Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.221.2.1
      1  1.221.2.1  pgoyette /*	$NetBSD: subr_pool.c,v 1.221.2.1 2018/07/28 04:38:08 pgoyette Exp $	*/
      2        1.1        pk 
      3        1.1        pk /*-
      4      1.204      maxv  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
      5      1.183        ad  *     The NetBSD Foundation, Inc.
      6        1.1        pk  * All rights reserved.
      7        1.1        pk  *
      8        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10      1.204      maxv  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11      1.204      maxv  * Maxime Villard.
     12        1.1        pk  *
     13        1.1        pk  * Redistribution and use in source and binary forms, with or without
     14        1.1        pk  * modification, are permitted provided that the following conditions
     15        1.1        pk  * are met:
     16        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20        1.1        pk  *    documentation and/or other materials provided with the distribution.
     21        1.1        pk  *
     22        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33        1.1        pk  */
     34       1.64     lukem 
     35       1.64     lukem #include <sys/cdefs.h>
     36  1.221.2.1  pgoyette __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.221.2.1 2018/07/28 04:38:08 pgoyette Exp $");
     37       1.24    scottr 
     38      1.205     pooka #ifdef _KERNEL_OPT
     39      1.141      yamt #include "opt_ddb.h"
     40       1.28   thorpej #include "opt_lockdebug.h"
     41      1.205     pooka #endif
     42        1.1        pk 
     43        1.1        pk #include <sys/param.h>
     44        1.1        pk #include <sys/systm.h>
     45      1.203     joerg #include <sys/sysctl.h>
     46      1.135      yamt #include <sys/bitops.h>
     47        1.1        pk #include <sys/proc.h>
     48        1.1        pk #include <sys/errno.h>
     49        1.1        pk #include <sys/kernel.h>
     50      1.191      para #include <sys/vmem.h>
     51        1.1        pk #include <sys/pool.h>
     52       1.20   thorpej #include <sys/syslog.h>
     53      1.125        ad #include <sys/debug.h>
     54      1.134        ad #include <sys/lockdebug.h>
     55      1.134        ad #include <sys/xcall.h>
     56      1.134        ad #include <sys/cpu.h>
     57      1.145        ad #include <sys/atomic.h>
     58        1.3        pk 
     59      1.187  uebayasi #include <uvm/uvm_extern.h>
     60        1.3        pk 
     61        1.1        pk /*
     62        1.1        pk  * Pool resource management utility.
     63        1.3        pk  *
     64       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     65       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     66       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     67       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     68       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     69       1.88       chs  * header. The memory for building the page list is either taken from
     70       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     71       1.88       chs  * an internal pool of page headers (`phpool').
     72        1.1        pk  */
     73        1.1        pk 
     74      1.221      para /* List of all pools. Non static as needed by 'vmstat -m' */
     75      1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     76      1.134        ad 
     77        1.3        pk /* Private pool for page header structures */
     78       1.97      yamt #define	PHPOOL_MAX	8
     79       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     80      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     81      1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     82        1.3        pk 
     83       1.62     bjh21 #ifdef POOL_SUBPAGE
     84       1.62     bjh21 /* Pool of subpages for use by normal pools. */
     85       1.62     bjh21 static struct pool psppool;
     86       1.62     bjh21 #endif
     87       1.62     bjh21 
     88      1.204      maxv #ifdef POOL_REDZONE
     89      1.204      maxv # define POOL_REDZONE_SIZE 2
     90      1.204      maxv static void pool_redzone_init(struct pool *, size_t);
     91      1.204      maxv static void pool_redzone_fill(struct pool *, void *);
     92      1.204      maxv static void pool_redzone_check(struct pool *, void *);
     93      1.204      maxv #else
     94      1.204      maxv # define pool_redzone_init(pp, sz)	/* NOTHING */
     95      1.204      maxv # define pool_redzone_fill(pp, ptr)	/* NOTHING */
     96      1.204      maxv # define pool_redzone_check(pp, ptr)	/* NOTHING */
     97      1.204      maxv #endif
     98      1.204      maxv 
     99       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    100       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    101       1.98      yamt 
    102       1.98      yamt /* allocator for pool metadata */
    103      1.134        ad struct pool_allocator pool_allocator_meta = {
    104      1.191      para 	.pa_alloc = pool_page_alloc_meta,
    105      1.191      para 	.pa_free = pool_page_free_meta,
    106      1.191      para 	.pa_pagesz = 0
    107       1.98      yamt };
    108       1.98      yamt 
    109      1.208       chs #define POOL_ALLOCATOR_BIG_BASE 13
    110      1.208       chs extern struct pool_allocator pool_allocator_big[];
    111      1.208       chs static int pool_bigidx(size_t);
    112      1.208       chs 
    113        1.3        pk /* # of seconds to retain page after last use */
    114        1.3        pk int pool_inactive_time = 10;
    115        1.3        pk 
    116        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    117       1.23   thorpej static struct pool	*drainpp;
    118       1.23   thorpej 
    119      1.134        ad /* This lock protects both pool_head and drainpp. */
    120      1.134        ad static kmutex_t pool_head_lock;
    121      1.134        ad static kcondvar_t pool_busy;
    122        1.3        pk 
    123      1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    124      1.178      elad static kmutex_t pool_allocator_lock;
    125      1.178      elad 
    126      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    127      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    128      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    129       1.99      yamt 
    130        1.3        pk struct pool_item_header {
    131        1.3        pk 	/* Page headers */
    132       1.88       chs 	LIST_ENTRY(pool_item_header)
    133        1.3        pk 				ph_pagelist;	/* pool page list */
    134       1.88       chs 	SPLAY_ENTRY(pool_item_header)
    135       1.88       chs 				ph_node;	/* Off-page page headers */
    136      1.128  christos 	void *			ph_page;	/* this page's address */
    137      1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    138      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    139      1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    140       1.97      yamt 	union {
    141       1.97      yamt 		/* !PR_NOTOUCH */
    142       1.97      yamt 		struct {
    143      1.102       chs 			LIST_HEAD(, pool_item)
    144       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    145       1.97      yamt 		} phu_normal;
    146       1.97      yamt 		/* PR_NOTOUCH */
    147       1.97      yamt 		struct {
    148      1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    149       1.97      yamt 		} phu_notouch;
    150       1.97      yamt 	} ph_u;
    151        1.3        pk };
    152       1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    153      1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    154        1.3        pk 
    155        1.1        pk struct pool_item {
    156        1.3        pk #ifdef DIAGNOSTIC
    157       1.82   thorpej 	u_int pi_magic;
    158       1.33       chs #endif
    159      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    160        1.3        pk 	/* Other entries use only this list entry */
    161      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    162        1.3        pk };
    163        1.3        pk 
    164       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    165       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    166       1.53   thorpej 
    167       1.43   thorpej /*
    168       1.43   thorpej  * Pool cache management.
    169       1.43   thorpej  *
    170       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    171       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    172       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    173       1.43   thorpej  * necessary.
    174       1.43   thorpej  *
    175      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    176      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    177      1.134        ad  * object from the pool, it calls the object's constructor and places it
    178      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    179      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    180      1.134        ad  * to persist in constructed form while freed to the cache.
    181      1.134        ad  *
    182      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    183      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    184      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    185      1.134        ad  * its entirety.
    186       1.43   thorpej  *
    187       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    188       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    189       1.43   thorpej  * from it.
    190       1.43   thorpej  */
    191       1.43   thorpej 
    192      1.142        ad static struct pool pcg_normal_pool;
    193      1.142        ad static struct pool pcg_large_pool;
    194      1.134        ad static struct pool cache_pool;
    195      1.134        ad static struct pool cache_cpu_pool;
    196        1.3        pk 
    197      1.189     pooka pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    198      1.189     pooka 
    199      1.145        ad /* List of all caches. */
    200      1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    201      1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    202      1.145        ad 
    203      1.162        ad int pool_cache_disable;		/* global disable for caching */
    204      1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    205      1.145        ad 
    206      1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    207      1.162        ad 				    void *);
    208      1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    209      1.162        ad 				    void **, paddr_t *, int);
    210      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    211      1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    212      1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    213      1.196       jym static void	pool_cache_transfer(pool_cache_t);
    214        1.3        pk 
    215       1.42   thorpej static int	pool_catchup(struct pool *);
    216      1.128  christos static void	pool_prime_page(struct pool *, void *,
    217       1.55   thorpej 		    struct pool_item_header *);
    218       1.88       chs static void	pool_update_curpage(struct pool *);
    219       1.66   thorpej 
    220      1.113      yamt static int	pool_grow(struct pool *, int);
    221      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    222      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    223        1.3        pk 
    224       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    225      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    226       1.42   thorpej static void pool_print1(struct pool *, const char *,
    227      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    228        1.3        pk 
    229       1.88       chs static int pool_chk_page(struct pool *, const char *,
    230       1.88       chs 			 struct pool_item_header *);
    231       1.88       chs 
    232      1.135      yamt static inline unsigned int
    233       1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    234       1.97      yamt     const void *v)
    235       1.97      yamt {
    236       1.97      yamt 	const char *cp = v;
    237      1.135      yamt 	unsigned int idx;
    238       1.97      yamt 
    239       1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    240      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    241       1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    242       1.97      yamt 	return idx;
    243       1.97      yamt }
    244       1.97      yamt 
    245      1.110     perry static inline void
    246       1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    247       1.97      yamt     void *obj)
    248       1.97      yamt {
    249      1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    250      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    251  1.221.2.1  pgoyette 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    252       1.97      yamt 
    253      1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    254      1.135      yamt 	*bitmap |= mask;
    255       1.97      yamt }
    256       1.97      yamt 
    257      1.110     perry static inline void *
    258       1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    259       1.97      yamt {
    260      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    261      1.135      yamt 	unsigned int idx;
    262      1.135      yamt 	int i;
    263       1.97      yamt 
    264      1.135      yamt 	for (i = 0; ; i++) {
    265      1.135      yamt 		int bit;
    266       1.97      yamt 
    267      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    268      1.135      yamt 		bit = ffs32(bitmap[i]);
    269      1.135      yamt 		if (bit) {
    270      1.135      yamt 			pool_item_bitmap_t mask;
    271      1.135      yamt 
    272      1.135      yamt 			bit--;
    273      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    274  1.221.2.1  pgoyette 			mask = 1U << bit;
    275      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    276      1.135      yamt 			bitmap[i] &= ~mask;
    277      1.135      yamt 			break;
    278      1.135      yamt 		}
    279      1.135      yamt 	}
    280      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    281      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    282       1.97      yamt }
    283       1.97      yamt 
    284      1.135      yamt static inline void
    285      1.141      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    286      1.135      yamt {
    287      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    288      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    289      1.135      yamt 	int i;
    290      1.135      yamt 
    291      1.135      yamt 	for (i = 0; i < n; i++) {
    292      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    293      1.135      yamt 	}
    294      1.135      yamt }
    295      1.135      yamt 
    296      1.110     perry static inline int
    297       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    298       1.88       chs {
    299      1.121      yamt 
    300      1.121      yamt 	/*
    301      1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    302      1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    303      1.121      yamt 	 */
    304      1.121      yamt 
    305       1.88       chs 	if (a->ph_page < b->ph_page)
    306      1.121      yamt 		return (1);
    307      1.121      yamt 	else if (a->ph_page > b->ph_page)
    308       1.88       chs 		return (-1);
    309       1.88       chs 	else
    310       1.88       chs 		return (0);
    311       1.88       chs }
    312       1.88       chs 
    313       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    314       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    315       1.88       chs 
    316      1.141      yamt static inline struct pool_item_header *
    317      1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    318      1.141      yamt {
    319      1.141      yamt 	struct pool_item_header *ph, tmp;
    320      1.141      yamt 
    321      1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    322      1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    323      1.141      yamt 	if (ph == NULL) {
    324      1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    325      1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    326      1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    327      1.141      yamt 		}
    328      1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    329      1.141      yamt 	}
    330      1.141      yamt 
    331      1.141      yamt 	return ph;
    332      1.141      yamt }
    333      1.141      yamt 
    334        1.3        pk /*
    335      1.121      yamt  * Return the pool page header based on item address.
    336        1.3        pk  */
    337      1.110     perry static inline struct pool_item_header *
    338      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    339        1.3        pk {
    340       1.88       chs 	struct pool_item_header *ph, tmp;
    341        1.3        pk 
    342      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    343      1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    344      1.121      yamt 	} else {
    345      1.128  christos 		void *page =
    346      1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    347      1.121      yamt 
    348      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    349      1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    350      1.121      yamt 		} else {
    351      1.121      yamt 			tmp.ph_page = page;
    352      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    353      1.121      yamt 		}
    354      1.121      yamt 	}
    355        1.3        pk 
    356      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    357      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    358      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    359       1.88       chs 	return ph;
    360        1.3        pk }
    361        1.3        pk 
    362      1.101   thorpej static void
    363      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    364      1.101   thorpej {
    365      1.101   thorpej 	struct pool_item_header *ph;
    366      1.101   thorpej 
    367      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    368      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    369      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    370      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    371      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    372      1.101   thorpej 	}
    373      1.101   thorpej }
    374      1.101   thorpej 
    375        1.3        pk /*
    376        1.3        pk  * Remove a page from the pool.
    377        1.3        pk  */
    378      1.110     perry static inline void
    379       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    380       1.61       chs      struct pool_pagelist *pq)
    381        1.3        pk {
    382        1.3        pk 
    383      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    384       1.91      yamt 
    385        1.3        pk 	/*
    386        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    387        1.3        pk 	 */
    388        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    389      1.207  riastrad 		KASSERT(pp->pr_nidle != 0);
    390      1.207  riastrad 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    391      1.207  riastrad 		    "nitems=%u < itemsperpage=%u",
    392      1.207  riastrad 		    pp->pr_nitems, pp->pr_itemsperpage);
    393        1.6   thorpej 		pp->pr_nidle--;
    394        1.6   thorpej 	}
    395        1.7   thorpej 
    396       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    397       1.20   thorpej 
    398        1.7   thorpej 	/*
    399      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    400        1.7   thorpej 	 */
    401       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    402       1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    403       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    404      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    405      1.101   thorpej 
    406        1.7   thorpej 	pp->pr_npages--;
    407        1.7   thorpej 	pp->pr_npagefree++;
    408        1.6   thorpej 
    409       1.88       chs 	pool_update_curpage(pp);
    410        1.3        pk }
    411        1.3        pk 
    412        1.3        pk /*
    413       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    414       1.94    simonb  */
    415       1.94    simonb void
    416      1.117      yamt pool_subsystem_init(void)
    417       1.94    simonb {
    418      1.192     rmind 	size_t size;
    419      1.191      para 	int idx;
    420       1.94    simonb 
    421      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    422      1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    423      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    424      1.134        ad 
    425      1.191      para 	/*
    426      1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    427      1.191      para 	 * haven't done so yet.
