Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.207
      1  1.207  riastrad /*	$NetBSD: subr_pool.c,v 1.207 2017/03/14 03:13:50 riastradh Exp $	*/
      2    1.1        pk 
      3    1.1        pk /*-
      4  1.204      maxv  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
      5  1.183        ad  *     The NetBSD Foundation, Inc.
      6    1.1        pk  * All rights reserved.
      7    1.1        pk  *
      8    1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9   1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  1.204      maxv  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  1.204      maxv  * Maxime Villard.
     12    1.1        pk  *
     13    1.1        pk  * Redistribution and use in source and binary forms, with or without
     14    1.1        pk  * modification, are permitted provided that the following conditions
     15    1.1        pk  * are met:
     16    1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17    1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18    1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19    1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20    1.1        pk  *    documentation and/or other materials provided with the distribution.
     21    1.1        pk  *
     22    1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23    1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24    1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25    1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26    1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27    1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28    1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29    1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30    1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31    1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32    1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33    1.1        pk  */
     34   1.64     lukem 
     35   1.64     lukem #include <sys/cdefs.h>
     36  1.207  riastrad __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.207 2017/03/14 03:13:50 riastradh Exp $");
     37   1.24    scottr 
     38  1.205     pooka #ifdef _KERNEL_OPT
     39  1.141      yamt #include "opt_ddb.h"
     40   1.28   thorpej #include "opt_lockdebug.h"
     41  1.205     pooka #endif
     42    1.1        pk 
     43    1.1        pk #include <sys/param.h>
     44    1.1        pk #include <sys/systm.h>
     45  1.203     joerg #include <sys/sysctl.h>
     46  1.135      yamt #include <sys/bitops.h>
     47    1.1        pk #include <sys/proc.h>
     48    1.1        pk #include <sys/errno.h>
     49    1.1        pk #include <sys/kernel.h>
     50  1.191      para #include <sys/vmem.h>
     51    1.1        pk #include <sys/pool.h>
     52   1.20   thorpej #include <sys/syslog.h>
     53  1.125        ad #include <sys/debug.h>
     54  1.134        ad #include <sys/lockdebug.h>
     55  1.134        ad #include <sys/xcall.h>
     56  1.134        ad #include <sys/cpu.h>
     57  1.145        ad #include <sys/atomic.h>
     58    1.3        pk 
     59  1.187  uebayasi #include <uvm/uvm_extern.h>
     60    1.3        pk 
     61    1.1        pk /*
     62    1.1        pk  * Pool resource management utility.
     63    1.3        pk  *
     64   1.88       chs  * Memory is allocated in pages which are split into pieces according to
     65   1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     66   1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     67   1.88       chs  * for empty, full and partially-full pages respectively. The individual
     68   1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     69   1.88       chs  * header. The memory for building the page list is either taken from
     70   1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     71   1.88       chs  * an internal pool of page headers (`phpool').
     72    1.1        pk  */
     73    1.1        pk 
     74  1.202       abs /* List of all pools. Non static as needed by 'vmstat -i' */
     75  1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     76  1.134        ad 
     77    1.3        pk /* Private pool for page header structures */
     78   1.97      yamt #define	PHPOOL_MAX	8
     79   1.97      yamt static struct pool phpool[PHPOOL_MAX];
     80  1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     81  1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     82    1.3        pk 
     83   1.62     bjh21 #ifdef POOL_SUBPAGE
     84   1.62     bjh21 /* Pool of subpages for use by normal pools. */
     85   1.62     bjh21 static struct pool psppool;
     86   1.62     bjh21 #endif
     87   1.62     bjh21 
     88  1.204      maxv #ifdef POOL_REDZONE
     89  1.204      maxv # define POOL_REDZONE_SIZE 2
     90  1.204      maxv static void pool_redzone_init(struct pool *, size_t);
     91  1.204      maxv static void pool_redzone_fill(struct pool *, void *);
     92  1.204      maxv static void pool_redzone_check(struct pool *, void *);
     93  1.204      maxv #else
     94  1.204      maxv # define pool_redzone_init(pp, sz)	/* NOTHING */
     95  1.204      maxv # define pool_redzone_fill(pp, ptr)	/* NOTHING */
     96  1.204      maxv # define pool_redzone_check(pp, ptr)	/* NOTHING */
     97  1.204      maxv #endif
     98  1.204      maxv 
     99   1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    100   1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    101   1.98      yamt 
    102   1.98      yamt /* allocator for pool metadata */
    103  1.134        ad struct pool_allocator pool_allocator_meta = {
    104  1.191      para 	.pa_alloc = pool_page_alloc_meta,
    105  1.191      para 	.pa_free = pool_page_free_meta,
    106  1.191      para 	.pa_pagesz = 0
    107   1.98      yamt };
    108   1.98      yamt 
    109    1.3        pk /* # of seconds to retain page after last use */
    110    1.3        pk int pool_inactive_time = 10;
    111    1.3        pk 
    112    1.3        pk /* Next candidate for drainage (see pool_drain()) */
    113   1.23   thorpej static struct pool	*drainpp;
    114   1.23   thorpej 
    115  1.134        ad /* This lock protects both pool_head and drainpp. */
    116  1.134        ad static kmutex_t pool_head_lock;
    117  1.134        ad static kcondvar_t pool_busy;
    118    1.3        pk 
    119  1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    120  1.178      elad static kmutex_t pool_allocator_lock;
    121  1.178      elad 
    122  1.135      yamt typedef uint32_t pool_item_bitmap_t;
    123  1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    124  1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    125   1.99      yamt 
    126    1.3        pk struct pool_item_header {
    127    1.3        pk 	/* Page headers */
    128   1.88       chs 	LIST_ENTRY(pool_item_header)
    129    1.3        pk 				ph_pagelist;	/* pool page list */
    130   1.88       chs 	SPLAY_ENTRY(pool_item_header)
    131   1.88       chs 				ph_node;	/* Off-page page headers */
    132  1.128  christos 	void *			ph_page;	/* this page's address */
    133  1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    134  1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    135  1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    136   1.97      yamt 	union {
    137   1.97      yamt 		/* !PR_NOTOUCH */
    138   1.97      yamt 		struct {
    139  1.102       chs 			LIST_HEAD(, pool_item)
    140   1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    141   1.97      yamt 		} phu_normal;
    142   1.97      yamt 		/* PR_NOTOUCH */
    143   1.97      yamt 		struct {
    144  1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    145   1.97      yamt 		} phu_notouch;
    146   1.97      yamt 	} ph_u;
    147    1.3        pk };
    148   1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    149  1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    150    1.3        pk 
    151    1.1        pk struct pool_item {
    152    1.3        pk #ifdef DIAGNOSTIC
    153   1.82   thorpej 	u_int pi_magic;
    154   1.33       chs #endif
    155  1.134        ad #define	PI_MAGIC 0xdeaddeadU
    156    1.3        pk 	/* Other entries use only this list entry */
    157  1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    158    1.3        pk };
    159    1.3        pk 
    160   1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    161   1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    162   1.53   thorpej 
    163   1.43   thorpej /*
    164   1.43   thorpej  * Pool cache management.
    165   1.43   thorpej  *
    166   1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    167   1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    168   1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    169   1.43   thorpej  * necessary.
    170   1.43   thorpej  *
    171  1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    172  1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    173  1.134        ad  * object from the pool, it calls the object's constructor and places it
    174  1.134        ad  * into a cache group.  When a cache group frees an object back to the
    175  1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    176  1.134        ad  * to persist in constructed form while freed to the cache.
    177  1.134        ad  *
    178  1.134        ad  * The pool references each cache, so that when a pool is drained by the
    179  1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    180  1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    181  1.134        ad  * its entirety.
    182   1.43   thorpej  *
    183   1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    184   1.43   thorpej  * the complexity of cache management for pools which would not benefit
    185   1.43   thorpej  * from it.
    186   1.43   thorpej  */
    187   1.43   thorpej 
    188  1.142        ad static struct pool pcg_normal_pool;
    189  1.142        ad static struct pool pcg_large_pool;
    190  1.134        ad static struct pool cache_pool;
    191  1.134        ad static struct pool cache_cpu_pool;
    192    1.3        pk 
    193  1.189     pooka pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    194  1.189     pooka 
    195  1.145        ad /* List of all caches. */
    196  1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    197  1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    198  1.145        ad 
    199  1.162        ad int pool_cache_disable;		/* global disable for caching */
    200  1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    201  1.145        ad 
    202  1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    203  1.162        ad 				    void *);
    204  1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    205  1.162        ad 				    void **, paddr_t *, int);
    206  1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    207  1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    208  1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    209  1.196       jym static void	pool_cache_transfer(pool_cache_t);
    210    1.3        pk 
    211   1.42   thorpej static int	pool_catchup(struct pool *);
    212  1.128  christos static void	pool_prime_page(struct pool *, void *,
    213   1.55   thorpej 		    struct pool_item_header *);
    214   1.88       chs static void	pool_update_curpage(struct pool *);
    215   1.66   thorpej 
    216  1.113      yamt static int	pool_grow(struct pool *, int);
    217  1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    218  1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    219    1.3        pk 
    220   1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    221  1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    222   1.42   thorpej static void pool_print1(struct pool *, const char *,
    223  1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    224    1.3        pk 
    225   1.88       chs static int pool_chk_page(struct pool *, const char *,
    226   1.88       chs 			 struct pool_item_header *);
    227   1.88       chs 
    228  1.135      yamt static inline unsigned int
    229   1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    230   1.97      yamt     const void *v)
    231   1.97      yamt {
    232   1.97      yamt 	const char *cp = v;
    233  1.135      yamt 	unsigned int idx;
    234   1.97      yamt 
    235   1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    236  1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    237   1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    238   1.97      yamt 	return idx;
    239   1.97      yamt }
    240   1.97      yamt 
    241  1.110     perry static inline void
    242   1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    243   1.97      yamt     void *obj)
    244   1.97      yamt {
    245  1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    246  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    247  1.135      yamt 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    248   1.97      yamt 
    249  1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    250  1.135      yamt 	*bitmap |= mask;
    251   1.97      yamt }
    252   1.97      yamt 
    253  1.110     perry static inline void *
    254   1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    255   1.97      yamt {
    256  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    257  1.135      yamt 	unsigned int idx;
    258  1.135      yamt 	int i;
    259   1.97      yamt 
    260  1.135      yamt 	for (i = 0; ; i++) {
    261  1.135      yamt 		int bit;
    262   1.97      yamt 
    263  1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    264  1.135      yamt 		bit = ffs32(bitmap[i]);
    265  1.135      yamt 		if (bit) {
    266  1.135      yamt 			pool_item_bitmap_t mask;
    267  1.135      yamt 
    268  1.135      yamt 			bit--;
    269  1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    270  1.135      yamt 			mask = 1 << bit;
    271  1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    272  1.135      yamt 			bitmap[i] &= ~mask;
    273  1.135      yamt 			break;
    274  1.135      yamt 		}
    275  1.135      yamt 	}
    276  1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    277  1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    278   1.97      yamt }
    279   1.97      yamt 
    280  1.135      yamt static inline void
    281  1.141      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    282  1.135      yamt {
    283  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    284  1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    285  1.135      yamt 	int i;
    286  1.135      yamt 
    287  1.135      yamt 	for (i = 0; i < n; i++) {
    288  1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    289  1.135      yamt 	}
    290  1.135      yamt }
    291  1.135      yamt 
    292  1.110     perry static inline int
    293   1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    294   1.88       chs {
    295  1.121      yamt 
    296  1.121      yamt 	/*
    297  1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    298  1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    299  1.121      yamt 	 */
    300  1.121      yamt 
    301   1.88       chs 	if (a->ph_page < b->ph_page)
    302  1.121      yamt 		return (1);
    303  1.121      yamt 	else if (a->ph_page > b->ph_page)
    304   1.88       chs 		return (-1);
    305   1.88       chs 	else
    306   1.88       chs 		return (0);
    307   1.88       chs }
    308   1.88       chs 
    309   1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    310   1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    311   1.88       chs 
    312  1.141      yamt static inline struct pool_item_header *
    313  1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    314  1.141      yamt {
    315  1.141      yamt 	struct pool_item_header *ph, tmp;
    316  1.141      yamt 
    317  1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    318  1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    319  1.141      yamt 	if (ph == NULL) {
    320  1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    321  1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    322  1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    323  1.141      yamt 		}
    324  1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    325  1.141      yamt 	}
    326  1.141      yamt 
    327  1.141      yamt 	return ph;
    328  1.141      yamt }
    329  1.141      yamt 
    330    1.3        pk /*
    331  1.121      yamt  * Return the pool page header based on item address.
    332    1.3        pk  */
    333  1.110     perry static inline struct pool_item_header *
    334  1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    335    1.3        pk {
    336   1.88       chs 	struct pool_item_header *ph, tmp;
    337    1.3        pk 
    338  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    339  1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    340  1.121      yamt 	} else {
    341  1.128  christos 		void *page =
    342  1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    343  1.121      yamt 
    344  1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    345  1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    346  1.121      yamt 		} else {
    347  1.121      yamt 			tmp.ph_page = page;
    348  1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    349  1.121      yamt 		}
    350  1.121      yamt 	}
    351    1.3        pk 
    352  1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    353  1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    354  1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    355   1.88       chs 	return ph;
    356    1.3        pk }
    357    1.3        pk 
    358  1.101   thorpej static void
    359  1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    360  1.101   thorpej {
    361  1.101   thorpej 	struct pool_item_header *ph;
    362  1.101   thorpej 
    363  1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    364  1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    365  1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    366  1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    367  1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    368  1.101   thorpej 	}
    369  1.101   thorpej }
    370  1.101   thorpej 
    371    1.3        pk /*
    372    1.3        pk  * Remove a page from the pool.
    373    1.3        pk  */
    374  1.110     perry static inline void
    375   1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    376   1.61       chs      struct pool_pagelist *pq)
    377    1.3        pk {
    378    1.3        pk 
    379  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    380   1.91      yamt 
    381    1.3        pk 	/*
    382    1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    383    1.3        pk 	 */
    384    1.6   thorpej 	if (ph->ph_nmissing == 0) {
    385  1.207  riastrad 		KASSERT(pp->pr_nidle != 0);
    386  1.207  riastrad 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    387  1.207  riastrad 		    "nitems=%u < itemsperpage=%u",
    388  1.207  riastrad 		    pp->pr_nitems, pp->pr_itemsperpage);
    389    1.6   thorpej 		pp->pr_nidle--;
    390    1.6   thorpej 	}
    391    1.7   thorpej 
    392   1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    393   1.20   thorpej 
    394    1.7   thorpej 	/*
    395  1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    396    1.7   thorpej 	 */
    397   1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    398   1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    399   1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    400  1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    401  1.101   thorpej 
    402    1.7   thorpej 	pp->pr_npages--;
    403    1.7   thorpej 	pp->pr_npagefree++;
    404    1.6   thorpej 
    405   1.88       chs 	pool_update_curpage(pp);
    406    1.3        pk }
    407    1.3        pk 
    408    1.3        pk /*
    409   1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    410   1.94    simonb  */
    411   1.94    simonb void
    412  1.117      yamt pool_subsystem_init(void)
    413   1.94    simonb {
    414  1.192     rmind 	size_t size;
    415  1.191      para 	int idx;
    416   1.94    simonb 
    417  1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    418  1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    419  1.134        ad 	cv_init(&pool_busy, "poolbusy");
    420  1.134        ad 
    421  1.191      para 	/*
    422  1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    423  1.191      para 	 * haven't done so yet.
