134        ad 	mutex_exit(&pp->pr_lock);
   1288  1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1289  1.113      yamt 	if (__predict_true(cp != NULL)) {
   1290  1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1291  1.113      yamt 	}
   1292  1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1293  1.113      yamt 		if (cp != NULL) {
   1294  1.113      yamt 			pool_allocator_free(pp, cp);
   1295  1.113      yamt 		}
   1296  1.134        ad 		mutex_enter(&pp->pr_lock);
   1297  1.113      yamt 		return ENOMEM;
   1298  1.113      yamt 	}
   1299  1.113      yamt 
   1300  1.134        ad 	mutex_enter(&pp->pr_lock);
   1301  1.113      yamt 	pool_prime_page(pp, cp, ph);
   1302  1.113      yamt 	pp->pr_npagealloc++;
   1303  1.113      yamt 	return 0;
   1304  1.113      yamt }
   1305  1.113      yamt 
   1306  1.113      yamt /*
   1307   1.74   thorpej  * Add N items to the pool.
   1308   1.74   thorpej  */
   1309   1.74   thorpej int
   1310   1.74   thorpej pool_prime(struct pool *pp, int n)
   1311   1.74   thorpej {
   1312   1.75    simonb 	int newpages;
   1313  1.113      yamt 	int error = 0;
   1314   1.74   thorpej 
   1315  1.134        ad 	mutex_enter(&pp->pr_lock);
   1316   1.74   thorpej 
   1317   1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1318   1.74   thorpej 
   1319   1.74   thorpej 	while (newpages-- > 0) {
   1320  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1321  1.113      yamt 		if (error) {
   1322   1.74   thorpej 			break;
   1323   1.74   thorpej 		}
   1324   1.74   thorpej 		pp->pr_minpages++;
   1325   1.74   thorpej 	}
   1326   1.74   thorpej 
   1327   1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1328   1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1329   1.74   thorpej 
   1330  1.134        ad 	mutex_exit(&pp->pr_lock);
   1331  1.113      yamt 	return error;
   1332   1.74   thorpej }
   1333   1.55   thorpej 
   1334   1.55   thorpej /*
   1335    1.3        pk  * Add a page worth of items to the pool.
   1336   1.21   thorpej  *
   1337   1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1338    1.3        pk  */
   1339   1.55   thorpej static void
   1340  1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1341    1.3        pk {
   1342    1.3        pk 	struct pool_item *pi;
   1343  1.128  christos 	void *cp = storage;
   1344  1.125        ad 	const unsigned int align = pp->pr_align;
   1345  1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1346   1.55   thorpej 	int n;
   1347   1.36        pk 
   1348  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1349   1.91      yamt 
   1350   1.66   thorpej #ifdef DIAGNOSTIC
   1351  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1352  1.150     skrll 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1353   1.36        pk 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1354   1.66   thorpej #endif
   1355    1.3        pk 
   1356    1.3        pk 	/*
   1357    1.3        pk 	 * Insert page header.
   1358    1.3        pk 	 */
   1359   1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1360  1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1361    1.3        pk 	ph->ph_page = storage;
   1362    1.3        pk 	ph->ph_nmissing = 0;
   1363  1.151      yamt 	ph->ph_time = time_uptime;
   1364   1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1365   1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1366    1.3        pk 
   1367    1.6   thorpej 	pp->pr_nidle++;
   1368    1.6   thorpej 
   1369    1.3        pk 	/*
   1370    1.3        pk 	 * Color this page.
   1371    1.3        pk 	 */
   1372  1.141      yamt 	ph->ph_off = pp->pr_curcolor;
   1373  1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1374    1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1375    1.3        pk 		pp->pr_curcolor = 0;
   1376    1.3        pk 
   1377    1.3        pk 	/*
   1378    1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1379    1.3        pk 	 */
   1380    1.3        pk 	if (ioff != 0)
   1381  1.128  christos 		cp = (char *)cp + align - ioff;
   1382    1.3        pk 
   1383  1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1384  1.125        ad 
   1385    1.3        pk 	/*
   1386    1.3        pk 	 * Insert remaining chunks on the bucket list.
   1387    1.3        pk 	 */
   1388    1.3        pk 	n = pp->pr_itemsperpage;
   1389   1.20   thorpej 	pp->pr_nitems += n;
   1390    1.3        pk 
   1391   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1392  1.141      yamt 		pr_item_notouch_init(pp, ph);
   1393   1.97      yamt 	} else {
   1394   1.97      yamt 		while (n--) {
   1395   1.97      yamt 			pi = (struct pool_item *)cp;
   1396   1.78   thorpej 
   1397   1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1398    1.3        pk 
   1399   1.97      yamt 			/* Insert on page list */
   1400  1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1401    1.3        pk #ifdef DIAGNOSTIC
   1402   1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1403    1.3        pk #endif
   1404  1.128  christos 			cp = (char *)cp + pp->pr_size;
   1405  1.125        ad 
   1406  1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1407   1.97      yamt 		}
   1408    1.3        pk 	}
   1409    1.3        pk 
   1410    1.3        pk 	/*
   1411    1.3        pk 	 * If the pool was depleted, point at the new page.
   1412    1.3        pk 	 */
   1413    1.3        pk 	if (pp->pr_curpage == NULL)
   1414    1.3        pk 		pp->pr_curpage = ph;
   1415    1.3        pk 
   1416    1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1417    1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1418    1.3        pk }
   1419    1.3        pk 
   1420   1.20   thorpej /*
   1421   1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1422   1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1423   1.20   thorpej  *
   1424   1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1425   1.20   thorpej  *
   1426   1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1427   1.20   thorpej  * with it locked.
   1428   1.20   thorpej  */
   1429   1.20   thorpej static int
   1430   1.42   thorpej pool_catchup(struct pool *pp)
   1431   1.20   thorpej {
   1432   1.20   thorpej 	int error = 0;
   1433   1.20   thorpej 
   1434   1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1435  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1436  1.113      yamt 		if (error) {
   1437   1.20   thorpej 			break;
   1438   1.20   thorpej 		}
   1439   1.20   thorpej 	}
   1440  1.113      yamt 	return error;
   1441   1.20   thorpej }
   1442   1.20   thorpej 
   1443   1.88       chs static void
   1444   1.88       chs pool_update_curpage(struct pool *pp)
   1445   1.88       chs {
   1446   1.88       chs 
   1447   1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1448   1.88       chs 	if (pp->pr_curpage == NULL) {
   1449   1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1450   1.88       chs 	}
   1451  1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1452  1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1453   1.88       chs }
   1454   1.88       chs 
   1455    1.3        pk void
   1456   1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1457    1.3        pk {
   1458   1.15        pk 
   1459  1.134        ad 	mutex_enter(&pp->pr_lock);
   1460   1.21   thorpej 
   1461    1.3        pk 	pp->pr_minitems = n;
   1462   1.15        pk 	pp->pr_minpages = (n == 0)
   1463   1.15        pk 		? 0
   1464   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1465   1.20   thorpej 
   1466   1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1467   1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1468   1.20   thorpej 		/*
   1469   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1470   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1471   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1472   1.20   thorpej 		 */
   1473   1.20   thorpej 	}
   1474   1.21   thorpej 
   1475  1.134        ad 	mutex_exit(&pp->pr_lock);
   1476    1.3        pk }
   1477    1.3        pk 
   1478    1.3        pk void
   1479   1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1480    1.3        pk {
   1481   1.15        pk 
   1482  1.134        ad 	mutex_enter(&pp->pr_lock);
   1483   1.21   thorpej 
   1484   1.15        pk 	pp->pr_maxpages = (n == 0)
   1485   1.15        pk 		? 0
   1486   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1487   1.21   thorpej 
   1488  1.134        ad 	mutex_exit(&pp->pr_lock);
   1489    1.3        pk }
   1490    1.3        pk 
   1491   1.20   thorpej void
   1492   1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1493   1.20   thorpej {
   1494   1.20   thorpej 
   1495  1.134        ad 	mutex_enter(&pp->pr_lock);
   1496   1.20   thorpej 
   1497   1.20   thorpej 	pp->pr_hardlimit = n;
   1498   1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1499   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1500   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1501   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1502   1.20   thorpej 
   1503   1.20   thorpej 	/*
   1504   1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1505   1.21   thorpej 	 * release the lock.
