subr_pool.c revision 1.221.2.1 1 1.221.2.1 pgoyette /* $NetBSD: subr_pool.c,v 1.221.2.1 2018/07/28 04:38:08 pgoyette Exp $ */
2 1.1 pk
3 1.1 pk /*-
4 1.204 maxv * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
5 1.183 ad * The NetBSD Foundation, Inc.
6 1.1 pk * All rights reserved.
7 1.1 pk *
8 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
9 1.20 thorpej * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 1.204 maxv * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 1.204 maxv * Maxime Villard.
12 1.1 pk *
13 1.1 pk * Redistribution and use in source and binary forms, with or without
14 1.1 pk * modification, are permitted provided that the following conditions
15 1.1 pk * are met:
16 1.1 pk * 1. Redistributions of source code must retain the above copyright
17 1.1 pk * notice, this list of conditions and the following disclaimer.
18 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
19 1.1 pk * notice, this list of conditions and the following disclaimer in the
20 1.1 pk * documentation and/or other materials provided with the distribution.
21 1.1 pk *
22 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
33 1.1 pk */
34 1.64 lukem
35 1.64 lukem #include <sys/cdefs.h>
36 1.221.2.1 pgoyette __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.221.2.1 2018/07/28 04:38:08 pgoyette Exp $");
37 1.24 scottr
38 1.205 pooka #ifdef _KERNEL_OPT
39 1.141 yamt #include "opt_ddb.h"
40 1.28 thorpej #include "opt_lockdebug.h"
41 1.205 pooka #endif
42 1.1 pk
43 1.1 pk #include <sys/param.h>
44 1.1 pk #include <sys/systm.h>
45 1.203 joerg #include <sys/sysctl.h>
46 1.135 yamt #include <sys/bitops.h>
47 1.1 pk #include <sys/proc.h>
48 1.1 pk #include <sys/errno.h>
49 1.1 pk #include <sys/kernel.h>
50 1.191 para #include <sys/vmem.h>
51 1.1 pk #include <sys/pool.h>
52 1.20 thorpej #include <sys/syslog.h>
53 1.125 ad #include <sys/debug.h>
54 1.134 ad #include <sys/lockdebug.h>
55 1.134 ad #include <sys/xcall.h>
56 1.134 ad #include <sys/cpu.h>
57 1.145 ad #include <sys/atomic.h>
58 1.3 pk
59 1.187 uebayasi #include <uvm/uvm_extern.h>
60 1.3 pk
61 1.1 pk /*
62 1.1 pk * Pool resource management utility.
63 1.3 pk *
64 1.88 chs * Memory is allocated in pages which are split into pieces according to
65 1.88 chs * the pool item size. Each page is kept on one of three lists in the
66 1.88 chs * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
67 1.88 chs * for empty, full and partially-full pages respectively. The individual
68 1.88 chs * pool items are on a linked list headed by `ph_itemlist' in each page
69 1.88 chs * header. The memory for building the page list is either taken from
70 1.88 chs * the allocated pages themselves (for small pool items) or taken from
71 1.88 chs * an internal pool of page headers (`phpool').
72 1.1 pk */
73 1.1 pk
74 1.221 para /* List of all pools. Non static as needed by 'vmstat -m' */
75 1.202 abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
76 1.134 ad
77 1.3 pk /* Private pool for page header structures */
78 1.97 yamt #define PHPOOL_MAX 8
79 1.97 yamt static struct pool phpool[PHPOOL_MAX];
80 1.135 yamt #define PHPOOL_FREELIST_NELEM(idx) \
81 1.135 yamt (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
82 1.3 pk
83 1.62 bjh21 #ifdef POOL_SUBPAGE
84 1.62 bjh21 /* Pool of subpages for use by normal pools. */
85 1.62 bjh21 static struct pool psppool;
86 1.62 bjh21 #endif
87 1.62 bjh21
88 1.204 maxv #ifdef POOL_REDZONE
89 1.204 maxv # define POOL_REDZONE_SIZE 2
90 1.204 maxv static void pool_redzone_init(struct pool *, size_t);
91 1.204 maxv static void pool_redzone_fill(struct pool *, void *);
92 1.204 maxv static void pool_redzone_check(struct pool *, void *);
93 1.204 maxv #else
94 1.204 maxv # define pool_redzone_init(pp, sz) /* NOTHING */
95 1.204 maxv # define pool_redzone_fill(pp, ptr) /* NOTHING */
96 1.204 maxv # define pool_redzone_check(pp, ptr) /* NOTHING */
97 1.204 maxv #endif
98 1.204 maxv
99 1.98 yamt static void *pool_page_alloc_meta(struct pool *, int);
100 1.98 yamt static void pool_page_free_meta(struct pool *, void *);
101 1.98 yamt
102 1.98 yamt /* allocator for pool metadata */
103 1.134 ad struct pool_allocator pool_allocator_meta = {
104 1.191 para .pa_alloc = pool_page_alloc_meta,
105 1.191 para .pa_free = pool_page_free_meta,
106 1.191 para .pa_pagesz = 0
107 1.98 yamt };
108 1.98 yamt
109 1.208 chs #define POOL_ALLOCATOR_BIG_BASE 13
110 1.208 chs extern struct pool_allocator pool_allocator_big[];
111 1.208 chs static int pool_bigidx(size_t);
112 1.208 chs
113 1.3 pk /* # of seconds to retain page after last use */
114 1.3 pk int pool_inactive_time = 10;
115 1.3 pk
116 1.3 pk /* Next candidate for drainage (see pool_drain()) */
117 1.23 thorpej static struct pool *drainpp;
118 1.23 thorpej
119 1.134 ad /* This lock protects both pool_head and drainpp. */
120 1.134 ad static kmutex_t pool_head_lock;
121 1.134 ad static kcondvar_t pool_busy;
122 1.3 pk
123 1.178 elad /* This lock protects initialization of a potentially shared pool allocator */
124 1.178 elad static kmutex_t pool_allocator_lock;
125 1.178 elad
126 1.135 yamt typedef uint32_t pool_item_bitmap_t;
127 1.135 yamt #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
128 1.135 yamt #define BITMAP_MASK (BITMAP_SIZE - 1)
129 1.99 yamt
130 1.3 pk struct pool_item_header {
131 1.3 pk /* Page headers */
132 1.88 chs LIST_ENTRY(pool_item_header)
133 1.3 pk ph_pagelist; /* pool page list */
134 1.88 chs SPLAY_ENTRY(pool_item_header)
135 1.88 chs ph_node; /* Off-page page headers */
136 1.128 christos void * ph_page; /* this page's address */
137 1.151 yamt uint32_t ph_time; /* last referenced */
138 1.135 yamt uint16_t ph_nmissing; /* # of chunks in use */
139 1.141 yamt uint16_t ph_off; /* start offset in page */
140 1.97 yamt union {
141 1.97 yamt /* !PR_NOTOUCH */
142 1.97 yamt struct {
143 1.102 chs LIST_HEAD(, pool_item)
144 1.97 yamt phu_itemlist; /* chunk list for this page */
145 1.97 yamt } phu_normal;
146 1.97 yamt /* PR_NOTOUCH */
147 1.97 yamt struct {
148 1.141 yamt pool_item_bitmap_t phu_bitmap[1];
149 1.97 yamt } phu_notouch;
150 1.97 yamt } ph_u;
151 1.3 pk };
152 1.97 yamt #define ph_itemlist ph_u.phu_normal.phu_itemlist
153 1.135 yamt #define ph_bitmap ph_u.phu_notouch.phu_bitmap
154 1.3 pk
155 1.1 pk struct pool_item {
156 1.3 pk #ifdef DIAGNOSTIC
157 1.82 thorpej u_int pi_magic;
158 1.33 chs #endif
159 1.134 ad #define PI_MAGIC 0xdeaddeadU
160 1.3 pk /* Other entries use only this list entry */
161 1.102 chs LIST_ENTRY(pool_item) pi_list;
162 1.3 pk };
163 1.3 pk
164 1.53 thorpej #define POOL_NEEDS_CATCHUP(pp) \
165 1.53 thorpej ((pp)->pr_nitems < (pp)->pr_minitems)
166 1.53 thorpej
167 1.43 thorpej /*
168 1.43 thorpej * Pool cache management.
