Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.203.4.3
      1  1.203.4.3     skrll /*	$NetBSD: subr_pool.c,v 1.203.4.3 2017/08/28 17:53:07 skrll Exp $	*/
      2        1.1        pk 
      3        1.1        pk /*-
      4  1.203.4.1     skrll  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
      5      1.183        ad  *     The NetBSD Foundation, Inc.
      6        1.1        pk  * All rights reserved.
      7        1.1        pk  *
      8        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  1.203.4.1     skrll  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  1.203.4.1     skrll  * Maxime Villard.
     12        1.1        pk  *
     13        1.1        pk  * Redistribution and use in source and binary forms, with or without
     14        1.1        pk  * modification, are permitted provided that the following conditions
     15        1.1        pk  * are met:
     16        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20        1.1        pk  *    documentation and/or other materials provided with the distribution.
     21        1.1        pk  *
     22        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33        1.1        pk  */
     34       1.64     lukem 
     35       1.64     lukem #include <sys/cdefs.h>
     36  1.203.4.3     skrll __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.203.4.3 2017/08/28 17:53:07 skrll Exp $");
     37       1.24    scottr 
     38  1.203.4.1     skrll #ifdef _KERNEL_OPT
     39      1.141      yamt #include "opt_ddb.h"
     40       1.28   thorpej #include "opt_lockdebug.h"
     41  1.203.4.1     skrll #endif
     42        1.1        pk 
     43        1.1        pk #include <sys/param.h>
     44        1.1        pk #include <sys/systm.h>
     45      1.203     joerg #include <sys/sysctl.h>
     46      1.135      yamt #include <sys/bitops.h>
     47        1.1        pk #include <sys/proc.h>
     48        1.1        pk #include <sys/errno.h>
     49        1.1        pk #include <sys/kernel.h>
     50      1.191      para #include <sys/vmem.h>
     51        1.1        pk #include <sys/pool.h>
     52       1.20   thorpej #include <sys/syslog.h>
     53      1.125        ad #include <sys/debug.h>
     54      1.134        ad #include <sys/lockdebug.h>
     55      1.134        ad #include <sys/xcall.h>
     56      1.134        ad #include <sys/cpu.h>
     57      1.145        ad #include <sys/atomic.h>
     58        1.3        pk 
     59      1.187  uebayasi #include <uvm/uvm_extern.h>
     60        1.3        pk 
     61        1.1        pk /*
     62        1.1        pk  * Pool resource management utility.
     63        1.3        pk  *
     64       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     65       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     66       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     67       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     68       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     69       1.88       chs  * header. The memory for building the page list is either taken from
     70       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     71       1.88       chs  * an internal pool of page headers (`phpool').
     72        1.1        pk  */
     73        1.1        pk 
     74      1.202       abs /* List of all pools. Non static as needed by 'vmstat -i' */
     75      1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     76      1.134        ad 
     77        1.3        pk /* Private pool for page header structures */
     78       1.97      yamt #define	PHPOOL_MAX	8
     79       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     80      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     81      1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     82        1.3        pk 
     83       1.62     bjh21 #ifdef POOL_SUBPAGE
     84       1.62     bjh21 /* Pool of subpages for use by normal pools. */
     85       1.62     bjh21 static struct pool psppool;
     86       1.62     bjh21 #endif
     87       1.62     bjh21 
     88  1.203.4.1     skrll #ifdef POOL_REDZONE
     89  1.203.4.1     skrll # define POOL_REDZONE_SIZE 2
     90  1.203.4.1     skrll static void pool_redzone_init(struct pool *, size_t);
     91  1.203.4.1     skrll static void pool_redzone_fill(struct pool *, void *);
     92  1.203.4.1     skrll static void pool_redzone_check(struct pool *, void *);
     93  1.203.4.1     skrll #else
     94  1.203.4.1     skrll # define pool_redzone_init(pp, sz)	/* NOTHING */
     95  1.203.4.1     skrll # define pool_redzone_fill(pp, ptr)	/* NOTHING */
     96  1.203.4.1     skrll # define pool_redzone_check(pp, ptr)	/* NOTHING */
     97  1.203.4.1     skrll #endif
     98  1.203.4.1     skrll 
     99       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    100       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    101       1.98      yamt 
    102       1.98      yamt /* allocator for pool metadata */
    103      1.134        ad struct pool_allocator pool_allocator_meta = {
    104      1.191      para 	.pa_alloc = pool_page_alloc_meta,
    105      1.191      para 	.pa_free = pool_page_free_meta,
    106      1.191      para 	.pa_pagesz = 0
    107       1.98      yamt };
    108       1.98      yamt 
    109  1.203.4.3     skrll #define POOL_ALLOCATOR_BIG_BASE 13
    110  1.203.4.3     skrll extern struct pool_allocator pool_allocator_big[];
    111  1.203.4.3     skrll static int pool_bigidx(size_t);
    112  1.203.4.3     skrll 
    113        1.3        pk /* # of seconds to retain page after last use */
    114        1.3        pk int pool_inactive_time = 10;
    115        1.3        pk 
    116        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    117       1.23   thorpej static struct pool	*drainpp;
    118       1.23   thorpej 
    119      1.134        ad /* This lock protects both pool_head and drainpp. */
    120      1.134        ad static kmutex_t pool_head_lock;
    121      1.134        ad static kcondvar_t pool_busy;
    122        1.3        pk 
    123      1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    124      1.178      elad static kmutex_t pool_allocator_lock;
    125      1.178      elad 
    126      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    127      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    128      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    129       1.99      yamt 
    130        1.3        pk struct pool_item_header {
    131        1.3        pk 	/* Page headers */
    132       1.88       chs 	LIST_ENTRY(pool_item_header)
    133        1.3        pk 				ph_pagelist;	/* pool page list */
    134       1.88       chs 	SPLAY_ENTRY(pool_item_header)
    135       1.88       chs 				ph_node;	/* Off-page page headers */
    136      1.128  christos 	void *			ph_page;	/* this page's address */
    137      1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    138      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    139      1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    140       1.97      yamt 	union {
    141       1.97      yamt 		/* !PR_NOTOUCH */
    142       1.97      yamt 		struct {
    143      1.102       chs 			LIST_HEAD(, pool_item)
    144       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    145       1.97      yamt 		} phu_normal;
    146       1.97      yamt 		/* PR_NOTOUCH */
    147       1.97      yamt 		struct {
    148      1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    149       1.97      yamt 		} phu_notouch;
    150       1.97      yamt 	} ph_u;
    151        1.3        pk };
    152       1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    153      1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    154        1.3        pk 
    155        1.1        pk struct pool_item {
    156        1.3        pk #ifdef DIAGNOSTIC
    157       1.82   thorpej 	u_int pi_magic;
    158       1.33       chs #endif
    159      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    160        1.3        pk 	/* Other entries use only this list entry */
    161      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    162        1.3        pk };
    163        1.3        pk 
    164       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    165       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    166       1.53   thorpej 
    167       1.43   thorpej /*
    168       1.43   thorpej  * Pool cache management.
    169       1.43   thorpej  *
    170       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    171       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    172       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    173       1.43   thorpej  * necessary.
    174       1.43   thorpej  *
    175      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    176      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    177      1.134        ad  * object from the pool, it calls the object's constructor and places it
    178      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    179      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    180      1.134        ad  * to persist in constructed form while freed to the cache.
    181      1.134        ad  *
    182      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    183      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    184      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    185      1.134        ad  * its entirety.
    186       1.43   thorpej  *
    187       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    188       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    189       1.43   thorpej  * from it.
    190       1.43   thorpej  */
    191       1.43   thorpej 
    192      1.142        ad static struct pool pcg_normal_pool;
    193      1.142        ad static struct pool pcg_large_pool;
    194      1.134        ad static struct pool cache_pool;
    195      1.134        ad static struct pool cache_cpu_pool;
    196        1.3        pk 
    197      1.189     pooka pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    198      1.189     pooka 
    199      1.145        ad /* List of all caches. */
    200      1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    201      1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    202      1.145        ad 
    203      1.162        ad int pool_cache_disable;		/* global disable for caching */
    204      1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    205      1.145        ad 
    206      1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    207      1.162        ad 				    void *);
    208      1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    209      1.162        ad 				    void **, paddr_t *, int);
    210      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    211      1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    212      1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    213      1.196       jym static void	pool_cache_transfer(pool_cache_t);
    214        1.3        pk 
    215       1.42   thorpej static int	pool_catchup(struct pool *);
    216      1.128  christos static void	pool_prime_page(struct pool *, void *,
    217       1.55   thorpej 		    struct pool_item_header *);
    218       1.88       chs static void	pool_update_curpage(struct pool *);
    219       1.66   thorpej 
    220      1.113      yamt static int	pool_grow(struct pool *, int);
    221      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    222      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    223        1.3        pk 
    224       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    225      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    226       1.42   thorpej static void pool_print1(struct pool *, const char *,
    227      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    228        1.3        pk 
    229       1.88       chs static int pool_chk_page(struct pool *, const char *,
    230       1.88       chs 			 struct pool_item_header *);
    231       1.88       chs 
    232      1.135      yamt static inline unsigned int
    233       1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    234       1.97      yamt     const void *v)
    235       1.97      yamt {
    236       1.97      yamt 	const char *cp = v;
    237      1.135      yamt 	unsigned int idx;
    238       1.97      yamt 
    239       1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    240      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    241       1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    242       1.97      yamt 	return idx;
    243       1.97      yamt }
    244       1.97      yamt 
    245      1.110     perry static inline void
    246       1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    247       1.97      yamt     void *obj)
    248       1.97      yamt {
    249      1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    250      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    251      1.135      yamt 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    252       1.97      yamt 
    253      1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    254      1.135      yamt 	*bitmap |= mask;
    255       1.97      yamt }
    256       1.97      yamt 
    257      1.110     perry static inline void *
    258       1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    259       1.97      yamt {
    260      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    261      1.135      yamt 	unsigned int idx;
    262      1.135      yamt 	int i;
    263       1.97      yamt 
    264      1.135      yamt 	for (i = 0; ; i++) {
    265      1.135      yamt 		int bit;
    266       1.97      yamt 
    267      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    268      1.135      yamt 		bit = ffs32(bitmap[i]);
    269      1.135      yamt 		if (bit) {
    270      1.135      yamt 			pool_item_bitmap_t mask;
    271      1.135      yamt 
    272      1.135      yamt 			bit--;
    273      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    274      1.135      yamt 			mask = 1 << bit;
    275      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    276      1.135      yamt 			bitmap[i] &= ~mask;
    277      1.135      yamt 			break;
    278      1.135      yamt 		}
    279      1.135      yamt 	}
    280      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    281      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    282       1.97      yamt }
    283       1.97      yamt 
    284      1.135      yamt static inline void
    285      1.141      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    286      1.135      yamt {
    287      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    288      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    289      1.135      yamt 	int i;
    290      1.135      yamt 
    291      1.135      yamt 	for (i = 0; i < n; i++) {
    292      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    293      1.135      yamt 	}
    294      1.135      yamt }
    295      1.135      yamt 
    296      1.110     perry static inline int
    297       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    298       1.88       chs {
    299      1.121      yamt 
    300      1.121      yamt 	/*
    301      1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    302      1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    303      1.121      yamt 	 */
    304      1.121      yamt 
    305       1.88       chs 	if (a->ph_page < b->ph_page)
    306      1.121      yamt 		return (1);
    307      1.121      yamt 	else if (a->ph_page > b->ph_page)
    308       1.88       chs 		return (-1);
    309       1.88       chs 	else
    310       1.88       chs 		return (0);
    311       1.88       chs }
    312       1.88       chs 
    313       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    314       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    315       1.88       chs 
    316      1.141      yamt static inline struct pool_item_header *
    317      1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    318      1.141      yamt {
    319      1.141      yamt 	struct pool_item_header *ph, tmp;
    320      1.141      yamt 
    321      1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    322      1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    323      1.141      yamt 	if (ph == NULL) {
    324      1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    325      1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    326      1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    327      1.141      yamt 		}
    328      1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    329      1.141      yamt 	}
    330      1.141      yamt 
    331      1.141      yamt 	return ph;
    332      1.141      yamt }
    333      1.141      yamt 
    334        1.3        pk /*
    335      1.121      yamt  * Return the pool page header based on item address.
    336        1.3        pk  */
    337      1.110     perry static inline struct pool_item_header *
    338      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    339        1.3        pk {
    340       1.88       chs 	struct pool_item_header *ph, tmp;
    341        1.3        pk 
    342      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    343      1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    344      1.121      yamt 	} else {
    345      1.128  christos 		void *page =
    346      1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    347      1.121      yamt 
    348      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    349      1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    350      1.121      yamt 		} else {
    351      1.121      yamt 			tmp.ph_page = page;
    352      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    353      1.121      yamt 		}
    354      1.121      yamt 	}
    355        1.3        pk 
    356      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    357      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    358      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    359       1.88       chs 	return ph;
    360        1.3        pk }
    361        1.3        pk 
    362      1.101   thorpej static void
    363      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    364      1.101   thorpej {
    365      1.101   thorpej 	struct pool_item_header *ph;
    366      1.101   thorpej 
    367      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    368      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    369      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    370      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    371      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    372      1.101   thorpej 	}
    373      1.101   thorpej }
    374      1.101   thorpej 
    375        1.3        pk /*
    376        1.3        pk  * Remove a page from the pool.
    377        1.3        pk  */
    378      1.110     perry static inline void
    379       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    380       1.61       chs      struct pool_pagelist *pq)
    381        1.3        pk {
    382        1.3        pk 
    383      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    384       1.91      yamt 
    385        1.3        pk 	/*
    386        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    387        1.3        pk 	 */
    388        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    389  1.203.4.3     skrll 		KASSERT(pp->pr_nidle != 0);
    390  1.203.4.3     skrll 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    391  1.203.4.3     skrll 		    "nitems=%u < itemsperpage=%u",
    392  1.203.4.3     skrll 		    pp->pr_nitems, pp->pr_itemsperpage);
    393        1.6   thorpej 		pp->pr_nidle--;
    394        1.6   thorpej 	}
    395        1.7   thorpej 
    396       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    397       1.20   thorpej 
    398        1.7   thorpej 	/*
    399      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    400        1.7   thorpej 	 */
    401       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    402       1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    403       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    404      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    405      1.101   thorpej 
    406        1.7   thorpej 	pp->pr_npages--;
    407        1.7   thorpej 	pp->pr_npagefree++;
    408        1.6   thorpej 
    409       1.88       chs 	pool_update_curpage(pp);
    410        1.3        pk }
    411        1.3        pk 
    412        1.3        pk /*
    413       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    414       1.94    simonb  */
    415       1.94    simonb void
    416      1.117      yamt pool_subsystem_init(void)
    417       1.94    simonb {
    418      1.192     rmind 	size_t size;
    419      1.191      para 	int idx;
    420       1.94    simonb 
    421      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    422      1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    423      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    424      1.134        ad 
    425      1.191      para 	/*
    426      1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    427      1.191      para 	 * haven't done so yet.