   1506   1.20   thorpej 	 */
   1507   1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1508   1.20   thorpej 		? 0
   1509   1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1510   1.21   thorpej 
   1511  1.134        ad 	mutex_exit(&pp->pr_lock);
   1512   1.20   thorpej }
   1513    1.3        pk 
   1514    1.3        pk /*
   1515    1.3        pk  * Release all complete pages that have not been used recently.
   1516  1.184     rmind  *
   1517  1.184     rmind  * Might be called from interrupt context.
   1518    1.3        pk  */
   1519   1.66   thorpej int
   1520   1.59   thorpej #ifdef POOL_DIAGNOSTIC
   1521   1.42   thorpej _pool_reclaim(struct pool *pp, const char *file, long line)
   1522   1.56  sommerfe #else
   1523   1.56  sommerfe pool_reclaim(struct pool *pp)
   1524   1.56  sommerfe #endif
   1525    1.3        pk {
   1526    1.3        pk 	struct pool_item_header *ph, *phnext;
   1527   1.61       chs 	struct pool_pagelist pq;
   1528  1.151      yamt 	uint32_t curtime;
   1529  1.134        ad 	bool klock;
   1530  1.134        ad 	int rv;
   1531    1.3        pk 
   1532  1.184     rmind 	if (cpu_intr_p() || cpu_softintr_p()) {
   1533  1.184     rmind 		KASSERT(pp->pr_ipl != IPL_NONE);
   1534  1.184     rmind 	}
   1535  1.184     rmind 
   1536   1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1537   1.68   thorpej 		/*
   1538   1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1539   1.68   thorpej 		 */
   1540   1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1541   1.68   thorpej 	}
   1542   1.68   thorpej 
   1543  1.134        ad 	/*
   1544  1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1545  1.157        ad 	 * to block.
   1546  1.134        ad 	 */
   1547  1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1548  1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1549  1.134        ad 		KERNEL_LOCK(1, NULL);
   1550  1.134        ad 		klock = true;
   1551  1.134        ad 	} else
   1552  1.134        ad 		klock = false;
   1553  1.134        ad 
   1554  1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1555  1.134        ad 	if (pp->pr_cache != NULL)
   1556  1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1557  1.134        ad 
   1558  1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1559  1.134        ad 		if (klock) {
   1560  1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1561  1.134        ad 		}
   1562   1.66   thorpej 		return (0);
   1563  1.134        ad 	}
   1564   1.25   thorpej 	pr_enter(pp, file, line);
   1565   1.68   thorpej 
   1566   1.88       chs 	LIST_INIT(&pq);
   1567   1.43   thorpej 
   1568  1.151      yamt 	curtime = time_uptime;
   1569   1.21   thorpej 
   1570   1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1571   1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1572    1.3        pk 
   1573    1.3        pk 		/* Check our minimum page claim */
   1574    1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1575    1.3        pk 			break;
   1576    1.3        pk 
   1577   1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1578  1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1579   1.88       chs 			continue;
   1580   1.21   thorpej 
   1581   1.88       chs 		/*
   1582   1.88       chs 		 * If freeing this page would put us below
   1583   1.88       chs 		 * the low water mark, stop now.
   1584   1.88       chs 		 */
   1585   1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1586   1.88       chs 		    pp->pr_minitems)
   1587   1.88       chs 			break;
   1588   1.21   thorpej 
   1589   1.88       chs 		pr_rmpage(pp, ph, &pq);
   1590    1.3        pk 	}
   1591    1.3        pk 
   1592   1.25   thorpej 	pr_leave(pp);
   1593  1.134        ad 	mutex_exit(&pp->pr_lock);
   1594  1.134        ad 
   1595  1.134        ad 	if (LIST_EMPTY(&pq))
   1596  1.134        ad 		rv = 0;
   1597  1.134        ad 	else {
   1598  1.134        ad 		pr_pagelist_free(pp, &pq);
   1599  1.134        ad 		rv = 1;
   1600  1.134        ad 	}
   1601  1.134        ad 
   1602  1.134        ad 	if (klock) {
   1603  1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1604  1.134        ad 	}
   1605   1.66   thorpej 
   1606  1.134        ad 	return (rv);
   1607    1.3        pk }
   1608    1.3        pk 
   1609    1.3        pk /*
   1610  1.134        ad  * Drain pools, one at a time.  This is a two stage process;
   1611  1.134        ad  * drain_start kicks off a cross call to drain CPU-level caches
   1612  1.134        ad  * if the pool has an associated pool_cache.  drain_end waits
   1613  1.134        ad  * for those cross calls to finish, and then drains the cache
   1614  1.134        ad  * (if any) and pool.
   1615  1.131        ad  *
   1616  1.134        ad  * Note, must never be called from interrupt context.
   1617    1.3        pk  */
   1618    1.3        pk void
   1619  1.134        ad pool_drain_start(struct pool **ppp, uint64_t *wp)
   1620    1.3        pk {
   1621    1.3        pk 	struct pool *pp;
   1622  1.134        ad 
   1623  1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1624    1.3        pk 
   1625   1.61       chs 	pp = NULL;
   1626  1.134        ad 
   1627  1.134        ad 	/* Find next pool to drain, and add a reference. */
   1628  1.134        ad 	mutex_enter(&pool_head_lock);
   1629  1.134        ad 	do {
   1630  1.134        ad 		if (drainpp == NULL) {
   1631  1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1632  1.134        ad 		}
   1633  1.134        ad 		if (drainpp != NULL) {
   1634  1.134        ad 			pp = drainpp;
   1635  1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1636  1.134        ad 		}
   1637  1.134        ad 		/*
   1638  1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1639  1.134        ad 		 * one pool in the system being active.
   1640  1.134        ad 		 */
   1641  1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1642  1.134        ad 	pp->pr_refcnt++;
   1643  1.134        ad 	mutex_exit(&pool_head_lock);
   1644  1.134        ad 
   1645  1.134        ad 	/* If there is a pool_cache, drain CPU level caches. */
   1646  1.134        ad 	*ppp = pp;
   1647  1.134        ad 	if (pp->pr_cache != NULL) {
   1648  1.134        ad 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1649  1.134        ad 		    pp->pr_cache, NULL);
   1650  1.134        ad 	}
   1651  1.134        ad }
   1652  1.134        ad 
   1653  1.186     pooka bool
   1654  1.134        ad pool_drain_end(struct pool *pp, uint64_t where)
   1655  1.134        ad {
   1656  1.186     pooka 	bool reclaimed;
   1657  1.134        ad 
   1658  1.134        ad 	if (pp == NULL)
   1659  1.186     pooka 		return false;
   1660  1.134        ad 
   1661  1.134        ad 	KASSERT(pp->pr_refcnt > 0);
   1662  1.134        ad 
   1663  1.134        ad 	/* Wait for remote draining to complete. */
   1664  1.134        ad 	if (pp->pr_cache != NULL)
   1665  1.134        ad 		xc_wait(where);
   1666  1.134        ad 
   1667  1.134        ad 	/* Drain the cache (if any) and pool.. */
   1668  1.186     pooka 	reclaimed = pool_reclaim(pp);
   1669  1.134        ad 
   1670  1.134        ad 	/* Finally, unlock the pool. */
   1671  1.134        ad 	mutex_enter(&pool_head_lock);
   1672  1.134        ad 	pp->pr_refcnt--;
   1673  1.134        ad 	cv_broadcast(&pool_busy);
   1674  1.134        ad 	mutex_exit(&pool_head_lock);
   1675  1.186     pooka 
   1676  1.186     pooka 	return reclaimed;
   1677    1.3        pk }
   1678    1.3        pk 
   1679    1.3        pk /*
   1680    1.3        pk  * Diagnostic helpers.
   1681    1.3        pk  */
   1682    1.3        pk void
   1683   1.42   thorpej pool_print(struct pool *pp, const char *modif)
   1684   1.21   thorpej {
   1685   1.21   thorpej 
   1686   1.25   thorpej 	pool_print1(pp, modif, printf);
   1687   1.21   thorpej }
   1688   1.21   thorpej 
   1689   1.25   thorpej void
   1690  1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1691  1.108      yamt {
   1692  1.108      yamt 	struct pool *pp;
   1693  1.108      yamt 
   1694  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1695  1.108      yamt 		pool_printit(pp, modif, pr);
   1696  1.108      yamt 	}
   1697  1.108      yamt }
   1698  1.108      yamt 
   1699  1.108      yamt void
   1700   1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1701   1.25   thorpej {
   1702   1.25   thorpej 
   1703   1.25   thorpej 	if (pp == NULL) {
   1704   1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1705   1.25   thorpej 		return;
   1706   1.25   thorpej 	}
   1707   1.25   thorpej 
   1708   1.25   thorpej 	pool_print1(pp, modif, pr);
   1709   1.25   thorpej }
   1710   1.25   thorpej 
   1711   1.21   thorpej static void
   1712  1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1713   1.97      yamt     void (*pr)(const char *, ...))