169 1.43 thorpej *
170 1.43 thorpej * Pool caches provide a way for constructed objects to be cached by the
171 1.43 thorpej * pool subsystem. This can lead to performance improvements by avoiding
172 1.43 thorpej * needless object construction/destruction; it is deferred until absolutely
173 1.43 thorpej * necessary.
174 1.43 thorpej *
175 1.134 ad * Caches are grouped into cache groups. Each cache group references up
176 1.134 ad * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
177 1.134 ad * object from the pool, it calls the object's constructor and places it
178 1.134 ad * into a cache group. When a cache group frees an object back to the
179 1.134 ad * pool, it first calls the object's destructor. This allows the object
180 1.134 ad * to persist in constructed form while freed to the cache.
181 1.134 ad *
182 1.134 ad * The pool references each cache, so that when a pool is drained by the
183 1.134 ad * pagedaemon, it can drain each individual cache as well. Each time a
184 1.134 ad * cache is drained, the most idle cache group is freed to the pool in
185 1.134 ad * its entirety.
186 1.43 thorpej *
187 1.43 thorpej * Pool caches are layed on top of pools. By layering them, we can avoid
188 1.43 thorpej * the complexity of cache management for pools which would not benefit
189 1.43 thorpej * from it.
190 1.43 thorpej */
191 1.43 thorpej
192 1.142 ad static struct pool pcg_normal_pool;
193 1.142 ad static struct pool pcg_large_pool;
194 1.134 ad static struct pool cache_pool;
195 1.134 ad static struct pool cache_cpu_pool;
196 1.3 pk
197 1.189 pooka pool_cache_t pnbuf_cache; /* pathname buffer cache */
198 1.189 pooka
199 1.145 ad /* List of all caches. */
200 1.145 ad TAILQ_HEAD(,pool_cache) pool_cache_head =
201 1.145 ad TAILQ_HEAD_INITIALIZER(pool_cache_head);
202 1.145 ad
203 1.162 ad int pool_cache_disable; /* global disable for caching */
204 1.169 yamt static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
205 1.145 ad
206 1.162 ad static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
207 1.162 ad void *);
208 1.162 ad static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
209 1.162 ad void **, paddr_t *, int);
210 1.134 ad static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
211 1.134 ad static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
212 1.175 jym static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
213 1.196 jym static void pool_cache_transfer(pool_cache_t);
214 1.3 pk
215 1.42 thorpej static int pool_catchup(struct pool *);
216 1.128 christos static void pool_prime_page(struct pool *, void *,
217 1.55 thorpej struct pool_item_header *);
218 1.88 chs static void pool_update_curpage(struct pool *);
219 1.66 thorpej
220 1.113 yamt static int pool_grow(struct pool *, int);
221 1.117 yamt static void *pool_allocator_alloc(struct pool *, int);
222 1.117 yamt static void pool_allocator_free(struct pool *, void *);
223 1.3 pk
224 1.97 yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
225 1.199 christos void (*)(const char *, ...) __printflike(1, 2));
226 1.42 thorpej static void pool_print1(struct pool *, const char *,
227 1.199 christos void (*)(const char *, ...) __printflike(1, 2));
228 1.3 pk
229 1.88 chs static int pool_chk_page(struct pool *, const char *,
230 1.88 chs struct pool_item_header *);
231 1.88 chs
232 1.135 yamt static inline unsigned int
233 1.97 yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
234 1.97 yamt const void *v)
235 1.97 yamt {
236 1.97 yamt const char *cp = v;
237 1.135 yamt unsigned int idx;
238 1.97 yamt
239 1.97 yamt KASSERT(pp->pr_roflags & PR_NOTOUCH);
240 1.128 christos idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
241 1.97 yamt KASSERT(idx < pp->pr_itemsperpage);
242 1.97 yamt return idx;
243 1.97 yamt }
244 1.97 yamt
245 1.110 perry static inline void
246 1.97 yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
247 1.97 yamt void *obj)
248 1.97 yamt {
249 1.135 yamt unsigned int idx = pr_item_notouch_index(pp, ph, obj);
250 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
251 1.221.2.1 pgoyette pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
252 1.97 yamt
253 1.135 yamt KASSERT((*bitmap & mask) == 0);
254 1.135 yamt *bitmap |= mask;
255 1.97 yamt }
256 1.97 yamt
257 1.110 perry static inline void *
258 1.97 yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
259 1.97 yamt {
260 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
261 1.135 yamt unsigned int idx;
262 1.135 yamt int i;
263 1.97 yamt
264 1.135 yamt for (i = 0; ; i++) {
265 1.135 yamt int bit;
266 1.97 yamt
267 1.135 yamt KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
268 1.135 yamt bit = ffs32(bitmap[i]);
269 1.135 yamt if (bit) {
270 1.135 yamt pool_item_bitmap_t mask;
271 1.135 yamt
272 1.135 yamt bit--;
273 1.135 yamt idx = (i * BITMAP_SIZE) + bit;
274 1.221.2.1 pgoyette mask = 1U << bit;
275 1.135 yamt KASSERT((bitmap[i] & mask) != 0);
276 1.135 yamt bitmap[i] &= ~mask;
277 1.135 yamt break;
278 1.135 yamt }
279 1.135 yamt }
280 1.135 yamt KASSERT(idx < pp->pr_itemsperpage);
281 1.128 christos return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
282 1.97 yamt }
283 1.97 yamt
284 1.135 yamt static inline void
285 1.141 yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
286 1.135 yamt {
287 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
288 1.135 yamt const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
289 1.135 yamt int i;
290 1.135 yamt
291 1.135 yamt for (i = 0; i < n; i++) {
292 1.135 yamt bitmap[i] = (pool_item_bitmap_t)-1;
293 1.135 yamt }
294 1.135 yamt }
295 1.135 yamt
296 1.110 perry static inline int
297 1.88 chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
298 1.88 chs {
299 1.121 yamt
300 1.121 yamt /*
301 1.121 yamt * we consider pool_item_header with smaller ph_page bigger.
302 1.121 yamt * (this unnatural ordering is for the benefit of pr_find_pagehead.)
303 1.121 yamt */
304 1.121 yamt
305 1.88 chs if (a->ph_page < b->ph_page)
306 1.121 yamt return (1);
307 1.121 yamt else if (a->ph_page > b->ph_page)
308 1.88 chs return (-1);
309 1.88 chs else
310 1.88 chs return (0);
311 1.88 chs }
312 1.88 chs
313 1.88 chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
314 1.88 chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
315 1.88 chs
316 1.141 yamt static inline struct pool_item_header *
317 1.141 yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
318 1.141 yamt {
319 1.141 yamt struct pool_item_header *ph, tmp;
320 1.141 yamt
321 1.141 yamt tmp.ph_page = (void *)(uintptr_t)v;
322 1.141 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
323 1.141 yamt if (ph == NULL) {
324 1.141 yamt ph = SPLAY_ROOT(&pp->pr_phtree);
325 1.141 yamt if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
326 1.141 yamt ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
327 1.141 yamt }
328 1.141 yamt KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
329 1.141 yamt }
330 1.141 yamt
331 1.141 yamt return ph;
332 1.141 yamt }
333 1.141 yamt
334 1.3 pk /*
335 1.121 yamt * Return the pool page header based on item address.