    428      1.191      para 	 */
    429      1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    430      1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    431      1.191      para 		int nelem;
    432      1.191      para 		size_t sz;
    433      1.191      para 
    434      1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    435      1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    436      1.191      para 		    "phpool-%d", nelem);
    437      1.191      para 		sz = sizeof(struct pool_item_header);
    438      1.191      para 		if (nelem) {
    439      1.191      para 			sz = offsetof(struct pool_item_header,
    440      1.191      para 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    441      1.191      para 		}
    442      1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    443      1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    444      1.117      yamt 	}
    445      1.191      para #ifdef POOL_SUBPAGE
    446      1.191      para 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    447      1.191      para 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    448      1.191      para #endif
    449      1.191      para 
    450      1.191      para 	size = sizeof(pcg_t) +
    451      1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    452      1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    453      1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    454      1.191      para 
    455      1.191      para 	size = sizeof(pcg_t) +
    456      1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    457      1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    458      1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    459      1.134        ad 
    460      1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    461      1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    462      1.134        ad 
    463      1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    464      1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    465       1.94    simonb }
    466       1.94    simonb 
    467       1.94    simonb /*
    468        1.3        pk  * Initialize the given pool resource structure.
    469        1.3        pk  *
    470        1.3        pk  * We export this routine to allow other kernel parts to declare
    471      1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    472        1.3        pk  */
    473        1.3        pk void
    474       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    475      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    476        1.3        pk {
    477      1.116    simonb 	struct pool *pp1;
    478  1.203.4.1     skrll 	size_t trysize, phsize, prsize;
    479      1.134        ad 	int off, slack;
    480        1.3        pk 
    481      1.116    simonb #ifdef DEBUG
    482      1.198  christos 	if (__predict_true(!cold))
    483      1.198  christos 		mutex_enter(&pool_head_lock);
    484      1.116    simonb 	/*
    485      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    486      1.116    simonb 	 * added to the list of all pools.
    487      1.116    simonb 	 */
    488      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    489      1.116    simonb 		if (pp == pp1)
    490      1.116    simonb 			panic("pool_init: pool %s already initialised",
    491      1.116    simonb 			    wchan);
    492      1.116    simonb 	}
    493      1.198  christos 	if (__predict_true(!cold))
    494      1.198  christos 		mutex_exit(&pool_head_lock);
    495      1.116    simonb #endif
    496      1.116    simonb 
    497       1.66   thorpej 	if (palloc == NULL)
    498       1.66   thorpej 		palloc = &pool_allocator_kmem;
    499      1.112     bjh21 #ifdef POOL_SUBPAGE
    500      1.112     bjh21 	if (size > palloc->pa_pagesz) {
    501      1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    502      1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    503      1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    504      1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    505      1.112     bjh21 	}
    506       1.66   thorpej #endif /* POOL_SUBPAGE */
    507      1.180   mlelstv 	if (!cold)
    508      1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    509      1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    510      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    511       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    512       1.66   thorpej 
    513       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    514       1.66   thorpej 
    515      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    516       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    517       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    518        1.4   thorpej 	}
    519      1.180   mlelstv 	if (!cold)
    520      1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    521        1.3        pk 
    522        1.3        pk 	if (align == 0)
    523        1.3        pk 		align = ALIGN(1);
    524       1.14   thorpej 
    525  1.203.4.1     skrll 	prsize = size;
    526  1.203.4.1     skrll 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    527  1.203.4.1     skrll 		prsize = sizeof(struct pool_item);
    528        1.3        pk 
    529  1.203.4.1     skrll 	prsize = roundup(prsize, align);
    530  1.203.4.3     skrll 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    531  1.203.4.3     skrll 	    "pool_init: pool item size (%zu) larger than page size (%u)",
    532  1.203.4.3     skrll 	    prsize, palloc->pa_pagesz);
    533       1.35        pk 
    534        1.3        pk 	/*
    535        1.3        pk 	 * Initialize the pool structure.
    536        1.3        pk 	 */
    537       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    538       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    539       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    540      1.134        ad 	pp->pr_cache = NULL;
    541        1.3        pk 	pp->pr_curpage = NULL;
    542        1.3        pk 	pp->pr_npages = 0;
    543        1.3        pk 	pp->pr_minitems = 0;
    544        1.3        pk 	pp->pr_minpages = 0;
    545        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    546       1.20   thorpej 	pp->pr_roflags = flags;
    547       1.20   thorpej 	pp->pr_flags = 0;
    548  1.203.4.1     skrll 	pp->pr_size = prsize;
    549        1.3        pk 	pp->pr_align = align;
    550        1.3        pk 	pp->pr_wchan = wchan;
    551       1.66   thorpej 	pp->pr_alloc = palloc;
    552       1.20   thorpej 	pp->pr_nitems = 0;
    553       1.20   thorpej 	pp->pr_nout = 0;
    554       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    555       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    556       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    557       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    558       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    559       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    560       1.68   thorpej 	pp->pr_drain_hook = NULL;
    561       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    562      1.125        ad 	pp->pr_freecheck = NULL;
    563  1.203.4.1     skrll 	pool_redzone_init(pp, size);
    564        1.3        pk 
    565        1.3        pk 	/*
    566        1.3        pk 	 * Decide whether to put the page header off page to avoid
    567       1.92     enami 	 * wasting too large a part of the page or too big item.
    568       1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    569       1.92     enami 	 * a returned item with its header based on the page address.
    570       1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    571       1.92     enami 	 * size as the threshold (XXX: tune)
    572       1.92     enami 	 *
    573       1.92     enami 	 * However, we'll put the header into the page if we can put
    574       1.92     enami 	 * it without wasting any items.
    575       1.92     enami 	 *
    576       1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    577        1.3        pk 	 */
    578       1.92     enami 	pp->pr_itemoffset = ioff %= align;
    579       1.92     enami 	/* See the comment below about reserved bytes. */
    580       1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    581       1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    582      1.201      para 	if (pp->pr_roflags & PR_PHINPAGE ||
    583      1.201      para 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    584       1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    585      1.201      para 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    586        1.3        pk 		/* Use the end of the page for the page header */
    587       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    588       1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    589        1.2        pk 	} else {
    590        1.3        pk 		/* The page header will be taken from our page header pool */
    591        1.3        pk 		pp->pr_phoffset = 0;
    592       1.66   thorpej 		off = palloc->pa_pagesz;
    593       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    594        1.2        pk 	}
    595        1.1        pk 
    596        1.3        pk 	/*
    597        1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    598        1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    599        1.3        pk 	 * appropriate positioning of each item.
    600        1.3        pk 	 */
    601        1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    602       1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    603       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    604       1.97      yamt 		int idx;
    605       1.97      yamt 
    606       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    607       1.97      yamt 		    idx++) {
    608       1.97      yamt 			/* nothing */
    609       1.97      yamt 		}
    610       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    611       1.97      yamt 			/*
    612       1.97      yamt 			 * if you see this panic, consider to tweak
    613       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    614       1.97      yamt 			 */
    615       1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    616       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    617       1.97      yamt 		}
    618       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    619       1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    620       1.97      yamt 		pp->pr_phpool = &phpool[0];
    621       1.97      yamt 	}
    622       1.97      yamt #if defined(DIAGNOSTIC)
    623       1.97      yamt 	else {
    624       1.97      yamt 		pp->pr_phpool = NULL;
    625       1.97      yamt 	}
    626       1.97      yamt #endif
    627        1.3        pk 
    628        1.3        pk 	/*
    629        1.3        pk 	 * Use the slack between the chunks and the page header
    630        1.3        pk 	 * for "cache coloring".
    631        1.3        pk 	 */
    632        1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    633        1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    634        1.3        pk 	pp->pr_curcolor = 0;
    635        1.3        pk 
    636        1.3        pk 	pp->pr_nget = 0;
    637        1.3        pk 	pp->pr_nfail = 0;
    638        1.3        pk 	pp->pr_nput = 0;
    639        1.3        pk 	pp->pr_npagealloc = 0;
    640        1.3        pk 	pp->pr_npagefree = 0;
    641        1.1        pk 	pp->pr_hiwat = 0;
    642        1.8   thorpej 	pp->pr_nidle = 0;
    643      1.134        ad 	pp->pr_refcnt = 0;
    644        1.3        pk 
    645      1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    646      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    647      1.134        ad 	pp->pr_ipl = ipl;
    648        1.1        pk 
    649      1.145        ad 	/* Insert into the list of all pools. */
    650      1.181   mlelstv 	if (!cold)
    651      1.134        ad 		mutex_enter(&pool_head_lock);
    652      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    653      1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    654      1.145        ad 			break;
    655      1.145        ad 	}
    656      1.145        ad 	if (pp1 == NULL)
    657      1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    658      1.145        ad 	else
    659      1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    660      1.181   mlelstv 	if (!cold)
    661      1.134        ad 		mutex_exit(&pool_head_lock);
    662      1.134        ad 
    663      1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    664      1.181   mlelstv 	if (!cold)
    665      1.134        ad 		mutex_enter(&palloc->pa_lock);
    666      1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    667      1.181   mlelstv 	if (!cold)
    668      1.134        ad 		mutex_exit(&palloc->pa_lock);
    669        1.1        pk }
    670        1.1        pk 
    671        1.1        pk /*
    672        1.1        pk  * De-commision a pool resource.
    673        1.1        pk  */
    674        1.1        pk void
    675       1.42   thorpej pool_destroy(struct pool *pp)
    676        1.1        pk {
    677      1.101   thorpej 	struct pool_pagelist pq;
    678        1.3        pk 	struct pool_item_header *ph;
    679       1.43   thorpej 
    680      1.101   thorpej 	/* Remove from global pool list */
    681      1.134        ad 	mutex_enter(&pool_head_lock);
    682      1.134        ad 	while (pp->pr_refcnt != 0)
    683      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    684      1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    685      1.101   thorpej 	if (drainpp == pp)
    686      1.101   thorpej 		drainpp = NULL;
    687      1.134        ad 	mutex_exit(&pool_head_lock);
    688      1.101   thorpej 
    689      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    690      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    691       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    692      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    693       1.66   thorpej 
    694      1.178      elad 	mutex_enter(&pool_allocator_lock);
    695      1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    696      1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    697      1.178      elad 	mutex_exit(&pool_allocator_lock);
    698      1.178      elad 
    699      1.134        ad 	mutex_enter(&pp->pr_lock);
    700      1.101   thorpej 
    701      1.134        ad 	KASSERT(pp->pr_cache == NULL);
    702  1.203.4.3     skrll 	KASSERTMSG((pp->pr_nout == 0),
    703  1.203.4.3     skrll 	    "pool_destroy: pool busy: still out: %u", pp->pr_nout);
    704      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    705      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    706      1.101   thorpej 
    707        1.3        pk 	/* Remove all pages */
    708      1.101   thorpej 	LIST_INIT(&pq);
    709       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    710      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    711      1.101   thorpej 
    712      1.134        ad 	mutex_exit(&pp->pr_lock);
    713        1.3        pk 
    714      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    715      1.134        ad 	cv_destroy(&pp->pr_cv);
    716      1.134        ad 	mutex_destroy(&pp->pr_lock);
    717        1.1        pk }
    718        1.1        pk 
    719       1.68   thorpej void
    720       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    721       1.68   thorpej {
    722       1.68   thorpej 
    723       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    724  1.203.4.3     skrll 	KASSERTMSG((pp->pr_drain_hook == NULL),
    725  1.203.4.3     skrll 	    "pool_set_drain_hook(%s): already set", pp->pr_wchan);
    726       1.68   thorpej 	pp->pr_drain_hook = fn;
    727       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    728       1.68   thorpej }
    729       1.68   thorpej 
    730       1.88       chs static struct pool_item_header *
    731      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    732       1.55   thorpej {
    733       1.55   thorpej 	struct pool_item_header *ph;
    734       1.55   thorpej 
    735       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    736      1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    737      1.134        ad 	else
    738       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    739       1.55   thorpej 
    740       1.55   thorpej 	return (ph);
    741       1.55   thorpej }
    742        1.1        pk 
    743        1.1        pk /*
    744      1.134        ad  * Grab an item from the pool.
    745        1.1        pk  */
    746        1.3        pk void *
    747       1.56  sommerfe pool_get(struct pool *pp, int flags)
    748        1.1        pk {
    749        1.1        pk 	struct pool_item *pi;
    750        1.3        pk 	struct pool_item_header *ph;
    751       1.55   thorpej 	void *v;
    752        1.1        pk 
    753  1.203.4.3     skrll 	KASSERTMSG((pp->pr_itemsperpage != 0),
    754  1.203.4.3     skrll 	    "pool_get: pool '%s': pr_itemsperpage is zero, "
    755  1.203.4.3     skrll 	    "pool not initialized?", pp->pr_wchan);
    756  1.203.4.3     skrll 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    757  1.203.4.3     skrll 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    758  1.203.4.3     skrll 	    "pool '%s' is IPL_NONE, but called from interrupt context",
    759  1.203.4.3     skrll 	    pp->pr_wchan);
    760      1.155        ad 	if (flags & PR_WAITOK) {
    761      1.154      yamt 		ASSERT_SLEEPABLE();
    762      1.155        ad 	}
    763        1.1        pk 
    764      1.134        ad 	mutex_enter(&pp->pr_lock);
    765       1.20   thorpej  startover:
    766       1.20   thorpej 	/*
    767       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    768       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    769       1.20   thorpej 	 * the pool.
    770       1.20   thorpej 	 */
    771  1.203.4.3     skrll 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    772  1.203.4.3     skrll 	    "pool_get: %s: crossed hard limit", pp->pr_wchan);
    773       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    774       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    775       1.68   thorpej 			/*
    776       1.68   thorpej 			 * Since the drain hook is going to free things
    777       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    778       1.68   thorpej 			 * and check the hardlimit condition again.
    779       1.68   thorpej 			 */
    780      1.134        ad 			mutex_exit(&pp->pr_lock);
    781       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    782      1.134        ad 			mutex_enter(&pp->pr_lock);
    783       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    784       1.68   thorpej 				goto startover;
    785       1.68   thorpej 		}
    786       1.68   thorpej 
    787       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    788       1.20   thorpej 			/*
    789       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
    790       1.20   thorpej 			 * it be?
    791       1.20   thorpej 			 */
    792       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
    793      1.134        ad 			cv_wait(&pp->pr_cv, &pp->pr_lock);
    794       1.20   thorpej 			goto startover;
    795       1.20   thorpej 		}
    796       1.31   thorpej 
    797       1.31   thorpej 		/*
    798       1.31   thorpej 		 * Log a message that the hard limit has been hit.