   1714   1.88       chs {
   1715   1.88       chs 	struct pool_item_header *ph;
   1716   1.88       chs #ifdef DIAGNOSTIC
   1717   1.88       chs 	struct pool_item *pi;
   1718   1.88       chs #endif
   1719   1.88       chs 
   1720   1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1721  1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1722  1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1723   1.88       chs #ifdef DIAGNOSTIC
   1724   1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1725  1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1726   1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1727   1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1728   1.97      yamt 					    pi, pi->pi_magic);
   1729   1.97      yamt 				}
   1730   1.88       chs 			}
   1731   1.88       chs 		}
   1732   1.88       chs #endif
   1733   1.88       chs 	}
   1734   1.88       chs }
   1735   1.88       chs 
   1736   1.88       chs static void
   1737   1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1738    1.3        pk {
   1739   1.25   thorpej 	struct pool_item_header *ph;
   1740  1.134        ad 	pool_cache_t pc;
   1741  1.134        ad 	pcg_t *pcg;
   1742  1.134        ad 	pool_cache_cpu_t *cc;
   1743  1.134        ad 	uint64_t cpuhit, cpumiss;
   1744   1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1745   1.25   thorpej 	char c;
   1746   1.25   thorpej 
   1747   1.25   thorpej 	while ((c = *modif++) != '\0') {
   1748   1.25   thorpej 		if (c == 'l')
   1749   1.25   thorpej 			print_log = 1;
   1750   1.25   thorpej 		if (c == 'p')
   1751   1.25   thorpej 			print_pagelist = 1;
   1752   1.44   thorpej 		if (c == 'c')
   1753   1.44   thorpej 			print_cache = 1;
   1754   1.25   thorpej 	}
   1755   1.25   thorpej 
   1756  1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1757  1.134        ad 		(*pr)("POOL CACHE");
   1758  1.134        ad 	} else {
   1759  1.134        ad 		(*pr)("POOL");
   1760  1.134        ad 	}
   1761  1.134        ad 
   1762  1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1763   1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1764   1.25   thorpej 	    pp->pr_roflags);
   1765   1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1766   1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1767   1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1768   1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1769   1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1770   1.25   thorpej 
   1771  1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1772   1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1773   1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1774   1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1775   1.25   thorpej 
   1776   1.25   thorpej 	if (print_pagelist == 0)
   1777   1.25   thorpej 		goto skip_pagelist;
   1778   1.25   thorpej 
   1779   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1780   1.88       chs 		(*pr)("\n\tempty page list:\n");
   1781   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1782   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1783   1.88       chs 		(*pr)("\n\tfull page list:\n");
   1784   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1785   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1786   1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1787   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1788   1.88       chs 
   1789   1.25   thorpej 	if (pp->pr_curpage == NULL)
   1790   1.25   thorpej 		(*pr)("\tno current page\n");
   1791   1.25   thorpej 	else
   1792   1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1793   1.25   thorpej 
   1794   1.25   thorpej  skip_pagelist:
   1795   1.25   thorpej 	if (print_log == 0)
   1796   1.25   thorpej 		goto skip_log;
   1797   1.25   thorpej 
   1798   1.25   thorpej 	(*pr)("\n");
   1799   1.25   thorpej 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1800   1.25   thorpej 		(*pr)("\tno log\n");
   1801  1.122  christos 	else {
   1802   1.25   thorpej 		pr_printlog(pp, NULL, pr);
   1803  1.122  christos 	}
   1804    1.3        pk 
   1805   1.25   thorpej  skip_log:
   1806   1.44   thorpej 
   1807  1.102       chs #define PR_GROUPLIST(pcg)						\
   1808  1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1809  1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1810  1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1811  1.102       chs 		    POOL_PADDR_INVALID) {				\
   1812  1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1813  1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1814  1.102       chs 			    (unsigned long long)			\
   1815  1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1816  1.102       chs 		} else {						\
   1817  1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1818  1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1819  1.102       chs 		}							\
   1820  1.102       chs 	}
   1821  1.102       chs 
   1822  1.134        ad 	if (pc != NULL) {
   1823  1.134        ad 		cpuhit = 0;
   1824  1.134        ad 		cpumiss = 0;
   1825  1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1826  1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1827  1.134        ad 				continue;
   1828  1.134        ad 			cpuhit += cc->cc_hits;
   1829  1.134        ad 			cpumiss += cc->cc_misses;
   1830  1.134        ad 		}
   1831  1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1832  1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1833  1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1834  1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1835  1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1836  1.134        ad 		    pc->pc_contended);
   1837  1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1838  1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1839  1.134        ad 		if (print_cache) {
   1840  1.134        ad 			(*pr)("\tfull cache groups:\n");
   1841  1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1842  1.134        ad 			    pcg = pcg->pcg_next) {
   1843  1.134        ad 				PR_GROUPLIST(pcg);
   1844  1.134        ad 			}
   1845  1.134        ad 			(*pr)("\tempty cache groups:\n");
   1846  1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1847  1.134        ad 			    pcg = pcg->pcg_next) {
   1848  1.134        ad 				PR_GROUPLIST(pcg);
   1849  1.134        ad 			}
   1850  1.103       chs 		}
   1851   1.44   thorpej 	}
   1852  1.102       chs #undef PR_GROUPLIST
   1853   1.44   thorpej 
   1854   1.88       chs 	pr_enter_check(pp, pr);
   1855   1.88       chs }
   1856   1.88       chs 
   1857   1.88       chs static int
   1858   1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1859   1.88       chs {
   1860   1.88       chs 	struct pool_item *pi;
   1861  1.128  christos 	void *page;
   1862   1.88       chs 	int n;
   1863   1.88       chs 
   1864  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1865  1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1866  1.121      yamt 		if (page != ph->ph_page &&
   1867  1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1868  1.121      yamt 			if (label != NULL)
   1869  1.121      yamt 				printf("%s: ", label);
   1870  1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1871  1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1872  1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1873  1.121      yamt 				ph, page);
   1874  1.121      yamt 			return 1;
   1875  1.121      yamt 		}
   1876   1.88       chs 	}
   1877    1.3        pk 
   1878   1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1879   1.97      yamt 		return 0;
   1880   1.97      yamt 
   1881  1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1882   1.88       chs 	     pi != NULL;
   1883  1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1884   1.88       chs 
   1885   1.88       chs #ifdef DIAGNOSTIC
   1886   1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1887   1.88       chs 			if (label != NULL)
   1888   1.88       chs 				printf("%s: ", label);
   1889   1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1890  1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1891   1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1892  1.121      yamt 				n, pi);
   1893   1.88       chs 			panic("pool");
   1894   1.88       chs 		}
   1895   1.88       chs #endif
   1896  1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1897  1.121      yamt 			continue;
   1898  1.121      yamt 		}
   1899  1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1900   1.88       chs 		if (page == ph->ph_page)
   1901   1.88       chs 			continue;
   1902   1.88       chs 
   1903   1.88       chs 		if (label != NULL)
   1904   1.88       chs 			printf("%s: ", label);
   1905   1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1906   1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1907   1.88       chs 			pp->pr_wchan, ph->ph_page,
   1908   1.88       chs 			n, pi, page);
   1909   1.88       chs 		return 1;
   1910   1.88       chs 	}
   1911   1.88       chs 	return 0;
   1912    1.3        pk }
   1913    1.3        pk 
   1914   1.88       chs 
   1915    1.3        pk int
   1916   1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1917    1.3        pk {
   1918    1.3        pk 	struct pool_item_header *ph;
   1919    1.3        pk 	int r = 0;
   1920    1.3        pk 
   1921  1.134        ad 	mutex_enter(&pp->pr_lock);
   1922   1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1923   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1924   1.88       chs 		if (r) {
   1925   1.88       chs 			goto out;
   1926   1.88       chs 		}
   1927   1.88       chs 	}
   1928   1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1929   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1930   1.88       chs 		if (r) {
   1931    1.3        pk 			goto out;
   1932    1.3        pk 		}
   1933   1.88       chs 	}
   1934   1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1935   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1936   1.88       chs 		if (r) {
   1937    1.3        pk 			goto out;
   1938    1.3        pk 		}
   1939    1.3        pk 	}
   1940   1.88       chs 
   1941    1.3        pk out:
   1942  1.134        ad 	mutex_exit(&pp->pr_lock);
   1943    1.3        pk 	return (r);
   1944   1.43   thorpej }
   1945   1.43   thorpej 
   1946   1.43   thorpej /*
   1947   1.43   thorpej  * pool_cache_init:
   1948   1.43   thorpej  *
   1949   1.43   thorpej  *	Initialize a pool cache.