    428      1.191      para 	 */
    429      1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    430      1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    431      1.191      para 		int nelem;
    432      1.191      para 		size_t sz;
    433      1.191      para 
    434      1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    435      1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    436      1.191      para 		    "phpool-%d", nelem);
    437      1.191      para 		sz = sizeof(struct pool_item_header);
    438      1.191      para 		if (nelem) {
    439      1.191      para 			sz = offsetof(struct pool_item_header,
    440      1.191      para 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    441      1.191      para 		}
    442      1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    443      1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    444      1.117      yamt 	}
    445      1.191      para #ifdef POOL_SUBPAGE
    446      1.191      para 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    447      1.191      para 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    448      1.191      para #endif
    449      1.191      para 
    450      1.191      para 	size = sizeof(pcg_t) +
    451      1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    452      1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    453      1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    454      1.191      para 
    455      1.191      para 	size = sizeof(pcg_t) +
    456      1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    457      1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    458      1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    459      1.134        ad 
    460      1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    461      1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    462      1.134        ad 
    463      1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    464      1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    465       1.94    simonb }
    466       1.94    simonb 
    467       1.94    simonb /*
    468        1.3        pk  * Initialize the given pool resource structure.
    469        1.3        pk  *
    470        1.3        pk  * We export this routine to allow other kernel parts to declare
    471      1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    472        1.3        pk  */
    473        1.3        pk void
    474       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    475      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    476        1.3        pk {
    477      1.116    simonb 	struct pool *pp1;
    478      1.204      maxv 	size_t trysize, phsize, prsize;
    479      1.134        ad 	int off, slack;
    480        1.3        pk 
    481      1.116    simonb #ifdef DEBUG
    482      1.198  christos 	if (__predict_true(!cold))
    483      1.198  christos 		mutex_enter(&pool_head_lock);
    484      1.116    simonb 	/*
    485      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    486      1.116    simonb 	 * added to the list of all pools.
    487      1.116    simonb 	 */
    488      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    489      1.116    simonb 		if (pp == pp1)
    490      1.213  christos 			panic("%s: [%s] already initialised", __func__,
    491      1.116    simonb 			    wchan);
    492      1.116    simonb 	}
    493      1.198  christos 	if (__predict_true(!cold))
    494      1.198  christos 		mutex_exit(&pool_head_lock);
    495      1.116    simonb #endif
    496      1.116    simonb 
    497       1.66   thorpej 	if (palloc == NULL)
    498       1.66   thorpej 		palloc = &pool_allocator_kmem;
    499      1.112     bjh21 #ifdef POOL_SUBPAGE
    500      1.112     bjh21 	if (size > palloc->pa_pagesz) {
    501      1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    502      1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    503      1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    504      1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    505      1.112     bjh21 	}
    506       1.66   thorpej #endif /* POOL_SUBPAGE */
    507      1.180   mlelstv 	if (!cold)
    508      1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    509      1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    510      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    511       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    512       1.66   thorpej 
    513       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    514       1.66   thorpej 
    515      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    516       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    517       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    518        1.4   thorpej 	}
    519      1.180   mlelstv 	if (!cold)
    520      1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    521        1.3        pk 
    522        1.3        pk 	if (align == 0)
    523        1.3        pk 		align = ALIGN(1);
    524       1.14   thorpej 
    525      1.204      maxv 	prsize = size;
    526      1.204      maxv 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    527      1.204      maxv 		prsize = sizeof(struct pool_item);
    528        1.3        pk 
    529      1.204      maxv 	prsize = roundup(prsize, align);
    530      1.207  riastrad 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    531      1.213  christos 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    532      1.213  christos 	    __func__, wchan, prsize, palloc->pa_pagesz);
    533       1.35        pk 
    534        1.3        pk 	/*
    535        1.3        pk 	 * Initialize the pool structure.
    536        1.3        pk 	 */
    537       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    538       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    539       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    540      1.134        ad 	pp->pr_cache = NULL;
    541        1.3        pk 	pp->pr_curpage = NULL;
    542        1.3        pk 	pp->pr_npages = 0;
    543        1.3        pk 	pp->pr_minitems = 0;
    544        1.3        pk 	pp->pr_minpages = 0;
    545        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    546       1.20   thorpej 	pp->pr_roflags = flags;
    547       1.20   thorpej 	pp->pr_flags = 0;
    548      1.204      maxv 	pp->pr_size = prsize;
    549        1.3        pk 	pp->pr_align = align;
    550        1.3        pk 	pp->pr_wchan = wchan;
    551       1.66   thorpej 	pp->pr_alloc = palloc;
    552       1.20   thorpej 	pp->pr_nitems = 0;
    553       1.20   thorpej 	pp->pr_nout = 0;
    554       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    555       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    556       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    557       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    558       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    559       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    560       1.68   thorpej 	pp->pr_drain_hook = NULL;
    561       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    562      1.125        ad 	pp->pr_freecheck = NULL;
    563      1.204      maxv 	pool_redzone_init(pp, size);
    564        1.3        pk 
    565        1.3        pk 	/*
    566        1.3        pk 	 * Decide whether to put the page header off page to avoid
    567       1.92     enami 	 * wasting too large a part of the page or too big item.
    568       1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    569       1.92     enami 	 * a returned item with its header based on the page address.
    570       1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    571       1.92     enami 	 * size as the threshold (XXX: tune)
    572       1.92     enami 	 *
    573       1.92     enami 	 * However, we'll put the header into the page if we can put
    574       1.92     enami 	 * it without wasting any items.
    575       1.92     enami 	 *
    576       1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    577        1.3        pk 	 */
    578       1.92     enami 	pp->pr_itemoffset = ioff %= align;
    579       1.92     enami 	/* See the comment below about reserved bytes. */
    580       1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    581       1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    582      1.201      para 	if (pp->pr_roflags & PR_PHINPAGE ||
    583      1.201      para 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    584       1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    585      1.201      para 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    586        1.3        pk 		/* Use the end of the page for the page header */
    587       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    588       1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    589        1.2        pk 	} else {
    590        1.3        pk 		/* The page header will be taken from our page header pool */
    591        1.3        pk 		pp->pr_phoffset = 0;
    592       1.66   thorpej 		off = palloc->pa_pagesz;
    593       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    594        1.2        pk 	}
    595        1.1        pk 
    596        1.3        pk 	/*
    597        1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    598        1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    599        1.3        pk 	 * appropriate positioning of each item.
    600        1.3        pk 	 */
    601        1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    602       1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    603       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    604       1.97      yamt 		int idx;
    605       1.97      yamt 
    606       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    607       1.97      yamt 		    idx++) {
    608       1.97      yamt 			/* nothing */
    609       1.97      yamt 		}
    610       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    611       1.97      yamt 			/*
    612       1.97      yamt 			 * if you see this panic, consider to tweak
    613       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    614       1.97      yamt 			 */
    615      1.213  christos 			panic("%s: [%s] too large itemsperpage(%d) for "
    616      1.213  christos 			    "PR_NOTOUCH", __func__,
    617       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    618       1.97      yamt 		}
    619       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    620       1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    621       1.97      yamt 		pp->pr_phpool = &phpool[0];
    622       1.97      yamt 	}
    623       1.97      yamt #if defined(DIAGNOSTIC)
    624       1.97      yamt 	else {
    625       1.97      yamt 		pp->pr_phpool = NULL;
    626       1.97      yamt 	}
    627       1.97      yamt #endif
    628        1.3        pk 
    629        1.3        pk 	/*
    630        1.3        pk 	 * Use the slack between the chunks and the page header
    631        1.3        pk 	 * for "cache coloring".
    632        1.3        pk 	 */
    633        1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    634        1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    635        1.3        pk 	pp->pr_curcolor = 0;
    636        1.3        pk 
    637        1.3        pk 	pp->pr_nget = 0;
    638        1.3        pk 	pp->pr_nfail = 0;
    639        1.3        pk 	pp->pr_nput = 0;
    640        1.3        pk 	pp->pr_npagealloc = 0;
    641        1.3        pk 	pp->pr_npagefree = 0;
    642        1.1        pk 	pp->pr_hiwat = 0;
    643        1.8   thorpej 	pp->pr_nidle = 0;
    644      1.134        ad 	pp->pr_refcnt = 0;
    645        1.3        pk 
    646      1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    647      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    648      1.134        ad 	pp->pr_ipl = ipl;
    649        1.1        pk 
    650      1.145        ad 	/* Insert into the list of all pools. */
    651      1.181   mlelstv 	if (!cold)
    652      1.134        ad 		mutex_enter(&pool_head_lock);
    653      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    654      1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    655      1.145        ad 			break;
    656      1.145        ad 	}
    657      1.145        ad 	if (pp1 == NULL)
    658      1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    659      1.145        ad 	else
    660      1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    661      1.181   mlelstv 	if (!cold)
    662      1.134        ad 		mutex_exit(&pool_head_lock);
    663      1.134        ad 
    664      1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    665      1.181   mlelstv 	if (!cold)
    666      1.134        ad 		mutex_enter(&palloc->pa_lock);
    667      1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    668      1.181   mlelstv 	if (!cold)
    669      1.134        ad 		mutex_exit(&palloc->pa_lock);
    670        1.1        pk }
    671        1.1        pk 
    672        1.1        pk /*
    673        1.1        pk  * De-commision a pool resource.
    674        1.1        pk  */
    675        1.1        pk void
    676       1.42   thorpej pool_destroy(struct pool *pp)
    677        1.1        pk {
    678      1.101   thorpej 	struct pool_pagelist pq;
    679        1.3        pk 	struct pool_item_header *ph;
    680       1.43   thorpej 
    681      1.101   thorpej 	/* Remove from global pool list */
    682      1.134        ad 	mutex_enter(&pool_head_lock);
    683      1.134        ad 	while (pp->pr_refcnt != 0)
    684      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    685      1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    686      1.101   thorpej 	if (drainpp == pp)
    687      1.101   thorpej 		drainpp = NULL;
    688      1.134        ad 	mutex_exit(&pool_head_lock);
    689      1.101   thorpej 
    690      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    691      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    692       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    693      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    694       1.66   thorpej 
    695      1.178      elad 	mutex_enter(&pool_allocator_lock);
    696      1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    697      1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    698      1.178      elad 	mutex_exit(&pool_allocator_lock);
    699      1.178      elad 
    700      1.134        ad 	mutex_enter(&pp->pr_lock);
    701      1.101   thorpej 
    702      1.134        ad 	KASSERT(pp->pr_cache == NULL);
    703      1.207  riastrad 	KASSERTMSG((pp->pr_nout == 0),
    704      1.213  christos 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    705      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    706      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    707      1.101   thorpej 
    708        1.3        pk 	/* Remove all pages */
    709      1.101   thorpej 	LIST_INIT(&pq);
    710       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    711      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    712      1.101   thorpej 
    713      1.134        ad 	mutex_exit(&pp->pr_lock);
    714        1.3        pk 
    715      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    716      1.134        ad 	cv_destroy(&pp->pr_cv);
    717      1.134        ad 	mutex_destroy(&pp->pr_lock);
    718        1.1        pk }
    719        1.1        pk 
    720       1.68   thorpej void
    721       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    722       1.68   thorpej {
    723       1.68   thorpej 
    724       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    725      1.207  riastrad 	KASSERTMSG((pp->pr_drain_hook == NULL),
    726      1.213  christos 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    727       1.68   thorpej 	pp->pr_drain_hook = fn;
    728       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    729       1.68   thorpej }
    730       1.68   thorpej 
    731       1.88       chs static struct pool_item_header *
    732      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    733       1.55   thorpej {
    734       1.55   thorpej 	struct pool_item_header *ph;
    735       1.55   thorpej 
    736       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    737      1.213  christos 		ph = (void *)((char *)storage + pp->pr_phoffset);
    738      1.134        ad 	else
    739       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    740       1.55   thorpej 
    741       1.55   thorpej 	return (ph);
    742       1.55   thorpej }
    743        1.1        pk 
    744        1.1        pk /*
    745      1.134        ad  * Grab an item from the pool.
    746        1.1        pk  */
    747        1.3        pk void *
    748       1.56  sommerfe pool_get(struct pool *pp, int flags)
    749        1.1        pk {
    750        1.1        pk 	struct pool_item *pi;
    751        1.3        pk 	struct pool_item_header *ph;
    752       1.55   thorpej 	void *v;
    753        1.1        pk 
    754      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    755      1.207  riastrad 	KASSERTMSG((pp->pr_itemsperpage != 0),
    756      1.213  christos 	    "%s: [%s] pr_itemsperpage is zero, "
    757      1.213  christos 	    "pool not initialized?", __func__, pp->pr_wchan);
    758      1.207  riastrad 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    759      1.207  riastrad 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    760      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    761      1.213  christos 	    __func__, pp->pr_wchan);
    762      1.155        ad 	if (flags & PR_WAITOK) {
    763      1.154      yamt 		ASSERT_SLEEPABLE();
    764      1.155        ad 	}
    765        1.1        pk 
    766      1.134        ad 	mutex_enter(&pp->pr_lock);
    767       1.20   thorpej  startover:
    768       1.20   thorpej 	/*
    769       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    770       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    771       1.20   thorpej 	 * the pool.
    772       1.20   thorpej 	 */
    773      1.207  riastrad 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    774      1.213  christos 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    775       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    776       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    777       1.68   thorpej 			/*
    778       1.68   thorpej 			 * Since the drain hook is going to free things
    779       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    780       1.68   thorpej 			 * and check the hardlimit condition again.
    781       1.68   thorpej 			 */
    782      1.134        ad 			mutex_exit(&pp->pr_lock);
    783       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    784      1.134        ad 			mutex_enter(&pp->pr_lock);
    785       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    786       1.68   thorpej 				goto startover;
    787       1.68   thorpej 		}
    788       1.68   thorpej 
    789       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    790       1.20   thorpej 			/*
    791       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
    792       1.20   thorpej 			 * it be?
    793       1.20   thorpej 			 */
    794       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
    795      1.212  christos 			do {
    796      1.212  christos 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    797      1.212  christos 			} while (pp->pr_flags & PR_WANTED);
    798       1.20   thorpej 			goto startover;
    799       1.20   thorpej 		}
    800       1.31   thorpej 
    801       1.31   thorpej 		/*
    802       1.31   thorpej 		 * Log a message that the hard limit has been hit.
    803       1.31   thorpej 		 */
    804       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
    805       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
    806       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
    807       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    808       1.21   thorpej 
    809       1.21   thorpej 		pp->pr_nfail++;
    810       1.21   thorpej 
    811      1.134        ad 		mutex_exit(&pp->pr_lock);
    812      1.216  christos 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    813       1.20   thorpej 		return (NULL);
    814       1.20   thorpej 	}
    815       1.20   thorpej 
    816        1.3        pk 	/*
    817        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
    818        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
    819        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
    820        1.3        pk 	 * has no items in its bucket.