    799       1.31   thorpej 		 */
    800       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
    801       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
    802       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
    803       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    804       1.21   thorpej 
    805       1.21   thorpej 		pp->pr_nfail++;
    806       1.21   thorpej 
    807      1.134        ad 		mutex_exit(&pp->pr_lock);
    808       1.20   thorpej 		return (NULL);
    809       1.20   thorpej 	}
    810       1.20   thorpej 
    811        1.3        pk 	/*
    812        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
    813        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
    814        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
    815        1.3        pk 	 * has no items in its bucket.
    816        1.3        pk 	 */
    817       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
    818      1.113      yamt 		int error;
    819      1.113      yamt 
    820  1.203.4.3     skrll 		KASSERTMSG((pp->pr_nitems == 0),
    821  1.203.4.3     skrll 		    "pool_get: nitems inconsistent"
    822  1.203.4.3     skrll 		    ": %s: curpage NULL, nitems %u",
    823  1.203.4.3     skrll 		    pp->pr_wchan, pp->pr_nitems);
    824       1.20   thorpej 
    825       1.21   thorpej 		/*
    826       1.21   thorpej 		 * Call the back-end page allocator for more memory.
    827       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
    828       1.21   thorpej 		 * may block.
    829       1.21   thorpej 		 */
    830      1.113      yamt 		error = pool_grow(pp, flags);
    831      1.113      yamt 		if (error != 0) {
    832       1.21   thorpej 			/*
    833       1.55   thorpej 			 * We were unable to allocate a page or item
    834       1.55   thorpej 			 * header, but we released the lock during
    835       1.55   thorpej 			 * allocation, so perhaps items were freed
    836       1.55   thorpej 			 * back to the pool.  Check for this case.
    837       1.21   thorpej 			 */
    838       1.21   thorpej 			if (pp->pr_curpage != NULL)
    839       1.21   thorpej 				goto startover;
    840       1.15        pk 
    841      1.117      yamt 			pp->pr_nfail++;
    842      1.134        ad 			mutex_exit(&pp->pr_lock);
    843      1.117      yamt 			return (NULL);
    844        1.1        pk 		}
    845        1.3        pk 
    846       1.20   thorpej 		/* Start the allocation process over. */
    847       1.20   thorpej 		goto startover;
    848        1.3        pk 	}
    849       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
    850  1.203.4.3     skrll 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
    851  1.203.4.3     skrll 		    "pool_get: %s: page empty", pp->pr_wchan);
    852       1.97      yamt 		v = pr_item_notouch_get(pp, ph);
    853       1.97      yamt 	} else {
    854      1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    855       1.97      yamt 		if (__predict_false(v == NULL)) {
    856      1.134        ad 			mutex_exit(&pp->pr_lock);
    857       1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
    858       1.97      yamt 		}
    859  1.203.4.3     skrll 		KASSERTMSG((pp->pr_nitems > 0),
    860  1.203.4.3     skrll 		    "pool_get: nitems inconsistent"
    861  1.203.4.3     skrll 		    ": %s: items on itemlist, nitems %u",
    862  1.203.4.3     skrll 		    pp->pr_wchan, pp->pr_nitems);
    863  1.203.4.3     skrll 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
    864  1.203.4.3     skrll 		    "pool_get(%s): free list modified: "
    865  1.203.4.3     skrll 		    "magic=%x; page %p; item addr %p",
    866  1.203.4.3     skrll 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    867        1.3        pk 
    868       1.97      yamt 		/*
    869       1.97      yamt 		 * Remove from item list.
    870       1.97      yamt 		 */
    871      1.102       chs 		LIST_REMOVE(pi, pi_list);
    872       1.97      yamt 	}
    873       1.20   thorpej 	pp->pr_nitems--;
    874       1.20   thorpej 	pp->pr_nout++;
    875        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    876  1.203.4.3     skrll 		KASSERT(pp->pr_nidle > 0);
    877        1.6   thorpej 		pp->pr_nidle--;
    878       1.88       chs 
    879       1.88       chs 		/*
    880       1.88       chs 		 * This page was previously empty.  Move it to the list of
    881       1.88       chs 		 * partially-full pages.  This page is already curpage.
    882       1.88       chs 		 */
    883       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
    884       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    885        1.6   thorpej 	}
    886        1.3        pk 	ph->ph_nmissing++;
    887       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    888  1.203.4.3     skrll 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
    889  1.203.4.3     skrll 			LIST_EMPTY(&ph->ph_itemlist)),
    890  1.203.4.3     skrll 		    "pool_get: %s: nmissing inconsistent", pp->pr_wchan);
    891        1.3        pk 		/*
    892       1.88       chs 		 * This page is now full.  Move it to the full list
    893       1.88       chs 		 * and select a new current page.
    894        1.3        pk 		 */
    895       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
    896       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    897       1.88       chs 		pool_update_curpage(pp);
    898        1.1        pk 	}
    899        1.3        pk 
    900        1.3        pk 	pp->pr_nget++;
    901       1.20   thorpej 
    902       1.20   thorpej 	/*
    903       1.20   thorpej 	 * If we have a low water mark and we are now below that low
    904       1.20   thorpej 	 * water mark, add more items to the pool.
    905       1.20   thorpej 	 */
    906       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    907       1.20   thorpej 		/*
    908       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
    909       1.20   thorpej 		 * to try again in a second or so?  The latter could break
    910       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
    911       1.20   thorpej 		 */
    912       1.20   thorpej 	}
    913       1.20   thorpej 
    914      1.134        ad 	mutex_exit(&pp->pr_lock);
    915      1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    916      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
    917  1.203.4.1     skrll 	pool_redzone_fill(pp, v);
    918        1.1        pk 	return (v);
    919        1.1        pk }
    920        1.1        pk 
    921        1.1        pk /*
    922       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
    923        1.1        pk  */
    924       1.43   thorpej static void
    925      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    926        1.1        pk {
    927        1.1        pk 	struct pool_item *pi = v;
    928        1.3        pk 	struct pool_item_header *ph;
    929        1.3        pk 
    930      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    931  1.203.4.1     skrll 	pool_redzone_check(pp, v);
    932      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
    933      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    934       1.61       chs 
    935  1.203.4.3     skrll 	KASSERTMSG((pp->pr_nout > 0),
    936  1.203.4.3     skrll 	    "pool_put: pool %s: putting with none out", pp->pr_wchan);
    937        1.3        pk 
    938      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    939        1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    940        1.3        pk 	}
    941       1.28   thorpej 
    942        1.3        pk 	/*
    943        1.3        pk 	 * Return to item list.
    944        1.3        pk 	 */
    945       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
    946       1.97      yamt 		pr_item_notouch_put(pp, ph, v);
    947       1.97      yamt 	} else {
    948        1.2        pk #ifdef DIAGNOSTIC
    949       1.97      yamt 		pi->pi_magic = PI_MAGIC;
    950        1.3        pk #endif
    951       1.32       chs #ifdef DEBUG
    952       1.97      yamt 		{
    953       1.97      yamt 			int i, *ip = v;
    954       1.32       chs 
    955       1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    956       1.97      yamt 				*ip++ = PI_MAGIC;
    957       1.97      yamt 			}
    958       1.32       chs 		}
    959       1.32       chs #endif
    960       1.32       chs 
    961      1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    962       1.97      yamt 	}
    963       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
    964        1.3        pk 	ph->ph_nmissing--;
    965        1.3        pk 	pp->pr_nput++;
    966       1.20   thorpej 	pp->pr_nitems++;
    967       1.20   thorpej 	pp->pr_nout--;
    968        1.3        pk 
    969        1.3        pk 	/* Cancel "pool empty" condition if it exists */
    970        1.3        pk 	if (pp->pr_curpage == NULL)
    971        1.3        pk 		pp->pr_curpage = ph;
    972        1.3        pk 
    973        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
    974        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
    975      1.134        ad 		cv_broadcast(&pp->pr_cv);
    976        1.3        pk 	}
    977        1.3        pk 
    978        1.3        pk 	/*
    979       1.88       chs 	 * If this page is now empty, do one of two things:
    980       1.21   thorpej 	 *
    981       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
    982       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
    983       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
    984       1.90   thorpej 	 *	    CLAIM.
    985       1.21   thorpej 	 *
    986       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
    987       1.88       chs 	 *
    988       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
    989       1.88       chs 	 * page if one is available).
    990        1.3        pk 	 */
    991        1.3        pk 	if (ph->ph_nmissing == 0) {
    992        1.6   thorpej 		pp->pr_nidle++;
    993       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
    994      1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
    995      1.101   thorpej 			pr_rmpage(pp, ph, pq);
    996        1.3        pk 		} else {
    997       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
    998       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
    999        1.3        pk 
   1000       1.21   thorpej 			/*
   1001       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1002       1.21   thorpej 			 * be idle for some period of time before it can
   1003       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1004       1.21   thorpej 			 * ping-pong'ing for memory.
   1005      1.151      yamt 			 *
   1006      1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1007      1.151      yamt 			 * a problem for our usage.
   1008       1.21   thorpej 			 */
   1009      1.151      yamt 			ph->ph_time = time_uptime;
   1010        1.1        pk 		}
   1011       1.88       chs 		pool_update_curpage(pp);
   1012        1.1        pk 	}
   1013       1.88       chs 
   1014       1.21   thorpej 	/*
   1015       1.88       chs 	 * If the page was previously completely full, move it to the
   1016       1.88       chs 	 * partially-full list and make it the current page.  The next
   1017       1.88       chs 	 * allocation will get the item from this page, instead of
   1018       1.88       chs 	 * further fragmenting the pool.
   1019       1.21   thorpej 	 */
   1020       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1021       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1022       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1023       1.21   thorpej 		pp->pr_curpage = ph;
   1024       1.21   thorpej 	}
   1025       1.43   thorpej }
   1026       1.43   thorpej 
   1027       1.56  sommerfe void
   1028       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1029       1.56  sommerfe {
   1030      1.101   thorpej 	struct pool_pagelist pq;
   1031      1.101   thorpej 
   1032      1.101   thorpej 	LIST_INIT(&pq);
   1033       1.56  sommerfe 
   1034      1.134        ad 	mutex_enter(&pp->pr_lock);
   1035      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1036      1.134        ad 	mutex_exit(&pp->pr_lock);
   1037       1.56  sommerfe 
   1038      1.102       chs 	pr_pagelist_free(pp, &pq);
   1039       1.56  sommerfe }
   1040       1.57  sommerfe 
   1041       1.74   thorpej /*
   1042      1.113      yamt  * pool_grow: grow a pool by a page.
   1043      1.113      yamt  *
   1044      1.113      yamt  * => called with pool locked.
   1045      1.113      yamt  * => unlock and relock the pool.
   1046      1.113      yamt  * => return with pool locked.
   1047      1.113      yamt  */
   1048      1.113      yamt 
   1049      1.113      yamt static int
   1050      1.113      yamt pool_grow(struct pool *pp, int flags)
   1051      1.113      yamt {
   1052      1.113      yamt 	struct pool_item_header *ph = NULL;
   1053      1.113      yamt 	char *cp;
   1054      1.113      yamt 
   1055      1.134        ad 	mutex_exit(&pp->pr_lock);
   1056      1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1057      1.113      yamt 	if (__predict_true(cp != NULL)) {
   1058      1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1059      1.113      yamt 	}
   1060      1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1061      1.113      yamt 		if (cp != NULL) {
   1062      1.113      yamt 			pool_allocator_free(pp, cp);
   1063      1.113      yamt 		}
   1064      1.134        ad 		mutex_enter(&pp->pr_lock);
   1065      1.113      yamt 		return ENOMEM;
   1066      1.113      yamt 	}
   1067      1.113      yamt 
   1068      1.134        ad 	mutex_enter(&pp->pr_lock);
   1069      1.113      yamt 	pool_prime_page(pp, cp, ph);
   1070      1.113      yamt 	pp->pr_npagealloc++;
   1071      1.113      yamt 	return 0;
   1072      1.113      yamt }
   1073      1.113      yamt 
   1074      1.113      yamt /*
   1075       1.74   thorpej  * Add N items to the pool.
   1076       1.74   thorpej  */
   1077       1.74   thorpej int
   1078       1.74   thorpej pool_prime(struct pool *pp, int n)
   1079       1.74   thorpej {
   1080       1.75    simonb 	int newpages;
   1081      1.113      yamt 	int error = 0;
   1082       1.74   thorpej 
   1083      1.134        ad 	mutex_enter(&pp->pr_lock);
   1084       1.74   thorpej 
   1085       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1086       1.74   thorpej 
   1087       1.74   thorpej 	while (newpages-- > 0) {
   1088      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1089      1.113      yamt 		if (error) {
   1090       1.74   thorpej 			break;
   1091       1.74   thorpej 		}
   1092       1.74   thorpej 		pp->pr_minpages++;
   1093       1.74   thorpej 	}
   1094       1.74   thorpej 
   1095       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1096       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1097       1.74   thorpej 
   1098      1.134        ad 	mutex_exit(&pp->pr_lock);
   1099      1.113      yamt 	return error;
   1100       1.74   thorpej }
   1101       1.55   thorpej 
   1102       1.55   thorpej /*
   1103        1.3        pk  * Add a page worth of items to the pool.
   1104       1.21   thorpej  *
   1105       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1106        1.3        pk  */
   1107       1.55   thorpej static void
   1108      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1109        1.3        pk {
   1110        1.3        pk 	struct pool_item *pi;
   1111      1.128  christos 	void *cp = storage;
   1112      1.125        ad 	const unsigned int align = pp->pr_align;
   1113      1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1114       1.55   thorpej 	int n;
   1115       1.36        pk 
   1116      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1117  1.203.4.3     skrll 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1118  1.203.4.3     skrll 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1119  1.203.4.3     skrll 	    "pool_prime_page: %s: unaligned page: %p", pp->pr_wchan, cp);
   1120        1.3        pk 
   1121        1.3        pk 	/*
   1122        1.3        pk 	 * Insert page header.
   1123        1.3        pk 	 */
   1124       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1125      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1126        1.3        pk 	ph->ph_page = storage;
   1127        1.3        pk 	ph->ph_nmissing = 0;
   1128      1.151      yamt 	ph->ph_time = time_uptime;
   1129       1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1130       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1131        1.3        pk 
   1132        1.6   thorpej 	pp->pr_nidle++;
   1133        1.6   thorpej 
   1134        1.3        pk 	/*
   1135        1.3        pk 	 * Color this page.