   1950  1.134        ad  */
   1951  1.134        ad pool_cache_t
   1952  1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1953  1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   1954  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1955  1.134        ad {
   1956  1.134        ad 	pool_cache_t pc;
   1957  1.134        ad 
   1958  1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   1959  1.134        ad 	if (pc == NULL)
   1960  1.134        ad 		return NULL;
   1961  1.134        ad 
   1962  1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1963  1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   1964  1.134        ad 
   1965  1.134        ad 	return pc;
   1966  1.134        ad }
   1967  1.134        ad 
   1968  1.134        ad /*
   1969  1.134        ad  * pool_cache_bootstrap:
   1970   1.43   thorpej  *
   1971  1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   1972  1.134        ad  *	provides initial storage.
   1973   1.43   thorpej  */
   1974   1.43   thorpej void
   1975  1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1976  1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   1977  1.134        ad     struct pool_allocator *palloc, int ipl,
   1978  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1979   1.43   thorpej     void *arg)
   1980   1.43   thorpej {
   1981  1.134        ad 	CPU_INFO_ITERATOR cii;
   1982  1.145        ad 	pool_cache_t pc1;
   1983  1.134        ad 	struct cpu_info *ci;
   1984  1.134        ad 	struct pool *pp;
   1985  1.134        ad 
   1986  1.134        ad 	pp = &pc->pc_pool;
   1987  1.134        ad 	if (palloc == NULL && ipl == IPL_NONE)
   1988  1.134        ad 		palloc = &pool_allocator_nointr;
   1989  1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1990  1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1991   1.43   thorpej 
   1992  1.134        ad 	if (ctor == NULL) {
   1993  1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   1994  1.134        ad 	}
   1995  1.134        ad 	if (dtor == NULL) {
   1996  1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   1997  1.134        ad 	}
   1998   1.43   thorpej 
   1999  1.134        ad 	pc->pc_emptygroups = NULL;
   2000  1.134        ad 	pc->pc_fullgroups = NULL;
   2001  1.134        ad 	pc->pc_partgroups = NULL;
   2002   1.43   thorpej 	pc->pc_ctor = ctor;
   2003   1.43   thorpej 	pc->pc_dtor = dtor;
   2004   1.43   thorpej 	pc->pc_arg  = arg;
   2005  1.134        ad 	pc->pc_hits  = 0;
   2006   1.48   thorpej 	pc->pc_misses = 0;
   2007  1.134        ad 	pc->pc_nempty = 0;
   2008  1.134        ad 	pc->pc_npart = 0;
   2009  1.134        ad 	pc->pc_nfull = 0;
   2010  1.134        ad 	pc->pc_contended = 0;
   2011  1.134        ad 	pc->pc_refcnt = 0;
   2012  1.136      yamt 	pc->pc_freecheck = NULL;
   2013  1.134        ad 
   2014  1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   2015  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2016  1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   2017  1.142        ad 	} else {
   2018  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2019  1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   2020  1.142        ad 	}
   2021  1.142        ad 
   2022  1.134        ad 	/* Allocate per-CPU caches. */
   2023  1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2024  1.134        ad 	pc->pc_ncpu = 0;
   2025  1.139        ad 	if (ncpu < 2) {
   2026  1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2027  1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2028  1.137        ad 	} else {
   2029  1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2030  1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2031  1.137        ad 		}
   2032  1.134        ad 	}
   2033  1.145        ad 
   2034  1.145        ad 	/* Add to list of all pools. */
   2035  1.145        ad 	if (__predict_true(!cold))
   2036  1.134        ad 		mutex_enter(&pool_head_lock);
   2037  1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2038  1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2039  1.145        ad 			break;
   2040  1.145        ad 	}
   2041  1.145        ad 	if (pc1 == NULL)
   2042  1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2043  1.145        ad 	else
   2044  1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2045  1.145        ad 	if (__predict_true(!cold))
   2046  1.134        ad 		mutex_exit(&pool_head_lock);
   2047  1.145        ad 
   2048  1.145        ad 	membar_sync();
   2049  1.145        ad 	pp->pr_cache = pc;
   2050   1.43   thorpej }
   2051   1.43   thorpej 
   2052   1.43   thorpej /*
   2053   1.43   thorpej  * pool_cache_destroy:
   2054   1.43   thorpej  *
   2055   1.43   thorpej  *	Destroy a pool cache.
   2056   1.43   thorpej  */
   2057   1.43   thorpej void
   2058  1.134        ad pool_cache_destroy(pool_cache_t pc)
   2059   1.43   thorpej {
   2060  1.191      para 
   2061  1.191      para 	pool_cache_bootstrap_destroy(pc);
   2062  1.191      para 	pool_put(&cache_pool, pc);
   2063  1.191      para }
   2064  1.191      para 
   2065  1.191      para /*
   2066  1.191      para  * pool_cache_bootstrap_destroy:
   2067  1.191      para  *
   2068  1.191      para  *	Destroy a pool cache.
   2069  1.191      para  */
   2070  1.191      para void
   2071  1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   2072  1.191      para {
   2073  1.134        ad 	struct pool *pp = &pc->pc_pool;
   2074  1.175       jym 	u_int i;
   2075  1.134        ad 
   2076  1.134        ad 	/* Remove it from the global list. */
   2077  1.134        ad 	mutex_enter(&pool_head_lock);
   2078  1.134        ad 	while (pc->pc_refcnt != 0)
   2079  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2080  1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2081  1.134        ad 	mutex_exit(&pool_head_lock);
   2082   1.43   thorpej 
   2083   1.43   thorpej 	/* First, invalidate the entire cache. */
   2084   1.43   thorpej 	pool_cache_invalidate(pc);
   2085   1.43   thorpej 
   2086  1.134        ad 	/* Disassociate it from the pool. */
   2087  1.134        ad 	mutex_enter(&pp->pr_lock);
   2088  1.134        ad 	pp->pr_cache = NULL;
   2089  1.134        ad 	mutex_exit(&pp->pr_lock);
   2090  1.134        ad 
   2091  1.134        ad 	/* Destroy per-CPU data */
   2092  1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2093  1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   2094  1.134        ad 
   2095  1.134        ad 	/* Finally, destroy it. */
   2096  1.134        ad 	mutex_destroy(&pc->pc_lock);
   2097  1.134        ad 	pool_destroy(pp);
   2098  1.134        ad }
   2099  1.134        ad 
   2100  1.134        ad /*
   2101  1.134        ad  * pool_cache_cpu_init1:
   2102  1.134        ad  *
   2103  1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2104  1.134        ad  */
   2105  1.134        ad static void
   2106  1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2107  1.134        ad {
   2108  1.134        ad 	pool_cache_cpu_t *cc;
   2109  1.137        ad 	int index;
   2110  1.134        ad 
   2111  1.137        ad 	index = ci->ci_index;
   2112  1.137        ad 
   2113  1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   2114  1.134        ad 
   2115  1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2116  1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2117  1.134        ad 		return;
   2118  1.134        ad 	}
   2119  1.134        ad 
   2120  1.134        ad 	/*
   2121  1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2122  1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2123  1.134        ad 	 */
   2124  1.134        ad 	if (pc->pc_ncpu == 0) {
   2125  1.134        ad 		cc = &pc->pc_cpu0;
   2126  1.134        ad 		pc->pc_ncpu = 1;
   2127  1.134        ad 	} else {
   2128  1.134        ad 		mutex_enter(&pc->pc_lock);
   2129  1.134        ad 		pc->pc_ncpu++;
   2130  1.134        ad 		mutex_exit(&pc->pc_lock);
   2131  1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2132  1.134        ad 	}
   2133  1.134        ad 
   2134  1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2135  1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2136  1.134        ad 	cc->cc_cache = pc;
   2137  1.137        ad 	cc->cc_cpuindex = index;
   2138  1.134        ad 	cc->cc_hits = 0;
   2139  1.134        ad 	cc->cc_misses = 0;
   2140  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2141  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2142  1.134        ad 
   2143  1.137        ad 	pc->pc_cpus[index] = cc;
   2144   1.43   thorpej }
   2145   1.43   thorpej 
   2146  1.134        ad /*
   2147  1.134        ad  * pool_cache_cpu_init:
   2148  1.134        ad  *
   2149  1.134        ad  *	Called whenever a new CPU is attached.