    821        1.3        pk 	 */
    822       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
    823      1.113      yamt 		int error;
    824      1.113      yamt 
    825      1.207  riastrad 		KASSERTMSG((pp->pr_nitems == 0),
    826      1.213  christos 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
    827      1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
    828       1.20   thorpej 
    829       1.21   thorpej 		/*
    830       1.21   thorpej 		 * Call the back-end page allocator for more memory.
    831       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
    832       1.21   thorpej 		 * may block.
    833       1.21   thorpej 		 */
    834      1.113      yamt 		error = pool_grow(pp, flags);
    835      1.113      yamt 		if (error != 0) {
    836       1.21   thorpej 			/*
    837      1.210   mlelstv 			 * pool_grow aborts when another thread
    838      1.210   mlelstv 			 * is allocating a new page. Retry if it
    839      1.210   mlelstv 			 * waited for it.
    840      1.210   mlelstv 			 */
    841      1.210   mlelstv 			if (error == ERESTART)
    842      1.210   mlelstv 				goto startover;
    843      1.210   mlelstv 
    844      1.210   mlelstv 			/*
    845       1.55   thorpej 			 * We were unable to allocate a page or item
    846       1.55   thorpej 			 * header, but we released the lock during
    847       1.55   thorpej 			 * allocation, so perhaps items were freed
    848       1.55   thorpej 			 * back to the pool.  Check for this case.
    849       1.21   thorpej 			 */
    850       1.21   thorpej 			if (pp->pr_curpage != NULL)
    851       1.21   thorpej 				goto startover;
    852       1.15        pk 
    853      1.117      yamt 			pp->pr_nfail++;
    854      1.134        ad 			mutex_exit(&pp->pr_lock);
    855      1.211  riastrad 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
    856      1.117      yamt 			return (NULL);
    857        1.1        pk 		}
    858        1.3        pk 
    859       1.20   thorpej 		/* Start the allocation process over. */
    860       1.20   thorpej 		goto startover;
    861        1.3        pk 	}
    862       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
    863      1.207  riastrad 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
    864      1.213  christos 		    "%s: %s: page empty", __func__, pp->pr_wchan);
    865       1.97      yamt 		v = pr_item_notouch_get(pp, ph);
    866       1.97      yamt 	} else {
    867      1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    868       1.97      yamt 		if (__predict_false(v == NULL)) {
    869      1.134        ad 			mutex_exit(&pp->pr_lock);
    870      1.213  christos 			panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    871       1.97      yamt 		}
    872      1.207  riastrad 		KASSERTMSG((pp->pr_nitems > 0),
    873      1.213  christos 		    "%s: [%s] nitems %u inconsistent on itemlist",
    874      1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
    875      1.207  riastrad 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
    876      1.213  christos 		    "%s: [%s] free list modified: "
    877      1.213  christos 		    "magic=%x; page %p; item addr %p", __func__,
    878      1.207  riastrad 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    879        1.3        pk 
    880       1.97      yamt 		/*
    881       1.97      yamt 		 * Remove from item list.
    882       1.97      yamt 		 */
    883      1.102       chs 		LIST_REMOVE(pi, pi_list);
    884       1.97      yamt 	}
    885       1.20   thorpej 	pp->pr_nitems--;
    886       1.20   thorpej 	pp->pr_nout++;
    887        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    888      1.207  riastrad 		KASSERT(pp->pr_nidle > 0);
    889        1.6   thorpej 		pp->pr_nidle--;
    890       1.88       chs 
    891       1.88       chs 		/*
    892       1.88       chs 		 * This page was previously empty.  Move it to the list of
    893       1.88       chs 		 * partially-full pages.  This page is already curpage.
    894       1.88       chs 		 */
    895       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
    896       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    897        1.6   thorpej 	}
    898        1.3        pk 	ph->ph_nmissing++;
    899       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    900      1.207  riastrad 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
    901      1.207  riastrad 			LIST_EMPTY(&ph->ph_itemlist)),
    902      1.213  christos 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
    903      1.213  christos 			pp->pr_wchan, ph->ph_nmissing);
    904        1.3        pk 		/*
    905       1.88       chs 		 * This page is now full.  Move it to the full list
    906       1.88       chs 		 * and select a new current page.
    907        1.3        pk 		 */
    908       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
    909       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    910       1.88       chs 		pool_update_curpage(pp);
    911        1.1        pk 	}
    912        1.3        pk 
    913        1.3        pk 	pp->pr_nget++;
    914       1.20   thorpej 
    915       1.20   thorpej 	/*
    916       1.20   thorpej 	 * If we have a low water mark and we are now below that low
    917       1.20   thorpej 	 * water mark, add more items to the pool.
    918       1.20   thorpej 	 */
    919       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    920       1.20   thorpej 		/*
    921       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
    922       1.20   thorpej 		 * to try again in a second or so?  The latter could break
    923       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
    924       1.20   thorpej 		 */
    925       1.20   thorpej 	}
    926       1.20   thorpej 
    927      1.134        ad 	mutex_exit(&pp->pr_lock);
    928      1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    929      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
    930      1.204      maxv 	pool_redzone_fill(pp, v);
    931        1.1        pk 	return (v);
    932        1.1        pk }
    933        1.1        pk 
    934        1.1        pk /*
    935       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
    936        1.1        pk  */
    937       1.43   thorpej static void
    938      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    939        1.1        pk {
    940        1.1        pk 	struct pool_item *pi = v;
    941        1.3        pk 	struct pool_item_header *ph;
    942        1.3        pk 
    943      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    944      1.204      maxv 	pool_redzone_check(pp, v);
    945      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
    946      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    947       1.61       chs 
    948      1.207  riastrad 	KASSERTMSG((pp->pr_nout > 0),
    949      1.213  christos 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
    950        1.3        pk 
    951      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    952      1.213  christos 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
    953        1.3        pk 	}
    954       1.28   thorpej 
    955        1.3        pk 	/*
    956        1.3        pk 	 * Return to item list.
    957        1.3        pk 	 */
    958       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
    959       1.97      yamt 		pr_item_notouch_put(pp, ph, v);
    960       1.97      yamt 	} else {
    961        1.2        pk #ifdef DIAGNOSTIC
    962       1.97      yamt 		pi->pi_magic = PI_MAGIC;
    963        1.3        pk #endif
    964       1.32       chs #ifdef DEBUG
    965       1.97      yamt 		{
    966       1.97      yamt 			int i, *ip = v;
    967       1.32       chs 
    968       1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    969       1.97      yamt 				*ip++ = PI_MAGIC;
    970       1.97      yamt 			}
    971       1.32       chs 		}
    972       1.32       chs #endif
    973       1.32       chs 
    974      1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    975       1.97      yamt 	}
    976       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
    977        1.3        pk 	ph->ph_nmissing--;
    978        1.3        pk 	pp->pr_nput++;
    979       1.20   thorpej 	pp->pr_nitems++;
    980       1.20   thorpej 	pp->pr_nout--;
    981        1.3        pk 
    982        1.3        pk 	/* Cancel "pool empty" condition if it exists */
    983        1.3        pk 	if (pp->pr_curpage == NULL)
    984        1.3        pk 		pp->pr_curpage = ph;
    985        1.3        pk 
    986        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
    987        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
    988      1.134        ad 		cv_broadcast(&pp->pr_cv);
    989        1.3        pk 	}
    990        1.3        pk 
    991        1.3        pk 	/*
    992       1.88       chs 	 * If this page is now empty, do one of two things:
    993       1.21   thorpej 	 *
    994       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
    995       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
    996       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
    997       1.90   thorpej 	 *	    CLAIM.
    998       1.21   thorpej 	 *
    999       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1000       1.88       chs 	 *
   1001       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1002       1.88       chs 	 * page if one is available).
   1003        1.3        pk 	 */
   1004        1.3        pk 	if (ph->ph_nmissing == 0) {
   1005        1.6   thorpej 		pp->pr_nidle++;
   1006       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1007      1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1008      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1009        1.3        pk 		} else {
   1010       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1011       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1012        1.3        pk 
   1013       1.21   thorpej 			/*
   1014       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1015       1.21   thorpej 			 * be idle for some period of time before it can
   1016       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1017       1.21   thorpej 			 * ping-pong'ing for memory.
   1018      1.151      yamt 			 *
   1019      1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1020      1.151      yamt 			 * a problem for our usage.
   1021       1.21   thorpej 			 */
   1022      1.151      yamt 			ph->ph_time = time_uptime;
   1023        1.1        pk 		}
   1024       1.88       chs 		pool_update_curpage(pp);
   1025        1.1        pk 	}
   1026       1.88       chs 
   1027       1.21   thorpej 	/*
   1028       1.88       chs 	 * If the page was previously completely full, move it to the
   1029       1.88       chs 	 * partially-full list and make it the current page.  The next
   1030       1.88       chs 	 * allocation will get the item from this page, instead of
   1031       1.88       chs 	 * further fragmenting the pool.
   1032       1.21   thorpej 	 */
   1033       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1034       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1035       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1036       1.21   thorpej 		pp->pr_curpage = ph;
   1037       1.21   thorpej 	}
   1038       1.43   thorpej }
   1039       1.43   thorpej 
   1040       1.56  sommerfe void
   1041       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1042       1.56  sommerfe {
   1043      1.101   thorpej 	struct pool_pagelist pq;
   1044      1.101   thorpej 
   1045      1.101   thorpej 	LIST_INIT(&pq);
   1046       1.56  sommerfe 
   1047      1.134        ad 	mutex_enter(&pp->pr_lock);
   1048      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1049      1.134        ad 	mutex_exit(&pp->pr_lock);
   1050       1.56  sommerfe 
   1051      1.102       chs 	pr_pagelist_free(pp, &pq);
   1052       1.56  sommerfe }
   1053       1.57  sommerfe 
   1054       1.74   thorpej /*
   1055      1.113      yamt  * pool_grow: grow a pool by a page.
   1056      1.113      yamt  *
   1057      1.113      yamt  * => called with pool locked.
   1058      1.113      yamt  * => unlock and relock the pool.
   1059      1.113      yamt  * => return with pool locked.
   1060      1.113      yamt  */
   1061      1.113      yamt 
   1062      1.113      yamt static int
   1063      1.113      yamt pool_grow(struct pool *pp, int flags)
   1064      1.113      yamt {
   1065      1.209  riastrad 	/*
   1066      1.209  riastrad 	 * If there's a pool_grow in progress, wait for it to complete
   1067      1.209  riastrad 	 * and try again from the top.
   1068      1.209  riastrad 	 */
   1069      1.209  riastrad 	if (pp->pr_flags & PR_GROWING) {
   1070      1.209  riastrad 		if (flags & PR_WAITOK) {
   1071      1.209  riastrad 			do {
   1072      1.209  riastrad 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1073      1.209  riastrad 			} while (pp->pr_flags & PR_GROWING);
   1074      1.209  riastrad 			return ERESTART;
   1075      1.209  riastrad 		} else {
   1076      1.219       mrg 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1077      1.219       mrg 				/*
   1078      1.219       mrg 				 * This needs an unlock/relock dance so
   1079      1.219       mrg 				 * that the other caller has a chance to
   1080      1.219       mrg 				 * run and actually do the thing.  Note
   1081      1.219       mrg 				 * that this is effectively a busy-wait.
   1082      1.219       mrg 				 */
   1083      1.219       mrg 				mutex_exit(&pp->pr_lock);
   1084      1.219       mrg 				mutex_enter(&pp->pr_lock);
   1085      1.219       mrg 				return ERESTART;
   1086      1.219       mrg 			}
   1087      1.209  riastrad 			return EWOULDBLOCK;
   1088      1.209  riastrad 		}
   1089      1.209  riastrad 	}
   1090      1.209  riastrad 	pp->pr_flags |= PR_GROWING;
   1091      1.220  christos 	if (flags & PR_WAITOK)
   1092      1.220  christos 		mutex_exit(&pp->pr_lock);
   1093      1.220  christos 	else
   1094      1.219       mrg 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1095      1.113      yamt 
   1096      1.216  christos 	char *cp = pool_allocator_alloc(pp, flags);
   1097      1.216  christos 	if (__predict_false(cp == NULL))
   1098      1.216  christos 		goto out;
   1099      1.216  christos 
   1100      1.216  christos 	struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
   1101      1.216  christos 	if (__predict_false(ph == NULL)) {
   1102      1.216  christos 		pool_allocator_free(pp, cp);
   1103      1.209  riastrad 		goto out;
   1104      1.113      yamt 	}
   1105      1.113      yamt 
   1106      1.220  christos 	if (flags & PR_WAITOK)
   1107      1.220  christos 		mutex_enter(&pp->pr_lock);
   1108      1.113      yamt 	pool_prime_page(pp, cp, ph);
   1109      1.113      yamt 	pp->pr_npagealloc++;
   1110      1.216  christos 	KASSERT(pp->pr_flags & PR_GROWING);
   1111      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1112      1.209  riastrad 	/*
   1113      1.209  riastrad 	 * If anyone was waiting for pool_grow, notify them that we
   1114      1.209  riastrad 	 * may have just done it.
   1115      1.209  riastrad 	 */
   1116      1.216  christos 	cv_broadcast(&pp->pr_cv);
   1117      1.216  christos 	return 0;
   1118      1.216  christos out:
   1119      1.220  christos 	if (flags & PR_WAITOK)
   1120      1.220  christos 		mutex_enter(&pp->pr_lock);
   1121      1.209  riastrad 	KASSERT(pp->pr_flags & PR_GROWING);
   1122      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1123      1.216  christos 	return ENOMEM;
   1124      1.113      yamt }
   1125      1.113      yamt 
   1126      1.113      yamt /*
   1127       1.74   thorpej  * Add N items to the pool.
   1128       1.74   thorpej  */
   1129       1.74   thorpej int
   1130       1.74   thorpej pool_prime(struct pool *pp, int n)
   1131       1.74   thorpej {
   1132       1.75    simonb 	int newpages;
   1133      1.113      yamt 	int error = 0;
   1134       1.74   thorpej 
   1135      1.134        ad 	mutex_enter(&pp->pr_lock);
   1136       1.74   thorpej 
   1137       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1138       1.74   thorpej 
   1139      1.216  christos 	while (newpages > 0) {
   1140      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1141      1.113      yamt 		if (error) {
   1142      1.214  christos 			if (error == ERESTART)
   1143      1.214  christos 				continue;
   1144       1.74   thorpej 			break;
   1145       1.74   thorpej 		}
   1146       1.74   thorpej 		pp->pr_minpages++;
   1147      1.216  christos 		newpages--;
   1148       1.74   thorpej 	}
   1149       1.74   thorpej 
   1150       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1151       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1152       1.74   thorpej 
   1153      1.134        ad 	mutex_exit(&pp->pr_lock);
   1154      1.113      yamt 	return error;
   1155       1.74   thorpej }
   1156       1.55   thorpej 
   1157       1.55   thorpej /*
   1158        1.3        pk  * Add a page worth of items to the pool.