   1136        1.3        pk 	 */
   1137      1.141      yamt 	ph->ph_off = pp->pr_curcolor;
   1138      1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1139        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1140        1.3        pk 		pp->pr_curcolor = 0;
   1141        1.3        pk 
   1142        1.3        pk 	/*
   1143        1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1144        1.3        pk 	 */
   1145        1.3        pk 	if (ioff != 0)
   1146      1.128  christos 		cp = (char *)cp + align - ioff;
   1147        1.3        pk 
   1148      1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1149      1.125        ad 
   1150        1.3        pk 	/*
   1151        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1152        1.3        pk 	 */
   1153        1.3        pk 	n = pp->pr_itemsperpage;
   1154       1.20   thorpej 	pp->pr_nitems += n;
   1155        1.3        pk 
   1156       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1157      1.141      yamt 		pr_item_notouch_init(pp, ph);
   1158       1.97      yamt 	} else {
   1159       1.97      yamt 		while (n--) {
   1160       1.97      yamt 			pi = (struct pool_item *)cp;
   1161       1.78   thorpej 
   1162       1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1163        1.3        pk 
   1164       1.97      yamt 			/* Insert on page list */
   1165      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1166        1.3        pk #ifdef DIAGNOSTIC
   1167       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1168        1.3        pk #endif
   1169      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1170      1.125        ad 
   1171      1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1172       1.97      yamt 		}
   1173        1.3        pk 	}
   1174        1.3        pk 
   1175        1.3        pk 	/*
   1176        1.3        pk 	 * If the pool was depleted, point at the new page.
   1177        1.3        pk 	 */
   1178        1.3        pk 	if (pp->pr_curpage == NULL)
   1179        1.3        pk 		pp->pr_curpage = ph;
   1180        1.3        pk 
   1181        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1182        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1183        1.3        pk }
   1184        1.3        pk 
   1185       1.20   thorpej /*
   1186       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1187       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1188       1.20   thorpej  *
   1189       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1190       1.20   thorpej  *
   1191       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1192       1.20   thorpej  * with it locked.
   1193       1.20   thorpej  */
   1194       1.20   thorpej static int
   1195       1.42   thorpej pool_catchup(struct pool *pp)
   1196       1.20   thorpej {
   1197       1.20   thorpej 	int error = 0;
   1198       1.20   thorpej 
   1199       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1200      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1201      1.113      yamt 		if (error) {
   1202       1.20   thorpej 			break;
   1203       1.20   thorpej 		}
   1204       1.20   thorpej 	}
   1205      1.113      yamt 	return error;
   1206       1.20   thorpej }
   1207       1.20   thorpej 
   1208       1.88       chs static void
   1209       1.88       chs pool_update_curpage(struct pool *pp)
   1210       1.88       chs {
   1211       1.88       chs 
   1212       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1213       1.88       chs 	if (pp->pr_curpage == NULL) {
   1214       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1215       1.88       chs 	}
   1216      1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1217      1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1218       1.88       chs }
   1219       1.88       chs 
   1220        1.3        pk void
   1221       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1222        1.3        pk {
   1223       1.15        pk 
   1224      1.134        ad 	mutex_enter(&pp->pr_lock);
   1225       1.21   thorpej 
   1226        1.3        pk 	pp->pr_minitems = n;
   1227       1.15        pk 	pp->pr_minpages = (n == 0)
   1228       1.15        pk 		? 0
   1229       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1230       1.20   thorpej 
   1231       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1232       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1233       1.20   thorpej 		/*
   1234       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1235       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1236       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1237       1.20   thorpej 		 */
   1238       1.20   thorpej 	}
   1239       1.21   thorpej 
   1240      1.134        ad 	mutex_exit(&pp->pr_lock);
   1241        1.3        pk }
   1242        1.3        pk 
   1243        1.3        pk void
   1244       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1245        1.3        pk {
   1246       1.15        pk 
   1247      1.134        ad 	mutex_enter(&pp->pr_lock);
   1248       1.21   thorpej 
   1249       1.15        pk 	pp->pr_maxpages = (n == 0)
   1250       1.15        pk 		? 0
   1251       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1252       1.21   thorpej 
   1253      1.134        ad 	mutex_exit(&pp->pr_lock);
   1254        1.3        pk }
   1255        1.3        pk 
   1256       1.20   thorpej void
   1257       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1258       1.20   thorpej {
   1259       1.20   thorpej 
   1260      1.134        ad 	mutex_enter(&pp->pr_lock);
   1261       1.20   thorpej 
   1262       1.20   thorpej 	pp->pr_hardlimit = n;
   1263       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1264       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1265       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1266       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1267       1.20   thorpej 
   1268       1.20   thorpej 	/*
   1269       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1270       1.21   thorpej 	 * release the lock.
   1271       1.20   thorpej 	 */
   1272       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1273       1.20   thorpej 		? 0
   1274       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1275       1.21   thorpej 
   1276      1.134        ad 	mutex_exit(&pp->pr_lock);
   1277       1.20   thorpej }
   1278        1.3        pk 
   1279        1.3        pk /*
   1280        1.3        pk  * Release all complete pages that have not been used recently.
   1281      1.184     rmind  *
   1282      1.197       jym  * Must not be called from interrupt context.
   1283        1.3        pk  */
   1284       1.66   thorpej int
   1285       1.56  sommerfe pool_reclaim(struct pool *pp)
   1286        1.3        pk {
   1287        1.3        pk 	struct pool_item_header *ph, *phnext;
   1288       1.61       chs 	struct pool_pagelist pq;
   1289      1.151      yamt 	uint32_t curtime;
   1290      1.134        ad 	bool klock;
   1291      1.134        ad 	int rv;
   1292        1.3        pk 
   1293      1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1294      1.184     rmind 
   1295       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1296       1.68   thorpej 		/*
   1297       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1298       1.68   thorpej 		 */
   1299       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1300       1.68   thorpej 	}
   1301       1.68   thorpej 
   1302      1.134        ad 	/*
   1303      1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1304      1.157        ad 	 * to block.
   1305      1.134        ad 	 */
   1306      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1307      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1308      1.134        ad 		KERNEL_LOCK(1, NULL);
   1309      1.134        ad 		klock = true;
   1310      1.134        ad 	} else
   1311      1.134        ad 		klock = false;
   1312      1.134        ad 
   1313      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1314      1.134        ad 	if (pp->pr_cache != NULL)
   1315      1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1316      1.134        ad 
   1317      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1318      1.134        ad 		if (klock) {
   1319      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1320      1.134        ad 		}
   1321       1.66   thorpej 		return (0);
   1322      1.134        ad 	}
   1323       1.68   thorpej 
   1324       1.88       chs 	LIST_INIT(&pq);
   1325       1.43   thorpej 
   1326      1.151      yamt 	curtime = time_uptime;
   1327       1.21   thorpej 
   1328       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1329       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1330        1.3        pk 
   1331        1.3        pk 		/* Check our minimum page claim */
   1332        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1333        1.3        pk 			break;
   1334        1.3        pk 
   1335       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1336      1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1337       1.88       chs 			continue;
   1338       1.21   thorpej 
   1339       1.88       chs 		/*
   1340       1.88       chs 		 * If freeing this page would put us below
   1341       1.88       chs 		 * the low water mark, stop now.
   1342       1.88       chs 		 */
   1343       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1344       1.88       chs 		    pp->pr_minitems)
   1345       1.88       chs 			break;
   1346       1.21   thorpej 
   1347       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1348        1.3        pk 	}
   1349        1.3        pk 
   1350      1.134        ad 	mutex_exit(&pp->pr_lock);
   1351      1.134        ad 
   1352      1.134        ad 	if (LIST_EMPTY(&pq))
   1353      1.134        ad 		rv = 0;
   1354      1.134        ad 	else {
   1355      1.134        ad 		pr_pagelist_free(pp, &pq);
   1356      1.134        ad 		rv = 1;
   1357      1.134        ad 	}
   1358      1.134        ad 
   1359      1.134        ad 	if (klock) {
   1360      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1361      1.134        ad 	}
   1362       1.66   thorpej 
   1363      1.134        ad 	return (rv);
   1364        1.3        pk }
   1365        1.3        pk 
   1366        1.3        pk /*
   1367      1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1368      1.131        ad  *
   1369      1.134        ad  * Note, must never be called from interrupt context.
   1370        1.3        pk  */
   1371      1.197       jym bool
   1372      1.197       jym pool_drain(struct pool **ppp)
   1373        1.3        pk {
   1374      1.197       jym 	bool reclaimed;
   1375        1.3        pk 	struct pool *pp;
   1376      1.134        ad 
   1377      1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1378        1.3        pk 
   1379       1.61       chs 	pp = NULL;
   1380      1.134        ad 
   1381      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1382      1.134        ad 	mutex_enter(&pool_head_lock);
   1383      1.134        ad 	do {
   1384      1.134        ad 		if (drainpp == NULL) {
   1385      1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1386      1.134        ad 		}
   1387      1.134        ad 		if (drainpp != NULL) {
   1388      1.134        ad 			pp = drainpp;
   1389      1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1390      1.134        ad 		}
   1391      1.134        ad 		/*
   1392      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1393      1.134        ad 		 * one pool in the system being active.
   1394      1.134        ad 		 */
   1395      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1396      1.134        ad 	pp->pr_refcnt++;
   1397      1.134        ad 	mutex_exit(&pool_head_lock);
   1398      1.134        ad 
   1399      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1400      1.186     pooka 	reclaimed = pool_reclaim(pp);
   1401      1.134        ad 
   1402      1.134        ad 	/* Finally, unlock the pool. */
   1403      1.134        ad 	mutex_enter(&pool_head_lock);
   1404      1.134        ad 	pp->pr_refcnt--;
   1405      1.134        ad 	cv_broadcast(&pool_busy);
   1406      1.134        ad 	mutex_exit(&pool_head_lock);
   1407      1.186     pooka 
   1408      1.197       jym 	if (ppp != NULL)
   1409      1.197       jym 		*ppp = pp;
   1410      1.197       jym 
   1411      1.186     pooka 	return reclaimed;
   1412        1.3        pk }
   1413        1.3        pk 
   1414        1.3        pk /*
   1415        1.3        pk  * Diagnostic helpers.
   1416        1.3        pk  */
   1417       1.21   thorpej 
   1418       1.25   thorpej void
   1419      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1420      1.108      yamt {
   1421      1.108      yamt 	struct pool *pp;
   1422      1.108      yamt 
   1423      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1424      1.108      yamt 		pool_printit(pp, modif, pr);
   1425      1.108      yamt 	}
   1426      1.108      yamt }
   1427      1.108      yamt 
   1428      1.108      yamt void
   1429       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1430       1.25   thorpej {
   1431       1.25   thorpej 
   1432       1.25   thorpej 	if (pp == NULL) {
   1433       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1434       1.25   thorpej 		return;
   1435       1.25   thorpej 	}
   1436       1.25   thorpej 
   1437       1.25   thorpej 	pool_print1(pp, modif, pr);
   1438       1.25   thorpej }
   1439       1.25   thorpej 
   1440       1.21   thorpej static void
   1441      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1442       1.97      yamt     void (*pr)(const char *, ...))
   1443       1.88       chs {
   1444       1.88       chs 	struct pool_item_header *ph;
   1445  1.203.4.3     skrll 	struct pool_item *pi __diagused;
   1446       1.88       chs 
   1447       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1448      1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1449      1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1450       1.88       chs #ifdef DIAGNOSTIC
   1451       1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1452      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1453       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1454       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1455       1.97      yamt 					    pi, pi->pi_magic);
   1456       1.97      yamt 				}
   1457       1.88       chs 			}
   1458       1.88       chs 		}
   1459       1.88       chs #endif
   1460       1.88       chs 	}
   1461       1.88       chs }
   1462       1.88       chs 
   1463       1.88       chs static void
   1464       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1465        1.3        pk {
   1466       1.25   thorpej 	struct pool_item_header *ph;
   1467      1.134        ad 	pool_cache_t pc;
   1468      1.134        ad 	pcg_t *pcg;
   1469      1.134        ad 	pool_cache_cpu_t *cc;
   1470      1.134        ad 	uint64_t cpuhit, cpumiss;
   1471       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1472       1.25   thorpej 	char c;
   1473       1.25   thorpej 
   1474       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1475       1.25   thorpej 		if (c == 'l')
   1476       1.25   thorpej 			print_log = 1;
   1477       1.25   thorpej 		if (c == 'p')
   1478       1.25   thorpej 			print_pagelist = 1;
   1479       1.44   thorpej 		if (c == 'c')
   1480       1.44   thorpej 			print_cache = 1;
   1481       1.25   thorpej 	}
   1482       1.25   thorpej 
   1483      1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1484      1.134        ad 		(*pr)("POOL CACHE");
   1485      1.134        ad 	} else {
   1486      1.134        ad 		(*pr)("POOL");
   1487      1.134        ad 	}
   1488      1.134        ad 
   1489      1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1490       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1491       1.25   thorpej 	    pp->pr_roflags);
   1492       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1493       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1494       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1495       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1496       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1497       1.25   thorpej 
   1498      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1499       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1500       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1501       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1502       1.25   thorpej 
   1503       1.25   thorpej 	if (print_pagelist == 0)
   1504       1.25   thorpej 		goto skip_pagelist;
   1505       1.25   thorpej 
   1506       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1507       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1508       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1509       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1510       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1511       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1512       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1513       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1514       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1515       1.88       chs 
   1516       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1517       1.25   thorpej 		(*pr)("\tno current page\n");
   1518       1.25   thorpej 	else
   1519       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1520       1.25   thorpej 
   1521       1.25   thorpej  skip_pagelist:
   1522       1.25   thorpej 	if (print_log == 0)
   1523       1.25   thorpej 		goto skip_log;
   1524       1.25   thorpej 
   1525       1.25   thorpej 	(*pr)("\n");
   1526        1.3        pk 
   1527       1.25   thorpej  skip_log:
   1528       1.44   thorpej 
   1529      1.102       chs #define PR_GROUPLIST(pcg)						\
   1530      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1531      1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1532      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1533      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1534      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1535      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1536      1.102       chs 			    (unsigned long long)			\
   1537      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1538      1.102       chs 		} else {						\
   1539      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1540      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1541      1.102       chs 		}							\
   1542      1.102       chs 	}
   1543      1.102       chs 
   1544      1.134        ad 	if (pc != NULL) {
   1545      1.134        ad 		cpuhit = 0;
   1546      1.134        ad 		cpumiss = 0;
   1547      1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1548      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1549      1.134        ad 				continue;
   1550      1.134        ad 			cpuhit += cc->cc_hits;
   1551      1.134        ad 			cpumiss += cc->cc_misses;
   1552      1.134        ad 		}
   1553      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1554      1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1555      1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1556      1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1557      1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1558      1.134        ad 		    pc->pc_contended);
   1559      1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1560      1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1561      1.134        ad 		if (print_cache) {
   1562      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1563      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1564      1.134        ad 			    pcg = pcg->pcg_next) {
   1565      1.134        ad 				PR_GROUPLIST(pcg);
   1566      1.134        ad 			}
   1567      1.134        ad 			(*pr)("\tempty cache groups:\n");
   1568      1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1569      1.134        ad 			    pcg = pcg->pcg_next) {
   1570      1.134        ad 				PR_GROUPLIST(pcg);
   1571      1.134        ad 			}
   1572      1.103       chs 		}
   1573       1.44   thorpej 	}
   1574      1.102       chs #undef PR_GROUPLIST
   1575       1.88       chs }
   1576       1.88       chs 
   1577       1.88       chs static int
   1578       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1579       1.88       chs {
   1580       1.88       chs 	struct pool_item *pi;
   1581      1.128  christos 	void *page;
   1582       1.88       chs 	int n;
   1583       1.88       chs 
   1584      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1585      1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1586      1.121      yamt 		if (page != ph->ph_page &&
   1587      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1588      1.121      yamt 			if (label != NULL)
   1589      1.121      yamt 				printf("%s: ", label);
   1590      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1591      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1592      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1593      1.121      yamt 				ph, page);
   1594      1.121      yamt 			return 1;
   1595      1.121      yamt 		}
   1596       1.88       chs 	}
   1597        1.3        pk 
   1598       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1599       1.97      yamt 		return 0;
   1600       1.97      yamt 
   1601      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1602       1.88       chs 	     pi != NULL;
   1603      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1604       1.88       chs 
   1605       1.88       chs #ifdef DIAGNOSTIC
   1606       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1607       1.88       chs 			if (label != NULL)
   1608       1.88       chs 				printf("%s: ", label);
   1609       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1610      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1611       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1612      1.121      yamt 				n, pi);
   1613       1.88       chs 			panic("pool");
   1614       1.88       chs 		}
   1615       1.88       chs #endif
   1616      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1617      1.121      yamt 			continue;
   1618      1.121      yamt 		}
   1619      1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1620       1.88       chs 		if (page == ph->ph_page)
   1621       1.88       chs 			continue;
   1622       1.88       chs 
   1623       1.88       chs 		if (label != NULL)
   1624       1.88       chs 			printf("%s: ", label);
   1625       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1626       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1627       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1628       1.88       chs 			n, pi, page);
   1629       1.88       chs 		return 1;
   1630       1.88       chs 	}
   1631       1.88       chs 	return 0;
   1632        1.3        pk }
   1633        1.3        pk 
   1634       1.88       chs 
   1635        1.3        pk int
   1636       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1637        1.3        pk {
   1638        1.3        pk 	struct pool_item_header *ph;
   1639        1.3        pk 	int r = 0;
   1640        1.3        pk 
   1641      1.134        ad 	mutex_enter(&pp->pr_lock);
   1642       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1643       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1644       1.88       chs 		if (r) {
   1645       1.88       chs 			goto out;
   1646       1.88       chs 		}
   1647       1.88       chs 	}
   1648       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1649       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1650       1.88       chs 		if (r) {
   1651        1.3        pk 			goto out;
   1652        1.3        pk 		}
   1653       1.88       chs 	}
   1654       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1655       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1656       1.88       chs 		if (r) {
   1657        1.3        pk 			goto out;
   1658        1.3        pk 		}
   1659        1.3        pk 	}
   1660       1.88       chs 
   1661        1.3        pk out:
   1662      1.134        ad 	mutex_exit(&pp->pr_lock);
   1663        1.3        pk 	return (r);
   1664       1.43   thorpej }
   1665       1.43   thorpej 
   1666       1.43   thorpej /*
   1667       1.43   thorpej  * pool_cache_init:
   1668       1.43   thorpej  *
   1669       1.43   thorpej  *	Initialize a pool cache.