    424  1.191      para 	 */
    425  1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    426  1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    427  1.191      para 		int nelem;
    428  1.191      para 		size_t sz;
    429  1.191      para 
    430  1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    431  1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    432  1.191      para 		    "phpool-%d", nelem);
    433  1.191      para 		sz = sizeof(struct pool_item_header);
    434  1.191      para 		if (nelem) {
    435  1.191      para 			sz = offsetof(struct pool_item_header,
    436  1.191      para 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    437  1.191      para 		}
    438  1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    439  1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    440  1.117      yamt 	}
    441  1.191      para #ifdef POOL_SUBPAGE
    442  1.191      para 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    443  1.191      para 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    444  1.191      para #endif
    445  1.191      para 
    446  1.191      para 	size = sizeof(pcg_t) +
    447  1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    448  1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    449  1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    450  1.191      para 
    451  1.191      para 	size = sizeof(pcg_t) +
    452  1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    453  1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    454  1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    455  1.134        ad 
    456  1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    457  1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    458  1.134        ad 
    459  1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    460  1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    461   1.94    simonb }
    462   1.94    simonb 
    463   1.94    simonb /*
    464    1.3        pk  * Initialize the given pool resource structure.
    465    1.3        pk  *
    466    1.3        pk  * We export this routine to allow other kernel parts to declare
    467  1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    468    1.3        pk  */
    469    1.3        pk void
    470   1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    471  1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    472    1.3        pk {
    473  1.116    simonb 	struct pool *pp1;
    474  1.204      maxv 	size_t trysize, phsize, prsize;
    475  1.134        ad 	int off, slack;
    476    1.3        pk 
    477  1.116    simonb #ifdef DEBUG
    478  1.198  christos 	if (__predict_true(!cold))
    479  1.198  christos 		mutex_enter(&pool_head_lock);
    480  1.116    simonb 	/*
    481  1.116    simonb 	 * Check that the pool hasn't already been initialised and
    482  1.116    simonb 	 * added to the list of all pools.
    483  1.116    simonb 	 */
    484  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    485  1.116    simonb 		if (pp == pp1)
    486  1.116    simonb 			panic("pool_init: pool %s already initialised",
    487  1.116    simonb 			    wchan);
    488  1.116    simonb 	}
    489  1.198  christos 	if (__predict_true(!cold))
    490  1.198  christos 		mutex_exit(&pool_head_lock);
    491  1.116    simonb #endif
    492  1.116    simonb 
    493   1.66   thorpej 	if (palloc == NULL)
    494   1.66   thorpej 		palloc = &pool_allocator_kmem;
    495  1.112     bjh21 #ifdef POOL_SUBPAGE
    496  1.112     bjh21 	if (size > palloc->pa_pagesz) {
    497  1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    498  1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    499  1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    500  1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    501  1.112     bjh21 	}
    502   1.66   thorpej #endif /* POOL_SUBPAGE */
    503  1.180   mlelstv 	if (!cold)
    504  1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    505  1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    506  1.112     bjh21 		if (palloc->pa_pagesz == 0)
    507   1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    508   1.66   thorpej 
    509   1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    510   1.66   thorpej 
    511  1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    512   1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    513   1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    514    1.4   thorpej 	}
    515  1.180   mlelstv 	if (!cold)
    516  1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    517    1.3        pk 
    518    1.3        pk 	if (align == 0)
    519    1.3        pk 		align = ALIGN(1);
    520   1.14   thorpej 
    521  1.204      maxv 	prsize = size;
    522  1.204      maxv 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    523  1.204      maxv 		prsize = sizeof(struct pool_item);
    524    1.3        pk 
    525  1.204      maxv 	prsize = roundup(prsize, align);
    526  1.207  riastrad 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    527  1.207  riastrad 	    "pool_init: pool item size (%zu) larger than page size (%u)",
    528  1.207  riastrad 	    prsize, palloc->pa_pagesz);
    529   1.35        pk 
    530    1.3        pk 	/*
    531    1.3        pk 	 * Initialize the pool structure.
    532    1.3        pk 	 */
    533   1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    534   1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    535   1.88       chs 	LIST_INIT(&pp->pr_partpages);
    536  1.134        ad 	pp->pr_cache = NULL;
    537    1.3        pk 	pp->pr_curpage = NULL;
    538    1.3        pk 	pp->pr_npages = 0;
    539    1.3        pk 	pp->pr_minitems = 0;
    540    1.3        pk 	pp->pr_minpages = 0;
    541    1.3        pk 	pp->pr_maxpages = UINT_MAX;
    542   1.20   thorpej 	pp->pr_roflags = flags;
    543   1.20   thorpej 	pp->pr_flags = 0;
    544  1.204      maxv 	pp->pr_size = prsize;
    545    1.3        pk 	pp->pr_align = align;
    546    1.3        pk 	pp->pr_wchan = wchan;
    547   1.66   thorpej 	pp->pr_alloc = palloc;
    548   1.20   thorpej 	pp->pr_nitems = 0;
    549   1.20   thorpej 	pp->pr_nout = 0;
    550   1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    551   1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    552   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    553   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    554   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    555   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    556   1.68   thorpej 	pp->pr_drain_hook = NULL;
    557   1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    558  1.125        ad 	pp->pr_freecheck = NULL;
    559  1.204      maxv 	pool_redzone_init(pp, size);
    560    1.3        pk 
    561    1.3        pk 	/*
    562    1.3        pk 	 * Decide whether to put the page header off page to avoid
    563   1.92     enami 	 * wasting too large a part of the page or too big item.
    564   1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    565   1.92     enami 	 * a returned item with its header based on the page address.
    566   1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    567   1.92     enami 	 * size as the threshold (XXX: tune)
    568   1.92     enami 	 *
    569   1.92     enami 	 * However, we'll put the header into the page if we can put
    570   1.92     enami 	 * it without wasting any items.
    571   1.92     enami 	 *
    572   1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    573    1.3        pk 	 */
    574   1.92     enami 	pp->pr_itemoffset = ioff %= align;
    575   1.92     enami 	/* See the comment below about reserved bytes. */
    576   1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    577   1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    578  1.201      para 	if (pp->pr_roflags & PR_PHINPAGE ||
    579  1.201      para 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    580   1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    581  1.201      para 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    582    1.3        pk 		/* Use the end of the page for the page header */
    583   1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    584   1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    585    1.2        pk 	} else {
    586    1.3        pk 		/* The page header will be taken from our page header pool */
    587    1.3        pk 		pp->pr_phoffset = 0;
    588   1.66   thorpej 		off = palloc->pa_pagesz;
    589   1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    590    1.2        pk 	}
    591    1.1        pk 
    592    1.3        pk 	/*
    593    1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    594    1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    595    1.3        pk 	 * appropriate positioning of each item.
    596    1.3        pk 	 */
    597    1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    598   1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    599   1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    600   1.97      yamt 		int idx;
    601   1.97      yamt 
    602   1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    603   1.97      yamt 		    idx++) {
    604   1.97      yamt 			/* nothing */
    605   1.97      yamt 		}
    606   1.97      yamt 		if (idx >= PHPOOL_MAX) {
    607   1.97      yamt 			/*
    608   1.97      yamt 			 * if you see this panic, consider to tweak
    609   1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    610   1.97      yamt 			 */
    611   1.97      yamt 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    612   1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    613   1.97      yamt 		}
    614   1.97      yamt 		pp->pr_phpool = &phpool[idx];
    615   1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    616   1.97      yamt 		pp->pr_phpool = &phpool[0];
    617   1.97      yamt 	}
    618   1.97      yamt #if defined(DIAGNOSTIC)
    619   1.97      yamt 	else {
    620   1.97      yamt 		pp->pr_phpool = NULL;
    621   1.97      yamt 	}
    622   1.97      yamt #endif
    623    1.3        pk 
    624    1.3        pk 	/*
    625    1.3        pk 	 * Use the slack between the chunks and the page header
    626    1.3        pk 	 * for "cache coloring".
    627    1.3        pk 	 */
    628    1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    629    1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    630    1.3        pk 	pp->pr_curcolor = 0;
    631    1.3        pk 
    632    1.3        pk 	pp->pr_nget = 0;
    633    1.3        pk 	pp->pr_nfail = 0;
    634    1.3        pk 	pp->pr_nput = 0;
    635    1.3        pk 	pp->pr_npagealloc = 0;
    636    1.3        pk 	pp->pr_npagefree = 0;
    637    1.1        pk 	pp->pr_hiwat = 0;
    638    1.8   thorpej 	pp->pr_nidle = 0;
    639  1.134        ad 	pp->pr_refcnt = 0;
    640    1.3        pk 
    641  1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    642  1.134        ad 	cv_init(&pp->pr_cv, wchan);
    643  1.134        ad 	pp->pr_ipl = ipl;
    644    1.1        pk 
    645  1.145        ad 	/* Insert into the list of all pools. */
    646  1.181   mlelstv 	if (!cold)
    647  1.134        ad 		mutex_enter(&pool_head_lock);
    648  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    649  1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    650  1.145        ad 			break;
    651  1.145        ad 	}
    652  1.145        ad 	if (pp1 == NULL)
    653  1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    654  1.145        ad 	else
    655  1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    656  1.181   mlelstv 	if (!cold)
    657  1.134        ad 		mutex_exit(&pool_head_lock);
    658  1.134        ad 
    659  1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    660  1.181   mlelstv 	if (!cold)
    661  1.134        ad 		mutex_enter(&palloc->pa_lock);
    662  1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    663  1.181   mlelstv 	if (!cold)
    664  1.134        ad 		mutex_exit(&palloc->pa_lock);
    665    1.1        pk }
    666    1.1        pk 
    667    1.1        pk /*
    668    1.1        pk  * De-commision a pool resource.
    669    1.1        pk  */
    670    1.1        pk void
    671   1.42   thorpej pool_destroy(struct pool *pp)
    672    1.1        pk {
    673  1.101   thorpej 	struct pool_pagelist pq;
    674    1.3        pk 	struct pool_item_header *ph;
    675   1.43   thorpej 
    676  1.101   thorpej 	/* Remove from global pool list */
    677  1.134        ad 	mutex_enter(&pool_head_lock);
    678  1.134        ad 	while (pp->pr_refcnt != 0)
    679  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    680  1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    681  1.101   thorpej 	if (drainpp == pp)
    682  1.101   thorpej 		drainpp = NULL;
    683  1.134        ad 	mutex_exit(&pool_head_lock);
    684  1.101   thorpej 
    685  1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    686  1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    687   1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    688  1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    689   1.66   thorpej 
    690  1.178      elad 	mutex_enter(&pool_allocator_lock);
    691  1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    692  1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    693  1.178      elad 	mutex_exit(&pool_allocator_lock);
    694  1.178      elad 
    695  1.134        ad 	mutex_enter(&pp->pr_lock);
    696  1.101   thorpej 
    697  1.134        ad 	KASSERT(pp->pr_cache == NULL);
    698  1.207  riastrad 	KASSERTMSG((pp->pr_nout == 0),
    699  1.207  riastrad 	    "pool_destroy: pool busy: still out: %u", pp->pr_nout);
    700  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    701  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    702  1.101   thorpej 
    703    1.3        pk 	/* Remove all pages */
    704  1.101   thorpej 	LIST_INIT(&pq);
    705   1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    706  1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    707  1.101   thorpej 
    708  1.134        ad 	mutex_exit(&pp->pr_lock);
    709    1.3        pk 
    710  1.101   thorpej 	pr_pagelist_free(pp, &pq);
    711  1.134        ad 	cv_destroy(&pp->pr_cv);
    712  1.134        ad 	mutex_destroy(&pp->pr_lock);
    713    1.1        pk }
    714    1.1        pk 
    715   1.68   thorpej void
    716   1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    717   1.68   thorpej {
    718   1.68   thorpej 
    719   1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    720  1.207  riastrad 	KASSERTMSG((pp->pr_drain_hook == NULL),
    721  1.207  riastrad 	    "pool_set_drain_hook(%s): already set", pp->pr_wchan);
    722   1.68   thorpej 	pp->pr_drain_hook = fn;
    723   1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    724   1.68   thorpej }
    725   1.68   thorpej 
    726   1.88       chs static struct pool_item_header *
    727  1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    728   1.55   thorpej {
    729   1.55   thorpej 	struct pool_item_header *ph;
    730   1.55   thorpej 
    731   1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    732  1.128  christos 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    733  1.134        ad 	else
    734   1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    735   1.55   thorpej 
    736   1.55   thorpej 	return (ph);
    737   1.55   thorpej }
    738    1.1        pk 
    739    1.1        pk /*
    740  1.134        ad  * Grab an item from the pool.
    741    1.1        pk  */
    742    1.3        pk void *
    743   1.56  sommerfe pool_get(struct pool *pp, int flags)
    744    1.1        pk {
    745    1.1        pk 	struct pool_item *pi;
    746    1.3        pk 	struct pool_item_header *ph;
    747   1.55   thorpej 	void *v;
    748    1.1        pk 
    749  1.207  riastrad 	KASSERTMSG((pp->pr_itemsperpage != 0),
    750  1.207  riastrad 	    "pool_get: pool '%s': pr_itemsperpage is zero, "
    751  1.207  riastrad 	    "pool not initialized?", pp->pr_wchan);
    752  1.207  riastrad 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    753  1.207  riastrad 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    754  1.207  riastrad 	    "pool '%s' is IPL_NONE, but called from interrupt context",
    755  1.207  riastrad 	    pp->pr_wchan);
    756  1.155        ad 	if (flags & PR_WAITOK) {
    757  1.154      yamt 		ASSERT_SLEEPABLE();
    758  1.155        ad 	}
    759    1.1        pk 
    760  1.134        ad 	mutex_enter(&pp->pr_lock);
    761   1.20   thorpej  startover:
    762   1.20   thorpej 	/*
    763   1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    764   1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    765   1.20   thorpej 	 * the pool.