   1159       1.21   thorpej  *
   1160       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1161        1.3        pk  */
   1162       1.55   thorpej static void
   1163      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1164        1.3        pk {
   1165        1.3        pk 	struct pool_item *pi;
   1166      1.128  christos 	void *cp = storage;
   1167      1.125        ad 	const unsigned int align = pp->pr_align;
   1168      1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1169       1.55   thorpej 	int n;
   1170       1.36        pk 
   1171      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1172      1.207  riastrad 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1173      1.207  riastrad 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1174      1.213  christos 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1175        1.3        pk 
   1176        1.3        pk 	/*
   1177        1.3        pk 	 * Insert page header.
   1178        1.3        pk 	 */
   1179       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1180      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1181        1.3        pk 	ph->ph_page = storage;
   1182        1.3        pk 	ph->ph_nmissing = 0;
   1183      1.151      yamt 	ph->ph_time = time_uptime;
   1184       1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1185       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1186        1.3        pk 
   1187        1.6   thorpej 	pp->pr_nidle++;
   1188        1.6   thorpej 
   1189        1.3        pk 	/*
   1190        1.3        pk 	 * Color this page.
   1191        1.3        pk 	 */
   1192      1.141      yamt 	ph->ph_off = pp->pr_curcolor;
   1193      1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1194        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1195        1.3        pk 		pp->pr_curcolor = 0;
   1196        1.3        pk 
   1197        1.3        pk 	/*
   1198        1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1199        1.3        pk 	 */
   1200        1.3        pk 	if (ioff != 0)
   1201      1.128  christos 		cp = (char *)cp + align - ioff;
   1202        1.3        pk 
   1203      1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1204      1.125        ad 
   1205        1.3        pk 	/*
   1206        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1207        1.3        pk 	 */
   1208        1.3        pk 	n = pp->pr_itemsperpage;
   1209       1.20   thorpej 	pp->pr_nitems += n;
   1210        1.3        pk 
   1211       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1212      1.141      yamt 		pr_item_notouch_init(pp, ph);
   1213       1.97      yamt 	} else {
   1214       1.97      yamt 		while (n--) {
   1215       1.97      yamt 			pi = (struct pool_item *)cp;
   1216       1.78   thorpej 
   1217       1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1218        1.3        pk 
   1219       1.97      yamt 			/* Insert on page list */
   1220      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1221        1.3        pk #ifdef DIAGNOSTIC
   1222       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1223        1.3        pk #endif
   1224      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1225      1.125        ad 
   1226      1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1227       1.97      yamt 		}
   1228        1.3        pk 	}
   1229        1.3        pk 
   1230        1.3        pk 	/*
   1231        1.3        pk 	 * If the pool was depleted, point at the new page.
   1232        1.3        pk 	 */
   1233        1.3        pk 	if (pp->pr_curpage == NULL)
   1234        1.3        pk 		pp->pr_curpage = ph;
   1235        1.3        pk 
   1236        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1237        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1238        1.3        pk }
   1239        1.3        pk 
   1240       1.20   thorpej /*
   1241       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1242       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1243       1.20   thorpej  *
   1244       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1245       1.20   thorpej  *
   1246       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1247       1.20   thorpej  * with it locked.
   1248       1.20   thorpej  */
   1249       1.20   thorpej static int
   1250       1.42   thorpej pool_catchup(struct pool *pp)
   1251       1.20   thorpej {
   1252       1.20   thorpej 	int error = 0;
   1253       1.20   thorpej 
   1254       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1255      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1256      1.113      yamt 		if (error) {
   1257      1.214  christos 			if (error == ERESTART)
   1258      1.214  christos 				continue;
   1259       1.20   thorpej 			break;
   1260       1.20   thorpej 		}
   1261       1.20   thorpej 	}
   1262      1.113      yamt 	return error;
   1263       1.20   thorpej }
   1264       1.20   thorpej 
   1265       1.88       chs static void
   1266       1.88       chs pool_update_curpage(struct pool *pp)
   1267       1.88       chs {
   1268       1.88       chs 
   1269       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1270       1.88       chs 	if (pp->pr_curpage == NULL) {
   1271       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1272       1.88       chs 	}
   1273      1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1274      1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1275       1.88       chs }
   1276       1.88       chs 
   1277        1.3        pk void
   1278       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1279        1.3        pk {
   1280       1.15        pk 
   1281      1.134        ad 	mutex_enter(&pp->pr_lock);
   1282       1.21   thorpej 
   1283        1.3        pk 	pp->pr_minitems = n;
   1284       1.15        pk 	pp->pr_minpages = (n == 0)
   1285       1.15        pk 		? 0
   1286       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1287       1.20   thorpej 
   1288       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1289       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1290       1.20   thorpej 		/*
   1291       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1292       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1293       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1294       1.20   thorpej 		 */
   1295       1.20   thorpej 	}
   1296       1.21   thorpej 
   1297      1.134        ad 	mutex_exit(&pp->pr_lock);
   1298        1.3        pk }
   1299        1.3        pk 
   1300        1.3        pk void
   1301       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1302        1.3        pk {
   1303       1.15        pk 
   1304      1.134        ad 	mutex_enter(&pp->pr_lock);
   1305       1.21   thorpej 
   1306       1.15        pk 	pp->pr_maxpages = (n == 0)
   1307       1.15        pk 		? 0
   1308       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1309       1.21   thorpej 
   1310      1.134        ad 	mutex_exit(&pp->pr_lock);
   1311        1.3        pk }
   1312        1.3        pk 
   1313       1.20   thorpej void
   1314       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1315       1.20   thorpej {
   1316       1.20   thorpej 
   1317      1.134        ad 	mutex_enter(&pp->pr_lock);
   1318       1.20   thorpej 
   1319       1.20   thorpej 	pp->pr_hardlimit = n;
   1320       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1321       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1322       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1323       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1324       1.20   thorpej 
   1325       1.20   thorpej 	/*
   1326       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1327       1.21   thorpej 	 * release the lock.
   1328       1.20   thorpej 	 */
   1329       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1330       1.20   thorpej 		? 0
   1331       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1332       1.21   thorpej 
   1333      1.134        ad 	mutex_exit(&pp->pr_lock);
   1334       1.20   thorpej }
   1335        1.3        pk 
   1336        1.3        pk /*
   1337        1.3        pk  * Release all complete pages that have not been used recently.
   1338      1.184     rmind  *
   1339      1.197       jym  * Must not be called from interrupt context.
   1340        1.3        pk  */
   1341       1.66   thorpej int
   1342       1.56  sommerfe pool_reclaim(struct pool *pp)
   1343        1.3        pk {
   1344        1.3        pk 	struct pool_item_header *ph, *phnext;
   1345       1.61       chs 	struct pool_pagelist pq;
   1346      1.151      yamt 	uint32_t curtime;
   1347      1.134        ad 	bool klock;
   1348      1.134        ad 	int rv;
   1349        1.3        pk 
   1350      1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1351      1.184     rmind 
   1352       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1353       1.68   thorpej 		/*
   1354       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1355       1.68   thorpej 		 */
   1356       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1357       1.68   thorpej 	}
   1358       1.68   thorpej 
   1359      1.134        ad 	/*
   1360      1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1361      1.157        ad 	 * to block.
   1362      1.134        ad 	 */
   1363      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1364      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1365      1.134        ad 		KERNEL_LOCK(1, NULL);
   1366      1.134        ad 		klock = true;
   1367      1.134        ad 	} else
   1368      1.134        ad 		klock = false;
   1369      1.134        ad 
   1370      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1371      1.134        ad 	if (pp->pr_cache != NULL)
   1372      1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1373      1.134        ad 
   1374      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1375      1.134        ad 		if (klock) {
   1376      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1377      1.134        ad 		}
   1378       1.66   thorpej 		return (0);
   1379      1.134        ad 	}
   1380       1.68   thorpej 
   1381       1.88       chs 	LIST_INIT(&pq);
   1382       1.43   thorpej 
   1383      1.151      yamt 	curtime = time_uptime;
   1384       1.21   thorpej 
   1385       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1386       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1387        1.3        pk 
   1388        1.3        pk 		/* Check our minimum page claim */
   1389        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1390        1.3        pk 			break;
   1391        1.3        pk 
   1392       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1393      1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1394       1.88       chs 			continue;
   1395       1.21   thorpej 
   1396       1.88       chs 		/*
   1397       1.88       chs 		 * If freeing this page would put us below
   1398       1.88       chs 		 * the low water mark, stop now.
   1399       1.88       chs 		 */
   1400       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1401       1.88       chs 		    pp->pr_minitems)
   1402       1.88       chs 			break;
   1403       1.21   thorpej 
   1404       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1405        1.3        pk 	}
   1406        1.3        pk 
   1407      1.134        ad 	mutex_exit(&pp->pr_lock);
   1408      1.134        ad 
   1409      1.134        ad 	if (LIST_EMPTY(&pq))
   1410      1.134        ad 		rv = 0;
   1411      1.134        ad 	else {
   1412      1.134        ad 		pr_pagelist_free(pp, &pq);
   1413      1.134        ad 		rv = 1;
   1414      1.134        ad 	}
   1415      1.134        ad 
   1416      1.134        ad 	if (klock) {
   1417      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1418      1.134        ad 	}
   1419       1.66   thorpej 
   1420      1.134        ad 	return (rv);
   1421        1.3        pk }
   1422        1.3        pk 
   1423        1.3        pk /*
   1424      1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1425      1.131        ad  *
   1426      1.134        ad  * Note, must never be called from interrupt context.
   1427        1.3        pk  */
   1428      1.197       jym bool
   1429      1.197       jym pool_drain(struct pool **ppp)
   1430        1.3        pk {
   1431      1.197       jym 	bool reclaimed;
   1432        1.3        pk 	struct pool *pp;
   1433      1.134        ad 
   1434      1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1435        1.3        pk 
   1436       1.61       chs 	pp = NULL;
   1437      1.134        ad 
   1438      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1439      1.134        ad 	mutex_enter(&pool_head_lock);
   1440      1.134        ad 	do {
   1441      1.134        ad 		if (drainpp == NULL) {
   1442      1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1443      1.134        ad 		}
   1444      1.134        ad 		if (drainpp != NULL) {
   1445      1.134        ad 			pp = drainpp;
   1446      1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1447      1.134        ad 		}
   1448      1.134        ad 		/*
   1449      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1450      1.134        ad 		 * one pool in the system being active.
   1451      1.134        ad 		 */
   1452      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1453      1.134        ad 	pp->pr_refcnt++;
   1454      1.134        ad 	mutex_exit(&pool_head_lock);
   1455      1.134        ad 
   1456      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1457      1.186     pooka 	reclaimed = pool_reclaim(pp);
   1458      1.134        ad 
   1459      1.134        ad 	/* Finally, unlock the pool. */
   1460      1.134        ad 	mutex_enter(&pool_head_lock);
   1461      1.134        ad 	pp->pr_refcnt--;
   1462      1.134        ad 	cv_broadcast(&pool_busy);
   1463      1.134        ad 	mutex_exit(&pool_head_lock);
   1464      1.186     pooka 
   1465      1.197       jym 	if (ppp != NULL)
   1466      1.197       jym 		*ppp = pp;
   1467      1.197       jym 
   1468      1.186     pooka 	return reclaimed;
   1469        1.3        pk }
   1470        1.3        pk 
   1471        1.3        pk /*
   1472      1.217       mrg  * Calculate the total number of pages consumed by pools.
   1473      1.217       mrg  */
   1474      1.217       mrg int
   1475      1.217       mrg pool_totalpages(void)
   1476      1.217       mrg {
   1477      1.217       mrg 	struct pool *pp;
   1478      1.218       mrg 	uint64_t total = 0;
   1479      1.217       mrg 
   1480      1.217       mrg 	mutex_enter(&pool_head_lock);
   1481      1.218       mrg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1482      1.218       mrg 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1483      1.218       mrg 
   1484      1.218       mrg 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1485      1.218       mrg 			bytes -= (pp->pr_nout * pp->pr_size);
   1486      1.218       mrg 		total += bytes;
   1487      1.218       mrg 	}
   1488      1.217       mrg 	mutex_exit(&pool_head_lock);
   1489      1.217       mrg 
   1490      1.218       mrg 	return atop(total);
   1491      1.217       mrg }
   1492      1.217       mrg 
   1493      1.217       mrg /*
   1494        1.3        pk  * Diagnostic helpers.
   1495        1.3        pk  */
   1496       1.21   thorpej 
   1497       1.25   thorpej void
   1498      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1499      1.108      yamt {
   1500      1.108      yamt 	struct pool *pp;
   1501      1.108      yamt 
   1502      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1503      1.108      yamt 		pool_printit(pp, modif, pr);
   1504      1.108      yamt 	}
   1505      1.108      yamt }
   1506      1.108      yamt 
   1507      1.108      yamt void
   1508       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1509       1.25   thorpej {
   1510       1.25   thorpej 
   1511       1.25   thorpej 	if (pp == NULL) {
   1512       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1513       1.25   thorpej 		return;
   1514       1.25   thorpej 	}
   1515       1.25   thorpej 
   1516       1.25   thorpej 	pool_print1(pp, modif, pr);
   1517       1.25   thorpej }
   1518       1.25   thorpej 
   1519       1.21   thorpej static void
   1520      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1521       1.97      yamt     void (*pr)(const char *, ...))