   1670      1.134        ad  */
   1671      1.134        ad pool_cache_t
   1672      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1673      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   1674      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1675      1.134        ad {
   1676      1.134        ad 	pool_cache_t pc;
   1677      1.134        ad 
   1678      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   1679      1.134        ad 	if (pc == NULL)
   1680      1.134        ad 		return NULL;
   1681      1.134        ad 
   1682      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1683      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   1684      1.134        ad 
   1685      1.134        ad 	return pc;
   1686      1.134        ad }
   1687      1.134        ad 
   1688      1.134        ad /*
   1689      1.134        ad  * pool_cache_bootstrap:
   1690       1.43   thorpej  *
   1691      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   1692      1.134        ad  *	provides initial storage.
   1693       1.43   thorpej  */
   1694       1.43   thorpej void
   1695      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1696      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   1697      1.134        ad     struct pool_allocator *palloc, int ipl,
   1698      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1699       1.43   thorpej     void *arg)
   1700       1.43   thorpej {
   1701      1.134        ad 	CPU_INFO_ITERATOR cii;
   1702      1.145        ad 	pool_cache_t pc1;
   1703      1.134        ad 	struct cpu_info *ci;
   1704      1.134        ad 	struct pool *pp;
   1705      1.134        ad 
   1706      1.134        ad 	pp = &pc->pc_pool;
   1707  1.203.4.3     skrll 	if (palloc == NULL && ipl == IPL_NONE) {
   1708  1.203.4.3     skrll 		if (size > PAGE_SIZE) {
   1709  1.203.4.3     skrll 			int bigidx = pool_bigidx(size);
   1710  1.203.4.3     skrll 
   1711  1.203.4.3     skrll 			palloc = &pool_allocator_big[bigidx];
   1712  1.203.4.3     skrll 		} else
   1713  1.203.4.3     skrll 			palloc = &pool_allocator_nointr;
   1714  1.203.4.3     skrll 	}
   1715      1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1716      1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1717       1.43   thorpej 
   1718      1.134        ad 	if (ctor == NULL) {
   1719      1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   1720      1.134        ad 	}
   1721      1.134        ad 	if (dtor == NULL) {
   1722      1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   1723      1.134        ad 	}
   1724       1.43   thorpej 
   1725      1.134        ad 	pc->pc_emptygroups = NULL;
   1726      1.134        ad 	pc->pc_fullgroups = NULL;
   1727      1.134        ad 	pc->pc_partgroups = NULL;
   1728       1.43   thorpej 	pc->pc_ctor = ctor;
   1729       1.43   thorpej 	pc->pc_dtor = dtor;
   1730       1.43   thorpej 	pc->pc_arg  = arg;
   1731      1.134        ad 	pc->pc_hits  = 0;
   1732       1.48   thorpej 	pc->pc_misses = 0;
   1733      1.134        ad 	pc->pc_nempty = 0;
   1734      1.134        ad 	pc->pc_npart = 0;
   1735      1.134        ad 	pc->pc_nfull = 0;
   1736      1.134        ad 	pc->pc_contended = 0;
   1737      1.134        ad 	pc->pc_refcnt = 0;
   1738      1.136      yamt 	pc->pc_freecheck = NULL;
   1739      1.134        ad 
   1740      1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   1741      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1742      1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   1743      1.142        ad 	} else {
   1744      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1745      1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   1746      1.142        ad 	}
   1747      1.142        ad 
   1748      1.134        ad 	/* Allocate per-CPU caches. */
   1749      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1750      1.134        ad 	pc->pc_ncpu = 0;
   1751      1.139        ad 	if (ncpu < 2) {
   1752      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   1753      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   1754      1.137        ad 	} else {
   1755      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   1756      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   1757      1.137        ad 		}
   1758      1.134        ad 	}
   1759      1.145        ad 
   1760      1.145        ad 	/* Add to list of all pools. */
   1761      1.145        ad 	if (__predict_true(!cold))
   1762      1.134        ad 		mutex_enter(&pool_head_lock);
   1763      1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1764      1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1765      1.145        ad 			break;
   1766      1.145        ad 	}
   1767      1.145        ad 	if (pc1 == NULL)
   1768      1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1769      1.145        ad 	else
   1770      1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1771      1.145        ad 	if (__predict_true(!cold))
   1772      1.134        ad 		mutex_exit(&pool_head_lock);
   1773      1.145        ad 
   1774      1.145        ad 	membar_sync();
   1775      1.145        ad 	pp->pr_cache = pc;
   1776       1.43   thorpej }
   1777       1.43   thorpej 
   1778       1.43   thorpej /*
   1779       1.43   thorpej  * pool_cache_destroy:
   1780       1.43   thorpej  *
   1781       1.43   thorpej  *	Destroy a pool cache.
   1782       1.43   thorpej  */
   1783       1.43   thorpej void
   1784      1.134        ad pool_cache_destroy(pool_cache_t pc)
   1785       1.43   thorpej {
   1786      1.191      para 
   1787      1.191      para 	pool_cache_bootstrap_destroy(pc);
   1788      1.191      para 	pool_put(&cache_pool, pc);
   1789      1.191      para }
   1790      1.191      para 
   1791      1.191      para /*
   1792      1.191      para  * pool_cache_bootstrap_destroy:
   1793      1.191      para  *
   1794      1.191      para  *	Destroy a pool cache.
   1795      1.191      para  */
   1796      1.191      para void
   1797      1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   1798      1.191      para {
   1799      1.134        ad 	struct pool *pp = &pc->pc_pool;
   1800      1.175       jym 	u_int i;
   1801      1.134        ad 
   1802      1.134        ad 	/* Remove it from the global list. */
   1803      1.134        ad 	mutex_enter(&pool_head_lock);
   1804      1.134        ad 	while (pc->pc_refcnt != 0)
   1805      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   1806      1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1807      1.134        ad 	mutex_exit(&pool_head_lock);
   1808       1.43   thorpej 
   1809       1.43   thorpej 	/* First, invalidate the entire cache. */
   1810       1.43   thorpej 	pool_cache_invalidate(pc);
   1811       1.43   thorpej 
   1812      1.134        ad 	/* Disassociate it from the pool. */
   1813      1.134        ad 	mutex_enter(&pp->pr_lock);
   1814      1.134        ad 	pp->pr_cache = NULL;
   1815      1.134        ad 	mutex_exit(&pp->pr_lock);
   1816      1.134        ad 
   1817      1.134        ad 	/* Destroy per-CPU data */
   1818      1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1819      1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   1820      1.134        ad 
   1821      1.134        ad 	/* Finally, destroy it. */
   1822      1.134        ad 	mutex_destroy(&pc->pc_lock);
   1823      1.134        ad 	pool_destroy(pp);
   1824      1.134        ad }
   1825      1.134        ad 
   1826      1.134        ad /*
   1827      1.134        ad  * pool_cache_cpu_init1:
   1828      1.134        ad  *
   1829      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   1830      1.134        ad  */
   1831      1.134        ad static void
   1832      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1833      1.134        ad {
   1834      1.134        ad 	pool_cache_cpu_t *cc;
   1835      1.137        ad 	int index;
   1836      1.134        ad 
   1837      1.137        ad 	index = ci->ci_index;
   1838      1.137        ad 
   1839      1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   1840      1.134        ad 
   1841      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1842      1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   1843      1.134        ad 		return;
   1844      1.134        ad 	}
   1845      1.134        ad 
   1846      1.134        ad 	/*
   1847      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   1848      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   1849      1.134        ad 	 */
   1850      1.134        ad 	if (pc->pc_ncpu == 0) {
   1851      1.134        ad 		cc = &pc->pc_cpu0;
   1852      1.134        ad 		pc->pc_ncpu = 1;
   1853      1.134        ad 	} else {
   1854      1.134        ad 		mutex_enter(&pc->pc_lock);
   1855      1.134        ad 		pc->pc_ncpu++;
   1856      1.134        ad 		mutex_exit(&pc->pc_lock);
   1857      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1858      1.134        ad 	}
   1859      1.134        ad 
   1860      1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1861      1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1862      1.134        ad 	cc->cc_cache = pc;
   1863      1.137        ad 	cc->cc_cpuindex = index;
   1864      1.134        ad 	cc->cc_hits = 0;
   1865      1.134        ad 	cc->cc_misses = 0;
   1866      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   1867      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1868      1.134        ad 
   1869      1.137        ad 	pc->pc_cpus[index] = cc;
   1870       1.43   thorpej }
   1871       1.43   thorpej 
   1872      1.134        ad /*
   1873      1.134        ad  * pool_cache_cpu_init:
   1874      1.134        ad  *
   1875      1.134        ad  *	Called whenever a new CPU is attached.
   1876      1.134        ad  */
   1877      1.134        ad void
   1878      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   1879       1.43   thorpej {
   1880      1.134        ad 	pool_cache_t pc;
   1881      1.134        ad 
   1882      1.134        ad 	mutex_enter(&pool_head_lock);
   1883      1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1884      1.134        ad 		pc->pc_refcnt++;
   1885      1.134        ad 		mutex_exit(&pool_head_lock);
   1886       1.43   thorpej 
   1887      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   1888       1.43   thorpej 
   1889      1.134        ad 		mutex_enter(&pool_head_lock);
   1890      1.134        ad 		pc->pc_refcnt--;
   1891      1.134        ad 		cv_broadcast(&pool_busy);
   1892      1.134        ad 	}
   1893      1.134        ad 	mutex_exit(&pool_head_lock);
   1894       1.43   thorpej }
   1895       1.43   thorpej 
   1896      1.134        ad /*
   1897      1.134        ad  * pool_cache_reclaim:
   1898      1.134        ad  *
   1899      1.134        ad  *	Reclaim memory from a pool cache.
   1900      1.134        ad  */
   1901      1.134        ad bool
   1902      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   1903       1.43   thorpej {
   1904       1.43   thorpej 
   1905      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   1906      1.134        ad }
   1907       1.43   thorpej 
   1908      1.136      yamt static void
   1909      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   1910      1.136      yamt {
   1911      1.136      yamt 
   1912      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   1913      1.136      yamt 	pool_put(&pc->pc_pool, object);
   1914      1.136      yamt }
   1915      1.136      yamt 
   1916      1.134        ad /*
   1917      1.134        ad  * pool_cache_destruct_object:
   1918      1.134        ad  *
   1919      1.134        ad  *	Force destruction of an object and its release back into
   1920      1.134        ad  *	the pool.
   1921      1.134        ad  */
   1922      1.134        ad void
   1923      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   1924      1.134        ad {
   1925      1.134        ad 
   1926      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   1927      1.136      yamt 
   1928      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   1929       1.43   thorpej }
   1930       1.43   thorpej 
   1931      1.134        ad /*
   1932      1.134        ad  * pool_cache_invalidate_groups:
   1933      1.134        ad  *
   1934      1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   1935      1.134        ad  */
   1936      1.102       chs static void
   1937      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   1938      1.102       chs {
   1939      1.134        ad 	void *object;
   1940      1.134        ad 	pcg_t *next;
   1941      1.134        ad 	int i;
   1942      1.134        ad 
   1943      1.134        ad 	for (; pcg != NULL; pcg = next) {
   1944      1.134        ad 		next = pcg->pcg_next;
   1945      1.134        ad 
   1946      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   1947      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   1948      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   1949      1.134        ad 		}
   1950      1.102       chs 
   1951      1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   1952      1.142        ad 			pool_put(&pcg_large_pool, pcg);
   1953      1.142        ad 		} else {
   1954      1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   1955      1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   1956      1.142        ad 		}
   1957      1.102       chs 	}
   1958      1.102       chs }
   1959      1.102       chs 
   1960       1.43   thorpej /*
   1961      1.134        ad  * pool_cache_invalidate:
   1962       1.43   thorpej  *
   1963      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   1964      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   1965      1.176   thorpej  *
   1966      1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   1967      1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   1968      1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   1969      1.196       jym  *
   1970      1.196       jym  *	Invalidation is a costly process and should not be called from
   1971      1.196       jym  *	interrupt context.