336 1.3 pk */
337 1.110 perry static inline struct pool_item_header *
338 1.121 yamt pr_find_pagehead(struct pool *pp, void *v)
339 1.3 pk {
340 1.88 chs struct pool_item_header *ph, tmp;
341 1.3 pk
342 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
343 1.141 yamt ph = pr_find_pagehead_noalign(pp, v);
344 1.121 yamt } else {
345 1.128 christos void *page =
346 1.128 christos (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
347 1.121 yamt
348 1.121 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
349 1.128 christos ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
350 1.121 yamt } else {
351 1.121 yamt tmp.ph_page = page;
352 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
353 1.121 yamt }
354 1.121 yamt }
355 1.3 pk
356 1.121 yamt KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
357 1.128 christos ((char *)ph->ph_page <= (char *)v &&
358 1.128 christos (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
359 1.88 chs return ph;
360 1.3 pk }
361 1.3 pk
362 1.101 thorpej static void
363 1.101 thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
364 1.101 thorpej {
365 1.101 thorpej struct pool_item_header *ph;
366 1.101 thorpej
367 1.101 thorpej while ((ph = LIST_FIRST(pq)) != NULL) {
368 1.101 thorpej LIST_REMOVE(ph, ph_pagelist);
369 1.101 thorpej pool_allocator_free(pp, ph->ph_page);
370 1.134 ad if ((pp->pr_roflags & PR_PHINPAGE) == 0)
371 1.101 thorpej pool_put(pp->pr_phpool, ph);
372 1.101 thorpej }
373 1.101 thorpej }
374 1.101 thorpej
375 1.3 pk /*
376 1.3 pk * Remove a page from the pool.
377 1.3 pk */
378 1.110 perry static inline void
379 1.61 chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
380 1.61 chs struct pool_pagelist *pq)
381 1.3 pk {
382 1.3 pk
383 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
384 1.91 yamt
385 1.3 pk /*
386 1.7 thorpej * If the page was idle, decrement the idle page count.
387 1.3 pk */
388 1.6 thorpej if (ph->ph_nmissing == 0) {
389 1.207 riastrad KASSERT(pp->pr_nidle != 0);
390 1.207 riastrad KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
391 1.207 riastrad "nitems=%u < itemsperpage=%u",
392 1.207 riastrad pp->pr_nitems, pp->pr_itemsperpage);
393 1.6 thorpej pp->pr_nidle--;
394 1.6 thorpej }
395 1.7 thorpej
396 1.20 thorpej pp->pr_nitems -= pp->pr_itemsperpage;
397 1.20 thorpej
398 1.7 thorpej /*
399 1.101 thorpej * Unlink the page from the pool and queue it for release.
400 1.7 thorpej */
401 1.88 chs LIST_REMOVE(ph, ph_pagelist);
402 1.91 yamt if ((pp->pr_roflags & PR_PHINPAGE) == 0)
403 1.91 yamt SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
404 1.101 thorpej LIST_INSERT_HEAD(pq, ph, ph_pagelist);
405 1.101 thorpej
406 1.7 thorpej pp->pr_npages--;
407 1.7 thorpej pp->pr_npagefree++;
408 1.6 thorpej
409 1.88 chs pool_update_curpage(pp);
410 1.3 pk }
411 1.3 pk
412 1.3 pk /*
413 1.94 simonb * Initialize all the pools listed in the "pools" link set.
414 1.94 simonb */
415 1.94 simonb void
416 1.117 yamt pool_subsystem_init(void)
417 1.94 simonb {
418 1.192 rmind size_t size;
419 1.191 para int idx;
420 1.94 simonb
421 1.134 ad mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
422 1.179 mlelstv mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
423 1.134 ad cv_init(&pool_busy, "poolbusy");
424 1.134 ad
425 1.191 para /*
426 1.191 para * Initialize private page header pool and cache magazine pool if we
427 1.191 para * haven't done so yet.
428 1.191 para */
429 1.191 para for (idx = 0; idx < PHPOOL_MAX; idx++) {
430 1.191 para static char phpool_names[PHPOOL_MAX][6+1+6+1];
431 1.191 para int nelem;
432 1.191 para size_t sz;
433 1.191 para
434 1.191 para nelem = PHPOOL_FREELIST_NELEM(idx);
435 1.191 para snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
436 1.191 para "phpool-%d", nelem);
437 1.191 para sz = sizeof(struct pool_item_header);
438 1.191 para if (nelem) {
439 1.191 para sz = offsetof(struct pool_item_header,
440 1.191 para ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
441 1.191 para }
442 1.191 para pool_init(&phpool[idx], sz, 0, 0, 0,
443 1.191 para phpool_names[idx], &pool_allocator_meta, IPL_VM);
444 1.117 yamt }
445 1.191 para #ifdef POOL_SUBPAGE
446 1.191 para pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
447 1.191 para PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
448 1.191 para #endif
449 1.191 para
450 1.191 para size = sizeof(pcg_t) +
451 1.191 para (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
452 1.191 para pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
453 1.191 para "pcgnormal", &pool_allocator_meta, IPL_VM);
454 1.191 para
455 1.191 para size = sizeof(pcg_t) +
456 1.191 para (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
457 1.191 para pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
458 1.191 para "pcglarge", &pool_allocator_meta, IPL_VM);
459 1.134 ad
460 1.156 ad pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
461 1.191 para 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
462 1.134 ad
463 1.156 ad pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
464 1.191 para 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
465 1.94 simonb }
466 1.94 simonb
467 1.94 simonb /*
468 1.3 pk * Initialize the given pool resource structure.
469 1.3 pk *
470 1.3 pk * We export this routine to allow other kernel parts to declare
471 1.195 rmind * static pools that must be initialized before kmem(9) is available.
472 1.3 pk */
473 1.3 pk void
474 1.42 thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
475 1.129 ad const char *wchan, struct pool_allocator *palloc, int ipl)
476 1.3 pk {
477 1.116 simonb struct pool *pp1;
478 1.204 maxv size_t trysize, phsize, prsize;
479 1.134 ad int off, slack;
480 1.3 pk
481 1.116 simonb #ifdef DEBUG
482 1.198 christos if (__predict_true(!cold))
483 1.198 christos mutex_enter(&pool_head_lock);
484 1.116 simonb /*
485 1.116 simonb * Check that the pool hasn't already been initialised and
486 1.116 simonb * added to the list of all pools.
487 1.116 simonb */
488 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
489 1.116 simonb if (pp == pp1)
490 1.213 christos panic("%s: [%s] already initialised", __func__,
491 1.116 simonb wchan);
492 1.116 simonb }
493 1.198 christos if (__predict_true(!cold))
494 1.198 christos mutex_exit(&pool_head_lock);
495 1.116 simonb #endif
496 1.116 simonb
497 1.66 thorpej if (palloc == NULL)
498 1.66 thorpej palloc = &pool_allocator_kmem;
499 1.112 bjh21 #ifdef POOL_SUBPAGE
500 1.112 bjh21 if (size > palloc->pa_pagesz) {
501 1.112 bjh21 if (palloc == &pool_allocator_kmem)
502 1.112 bjh21 palloc = &pool_allocator_kmem_fullpage;
503 1.112 bjh21 else if (palloc == &pool_allocator_nointr)
504 1.112 bjh21 palloc = &pool_allocator_nointr_fullpage;
505 1.112 bjh21 }
506 1.66 thorpej #endif /* POOL_SUBPAGE */
507 1.180 mlelstv if (!cold)
508 1.180 mlelstv mutex_enter(&pool_allocator_lock);
509 1.178 elad if (palloc->pa_refcnt++ == 0) {
510 1.112 bjh21 if (palloc->pa_pagesz == 0)
511 1.66 thorpej palloc->pa_pagesz = PAGE_SIZE;
512 1.66 thorpej
513 1.66 thorpej TAILQ_INIT(&palloc->pa_list);
514 1.66 thorpej
515 1.134 ad mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
516 1.66 thorpej palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
517 1.66 thorpej palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
518 1.4 thorpej }
519 1.180 mlelstv if (!cold)
520 1.180 mlelstv mutex_exit(&pool_allocator_lock);
521 1.3 pk
522 1.3 pk if (align == 0)
523 1.3 pk align = ALIGN(1);
524 1.14 thorpej
525 1.204 maxv prsize = size;
526 1.204 maxv if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
527 1.204 maxv prsize = sizeof(struct pool_item);
528 1.3 pk
529 1.204 maxv prsize = roundup(prsize, align);
530 1.207 riastrad KASSERTMSG((prsize <= palloc->pa_pagesz),
531 1.213 christos "%s: [%s] pool item size (%zu) larger than page size (%u)",
532 1.213 christos __func__, wchan, prsize, palloc->pa_pagesz);
533 1.35 pk
534 1.3 pk /*
535 1.3 pk * Initialize the pool structure.