    766   1.20   thorpej 	 */
    767  1.207  riastrad 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    768  1.207  riastrad 	    "pool_get: %s: crossed hard limit", pp->pr_wchan);
    769   1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    770   1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    771   1.68   thorpej 			/*
    772   1.68   thorpej 			 * Since the drain hook is going to free things
    773   1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    774   1.68   thorpej 			 * and check the hardlimit condition again.
    775   1.68   thorpej 			 */
    776  1.134        ad 			mutex_exit(&pp->pr_lock);
    777   1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    778  1.134        ad 			mutex_enter(&pp->pr_lock);
    779   1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    780   1.68   thorpej 				goto startover;
    781   1.68   thorpej 		}
    782   1.68   thorpej 
    783   1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    784   1.20   thorpej 			/*
    785   1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
    786   1.20   thorpej 			 * it be?
    787   1.20   thorpej 			 */
    788   1.20   thorpej 			pp->pr_flags |= PR_WANTED;
    789  1.134        ad 			cv_wait(&pp->pr_cv, &pp->pr_lock);
    790   1.20   thorpej 			goto startover;
    791   1.20   thorpej 		}
    792   1.31   thorpej 
    793   1.31   thorpej 		/*
    794   1.31   thorpej 		 * Log a message that the hard limit has been hit.
    795   1.31   thorpej 		 */
    796   1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
    797   1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
    798   1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
    799   1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    800   1.21   thorpej 
    801   1.21   thorpej 		pp->pr_nfail++;
    802   1.21   thorpej 
    803  1.134        ad 		mutex_exit(&pp->pr_lock);
    804   1.20   thorpej 		return (NULL);
    805   1.20   thorpej 	}
    806   1.20   thorpej 
    807    1.3        pk 	/*
    808    1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
    809    1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
    810    1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
    811    1.3        pk 	 * has no items in its bucket.
    812    1.3        pk 	 */
    813   1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
    814  1.113      yamt 		int error;
    815  1.113      yamt 
    816  1.207  riastrad 		KASSERTMSG((pp->pr_nitems == 0),
    817  1.207  riastrad 		    "pool_get: nitems inconsistent"
    818  1.207  riastrad 		    ": %s: curpage NULL, nitems %u",
    819  1.207  riastrad 		    pp->pr_wchan, pp->pr_nitems);
    820   1.20   thorpej 
    821   1.21   thorpej 		/*
    822   1.21   thorpej 		 * Call the back-end page allocator for more memory.
    823   1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
    824   1.21   thorpej 		 * may block.
    825   1.21   thorpej 		 */
    826  1.113      yamt 		error = pool_grow(pp, flags);
    827  1.113      yamt 		if (error != 0) {
    828   1.21   thorpej 			/*
    829   1.55   thorpej 			 * We were unable to allocate a page or item
    830   1.55   thorpej 			 * header, but we released the lock during
    831   1.55   thorpej 			 * allocation, so perhaps items were freed
    832   1.55   thorpej 			 * back to the pool.  Check for this case.
    833   1.21   thorpej 			 */
    834   1.21   thorpej 			if (pp->pr_curpage != NULL)
    835   1.21   thorpej 				goto startover;
    836   1.15        pk 
    837  1.117      yamt 			pp->pr_nfail++;
    838  1.134        ad 			mutex_exit(&pp->pr_lock);
    839  1.117      yamt 			return (NULL);
    840    1.1        pk 		}
    841    1.3        pk 
    842   1.20   thorpej 		/* Start the allocation process over. */
    843   1.20   thorpej 		goto startover;
    844    1.3        pk 	}
    845   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
    846  1.207  riastrad 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
    847  1.207  riastrad 		    "pool_get: %s: page empty", pp->pr_wchan);
    848   1.97      yamt 		v = pr_item_notouch_get(pp, ph);
    849   1.97      yamt 	} else {
    850  1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    851   1.97      yamt 		if (__predict_false(v == NULL)) {
    852  1.134        ad 			mutex_exit(&pp->pr_lock);
    853   1.97      yamt 			panic("pool_get: %s: page empty", pp->pr_wchan);
    854   1.97      yamt 		}
    855  1.207  riastrad 		KASSERTMSG((pp->pr_nitems > 0),
    856  1.207  riastrad 		    "pool_get: nitems inconsistent"
    857  1.207  riastrad 		    ": %s: items on itemlist, nitems %u",
    858  1.207  riastrad 		    pp->pr_wchan, pp->pr_nitems);
    859  1.207  riastrad 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
    860  1.207  riastrad 		    "pool_get(%s): free list modified: "
    861  1.207  riastrad 		    "magic=%x; page %p; item addr %p",
    862  1.207  riastrad 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    863    1.3        pk 
    864   1.97      yamt 		/*
    865   1.97      yamt 		 * Remove from item list.
    866   1.97      yamt 		 */
    867  1.102       chs 		LIST_REMOVE(pi, pi_list);
    868   1.97      yamt 	}
    869   1.20   thorpej 	pp->pr_nitems--;
    870   1.20   thorpej 	pp->pr_nout++;
    871    1.6   thorpej 	if (ph->ph_nmissing == 0) {
    872  1.207  riastrad 		KASSERT(pp->pr_nidle > 0);
    873    1.6   thorpej 		pp->pr_nidle--;
    874   1.88       chs 
    875   1.88       chs 		/*
    876   1.88       chs 		 * This page was previously empty.  Move it to the list of
    877   1.88       chs 		 * partially-full pages.  This page is already curpage.
    878   1.88       chs 		 */
    879   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
    880   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    881    1.6   thorpej 	}
    882    1.3        pk 	ph->ph_nmissing++;
    883   1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    884  1.207  riastrad 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
    885  1.207  riastrad 			LIST_EMPTY(&ph->ph_itemlist)),
    886  1.207  riastrad 		    "pool_get: %s: nmissing inconsistent", pp->pr_wchan);
    887    1.3        pk 		/*
    888   1.88       chs 		 * This page is now full.  Move it to the full list
    889   1.88       chs 		 * and select a new current page.
    890    1.3        pk 		 */
    891   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
    892   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    893   1.88       chs 		pool_update_curpage(pp);
    894    1.1        pk 	}
    895    1.3        pk 
    896    1.3        pk 	pp->pr_nget++;
    897   1.20   thorpej 
    898   1.20   thorpej 	/*
    899   1.20   thorpej 	 * If we have a low water mark and we are now below that low
    900   1.20   thorpej 	 * water mark, add more items to the pool.
    901   1.20   thorpej 	 */
    902   1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    903   1.20   thorpej 		/*
    904   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
    905   1.20   thorpej 		 * to try again in a second or so?  The latter could break
    906   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
    907   1.20   thorpej 		 */
    908   1.20   thorpej 	}
    909   1.20   thorpej 
    910  1.134        ad 	mutex_exit(&pp->pr_lock);
    911  1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    912  1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
    913  1.204      maxv 	pool_redzone_fill(pp, v);
    914    1.1        pk 	return (v);
    915    1.1        pk }
    916    1.1        pk 
    917    1.1        pk /*
    918   1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
    919    1.1        pk  */
    920   1.43   thorpej static void
    921  1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    922    1.1        pk {
    923    1.1        pk 	struct pool_item *pi = v;
    924    1.3        pk 	struct pool_item_header *ph;
    925    1.3        pk 
    926  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    927  1.204      maxv 	pool_redzone_check(pp, v);
    928  1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
    929  1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    930   1.61       chs 
    931  1.207  riastrad 	KASSERTMSG((pp->pr_nout > 0),
    932  1.207  riastrad 	    "pool_put: pool %s: putting with none out", pp->pr_wchan);
    933    1.3        pk 
    934  1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    935    1.3        pk 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    936    1.3        pk 	}
    937   1.28   thorpej 
    938    1.3        pk 	/*
    939    1.3        pk 	 * Return to item list.
    940    1.3        pk 	 */
    941   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
    942   1.97      yamt 		pr_item_notouch_put(pp, ph, v);
    943   1.97      yamt 	} else {
    944    1.2        pk #ifdef DIAGNOSTIC
    945   1.97      yamt 		pi->pi_magic = PI_MAGIC;
    946    1.3        pk #endif
    947   1.32       chs #ifdef DEBUG
    948   1.97      yamt 		{
    949   1.97      yamt 			int i, *ip = v;
    950   1.32       chs 
    951   1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    952   1.97      yamt 				*ip++ = PI_MAGIC;
    953   1.97      yamt 			}
    954   1.32       chs 		}
    955   1.32       chs #endif
    956   1.32       chs 
    957  1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    958   1.97      yamt 	}
    959   1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
    960    1.3        pk 	ph->ph_nmissing--;
    961    1.3        pk 	pp->pr_nput++;
    962   1.20   thorpej 	pp->pr_nitems++;
    963   1.20   thorpej 	pp->pr_nout--;
    964    1.3        pk 
    965    1.3        pk 	/* Cancel "pool empty" condition if it exists */
    966    1.3        pk 	if (pp->pr_curpage == NULL)
    967    1.3        pk 		pp->pr_curpage = ph;
    968    1.3        pk 
    969    1.3        pk 	if (pp->pr_flags & PR_WANTED) {
    970    1.3        pk 		pp->pr_flags &= ~PR_WANTED;
    971  1.134        ad 		cv_broadcast(&pp->pr_cv);
    972    1.3        pk 	}
    973    1.3        pk 
    974    1.3        pk 	/*
    975   1.88       chs 	 * If this page is now empty, do one of two things:
    976   1.21   thorpej 	 *
    977   1.88       chs 	 *	(1) If we have more pages than the page high water mark,
    978   1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
    979   1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
    980   1.90   thorpej 	 *	    CLAIM.
    981   1.21   thorpej 	 *
    982   1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
    983   1.88       chs 	 *
    984   1.88       chs 	 * Either way, select a new current page (so we use a partially-full
    985   1.88       chs 	 * page if one is available).
    986    1.3        pk 	 */
    987    1.3        pk 	if (ph->ph_nmissing == 0) {
    988    1.6   thorpej 		pp->pr_nidle++;
    989   1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
    990  1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
    991  1.101   thorpej 			pr_rmpage(pp, ph, pq);
    992    1.3        pk 		} else {
    993   1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
    994   1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
    995    1.3        pk 
    996   1.21   thorpej 			/*
    997   1.21   thorpej 			 * Update the timestamp on the page.  A page must
    998   1.21   thorpej 			 * be idle for some period of time before it can
    999   1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1000   1.21   thorpej 			 * ping-pong'ing for memory.
   1001  1.151      yamt 			 *
   1002  1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1003  1.151      yamt 			 * a problem for our usage.
   1004   1.21   thorpej 			 */
   1005  1.151      yamt 			ph->ph_time = time_uptime;
   1006    1.1        pk 		}
   1007   1.88       chs 		pool_update_curpage(pp);
   1008    1.1        pk 	}
   1009   1.88       chs 
   1010   1.21   thorpej 	/*
   1011   1.88       chs 	 * If the page was previously completely full, move it to the
   1012   1.88       chs 	 * partially-full list and make it the current page.  The next
   1013   1.88       chs 	 * allocation will get the item from this page, instead of
   1014   1.88       chs 	 * further fragmenting the pool.
   1015   1.21   thorpej 	 */
   1016   1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1017   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1018   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1019   1.21   thorpej 		pp->pr_curpage = ph;
   1020   1.21   thorpej 	}
   1021   1.43   thorpej }
   1022   1.43   thorpej 
   1023   1.56  sommerfe void
   1024   1.56  sommerfe pool_put(struct pool *pp, void *v)
   1025   1.56  sommerfe {
   1026  1.101   thorpej 	struct pool_pagelist pq;
   1027  1.101   thorpej 
   1028  1.101   thorpej 	LIST_INIT(&pq);
   1029   1.56  sommerfe 
   1030  1.134        ad 	mutex_enter(&pp->pr_lock);
   1031  1.101   thorpej 	pool_do_put(pp, v, &pq);
   1032  1.134        ad 	mutex_exit(&pp->pr_lock);
   1033   1.56  sommerfe 
   1034  1.102       chs 	pr_pagelist_free(pp, &pq);
   1035   1.56  sommerfe }
   1036   1.57  sommerfe 
   1037   1.74   thorpej /*
   1038  1.113      yamt  * pool_grow: grow a pool by a page.
   1039  1.113      yamt  *
   1040  1.113      yamt  * => called with pool locked.
   1041  1.113      yamt  * => unlock and relock the pool.
   1042  1.113      yamt  * => return with pool locked.
   1043  1.113      yamt  */
   1044  1.113      yamt 
   1045  1.113      yamt static int
   1046  1.113      yamt pool_grow(struct pool *pp, int flags)
   1047  1.113      yamt {
   1048  1.113      yamt 	struct pool_item_header *ph = NULL;
   1049  1.113      yamt 	char *cp;
   1050  1.113      yamt 
   1051  1.134        ad 	mutex_exit(&pp->pr_lock);
   1052  1.113      yamt 	cp = pool_allocator_alloc(pp, flags);
   1053  1.113      yamt 	if (__predict_true(cp != NULL)) {
   1054  1.113      yamt 		ph = pool_alloc_item_header(pp, cp, flags);
   1055  1.113      yamt 	}
   1056  1.113      yamt 	if (__predict_false(cp == NULL || ph == NULL)) {
   1057  1.113      yamt 		if (cp != NULL) {
   1058  1.113      yamt 			pool_allocator_free(pp, cp);
   1059  1.113      yamt 		}
   1060  1.134        ad 		mutex_enter(&pp->pr_lock);
   1061  1.113      yamt 		return ENOMEM;
   1062  1.113      yamt 	}
   1063  1.113      yamt 
   1064  1.134        ad 	mutex_enter(&pp->pr_lock);
   1065  1.113      yamt 	pool_prime_page(pp, cp, ph);
   1066  1.113      yamt 	pp->pr_npagealloc++;
   1067  1.113      yamt 	return 0;
   1068  1.113      yamt }
   1069  1.113      yamt 
   1070  1.113      yamt /*
   1071   1.74   thorpej  * Add N items to the pool.
   1072   1.74   thorpej  */
   1073   1.74   thorpej int
   1074   1.74   thorpej pool_prime(struct pool *pp, int n)
   1075   1.74   thorpej {
   1076   1.75    simonb 	int newpages;
   1077  1.113      yamt 	int error = 0;
   1078   1.74   thorpej 
   1079  1.134        ad 	mutex_enter(&pp->pr_lock);
   1080   1.74   thorpej 
   1081   1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1082   1.74   thorpej 
   1083   1.74   thorpej 	while (newpages-- > 0) {
   1084  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1085  1.113      yamt 		if (error) {
   1086   1.74   thorpej 			break;
   1087   1.74   thorpej 		}
   1088   1.74   thorpej 		pp->pr_minpages++;
   1089   1.74   thorpej 	}
   1090   1.74   thorpej 
   1091   1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1092   1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1093   1.74   thorpej 
   1094  1.134        ad 	mutex_exit(&pp->pr_lock);
   1095  1.113      yamt 	return error;
   1096   1.74   thorpej }
   1097   1.55   thorpej 
   1098   1.55   thorpej /*
   1099    1.3        pk  * Add a page worth of items to the pool.