   1522       1.88       chs {
   1523       1.88       chs 	struct pool_item_header *ph;
   1524      1.207  riastrad 	struct pool_item *pi __diagused;
   1525       1.88       chs 
   1526       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1527      1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1528      1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1529       1.88       chs #ifdef DIAGNOSTIC
   1530       1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1531      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1532       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1533       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1534       1.97      yamt 					    pi, pi->pi_magic);
   1535       1.97      yamt 				}
   1536       1.88       chs 			}
   1537       1.88       chs 		}
   1538       1.88       chs #endif
   1539       1.88       chs 	}
   1540       1.88       chs }
   1541       1.88       chs 
   1542       1.88       chs static void
   1543       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1544        1.3        pk {
   1545       1.25   thorpej 	struct pool_item_header *ph;
   1546      1.134        ad 	pool_cache_t pc;
   1547      1.134        ad 	pcg_t *pcg;
   1548      1.134        ad 	pool_cache_cpu_t *cc;
   1549      1.134        ad 	uint64_t cpuhit, cpumiss;
   1550       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1551       1.25   thorpej 	char c;
   1552       1.25   thorpej 
   1553       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1554       1.25   thorpej 		if (c == 'l')
   1555       1.25   thorpej 			print_log = 1;
   1556       1.25   thorpej 		if (c == 'p')
   1557       1.25   thorpej 			print_pagelist = 1;
   1558       1.44   thorpej 		if (c == 'c')
   1559       1.44   thorpej 			print_cache = 1;
   1560       1.25   thorpej 	}
   1561       1.25   thorpej 
   1562      1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1563      1.134        ad 		(*pr)("POOL CACHE");
   1564      1.134        ad 	} else {
   1565      1.134        ad 		(*pr)("POOL");
   1566      1.134        ad 	}
   1567      1.134        ad 
   1568      1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1569       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1570       1.25   thorpej 	    pp->pr_roflags);
   1571       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1572       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1573       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1574       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1575       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1576       1.25   thorpej 
   1577      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1578       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1579       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1580       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1581       1.25   thorpej 
   1582       1.25   thorpej 	if (print_pagelist == 0)
   1583       1.25   thorpej 		goto skip_pagelist;
   1584       1.25   thorpej 
   1585       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1586       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1587       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1588       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1589       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1590       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1591       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1592       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1593       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1594       1.88       chs 
   1595       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1596       1.25   thorpej 		(*pr)("\tno current page\n");
   1597       1.25   thorpej 	else
   1598       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1599       1.25   thorpej 
   1600       1.25   thorpej  skip_pagelist:
   1601       1.25   thorpej 	if (print_log == 0)
   1602       1.25   thorpej 		goto skip_log;
   1603       1.25   thorpej 
   1604       1.25   thorpej 	(*pr)("\n");
   1605        1.3        pk 
   1606       1.25   thorpej  skip_log:
   1607       1.44   thorpej 
   1608      1.102       chs #define PR_GROUPLIST(pcg)						\
   1609      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1610      1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1611      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1612      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1613      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1614      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1615      1.102       chs 			    (unsigned long long)			\
   1616      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1617      1.102       chs 		} else {						\
   1618      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1619      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1620      1.102       chs 		}							\
   1621      1.102       chs 	}
   1622      1.102       chs 
   1623      1.134        ad 	if (pc != NULL) {
   1624      1.134        ad 		cpuhit = 0;
   1625      1.134        ad 		cpumiss = 0;
   1626      1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1627      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1628      1.134        ad 				continue;
   1629      1.134        ad 			cpuhit += cc->cc_hits;
   1630      1.134        ad 			cpumiss += cc->cc_misses;
   1631      1.134        ad 		}
   1632      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1633      1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1634      1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1635      1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1636      1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1637      1.134        ad 		    pc->pc_contended);
   1638      1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1639      1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1640      1.134        ad 		if (print_cache) {
   1641      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1642      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1643      1.134        ad 			    pcg = pcg->pcg_next) {
   1644      1.134        ad 				PR_GROUPLIST(pcg);
   1645      1.134        ad 			}
   1646      1.134        ad 			(*pr)("\tempty cache groups:\n");
   1647      1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1648      1.134        ad 			    pcg = pcg->pcg_next) {
   1649      1.134        ad 				PR_GROUPLIST(pcg);
   1650      1.134        ad 			}
   1651      1.103       chs 		}
   1652       1.44   thorpej 	}
   1653      1.102       chs #undef PR_GROUPLIST
   1654       1.88       chs }
   1655       1.88       chs 
   1656       1.88       chs static int
   1657       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1658       1.88       chs {
   1659       1.88       chs 	struct pool_item *pi;
   1660      1.128  christos 	void *page;
   1661       1.88       chs 	int n;
   1662       1.88       chs 
   1663      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1664      1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1665      1.121      yamt 		if (page != ph->ph_page &&
   1666      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1667      1.121      yamt 			if (label != NULL)
   1668      1.121      yamt 				printf("%s: ", label);
   1669      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1670      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1671      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1672      1.121      yamt 				ph, page);
   1673      1.121      yamt 			return 1;
   1674      1.121      yamt 		}
   1675       1.88       chs 	}
   1676        1.3        pk 
   1677       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1678       1.97      yamt 		return 0;
   1679       1.97      yamt 
   1680      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1681       1.88       chs 	     pi != NULL;
   1682      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1683       1.88       chs 
   1684       1.88       chs #ifdef DIAGNOSTIC
   1685       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1686       1.88       chs 			if (label != NULL)
   1687       1.88       chs 				printf("%s: ", label);
   1688       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1689      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1690       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1691      1.121      yamt 				n, pi);
   1692       1.88       chs 			panic("pool");
   1693       1.88       chs 		}
   1694       1.88       chs #endif
   1695      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1696      1.121      yamt 			continue;
   1697      1.121      yamt 		}
   1698      1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1699       1.88       chs 		if (page == ph->ph_page)
   1700       1.88       chs 			continue;
   1701       1.88       chs 
   1702       1.88       chs 		if (label != NULL)
   1703       1.88       chs 			printf("%s: ", label);
   1704       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1705       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1706       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1707       1.88       chs 			n, pi, page);
   1708       1.88       chs 		return 1;
   1709       1.88       chs 	}
   1710       1.88       chs 	return 0;
   1711        1.3        pk }
   1712        1.3        pk 
   1713       1.88       chs 
   1714        1.3        pk int
   1715       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1716        1.3        pk {
   1717        1.3        pk 	struct pool_item_header *ph;
   1718        1.3        pk 	int r = 0;
   1719        1.3        pk 
   1720      1.134        ad 	mutex_enter(&pp->pr_lock);
   1721       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1722       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1723       1.88       chs 		if (r) {
   1724       1.88       chs 			goto out;
   1725       1.88       chs 		}
   1726       1.88       chs 	}
   1727       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1728       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1729       1.88       chs 		if (r) {
   1730        1.3        pk 			goto out;
   1731        1.3        pk 		}
   1732       1.88       chs 	}
   1733       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1734       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1735       1.88       chs 		if (r) {
   1736        1.3        pk 			goto out;
   1737        1.3        pk 		}
   1738        1.3        pk 	}
   1739       1.88       chs 
   1740        1.3        pk out:
   1741      1.134        ad 	mutex_exit(&pp->pr_lock);
   1742        1.3        pk 	return (r);
   1743       1.43   thorpej }
   1744       1.43   thorpej 
   1745       1.43   thorpej /*
   1746       1.43   thorpej  * pool_cache_init:
   1747       1.43   thorpej  *
   1748       1.43   thorpej  *	Initialize a pool cache.
   1749      1.134        ad  */
   1750      1.134        ad pool_cache_t
   1751      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1752      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   1753      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1754      1.134        ad {
   1755      1.134        ad 	pool_cache_t pc;
   1756      1.134        ad 
   1757      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   1758      1.134        ad 	if (pc == NULL)
   1759      1.134        ad 		return NULL;
   1760      1.134        ad 
   1761      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1762      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   1763      1.134        ad 
   1764      1.134        ad 	return pc;
   1765      1.134        ad }
   1766      1.134        ad 
   1767      1.134        ad /*
   1768      1.134        ad  * pool_cache_bootstrap:
   1769       1.43   thorpej  *
   1770      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   1771      1.134        ad  *	provides initial storage.
   1772       1.43   thorpej  */
   1773       1.43   thorpej void
   1774      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1775      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   1776      1.134        ad     struct pool_allocator *palloc, int ipl,
   1777      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1778       1.43   thorpej     void *arg)
   1779       1.43   thorpej {
   1780      1.134        ad 	CPU_INFO_ITERATOR cii;
   1781      1.145        ad 	pool_cache_t pc1;
   1782      1.134        ad 	struct cpu_info *ci;
   1783      1.134        ad 	struct pool *pp;
   1784      1.134        ad 
   1785      1.134        ad 	pp = &pc->pc_pool;
   1786      1.208       chs 	if (palloc == NULL && ipl == IPL_NONE) {
   1787      1.208       chs 		if (size > PAGE_SIZE) {
   1788      1.208       chs 			int bigidx = pool_bigidx(size);
   1789      1.208       chs 
   1790      1.208       chs 			palloc = &pool_allocator_big[bigidx];
   1791      1.208       chs 		} else
   1792      1.208       chs 			palloc = &pool_allocator_nointr;
   1793      1.208       chs 	}
   1794      1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1795      1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1796       1.43   thorpej 
   1797      1.134        ad 	if (ctor == NULL) {
   1798      1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   1799      1.134        ad 	}
   1800      1.134        ad 	if (dtor == NULL) {
   1801      1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   1802      1.134        ad 	}
   1803       1.43   thorpej 
   1804      1.134        ad 	pc->pc_emptygroups = NULL;
   1805      1.134        ad 	pc->pc_fullgroups = NULL;
   1806      1.134        ad 	pc->pc_partgroups = NULL;
   1807       1.43   thorpej 	pc->pc_ctor = ctor;
   1808       1.43   thorpej 	pc->pc_dtor = dtor;
   1809       1.43   thorpej 	pc->pc_arg  = arg;
   1810      1.134        ad 	pc->pc_hits  = 0;
   1811       1.48   thorpej 	pc->pc_misses = 0;
   1812      1.134        ad 	pc->pc_nempty = 0;
   1813      1.134        ad 	pc->pc_npart = 0;
   1814      1.134        ad 	pc->pc_nfull = 0;
   1815      1.134        ad 	pc->pc_contended = 0;
   1816      1.134        ad 	pc->pc_refcnt = 0;
   1817      1.136      yamt 	pc->pc_freecheck = NULL;
   1818      1.134        ad 
   1819      1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   1820      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1821      1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   1822      1.142        ad 	} else {
   1823      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1824      1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   1825      1.142        ad 	}
   1826      1.142        ad 
   1827      1.134        ad 	/* Allocate per-CPU caches. */
   1828      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1829      1.134        ad 	pc->pc_ncpu = 0;
   1830      1.139        ad 	if (ncpu < 2) {
   1831      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   1832      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   1833      1.137        ad 	} else {
   1834      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   1835      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   1836      1.137        ad 		}
   1837      1.134        ad 	}
   1838      1.145        ad 
   1839      1.145        ad 	/* Add to list of all pools. */
   1840      1.145        ad 	if (__predict_true(!cold))
   1841      1.134        ad 		mutex_enter(&pool_head_lock);
   1842      1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1843      1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1844      1.145        ad 			break;
   1845      1.145        ad 	}
   1846      1.145        ad 	if (pc1 == NULL)
   1847      1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1848      1.145        ad 	else
   1849      1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1850      1.145        ad 	if (__predict_true(!cold))
   1851      1.134        ad 		mutex_exit(&pool_head_lock);
   1852      1.145        ad 
   1853      1.145        ad 	membar_sync();
   1854      1.145        ad 	pp->pr_cache = pc;
   1855       1.43   thorpej }
   1856       1.43   thorpej 
   1857       1.43   thorpej /*
   1858       1.43   thorpej  * pool_cache_destroy:
   1859       1.43   thorpej  *
   1860       1.43   thorpej  *	Destroy a pool cache.
   1861       1.43   thorpej  */
   1862       1.43   thorpej void
   1863      1.134        ad pool_cache_destroy(pool_cache_t pc)
   1864       1.43   thorpej {
   1865      1.191      para 
   1866      1.191      para 	pool_cache_bootstrap_destroy(pc);
   1867      1.191      para 	pool_put(&cache_pool, pc);
   1868      1.191      para }
   1869      1.191      para 
   1870      1.191      para /*
   1871      1.191      para  * pool_cache_bootstrap_destroy:
   1872      1.191      para  *
   1873      1.191      para  *	Destroy a pool cache.
   1874      1.191      para  */
   1875      1.191      para void
   1876      1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   1877      1.191      para {
   1878      1.134        ad 	struct pool *pp = &pc->pc_pool;
   1879      1.175       jym 	u_int i;
   1880      1.134        ad 
   1881      1.134        ad 	/* Remove it from the global list. */
   1882      1.134        ad 	mutex_enter(&pool_head_lock);
   1883      1.134        ad 	while (pc->pc_refcnt != 0)
   1884      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   1885      1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1886      1.134        ad 	mutex_exit(&pool_head_lock);
   1887       1.43   thorpej 
   1888       1.43   thorpej 	/* First, invalidate the entire cache. */
   1889       1.43   thorpej 	pool_cache_invalidate(pc);
   1890       1.43   thorpej 
   1891      1.134        ad 	/* Disassociate it from the pool. */
   1892      1.134        ad 	mutex_enter(&pp->pr_lock);
   1893      1.134        ad 	pp->pr_cache = NULL;
   1894      1.134        ad 	mutex_exit(&pp->pr_lock);
   1895      1.134        ad 
   1896      1.134        ad 	/* Destroy per-CPU data */
   1897      1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1898      1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   1899      1.134        ad 
   1900      1.134        ad 	/* Finally, destroy it. */
   1901      1.134        ad 	mutex_destroy(&pc->pc_lock);
   1902      1.134        ad 	pool_destroy(pp);
   1903      1.134        ad }
   1904      1.134        ad 
   1905      1.134        ad /*
   1906      1.134        ad  * pool_cache_cpu_init1:
   1907      1.134        ad  *
   1908      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   1909      1.134        ad  */
   1910      1.134        ad static void
   1911      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1912      1.134        ad {
   1913      1.134        ad 	pool_cache_cpu_t *cc;
   1914      1.137        ad 	int index;
   1915      1.134        ad 
   1916      1.137        ad 	index = ci->ci_index;
   1917      1.137        ad 
   1918      1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   1919      1.134        ad 
   1920      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1921      1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   1922      1.134        ad 		return;
   1923      1.134        ad 	}
   1924      1.134        ad 
   1925      1.134        ad 	/*
   1926      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   1927      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   1928      1.134        ad 	 */
   1929      1.134        ad 	if (pc->pc_ncpu == 0) {
   1930      1.134        ad 		cc = &pc->pc_cpu0;
   1931      1.134        ad 		pc->pc_ncpu = 1;
   1932      1.134        ad 	} else {
   1933      1.134        ad 		mutex_enter(&pc->pc_lock);
   1934      1.134        ad 		pc->pc_ncpu++;
   1935      1.134        ad 		mutex_exit(&pc->pc_lock);
   1936      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1937      1.134        ad 	}
   1938      1.134        ad 
   1939      1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1940      1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1941      1.134        ad 	cc->cc_cache = pc;
   1942      1.137        ad 	cc->cc_cpuindex = index;
   1943      1.134        ad 	cc->cc_hits = 0;
   1944      1.134        ad 	cc->cc_misses = 0;
   1945      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   1946      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1947      1.134        ad 
   1948      1.137        ad 	pc->pc_cpus[index] = cc;
   1949       1.43   thorpej }
   1950       1.43   thorpej 
   1951      1.134        ad /*
   1952      1.134        ad  * pool_cache_cpu_init:
   1953      1.134        ad  *
   1954      1.134        ad  *	Called whenever a new CPU is attached.
   1955      1.134        ad  */
   1956      1.134        ad void
   1957      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   1958       1.43   thorpej {
   1959      1.134        ad 	pool_cache_t pc;
   1960      1.134        ad 
   1961      1.134        ad 	mutex_enter(&pool_head_lock);
   1962      1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1963      1.134        ad 		pc->pc_refcnt++;
   1964      1.134        ad 		mutex_exit(&pool_head_lock);
   1965       1.43   thorpej 
   1966      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   1967       1.43   thorpej 
   1968      1.134        ad 		mutex_enter(&pool_head_lock);
   1969      1.134        ad 		pc->pc_refcnt--;
   1970      1.134        ad 		cv_broadcast(&pool_busy);
   1971      1.134        ad 	}
   1972      1.134        ad 	mutex_exit(&pool_head_lock);
   1973       1.43   thorpej }
   1974       1.43   thorpej 
   1975      1.134        ad /*
   1976      1.134        ad  * pool_cache_reclaim:
   1977      1.134        ad  *
   1978      1.134        ad  *	Reclaim memory from a pool cache.