536 1.3 pk */
537 1.88 chs LIST_INIT(&pp->pr_emptypages);
538 1.88 chs LIST_INIT(&pp->pr_fullpages);
539 1.88 chs LIST_INIT(&pp->pr_partpages);
540 1.134 ad pp->pr_cache = NULL;
541 1.3 pk pp->pr_curpage = NULL;
542 1.3 pk pp->pr_npages = 0;
543 1.3 pk pp->pr_minitems = 0;
544 1.3 pk pp->pr_minpages = 0;
545 1.3 pk pp->pr_maxpages = UINT_MAX;
546 1.20 thorpej pp->pr_roflags = flags;
547 1.20 thorpej pp->pr_flags = 0;
548 1.204 maxv pp->pr_size = prsize;
549 1.3 pk pp->pr_align = align;
550 1.3 pk pp->pr_wchan = wchan;
551 1.66 thorpej pp->pr_alloc = palloc;
552 1.20 thorpej pp->pr_nitems = 0;
553 1.20 thorpej pp->pr_nout = 0;
554 1.20 thorpej pp->pr_hardlimit = UINT_MAX;
555 1.20 thorpej pp->pr_hardlimit_warning = NULL;
556 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = 0;
557 1.31 thorpej pp->pr_hardlimit_ratecap.tv_usec = 0;
558 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
559 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
560 1.68 thorpej pp->pr_drain_hook = NULL;
561 1.68 thorpej pp->pr_drain_hook_arg = NULL;
562 1.125 ad pp->pr_freecheck = NULL;
563 1.204 maxv pool_redzone_init(pp, size);
564 1.3 pk
565 1.3 pk /*
566 1.3 pk * Decide whether to put the page header off page to avoid
567 1.92 enami * wasting too large a part of the page or too big item.
568 1.92 enami * Off-page page headers go on a hash table, so we can match
569 1.92 enami * a returned item with its header based on the page address.
570 1.92 enami * We use 1/16 of the page size and about 8 times of the item
571 1.92 enami * size as the threshold (XXX: tune)
572 1.92 enami *
573 1.92 enami * However, we'll put the header into the page if we can put
574 1.92 enami * it without wasting any items.
575 1.92 enami *
576 1.92 enami * Silently enforce `0 <= ioff < align'.
577 1.3 pk */
578 1.92 enami pp->pr_itemoffset = ioff %= align;
579 1.92 enami /* See the comment below about reserved bytes. */
580 1.92 enami trysize = palloc->pa_pagesz - ((align - ioff) % align);
581 1.92 enami phsize = ALIGN(sizeof(struct pool_item_header));
582 1.201 para if (pp->pr_roflags & PR_PHINPAGE ||
583 1.201 para ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
584 1.97 yamt (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
585 1.201 para trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
586 1.3 pk /* Use the end of the page for the page header */
587 1.20 thorpej pp->pr_roflags |= PR_PHINPAGE;
588 1.92 enami pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
589 1.2 pk } else {
590 1.3 pk /* The page header will be taken from our page header pool */
591 1.3 pk pp->pr_phoffset = 0;
592 1.66 thorpej off = palloc->pa_pagesz;
593 1.88 chs SPLAY_INIT(&pp->pr_phtree);
594 1.2 pk }
595 1.1 pk
596 1.3 pk /*
597 1.3 pk * Alignment is to take place at `ioff' within the item. This means
598 1.3 pk * we must reserve up to `align - 1' bytes on the page to allow
599 1.3 pk * appropriate positioning of each item.
600 1.3 pk */
601 1.3 pk pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
602 1.43 thorpej KASSERT(pp->pr_itemsperpage != 0);
603 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH)) {
604 1.97 yamt int idx;
605 1.97 yamt
606 1.97 yamt for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
607 1.97 yamt idx++) {
608 1.97 yamt /* nothing */
609 1.97 yamt }
610 1.97 yamt if (idx >= PHPOOL_MAX) {
611 1.97 yamt /*
612 1.97 yamt * if you see this panic, consider to tweak
613 1.97 yamt * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
614 1.97 yamt */
615 1.213 christos panic("%s: [%s] too large itemsperpage(%d) for "
616 1.213 christos "PR_NOTOUCH", __func__,
617 1.97 yamt pp->pr_wchan, pp->pr_itemsperpage);
618 1.97 yamt }
619 1.97 yamt pp->pr_phpool = &phpool[idx];
620 1.97 yamt } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
621 1.97 yamt pp->pr_phpool = &phpool[0];
622 1.97 yamt }
623 1.97 yamt #if defined(DIAGNOSTIC)
624 1.97 yamt else {
625 1.97 yamt pp->pr_phpool = NULL;
626 1.97 yamt }
627 1.97 yamt #endif
628 1.3 pk
629 1.3 pk /*
630 1.3 pk * Use the slack between the chunks and the page header
631 1.3 pk * for "cache coloring".
632 1.3 pk */
633 1.3 pk slack = off - pp->pr_itemsperpage * pp->pr_size;
634 1.3 pk pp->pr_maxcolor = (slack / align) * align;
635 1.3 pk pp->pr_curcolor = 0;
636 1.3 pk
637 1.3 pk pp->pr_nget = 0;
638 1.3 pk pp->pr_nfail = 0;
639 1.3 pk pp->pr_nput = 0;
640 1.3 pk pp->pr_npagealloc = 0;
641 1.3 pk pp->pr_npagefree = 0;
642 1.1 pk pp->pr_hiwat = 0;
643 1.8 thorpej pp->pr_nidle = 0;
644 1.134 ad pp->pr_refcnt = 0;
645 1.3 pk
646 1.157 ad mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
647 1.134 ad cv_init(&pp->pr_cv, wchan);
648 1.134 ad pp->pr_ipl = ipl;
649 1.1 pk
650 1.145 ad /* Insert into the list of all pools. */
651 1.181 mlelstv if (!cold)
652 1.134 ad mutex_enter(&pool_head_lock);
653 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
654 1.145 ad if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
655 1.145 ad break;
656 1.145 ad }
657 1.145 ad if (pp1 == NULL)
658 1.145 ad TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
659 1.145 ad else
660 1.145 ad TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
661 1.181 mlelstv if (!cold)
662 1.134 ad mutex_exit(&pool_head_lock);
663 1.134 ad
664 1.167 skrll /* Insert this into the list of pools using this allocator. */
665 1.181 mlelstv if (!cold)
666 1.134 ad mutex_enter(&palloc->pa_lock);
667 1.145 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
668 1.181 mlelstv if (!cold)
669 1.134 ad mutex_exit(&palloc->pa_lock);
670 1.1 pk }
671 1.1 pk
672 1.1 pk /*
673 1.1 pk * De-commision a pool resource.