   1100   1.21   thorpej  *
   1101   1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1102    1.3        pk  */
   1103   1.55   thorpej static void
   1104  1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1105    1.3        pk {
   1106    1.3        pk 	struct pool_item *pi;
   1107  1.128  christos 	void *cp = storage;
   1108  1.125        ad 	const unsigned int align = pp->pr_align;
   1109  1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1110   1.55   thorpej 	int n;
   1111   1.36        pk 
   1112  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1113  1.207  riastrad 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1114  1.207  riastrad 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1115  1.207  riastrad 	    "pool_prime_page: %s: unaligned page: %p", pp->pr_wchan, cp);
   1116    1.3        pk 
   1117    1.3        pk 	/*
   1118    1.3        pk 	 * Insert page header.
   1119    1.3        pk 	 */
   1120   1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1121  1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1122    1.3        pk 	ph->ph_page = storage;
   1123    1.3        pk 	ph->ph_nmissing = 0;
   1124  1.151      yamt 	ph->ph_time = time_uptime;
   1125   1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1126   1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1127    1.3        pk 
   1128    1.6   thorpej 	pp->pr_nidle++;
   1129    1.6   thorpej 
   1130    1.3        pk 	/*
   1131    1.3        pk 	 * Color this page.
   1132    1.3        pk 	 */
   1133  1.141      yamt 	ph->ph_off = pp->pr_curcolor;
   1134  1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1135    1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1136    1.3        pk 		pp->pr_curcolor = 0;
   1137    1.3        pk 
   1138    1.3        pk 	/*
   1139    1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1140    1.3        pk 	 */
   1141    1.3        pk 	if (ioff != 0)
   1142  1.128  christos 		cp = (char *)cp + align - ioff;
   1143    1.3        pk 
   1144  1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1145  1.125        ad 
   1146    1.3        pk 	/*
   1147    1.3        pk 	 * Insert remaining chunks on the bucket list.
   1148    1.3        pk 	 */
   1149    1.3        pk 	n = pp->pr_itemsperpage;
   1150   1.20   thorpej 	pp->pr_nitems += n;
   1151    1.3        pk 
   1152   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1153  1.141      yamt 		pr_item_notouch_init(pp, ph);
   1154   1.97      yamt 	} else {
   1155   1.97      yamt 		while (n--) {
   1156   1.97      yamt 			pi = (struct pool_item *)cp;
   1157   1.78   thorpej 
   1158   1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1159    1.3        pk 
   1160   1.97      yamt 			/* Insert on page list */
   1161  1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1162    1.3        pk #ifdef DIAGNOSTIC
   1163   1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1164    1.3        pk #endif
   1165  1.128  christos 			cp = (char *)cp + pp->pr_size;
   1166  1.125        ad 
   1167  1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1168   1.97      yamt 		}
   1169    1.3        pk 	}
   1170    1.3        pk 
   1171    1.3        pk 	/*
   1172    1.3        pk 	 * If the pool was depleted, point at the new page.
   1173    1.3        pk 	 */
   1174    1.3        pk 	if (pp->pr_curpage == NULL)
   1175    1.3        pk 		pp->pr_curpage = ph;
   1176    1.3        pk 
   1177    1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1178    1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1179    1.3        pk }
   1180    1.3        pk 
   1181   1.20   thorpej /*
   1182   1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1183   1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1184   1.20   thorpej  *
   1185   1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1186   1.20   thorpej  *
   1187   1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1188   1.20   thorpej  * with it locked.
   1189   1.20   thorpej  */
   1190   1.20   thorpej static int
   1191   1.42   thorpej pool_catchup(struct pool *pp)
   1192   1.20   thorpej {
   1193   1.20   thorpej 	int error = 0;
   1194   1.20   thorpej 
   1195   1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1196  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1197  1.113      yamt 		if (error) {
   1198   1.20   thorpej 			break;
   1199   1.20   thorpej 		}
   1200   1.20   thorpej 	}
   1201  1.113      yamt 	return error;
   1202   1.20   thorpej }
   1203   1.20   thorpej 
   1204   1.88       chs static void
   1205   1.88       chs pool_update_curpage(struct pool *pp)
   1206   1.88       chs {
   1207   1.88       chs 
   1208   1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1209   1.88       chs 	if (pp->pr_curpage == NULL) {
   1210   1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1211   1.88       chs 	}
   1212  1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1213  1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1214   1.88       chs }
   1215   1.88       chs 
   1216    1.3        pk void
   1217   1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1218    1.3        pk {
   1219   1.15        pk 
   1220  1.134        ad 	mutex_enter(&pp->pr_lock);
   1221   1.21   thorpej 
   1222    1.3        pk 	pp->pr_minitems = n;
   1223   1.15        pk 	pp->pr_minpages = (n == 0)
   1224   1.15        pk 		? 0
   1225   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1226   1.20   thorpej 
   1227   1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1228   1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1229   1.20   thorpej 		/*
   1230   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1231   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1232   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1233   1.20   thorpej 		 */
   1234   1.20   thorpej 	}
   1235   1.21   thorpej 
   1236  1.134        ad 	mutex_exit(&pp->pr_lock);
   1237    1.3        pk }
   1238    1.3        pk 
   1239    1.3        pk void
   1240   1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1241    1.3        pk {
   1242   1.15        pk 
   1243  1.134        ad 	mutex_enter(&pp->pr_lock);
   1244   1.21   thorpej 
   1245   1.15        pk 	pp->pr_maxpages = (n == 0)
   1246   1.15        pk 		? 0
   1247   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1248   1.21   thorpej 
   1249  1.134        ad 	mutex_exit(&pp->pr_lock);
   1250    1.3        pk }
   1251    1.3        pk 
   1252   1.20   thorpej void
   1253   1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1254   1.20   thorpej {
   1255   1.20   thorpej 
   1256  1.134        ad 	mutex_enter(&pp->pr_lock);
   1257   1.20   thorpej 
   1258   1.20   thorpej 	pp->pr_hardlimit = n;
   1259   1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1260   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1261   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1262   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1263   1.20   thorpej 
   1264   1.20   thorpej 	/*
   1265   1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1266   1.21   thorpej 	 * release the lock.
   1267   1.20   thorpej 	 */
   1268   1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1269   1.20   thorpej 		? 0
   1270   1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1271   1.21   thorpej 
   1272  1.134        ad 	mutex_exit(&pp->pr_lock);
   1273   1.20   thorpej }
   1274    1.3        pk 
   1275    1.3        pk /*
   1276    1.3        pk  * Release all complete pages that have not been used recently.
   1277  1.184     rmind  *
   1278  1.197       jym  * Must not be called from interrupt context.
   1279    1.3        pk  */
   1280   1.66   thorpej int
   1281   1.56  sommerfe pool_reclaim(struct pool *pp)
   1282    1.3        pk {
   1283    1.3        pk 	struct pool_item_header *ph, *phnext;
   1284   1.61       chs 	struct pool_pagelist pq;
   1285  1.151      yamt 	uint32_t curtime;
   1286  1.134        ad 	bool klock;
   1287  1.134        ad 	int rv;
   1288    1.3        pk 
   1289  1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1290  1.184     rmind 
   1291   1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1292   1.68   thorpej 		/*
   1293   1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1294   1.68   thorpej 		 */
   1295   1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1296   1.68   thorpej 	}
   1297   1.68   thorpej 
   1298  1.134        ad 	/*
   1299  1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1300  1.157        ad 	 * to block.
   1301  1.134        ad 	 */
   1302  1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1303  1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1304  1.134        ad 		KERNEL_LOCK(1, NULL);
   1305  1.134        ad 		klock = true;
   1306  1.134        ad 	} else
   1307  1.134        ad 		klock = false;
   1308  1.134        ad 
   1309  1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1310  1.134        ad 	if (pp->pr_cache != NULL)
   1311  1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1312  1.134        ad 
   1313  1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1314  1.134        ad 		if (klock) {
   1315  1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1316  1.134        ad 		}
   1317   1.66   thorpej 		return (0);
   1318  1.134        ad 	}
   1319   1.68   thorpej 
   1320   1.88       chs 	LIST_INIT(&pq);
   1321   1.43   thorpej 
   1322  1.151      yamt 	curtime = time_uptime;
   1323   1.21   thorpej 
   1324   1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1325   1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1326    1.3        pk 
   1327    1.3        pk 		/* Check our minimum page claim */
   1328    1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1329    1.3        pk 			break;
   1330    1.3        pk 
   1331   1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1332  1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1333   1.88       chs 			continue;
   1334   1.21   thorpej 
   1335   1.88       chs 		/*
   1336   1.88       chs 		 * If freeing this page would put us below
   1337   1.88       chs 		 * the low water mark, stop now.
   1338   1.88       chs 		 */
   1339   1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1340   1.88       chs 		    pp->pr_minitems)
   1341   1.88       chs 			break;
   1342   1.21   thorpej 
   1343   1.88       chs 		pr_rmpage(pp, ph, &pq);
   1344    1.3        pk 	}
   1345    1.3        pk 
   1346  1.134        ad 	mutex_exit(&pp->pr_lock);
   1347  1.134        ad 
   1348  1.134        ad 	if (LIST_EMPTY(&pq))
   1349  1.134        ad 		rv = 0;
   1350  1.134        ad 	else {
   1351  1.134        ad 		pr_pagelist_free(pp, &pq);
   1352  1.134        ad 		rv = 1;
   1353  1.134        ad 	}
   1354  1.134        ad 
   1355  1.134        ad 	if (klock) {
   1356  1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1357  1.134        ad 	}
   1358   1.66   thorpej 
   1359  1.134        ad 	return (rv);
   1360    1.3        pk }
   1361    1.3        pk 
   1362    1.3        pk /*
   1363  1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1364  1.131        ad  *
   1365  1.134        ad  * Note, must never be called from interrupt context.
   1366    1.3        pk  */
   1367  1.197       jym bool
   1368  1.197       jym pool_drain(struct pool **ppp)
   1369    1.3        pk {
   1370  1.197       jym 	bool reclaimed;
   1371    1.3        pk 	struct pool *pp;
   1372  1.134        ad 
   1373  1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1374    1.3        pk 
   1375   1.61       chs 	pp = NULL;
   1376  1.134        ad 
   1377  1.134        ad 	/* Find next pool to drain, and add a reference. */
   1378  1.134        ad 	mutex_enter(&pool_head_lock);
   1379  1.134        ad 	do {
   1380  1.134        ad 		if (drainpp == NULL) {
   1381  1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1382  1.134        ad 		}
   1383  1.134        ad 		if (drainpp != NULL) {
   1384  1.134        ad 			pp = drainpp;
   1385  1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1386  1.134        ad 		}
   1387  1.134        ad 		/*
   1388  1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1389  1.134        ad 		 * one pool in the system being active.
   1390  1.134        ad 		 */
   1391  1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1392  1.134        ad 	pp->pr_refcnt++;
   1393  1.134        ad 	mutex_exit(&pool_head_lock);
   1394  1.134        ad 
   1395  1.134        ad 	/* Drain the cache (if any) and pool.. */
   1396  1.186     pooka 	reclaimed = pool_reclaim(pp);
   1397  1.134        ad 
   1398  1.134        ad 	/* Finally, unlock the pool. */
   1399  1.134        ad 	mutex_enter(&pool_head_lock);
   1400  1.134        ad 	pp->pr_refcnt--;
   1401  1.134        ad 	cv_broadcast(&pool_busy);
   1402  1.134        ad 	mutex_exit(&pool_head_lock);
   1403  1.186     pooka 
   1404  1.197       jym 	if (ppp != NULL)
   1405  1.197       jym 		*ppp = pp;
   1406  1.197       jym 
   1407  1.186     pooka 	return reclaimed;
   1408    1.3        pk }
   1409    1.3        pk 
   1410    1.3        pk /*
   1411    1.3        pk  * Diagnostic helpers.
   1412    1.3        pk  */
   1413   1.21   thorpej 
   1414   1.25   thorpej void
   1415  1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1416  1.108      yamt {
   1417  1.108      yamt 	struct pool *pp;
   1418  1.108      yamt 
   1419  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1420  1.108      yamt 		pool_printit(pp, modif, pr);
   1421  1.108      yamt 	}
   1422  1.108      yamt }
   1423  1.108      yamt 
   1424  1.108      yamt void
   1425   1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1426   1.25   thorpej {
   1427   1.25   thorpej 
   1428   1.25   thorpej 	if (pp == NULL) {
   1429   1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1430   1.25   thorpej 		return;
   1431   1.25   thorpej 	}
   1432   1.25   thorpej 
   1433   1.25   thorpej 	pool_print1(pp, modif, pr);
   1434   1.25   thorpej }
   1435   1.25   thorpej 
   1436   1.21   thorpej static void
   1437  1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1438   1.97      yamt     void (*pr)(const char *, ...))