   2150  1.134        ad  */
   2151  1.134        ad void
   2152  1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2153   1.43   thorpej {
   2154  1.134        ad 	pool_cache_t pc;
   2155  1.134        ad 
   2156  1.134        ad 	mutex_enter(&pool_head_lock);
   2157  1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2158  1.134        ad 		pc->pc_refcnt++;
   2159  1.134        ad 		mutex_exit(&pool_head_lock);
   2160   1.43   thorpej 
   2161  1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2162   1.43   thorpej 
   2163  1.134        ad 		mutex_enter(&pool_head_lock);
   2164  1.134        ad 		pc->pc_refcnt--;
   2165  1.134        ad 		cv_broadcast(&pool_busy);
   2166  1.134        ad 	}
   2167  1.134        ad 	mutex_exit(&pool_head_lock);
   2168   1.43   thorpej }
   2169   1.43   thorpej 
   2170  1.134        ad /*
   2171  1.134        ad  * pool_cache_reclaim:
   2172  1.134        ad  *
   2173  1.134        ad  *	Reclaim memory from a pool cache.
   2174  1.134        ad  */
   2175  1.134        ad bool
   2176  1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2177   1.43   thorpej {
   2178   1.43   thorpej 
   2179  1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2180  1.134        ad }
   2181   1.43   thorpej 
   2182  1.136      yamt static void
   2183  1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2184  1.136      yamt {
   2185  1.136      yamt 
   2186  1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2187  1.136      yamt 	pool_put(&pc->pc_pool, object);
   2188  1.136      yamt }
   2189  1.136      yamt 
   2190  1.134        ad /*
   2191  1.134        ad  * pool_cache_destruct_object:
   2192  1.134        ad  *
   2193  1.134        ad  *	Force destruction of an object and its release back into
   2194  1.134        ad  *	the pool.
   2195  1.134        ad  */
   2196  1.134        ad void
   2197  1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2198  1.134        ad {
   2199  1.134        ad 
   2200  1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2201  1.136      yamt 
   2202  1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2203   1.43   thorpej }
   2204   1.43   thorpej 
   2205  1.134        ad /*
   2206  1.134        ad  * pool_cache_invalidate_groups:
   2207  1.134        ad  *
   2208  1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2209  1.134        ad  */
   2210  1.102       chs static void
   2211  1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2212  1.102       chs {
   2213  1.134        ad 	void *object;
   2214  1.134        ad 	pcg_t *next;
   2215  1.134        ad 	int i;
   2216  1.134        ad 
   2217  1.134        ad 	for (; pcg != NULL; pcg = next) {
   2218  1.134        ad 		next = pcg->pcg_next;
   2219  1.134        ad 
   2220  1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2221  1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2222  1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2223  1.134        ad 		}
   2224  1.102       chs 
   2225  1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2226  1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2227  1.142        ad 		} else {
   2228  1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2229  1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2230  1.142        ad 		}
   2231  1.102       chs 	}
   2232  1.102       chs }
   2233  1.102       chs 
   2234   1.43   thorpej /*
   2235  1.134        ad  * pool_cache_invalidate:
   2236   1.43   thorpej  *
   2237  1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2238  1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2239  1.176   thorpej  *
   2240  1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2241  1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2242  1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2243   1.43   thorpej  */
   2244  1.134        ad void
   2245  1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2246  1.134        ad {
   2247  1.134        ad 	pcg_t *full, *empty, *part;
   2248  1.182     rmind #if 0
   2249  1.176   thorpej 	uint64_t where;
   2250  1.176   thorpej 
   2251  1.177       jym 	if (ncpu < 2 || !mp_online) {
   2252  1.176   thorpej 		/*
   2253  1.176   thorpej 		 * We might be called early enough in the boot process
   2254  1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2255  1.176   thorpej 		 * In this case, simply gather the local CPU's cache now
   2256  1.176   thorpej 		 * since it will be the only one running.
   2257  1.176   thorpej 		 */
   2258  1.176   thorpej 		pool_cache_xcall(pc);
   2259  1.176   thorpej 	} else {
   2260  1.176   thorpej 		/*
   2261  1.176   thorpej 		 * Gather all of the CPU-specific caches into the
   2262  1.176   thorpej 		 * global cache.
   2263  1.176   thorpej 		 */
   2264  1.176   thorpej 		where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL);
   2265  1.176   thorpej 		xc_wait(where);
   2266  1.176   thorpej 	}
   2267  1.182     rmind #endif
   2268  1.134        ad 	mutex_enter(&pc->pc_lock);
   2269  1.134        ad 	full = pc->pc_fullgroups;
   2270  1.134        ad 	empty = pc->pc_emptygroups;
   2271  1.134        ad 	part = pc->pc_partgroups;
   2272  1.134        ad 	pc->pc_fullgroups = NULL;
   2273  1.134        ad 	pc->pc_emptygroups = NULL;
   2274  1.134        ad 	pc->pc_partgroups = NULL;
   2275  1.134        ad 	pc->pc_nfull = 0;
   2276  1.134        ad 	pc->pc_nempty = 0;
   2277  1.134        ad 	pc->pc_npart = 0;
   2278  1.134        ad 	mutex_exit(&pc->pc_lock);
   2279  1.134        ad 
   2280  1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2281  1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2282  1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2283  1.134        ad }
   2284  1.134        ad 
   2285  1.175       jym /*
   2286  1.175       jym  * pool_cache_invalidate_cpu:
   2287  1.175       jym  *
   2288  1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2289  1.175       jym  *	identified by its associated index.
   2290  1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2291  1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2292  1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2293  1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2294  1.175       jym  *	may result in an undefined behaviour.
   2295  1.175       jym  */
   2296  1.175       jym static void
   2297  1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2298  1.175       jym {
   2299  1.175       jym 
   2300  1.175       jym 	pool_cache_cpu_t *cc;
   2301  1.175       jym 	pcg_t *pcg;
   2302  1.175       jym 
   2303  1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2304  1.175       jym 		return;
   2305  1.175       jym 
   2306  1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2307  1.175       jym 		pcg->pcg_next = NULL;
   2308  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2309  1.175       jym 	}
   2310  1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2311  1.175       jym 		pcg->pcg_next = NULL;
   2312  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2313  1.175       jym 	}
   2314  1.175       jym 	if (cc != &pc->pc_cpu0)
   2315  1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2316  1.175       jym 
   2317  1.175       jym }
   2318  1.175       jym 
   2319  1.134        ad void
   2320  1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2321  1.134        ad {
   2322  1.134        ad 
   2323  1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2324  1.134        ad }
   2325  1.134        ad 
   2326  1.134        ad void
   2327  1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2328  1.134        ad {
   2329  1.134        ad 
   2330  1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2331  1.134        ad }
   2332  1.134        ad 
   2333  1.134        ad void
   2334  1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2335  1.134        ad {
   2336  1.134        ad 
   2337  1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2338  1.134        ad }
   2339  1.134        ad 
   2340  1.134        ad void
   2341  1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2342  1.134        ad {
   2343  1.134        ad 
   2344  1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2345  1.134        ad }
   2346  1.134        ad 
   2347  1.162        ad static bool __noinline
   2348  1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2349  1.134        ad 		    paddr_t *pap, int flags)
   2350   1.43   thorpej {
   2351  1.134        ad 	pcg_t *pcg, *cur;
   2352  1.134        ad 	uint64_t ncsw;
   2353  1.134        ad 	pool_cache_t pc;
   2354   1.43   thorpej 	void *object;
   2355   1.58   thorpej 
   2356  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2357  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2358  1.168      yamt 
   2359  1.134        ad 	pc = cc->cc_cache;
   2360  1.134        ad 	cc->cc_misses++;
   2361   1.43   thorpej 
   2362  1.134        ad 	/*
   2363  1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2364  1.134        ad 	 * from the cache.