674 1.1 pk */
675 1.1 pk void
676 1.42 thorpej pool_destroy(struct pool *pp)
677 1.1 pk {
678 1.101 thorpej struct pool_pagelist pq;
679 1.3 pk struct pool_item_header *ph;
680 1.43 thorpej
681 1.101 thorpej /* Remove from global pool list */
682 1.134 ad mutex_enter(&pool_head_lock);
683 1.134 ad while (pp->pr_refcnt != 0)
684 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
685 1.145 ad TAILQ_REMOVE(&pool_head, pp, pr_poollist);
686 1.101 thorpej if (drainpp == pp)
687 1.101 thorpej drainpp = NULL;
688 1.134 ad mutex_exit(&pool_head_lock);
689 1.101 thorpej
690 1.101 thorpej /* Remove this pool from its allocator's list of pools. */
691 1.134 ad mutex_enter(&pp->pr_alloc->pa_lock);
692 1.66 thorpej TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
693 1.134 ad mutex_exit(&pp->pr_alloc->pa_lock);
694 1.66 thorpej
695 1.178 elad mutex_enter(&pool_allocator_lock);
696 1.178 elad if (--pp->pr_alloc->pa_refcnt == 0)
697 1.178 elad mutex_destroy(&pp->pr_alloc->pa_lock);
698 1.178 elad mutex_exit(&pool_allocator_lock);
699 1.178 elad
700 1.134 ad mutex_enter(&pp->pr_lock);
701 1.101 thorpej
702 1.134 ad KASSERT(pp->pr_cache == NULL);
703 1.207 riastrad KASSERTMSG((pp->pr_nout == 0),
704 1.213 christos "%s: pool busy: still out: %u", __func__, pp->pr_nout);
705 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_fullpages));
706 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_partpages));
707 1.101 thorpej
708 1.3 pk /* Remove all pages */
709 1.101 thorpej LIST_INIT(&pq);
710 1.88 chs while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
711 1.101 thorpej pr_rmpage(pp, ph, &pq);
712 1.101 thorpej
713 1.134 ad mutex_exit(&pp->pr_lock);
714 1.3 pk
715 1.101 thorpej pr_pagelist_free(pp, &pq);
716 1.134 ad cv_destroy(&pp->pr_cv);
717 1.134 ad mutex_destroy(&pp->pr_lock);
718 1.1 pk }
719 1.1 pk
720 1.68 thorpej void
721 1.68 thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
722 1.68 thorpej {
723 1.68 thorpej
724 1.68 thorpej /* XXX no locking -- must be used just after pool_init() */
725 1.207 riastrad KASSERTMSG((pp->pr_drain_hook == NULL),
726 1.213 christos "%s: [%s] already set", __func__, pp->pr_wchan);
727 1.68 thorpej pp->pr_drain_hook = fn;
728 1.68 thorpej pp->pr_drain_hook_arg = arg;
729 1.68 thorpej }
730 1.68 thorpej
731 1.88 chs static struct pool_item_header *
732 1.128 christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
733 1.55 thorpej {
734 1.55 thorpej struct pool_item_header *ph;
735 1.55 thorpej
736 1.55 thorpej if ((pp->pr_roflags & PR_PHINPAGE) != 0)
737 1.213 christos ph = (void *)((char *)storage + pp->pr_phoffset);
738 1.134 ad else
739 1.97 yamt ph = pool_get(pp->pr_phpool, flags);
740 1.55 thorpej
741 1.55 thorpej return (ph);
742 1.55 thorpej }
743 1.1 pk
744 1.1 pk /*
745 1.134 ad * Grab an item from the pool.
746 1.1 pk */
747 1.3 pk void *
748 1.56 sommerfe pool_get(struct pool *pp, int flags)
749 1.1 pk {
750 1.1 pk struct pool_item *pi;
751 1.3 pk struct pool_item_header *ph;
752 1.55 thorpej void *v;
753 1.1 pk
754 1.215 christos KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
755 1.207 riastrad KASSERTMSG((pp->pr_itemsperpage != 0),
756 1.213 christos "%s: [%s] pr_itemsperpage is zero, "
757 1.213 christos "pool not initialized?", __func__, pp->pr_wchan);
758 1.207 riastrad KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
759 1.207 riastrad || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
760 1.213 christos "%s: [%s] is IPL_NONE, but called from interrupt context",
761 1.213 christos __func__, pp->pr_wchan);
762 1.155 ad if (flags & PR_WAITOK) {
763 1.154 yamt ASSERT_SLEEPABLE();
764 1.155 ad }
765 1.1 pk
766 1.134 ad mutex_enter(&pp->pr_lock);
767 1.20 thorpej startover:
768 1.20 thorpej /*
769 1.20 thorpej * Check to see if we've reached the hard limit. If we have,
770 1.20 thorpej * and we can wait, then wait until an item has been returned to
771 1.20 thorpej * the pool.
772 1.20 thorpej */
773 1.207 riastrad KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
774 1.213 christos "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
775 1.34 thorpej if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
776 1.68 thorpej if (pp->pr_drain_hook != NULL) {
777 1.68 thorpej /*
778 1.68 thorpej * Since the drain hook is going to free things
779 1.68 thorpej * back to the pool, unlock, call the hook, re-lock,
780 1.68 thorpej * and check the hardlimit condition again.
781 1.68 thorpej */
782 1.134 ad mutex_exit(&pp->pr_lock);
783 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
784 1.134 ad mutex_enter(&pp->pr_lock);
785 1.68 thorpej if (pp->pr_nout < pp->pr_hardlimit)
786 1.68 thorpej goto startover;
787 1.68 thorpej }
788 1.68 thorpej
789 1.29 sommerfe if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
790 1.20 thorpej /*
791 1.20 thorpej * XXX: A warning isn't logged in this case. Should
792 1.20 thorpej * it be?
793 1.20 thorpej */
794 1.20 thorpej pp->pr_flags |= PR_WANTED;
795 1.212 christos do {
796 1.212 christos cv_wait(&pp->pr_cv, &pp->pr_lock);
797 1.212 christos } while (pp->pr_flags & PR_WANTED);
798 1.20 thorpej goto startover;
799 1.20 thorpej }
800 1.31 thorpej
801 1.31 thorpej /*
802 1.31 thorpej * Log a message that the hard limit has been hit.
803 1.31 thorpej */
804 1.31 thorpej if (pp->pr_hardlimit_warning != NULL &&
805 1.31 thorpej ratecheck(&pp->pr_hardlimit_warning_last,
806 1.31 thorpej &pp->pr_hardlimit_ratecap))
807 1.31 thorpej log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
808 1.21 thorpej
809 1.21 thorpej pp->pr_nfail++;
810 1.21 thorpej
811 1.134 ad mutex_exit(&pp->pr_lock);
812 1.216 christos KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
813 1.20 thorpej return (NULL);
814 1.20 thorpej }
815 1.20 thorpej
816 1.3 pk /*
817 1.3 pk * The convention we use is that if `curpage' is not NULL, then
818 1.3 pk * it points at a non-empty bucket. In particular, `curpage'
819 1.3 pk * never points at a page header which has PR_PHINPAGE set and
820 1.3 pk * has no items in its bucket.
821 1.3 pk */
822 1.20 thorpej if ((ph = pp->pr_curpage) == NULL) {
823 1.113 yamt int error;
824 1.113 yamt
825 1.207 riastrad KASSERTMSG((pp->pr_nitems == 0),
826 1.213 christos "%s: [%s] curpage NULL, inconsistent nitems %u",
827 1.213 christos __func__, pp->pr_wchan, pp->pr_nitems);
828 1.20 thorpej
829 1.21 thorpej /*
830 1.21 thorpej * Call the back-end page allocator for more memory.
831 1.21 thorpej * Release the pool lock, as the back-end page allocator
832 1.21 thorpej * may block.