   1972       1.43   thorpej  */
   1973      1.134        ad void
   1974      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   1975      1.134        ad {
   1976      1.196       jym 	uint64_t where;
   1977      1.134        ad 	pcg_t *full, *empty, *part;
   1978      1.196       jym 
   1979      1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1980      1.176   thorpej 
   1981      1.177       jym 	if (ncpu < 2 || !mp_online) {
   1982      1.176   thorpej 		/*
   1983      1.176   thorpej 		 * We might be called early enough in the boot process
   1984      1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   1985      1.196       jym 		 * In this case, transfer the content of the local CPU's
   1986      1.196       jym 		 * cache back into global cache as only this CPU is currently
   1987      1.196       jym 		 * running.
   1988      1.176   thorpej 		 */
   1989      1.196       jym 		pool_cache_transfer(pc);
   1990      1.176   thorpej 	} else {
   1991      1.176   thorpej 		/*
   1992      1.196       jym 		 * Signal all CPUs that they must transfer their local
   1993      1.196       jym 		 * cache back to the global pool then wait for the xcall to
   1994      1.196       jym 		 * complete.
   1995      1.176   thorpej 		 */
   1996      1.196       jym 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   1997      1.196       jym 		    pc, NULL);
   1998      1.176   thorpej 		xc_wait(where);
   1999      1.176   thorpej 	}
   2000      1.196       jym 
   2001      1.196       jym 	/* Empty pool caches, then invalidate objects */
   2002      1.134        ad 	mutex_enter(&pc->pc_lock);
   2003      1.134        ad 	full = pc->pc_fullgroups;
   2004      1.134        ad 	empty = pc->pc_emptygroups;
   2005      1.134        ad 	part = pc->pc_partgroups;
   2006      1.134        ad 	pc->pc_fullgroups = NULL;
   2007      1.134        ad 	pc->pc_emptygroups = NULL;
   2008      1.134        ad 	pc->pc_partgroups = NULL;
   2009      1.134        ad 	pc->pc_nfull = 0;
   2010      1.134        ad 	pc->pc_nempty = 0;
   2011      1.134        ad 	pc->pc_npart = 0;
   2012      1.134        ad 	mutex_exit(&pc->pc_lock);
   2013      1.134        ad 
   2014      1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2015      1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2016      1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2017      1.134        ad }
   2018      1.134        ad 
   2019      1.175       jym /*
   2020      1.175       jym  * pool_cache_invalidate_cpu:
   2021      1.175       jym  *
   2022      1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2023      1.175       jym  *	identified by its associated index.
   2024      1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2025      1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2026      1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2027      1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2028      1.175       jym  *	may result in an undefined behaviour.
   2029      1.175       jym  */
   2030      1.175       jym static void
   2031      1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2032      1.175       jym {
   2033      1.175       jym 	pool_cache_cpu_t *cc;
   2034      1.175       jym 	pcg_t *pcg;
   2035      1.175       jym 
   2036      1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2037      1.175       jym 		return;
   2038      1.175       jym 
   2039      1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2040      1.175       jym 		pcg->pcg_next = NULL;
   2041      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2042      1.175       jym 	}
   2043      1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2044      1.175       jym 		pcg->pcg_next = NULL;
   2045      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2046      1.175       jym 	}
   2047      1.175       jym 	if (cc != &pc->pc_cpu0)
   2048      1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2049      1.175       jym 
   2050      1.175       jym }
   2051      1.175       jym 
   2052      1.134        ad void
   2053      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2054      1.134        ad {
   2055      1.134        ad 
   2056      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2057      1.134        ad }
   2058      1.134        ad 
   2059      1.134        ad void
   2060      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2061      1.134        ad {
   2062      1.134        ad 
   2063      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2064      1.134        ad }
   2065      1.134        ad 
   2066      1.134        ad void
   2067      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2068      1.134        ad {
   2069      1.134        ad 
   2070      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2071      1.134        ad }
   2072      1.134        ad 
   2073      1.134        ad void
   2074      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2075      1.134        ad {
   2076      1.134        ad 
   2077      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2078      1.134        ad }
   2079      1.134        ad 
   2080      1.162        ad static bool __noinline
   2081      1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2082      1.134        ad 		    paddr_t *pap, int flags)
   2083       1.43   thorpej {
   2084      1.134        ad 	pcg_t *pcg, *cur;
   2085      1.134        ad 	uint64_t ncsw;
   2086      1.134        ad 	pool_cache_t pc;
   2087       1.43   thorpej 	void *object;
   2088       1.58   thorpej 
   2089      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2090      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2091      1.168      yamt 
   2092      1.134        ad 	pc = cc->cc_cache;
   2093      1.134        ad 	cc->cc_misses++;
   2094       1.43   thorpej 
   2095      1.134        ad 	/*
   2096      1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2097      1.134        ad 	 * from the cache.
   2098      1.134        ad 	 */
   2099      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2100      1.134        ad 		ncsw = curlwp->l_ncsw;
   2101      1.134        ad 		mutex_enter(&pc->pc_lock);
   2102      1.134        ad 		pc->pc_contended++;
   2103       1.43   thorpej 
   2104      1.134        ad 		/*
   2105      1.134        ad 		 * If we context switched while locking, then
   2106      1.134        ad 		 * our view of the per-CPU data is invalid:
   2107      1.134        ad 		 * retry.
   2108      1.134        ad 		 */
   2109      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2110      1.134        ad 			mutex_exit(&pc->pc_lock);
   2111      1.162        ad 			return true;
   2112       1.43   thorpej 		}
   2113      1.102       chs 	}
   2114       1.43   thorpej 
   2115      1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2116       1.43   thorpej 		/*
   2117      1.134        ad 		 * If there's a full group, release our empty
   2118      1.134        ad 		 * group back to the cache.  Install the full
   2119      1.134        ad 		 * group as cc_current and return.
   2120       1.43   thorpej 		 */
   2121      1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2122      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2123      1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2124      1.134        ad 			pc->pc_emptygroups = cur;
   2125      1.134        ad 			pc->pc_nempty++;
   2126       1.87   thorpej 		}
   2127      1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2128      1.134        ad 		cc->cc_current = pcg;
   2129      1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2130      1.134        ad 		pc->pc_hits++;
   2131      1.134        ad 		pc->pc_nfull--;
   2132      1.134        ad 		mutex_exit(&pc->pc_lock);
   2133      1.162        ad 		return true;
   2134      1.134        ad 	}
   2135      1.134        ad 
   2136      1.134        ad 	/*
   2137      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2138      1.134        ad 	 * path: fetch a new object from the pool and construct
   2139      1.134        ad 	 * it.
   2140      1.134        ad 	 */
   2141      1.134        ad 	pc->pc_misses++;
   2142      1.134        ad 	mutex_exit(&pc->pc_lock);
   2143      1.162        ad 	splx(s);
   2144      1.134        ad 
   2145      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2146      1.134        ad 	*objectp = object;
   2147      1.162        ad 	if (__predict_false(object == NULL))
   2148      1.162        ad 		return false;
   2149      1.125        ad 
   2150      1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2151      1.134        ad 		pool_put(&pc->pc_pool, object);
   2152      1.134        ad 		*objectp = NULL;
   2153      1.162        ad 		return false;
   2154       1.43   thorpej 	}
   2155       1.43   thorpej 
   2156      1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2157      1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2158       1.43   thorpej 
   2159      1.134        ad 	if (pap != NULL) {
   2160      1.134        ad #ifdef POOL_VTOPHYS
   2161      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2162      1.134        ad #else
   2163      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2164      1.134        ad #endif
   2165      1.102       chs 	}
   2166       1.43   thorpej 
   2167      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2168  1.203.4.1     skrll 	pool_redzone_fill(&pc->pc_pool, object);
   2169      1.162        ad 	return false;
   2170       1.43   thorpej }
   2171       1.43   thorpej 
   2172       1.43   thorpej /*
   2173      1.134        ad  * pool_cache_get{,_paddr}:
   2174       1.43   thorpej  *
   2175      1.134        ad  *	Get an object from a pool cache (optionally returning
   2176      1.134        ad  *	the physical address of the object).
   2177       1.43   thorpej  */
   2178      1.134        ad void *
   2179      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2180       1.43   thorpej {
   2181      1.134        ad 	pool_cache_cpu_t *cc;
   2182      1.134        ad 	pcg_t *pcg;
   2183      1.134        ad 	void *object;
   2184       1.60   thorpej 	int s;
   2185       1.43   thorpej 
   2186      1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2187      1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2188      1.190       jym 	    "pool '%s' is IPL_NONE, but called from interrupt context\n",
   2189      1.190       jym 	    pc->pc_pool.pr_wchan);
   2190      1.184     rmind 
   2191      1.155        ad 	if (flags & PR_WAITOK) {
   2192      1.154      yamt 		ASSERT_SLEEPABLE();
   2193      1.155        ad 	}
   2194      1.125        ad 
   2195      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2196      1.162        ad 	s = splvm();
   2197      1.165      yamt 	while (/* CONSTCOND */ true) {
   2198      1.134        ad 		/* Try and allocate an object from the current group. */
   2199      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2200      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2201      1.134        ad 	 	pcg = cc->cc_current;
   2202      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2203      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2204      1.162        ad 			if (__predict_false(pap != NULL))
   2205      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2206      1.148      yamt #if defined(DIAGNOSTIC)
   2207      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2208      1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2209      1.134        ad 			KASSERT(object != NULL);
   2210      1.163        ad #endif
   2211      1.134        ad 			cc->cc_hits++;
   2212      1.162        ad 			splx(s);
   2213      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2214  1.203.4.1     skrll 			pool_redzone_fill(&pc->pc_pool, object);
   2215      1.134        ad 			return object;
   2216       1.43   thorpej 		}
   2217       1.43   thorpej 
   2218       1.43   thorpej 		/*
   2219      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2220      1.134        ad 		 * it with the current group and allocate from there.
   2221       1.43   thorpej 		 */
   2222      1.134        ad 		pcg = cc->cc_previous;
   2223      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2224      1.134        ad 			cc->cc_previous = cc->cc_current;
   2225      1.134        ad 			cc->cc_current = pcg;
   2226      1.134        ad 			continue;
   2227       1.43   thorpej 		}
   2228       1.43   thorpej 
   2229      1.134        ad 		/*
   2230      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2231      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2232      1.162        ad 		 * no more objects are available, it will return false.
   2233      1.134        ad 		 * Otherwise, we need to retry.
   2234      1.134        ad 		 */
   2235      1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2236      1.165      yamt 			break;
   2237      1.165      yamt 	}
   2238       1.43   thorpej 
   2239      1.134        ad 	return object;
   2240       1.51   thorpej }
   2241       1.51   thorpej 
   2242      1.162        ad static bool __noinline
   2243      1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2244       1.51   thorpej {
   2245      1.200     pooka 	struct lwp *l = curlwp;
   2246      1.163        ad 	pcg_t *pcg, *cur;
   2247      1.134        ad 	uint64_t ncsw;
   2248      1.134        ad 	pool_cache_t pc;
   2249       1.51   thorpej 
   2250      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2251      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2252      1.168      yamt 
   2253      1.134        ad 	pc = cc->cc_cache;
   2254      1.171        ad 	pcg = NULL;
   2255      1.134        ad 	cc->cc_misses++;
   2256      1.200     pooka 	ncsw = l->l_ncsw;
   2257       1.43   thorpej 
   2258      1.171        ad 	/*
   2259      1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2260      1.171        ad 	 * while still unlocked.
   2261      1.171        ad 	 */
   2262      1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2263      1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2264      1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2265      1.171        ad 		}
   2266      1.200     pooka 		/*
   2267      1.200     pooka 		 * If pool_get() blocked, then our view of
   2268      1.200     pooka 		 * the per-CPU data is invalid: retry.
   2269      1.200     pooka 		 */
   2270      1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2271      1.200     pooka 			if (pcg != NULL) {
   2272      1.200     pooka 				pool_put(pc->pc_pcgpool, pcg);
   2273      1.200     pooka 			}
   2274      1.200     pooka 			return true;
   2275      1.200     pooka 		}
   2276      1.171        ad 		if (__predict_true(pcg != NULL)) {
   2277      1.171        ad 			pcg->pcg_avail = 0;
   2278      1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2279      1.171        ad 		}
   2280      1.171        ad 	}
   2281      1.171        ad 
   2282      1.162        ad 	/* Lock the cache. */
   2283      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2284      1.134        ad 		mutex_enter(&pc->pc_lock);
   2285      1.134        ad 		pc->pc_contended++;
   2286      1.162        ad 
   2287      1.163        ad 		/*
   2288      1.163        ad 		 * If we context switched while locking, then our view of
   2289      1.163        ad 		 * the per-CPU data is invalid: retry.
   2290      1.163        ad 		 */
   2291      1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2292      1.163        ad 			mutex_exit(&pc->pc_lock);
   2293      1.171        ad 			if (pcg != NULL) {
   2294      1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2295      1.171        ad 			}
   2296      1.163        ad 			return true;
   2297      1.163        ad 		}
   2298      1.162        ad 	}
   2299      1.102       chs 
   2300      1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2301      1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2302      1.171        ad 		pcg = pc->pc_emptygroups;
   2303      1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2304      1.163        ad 		pc->pc_nempty--;
   2305      1.134        ad 	}
   2306      1.130        ad 
   2307      1.162        ad 	/*
   2308      1.162        ad 	 * If there's a empty group, release our full group back
   2309      1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2310      1.162        ad 	 * and return.
   2311      1.162        ad 	 */
   2312      1.163        ad 	if (pcg != NULL) {
   2313      1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2314      1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2315      1.146        ad 			cc->cc_previous = pcg;
   2316      1.146        ad 		} else {
   2317      1.162        ad 			cur = cc->cc_current;
   2318      1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2319      1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2320      1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2321      1.146        ad 				pc->pc_fullgroups = cur;
   2322      1.146        ad 				pc->pc_nfull++;
   2323      1.146        ad 			}
   2324      1.146        ad 			cc->cc_current = pcg;
   2325      1.146        ad 		}
   2326      1.163        ad 		pc->pc_hits++;
   2327      1.134        ad 		mutex_exit(&pc->pc_lock);
   2328      1.162        ad 		return true;
   2329      1.102       chs 	}
   2330      1.105  christos 
   2331      1.134        ad 	/*
   2332      1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2333      1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2334      1.162        ad 	 * the object here and now.
   2335      1.134        ad 	 */
   2336      1.134        ad 	pc->pc_misses++;
   2337      1.134        ad 	mutex_exit(&pc->pc_lock);
   2338      1.162        ad 	splx(s);
   2339      1.162        ad 	pool_cache_destruct_object(pc, object);
   2340      1.105  christos 
   2341      1.162        ad 	return false;
   2342      1.134        ad }
   2343      1.102       chs 
   2344       1.43   thorpej /*
   2345      1.134        ad  * pool_cache_put{,_paddr}:
   2346       1.43   thorpej  *
   2347      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2348      1.134        ad  *	physical address of the object).