   2365  1.134        ad 	 */
   2366  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2367  1.134        ad 		ncsw = curlwp->l_ncsw;
   2368  1.134        ad 		mutex_enter(&pc->pc_lock);
   2369  1.134        ad 		pc->pc_contended++;
   2370   1.43   thorpej 
   2371  1.134        ad 		/*
   2372  1.134        ad 		 * If we context switched while locking, then
   2373  1.134        ad 		 * our view of the per-CPU data is invalid:
   2374  1.134        ad 		 * retry.
   2375  1.134        ad 		 */
   2376  1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2377  1.134        ad 			mutex_exit(&pc->pc_lock);
   2378  1.162        ad 			return true;
   2379   1.43   thorpej 		}
   2380  1.102       chs 	}
   2381   1.43   thorpej 
   2382  1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2383   1.43   thorpej 		/*
   2384  1.134        ad 		 * If there's a full group, release our empty
   2385  1.134        ad 		 * group back to the cache.  Install the full
   2386  1.134        ad 		 * group as cc_current and return.
   2387   1.43   thorpej 		 */
   2388  1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2389  1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2390  1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2391  1.134        ad 			pc->pc_emptygroups = cur;
   2392  1.134        ad 			pc->pc_nempty++;
   2393   1.87   thorpej 		}
   2394  1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2395  1.134        ad 		cc->cc_current = pcg;
   2396  1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2397  1.134        ad 		pc->pc_hits++;
   2398  1.134        ad 		pc->pc_nfull--;
   2399  1.134        ad 		mutex_exit(&pc->pc_lock);
   2400  1.162        ad 		return true;
   2401  1.134        ad 	}
   2402  1.134        ad 
   2403  1.134        ad 	/*
   2404  1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2405  1.134        ad 	 * path: fetch a new object from the pool and construct
   2406  1.134        ad 	 * it.
   2407  1.134        ad 	 */
   2408  1.134        ad 	pc->pc_misses++;
   2409  1.134        ad 	mutex_exit(&pc->pc_lock);
   2410  1.162        ad 	splx(s);
   2411  1.134        ad 
   2412  1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2413  1.134        ad 	*objectp = object;
   2414  1.162        ad 	if (__predict_false(object == NULL))
   2415  1.162        ad 		return false;
   2416  1.125        ad 
   2417  1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2418  1.134        ad 		pool_put(&pc->pc_pool, object);
   2419  1.134        ad 		*objectp = NULL;
   2420  1.162        ad 		return false;
   2421   1.43   thorpej 	}
   2422   1.43   thorpej 
   2423  1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2424  1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2425   1.43   thorpej 
   2426  1.134        ad 	if (pap != NULL) {
   2427  1.134        ad #ifdef POOL_VTOPHYS
   2428  1.134        ad 		*pap = POOL_VTOPHYS(object);
   2429  1.134        ad #else
   2430  1.134        ad 		*pap = POOL_PADDR_INVALID;
   2431  1.134        ad #endif
   2432  1.102       chs 	}
   2433   1.43   thorpej 
   2434  1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2435  1.162        ad 	return false;
   2436   1.43   thorpej }
   2437   1.43   thorpej 
   2438   1.43   thorpej /*
   2439  1.134        ad  * pool_cache_get{,_paddr}:
   2440   1.43   thorpej  *
   2441  1.134        ad  *	Get an object from a pool cache (optionally returning
   2442  1.134        ad  *	the physical address of the object).
   2443   1.43   thorpej  */
   2444  1.134        ad void *
   2445  1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2446   1.43   thorpej {
   2447  1.134        ad 	pool_cache_cpu_t *cc;
   2448  1.134        ad 	pcg_t *pcg;
   2449  1.134        ad 	void *object;
   2450   1.60   thorpej 	int s;
   2451   1.43   thorpej 
   2452  1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2453  1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2454  1.190       jym 	    "pool '%s' is IPL_NONE, but called from interrupt context\n",
   2455  1.190       jym 	    pc->pc_pool.pr_wchan);
   2456  1.184     rmind 
   2457  1.155        ad 	if (flags & PR_WAITOK) {
   2458  1.154      yamt 		ASSERT_SLEEPABLE();
   2459  1.155        ad 	}
   2460  1.125        ad 
   2461  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2462  1.162        ad 	s = splvm();
   2463  1.165      yamt 	while (/* CONSTCOND */ true) {
   2464  1.134        ad 		/* Try and allocate an object from the current group. */
   2465  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2466  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2467  1.134        ad 	 	pcg = cc->cc_current;
   2468  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2469  1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2470  1.162        ad 			if (__predict_false(pap != NULL))
   2471  1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2472  1.148      yamt #if defined(DIAGNOSTIC)
   2473  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2474  1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2475  1.134        ad 			KASSERT(object != NULL);
   2476  1.163        ad #endif
   2477  1.134        ad 			cc->cc_hits++;
   2478  1.162        ad 			splx(s);
   2479  1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2480  1.134        ad 			return object;
   2481   1.43   thorpej 		}
   2482   1.43   thorpej 
   2483   1.43   thorpej 		/*
   2484  1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2485  1.134        ad 		 * it with the current group and allocate from there.
   2486   1.43   thorpej 		 */
   2487  1.134        ad 		pcg = cc->cc_previous;
   2488  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2489  1.134        ad 			cc->cc_previous = cc->cc_current;
   2490  1.134        ad 			cc->cc_current = pcg;
   2491  1.134        ad 			continue;
   2492   1.43   thorpej 		}
   2493   1.43   thorpej 
   2494  1.134        ad 		/*
   2495  1.134        ad 		 * Can't allocate from either group: try the slow path.
   2496  1.134        ad 		 * If get_slow() allocated an object for us, or if
   2497  1.162        ad 		 * no more objects are available, it will return false.
   2498  1.134        ad 		 * Otherwise, we need to retry.
   2499  1.134        ad 		 */
   2500  1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2501  1.165      yamt 			break;
   2502  1.165      yamt 	}
   2503   1.43   thorpej 
   2504  1.134        ad 	return object;
   2505   1.51   thorpej }
   2506   1.51   thorpej 
   2507  1.162        ad static bool __noinline
   2508  1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2509   1.51   thorpej {
   2510  1.163        ad 	pcg_t *pcg, *cur;
   2511  1.134        ad 	uint64_t ncsw;
   2512  1.134        ad 	pool_cache_t pc;
   2513   1.51   thorpej 
   2514  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2515  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2516  1.168      yamt 
   2517  1.134        ad 	pc = cc->cc_cache;
   2518  1.171        ad 	pcg = NULL;
   2519  1.134        ad 	cc->cc_misses++;
   2520   1.43   thorpej 
   2521  1.171        ad 	/*
   2522  1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2523  1.171        ad 	 * while still unlocked.
   2524  1.171        ad 	 */
   2525  1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2526  1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2527  1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2528  1.171        ad 		}
   2529  1.171        ad 		if (__predict_true(pcg != NULL)) {
   2530  1.171        ad 			pcg->pcg_avail = 0;
   2531  1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2532  1.171        ad 		}
   2533  1.171        ad 	}
   2534  1.171        ad 
   2535  1.162        ad 	/* Lock the cache. */
   2536  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2537  1.164        ad 		ncsw = curlwp->l_ncsw;
   2538  1.134        ad 		mutex_enter(&pc->pc_lock);
   2539  1.134        ad 		pc->pc_contended++;
   2540  1.162        ad 
   2541  1.163        ad 		/*
   2542  1.163        ad 		 * If we context switched while locking, then our view of
   2543  1.163        ad 		 * the per-CPU data is invalid: retry.
   2544  1.163        ad 		 */
   2545  1.163        ad 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2546  1.163        ad 			mutex_exit(&pc->pc_lock);
   2547  1.171        ad 			if (pcg != NULL) {
   2548  1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2549  1.171        ad 			}
   2550  1.163        ad 			return true;
   2551  1.163        ad 		}
   2552  1.162        ad 	}
   2553  1.102       chs 
   2554  1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2555  1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2556  1.171        ad 		pcg = pc->pc_emptygroups;
   2557  1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2558  1.163        ad 		pc->pc_nempty--;
   2559  1.134        ad 	}
   2560  1.130        ad 
   2561  1.162        ad 	/*
   2562  1.162        ad 	 * If there's a empty group, release our full group back
   2563  1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2564  1.162        ad 	 * and return.