833 1.21 thorpej */
834 1.113 yamt error = pool_grow(pp, flags);
835 1.113 yamt if (error != 0) {
836 1.21 thorpej /*
837 1.210 mlelstv * pool_grow aborts when another thread
838 1.210 mlelstv * is allocating a new page. Retry if it
839 1.210 mlelstv * waited for it.
840 1.210 mlelstv */
841 1.210 mlelstv if (error == ERESTART)
842 1.210 mlelstv goto startover;
843 1.210 mlelstv
844 1.210 mlelstv /*
845 1.55 thorpej * We were unable to allocate a page or item
846 1.55 thorpej * header, but we released the lock during
847 1.55 thorpej * allocation, so perhaps items were freed
848 1.55 thorpej * back to the pool. Check for this case.
849 1.21 thorpej */
850 1.21 thorpej if (pp->pr_curpage != NULL)
851 1.21 thorpej goto startover;
852 1.15 pk
853 1.117 yamt pp->pr_nfail++;
854 1.134 ad mutex_exit(&pp->pr_lock);
855 1.211 riastrad KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
856 1.117 yamt return (NULL);
857 1.1 pk }
858 1.3 pk
859 1.20 thorpej /* Start the allocation process over. */
860 1.20 thorpej goto startover;
861 1.3 pk }
862 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
863 1.207 riastrad KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
864 1.213 christos "%s: %s: page empty", __func__, pp->pr_wchan);
865 1.97 yamt v = pr_item_notouch_get(pp, ph);
866 1.97 yamt } else {
867 1.102 chs v = pi = LIST_FIRST(&ph->ph_itemlist);
868 1.97 yamt if (__predict_false(v == NULL)) {
869 1.134 ad mutex_exit(&pp->pr_lock);
870 1.213 christos panic("%s: [%s] page empty", __func__, pp->pr_wchan);
871 1.97 yamt }
872 1.207 riastrad KASSERTMSG((pp->pr_nitems > 0),
873 1.213 christos "%s: [%s] nitems %u inconsistent on itemlist",
874 1.213 christos __func__, pp->pr_wchan, pp->pr_nitems);
875 1.207 riastrad KASSERTMSG((pi->pi_magic == PI_MAGIC),
876 1.213 christos "%s: [%s] free list modified: "
877 1.213 christos "magic=%x; page %p; item addr %p", __func__,
878 1.207 riastrad pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
879 1.3 pk
880 1.97 yamt /*
881 1.97 yamt * Remove from item list.
882 1.97 yamt */
883 1.102 chs LIST_REMOVE(pi, pi_list);
884 1.97 yamt }
885 1.20 thorpej pp->pr_nitems--;
886 1.20 thorpej pp->pr_nout++;
887 1.6 thorpej if (ph->ph_nmissing == 0) {
888 1.207 riastrad KASSERT(pp->pr_nidle > 0);
889 1.6 thorpej pp->pr_nidle--;
890 1.88 chs
891 1.88 chs /*
892 1.88 chs * This page was previously empty. Move it to the list of
893 1.88 chs * partially-full pages. This page is already curpage.
894 1.88 chs */
895 1.88 chs LIST_REMOVE(ph, ph_pagelist);
896 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
897 1.6 thorpej }
898 1.3 pk ph->ph_nmissing++;
899 1.97 yamt if (ph->ph_nmissing == pp->pr_itemsperpage) {
900 1.207 riastrad KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
901 1.207 riastrad LIST_EMPTY(&ph->ph_itemlist)),
902 1.213 christos "%s: [%s] nmissing (%u) inconsistent", __func__,
903 1.213 christos pp->pr_wchan, ph->ph_nmissing);
904 1.3 pk /*
905 1.88 chs * This page is now full. Move it to the full list
906 1.88 chs * and select a new current page.
907 1.3 pk */
908 1.88 chs LIST_REMOVE(ph, ph_pagelist);
909 1.88 chs LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
910 1.88 chs pool_update_curpage(pp);
911 1.1 pk }
912 1.3 pk
913 1.3 pk pp->pr_nget++;
914 1.20 thorpej
915 1.20 thorpej /*
916 1.20 thorpej * If we have a low water mark and we are now below that low
917 1.20 thorpej * water mark, add more items to the pool.
918 1.20 thorpej */
919 1.53 thorpej if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
920 1.20 thorpej /*
921 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
922 1.20 thorpej * to try again in a second or so? The latter could break
923 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
924 1.20 thorpej */
925 1.20 thorpej }
926 1.20 thorpej
927 1.134 ad mutex_exit(&pp->pr_lock);
928 1.125 ad KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
929 1.125 ad FREECHECK_OUT(&pp->pr_freecheck, v);
930 1.204 maxv pool_redzone_fill(pp, v);
931 1.1 pk return (v);
932 1.1 pk }
933 1.1 pk
934 1.1 pk /*
935 1.43 thorpej * Internal version of pool_put(). Pool is already locked/entered.
936 1.1 pk */
937 1.43 thorpej static void
938 1.101 thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
939 1.1 pk {
940 1.1 pk struct pool_item *pi = v;
941 1.3 pk struct pool_item_header *ph;
942 1.3 pk
943 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
944 1.204 maxv pool_redzone_check(pp, v);
945 1.125 ad FREECHECK_IN(&pp->pr_freecheck, v);
946 1.134 ad LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
947 1.61 chs
948 1.207 riastrad KASSERTMSG((pp->pr_nout > 0),
949 1.213 christos "%s: [%s] putting with none out", __func__, pp->pr_wchan);
950 1.3 pk
951 1.121 yamt if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
952 1.213 christos panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
953 1.3 pk }
954 1.28 thorpej
955 1.3 pk /*
956 1.3 pk * Return to item list.
957 1.3 pk */
958 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
959 1.97 yamt pr_item_notouch_put(pp, ph, v);
960 1.97 yamt } else {
961 1.2 pk #ifdef DIAGNOSTIC
962 1.97 yamt pi->pi_magic = PI_MAGIC;
963 1.3 pk #endif
964 1.32 chs #ifdef DEBUG
965 1.97 yamt {
966 1.97 yamt int i, *ip = v;
967 1.32 chs
968 1.97 yamt for (i = 0; i < pp->pr_size / sizeof(int); i++) {
969 1.97 yamt *ip++ = PI_MAGIC;
970 1.97 yamt }
971 1.32 chs }
972 1.32 chs #endif
973 1.32 chs
974 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
975 1.97 yamt }
976 1.79 thorpej KDASSERT(ph->ph_nmissing != 0);
977 1.3 pk ph->ph_nmissing--;
978 1.3 pk pp->pr_nput++;
979 1.20 thorpej pp->pr_nitems++;
980 1.20 thorpej pp->pr_nout--;
981 1.3 pk
982 1.3 pk /* Cancel "pool empty" condition if it exists */
983 1.3 pk if (pp->pr_curpage == NULL)
984 1.3 pk pp->pr_curpage = ph;
985 1.3 pk
986 1.3 pk if (pp->pr_flags & PR_WANTED) {
987 1.3 pk pp->pr_flags &= ~PR_WANTED;
988 1.134 ad cv_broadcast(&pp->pr_cv);
989 1.3 pk }
990 1.3 pk
991 1.3 pk /*
992 1.88 chs * If this page is now empty, do one of two things:
993 1.21 thorpej *
994 1.88 chs * (1) If we have more pages than the page high water mark,
995 1.96 thorpej * free the page back to the system. ONLY CONSIDER
996 1.90 thorpej * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
997 1.90 thorpej * CLAIM.
998 1.21 thorpej *
999 1.88 chs * (2) Otherwise, move the page to the empty page list.
1000 1.88 chs *
1001 1.88 chs * Either way, select a new current page (so we use a partially-full
1002 1.88 chs * page if one is available).