   1979      1.134        ad  */
   1980      1.134        ad bool
   1981      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   1982       1.43   thorpej {
   1983       1.43   thorpej 
   1984      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   1985      1.134        ad }
   1986       1.43   thorpej 
   1987      1.136      yamt static void
   1988      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   1989      1.136      yamt {
   1990      1.136      yamt 
   1991      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   1992      1.136      yamt 	pool_put(&pc->pc_pool, object);
   1993      1.136      yamt }
   1994      1.136      yamt 
   1995      1.134        ad /*
   1996      1.134        ad  * pool_cache_destruct_object:
   1997      1.134        ad  *
   1998      1.134        ad  *	Force destruction of an object and its release back into
   1999      1.134        ad  *	the pool.
   2000      1.134        ad  */
   2001      1.134        ad void
   2002      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2003      1.134        ad {
   2004      1.134        ad 
   2005      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2006      1.136      yamt 
   2007      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2008       1.43   thorpej }
   2009       1.43   thorpej 
   2010      1.134        ad /*
   2011      1.134        ad  * pool_cache_invalidate_groups:
   2012      1.134        ad  *
   2013      1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2014      1.134        ad  */
   2015      1.102       chs static void
   2016      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2017      1.102       chs {
   2018      1.134        ad 	void *object;
   2019      1.134        ad 	pcg_t *next;
   2020      1.134        ad 	int i;
   2021      1.134        ad 
   2022      1.134        ad 	for (; pcg != NULL; pcg = next) {
   2023      1.134        ad 		next = pcg->pcg_next;
   2024      1.134        ad 
   2025      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2026      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2027      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2028      1.134        ad 		}
   2029      1.102       chs 
   2030      1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2031      1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2032      1.142        ad 		} else {
   2033      1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2034      1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2035      1.142        ad 		}
   2036      1.102       chs 	}
   2037      1.102       chs }
   2038      1.102       chs 
   2039       1.43   thorpej /*
   2040      1.134        ad  * pool_cache_invalidate:
   2041       1.43   thorpej  *
   2042      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2043      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2044      1.176   thorpej  *
   2045      1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2046      1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2047      1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2048      1.196       jym  *
   2049      1.196       jym  *	Invalidation is a costly process and should not be called from
   2050      1.196       jym  *	interrupt context.
   2051       1.43   thorpej  */
   2052      1.134        ad void
   2053      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2054      1.134        ad {
   2055      1.196       jym 	uint64_t where;
   2056      1.134        ad 	pcg_t *full, *empty, *part;
   2057      1.196       jym 
   2058      1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2059      1.176   thorpej 
   2060      1.177       jym 	if (ncpu < 2 || !mp_online) {
   2061      1.176   thorpej 		/*
   2062      1.176   thorpej 		 * We might be called early enough in the boot process
   2063      1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2064      1.196       jym 		 * In this case, transfer the content of the local CPU's
   2065      1.196       jym 		 * cache back into global cache as only this CPU is currently
   2066      1.196       jym 		 * running.
   2067      1.176   thorpej 		 */
   2068      1.196       jym 		pool_cache_transfer(pc);
   2069      1.176   thorpej 	} else {
   2070      1.176   thorpej 		/*
   2071      1.196       jym 		 * Signal all CPUs that they must transfer their local
   2072      1.196       jym 		 * cache back to the global pool then wait for the xcall to
   2073      1.196       jym 		 * complete.
   2074      1.176   thorpej 		 */
   2075      1.196       jym 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2076      1.196       jym 		    pc, NULL);
   2077      1.176   thorpej 		xc_wait(where);
   2078      1.176   thorpej 	}
   2079      1.196       jym 
   2080      1.196       jym 	/* Empty pool caches, then invalidate objects */
   2081      1.134        ad 	mutex_enter(&pc->pc_lock);
   2082      1.134        ad 	full = pc->pc_fullgroups;
   2083      1.134        ad 	empty = pc->pc_emptygroups;
   2084      1.134        ad 	part = pc->pc_partgroups;
   2085      1.134        ad 	pc->pc_fullgroups = NULL;
   2086      1.134        ad 	pc->pc_emptygroups = NULL;
   2087      1.134        ad 	pc->pc_partgroups = NULL;
   2088      1.134        ad 	pc->pc_nfull = 0;
   2089      1.134        ad 	pc->pc_nempty = 0;
   2090      1.134        ad 	pc->pc_npart = 0;
   2091      1.134        ad 	mutex_exit(&pc->pc_lock);
   2092      1.134        ad 
   2093      1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2094      1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2095      1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2096      1.134        ad }
   2097      1.134        ad 
   2098      1.175       jym /*
   2099      1.175       jym  * pool_cache_invalidate_cpu:
   2100      1.175       jym  *
   2101      1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2102      1.175       jym  *	identified by its associated index.
   2103      1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2104      1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2105      1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2106      1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2107      1.175       jym  *	may result in an undefined behaviour.
   2108      1.175       jym  */
   2109      1.175       jym static void
   2110      1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2111      1.175       jym {
   2112      1.175       jym 	pool_cache_cpu_t *cc;
   2113      1.175       jym 	pcg_t *pcg;
   2114      1.175       jym 
   2115      1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2116      1.175       jym 		return;
   2117      1.175       jym 
   2118      1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2119      1.175       jym 		pcg->pcg_next = NULL;
   2120      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2121      1.175       jym 	}
   2122      1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2123      1.175       jym 		pcg->pcg_next = NULL;
   2124      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2125      1.175       jym 	}
   2126      1.175       jym 	if (cc != &pc->pc_cpu0)
   2127      1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2128      1.175       jym 
   2129      1.175       jym }
   2130      1.175       jym 
   2131      1.134        ad void
   2132      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2133      1.134        ad {
   2134      1.134        ad 
   2135      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2136      1.134        ad }
   2137      1.134        ad 
   2138      1.134        ad void
   2139      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2140      1.134        ad {
   2141      1.134        ad 
   2142      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2143      1.134        ad }
   2144      1.134        ad 
   2145      1.134        ad void
   2146      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2147      1.134        ad {
   2148      1.134        ad 
   2149      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2150      1.134        ad }
   2151      1.134        ad 
   2152      1.134        ad void
   2153      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2154      1.134        ad {
   2155      1.134        ad 
   2156      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2157      1.134        ad }
   2158      1.134        ad 
   2159      1.162        ad static bool __noinline
   2160      1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2161      1.134        ad 		    paddr_t *pap, int flags)
   2162       1.43   thorpej {
   2163      1.134        ad 	pcg_t *pcg, *cur;
   2164      1.134        ad 	uint64_t ncsw;
   2165      1.134        ad 	pool_cache_t pc;
   2166       1.43   thorpej 	void *object;
   2167       1.58   thorpej 
   2168      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2169      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2170      1.168      yamt 
   2171      1.134        ad 	pc = cc->cc_cache;
   2172      1.134        ad 	cc->cc_misses++;
   2173       1.43   thorpej 
   2174      1.134        ad 	/*
   2175      1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2176      1.134        ad 	 * from the cache.
   2177      1.134        ad 	 */
   2178      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2179      1.134        ad 		ncsw = curlwp->l_ncsw;
   2180      1.134        ad 		mutex_enter(&pc->pc_lock);
   2181      1.134        ad 		pc->pc_contended++;
   2182       1.43   thorpej 
   2183      1.134        ad 		/*
   2184      1.134        ad 		 * If we context switched while locking, then
   2185      1.134        ad 		 * our view of the per-CPU data is invalid:
   2186      1.134        ad 		 * retry.
   2187      1.134        ad 		 */
   2188      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2189      1.134        ad 			mutex_exit(&pc->pc_lock);
   2190      1.162        ad 			return true;
   2191       1.43   thorpej 		}
   2192      1.102       chs 	}
   2193       1.43   thorpej 
   2194      1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2195       1.43   thorpej 		/*
   2196      1.134        ad 		 * If there's a full group, release our empty
   2197      1.134        ad 		 * group back to the cache.  Install the full
   2198      1.134        ad 		 * group as cc_current and return.
   2199       1.43   thorpej 		 */
   2200      1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2201      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2202      1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2203      1.134        ad 			pc->pc_emptygroups = cur;
   2204      1.134        ad 			pc->pc_nempty++;
   2205       1.87   thorpej 		}
   2206      1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2207      1.134        ad 		cc->cc_current = pcg;
   2208      1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2209      1.134        ad 		pc->pc_hits++;
   2210      1.134        ad 		pc->pc_nfull--;
   2211      1.134        ad 		mutex_exit(&pc->pc_lock);
   2212      1.162        ad 		return true;
   2213      1.134        ad 	}
   2214      1.134        ad 
   2215      1.134        ad 	/*
   2216      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2217      1.134        ad 	 * path: fetch a new object from the pool and construct
   2218      1.134        ad 	 * it.
   2219      1.134        ad 	 */
   2220      1.134        ad 	pc->pc_misses++;
   2221      1.134        ad 	mutex_exit(&pc->pc_lock);
   2222      1.162        ad 	splx(s);
   2223      1.134        ad 
   2224      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2225      1.134        ad 	*objectp = object;
   2226      1.211  riastrad 	if (__predict_false(object == NULL)) {
   2227      1.211  riastrad 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2228      1.162        ad 		return false;
   2229      1.211  riastrad 	}
   2230      1.125        ad 
   2231      1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2232      1.134        ad 		pool_put(&pc->pc_pool, object);
   2233      1.134        ad 		*objectp = NULL;
   2234      1.162        ad 		return false;
   2235       1.43   thorpej 	}
   2236       1.43   thorpej 
   2237      1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2238      1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2239       1.43   thorpej 
   2240      1.134        ad 	if (pap != NULL) {
   2241      1.134        ad #ifdef POOL_VTOPHYS
   2242      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2243      1.134        ad #else
   2244      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2245      1.134        ad #endif
   2246      1.102       chs 	}
   2247       1.43   thorpej 
   2248      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2249      1.204      maxv 	pool_redzone_fill(&pc->pc_pool, object);
   2250      1.162        ad 	return false;
   2251       1.43   thorpej }
   2252       1.43   thorpej 
   2253       1.43   thorpej /*
   2254      1.134        ad  * pool_cache_get{,_paddr}:
   2255       1.43   thorpej  *
   2256      1.134        ad  *	Get an object from a pool cache (optionally returning
   2257      1.134        ad  *	the physical address of the object).
   2258       1.43   thorpej  */
   2259      1.134        ad void *
   2260      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2261       1.43   thorpej {
   2262      1.134        ad 	pool_cache_cpu_t *cc;
   2263      1.134        ad 	pcg_t *pcg;
   2264      1.134        ad 	void *object;
   2265       1.60   thorpej 	int s;
   2266       1.43   thorpej 
   2267      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2268      1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2269      1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2270      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2271      1.213  christos 	    __func__, pc->pc_pool.pr_wchan);
   2272      1.184     rmind 
   2273      1.155        ad 	if (flags & PR_WAITOK) {
   2274      1.154      yamt 		ASSERT_SLEEPABLE();
   2275      1.155        ad 	}
   2276      1.125        ad 
   2277      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2278      1.162        ad 	s = splvm();
   2279      1.165      yamt 	while (/* CONSTCOND */ true) {
   2280      1.134        ad 		/* Try and allocate an object from the current group. */
   2281      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2282      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2283      1.134        ad 	 	pcg = cc->cc_current;
   2284      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2285      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2286      1.162        ad 			if (__predict_false(pap != NULL))
   2287      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2288      1.148      yamt #if defined(DIAGNOSTIC)
   2289      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2290      1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2291      1.134        ad 			KASSERT(object != NULL);
   2292      1.163        ad #endif
   2293      1.134        ad 			cc->cc_hits++;
   2294      1.162        ad 			splx(s);
   2295      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2296      1.204      maxv 			pool_redzone_fill(&pc->pc_pool, object);
   2297      1.134        ad 			return object;
   2298       1.43   thorpej 		}
   2299       1.43   thorpej 
   2300       1.43   thorpej 		/*
   2301      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2302      1.134        ad 		 * it with the current group and allocate from there.
   2303       1.43   thorpej 		 */
   2304      1.134        ad 		pcg = cc->cc_previous;
   2305      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2306      1.134        ad 			cc->cc_previous = cc->cc_current;
   2307      1.134        ad 			cc->cc_current = pcg;
   2308      1.134        ad 			continue;
   2309       1.43   thorpej 		}
   2310       1.43   thorpej 
   2311      1.134        ad 		/*
   2312      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2313      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2314      1.162        ad 		 * no more objects are available, it will return false.
   2315      1.134        ad 		 * Otherwise, we need to retry.
   2316      1.134        ad 		 */
   2317      1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2318      1.165      yamt 			break;
   2319      1.165      yamt 	}
   2320       1.43   thorpej 
   2321      1.211  riastrad 	/*
   2322      1.211  riastrad 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2323      1.211  riastrad 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2324      1.211  riastrad 	 * constructor fails.
   2325      1.211  riastrad 	 */
   2326      1.134        ad 	return object;
   2327       1.51   thorpej }
   2328       1.51   thorpej 
   2329      1.162        ad static bool __noinline
   2330      1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2331       1.51   thorpej {
   2332      1.200     pooka 	struct lwp *l = curlwp;
   2333      1.163        ad 	pcg_t *pcg, *cur;
   2334      1.134        ad 	uint64_t ncsw;
   2335      1.134        ad 	pool_cache_t pc;
   2336       1.51   thorpej 
   2337      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2338      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2339      1.168      yamt 
   2340      1.134        ad 	pc = cc->cc_cache;
   2341      1.171        ad 	pcg = NULL;
   2342      1.134        ad 	cc->cc_misses++;
   2343      1.200     pooka 	ncsw = l->l_ncsw;
   2344       1.43   thorpej 
   2345      1.171        ad 	/*
   2346      1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2347      1.171        ad 	 * while still unlocked.
   2348      1.171        ad 	 */
   2349      1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2350      1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2351      1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2352      1.171        ad 		}
   2353      1.200     pooka 		/*
   2354      1.200     pooka 		 * If pool_get() blocked, then our view of
   2355      1.200     pooka 		 * the per-CPU data is invalid: retry.