   2565  1.162        ad 	 */
   2566  1.163        ad 	if (pcg != NULL) {
   2567  1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2568  1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2569  1.146        ad 			cc->cc_previous = pcg;
   2570  1.146        ad 		} else {
   2571  1.162        ad 			cur = cc->cc_current;
   2572  1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2573  1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2574  1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2575  1.146        ad 				pc->pc_fullgroups = cur;
   2576  1.146        ad 				pc->pc_nfull++;
   2577  1.146        ad 			}
   2578  1.146        ad 			cc->cc_current = pcg;
   2579  1.146        ad 		}
   2580  1.163        ad 		pc->pc_hits++;
   2581  1.134        ad 		mutex_exit(&pc->pc_lock);
   2582  1.162        ad 		return true;
   2583  1.102       chs 	}
   2584  1.105  christos 
   2585  1.134        ad 	/*
   2586  1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2587  1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2588  1.162        ad 	 * the object here and now.
   2589  1.134        ad 	 */
   2590  1.134        ad 	pc->pc_misses++;
   2591  1.134        ad 	mutex_exit(&pc->pc_lock);
   2592  1.162        ad 	splx(s);
   2593  1.162        ad 	pool_cache_destruct_object(pc, object);
   2594  1.105  christos 
   2595  1.162        ad 	return false;
   2596  1.134        ad }
   2597  1.102       chs 
   2598   1.43   thorpej /*
   2599  1.134        ad  * pool_cache_put{,_paddr}:
   2600   1.43   thorpej  *
   2601  1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2602  1.134        ad  *	physical address of the object).
   2603   1.43   thorpej  */
   2604  1.101   thorpej void
   2605  1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2606   1.43   thorpej {
   2607  1.134        ad 	pool_cache_cpu_t *cc;
   2608  1.134        ad 	pcg_t *pcg;
   2609  1.134        ad 	int s;
   2610  1.101   thorpej 
   2611  1.172      yamt 	KASSERT(object != NULL);
   2612  1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2613  1.101   thorpej 
   2614  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2615  1.162        ad 	s = splvm();
   2616  1.165      yamt 	while (/* CONSTCOND */ true) {
   2617  1.134        ad 		/* If the current group isn't full, release it there. */
   2618  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2619  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2620  1.134        ad 	 	pcg = cc->cc_current;
   2621  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2622  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2623  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2624  1.134        ad 			pcg->pcg_avail++;
   2625  1.134        ad 			cc->cc_hits++;
   2626  1.162        ad 			splx(s);
   2627  1.134        ad 			return;
   2628  1.134        ad 		}
   2629   1.43   thorpej 
   2630  1.134        ad 		/*
   2631  1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2632  1.134        ad 		 * it with the current group and try again.
   2633  1.134        ad 		 */
   2634  1.134        ad 		pcg = cc->cc_previous;
   2635  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2636  1.134        ad 			cc->cc_previous = cc->cc_current;
   2637  1.134        ad 			cc->cc_current = pcg;
   2638  1.134        ad 			continue;
   2639  1.134        ad 		}
   2640   1.43   thorpej 
   2641  1.134        ad 		/*
   2642  1.134        ad 		 * Can't free to either group: try the slow path.
   2643  1.134        ad 		 * If put_slow() releases the object for us, it
   2644  1.162        ad 		 * will return false.  Otherwise we need to retry.
   2645  1.134        ad 		 */
   2646  1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2647  1.165      yamt 			break;
   2648  1.165      yamt 	}
   2649   1.43   thorpej }
   2650   1.43   thorpej 
   2651   1.43   thorpej /*
   2652  1.134        ad  * pool_cache_xcall:
   2653   1.43   thorpej  *
   2654  1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2655  1.134        ad  *	Run within a cross-call thread.
   2656   1.43   thorpej  */
   2657   1.43   thorpej static void
   2658  1.134        ad pool_cache_xcall(pool_cache_t pc)
   2659   1.43   thorpej {
   2660  1.134        ad 	pool_cache_cpu_t *cc;
   2661  1.134        ad 	pcg_t *prev, *cur, **list;
   2662  1.162        ad 	int s;
   2663  1.134        ad 
   2664  1.162        ad 	s = splvm();
   2665  1.162        ad 	mutex_enter(&pc->pc_lock);
   2666  1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2667  1.134        ad 	cur = cc->cc_current;
   2668  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2669  1.134        ad 	prev = cc->cc_previous;
   2670  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2671  1.162        ad 	if (cur != &pcg_dummy) {
   2672  1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2673  1.134        ad 			list = &pc->pc_fullgroups;
   2674  1.134        ad 			pc->pc_nfull++;
   2675  1.134        ad 		} else if (cur->pcg_avail == 0) {
   2676  1.134        ad 			list = &pc->pc_emptygroups;
   2677  1.134        ad 			pc->pc_nempty++;
   2678  1.134        ad 		} else {
   2679  1.134        ad 			list = &pc->pc_partgroups;
   2680  1.134        ad 			pc->pc_npart++;
   2681  1.134        ad 		}
   2682  1.134        ad 		cur->pcg_next = *list;
   2683  1.134        ad 		*list = cur;
   2684  1.134        ad 	}
   2685  1.162        ad 	if (prev != &pcg_dummy) {
   2686  1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2687  1.134        ad 			list = &pc->pc_fullgroups;
   2688  1.134        ad 			pc->pc_nfull++;
   2689  1.134        ad 		} else if (prev->pcg_avail == 0) {
   2690  1.134        ad 			list = &pc->pc_emptygroups;
   2691  1.134        ad 			pc->pc_nempty++;
   2692  1.134        ad 		} else {
   2693  1.134        ad 			list = &pc->pc_partgroups;
   2694  1.134        ad 			pc->pc_npart++;
   2695  1.134        ad 		}
   2696  1.134        ad 		prev->pcg_next = *list;
   2697  1.134        ad 		*list = prev;
   2698  1.134        ad 	}
   2699  1.134        ad 	mutex_exit(&pc->pc_lock);
   2700  1.134        ad 	splx(s);
   2701    1.3        pk }
   2702   1.66   thorpej 
   2703   1.66   thorpej /*
   2704   1.66   thorpej  * Pool backend allocators.
   2705   1.66   thorpej  *
   2706   1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2707   1.66   thorpej  * and any additional draining that might be needed.
   2708   1.66   thorpej  *
   2709   1.66   thorpej  * We provide two standard allocators:
   2710   1.66   thorpej  *
   2711   1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2712   1.66   thorpej  *
   2713   1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2714   1.66   thorpej  *	in interrupt context.
   2715   1.66   thorpej  */
   2716   1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2717   1.66   thorpej void	pool_page_free(struct pool *, void *);
   2718   1.66   thorpej 
   2719  1.112     bjh21 #ifdef POOL_SUBPAGE
   2720  1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2721  1.192     rmind 	.pa_alloc = pool_page_alloc,
   2722  1.192     rmind 	.pa_free = pool_page_free,
   2723  1.192     rmind 	.pa_pagesz = 0
   2724  1.112     bjh21 };
   2725  1.112     bjh21 #else
   2726   1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2727  1.191      para 	.pa_alloc = pool_page_alloc,
   2728  1.191      para 	.pa_free = pool_page_free,
   2729  1.191      para 	.pa_pagesz = 0
   2730   1.66   thorpej };
   2731  1.112     bjh21 #endif
   2732   1.66   thorpej 
   2733  1.112     bjh21 #ifdef POOL_SUBPAGE
   2734  1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2735  1.194      para 	.pa_alloc = pool_page_alloc,
   2736  1.194      para 	.pa_free = pool_page_free,
   2737  1.192     rmind 	.pa_pagesz = 0
   2738  1.112     bjh21 };
   2739  1.112     bjh21 #else
   2740   1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2741  1.191      para 	.pa_alloc = pool_page_alloc,
   2742  1.191      para 	.pa_free = pool_page_free,
   2743  1.191      para 	.pa_pagesz = 0
   2744   1.66   thorpej };
   2745  1.112     bjh21 #endif
   2746   1.66   thorpej 
   2747   1.66   thorpej #ifdef POOL_SUBPAGE
   2748   1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2749   1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2750   1.66   thorpej 
   2751  1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2752  1.193        he 	.pa_alloc = pool_subpage_alloc,
   2753  1.193        he 	.pa_free = pool_subpage_free,
   2754  1.193        he 	.pa_pagesz = POOL_SUBPAGE
   2755  1.112     bjh21 };
   2756  1.112     bjh21 
   2757  1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2758  1.192     rmind 	.pa_alloc = pool_subpage_alloc,
   2759  1.192     rmind 	.pa_free = pool_subpage_free,
   2760  1.192     rmind 	.pa_pagesz = POOL_SUBPAGE
   2761   1.66   thorpej };
   2762   1.66   thorpej #endif /* POOL_SUBPAGE */
   2763   1.66   thorpej 
   2764  1.117      yamt static void *
   2765  1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2766   1.66   thorpej {
   2767  1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2768   1.66   thorpej 	void *res;
   2769   1.66   thorpej 
   2770  1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2771  1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2772   1.66   thorpej 		/*
   2773  1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2774  1.117      yamt 		 * In other cases, the hook will be run in
   2775  1.117      yamt 		 * pool_reclaim().