   1439   1.88       chs {
   1440   1.88       chs 	struct pool_item_header *ph;
   1441  1.207  riastrad 	struct pool_item *pi __diagused;
   1442   1.88       chs 
   1443   1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1444  1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1445  1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1446   1.88       chs #ifdef DIAGNOSTIC
   1447   1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1448  1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1449   1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1450   1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1451   1.97      yamt 					    pi, pi->pi_magic);
   1452   1.97      yamt 				}
   1453   1.88       chs 			}
   1454   1.88       chs 		}
   1455   1.88       chs #endif
   1456   1.88       chs 	}
   1457   1.88       chs }
   1458   1.88       chs 
   1459   1.88       chs static void
   1460   1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1461    1.3        pk {
   1462   1.25   thorpej 	struct pool_item_header *ph;
   1463  1.134        ad 	pool_cache_t pc;
   1464  1.134        ad 	pcg_t *pcg;
   1465  1.134        ad 	pool_cache_cpu_t *cc;
   1466  1.134        ad 	uint64_t cpuhit, cpumiss;
   1467   1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1468   1.25   thorpej 	char c;
   1469   1.25   thorpej 
   1470   1.25   thorpej 	while ((c = *modif++) != '\0') {
   1471   1.25   thorpej 		if (c == 'l')
   1472   1.25   thorpej 			print_log = 1;
   1473   1.25   thorpej 		if (c == 'p')
   1474   1.25   thorpej 			print_pagelist = 1;
   1475   1.44   thorpej 		if (c == 'c')
   1476   1.44   thorpej 			print_cache = 1;
   1477   1.25   thorpej 	}
   1478   1.25   thorpej 
   1479  1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1480  1.134        ad 		(*pr)("POOL CACHE");
   1481  1.134        ad 	} else {
   1482  1.134        ad 		(*pr)("POOL");
   1483  1.134        ad 	}
   1484  1.134        ad 
   1485  1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1486   1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1487   1.25   thorpej 	    pp->pr_roflags);
   1488   1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1489   1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1490   1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1491   1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1492   1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1493   1.25   thorpej 
   1494  1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1495   1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1496   1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1497   1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1498   1.25   thorpej 
   1499   1.25   thorpej 	if (print_pagelist == 0)
   1500   1.25   thorpej 		goto skip_pagelist;
   1501   1.25   thorpej 
   1502   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1503   1.88       chs 		(*pr)("\n\tempty page list:\n");
   1504   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1505   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1506   1.88       chs 		(*pr)("\n\tfull page list:\n");
   1507   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1508   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1509   1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1510   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1511   1.88       chs 
   1512   1.25   thorpej 	if (pp->pr_curpage == NULL)
   1513   1.25   thorpej 		(*pr)("\tno current page\n");
   1514   1.25   thorpej 	else
   1515   1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1516   1.25   thorpej 
   1517   1.25   thorpej  skip_pagelist:
   1518   1.25   thorpej 	if (print_log == 0)
   1519   1.25   thorpej 		goto skip_log;
   1520   1.25   thorpej 
   1521   1.25   thorpej 	(*pr)("\n");
   1522    1.3        pk 
   1523   1.25   thorpej  skip_log:
   1524   1.44   thorpej 
   1525  1.102       chs #define PR_GROUPLIST(pcg)						\
   1526  1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1527  1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1528  1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1529  1.102       chs 		    POOL_PADDR_INVALID) {				\
   1530  1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1531  1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1532  1.102       chs 			    (unsigned long long)			\
   1533  1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1534  1.102       chs 		} else {						\
   1535  1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1536  1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1537  1.102       chs 		}							\
   1538  1.102       chs 	}
   1539  1.102       chs 
   1540  1.134        ad 	if (pc != NULL) {
   1541  1.134        ad 		cpuhit = 0;
   1542  1.134        ad 		cpumiss = 0;
   1543  1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1544  1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1545  1.134        ad 				continue;
   1546  1.134        ad 			cpuhit += cc->cc_hits;
   1547  1.134        ad 			cpumiss += cc->cc_misses;
   1548  1.134        ad 		}
   1549  1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1550  1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1551  1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1552  1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1553  1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1554  1.134        ad 		    pc->pc_contended);
   1555  1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1556  1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1557  1.134        ad 		if (print_cache) {
   1558  1.134        ad 			(*pr)("\tfull cache groups:\n");
   1559  1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1560  1.134        ad 			    pcg = pcg->pcg_next) {
   1561  1.134        ad 				PR_GROUPLIST(pcg);
   1562  1.134        ad 			}
   1563  1.134        ad 			(*pr)("\tempty cache groups:\n");
   1564  1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1565  1.134        ad 			    pcg = pcg->pcg_next) {
   1566  1.134        ad 				PR_GROUPLIST(pcg);
   1567  1.134        ad 			}
   1568  1.103       chs 		}
   1569   1.44   thorpej 	}
   1570  1.102       chs #undef PR_GROUPLIST
   1571   1.88       chs }
   1572   1.88       chs 
   1573   1.88       chs static int
   1574   1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1575   1.88       chs {
   1576   1.88       chs 	struct pool_item *pi;
   1577  1.128  christos 	void *page;
   1578   1.88       chs 	int n;
   1579   1.88       chs 
   1580  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1581  1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1582  1.121      yamt 		if (page != ph->ph_page &&
   1583  1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1584  1.121      yamt 			if (label != NULL)
   1585  1.121      yamt 				printf("%s: ", label);
   1586  1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1587  1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1588  1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1589  1.121      yamt 				ph, page);
   1590  1.121      yamt 			return 1;
   1591  1.121      yamt 		}
   1592   1.88       chs 	}
   1593    1.3        pk 
   1594   1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1595   1.97      yamt 		return 0;
   1596   1.97      yamt 
   1597  1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1598   1.88       chs 	     pi != NULL;
   1599  1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1600   1.88       chs 
   1601   1.88       chs #ifdef DIAGNOSTIC
   1602   1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1603   1.88       chs 			if (label != NULL)
   1604   1.88       chs 				printf("%s: ", label);
   1605   1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1606  1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1607   1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1608  1.121      yamt 				n, pi);
   1609   1.88       chs 			panic("pool");
   1610   1.88       chs 		}
   1611   1.88       chs #endif
   1612  1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1613  1.121      yamt 			continue;
   1614  1.121      yamt 		}
   1615  1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1616   1.88       chs 		if (page == ph->ph_page)
   1617   1.88       chs 			continue;
   1618   1.88       chs 
   1619   1.88       chs 		if (label != NULL)
   1620   1.88       chs 			printf("%s: ", label);
   1621   1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1622   1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1623   1.88       chs 			pp->pr_wchan, ph->ph_page,
   1624   1.88       chs 			n, pi, page);
   1625   1.88       chs 		return 1;
   1626   1.88       chs 	}
   1627   1.88       chs 	return 0;
   1628    1.3        pk }
   1629    1.3        pk 
   1630   1.88       chs 
   1631    1.3        pk int
   1632   1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1633    1.3        pk {
   1634    1.3        pk 	struct pool_item_header *ph;
   1635    1.3        pk 	int r = 0;
   1636    1.3        pk 
   1637  1.134        ad 	mutex_enter(&pp->pr_lock);
   1638   1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1639   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1640   1.88       chs 		if (r) {
   1641   1.88       chs 			goto out;
   1642   1.88       chs 		}
   1643   1.88       chs 	}
   1644   1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1645   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1646   1.88       chs 		if (r) {
   1647    1.3        pk 			goto out;
   1648    1.3        pk 		}
   1649   1.88       chs 	}
   1650   1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1651   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1652   1.88       chs 		if (r) {
   1653    1.3        pk 			goto out;
   1654    1.3        pk 		}
   1655    1.3        pk 	}
   1656   1.88       chs 
   1657    1.3        pk out:
   1658  1.134        ad 	mutex_exit(&pp->pr_lock);
   1659    1.3        pk 	return (r);
   1660   1.43   thorpej }
   1661   1.43   thorpej 
   1662   1.43   thorpej /*
   1663   1.43   thorpej  * pool_cache_init:
   1664   1.43   thorpej  *
   1665   1.43   thorpej  *	Initialize a pool cache.
   1666  1.134        ad  */
   1667  1.134        ad pool_cache_t
   1668  1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1669  1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   1670  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1671  1.134        ad {
   1672  1.134        ad 	pool_cache_t pc;
   1673  1.134        ad 
   1674  1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   1675  1.134        ad 	if (pc == NULL)
   1676  1.134        ad 		return NULL;
   1677  1.134        ad 
   1678  1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1679  1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   1680  1.134        ad 
   1681  1.134        ad 	return pc;
   1682  1.134        ad }
   1683  1.134        ad 
   1684  1.134        ad /*
   1685  1.134        ad  * pool_cache_bootstrap:
   1686   1.43   thorpej  *
   1687  1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   1688  1.134        ad  *	provides initial storage.
   1689   1.43   thorpej  */
   1690   1.43   thorpej void
   1691  1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1692  1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   1693  1.134        ad     struct pool_allocator *palloc, int ipl,
   1694  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1695   1.43   thorpej     void *arg)
   1696   1.43   thorpej {
   1697  1.134        ad 	CPU_INFO_ITERATOR cii;
   1698  1.145        ad 	pool_cache_t pc1;
   1699  1.134        ad 	struct cpu_info *ci;
   1700  1.134        ad 	struct pool *pp;
   1701  1.134        ad 
   1702  1.134        ad 	pp = &pc->pc_pool;
   1703  1.134        ad 	if (palloc == NULL && ipl == IPL_NONE)
   1704  1.134        ad 		palloc = &pool_allocator_nointr;
   1705  1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1706  1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1707   1.43   thorpej 
   1708  1.134        ad 	if (ctor == NULL) {
   1709  1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   1710  1.134        ad 	}
   1711  1.134        ad 	if (dtor == NULL) {
   1712  1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   1713  1.134        ad 	}
   1714   1.43   thorpej 
   1715  1.134        ad 	pc->pc_emptygroups = NULL;
   1716  1.134        ad 	pc->pc_fullgroups = NULL;
   1717  1.134        ad 	pc->pc_partgroups = NULL;
   1718   1.43   thorpej 	pc->pc_ctor = ctor;
   1719   1.43   thorpej 	pc->pc_dtor = dtor;
   1720   1.43   thorpej 	pc->pc_arg  = arg;
   1721  1.134        ad 	pc->pc_hits  = 0;
   1722   1.48   thorpej 	pc->pc_misses = 0;
   1723  1.134        ad 	pc->pc_nempty = 0;
   1724  1.134        ad 	pc->pc_npart = 0;
   1725  1.134        ad 	pc->pc_nfull = 0;
   1726  1.134        ad 	pc->pc_contended = 0;
   1727  1.134        ad 	pc->pc_refcnt = 0;
   1728  1.136      yamt 	pc->pc_freecheck = NULL;
   1729  1.134        ad 
   1730  1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   1731  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1732  1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   1733  1.142        ad 	} else {
   1734  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1735  1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   1736  1.142        ad 	}
   1737  1.142        ad 
   1738  1.134        ad 	/* Allocate per-CPU caches. */
   1739  1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1740  1.134        ad 	pc->pc_ncpu = 0;
   1741  1.139        ad 	if (ncpu < 2) {
   1742  1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   1743  1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   1744  1.137        ad 	} else {
   1745  1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   1746  1.137        ad 			pool_cache_cpu_init1(ci, pc);
   1747  1.137        ad 		}
   1748  1.134        ad 	}
   1749  1.145        ad 
   1750  1.145        ad 	/* Add to list of all pools. */
   1751  1.145        ad 	if (__predict_true(!cold))
   1752  1.134        ad 		mutex_enter(&pool_head_lock);
   1753  1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1754  1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1755  1.145        ad 			break;
   1756  1.145        ad 	}
   1757  1.145        ad 	if (pc1 == NULL)
   1758  1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1759  1.145        ad 	else
   1760  1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1761  1.145        ad 	if (__predict_true(!cold))
   1762  1.134        ad 		mutex_exit(&pool_head_lock);
   1763  1.145        ad 
   1764  1.145        ad 	membar_sync();
   1765  1.145        ad 	pp->pr_cache = pc;
   1766   1.43   thorpej }
   1767   1.43   thorpej 
   1768   1.43   thorpej /*
   1769   1.43   thorpej  * pool_cache_destroy:
   1770   1.43   thorpej  *
   1771   1.43   thorpej  *	Destroy a pool cache.
   1772   1.43   thorpej  */
   1773   1.43   thorpej void
   1774  1.134        ad pool_cache_destroy(pool_cache_t pc)
   1775   1.43   thorpej {
   1776  1.191      para 
   1777  1.191      para 	pool_cache_bootstrap_destroy(pc);
   1778  1.191      para 	pool_put(&cache_pool, pc);
   1779  1.191      para }
   1780  1.191      para 
   1781  1.191      para /*
   1782  1.191      para  * pool_cache_bootstrap_destroy:
   1783  1.191      para  *
   1784  1.191      para  *	Destroy a pool cache.
   1785  1.191      para  */
   1786  1.191      para void
   1787  1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   1788  1.191      para {
   1789  1.134        ad 	struct pool *pp = &pc->pc_pool;
   1790  1.175       jym 	u_int i;
   1791  1.134        ad 
   1792  1.134        ad 	/* Remove it from the global list. */
   1793  1.134        ad 	mutex_enter(&pool_head_lock);
   1794  1.134        ad 	while (pc->pc_refcnt != 0)
   1795  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   1796  1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1797  1.134        ad 	mutex_exit(&pool_head_lock);
   1798   1.43   thorpej 
   1799   1.43   thorpej 	/* First, invalidate the entire cache. */
   1800   1.43   thorpej 	pool_cache_invalidate(pc);
   1801   1.43   thorpej 
   1802  1.134        ad 	/* Disassociate it from the pool. */
   1803  1.134        ad 	mutex_enter(&pp->pr_lock);
   1804  1.134        ad 	pp->pr_cache = NULL;
   1805  1.134        ad 	mutex_exit(&pp->pr_lock);
   1806  1.134        ad 
   1807  1.134        ad 	/* Destroy per-CPU data */
   1808  1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1809  1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   1810  1.134        ad 
   1811  1.134        ad 	/* Finally, destroy it. */
   1812  1.134        ad 	mutex_destroy(&pc->pc_lock);
   1813  1.134        ad 	pool_destroy(pp);
   1814  1.134        ad }
   1815  1.134        ad 
   1816  1.134        ad /*
   1817  1.134        ad  * pool_cache_cpu_init1:
   1818  1.134        ad  *
   1819  1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   1820  1.134        ad  */
   1821  1.134        ad static void
   1822  1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1823  1.134        ad {
   1824  1.134        ad 	pool_cache_cpu_t *cc;
   1825  1.137        ad 	int index;
   1826  1.134        ad 
   1827  1.137        ad 	index = ci->ci_index;
   1828  1.137        ad 
   1829  1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   1830  1.134        ad 
   1831  1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1832  1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   1833  1.134        ad 		return;
   1834  1.134        ad 	}
   1835  1.134        ad 
   1836  1.134        ad 	/*
   1837  1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   1838  1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   1839  1.134        ad 	 */
   1840  1.134        ad 	if (pc->pc_ncpu == 0) {
   1841  1.134        ad 		cc = &pc->pc_cpu0;
   1842  1.134        ad 		pc->pc_ncpu = 1;
   1843  1.134        ad 	} else {
   1844  1.134        ad 		mutex_enter(&pc->pc_lock);
   1845  1.134        ad 		pc->pc_ncpu++;
   1846  1.134        ad 		mutex_exit(&pc->pc_lock);
   1847  1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1848  1.134        ad 	}
   1849  1.134        ad 
   1850  1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1851  1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1852  1.134        ad 	cc->cc_cache = pc;
   1853  1.137        ad 	cc->cc_cpuindex = index;
   1854  1.134        ad 	cc->cc_hits = 0;
   1855  1.134        ad 	cc->cc_misses = 0;
   1856  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   1857  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1858  1.134        ad 
   1859  1.137        ad 	pc->pc_cpus[index] = cc;
   1860   1.43   thorpej }
   1861   1.43   thorpej 
   1862  1.134        ad /*
   1863  1.134        ad  * pool_cache_cpu_init:
   1864  1.134        ad  *
   1865  1.134        ad  *	Called whenever a new CPU is attached.