1003 1.3 pk */
1004 1.3 pk if (ph->ph_nmissing == 0) {
1005 1.6 thorpej pp->pr_nidle++;
1006 1.90 thorpej if (pp->pr_npages > pp->pr_minpages &&
1007 1.152 yamt pp->pr_npages > pp->pr_maxpages) {
1008 1.101 thorpej pr_rmpage(pp, ph, pq);
1009 1.3 pk } else {
1010 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1011 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1012 1.3 pk
1013 1.21 thorpej /*
1014 1.21 thorpej * Update the timestamp on the page. A page must
1015 1.21 thorpej * be idle for some period of time before it can
1016 1.21 thorpej * be reclaimed by the pagedaemon. This minimizes
1017 1.21 thorpej * ping-pong'ing for memory.
1018 1.151 yamt *
1019 1.151 yamt * note for 64-bit time_t: truncating to 32-bit is not
1020 1.151 yamt * a problem for our usage.
1021 1.21 thorpej */
1022 1.151 yamt ph->ph_time = time_uptime;
1023 1.1 pk }
1024 1.88 chs pool_update_curpage(pp);
1025 1.1 pk }
1026 1.88 chs
1027 1.21 thorpej /*
1028 1.88 chs * If the page was previously completely full, move it to the
1029 1.88 chs * partially-full list and make it the current page. The next
1030 1.88 chs * allocation will get the item from this page, instead of
1031 1.88 chs * further fragmenting the pool.
1032 1.21 thorpej */
1033 1.21 thorpej else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1034 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1035 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1036 1.21 thorpej pp->pr_curpage = ph;
1037 1.21 thorpej }
1038 1.43 thorpej }
1039 1.43 thorpej
1040 1.56 sommerfe void
1041 1.56 sommerfe pool_put(struct pool *pp, void *v)
1042 1.56 sommerfe {
1043 1.101 thorpej struct pool_pagelist pq;
1044 1.101 thorpej
1045 1.101 thorpej LIST_INIT(&pq);
1046 1.56 sommerfe
1047 1.134 ad mutex_enter(&pp->pr_lock);
1048 1.101 thorpej pool_do_put(pp, v, &pq);
1049 1.134 ad mutex_exit(&pp->pr_lock);
1050 1.56 sommerfe
1051 1.102 chs pr_pagelist_free(pp, &pq);
1052 1.56 sommerfe }
1053 1.57 sommerfe
1054 1.74 thorpej /*
1055 1.113 yamt * pool_grow: grow a pool by a page.
1056 1.113 yamt *
1057 1.113 yamt * => called with pool locked.
1058 1.113 yamt * => unlock and relock the pool.
1059 1.113 yamt * => return with pool locked.
1060 1.113 yamt */
1061 1.113 yamt
1062 1.113 yamt static int
1063 1.113 yamt pool_grow(struct pool *pp, int flags)
1064 1.113 yamt {
1065 1.209 riastrad /*
1066 1.209 riastrad * If there's a pool_grow in progress, wait for it to complete
1067 1.209 riastrad * and try again from the top.
1068 1.209 riastrad */
1069 1.209 riastrad if (pp->pr_flags & PR_GROWING) {
1070 1.209 riastrad if (flags & PR_WAITOK) {
1071 1.209 riastrad do {
1072 1.209 riastrad cv_wait(&pp->pr_cv, &pp->pr_lock);
1073 1.209 riastrad } while (pp->pr_flags & PR_GROWING);
1074 1.209 riastrad return ERESTART;
1075 1.209 riastrad } else {
1076 1.219 mrg if (pp->pr_flags & PR_GROWINGNOWAIT) {
1077 1.219 mrg /*
1078 1.219 mrg * This needs an unlock/relock dance so
1079 1.219 mrg * that the other caller has a chance to
1080 1.219 mrg * run and actually do the thing. Note
1081 1.219 mrg * that this is effectively a busy-wait.
1082 1.219 mrg */
1083 1.219 mrg mutex_exit(&pp->pr_lock);
1084 1.219 mrg mutex_enter(&pp->pr_lock);
1085 1.219 mrg return ERESTART;
1086 1.219 mrg }
1087 1.209 riastrad return EWOULDBLOCK;
1088 1.209 riastrad }
1089 1.209 riastrad }
1090 1.209 riastrad pp->pr_flags |= PR_GROWING;
1091 1.220 christos if (flags & PR_WAITOK)
1092 1.220 christos mutex_exit(&pp->pr_lock);
1093 1.220 christos else
1094 1.219 mrg pp->pr_flags |= PR_GROWINGNOWAIT;
1095 1.113 yamt
1096 1.216 christos char *cp = pool_allocator_alloc(pp, flags);
1097 1.216 christos if (__predict_false(cp == NULL))
1098 1.216 christos goto out;
1099 1.216 christos
1100 1.216 christos struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
1101 1.216 christos if (__predict_false(ph == NULL)) {
1102 1.216 christos pool_allocator_free(pp, cp);
1103 1.209 riastrad goto out;
1104 1.113 yamt }
1105 1.113 yamt
1106 1.220 christos if (flags & PR_WAITOK)
1107 1.220 christos mutex_enter(&pp->pr_lock);
1108 1.113 yamt pool_prime_page(pp, cp, ph);
1109 1.113 yamt pp->pr_npagealloc++;
1110 1.216 christos KASSERT(pp->pr_flags & PR_GROWING);
1111 1.219 mrg pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1112 1.209 riastrad /*
1113 1.209 riastrad * If anyone was waiting for pool_grow, notify them that we
1114 1.209 riastrad * may have just done it.
1115 1.209 riastrad */
1116 1.216 christos cv_broadcast(&pp->pr_cv);
1117 1.216 christos return 0;
1118 1.216 christos out:
1119 1.220 christos if (flags & PR_WAITOK)
1120 1.220 christos mutex_enter(&pp->pr_lock);
1121 1.209 riastrad KASSERT(pp->pr_flags & PR_GROWING);
1122 1.219 mrg pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1123 1.216 christos return ENOMEM;
1124 1.113 yamt }
1125 1.113 yamt
1126 1.113 yamt /*
1127 1.74 thorpej * Add N items to the pool.
1128 1.74 thorpej */
1129 1.74 thorpej int
1130 1.74 thorpej pool_prime(struct pool *pp, int n)
1131 1.74 thorpej {
1132 1.75 simonb int newpages;
1133 1.113 yamt int error = 0;
1134 1.74 thorpej
1135 1.134 ad mutex_enter(&pp->pr_lock);
1136 1.74 thorpej
1137 1.74 thorpej newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1138 1.74 thorpej
1139 1.216 christos while (newpages > 0) {
1140 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1141 1.113 yamt if (error) {
1142 1.214 christos if (error == ERESTART)
1143 1.214 christos continue;
1144 1.74 thorpej break;
1145 1.74 thorpej }
1146 1.74 thorpej pp->pr_minpages++;
1147 1.216 christos newpages--;
1148 1.74 thorpej }
1149 1.74 thorpej
1150 1.74 thorpej if (pp->pr_minpages >= pp->pr_maxpages)
1151 1.74 thorpej pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1152 1.74 thorpej
1153 1.134 ad mutex_exit(&pp->pr_lock);
1154 1.113 yamt return error;
1155 1.74 thorpej }
1156 1.55 thorpej
1157 1.55 thorpej /*
1158 1.3 pk * Add a page worth of items to the pool.
1159 1.21 thorpej *
1160 1.21 thorpej * Note, we must be called with the pool descriptor LOCKED.
1161 1.3 pk */
1162 1.55 thorpej static void
1163 1.128 christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1164 1.3 pk {
1165 1.3 pk struct pool_item *pi;
1166 1.128 christos void *cp = storage;
1167 1.125 ad const unsigned int align = pp->pr_align;
1168 1.125 ad const unsigned int ioff = pp->pr_itemoffset;
1169 1.55 thorpej int n;
1170 1.36 pk
1171 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1172 1.207 riastrad KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1173 1.207 riastrad (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1174 1.213 christos "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1175 1.3 pk
1176 1.3 pk /*
1177 1.3 pk * Insert page header.