   2776   1.66   thorpej 		 */
   2777  1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2778  1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2779  1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2780   1.66   thorpej 		}
   2781  1.117      yamt 	}
   2782  1.117      yamt 	return res;
   2783   1.66   thorpej }
   2784   1.66   thorpej 
   2785  1.117      yamt static void
   2786   1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2787   1.66   thorpej {
   2788   1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2789   1.66   thorpej 
   2790   1.66   thorpej 	(*pa->pa_free)(pp, v);
   2791   1.66   thorpej }
   2792   1.66   thorpej 
   2793   1.66   thorpej void *
   2794  1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2795   1.66   thorpej {
   2796  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2797  1.191      para 	vmem_addr_t va;
   2798  1.192     rmind 	int ret;
   2799  1.191      para 
   2800  1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2801  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2802   1.66   thorpej 
   2803  1.192     rmind 	return ret ? NULL : (void *)va;
   2804   1.66   thorpej }
   2805   1.66   thorpej 
   2806   1.66   thorpej void
   2807  1.124      yamt pool_page_free(struct pool *pp, void *v)
   2808   1.66   thorpej {
   2809   1.66   thorpej 
   2810  1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2811   1.98      yamt }
   2812   1.98      yamt 
   2813   1.98      yamt static void *
   2814  1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2815   1.98      yamt {
   2816  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2817  1.192     rmind 	vmem_addr_t va;
   2818  1.192     rmind 	int ret;
   2819  1.191      para 
   2820  1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2821  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2822   1.98      yamt 
   2823  1.192     rmind 	return ret ? NULL : (void *)va;
   2824   1.98      yamt }
   2825   1.98      yamt 
   2826   1.98      yamt static void
   2827  1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2828   1.98      yamt {
   2829   1.98      yamt 
   2830  1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2831   1.66   thorpej }
   2832   1.66   thorpej 
   2833   1.66   thorpej #ifdef POOL_SUBPAGE
   2834   1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2835   1.66   thorpej void *
   2836   1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2837   1.66   thorpej {
   2838  1.134        ad 	return pool_get(&psppool, flags);
   2839   1.66   thorpej }
   2840   1.66   thorpej 
   2841   1.66   thorpej void
   2842   1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2843   1.66   thorpej {
   2844   1.66   thorpej 	pool_put(&psppool, v);
   2845   1.66   thorpej }
   2846   1.66   thorpej 
   2847  1.112     bjh21 #endif /* POOL_SUBPAGE */
   2848  1.141      yamt 
   2849  1.141      yamt #if defined(DDB)
   2850  1.141      yamt static bool
   2851  1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2852  1.141      yamt {
   2853  1.141      yamt 
   2854  1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   2855  1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2856  1.141      yamt }
   2857  1.141      yamt 
   2858  1.143      yamt static bool
   2859  1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2860  1.143      yamt {
   2861  1.143      yamt 
   2862  1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2863  1.143      yamt }
   2864  1.143      yamt 
   2865  1.143      yamt static bool
   2866  1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2867  1.143      yamt {
   2868  1.143      yamt 	int i;
   2869  1.143      yamt 
   2870  1.143      yamt 	if (pcg == NULL) {
   2871  1.143      yamt 		return false;
   2872  1.143      yamt 	}
   2873  1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   2874  1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2875  1.143      yamt 			return true;
   2876  1.143      yamt 		}
   2877  1.143      yamt 	}
   2878  1.143      yamt 	return false;
   2879  1.143      yamt }
   2880  1.143      yamt 
   2881  1.143      yamt static bool
   2882  1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2883  1.143      yamt {
   2884  1.143      yamt 
   2885  1.143      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2886  1.143      yamt 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2887  1.143      yamt 		pool_item_bitmap_t *bitmap =
   2888  1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2889  1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2890  1.143      yamt 
   2891  1.143      yamt 		return (*bitmap & mask) == 0;
   2892  1.143      yamt 	} else {
   2893  1.143      yamt 		struct pool_item *pi;
   2894  1.143      yamt 
   2895  1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2896  1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   2897  1.143      yamt 				return false;
   2898  1.143      yamt 			}
   2899  1.143      yamt 		}
   2900  1.143      yamt 		return true;
   2901  1.143      yamt 	}
   2902  1.143      yamt }
   2903  1.143      yamt 
   2904  1.141      yamt void
   2905  1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2906  1.141      yamt {
   2907  1.141      yamt 	struct pool *pp;
   2908  1.141      yamt 
   2909  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2910  1.141      yamt 		struct pool_item_header *ph;
   2911  1.141      yamt 		uintptr_t item;
   2912  1.143      yamt 		bool allocated = true;
   2913  1.143      yamt 		bool incache = false;
   2914  1.143      yamt 		bool incpucache = false;
   2915  1.143      yamt 		char cpucachestr[32];
   2916  1.141      yamt 
   2917  1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2918  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2919  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2920  1.141      yamt 					goto found;
   2921  1.141      yamt 				}
   2922  1.141      yamt 			}
   2923  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2924  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2925  1.143      yamt 					allocated =
   2926  1.143      yamt 					    pool_allocated(pp, ph, addr);
   2927  1.143      yamt 					goto found;
   2928  1.143      yamt 				}
   2929  1.143      yamt 			}
   2930  1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2931  1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   2932  1.143      yamt 					allocated = false;
   2933  1.141      yamt 					goto found;
   2934  1.141      yamt 				}
   2935  1.141      yamt 			}
   2936  1.141      yamt 			continue;
   2937  1.141      yamt 		} else {
   2938  1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2939  1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2940  1.141      yamt 				continue;
   2941  1.141      yamt 			}
   2942  1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   2943  1.141      yamt 		}
   2944  1.141      yamt found:
   2945  1.143      yamt 		if (allocated && pp->pr_cache) {
   2946  1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   2947  1.143      yamt 			struct pool_cache_group *pcg;
   2948  1.143      yamt 			int i;
   2949  1.143      yamt 
   2950  1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2951  1.143      yamt 			    pcg = pcg->pcg_next) {
   2952  1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   2953  1.143      yamt 					incache = true;
   2954  1.143      yamt 					goto print;
   2955  1.143      yamt 				}
   2956  1.143      yamt 			}
   2957  1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2958  1.143      yamt 				pool_cache_cpu_t *cc;
   2959  1.143      yamt 
   2960  1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2961  1.143      yamt 					continue;
   2962  1.143      yamt 				}
   2963  1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2964  1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2965  1.143      yamt 					struct cpu_info *ci =
   2966  1.170        ad 					    cpu_lookup(i);
   2967  1.143      yamt 
   2968  1.143      yamt 					incpucache = true;
   2969  1.143      yamt 					snprintf(cpucachestr,
   2970  1.143      yamt 					    sizeof(cpucachestr),
   2971  1.143      yamt 					    "cached by CPU %u",
   2972  1.153    martin 					    ci->ci_index);
   2973  1.143      yamt 					goto print;
   2974  1.143      yamt 				}
   2975  1.143      yamt 			}
   2976  1.143      yamt 		}
   2977  1.143      yamt print:
   2978  1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2979  1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   2980  1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2981  1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   2982  1.143      yamt 		    pp->pr_wchan,
   2983  1.143      yamt 		    incpucache ? cpucachestr :
   2984  1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   2985  1.141      yamt 	}
   2986  1.141      yamt }
   2987  1.141      yamt #endif /* defined(DDB) */
   2988