   1866  1.134        ad  */
   1867  1.134        ad void
   1868  1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   1869   1.43   thorpej {
   1870  1.134        ad 	pool_cache_t pc;
   1871  1.134        ad 
   1872  1.134        ad 	mutex_enter(&pool_head_lock);
   1873  1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1874  1.134        ad 		pc->pc_refcnt++;
   1875  1.134        ad 		mutex_exit(&pool_head_lock);
   1876   1.43   thorpej 
   1877  1.134        ad 		pool_cache_cpu_init1(ci, pc);
   1878   1.43   thorpej 
   1879  1.134        ad 		mutex_enter(&pool_head_lock);
   1880  1.134        ad 		pc->pc_refcnt--;
   1881  1.134        ad 		cv_broadcast(&pool_busy);
   1882  1.134        ad 	}
   1883  1.134        ad 	mutex_exit(&pool_head_lock);
   1884   1.43   thorpej }
   1885   1.43   thorpej 
   1886  1.134        ad /*
   1887  1.134        ad  * pool_cache_reclaim:
   1888  1.134        ad  *
   1889  1.134        ad  *	Reclaim memory from a pool cache.
   1890  1.134        ad  */
   1891  1.134        ad bool
   1892  1.134        ad pool_cache_reclaim(pool_cache_t pc)
   1893   1.43   thorpej {
   1894   1.43   thorpej 
   1895  1.134        ad 	return pool_reclaim(&pc->pc_pool);
   1896  1.134        ad }
   1897   1.43   thorpej 
   1898  1.136      yamt static void
   1899  1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   1900  1.136      yamt {
   1901  1.136      yamt 
   1902  1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   1903  1.136      yamt 	pool_put(&pc->pc_pool, object);
   1904  1.136      yamt }
   1905  1.136      yamt 
   1906  1.134        ad /*
   1907  1.134        ad  * pool_cache_destruct_object:
   1908  1.134        ad  *
   1909  1.134        ad  *	Force destruction of an object and its release back into
   1910  1.134        ad  *	the pool.
   1911  1.134        ad  */
   1912  1.134        ad void
   1913  1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   1914  1.134        ad {
   1915  1.134        ad 
   1916  1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   1917  1.136      yamt 
   1918  1.136      yamt 	pool_cache_destruct_object1(pc, object);
   1919   1.43   thorpej }
   1920   1.43   thorpej 
   1921  1.134        ad /*
   1922  1.134        ad  * pool_cache_invalidate_groups:
   1923  1.134        ad  *
   1924  1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   1925  1.134        ad  */
   1926  1.102       chs static void
   1927  1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   1928  1.102       chs {
   1929  1.134        ad 	void *object;
   1930  1.134        ad 	pcg_t *next;
   1931  1.134        ad 	int i;
   1932  1.134        ad 
   1933  1.134        ad 	for (; pcg != NULL; pcg = next) {
   1934  1.134        ad 		next = pcg->pcg_next;
   1935  1.134        ad 
   1936  1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   1937  1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   1938  1.136      yamt 			pool_cache_destruct_object1(pc, object);
   1939  1.134        ad 		}
   1940  1.102       chs 
   1941  1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   1942  1.142        ad 			pool_put(&pcg_large_pool, pcg);
   1943  1.142        ad 		} else {
   1944  1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   1945  1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   1946  1.142        ad 		}
   1947  1.102       chs 	}
   1948  1.102       chs }
   1949  1.102       chs 
   1950   1.43   thorpej /*
   1951  1.134        ad  * pool_cache_invalidate:
   1952   1.43   thorpej  *
   1953  1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   1954  1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   1955  1.176   thorpej  *
   1956  1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   1957  1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   1958  1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   1959  1.196       jym  *
   1960  1.196       jym  *	Invalidation is a costly process and should not be called from
   1961  1.196       jym  *	interrupt context.
   1962   1.43   thorpej  */
   1963  1.134        ad void
   1964  1.134        ad pool_cache_invalidate(pool_cache_t pc)
   1965  1.134        ad {
   1966  1.196       jym 	uint64_t where;
   1967  1.134        ad 	pcg_t *full, *empty, *part;
   1968  1.196       jym 
   1969  1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1970  1.176   thorpej 
   1971  1.177       jym 	if (ncpu < 2 || !mp_online) {
   1972  1.176   thorpej 		/*
   1973  1.176   thorpej 		 * We might be called early enough in the boot process
   1974  1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   1975  1.196       jym 		 * In this case, transfer the content of the local CPU's
   1976  1.196       jym 		 * cache back into global cache as only this CPU is currently
   1977  1.196       jym 		 * running.
   1978  1.176   thorpej 		 */
   1979  1.196       jym 		pool_cache_transfer(pc);
   1980  1.176   thorpej 	} else {
   1981  1.176   thorpej 		/*
   1982  1.196       jym 		 * Signal all CPUs that they must transfer their local
   1983  1.196       jym 		 * cache back to the global pool then wait for the xcall to
   1984  1.196       jym 		 * complete.
   1985  1.176   thorpej 		 */
   1986  1.196       jym 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   1987  1.196       jym 		    pc, NULL);
   1988  1.176   thorpej 		xc_wait(where);
   1989  1.176   thorpej 	}
   1990  1.196       jym 
   1991  1.196       jym 	/* Empty pool caches, then invalidate objects */
   1992  1.134        ad 	mutex_enter(&pc->pc_lock);
   1993  1.134        ad 	full = pc->pc_fullgroups;
   1994  1.134        ad 	empty = pc->pc_emptygroups;
   1995  1.134        ad 	part = pc->pc_partgroups;
   1996  1.134        ad 	pc->pc_fullgroups = NULL;
   1997  1.134        ad 	pc->pc_emptygroups = NULL;
   1998  1.134        ad 	pc->pc_partgroups = NULL;
   1999  1.134        ad 	pc->pc_nfull = 0;
   2000  1.134        ad 	pc->pc_nempty = 0;
   2001  1.134        ad 	pc->pc_npart = 0;
   2002  1.134        ad 	mutex_exit(&pc->pc_lock);
   2003  1.134        ad 
   2004  1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2005  1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2006  1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2007  1.134        ad }
   2008  1.134        ad 
   2009  1.175       jym /*
   2010  1.175       jym  * pool_cache_invalidate_cpu:
   2011  1.175       jym  *
   2012  1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2013  1.175       jym  *	identified by its associated index.
   2014  1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2015  1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2016  1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2017  1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2018  1.175       jym  *	may result in an undefined behaviour.
   2019  1.175       jym  */
   2020  1.175       jym static void
   2021  1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2022  1.175       jym {
   2023  1.175       jym 	pool_cache_cpu_t *cc;
   2024  1.175       jym 	pcg_t *pcg;
   2025  1.175       jym 
   2026  1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2027  1.175       jym 		return;
   2028  1.175       jym 
   2029  1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2030  1.175       jym 		pcg->pcg_next = NULL;
   2031  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2032  1.175       jym 	}
   2033  1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2034  1.175       jym 		pcg->pcg_next = NULL;
   2035  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2036  1.175       jym 	}
   2037  1.175       jym 	if (cc != &pc->pc_cpu0)
   2038  1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2039  1.175       jym 
   2040  1.175       jym }
   2041  1.175       jym 
   2042  1.134        ad void
   2043  1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2044  1.134        ad {
   2045  1.134        ad 
   2046  1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2047  1.134        ad }
   2048  1.134        ad 
   2049  1.134        ad void
   2050  1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2051  1.134        ad {
   2052  1.134        ad 
   2053  1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2054  1.134        ad }
   2055  1.134        ad 
   2056  1.134        ad void
   2057  1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2058  1.134        ad {
   2059  1.134        ad 
   2060  1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2061  1.134        ad }
   2062  1.134        ad 
   2063  1.134        ad void
   2064  1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2065  1.134        ad {
   2066  1.134        ad 
   2067  1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2068  1.134        ad }
   2069  1.134        ad 
   2070  1.162        ad static bool __noinline
   2071  1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2072  1.134        ad 		    paddr_t *pap, int flags)
   2073   1.43   thorpej {
   2074  1.134        ad 	pcg_t *pcg, *cur;
   2075  1.134        ad 	uint64_t ncsw;
   2076  1.134        ad 	pool_cache_t pc;
   2077   1.43   thorpej 	void *object;
   2078   1.58   thorpej 
   2079  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2080  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2081  1.168      yamt 
   2082  1.134        ad 	pc = cc->cc_cache;
   2083  1.134        ad 	cc->cc_misses++;
   2084   1.43   thorpej 
   2085  1.134        ad 	/*
   2086  1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2087  1.134        ad 	 * from the cache.
   2088  1.134        ad 	 */
   2089  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2090  1.134        ad 		ncsw = curlwp->l_ncsw;
   2091  1.134        ad 		mutex_enter(&pc->pc_lock);
   2092  1.134        ad 		pc->pc_contended++;
   2093   1.43   thorpej 
   2094  1.134        ad 		/*
   2095  1.134        ad 		 * If we context switched while locking, then
   2096  1.134        ad 		 * our view of the per-CPU data is invalid:
   2097  1.134        ad 		 * retry.
   2098  1.134        ad 		 */
   2099  1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2100  1.134        ad 			mutex_exit(&pc->pc_lock);
   2101  1.162        ad 			return true;
   2102   1.43   thorpej 		}
   2103  1.102       chs 	}
   2104   1.43   thorpej 
   2105  1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2106   1.43   thorpej 		/*
   2107  1.134        ad 		 * If there's a full group, release our empty
   2108  1.134        ad 		 * group back to the cache.  Install the full
   2109  1.134        ad 		 * group as cc_current and return.
   2110   1.43   thorpej 		 */
   2111  1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2112  1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2113  1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2114  1.134        ad 			pc->pc_emptygroups = cur;
   2115  1.134        ad 			pc->pc_nempty++;
   2116   1.87   thorpej 		}
   2117  1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2118  1.134        ad 		cc->cc_current = pcg;
   2119  1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2120  1.134        ad 		pc->pc_hits++;
   2121  1.134        ad 		pc->pc_nfull--;
   2122  1.134        ad 		mutex_exit(&pc->pc_lock);
   2123  1.162        ad 		return true;
   2124  1.134        ad 	}
   2125  1.134        ad 
   2126  1.134        ad 	/*
   2127  1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2128  1.134        ad 	 * path: fetch a new object from the pool and construct
   2129  1.134        ad 	 * it.
   2130  1.134        ad 	 */
   2131  1.134        ad 	pc->pc_misses++;
   2132  1.134        ad 	mutex_exit(&pc->pc_lock);
   2133  1.162        ad 	splx(s);
   2134  1.134        ad 
   2135  1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2136  1.134        ad 	*objectp = object;
   2137  1.162        ad 	if (__predict_false(object == NULL))
   2138  1.162        ad 		return false;
   2139  1.125        ad 
   2140  1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2141  1.134        ad 		pool_put(&pc->pc_pool, object);
   2142  1.134        ad 		*objectp = NULL;
   2143  1.162        ad 		return false;
   2144   1.43   thorpej 	}
   2145   1.43   thorpej 
   2146  1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2147  1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2148   1.43   thorpej 
   2149  1.134        ad 	if (pap != NULL) {
   2150  1.134        ad #ifdef POOL_VTOPHYS
   2151  1.134        ad 		*pap = POOL_VTOPHYS(object);
   2152  1.134        ad #else
   2153  1.134        ad 		*pap = POOL_PADDR_INVALID;
   2154  1.134        ad #endif
   2155  1.102       chs 	}
   2156   1.43   thorpej 
   2157  1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2158  1.204      maxv 	pool_redzone_fill(&pc->pc_pool, object);
   2159  1.162        ad 	return false;
   2160   1.43   thorpej }
   2161   1.43   thorpej 
   2162   1.43   thorpej /*
   2163  1.134        ad  * pool_cache_get{,_paddr}:
   2164   1.43   thorpej  *
   2165  1.134        ad  *	Get an object from a pool cache (optionally returning
   2166  1.134        ad  *	the physical address of the object).
   2167   1.43   thorpej  */
   2168  1.134        ad void *
   2169  1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2170   1.43   thorpej {
   2171  1.134        ad 	pool_cache_cpu_t *cc;
   2172  1.134        ad 	pcg_t *pcg;
   2173  1.134        ad 	void *object;
   2174   1.60   thorpej 	int s;
   2175   1.43   thorpej 
   2176  1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2177  1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2178  1.190       jym 	    "pool '%s' is IPL_NONE, but called from interrupt context\n",
   2179  1.190       jym 	    pc->pc_pool.pr_wchan);
   2180  1.184     rmind 
   2181  1.155        ad 	if (flags & PR_WAITOK) {
   2182  1.154      yamt 		ASSERT_SLEEPABLE();
   2183  1.155        ad 	}
   2184  1.125        ad 
   2185  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2186  1.162        ad 	s = splvm();
   2187  1.165      yamt 	while (/* CONSTCOND */ true) {
   2188  1.134        ad 		/* Try and allocate an object from the current group. */
   2189  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2190  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2191  1.134        ad 	 	pcg = cc->cc_current;
   2192  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2193  1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2194  1.162        ad 			if (__predict_false(pap != NULL))
   2195  1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2196  1.148      yamt #if defined(DIAGNOSTIC)
   2197  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2198  1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2199  1.134        ad 			KASSERT(object != NULL);
   2200  1.163        ad #endif
   2201  1.134        ad 			cc->cc_hits++;
   2202  1.162        ad 			splx(s);
   2203  1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2204  1.204      maxv 			pool_redzone_fill(&pc->pc_pool, object);
   2205  1.134        ad 			return object;
   2206   1.43   thorpej 		}
   2207   1.43   thorpej 
   2208   1.43   thorpej 		/*
   2209  1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2210  1.134        ad 		 * it with the current group and allocate from there.
   2211   1.43   thorpej 		 */
   2212  1.134        ad 		pcg = cc->cc_previous;
   2213  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2214  1.134        ad 			cc->cc_previous = cc->cc_current;
   2215  1.134        ad 			cc->cc_current = pcg;
   2216  1.134        ad 			continue;
   2217   1.43   thorpej 		}
   2218   1.43   thorpej 
   2219  1.134        ad 		/*
   2220  1.134        ad 		 * Can't allocate from either group: try the slow path.
   2221  1.134        ad 		 * If get_slow() allocated an object for us, or if
   2222  1.162        ad 		 * no more objects are available, it will return false.
   2223  1.134        ad 		 * Otherwise, we need to retry.