   2356      1.200     pooka 		 */
   2357      1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2358      1.200     pooka 			if (pcg != NULL) {
   2359      1.200     pooka 				pool_put(pc->pc_pcgpool, pcg);
   2360      1.200     pooka 			}
   2361      1.200     pooka 			return true;
   2362      1.200     pooka 		}
   2363      1.171        ad 		if (__predict_true(pcg != NULL)) {
   2364      1.171        ad 			pcg->pcg_avail = 0;
   2365      1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2366      1.171        ad 		}
   2367      1.171        ad 	}
   2368      1.171        ad 
   2369      1.162        ad 	/* Lock the cache. */
   2370      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2371      1.134        ad 		mutex_enter(&pc->pc_lock);
   2372      1.134        ad 		pc->pc_contended++;
   2373      1.162        ad 
   2374      1.163        ad 		/*
   2375      1.163        ad 		 * If we context switched while locking, then our view of
   2376      1.163        ad 		 * the per-CPU data is invalid: retry.
   2377      1.163        ad 		 */
   2378      1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2379      1.163        ad 			mutex_exit(&pc->pc_lock);
   2380      1.171        ad 			if (pcg != NULL) {
   2381      1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2382      1.171        ad 			}
   2383      1.163        ad 			return true;
   2384      1.163        ad 		}
   2385      1.162        ad 	}
   2386      1.102       chs 
   2387      1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2388      1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2389      1.171        ad 		pcg = pc->pc_emptygroups;
   2390      1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2391      1.163        ad 		pc->pc_nempty--;
   2392      1.134        ad 	}
   2393      1.130        ad 
   2394      1.162        ad 	/*
   2395      1.162        ad 	 * If there's a empty group, release our full group back
   2396      1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2397      1.162        ad 	 * and return.
   2398      1.162        ad 	 */
   2399      1.163        ad 	if (pcg != NULL) {
   2400      1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2401      1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2402      1.146        ad 			cc->cc_previous = pcg;
   2403      1.146        ad 		} else {
   2404      1.162        ad 			cur = cc->cc_current;
   2405      1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2406      1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2407      1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2408      1.146        ad 				pc->pc_fullgroups = cur;
   2409      1.146        ad 				pc->pc_nfull++;
   2410      1.146        ad 			}
   2411      1.146        ad 			cc->cc_current = pcg;
   2412      1.146        ad 		}
   2413      1.163        ad 		pc->pc_hits++;
   2414      1.134        ad 		mutex_exit(&pc->pc_lock);
   2415      1.162        ad 		return true;
   2416      1.102       chs 	}
   2417      1.105  christos 
   2418      1.134        ad 	/*
   2419      1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2420      1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2421      1.162        ad 	 * the object here and now.
   2422      1.134        ad 	 */
   2423      1.134        ad 	pc->pc_misses++;
   2424      1.134        ad 	mutex_exit(&pc->pc_lock);
   2425      1.162        ad 	splx(s);
   2426      1.162        ad 	pool_cache_destruct_object(pc, object);
   2427      1.105  christos 
   2428      1.162        ad 	return false;
   2429      1.134        ad }
   2430      1.102       chs 
   2431       1.43   thorpej /*
   2432      1.134        ad  * pool_cache_put{,_paddr}:
   2433       1.43   thorpej  *
   2434      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2435      1.134        ad  *	physical address of the object).
   2436       1.43   thorpej  */
   2437      1.101   thorpej void
   2438      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2439       1.43   thorpej {
   2440      1.134        ad 	pool_cache_cpu_t *cc;
   2441      1.134        ad 	pcg_t *pcg;
   2442      1.134        ad 	int s;
   2443      1.101   thorpej 
   2444      1.172      yamt 	KASSERT(object != NULL);
   2445      1.204      maxv 	pool_redzone_check(&pc->pc_pool, object);
   2446      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2447      1.101   thorpej 
   2448      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2449      1.162        ad 	s = splvm();
   2450      1.165      yamt 	while (/* CONSTCOND */ true) {
   2451      1.134        ad 		/* If the current group isn't full, release it there. */
   2452      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2453      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2454      1.134        ad 	 	pcg = cc->cc_current;
   2455      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2456      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2457      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2458      1.134        ad 			pcg->pcg_avail++;
   2459      1.134        ad 			cc->cc_hits++;
   2460      1.162        ad 			splx(s);
   2461      1.134        ad 			return;
   2462      1.134        ad 		}
   2463       1.43   thorpej 
   2464      1.134        ad 		/*
   2465      1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2466      1.134        ad 		 * it with the current group and try again.
   2467      1.134        ad 		 */
   2468      1.134        ad 		pcg = cc->cc_previous;
   2469      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2470      1.134        ad 			cc->cc_previous = cc->cc_current;
   2471      1.134        ad 			cc->cc_current = pcg;
   2472      1.134        ad 			continue;
   2473      1.134        ad 		}
   2474       1.43   thorpej 
   2475      1.134        ad 		/*
   2476      1.134        ad 		 * Can't free to either group: try the slow path.
   2477      1.134        ad 		 * If put_slow() releases the object for us, it
   2478      1.162        ad 		 * will return false.  Otherwise we need to retry.
   2479      1.134        ad 		 */
   2480      1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2481      1.165      yamt 			break;
   2482      1.165      yamt 	}
   2483       1.43   thorpej }
   2484       1.43   thorpej 
   2485       1.43   thorpej /*
   2486      1.196       jym  * pool_cache_transfer:
   2487       1.43   thorpej  *
   2488      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2489      1.134        ad  *	Run within a cross-call thread.
   2490       1.43   thorpej  */
   2491       1.43   thorpej static void
   2492      1.196       jym pool_cache_transfer(pool_cache_t pc)
   2493       1.43   thorpej {
   2494      1.134        ad 	pool_cache_cpu_t *cc;
   2495      1.134        ad 	pcg_t *prev, *cur, **list;
   2496      1.162        ad 	int s;
   2497      1.134        ad 
   2498      1.162        ad 	s = splvm();
   2499      1.162        ad 	mutex_enter(&pc->pc_lock);
   2500      1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2501      1.134        ad 	cur = cc->cc_current;
   2502      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2503      1.134        ad 	prev = cc->cc_previous;
   2504      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2505      1.162        ad 	if (cur != &pcg_dummy) {
   2506      1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2507      1.134        ad 			list = &pc->pc_fullgroups;
   2508      1.134        ad 			pc->pc_nfull++;
   2509      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2510      1.134        ad 			list = &pc->pc_emptygroups;
   2511      1.134        ad 			pc->pc_nempty++;
   2512      1.134        ad 		} else {
   2513      1.134        ad 			list = &pc->pc_partgroups;
   2514      1.134        ad 			pc->pc_npart++;
   2515      1.134        ad 		}
   2516      1.134        ad 		cur->pcg_next = *list;
   2517      1.134        ad 		*list = cur;
   2518      1.134        ad 	}
   2519      1.162        ad 	if (prev != &pcg_dummy) {
   2520      1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2521      1.134        ad 			list = &pc->pc_fullgroups;
   2522      1.134        ad 			pc->pc_nfull++;
   2523      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2524      1.134        ad 			list = &pc->pc_emptygroups;
   2525      1.134        ad 			pc->pc_nempty++;
   2526      1.134        ad 		} else {
   2527      1.134        ad 			list = &pc->pc_partgroups;
   2528      1.134        ad 			pc->pc_npart++;
   2529      1.134        ad 		}
   2530      1.134        ad 		prev->pcg_next = *list;
   2531      1.134        ad 		*list = prev;
   2532      1.134        ad 	}
   2533      1.134        ad 	mutex_exit(&pc->pc_lock);
   2534      1.134        ad 	splx(s);
   2535        1.3        pk }
   2536       1.66   thorpej 
   2537       1.66   thorpej /*
   2538       1.66   thorpej  * Pool backend allocators.
   2539       1.66   thorpej  *
   2540       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2541       1.66   thorpej  * and any additional draining that might be needed.
   2542       1.66   thorpej  *
   2543       1.66   thorpej  * We provide two standard allocators:
   2544       1.66   thorpej  *
   2545       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2546       1.66   thorpej  *
   2547       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2548       1.66   thorpej  *	in interrupt context.
   2549       1.66   thorpej  */
   2550       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2551       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2552       1.66   thorpej 
   2553      1.112     bjh21 #ifdef POOL_SUBPAGE
   2554      1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2555      1.192     rmind 	.pa_alloc = pool_page_alloc,
   2556      1.192     rmind 	.pa_free = pool_page_free,
   2557      1.192     rmind 	.pa_pagesz = 0
   2558      1.112     bjh21 };
   2559      1.112     bjh21 #else
   2560       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2561      1.191      para 	.pa_alloc = pool_page_alloc,
   2562      1.191      para 	.pa_free = pool_page_free,
   2563      1.191      para 	.pa_pagesz = 0
   2564       1.66   thorpej };
   2565      1.112     bjh21 #endif
   2566       1.66   thorpej 
   2567      1.112     bjh21 #ifdef POOL_SUBPAGE
   2568      1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2569      1.194      para 	.pa_alloc = pool_page_alloc,
   2570      1.194      para 	.pa_free = pool_page_free,
   2571      1.192     rmind 	.pa_pagesz = 0
   2572      1.112     bjh21 };
   2573      1.112     bjh21 #else
   2574       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2575      1.191      para 	.pa_alloc = pool_page_alloc,
   2576      1.191      para 	.pa_free = pool_page_free,
   2577      1.191      para 	.pa_pagesz = 0
   2578       1.66   thorpej };
   2579      1.112     bjh21 #endif
   2580       1.66   thorpej 
   2581       1.66   thorpej #ifdef POOL_SUBPAGE
   2582       1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2583       1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2584       1.66   thorpej 
   2585      1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2586      1.193        he 	.pa_alloc = pool_subpage_alloc,
   2587      1.193        he 	.pa_free = pool_subpage_free,
   2588      1.193        he 	.pa_pagesz = POOL_SUBPAGE
   2589      1.112     bjh21 };
   2590      1.112     bjh21 
   2591      1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2592      1.192     rmind 	.pa_alloc = pool_subpage_alloc,
   2593      1.192     rmind 	.pa_free = pool_subpage_free,
   2594      1.192     rmind 	.pa_pagesz = POOL_SUBPAGE
   2595       1.66   thorpej };
   2596       1.66   thorpej #endif /* POOL_SUBPAGE */
   2597       1.66   thorpej 
   2598      1.208       chs struct pool_allocator pool_allocator_big[] = {
   2599      1.208       chs 	{
   2600      1.208       chs 		.pa_alloc = pool_page_alloc,
   2601      1.208       chs 		.pa_free = pool_page_free,
   2602      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2603      1.208       chs 	},
   2604      1.208       chs 	{
   2605      1.208       chs 		.pa_alloc = pool_page_alloc,
   2606      1.208       chs 		.pa_free = pool_page_free,
   2607      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2608      1.208       chs 	},
   2609      1.208       chs 	{
   2610      1.208       chs 		.pa_alloc = pool_page_alloc,
   2611      1.208       chs 		.pa_free = pool_page_free,
   2612      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2613      1.208       chs 	},
   2614      1.208       chs 	{
   2615      1.208       chs 		.pa_alloc = pool_page_alloc,
   2616      1.208       chs 		.pa_free = pool_page_free,
   2617      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2618      1.208       chs 	},
   2619      1.208       chs 	{
   2620      1.208       chs 		.pa_alloc = pool_page_alloc,
   2621      1.208       chs 		.pa_free = pool_page_free,
   2622      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2623      1.208       chs 	},
   2624      1.208       chs 	{
   2625      1.208       chs 		.pa_alloc = pool_page_alloc,
   2626      1.208       chs 		.pa_free = pool_page_free,
   2627      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2628      1.208       chs 	},
   2629      1.208       chs 	{
   2630      1.208       chs 		.pa_alloc = pool_page_alloc,
   2631      1.208       chs 		.pa_free = pool_page_free,
   2632      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2633      1.208       chs 	},
   2634      1.208       chs 	{
   2635      1.208       chs 		.pa_alloc = pool_page_alloc,
   2636      1.208       chs 		.pa_free = pool_page_free,
   2637      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2638      1.208       chs 	}
   2639      1.208       chs };
   2640      1.208       chs 
   2641      1.208       chs static int
   2642      1.208       chs pool_bigidx(size_t size)
   2643      1.208       chs {
   2644      1.208       chs 	int i;
   2645      1.208       chs 
   2646      1.208       chs 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2647      1.208       chs 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2648      1.208       chs 			return i;
   2649      1.208       chs 	}
   2650      1.208       chs 	panic("pool item size %zu too large, use a custom allocator", size);
   2651      1.208       chs }
   2652      1.208       chs 
   2653      1.117      yamt static void *
   2654      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2655       1.66   thorpej {
   2656      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2657       1.66   thorpej 	void *res;
   2658       1.66   thorpej 
   2659      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2660      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2661       1.66   thorpej 		/*
   2662      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2663      1.117      yamt 		 * In other cases, the hook will be run in
   2664      1.117      yamt 		 * pool_reclaim().
   2665       1.66   thorpej 		 */
   2666      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2667      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2668      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2669       1.66   thorpej 		}
   2670      1.117      yamt 	}
   2671      1.117      yamt 	return res;
   2672       1.66   thorpej }
   2673       1.66   thorpej 
   2674      1.117      yamt static void
   2675       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2676       1.66   thorpej {
   2677       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2678       1.66   thorpej 
   2679       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2680       1.66   thorpej }
   2681       1.66   thorpej 
   2682       1.66   thorpej void *
   2683      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2684       1.66   thorpej {
   2685      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2686      1.191      para 	vmem_addr_t va;
   2687      1.192     rmind 	int ret;
   2688      1.191      para 
   2689      1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2690      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2691       1.66   thorpej 
   2692      1.192     rmind 	return ret ? NULL : (void *)va;
   2693       1.66   thorpej }
   2694       1.66   thorpej 
   2695       1.66   thorpej void
   2696      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2697       1.66   thorpej {
   2698       1.66   thorpej 
   2699      1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2700       1.98      yamt }
   2701       1.98      yamt 
   2702       1.98      yamt static void *
   2703      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2704       1.98      yamt {
   2705      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2706      1.192     rmind 	vmem_addr_t va;
   2707      1.192     rmind 	int ret;
   2708      1.191      para 
   2709      1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2710      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2711       1.98      yamt 
   2712      1.192     rmind 	return ret ? NULL : (void *)va;
   2713       1.98      yamt }
   2714       1.98      yamt 
   2715       1.98      yamt static void
   2716      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2717       1.98      yamt {
   2718       1.98      yamt 
   2719      1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2720       1.66   thorpej }
   2721       1.66   thorpej 
   2722      1.204      maxv #ifdef POOL_REDZONE
   2723      1.204      maxv #if defined(_LP64)
   2724      1.204      maxv # define PRIME 0x9e37fffffffc0000UL
   2725      1.204      maxv #else /* defined(_LP64) */
   2726      1.204      maxv # define PRIME 0x9e3779b1
   2727      1.204      maxv #endif /* defined(_LP64) */
   2728      1.204      maxv #define STATIC_BYTE	0xFE
   2729      1.204      maxv CTASSERT(POOL_REDZONE_SIZE > 1);
   2730      1.204      maxv 
   2731      1.204      maxv static inline uint8_t
   2732      1.204      maxv pool_pattern_generate(const void *p)
   2733      1.204      maxv {
   2734      1.204      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
   2735      1.204      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2736      1.204      maxv }
   2737      1.204      maxv 
   2738      1.204      maxv static void
   2739      1.204      maxv pool_redzone_init(struct pool *pp, size_t requested_size)
   2740      1.204      maxv {
   2741      1.204      maxv 	size_t nsz;
   2742      1.204      maxv 
   2743      1.204      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   2744      1.204      maxv 		pp->pr_reqsize = 0;
   2745      1.204      maxv 		pp->pr_redzone = false;
   2746      1.204      maxv 		return;
   2747      1.204      maxv 	}
   2748      1.204      maxv 
   2749      1.204      maxv 	/*
   2750      1.204      maxv 	 * We may have extended the requested size earlier; check if
   2751      1.204      maxv 	 * there's naturally space in the padding for a red zone.