   2349       1.43   thorpej  */
   2350      1.101   thorpej void
   2351      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2352       1.43   thorpej {
   2353      1.134        ad 	pool_cache_cpu_t *cc;
   2354      1.134        ad 	pcg_t *pcg;
   2355      1.134        ad 	int s;
   2356      1.101   thorpej 
   2357      1.172      yamt 	KASSERT(object != NULL);
   2358  1.203.4.1     skrll 	pool_redzone_check(&pc->pc_pool, object);
   2359      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2360      1.101   thorpej 
   2361      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2362      1.162        ad 	s = splvm();
   2363      1.165      yamt 	while (/* CONSTCOND */ true) {
   2364      1.134        ad 		/* If the current group isn't full, release it there. */
   2365      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2366      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2367      1.134        ad 	 	pcg = cc->cc_current;
   2368      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2369      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2370      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2371      1.134        ad 			pcg->pcg_avail++;
   2372      1.134        ad 			cc->cc_hits++;
   2373      1.162        ad 			splx(s);
   2374      1.134        ad 			return;
   2375      1.134        ad 		}
   2376       1.43   thorpej 
   2377      1.134        ad 		/*
   2378      1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2379      1.134        ad 		 * it with the current group and try again.
   2380      1.134        ad 		 */
   2381      1.134        ad 		pcg = cc->cc_previous;
   2382      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2383      1.134        ad 			cc->cc_previous = cc->cc_current;
   2384      1.134        ad 			cc->cc_current = pcg;
   2385      1.134        ad 			continue;
   2386      1.134        ad 		}
   2387       1.43   thorpej 
   2388      1.134        ad 		/*
   2389      1.134        ad 		 * Can't free to either group: try the slow path.
   2390      1.134        ad 		 * If put_slow() releases the object for us, it
   2391      1.162        ad 		 * will return false.  Otherwise we need to retry.
   2392      1.134        ad 		 */
   2393      1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2394      1.165      yamt 			break;
   2395      1.165      yamt 	}
   2396       1.43   thorpej }
   2397       1.43   thorpej 
   2398       1.43   thorpej /*
   2399      1.196       jym  * pool_cache_transfer:
   2400       1.43   thorpej  *
   2401      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2402      1.134        ad  *	Run within a cross-call thread.
   2403       1.43   thorpej  */
   2404       1.43   thorpej static void
   2405      1.196       jym pool_cache_transfer(pool_cache_t pc)
   2406       1.43   thorpej {
   2407      1.134        ad 	pool_cache_cpu_t *cc;
   2408      1.134        ad 	pcg_t *prev, *cur, **list;
   2409      1.162        ad 	int s;
   2410      1.134        ad 
   2411      1.162        ad 	s = splvm();
   2412      1.162        ad 	mutex_enter(&pc->pc_lock);
   2413      1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2414      1.134        ad 	cur = cc->cc_current;
   2415      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2416      1.134        ad 	prev = cc->cc_previous;
   2417      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2418      1.162        ad 	if (cur != &pcg_dummy) {
   2419      1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2420      1.134        ad 			list = &pc->pc_fullgroups;
   2421      1.134        ad 			pc->pc_nfull++;
   2422      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2423      1.134        ad 			list = &pc->pc_emptygroups;
   2424      1.134        ad 			pc->pc_nempty++;
   2425      1.134        ad 		} else {
   2426      1.134        ad 			list = &pc->pc_partgroups;
   2427      1.134        ad 			pc->pc_npart++;
   2428      1.134        ad 		}
   2429      1.134        ad 		cur->pcg_next = *list;
   2430      1.134        ad 		*list = cur;
   2431      1.134        ad 	}
   2432      1.162        ad 	if (prev != &pcg_dummy) {
   2433      1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2434      1.134        ad 			list = &pc->pc_fullgroups;
   2435      1.134        ad 			pc->pc_nfull++;
   2436      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2437      1.134        ad 			list = &pc->pc_emptygroups;
   2438      1.134        ad 			pc->pc_nempty++;
   2439      1.134        ad 		} else {
   2440      1.134        ad 			list = &pc->pc_partgroups;
   2441      1.134        ad 			pc->pc_npart++;
   2442      1.134        ad 		}
   2443      1.134        ad 		prev->pcg_next = *list;
   2444      1.134        ad 		*list = prev;
   2445      1.134        ad 	}
   2446      1.134        ad 	mutex_exit(&pc->pc_lock);
   2447      1.134        ad 	splx(s);
   2448        1.3        pk }
   2449       1.66   thorpej 
   2450       1.66   thorpej /*
   2451       1.66   thorpej  * Pool backend allocators.
   2452       1.66   thorpej  *
   2453       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2454       1.66   thorpej  * and any additional draining that might be needed.
   2455       1.66   thorpej  *
   2456       1.66   thorpej  * We provide two standard allocators:
   2457       1.66   thorpej  *
   2458       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2459       1.66   thorpej  *
   2460       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2461       1.66   thorpej  *	in interrupt context.
   2462       1.66   thorpej  */
   2463       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2464       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2465       1.66   thorpej 
   2466      1.112     bjh21 #ifdef POOL_SUBPAGE
   2467      1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2468      1.192     rmind 	.pa_alloc = pool_page_alloc,
   2469      1.192     rmind 	.pa_free = pool_page_free,
   2470      1.192     rmind 	.pa_pagesz = 0
   2471      1.112     bjh21 };
   2472      1.112     bjh21 #else
   2473       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2474      1.191      para 	.pa_alloc = pool_page_alloc,
   2475      1.191      para 	.pa_free = pool_page_free,
   2476      1.191      para 	.pa_pagesz = 0
   2477       1.66   thorpej };
   2478      1.112     bjh21 #endif
   2479       1.66   thorpej 
   2480      1.112     bjh21 #ifdef POOL_SUBPAGE
   2481      1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2482      1.194      para 	.pa_alloc = pool_page_alloc,
   2483      1.194      para 	.pa_free = pool_page_free,
   2484      1.192     rmind 	.pa_pagesz = 0
   2485      1.112     bjh21 };
   2486      1.112     bjh21 #else
   2487       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2488      1.191      para 	.pa_alloc = pool_page_alloc,
   2489      1.191      para 	.pa_free = pool_page_free,
   2490      1.191      para 	.pa_pagesz = 0
   2491       1.66   thorpej };
   2492      1.112     bjh21 #endif
   2493       1.66   thorpej 
   2494       1.66   thorpej #ifdef POOL_SUBPAGE
   2495       1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2496       1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2497       1.66   thorpej 
   2498      1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2499      1.193        he 	.pa_alloc = pool_subpage_alloc,
   2500      1.193        he 	.pa_free = pool_subpage_free,
   2501      1.193        he 	.pa_pagesz = POOL_SUBPAGE
   2502      1.112     bjh21 };
   2503      1.112     bjh21 
   2504      1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2505      1.192     rmind 	.pa_alloc = pool_subpage_alloc,
   2506      1.192     rmind 	.pa_free = pool_subpage_free,
   2507      1.192     rmind 	.pa_pagesz = POOL_SUBPAGE
   2508       1.66   thorpej };
   2509       1.66   thorpej #endif /* POOL_SUBPAGE */
   2510       1.66   thorpej 
   2511  1.203.4.3     skrll struct pool_allocator pool_allocator_big[] = {
   2512  1.203.4.3     skrll 	{
   2513  1.203.4.3     skrll 		.pa_alloc = pool_page_alloc,
   2514  1.203.4.3     skrll 		.pa_free = pool_page_free,
   2515  1.203.4.3     skrll 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2516  1.203.4.3     skrll 	},
   2517  1.203.4.3     skrll 	{
   2518  1.203.4.3     skrll 		.pa_alloc = pool_page_alloc,
   2519  1.203.4.3     skrll 		.pa_free = pool_page_free,
   2520  1.203.4.3     skrll 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2521  1.203.4.3     skrll 	},
   2522  1.203.4.3     skrll 	{
   2523  1.203.4.3     skrll 		.pa_alloc = pool_page_alloc,
   2524  1.203.4.3     skrll 		.pa_free = pool_page_free,
   2525  1.203.4.3     skrll 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2526  1.203.4.3     skrll 	},
   2527  1.203.4.3     skrll 	{
   2528  1.203.4.3     skrll 		.pa_alloc = pool_page_alloc,
   2529  1.203.4.3     skrll 		.pa_free = pool_page_free,
   2530  1.203.4.3     skrll 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2531  1.203.4.3     skrll 	},
   2532  1.203.4.3     skrll 	{
   2533  1.203.4.3     skrll 		.pa_alloc = pool_page_alloc,
   2534  1.203.4.3     skrll 		.pa_free = pool_page_free,
   2535  1.203.4.3     skrll 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2536  1.203.4.3     skrll 	},
   2537  1.203.4.3     skrll 	{
   2538  1.203.4.3     skrll 		.pa_alloc = pool_page_alloc,
   2539  1.203.4.3     skrll 		.pa_free = pool_page_free,
   2540  1.203.4.3     skrll 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2541  1.203.4.3     skrll 	},
   2542  1.203.4.3     skrll 	{
   2543  1.203.4.3     skrll 		.pa_alloc = pool_page_alloc,
   2544  1.203.4.3     skrll 		.pa_free = pool_page_free,
   2545  1.203.4.3     skrll 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2546  1.203.4.3     skrll 	},
   2547  1.203.4.3     skrll 	{
   2548  1.203.4.3     skrll 		.pa_alloc = pool_page_alloc,
   2549  1.203.4.3     skrll 		.pa_free = pool_page_free,
   2550  1.203.4.3     skrll 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2551  1.203.4.3     skrll 	}
   2552  1.203.4.3     skrll };
   2553  1.203.4.3     skrll 
   2554  1.203.4.3     skrll static int
   2555  1.203.4.3     skrll pool_bigidx(size_t size)
   2556  1.203.4.3     skrll {
   2557  1.203.4.3     skrll 	int i;
   2558  1.203.4.3     skrll 
   2559  1.203.4.3     skrll 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2560  1.203.4.3     skrll 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2561  1.203.4.3     skrll 			return i;
   2562  1.203.4.3     skrll 	}
   2563  1.203.4.3     skrll 	panic("pool item size %zu too large, use a custom allocator", size);
   2564  1.203.4.3     skrll }
   2565  1.203.4.3     skrll 
   2566      1.117      yamt static void *
   2567      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2568       1.66   thorpej {
   2569      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2570       1.66   thorpej 	void *res;
   2571       1.66   thorpej 
   2572      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2573      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2574       1.66   thorpej 		/*
   2575      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2576      1.117      yamt 		 * In other cases, the hook will be run in
   2577      1.117      yamt 		 * pool_reclaim().
   2578       1.66   thorpej 		 */
   2579      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2580      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2581      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2582       1.66   thorpej 		}
   2583      1.117      yamt 	}
   2584      1.117      yamt 	return res;
   2585       1.66   thorpej }
   2586       1.66   thorpej 
   2587      1.117      yamt static void
   2588       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2589       1.66   thorpej {
   2590       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2591       1.66   thorpej 
   2592       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2593       1.66   thorpej }
   2594       1.66   thorpej 
   2595       1.66   thorpej void *
   2596      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2597       1.66   thorpej {
   2598      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2599      1.191      para 	vmem_addr_t va;
   2600      1.192     rmind 	int ret;
   2601      1.191      para 
   2602      1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2603      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2604       1.66   thorpej 
   2605      1.192     rmind 	return ret ? NULL : (void *)va;
   2606       1.66   thorpej }
   2607       1.66   thorpej 
   2608       1.66   thorpej void
   2609      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2610       1.66   thorpej {
   2611       1.66   thorpej 
   2612      1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2613       1.98      yamt }
   2614       1.98      yamt 
   2615       1.98      yamt static void *
   2616      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2617       1.98      yamt {
   2618      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2619      1.192     rmind 	vmem_addr_t va;
   2620      1.192     rmind 	int ret;
   2621      1.191      para 
   2622      1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2623      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2624       1.98      yamt 
   2625      1.192     rmind 	return ret ? NULL : (void *)va;
   2626       1.98      yamt }
   2627       1.98      yamt 
   2628       1.98      yamt static void
   2629      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2630       1.98      yamt {
   2631       1.98      yamt 
   2632      1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2633       1.66   thorpej }
   2634       1.66   thorpej 
   2635  1.203.4.1     skrll #ifdef POOL_REDZONE
   2636  1.203.4.1     skrll #if defined(_LP64)
   2637  1.203.4.1     skrll # define PRIME 0x9e37fffffffc0000UL
   2638  1.203.4.1     skrll #else /* defined(_LP64) */
   2639  1.203.4.1     skrll # define PRIME 0x9e3779b1
   2640  1.203.4.1     skrll #endif /* defined(_LP64) */
   2641  1.203.4.1     skrll #define STATIC_BYTE	0xFE
   2642  1.203.4.1     skrll CTASSERT(POOL_REDZONE_SIZE > 1);
   2643  1.203.4.1     skrll 
   2644  1.203.4.1     skrll static inline uint8_t
   2645  1.203.4.1     skrll pool_pattern_generate(const void *p)
   2646  1.203.4.1     skrll {
   2647  1.203.4.1     skrll 	return (uint8_t)(((uintptr_t)p) * PRIME
   2648  1.203.4.1     skrll 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2649  1.203.4.1     skrll }
   2650  1.203.4.1     skrll 
   2651  1.203.4.1     skrll static void
   2652  1.203.4.1     skrll pool_redzone_init(struct pool *pp, size_t requested_size)
   2653  1.203.4.1     skrll {
   2654  1.203.4.1     skrll 	size_t nsz;
   2655  1.203.4.1     skrll 
   2656  1.203.4.1     skrll 	if (pp->pr_roflags & PR_NOTOUCH) {
   2657  1.203.4.1     skrll 		pp->pr_reqsize = 0;
   2658  1.203.4.1     skrll 		pp->pr_redzone = false;
   2659  1.203.4.1     skrll 		return;
   2660  1.203.4.1     skrll 	}
   2661  1.203.4.1     skrll 
   2662  1.203.4.1     skrll 	/*
   2663  1.203.4.1     skrll 	 * We may have extended the requested size earlier; check if
   2664  1.203.4.1     skrll 	 * there's naturally space in the padding for a red zone.
   2665  1.203.4.1     skrll 	 */
   2666  1.203.4.1     skrll 	if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
   2667  1.203.4.1     skrll 		pp->pr_reqsize = requested_size;
   2668  1.203.4.1     skrll 		pp->pr_redzone = true;
   2669  1.203.4.1     skrll 		return;
   2670  1.203.4.1     skrll 	}
   2671  1.203.4.1     skrll 
   2672  1.203.4.1     skrll 	/*
   2673  1.203.4.1     skrll 	 * No space in the natural padding; check if we can extend a
   2674  1.203.4.1     skrll 	 * bit the size of the pool.