   2224  1.134        ad 		 */
   2225  1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2226  1.165      yamt 			break;
   2227  1.165      yamt 	}
   2228   1.43   thorpej 
   2229  1.134        ad 	return object;
   2230   1.51   thorpej }
   2231   1.51   thorpej 
   2232  1.162        ad static bool __noinline
   2233  1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2234   1.51   thorpej {
   2235  1.200     pooka 	struct lwp *l = curlwp;
   2236  1.163        ad 	pcg_t *pcg, *cur;
   2237  1.134        ad 	uint64_t ncsw;
   2238  1.134        ad 	pool_cache_t pc;
   2239   1.51   thorpej 
   2240  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2241  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2242  1.168      yamt 
   2243  1.134        ad 	pc = cc->cc_cache;
   2244  1.171        ad 	pcg = NULL;
   2245  1.134        ad 	cc->cc_misses++;
   2246  1.200     pooka 	ncsw = l->l_ncsw;
   2247   1.43   thorpej 
   2248  1.171        ad 	/*
   2249  1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2250  1.171        ad 	 * while still unlocked.
   2251  1.171        ad 	 */
   2252  1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2253  1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2254  1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2255  1.171        ad 		}
   2256  1.200     pooka 		/*
   2257  1.200     pooka 		 * If pool_get() blocked, then our view of
   2258  1.200     pooka 		 * the per-CPU data is invalid: retry.
   2259  1.200     pooka 		 */
   2260  1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2261  1.200     pooka 			if (pcg != NULL) {
   2262  1.200     pooka 				pool_put(pc->pc_pcgpool, pcg);
   2263  1.200     pooka 			}
   2264  1.200     pooka 			return true;
   2265  1.200     pooka 		}
   2266  1.171        ad 		if (__predict_true(pcg != NULL)) {
   2267  1.171        ad 			pcg->pcg_avail = 0;
   2268  1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2269  1.171        ad 		}
   2270  1.171        ad 	}
   2271  1.171        ad 
   2272  1.162        ad 	/* Lock the cache. */
   2273  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2274  1.134        ad 		mutex_enter(&pc->pc_lock);
   2275  1.134        ad 		pc->pc_contended++;
   2276  1.162        ad 
   2277  1.163        ad 		/*
   2278  1.163        ad 		 * If we context switched while locking, then our view of
   2279  1.163        ad 		 * the per-CPU data is invalid: retry.
   2280  1.163        ad 		 */
   2281  1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2282  1.163        ad 			mutex_exit(&pc->pc_lock);
   2283  1.171        ad 			if (pcg != NULL) {
   2284  1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2285  1.171        ad 			}
   2286  1.163        ad 			return true;
   2287  1.163        ad 		}
   2288  1.162        ad 	}
   2289  1.102       chs 
   2290  1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2291  1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2292  1.171        ad 		pcg = pc->pc_emptygroups;
   2293  1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2294  1.163        ad 		pc->pc_nempty--;
   2295  1.134        ad 	}
   2296  1.130        ad 
   2297  1.162        ad 	/*
   2298  1.162        ad 	 * If there's a empty group, release our full group back
   2299  1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2300  1.162        ad 	 * and return.
   2301  1.162        ad 	 */
   2302  1.163        ad 	if (pcg != NULL) {
   2303  1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2304  1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2305  1.146        ad 			cc->cc_previous = pcg;
   2306  1.146        ad 		} else {
   2307  1.162        ad 			cur = cc->cc_current;
   2308  1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2309  1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2310  1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2311  1.146        ad 				pc->pc_fullgroups = cur;
   2312  1.146        ad 				pc->pc_nfull++;
   2313  1.146        ad 			}
   2314  1.146        ad 			cc->cc_current = pcg;
   2315  1.146        ad 		}
   2316  1.163        ad 		pc->pc_hits++;
   2317  1.134        ad 		mutex_exit(&pc->pc_lock);
   2318  1.162        ad 		return true;
   2319  1.102       chs 	}
   2320  1.105  christos 
   2321  1.134        ad 	/*
   2322  1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2323  1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2324  1.162        ad 	 * the object here and now.
   2325  1.134        ad 	 */
   2326  1.134        ad 	pc->pc_misses++;
   2327  1.134        ad 	mutex_exit(&pc->pc_lock);
   2328  1.162        ad 	splx(s);
   2329  1.162        ad 	pool_cache_destruct_object(pc, object);
   2330  1.105  christos 
   2331  1.162        ad 	return false;
   2332  1.134        ad }
   2333  1.102       chs 
   2334   1.43   thorpej /*
   2335  1.134        ad  * pool_cache_put{,_paddr}:
   2336   1.43   thorpej  *
   2337  1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2338  1.134        ad  *	physical address of the object).
   2339   1.43   thorpej  */
   2340  1.101   thorpej void
   2341  1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2342   1.43   thorpej {
   2343  1.134        ad 	pool_cache_cpu_t *cc;
   2344  1.134        ad 	pcg_t *pcg;
   2345  1.134        ad 	int s;
   2346  1.101   thorpej 
   2347  1.172      yamt 	KASSERT(object != NULL);
   2348  1.204      maxv 	pool_redzone_check(&pc->pc_pool, object);
   2349  1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2350  1.101   thorpej 
   2351  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2352  1.162        ad 	s = splvm();
   2353  1.165      yamt 	while (/* CONSTCOND */ true) {
   2354  1.134        ad 		/* If the current group isn't full, release it there. */
   2355  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2356  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2357  1.134        ad 	 	pcg = cc->cc_current;
   2358  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2359  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2360  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2361  1.134        ad 			pcg->pcg_avail++;
   2362  1.134        ad 			cc->cc_hits++;
   2363  1.162        ad 			splx(s);
   2364  1.134        ad 			return;
   2365  1.134        ad 		}
   2366   1.43   thorpej 
   2367  1.134        ad 		/*
   2368  1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2369  1.134        ad 		 * it with the current group and try again.
   2370  1.134        ad 		 */
   2371  1.134        ad 		pcg = cc->cc_previous;
   2372  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2373  1.134        ad 			cc->cc_previous = cc->cc_current;
   2374  1.134        ad 			cc->cc_current = pcg;
   2375  1.134        ad 			continue;
   2376  1.134        ad 		}
   2377   1.43   thorpej 
   2378  1.134        ad 		/*
   2379  1.134        ad 		 * Can't free to either group: try the slow path.
   2380  1.134        ad 		 * If put_slow() releases the object for us, it
   2381  1.162        ad 		 * will return false.  Otherwise we need to retry.
   2382  1.134        ad 		 */
   2383  1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2384  1.165      yamt 			break;
   2385  1.165      yamt 	}
   2386   1.43   thorpej }
   2387   1.43   thorpej 
   2388   1.43   thorpej /*
   2389  1.196       jym  * pool_cache_transfer:
   2390   1.43   thorpej  *
   2391  1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2392  1.134        ad  *	Run within a cross-call thread.
   2393   1.43   thorpej  */
   2394   1.43   thorpej static void
   2395  1.196       jym pool_cache_transfer(pool_cache_t pc)
   2396   1.43   thorpej {
   2397  1.134        ad 	pool_cache_cpu_t *cc;
   2398  1.134        ad 	pcg_t *prev, *cur, **list;
   2399  1.162        ad 	int s;
   2400  1.134        ad 
   2401  1.162        ad 	s = splvm();
   2402  1.162        ad 	mutex_enter(&pc->pc_lock);
   2403  1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2404  1.134        ad 	cur = cc->cc_current;
   2405  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2406  1.134        ad 	prev = cc->cc_previous;
   2407  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2408  1.162        ad 	if (cur != &pcg_dummy) {
   2409  1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2410  1.134        ad 			list = &pc->pc_fullgroups;
   2411  1.134        ad 			pc->pc_nfull++;
   2412  1.134        ad 		} else if (cur->pcg_avail == 0) {
   2413  1.134        ad 			list = &pc->pc_emptygroups;
   2414  1.134        ad 			pc->pc_nempty++;
   2415  1.134        ad 		} else {
   2416  1.134        ad 			list = &pc->pc_partgroups;
   2417  1.134        ad 			pc->pc_npart++;
   2418  1.134        ad 		}
   2419  1.134        ad 		cur->pcg_next = *list;
   2420  1.134        ad 		*list = cur;
   2421  1.134        ad 	}
   2422  1.162        ad 	if (prev != &pcg_dummy) {
   2423  1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2424  1.134        ad 			list = &pc->pc_fullgroups;
   2425  1.134        ad 			pc->pc_nfull++;
   2426  1.134        ad 		} else if (prev->pcg_avail == 0) {
   2427  1.134        ad 			list = &pc->pc_emptygroups;
   2428  1.134        ad 			pc->pc_nempty++;
   2429  1.134        ad 		} else {
   2430  1.134        ad 			list = &pc->pc_partgroups;
   2431  1.134        ad 			pc->pc_npart++;
   2432  1.134        ad 		}
   2433  1.134        ad 		prev->pcg_next = *list;
   2434  1.134        ad 		*list = prev;
   2435  1.134        ad 	}
   2436  1.134        ad 	mutex_exit(&pc->pc_lock);
   2437  1.134        ad 	splx(s);
   2438    1.3        pk }
   2439   1.66   thorpej 
   2440   1.66   thorpej /*
   2441   1.66   thorpej  * Pool backend allocators.
   2442   1.66   thorpej  *
   2443   1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2444   1.66   thorpej  * and any additional draining that might be needed.
   2445   1.66   thorpej  *
   2446   1.66   thorpej  * We provide two standard allocators:
   2447   1.66   thorpej  *
   2448   1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2449   1.66   thorpej  *
   2450   1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2451   1.66   thorpej  *	in interrupt context.
   2452   1.66   thorpej  */
   2453   1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2454   1.66   thorpej void	pool_page_free(struct pool *, void *);
   2455   1.66   thorpej 
   2456  1.112     bjh21 #ifdef POOL_SUBPAGE
   2457  1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2458  1.192     rmind 	.pa_alloc = pool_page_alloc,
   2459  1.192     rmind 	.pa_free = pool_page_free,
   2460  1.192     rmind 	.pa_pagesz = 0
   2461  1.112     bjh21 };
   2462  1.112     bjh21 #else
   2463   1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2464  1.191      para 	.pa_alloc = pool_page_alloc,
   2465  1.191      para 	.pa_free = pool_page_free,
   2466  1.191      para 	.pa_pagesz = 0
   2467   1.66   thorpej };
   2468  1.112     bjh21 #endif
   2469   1.66   thorpej 
   2470  1.112     bjh21 #ifdef POOL_SUBPAGE
   2471  1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2472  1.194      para 	.pa_alloc = pool_page_alloc,
   2473  1.194      para 	.pa_free = pool_page_free,
   2474  1.192     rmind 	.pa_pagesz = 0
   2475  1.112     bjh21 };
   2476  1.112     bjh21 #else
   2477   1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2478  1.191      para 	.pa_alloc = pool_page_alloc,
   2479  1.191      para 	.pa_free = pool_page_free,
   2480  1.191      para 	.pa_pagesz = 0
   2481   1.66   thorpej };
   2482  1.112     bjh21 #endif
   2483   1.66   thorpej 
   2484   1.66   thorpej #ifdef POOL_SUBPAGE
   2485   1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2486   1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2487   1.66   thorpej 
   2488  1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2489  1.193        he 	.pa_alloc = pool_subpage_alloc,
   2490  1.193        he 	.pa_free = pool_subpage_free,
   2491  1.193        he 	.pa_pagesz = POOL_SUBPAGE
   2492  1.112     bjh21 };
   2493  1.112     bjh21 
   2494  1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2495  1.192     rmind 	.pa_alloc = pool_subpage_alloc,
   2496  1.192     rmind 	.pa_free = pool_subpage_free,
   2497  1.192     rmind 	.pa_pagesz = POOL_SUBPAGE
   2498   1.66   thorpej };
   2499   1.66   thorpej #endif /* POOL_SUBPAGE */
   2500   1.66   thorpej 
   2501  1.117      yamt static void *
   2502  1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2503   1.66   thorpej {
   2504  1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2505   1.66   thorpej 	void *res;
   2506   1.66   thorpej 
   2507  1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2508  1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2509   1.66   thorpej 		/*
   2510  1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2511  1.117      yamt 		 * In other cases, the hook will be run in
   2512  1.117      yamt 		 * pool_reclaim().
   2513   1.66   thorpej 		 */
   2514  1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2515  1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2516  1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2517   1.66   thorpej 		}
   2518  1.117      yamt 	}
   2519  1.117      yamt 	return res;
   2520   1.66   thorpej }
   2521   1.66   thorpej 
   2522  1.117      yamt static void
   2523   1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2524   1.66   thorpej {
   2525   1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2526   1.66   thorpej 
   2527   1.66   thorpej 	(*pa->pa_free)(pp, v);
   2528   1.66   thorpej }
   2529   1.66   thorpej 
   2530   1.66   thorpej void *
   2531  1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2532   1.66   thorpej {
   2533  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2534  1.191      para 	vmem_addr_t va;
   2535  1.192     rmind 	int ret;
   2536  1.191      para 
   2537  1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2538  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2539   1.66   thorpej 
   2540  1.192     rmind 	return ret ? NULL : (void *)va;
   2541   1.66   thorpej }
   2542   1.66   thorpej 
   2543   1.66   thorpej void
   2544  1.124      yamt pool_page_free(struct pool *pp, void *v)
   2545   1.66   thorpej {
   2546   1.66   thorpej 
   2547  1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2548   1.98      yamt }
   2549   1.98      yamt 
   2550   1.98      yamt static void *
   2551  1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2552   1.98      yamt {
   2553  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2554  1.192     rmind 	vmem_addr_t va;
   2555  1.192     rmind 	int ret;
   2556  1.191      para 
   2557  1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2558  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2559   1.98      yamt 
   2560  1.192     rmind 	return ret ? NULL : (void *)va;
   2561   1.98      yamt }
   2562   1.98      yamt 
   2563   1.98      yamt static void
   2564  1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2565   1.98      yamt {
   2566   1.98      yamt 
   2567  1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2568   1.66   thorpej }
   2569   1.66   thorpej 
   2570  1.204      maxv #ifdef POOL_REDZONE
   2571  1.204      maxv #if defined(_LP64)
   2572  1.204      maxv # define PRIME 0x9e37fffffffc0000UL
   2573  1.204      maxv #else /* defined(_LP64) */
   2574  1.204      maxv # define PRIME 0x9e3779b1
   2575  1.204      maxv #endif /* defined(_LP64) */
   2576  1.204      maxv #define STATIC_BYTE	0xFE
   2577  1.204      maxv CTASSERT(POOL_REDZONE_SIZE > 1);
   2578  1.204      maxv 
   2579  1.204      maxv static inline uint8_t
   2580  1.204      maxv pool_pattern_generate(const void *p)
   2581  1.204      maxv {
   2582  1.204      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
   2583  1.204      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2584  1.204      maxv }
   2585  1.204      maxv 
   2586  1.204      maxv static void
   2587  1.204      maxv pool_redzone_init(struct pool *pp, size_t requested_size)
   2588  1.204      maxv {
   2589  1.204      maxv 	size_t nsz;
   2590  1.204      maxv 
   2591  1.204      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   2592  1.204      maxv 		pp->pr_reqsize = 0;
   2593  1.204      maxv 		pp->pr_redzone = false;
   2594  1.204      maxv 		return;
   2595  1.204      maxv 	}
   2596  1.204      maxv 
   2597  1.204      maxv 	/*
   2598  1.204      maxv 	 * We may have extended the requested size earlier; check if
   2599  1.204      maxv 	 * there's naturally space in the padding for a red zone.