   2752      1.204      maxv 	 */
   2753      1.204      maxv 	if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
   2754      1.204      maxv 		pp->pr_reqsize = requested_size;
   2755      1.204      maxv 		pp->pr_redzone = true;
   2756      1.204      maxv 		return;
   2757      1.204      maxv 	}
   2758      1.204      maxv 
   2759      1.204      maxv 	/*
   2760      1.204      maxv 	 * No space in the natural padding; check if we can extend a
   2761      1.204      maxv 	 * bit the size of the pool.
   2762      1.204      maxv 	 */
   2763      1.204      maxv 	nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
   2764      1.204      maxv 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2765      1.204      maxv 		/* Ok, we can */
   2766      1.204      maxv 		pp->pr_size = nsz;
   2767      1.204      maxv 		pp->pr_reqsize = requested_size;
   2768      1.204      maxv 		pp->pr_redzone = true;
   2769      1.204      maxv 	} else {
   2770      1.204      maxv 		/* No space for a red zone... snif :'( */
   2771      1.204      maxv 		pp->pr_reqsize = 0;
   2772      1.204      maxv 		pp->pr_redzone = false;
   2773      1.204      maxv 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2774      1.204      maxv 	}
   2775      1.204      maxv }
   2776      1.204      maxv 
   2777      1.204      maxv static void
   2778      1.204      maxv pool_redzone_fill(struct pool *pp, void *p)
   2779      1.204      maxv {
   2780      1.204      maxv 	uint8_t *cp, pat;
   2781      1.204      maxv 	const uint8_t *ep;
   2782      1.204      maxv 
   2783      1.204      maxv 	if (!pp->pr_redzone)
   2784      1.204      maxv 		return;
   2785      1.204      maxv 
   2786      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   2787      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   2788      1.204      maxv 
   2789      1.204      maxv 	/*
   2790      1.204      maxv 	 * We really don't want the first byte of the red zone to be '\0';
   2791      1.204      maxv 	 * an off-by-one in a string may not be properly detected.
   2792      1.204      maxv 	 */
   2793      1.204      maxv 	pat = pool_pattern_generate(cp);
   2794      1.204      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2795      1.204      maxv 	cp++;
   2796      1.204      maxv 
   2797      1.204      maxv 	while (cp < ep) {
   2798      1.204      maxv 		*cp = pool_pattern_generate(cp);
   2799      1.204      maxv 		cp++;
   2800      1.204      maxv 	}
   2801      1.204      maxv }
   2802      1.204      maxv 
   2803      1.204      maxv static void
   2804      1.204      maxv pool_redzone_check(struct pool *pp, void *p)
   2805      1.204      maxv {
   2806      1.204      maxv 	uint8_t *cp, pat, expected;
   2807      1.204      maxv 	const uint8_t *ep;
   2808      1.204      maxv 
   2809      1.204      maxv 	if (!pp->pr_redzone)
   2810      1.204      maxv 		return;
   2811      1.204      maxv 
   2812      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   2813      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   2814      1.204      maxv 
   2815      1.204      maxv 	pat = pool_pattern_generate(cp);
   2816      1.204      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2817      1.204      maxv 	if (expected != *cp) {
   2818      1.204      maxv 		panic("%s: %p: 0x%02x != 0x%02x\n",
   2819      1.204      maxv 		   __func__, cp, *cp, expected);
   2820      1.204      maxv 	}
   2821      1.204      maxv 	cp++;
   2822      1.204      maxv 
   2823      1.204      maxv 	while (cp < ep) {
   2824      1.204      maxv 		expected = pool_pattern_generate(cp);
   2825      1.204      maxv 		if (*cp != expected) {
   2826      1.204      maxv 			panic("%s: %p: 0x%02x != 0x%02x\n",
   2827      1.204      maxv 			   __func__, cp, *cp, expected);
   2828      1.204      maxv 		}
   2829      1.204      maxv 		cp++;
   2830      1.204      maxv 	}
   2831      1.204      maxv }
   2832      1.204      maxv 
   2833      1.204      maxv #endif /* POOL_REDZONE */
   2834      1.204      maxv 
   2835      1.204      maxv 
   2836       1.66   thorpej #ifdef POOL_SUBPAGE
   2837       1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2838       1.66   thorpej void *
   2839       1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2840       1.66   thorpej {
   2841      1.134        ad 	return pool_get(&psppool, flags);
   2842       1.66   thorpej }
   2843       1.66   thorpej 
   2844       1.66   thorpej void
   2845       1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2846       1.66   thorpej {
   2847       1.66   thorpej 	pool_put(&psppool, v);
   2848       1.66   thorpej }
   2849       1.66   thorpej 
   2850      1.112     bjh21 #endif /* POOL_SUBPAGE */
   2851      1.141      yamt 
   2852      1.141      yamt #if defined(DDB)
   2853      1.141      yamt static bool
   2854      1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2855      1.141      yamt {
   2856      1.141      yamt 
   2857      1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   2858      1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2859      1.141      yamt }
   2860      1.141      yamt 
   2861      1.143      yamt static bool
   2862      1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2863      1.143      yamt {
   2864      1.143      yamt 
   2865      1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2866      1.143      yamt }
   2867      1.143      yamt 
   2868      1.143      yamt static bool
   2869      1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2870      1.143      yamt {
   2871      1.143      yamt 	int i;
   2872      1.143      yamt 
   2873      1.143      yamt 	if (pcg == NULL) {
   2874      1.143      yamt 		return false;
   2875      1.143      yamt 	}
   2876      1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   2877      1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2878      1.143      yamt 			return true;
   2879      1.143      yamt 		}
   2880      1.143      yamt 	}
   2881      1.143      yamt 	return false;
   2882      1.143      yamt }
   2883      1.143      yamt 
   2884      1.143      yamt static bool
   2885      1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2886      1.143      yamt {
   2887      1.143      yamt 
   2888      1.143      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2889      1.143      yamt 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2890      1.143      yamt 		pool_item_bitmap_t *bitmap =
   2891      1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2892      1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2893      1.143      yamt 
   2894      1.143      yamt 		return (*bitmap & mask) == 0;
   2895      1.143      yamt 	} else {
   2896      1.143      yamt 		struct pool_item *pi;
   2897      1.143      yamt 
   2898      1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2899      1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   2900      1.143      yamt 				return false;
   2901      1.143      yamt 			}
   2902      1.143      yamt 		}
   2903      1.143      yamt 		return true;
   2904      1.143      yamt 	}
   2905      1.143      yamt }
   2906      1.143      yamt 
   2907      1.141      yamt void
   2908      1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2909      1.141      yamt {
   2910      1.141      yamt 	struct pool *pp;
   2911      1.141      yamt 
   2912      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2913      1.141      yamt 		struct pool_item_header *ph;
   2914      1.141      yamt 		uintptr_t item;
   2915      1.143      yamt 		bool allocated = true;
   2916      1.143      yamt 		bool incache = false;
   2917      1.143      yamt 		bool incpucache = false;
   2918      1.143      yamt 		char cpucachestr[32];
   2919      1.141      yamt 
   2920      1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2921      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2922      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2923      1.141      yamt 					goto found;
   2924      1.141      yamt 				}
   2925      1.141      yamt 			}
   2926      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2927      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2928      1.143      yamt 					allocated =
   2929      1.143      yamt 					    pool_allocated(pp, ph, addr);
   2930      1.143      yamt 					goto found;
   2931      1.143      yamt 				}
   2932      1.143      yamt 			}
   2933      1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2934      1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   2935      1.143      yamt 					allocated = false;
   2936      1.141      yamt 					goto found;
   2937      1.141      yamt 				}
   2938      1.141      yamt 			}
   2939      1.141      yamt 			continue;
   2940      1.141      yamt 		} else {
   2941      1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2942      1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2943      1.141      yamt 				continue;
   2944      1.141      yamt 			}
   2945      1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   2946      1.141      yamt 		}
   2947      1.141      yamt found:
   2948      1.143      yamt 		if (allocated && pp->pr_cache) {
   2949      1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   2950      1.143      yamt 			struct pool_cache_group *pcg;
   2951      1.143      yamt 			int i;
   2952      1.143      yamt 
   2953      1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2954      1.143      yamt 			    pcg = pcg->pcg_next) {
   2955      1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   2956      1.143      yamt 					incache = true;
   2957      1.143      yamt 					goto print;
   2958      1.143      yamt 				}
   2959      1.143      yamt 			}
   2960      1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2961      1.143      yamt 				pool_cache_cpu_t *cc;
   2962      1.143      yamt 
   2963      1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2964      1.143      yamt 					continue;
   2965      1.143      yamt 				}
   2966      1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2967      1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2968      1.143      yamt 					struct cpu_info *ci =
   2969      1.170        ad 					    cpu_lookup(i);
   2970      1.143      yamt 
   2971      1.143      yamt 					incpucache = true;
   2972      1.143      yamt 					snprintf(cpucachestr,
   2973      1.143      yamt 					    sizeof(cpucachestr),
   2974      1.143      yamt 					    "cached by CPU %u",
   2975      1.153    martin 					    ci->ci_index);
   2976      1.143      yamt 					goto print;
   2977      1.143      yamt 				}
   2978      1.143      yamt 			}
   2979      1.143      yamt 		}
   2980      1.143      yamt print:
   2981      1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2982      1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   2983      1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   2984      1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   2985      1.143      yamt 		    pp->pr_wchan,
   2986      1.143      yamt 		    incpucache ? cpucachestr :
   2987      1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   2988      1.141      yamt 	}
   2989      1.141      yamt }
   2990      1.141      yamt #endif /* defined(DDB) */
   2991      1.203     joerg 
   2992      1.203     joerg static int
   2993      1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   2994      1.203     joerg {
   2995      1.203     joerg 	struct pool_sysctl data;
   2996      1.203     joerg 	struct pool *pp;
   2997      1.203     joerg 	struct pool_cache *pc;
   2998      1.203     joerg 	pool_cache_cpu_t *cc;
   2999      1.203     joerg 	int error;
   3000      1.203     joerg 	size_t i, written;
   3001      1.203     joerg 
   3002      1.203     joerg 	if (oldp == NULL) {
   3003      1.203     joerg 		*oldlenp = 0;
   3004      1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3005      1.203     joerg 			*oldlenp += sizeof(data);
   3006      1.203     joerg 		return 0;
   3007      1.203     joerg 	}
   3008      1.203     joerg 
   3009      1.203     joerg 	memset(&data, 0, sizeof(data));
   3010      1.203     joerg 	error = 0;
   3011      1.203     joerg 	written = 0;
   3012      1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3013      1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   3014      1.203     joerg 			break;
   3015      1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3016      1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3017      1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3018      1.203     joerg #define COPY(field) data.field = pp->field
   3019      1.203     joerg 		COPY(pr_size);
   3020      1.203     joerg 
   3021      1.203     joerg 		COPY(pr_itemsperpage);
   3022      1.203     joerg 		COPY(pr_nitems);
   3023      1.203     joerg 		COPY(pr_nout);
   3024      1.203     joerg 		COPY(pr_hardlimit);
   3025      1.203     joerg 		COPY(pr_npages);
   3026      1.203     joerg 		COPY(pr_minpages);
   3027      1.203     joerg 		COPY(pr_maxpages);
   3028      1.203     joerg 
   3029      1.203     joerg 		COPY(pr_nget);
   3030      1.203     joerg 		COPY(pr_nfail);
   3031      1.203     joerg 		COPY(pr_nput);
   3032      1.203     joerg 		COPY(pr_npagealloc);
   3033      1.203     joerg 		COPY(pr_npagefree);
   3034      1.203     joerg 		COPY(pr_hiwat);
   3035      1.203     joerg 		COPY(pr_nidle);
   3036      1.203     joerg #undef COPY
   3037      1.203     joerg 
   3038      1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   3039      1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   3040      1.203     joerg 		if (pp->pr_cache) {
   3041      1.203     joerg 			pc = pp->pr_cache;
   3042      1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3043      1.203     joerg 			data.pr_cache_nfull = pc->pc_nfull;
   3044      1.203     joerg 			data.pr_cache_npartial = pc->pc_npart;
   3045      1.203     joerg 			data.pr_cache_nempty = pc->pc_nempty;
   3046      1.203     joerg 			data.pr_cache_ncontended = pc->pc_contended;
   3047      1.203     joerg 			data.pr_cache_nmiss_global = pc->pc_misses;
   3048      1.203     joerg 			data.pr_cache_nhit_global = pc->pc_hits;
   3049      1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3050      1.203     joerg 				cc = pc->pc_cpus[i];
   3051      1.203     joerg 				if (cc == NULL)
   3052      1.203     joerg 					continue;
   3053      1.206  knakahar 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3054      1.206  knakahar 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3055      1.203     joerg 			}
   3056      1.203     joerg 		} else {
   3057      1.203     joerg 			data.pr_cache_meta_size = 0;
   3058      1.203     joerg 			data.pr_cache_nfull = 0;
   3059      1.203     joerg 			data.pr_cache_npartial = 0;
   3060      1.203     joerg 			data.pr_cache_nempty = 0;
   3061      1.203     joerg 			data.pr_cache_ncontended = 0;
   3062      1.203     joerg 			data.pr_cache_nmiss_global = 0;
   3063      1.203     joerg 			data.pr_cache_nhit_global = 0;
   3064      1.203     joerg 		}
   3065      1.203     joerg 
   3066      1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3067      1.203     joerg 		if (error)
   3068      1.203     joerg 			break;
   3069      1.203     joerg 		written += sizeof(data);
   3070      1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   3071      1.203     joerg 	}
   3072      1.203     joerg 
   3073      1.203     joerg 	*oldlenp = written;
   3074      1.203     joerg 	return error;
   3075      1.203     joerg }
   3076      1.203     joerg 
   3077      1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3078      1.203     joerg {
   3079      1.203     joerg 	const struct sysctlnode *rnode = NULL;
   3080      1.203     joerg 
   3081      1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   3082      1.203     joerg 		       CTLFLAG_PERMANENT,
   3083      1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   3084      1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   3085      1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   3086      1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3087      1.203     joerg }
   3088