   2675  1.203.4.1     skrll 	 */
   2676  1.203.4.1     skrll 	nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
   2677  1.203.4.1     skrll 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2678  1.203.4.1     skrll 		/* Ok, we can */
   2679  1.203.4.1     skrll 		pp->pr_size = nsz;
   2680  1.203.4.1     skrll 		pp->pr_reqsize = requested_size;
   2681  1.203.4.1     skrll 		pp->pr_redzone = true;
   2682  1.203.4.1     skrll 	} else {
   2683  1.203.4.1     skrll 		/* No space for a red zone... snif :'( */
   2684  1.203.4.1     skrll 		pp->pr_reqsize = 0;
   2685  1.203.4.1     skrll 		pp->pr_redzone = false;
   2686  1.203.4.1     skrll 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2687  1.203.4.1     skrll 	}
   2688  1.203.4.1     skrll }
   2689  1.203.4.1     skrll 
   2690  1.203.4.1     skrll static void
   2691  1.203.4.1     skrll pool_redzone_fill(struct pool *pp, void *p)
   2692  1.203.4.1     skrll {
   2693  1.203.4.1     skrll 	uint8_t *cp, pat;
   2694  1.203.4.1     skrll 	const uint8_t *ep;
   2695  1.203.4.1     skrll 
   2696  1.203.4.1     skrll 	if (!pp->pr_redzone)
   2697  1.203.4.1     skrll 		return;
   2698  1.203.4.1     skrll 
   2699  1.203.4.1     skrll 	cp = (uint8_t *)p + pp->pr_reqsize;
   2700  1.203.4.1     skrll 	ep = cp + POOL_REDZONE_SIZE;
   2701  1.203.4.1     skrll 
   2702  1.203.4.1     skrll 	/*
   2703  1.203.4.1     skrll 	 * We really don't want the first byte of the red zone to be '\0';
   2704  1.203.4.1     skrll 	 * an off-by-one in a string may not be properly detected.
   2705  1.203.4.1     skrll 	 */
   2706  1.203.4.1     skrll 	pat = pool_pattern_generate(cp);
   2707  1.203.4.1     skrll 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2708  1.203.4.1     skrll 	cp++;
   2709  1.203.4.1     skrll 
   2710  1.203.4.1     skrll 	while (cp < ep) {
   2711  1.203.4.1     skrll 		*cp = pool_pattern_generate(cp);
   2712  1.203.4.1     skrll 		cp++;
   2713  1.203.4.1     skrll 	}
   2714  1.203.4.1     skrll }
   2715  1.203.4.1     skrll 
   2716  1.203.4.1     skrll static void
   2717  1.203.4.1     skrll pool_redzone_check(struct pool *pp, void *p)
   2718  1.203.4.1     skrll {
   2719  1.203.4.1     skrll 	uint8_t *cp, pat, expected;
   2720  1.203.4.1     skrll 	const uint8_t *ep;
   2721  1.203.4.1     skrll 
   2722  1.203.4.1     skrll 	if (!pp->pr_redzone)
   2723  1.203.4.1     skrll 		return;
   2724  1.203.4.1     skrll 
   2725  1.203.4.1     skrll 	cp = (uint8_t *)p + pp->pr_reqsize;
   2726  1.203.4.1     skrll 	ep = cp + POOL_REDZONE_SIZE;
   2727  1.203.4.1     skrll 
   2728  1.203.4.1     skrll 	pat = pool_pattern_generate(cp);
   2729  1.203.4.1     skrll 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2730  1.203.4.1     skrll 	if (expected != *cp) {
   2731  1.203.4.1     skrll 		panic("%s: %p: 0x%02x != 0x%02x\n",
   2732  1.203.4.1     skrll 		   __func__, cp, *cp, expected);
   2733  1.203.4.1     skrll 	}
   2734  1.203.4.1     skrll 	cp++;
   2735  1.203.4.1     skrll 
   2736  1.203.4.1     skrll 	while (cp < ep) {
   2737  1.203.4.1     skrll 		expected = pool_pattern_generate(cp);
   2738  1.203.4.1     skrll 		if (*cp != expected) {
   2739  1.203.4.1     skrll 			panic("%s: %p: 0x%02x != 0x%02x\n",
   2740  1.203.4.1     skrll 			   __func__, cp, *cp, expected);
   2741  1.203.4.1     skrll 		}
   2742  1.203.4.1     skrll 		cp++;
   2743  1.203.4.1     skrll 	}
   2744  1.203.4.1     skrll }
   2745  1.203.4.1     skrll 
   2746  1.203.4.1     skrll #endif /* POOL_REDZONE */
   2747  1.203.4.1     skrll 
   2748  1.203.4.1     skrll 
   2749       1.66   thorpej #ifdef POOL_SUBPAGE
   2750       1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2751       1.66   thorpej void *
   2752       1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2753       1.66   thorpej {
   2754      1.134        ad 	return pool_get(&psppool, flags);
   2755       1.66   thorpej }
   2756       1.66   thorpej 
   2757       1.66   thorpej void
   2758       1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2759       1.66   thorpej {
   2760       1.66   thorpej 	pool_put(&psppool, v);
   2761       1.66   thorpej }
   2762       1.66   thorpej 
   2763      1.112     bjh21 #endif /* POOL_SUBPAGE */
   2764      1.141      yamt 
   2765      1.141      yamt #if defined(DDB)
   2766      1.141      yamt static bool
   2767      1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2768      1.141      yamt {
   2769      1.141      yamt 
   2770      1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   2771      1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2772      1.141      yamt }
   2773      1.141      yamt 
   2774      1.143      yamt static bool
   2775      1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2776      1.143      yamt {
   2777      1.143      yamt 
   2778      1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2779      1.143      yamt }
   2780      1.143      yamt 
   2781      1.143      yamt static bool
   2782      1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2783      1.143      yamt {
   2784      1.143      yamt 	int i;
   2785      1.143      yamt 
   2786      1.143      yamt 	if (pcg == NULL) {
   2787      1.143      yamt 		return false;
   2788      1.143      yamt 	}
   2789      1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   2790      1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2791      1.143      yamt 			return true;
   2792      1.143      yamt 		}
   2793      1.143      yamt 	}
   2794      1.143      yamt 	return false;
   2795      1.143      yamt }
   2796      1.143      yamt 
   2797      1.143      yamt static bool
   2798      1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2799      1.143      yamt {
   2800      1.143      yamt 
   2801      1.143      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2802      1.143      yamt 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2803      1.143      yamt 		pool_item_bitmap_t *bitmap =
   2804      1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2805      1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2806      1.143      yamt 
   2807      1.143      yamt 		return (*bitmap & mask) == 0;
   2808      1.143      yamt 	} else {
   2809      1.143      yamt 		struct pool_item *pi;
   2810      1.143      yamt 
   2811      1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2812      1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   2813      1.143      yamt 				return false;
   2814      1.143      yamt 			}
   2815      1.143      yamt 		}
   2816      1.143      yamt 		return true;
   2817      1.143      yamt 	}
   2818      1.143      yamt }
   2819      1.143      yamt 
   2820      1.141      yamt void
   2821      1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2822      1.141      yamt {
   2823      1.141      yamt 	struct pool *pp;
   2824      1.141      yamt 
   2825      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2826      1.141      yamt 		struct pool_item_header *ph;
   2827      1.141      yamt 		uintptr_t item;
   2828      1.143      yamt 		bool allocated = true;
   2829      1.143      yamt 		bool incache = false;
   2830      1.143      yamt 		bool incpucache = false;
   2831      1.143      yamt 		char cpucachestr[32];
   2832      1.141      yamt 
   2833      1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2834      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2835      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2836      1.141      yamt 					goto found;
   2837      1.141      yamt 				}
   2838      1.141      yamt 			}
   2839      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2840      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2841      1.143      yamt 					allocated =
   2842      1.143      yamt 					    pool_allocated(pp, ph, addr);
   2843      1.143      yamt 					goto found;
   2844      1.143      yamt 				}
   2845      1.143      yamt 			}
   2846      1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2847      1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   2848      1.143      yamt 					allocated = false;
   2849      1.141      yamt 					goto found;
   2850      1.141      yamt 				}
   2851      1.141      yamt 			}
   2852      1.141      yamt 			continue;
   2853      1.141      yamt 		} else {
   2854      1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2855      1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2856      1.141      yamt 				continue;
   2857      1.141      yamt 			}
   2858      1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   2859      1.141      yamt 		}
   2860      1.141      yamt found:
   2861      1.143      yamt 		if (allocated && pp->pr_cache) {
   2862      1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   2863      1.143      yamt 			struct pool_cache_group *pcg;
   2864      1.143      yamt 			int i;
   2865      1.143      yamt 
   2866      1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2867      1.143      yamt 			    pcg = pcg->pcg_next) {
   2868      1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   2869      1.143      yamt 					incache = true;
   2870      1.143      yamt 					goto print;
   2871      1.143      yamt 				}
   2872      1.143      yamt 			}
   2873      1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2874      1.143      yamt 				pool_cache_cpu_t *cc;
   2875      1.143      yamt 
   2876      1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2877      1.143      yamt 					continue;
   2878      1.143      yamt 				}
   2879      1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2880      1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2881      1.143      yamt 					struct cpu_info *ci =
   2882      1.170        ad 					    cpu_lookup(i);
   2883      1.143      yamt 
   2884      1.143      yamt 					incpucache = true;
   2885      1.143      yamt 					snprintf(cpucachestr,
   2886      1.143      yamt 					    sizeof(cpucachestr),
   2887      1.143      yamt 					    "cached by CPU %u",
   2888      1.153    martin 					    ci->ci_index);
   2889      1.143      yamt 					goto print;
   2890      1.143      yamt 				}
   2891      1.143      yamt 			}
   2892      1.143      yamt 		}
   2893      1.143      yamt print:
   2894      1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2895      1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   2896      1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2897      1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   2898      1.143      yamt 		    pp->pr_wchan,
   2899      1.143      yamt 		    incpucache ? cpucachestr :
   2900      1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   2901      1.141      yamt 	}
   2902      1.141      yamt }
   2903      1.141      yamt #endif /* defined(DDB) */
   2904      1.203     joerg 
   2905      1.203     joerg static int
   2906      1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   2907      1.203     joerg {
   2908      1.203     joerg 	struct pool_sysctl data;
   2909      1.203     joerg 	struct pool *pp;
   2910      1.203     joerg 	struct pool_cache *pc;
   2911      1.203     joerg 	pool_cache_cpu_t *cc;
   2912      1.203     joerg 	int error;
   2913      1.203     joerg 	size_t i, written;
   2914      1.203     joerg 
   2915      1.203     joerg 	if (oldp == NULL) {
   2916      1.203     joerg 		*oldlenp = 0;
   2917      1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   2918      1.203     joerg 			*oldlenp += sizeof(data);
   2919      1.203     joerg 		return 0;
   2920      1.203     joerg 	}
   2921      1.203     joerg 
   2922      1.203     joerg 	memset(&data, 0, sizeof(data));
   2923      1.203     joerg 	error = 0;
   2924      1.203     joerg 	written = 0;
   2925      1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2926      1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   2927      1.203     joerg 			break;
   2928      1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   2929      1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   2930      1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   2931      1.203     joerg #define COPY(field) data.field = pp->field
   2932      1.203     joerg 		COPY(pr_size);
   2933      1.203     joerg 
   2934      1.203     joerg 		COPY(pr_itemsperpage);
   2935      1.203     joerg 		COPY(pr_nitems);
   2936      1.203     joerg 		COPY(pr_nout);
   2937      1.203     joerg 		COPY(pr_hardlimit);
   2938      1.203     joerg 		COPY(pr_npages);
   2939      1.203     joerg 		COPY(pr_minpages);
   2940      1.203     joerg 		COPY(pr_maxpages);
   2941      1.203     joerg 
   2942      1.203     joerg 		COPY(pr_nget);
   2943      1.203     joerg 		COPY(pr_nfail);
   2944      1.203     joerg 		COPY(pr_nput);
   2945      1.203     joerg 		COPY(pr_npagealloc);
   2946      1.203     joerg 		COPY(pr_npagefree);
   2947      1.203     joerg 		COPY(pr_hiwat);
   2948      1.203     joerg 		COPY(pr_nidle);
   2949      1.203     joerg #undef COPY
   2950      1.203     joerg 
   2951      1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   2952      1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   2953      1.203     joerg 		if (pp->pr_cache) {
   2954      1.203     joerg 			pc = pp->pr_cache;
   2955      1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   2956      1.203     joerg 			data.pr_cache_nfull = pc->pc_nfull;
   2957      1.203     joerg 			data.pr_cache_npartial = pc->pc_npart;
   2958      1.203     joerg 			data.pr_cache_nempty = pc->pc_nempty;
   2959      1.203     joerg 			data.pr_cache_ncontended = pc->pc_contended;
   2960      1.203     joerg 			data.pr_cache_nmiss_global = pc->pc_misses;
   2961      1.203     joerg 			data.pr_cache_nhit_global = pc->pc_hits;
   2962      1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   2963      1.203     joerg 				cc = pc->pc_cpus[i];
   2964      1.203     joerg 				if (cc == NULL)
   2965      1.203     joerg 					continue;
   2966  1.203.4.2     skrll 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   2967  1.203.4.2     skrll 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   2968      1.203     joerg 			}
   2969      1.203     joerg 		} else {
   2970      1.203     joerg 			data.pr_cache_meta_size = 0;
   2971      1.203     joerg 			data.pr_cache_nfull = 0;
   2972      1.203     joerg 			data.pr_cache_npartial = 0;
   2973      1.203     joerg 			data.pr_cache_nempty = 0;
   2974      1.203     joerg 			data.pr_cache_ncontended = 0;
   2975      1.203     joerg 			data.pr_cache_nmiss_global = 0;
   2976      1.203     joerg 			data.pr_cache_nhit_global = 0;
   2977      1.203     joerg 		}
   2978      1.203     joerg 
   2979      1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   2980      1.203     joerg 		if (error)
   2981      1.203     joerg 			break;
   2982      1.203     joerg 		written += sizeof(data);
   2983      1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   2984      1.203     joerg 	}
   2985      1.203     joerg 
   2986      1.203     joerg 	*oldlenp = written;
   2987      1.203     joerg 	return error;
   2988      1.203     joerg }
   2989      1.203     joerg 
   2990      1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   2991      1.203     joerg {
   2992      1.203     joerg 	const struct sysctlnode *rnode = NULL;
   2993      1.203     joerg 
   2994      1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   2995      1.203     joerg 		       CTLFLAG_PERMANENT,
   2996      1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   2997      1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   2998      1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   2999      1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3000      1.203     joerg }
   3001