   2600  1.204      maxv 	 */
   2601  1.204      maxv 	if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
   2602  1.204      maxv 		pp->pr_reqsize = requested_size;
   2603  1.204      maxv 		pp->pr_redzone = true;
   2604  1.204      maxv 		return;
   2605  1.204      maxv 	}
   2606  1.204      maxv 
   2607  1.204      maxv 	/*
   2608  1.204      maxv 	 * No space in the natural padding; check if we can extend a
   2609  1.204      maxv 	 * bit the size of the pool.
   2610  1.204      maxv 	 */
   2611  1.204      maxv 	nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
   2612  1.204      maxv 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2613  1.204      maxv 		/* Ok, we can */
   2614  1.204      maxv 		pp->pr_size = nsz;
   2615  1.204      maxv 		pp->pr_reqsize = requested_size;
   2616  1.204      maxv 		pp->pr_redzone = true;
   2617  1.204      maxv 	} else {
   2618  1.204      maxv 		/* No space for a red zone... snif :'( */
   2619  1.204      maxv 		pp->pr_reqsize = 0;
   2620  1.204      maxv 		pp->pr_redzone = false;
   2621  1.204      maxv 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2622  1.204      maxv 	}
   2623  1.204      maxv }
   2624  1.204      maxv 
   2625  1.204      maxv static void
   2626  1.204      maxv pool_redzone_fill(struct pool *pp, void *p)
   2627  1.204      maxv {
   2628  1.204      maxv 	uint8_t *cp, pat;
   2629  1.204      maxv 	const uint8_t *ep;
   2630  1.204      maxv 
   2631  1.204      maxv 	if (!pp->pr_redzone)
   2632  1.204      maxv 		return;
   2633  1.204      maxv 
   2634  1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   2635  1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   2636  1.204      maxv 
   2637  1.204      maxv 	/*
   2638  1.204      maxv 	 * We really don't want the first byte of the red zone to be '\0';
   2639  1.204      maxv 	 * an off-by-one in a string may not be properly detected.
   2640  1.204      maxv 	 */
   2641  1.204      maxv 	pat = pool_pattern_generate(cp);
   2642  1.204      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2643  1.204      maxv 	cp++;
   2644  1.204      maxv 
   2645  1.204      maxv 	while (cp < ep) {
   2646  1.204      maxv 		*cp = pool_pattern_generate(cp);
   2647  1.204      maxv 		cp++;
   2648  1.204      maxv 	}
   2649  1.204      maxv }
   2650  1.204      maxv 
   2651  1.204      maxv static void
   2652  1.204      maxv pool_redzone_check(struct pool *pp, void *p)
   2653  1.204      maxv {
   2654  1.204      maxv 	uint8_t *cp, pat, expected;
   2655  1.204      maxv 	const uint8_t *ep;
   2656  1.204      maxv 
   2657  1.204      maxv 	if (!pp->pr_redzone)
   2658  1.204      maxv 		return;
   2659  1.204      maxv 
   2660  1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   2661  1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   2662  1.204      maxv 
   2663  1.204      maxv 	pat = pool_pattern_generate(cp);
   2664  1.204      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2665  1.204      maxv 	if (expected != *cp) {
   2666  1.204      maxv 		panic("%s: %p: 0x%02x != 0x%02x\n",
   2667  1.204      maxv 		   __func__, cp, *cp, expected);
   2668  1.204      maxv 	}
   2669  1.204      maxv 	cp++;
   2670  1.204      maxv 
   2671  1.204      maxv 	while (cp < ep) {
   2672  1.204      maxv 		expected = pool_pattern_generate(cp);
   2673  1.204      maxv 		if (*cp != expected) {
   2674  1.204      maxv 			panic("%s: %p: 0x%02x != 0x%02x\n",
   2675  1.204      maxv 			   __func__, cp, *cp, expected);
   2676  1.204      maxv 		}
   2677  1.204      maxv 		cp++;
   2678  1.204      maxv 	}
   2679  1.204      maxv }
   2680  1.204      maxv 
   2681  1.204      maxv #endif /* POOL_REDZONE */
   2682  1.204      maxv 
   2683  1.204      maxv 
   2684   1.66   thorpej #ifdef POOL_SUBPAGE
   2685   1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2686   1.66   thorpej void *
   2687   1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2688   1.66   thorpej {
   2689  1.134        ad 	return pool_get(&psppool, flags);
   2690   1.66   thorpej }
   2691   1.66   thorpej 
   2692   1.66   thorpej void
   2693   1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2694   1.66   thorpej {
   2695   1.66   thorpej 	pool_put(&psppool, v);
   2696   1.66   thorpej }
   2697   1.66   thorpej 
   2698  1.112     bjh21 #endif /* POOL_SUBPAGE */
   2699  1.141      yamt 
   2700  1.141      yamt #if defined(DDB)
   2701  1.141      yamt static bool
   2702  1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2703  1.141      yamt {
   2704  1.141      yamt 
   2705  1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   2706  1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2707  1.141      yamt }
   2708  1.141      yamt 
   2709  1.143      yamt static bool
   2710  1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2711  1.143      yamt {
   2712  1.143      yamt 
   2713  1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2714  1.143      yamt }
   2715  1.143      yamt 
   2716  1.143      yamt static bool
   2717  1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2718  1.143      yamt {
   2719  1.143      yamt 	int i;
   2720  1.143      yamt 
   2721  1.143      yamt 	if (pcg == NULL) {
   2722  1.143      yamt 		return false;
   2723  1.143      yamt 	}
   2724  1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   2725  1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2726  1.143      yamt 			return true;
   2727  1.143      yamt 		}
   2728  1.143      yamt 	}
   2729  1.143      yamt 	return false;
   2730  1.143      yamt }
   2731  1.143      yamt 
   2732  1.143      yamt static bool
   2733  1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2734  1.143      yamt {
   2735  1.143      yamt 
   2736  1.143      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2737  1.143      yamt 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2738  1.143      yamt 		pool_item_bitmap_t *bitmap =
   2739  1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2740  1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2741  1.143      yamt 
   2742  1.143      yamt 		return (*bitmap & mask) == 0;
   2743  1.143      yamt 	} else {
   2744  1.143      yamt 		struct pool_item *pi;
   2745  1.143      yamt 
   2746  1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2747  1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   2748  1.143      yamt 				return false;
   2749  1.143      yamt 			}
   2750  1.143      yamt 		}
   2751  1.143      yamt 		return true;
   2752  1.143      yamt 	}
   2753  1.143      yamt }
   2754  1.143      yamt 
   2755  1.141      yamt void
   2756  1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2757  1.141      yamt {
   2758  1.141      yamt 	struct pool *pp;
   2759  1.141      yamt 
   2760  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2761  1.141      yamt 		struct pool_item_header *ph;
   2762  1.141      yamt 		uintptr_t item;
   2763  1.143      yamt 		bool allocated = true;
   2764  1.143      yamt 		bool incache = false;
   2765  1.143      yamt 		bool incpucache = false;
   2766  1.143      yamt 		char cpucachestr[32];
   2767  1.141      yamt 
   2768  1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2769  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2770  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2771  1.141      yamt 					goto found;
   2772  1.141      yamt 				}
   2773  1.141      yamt 			}
   2774  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2775  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2776  1.143      yamt 					allocated =
   2777  1.143      yamt 					    pool_allocated(pp, ph, addr);
   2778  1.143      yamt 					goto found;
   2779  1.143      yamt 				}
   2780  1.143      yamt 			}
   2781  1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2782  1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   2783  1.143      yamt 					allocated = false;
   2784  1.141      yamt 					goto found;
   2785  1.141      yamt 				}
   2786  1.141      yamt 			}
   2787  1.141      yamt 			continue;
   2788  1.141      yamt 		} else {
   2789  1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2790  1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2791  1.141      yamt 				continue;
   2792  1.141      yamt 			}
   2793  1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   2794  1.141      yamt 		}
   2795  1.141      yamt found:
   2796  1.143      yamt 		if (allocated && pp->pr_cache) {
   2797  1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   2798  1.143      yamt 			struct pool_cache_group *pcg;
   2799  1.143      yamt 			int i;
   2800  1.143      yamt 
   2801  1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2802  1.143      yamt 			    pcg = pcg->pcg_next) {
   2803  1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   2804  1.143      yamt 					incache = true;
   2805  1.143      yamt 					goto print;
   2806  1.143      yamt 				}
   2807  1.143      yamt 			}
   2808  1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2809  1.143      yamt 				pool_cache_cpu_t *cc;
   2810  1.143      yamt 
   2811  1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2812  1.143      yamt 					continue;
   2813  1.143      yamt 				}
   2814  1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2815  1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2816  1.143      yamt 					struct cpu_info *ci =
   2817  1.170        ad 					    cpu_lookup(i);
   2818  1.143      yamt 
   2819  1.143      yamt 					incpucache = true;
   2820  1.143      yamt 					snprintf(cpucachestr,
   2821  1.143      yamt 					    sizeof(cpucachestr),
   2822  1.143      yamt 					    "cached by CPU %u",
   2823  1.153    martin 					    ci->ci_index);
   2824  1.143      yamt 					goto print;
   2825  1.143      yamt 				}
   2826  1.143      yamt 			}
   2827  1.143      yamt 		}
   2828  1.143      yamt print:
   2829  1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2830  1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   2831  1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2832  1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   2833  1.143      yamt 		    pp->pr_wchan,
   2834  1.143      yamt 		    incpucache ? cpucachestr :
   2835  1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   2836  1.141      yamt 	}
   2837  1.141      yamt }
   2838  1.141      yamt #endif /* defined(DDB) */
   2839  1.203     joerg 
   2840  1.203     joerg static int
   2841  1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   2842  1.203     joerg {
   2843  1.203     joerg 	struct pool_sysctl data;
   2844  1.203     joerg 	struct pool *pp;
   2845  1.203     joerg 	struct pool_cache *pc;
   2846  1.203     joerg 	pool_cache_cpu_t *cc;
   2847  1.203     joerg 	int error;
   2848  1.203     joerg 	size_t i, written;
   2849  1.203     joerg 
   2850  1.203     joerg 	if (oldp == NULL) {
   2851  1.203     joerg 		*oldlenp = 0;
   2852  1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   2853  1.203     joerg 			*oldlenp += sizeof(data);
   2854  1.203     joerg 		return 0;
   2855  1.203     joerg 	}
   2856  1.203     joerg 
   2857  1.203     joerg 	memset(&data, 0, sizeof(data));
   2858  1.203     joerg 	error = 0;
   2859  1.203     joerg 	written = 0;
   2860  1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2861  1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   2862  1.203     joerg 			break;
   2863  1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   2864  1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   2865  1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   2866  1.203     joerg #define COPY(field) data.field = pp->field
   2867  1.203     joerg 		COPY(pr_size);
   2868  1.203     joerg 
   2869  1.203     joerg 		COPY(pr_itemsperpage);
   2870  1.203     joerg 		COPY(pr_nitems);
   2871  1.203     joerg 		COPY(pr_nout);
   2872  1.203     joerg 		COPY(pr_hardlimit);
   2873  1.203     joerg 		COPY(pr_npages);
   2874  1.203     joerg 		COPY(pr_minpages);
   2875  1.203     joerg 		COPY(pr_maxpages);
   2876  1.203     joerg 
   2877  1.203     joerg 		COPY(pr_nget);
   2878  1.203     joerg 		COPY(pr_nfail);
   2879  1.203     joerg 		COPY(pr_nput);
   2880  1.203     joerg 		COPY(pr_npagealloc);
   2881  1.203     joerg 		COPY(pr_npagefree);
   2882  1.203     joerg 		COPY(pr_hiwat);
   2883  1.203     joerg 		COPY(pr_nidle);
   2884  1.203     joerg #undef COPY
   2885  1.203     joerg 
   2886  1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   2887  1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   2888  1.203     joerg 		if (pp->pr_cache) {
   2889  1.203     joerg 			pc = pp->pr_cache;
   2890  1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   2891  1.203     joerg 			data.pr_cache_nfull = pc->pc_nfull;
   2892  1.203     joerg 			data.pr_cache_npartial = pc->pc_npart;
   2893  1.203     joerg 			data.pr_cache_nempty = pc->pc_nempty;
   2894  1.203     joerg 			data.pr_cache_ncontended = pc->pc_contended;
   2895  1.203     joerg 			data.pr_cache_nmiss_global = pc->pc_misses;
   2896  1.203     joerg 			data.pr_cache_nhit_global = pc->pc_hits;
   2897  1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   2898  1.203     joerg 				cc = pc->pc_cpus[i];
   2899  1.203     joerg 				if (cc == NULL)
   2900  1.203     joerg 					continue;
   2901  1.206  knakahar 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   2902  1.206  knakahar 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   2903  1.203     joerg 			}
   2904  1.203     joerg 		} else {
   2905  1.203     joerg 			data.pr_cache_meta_size = 0;
   2906  1.203     joerg 			data.pr_cache_nfull = 0;
   2907  1.203     joerg 			data.pr_cache_npartial = 0;
   2908  1.203     joerg 			data.pr_cache_nempty = 0;
   2909  1.203     joerg 			data.pr_cache_ncontended = 0;
   2910  1.203     joerg 			data.pr_cache_nmiss_global = 0;
   2911  1.203     joerg 			data.pr_cache_nhit_global = 0;
   2912  1.203     joerg 		}
   2913  1.203     joerg 
   2914  1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   2915  1.203     joerg 		if (error)
   2916  1.203     joerg 			break;
   2917  1.203     joerg 		written += sizeof(data);
   2918  1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   2919  1.203     joerg 	}
   2920  1.203     joerg 
   2921  1.203     joerg 	*oldlenp = written;
   2922  1.203     joerg 	return error;
   2923  1.203     joerg }
   2924  1.203     joerg 
   2925  1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   2926  1.203     joerg {
   2927  1.203     joerg 	const struct sysctlnode *rnode = NULL;
   2928  1.203     joerg 
   2929  1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   2930  1.203     joerg 		       CTLFLAG_PERMANENT,
   2931  1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   2932  1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   2933  1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   2934  1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   2935  1.203     joerg }
   2936