1178 1.3 pk */
1179 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1180 1.102 chs LIST_INIT(&ph->ph_itemlist);
1181 1.3 pk ph->ph_page = storage;
1182 1.3 pk ph->ph_nmissing = 0;
1183 1.151 yamt ph->ph_time = time_uptime;
1184 1.88 chs if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1185 1.88 chs SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1186 1.3 pk
1187 1.6 thorpej pp->pr_nidle++;
1188 1.6 thorpej
1189 1.3 pk /*
1190 1.3 pk * Color this page.
1191 1.3 pk */
1192 1.141 yamt ph->ph_off = pp->pr_curcolor;
1193 1.141 yamt cp = (char *)cp + ph->ph_off;
1194 1.3 pk if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1195 1.3 pk pp->pr_curcolor = 0;
1196 1.3 pk
1197 1.3 pk /*
1198 1.3 pk * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1199 1.3 pk */
1200 1.3 pk if (ioff != 0)
1201 1.128 christos cp = (char *)cp + align - ioff;
1202 1.3 pk
1203 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1204 1.125 ad
1205 1.3 pk /*
1206 1.3 pk * Insert remaining chunks on the bucket list.
1207 1.3 pk */
1208 1.3 pk n = pp->pr_itemsperpage;
1209 1.20 thorpej pp->pr_nitems += n;
1210 1.3 pk
1211 1.97 yamt if (pp->pr_roflags & PR_NOTOUCH) {
1212 1.141 yamt pr_item_notouch_init(pp, ph);
1213 1.97 yamt } else {
1214 1.97 yamt while (n--) {
1215 1.97 yamt pi = (struct pool_item *)cp;
1216 1.78 thorpej
1217 1.97 yamt KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1218 1.3 pk
1219 1.97 yamt /* Insert on page list */
1220 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1221 1.3 pk #ifdef DIAGNOSTIC
1222 1.97 yamt pi->pi_magic = PI_MAGIC;
1223 1.3 pk #endif
1224 1.128 christos cp = (char *)cp + pp->pr_size;
1225 1.125 ad
1226 1.125 ad KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1227 1.97 yamt }
1228 1.3 pk }
1229 1.3 pk
1230 1.3 pk /*
1231 1.3 pk * If the pool was depleted, point at the new page.
1232 1.3 pk */
1233 1.3 pk if (pp->pr_curpage == NULL)
1234 1.3 pk pp->pr_curpage = ph;
1235 1.3 pk
1236 1.3 pk if (++pp->pr_npages > pp->pr_hiwat)
1237 1.3 pk pp->pr_hiwat = pp->pr_npages;
1238 1.3 pk }
1239 1.3 pk
1240 1.20 thorpej /*
1241 1.52 thorpej * Used by pool_get() when nitems drops below the low water mark. This
1242 1.88 chs * is used to catch up pr_nitems with the low water mark.
1243 1.20 thorpej *
1244 1.21 thorpej * Note 1, we never wait for memory here, we let the caller decide what to do.
1245 1.20 thorpej *
1246 1.73 thorpej * Note 2, we must be called with the pool already locked, and we return
1247 1.20 thorpej * with it locked.
1248 1.20 thorpej */
1249 1.20 thorpej static int
1250 1.42 thorpej pool_catchup(struct pool *pp)
1251 1.20 thorpej {
1252 1.20 thorpej int error = 0;
1253 1.20 thorpej
1254 1.54 thorpej while (POOL_NEEDS_CATCHUP(pp)) {
1255 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1256 1.113 yamt if (error) {
1257 1.214 christos if (error == ERESTART)
1258 1.214 christos continue;
1259 1.20 thorpej break;
1260 1.20 thorpej }
1261 1.20 thorpej }
1262 1.113 yamt return error;
1263 1.20 thorpej }
1264 1.20 thorpej
1265 1.88 chs static void
1266 1.88 chs pool_update_curpage(struct pool *pp)
1267 1.88 chs {
1268 1.88 chs
1269 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1270 1.88 chs if (pp->pr_curpage == NULL) {
1271 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1272 1.88 chs }
1273 1.168 yamt KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1274 1.168 yamt (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1275 1.88 chs }
1276 1.88 chs
1277 1.3 pk void
1278 1.42 thorpej pool_setlowat(struct pool *pp, int n)
1279 1.3 pk {
1280 1.15 pk
1281 1.134 ad mutex_enter(&pp->pr_lock);
1282 1.21 thorpej
1283 1.3 pk pp->pr_minitems = n;
1284 1.15 pk pp->pr_minpages = (n == 0)
1285 1.15 pk ? 0
1286 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1287 1.20 thorpej
1288 1.20 thorpej /* Make sure we're caught up with the newly-set low water mark. */
1289 1.75 simonb if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1290 1.20 thorpej /*
1291 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1292 1.20 thorpej * to try again in a second or so? The latter could break
1293 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1294 1.20 thorpej */
1295 1.20 thorpej }
1296 1.21 thorpej
1297 1.134 ad mutex_exit(&pp->pr_lock);
1298 1.3 pk }
1299 1.3 pk
1300 1.3 pk void
1301 1.42 thorpej pool_sethiwat(struct pool *pp, int n)
1302 1.3 pk {
1303 1.15 pk
1304 1.134 ad mutex_enter(&pp->pr_lock);
1305 1.21 thorpej
1306 1.15 pk pp->pr_maxpages = (n == 0)
1307 1.15 pk ? 0
1308 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1309 1.21 thorpej
1310 1.134 ad mutex_exit(&pp->pr_lock);
1311 1.3 pk }
1312 1.3 pk
1313 1.20 thorpej void
1314 1.42 thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1315 1.20 thorpej {
1316 1.20 thorpej
1317 1.134 ad mutex_enter(&pp->pr_lock);
1318 1.20 thorpej
1319 1.20 thorpej pp->pr_hardlimit = n;
1320 1.20 thorpej pp->pr_hardlimit_warning = warnmess;
1321 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1322 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
1323 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
1324 1.20 thorpej
1325 1.20 thorpej /*
1326 1.21 thorpej * In-line version of pool_sethiwat(), because we don't want to
1327 1.21 thorpej * release the lock.
1328 1.20 thorpej */
1329 1.20 thorpej pp->pr_maxpages = (n == 0)
1330 1.20 thorpej ? 0
1331 1.20 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1332 1.21 thorpej
1333 1.134 ad mutex_exit(&pp->pr_lock);
1334 1.20 thorpej }
1335 1.3 pk
1336 1.3 pk /*
1337 1.3 pk * Release all complete pages that have not been used recently.
1338 1.184 rmind *
1339 1.197 jym * Must not be called from interrupt context.
1340 1.3 pk */
1341 1.66 thorpej int
1342 1.56 sommerfe pool_reclaim(struct pool *pp)
1343 1.3 pk {
1344 1.3 pk struct pool_item_header *ph, *phnext;
1345 1.61 chs struct pool_pagelist pq;
1346 1.151 yamt uint32_t curtime;
1347 1.134 ad bool klock;
1348 1.134 ad int rv;
1349 1.3 pk
1350 1.197 jym KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1351 1.184 rmind
1352 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1353 1.68 thorpej /*
1354 1.68 thorpej * The drain hook must be called with the pool unlocked.
1355 1.68 thorpej */
1356 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1357 1.68 thorpej }
1358 1.68 thorpej
1359 1.134 ad /*
1360 1.157 ad * XXXSMP Because we do not want to cause non-MPSAFE code
1361 1.157 ad * to block.
1362 1.134 ad */
1363 1.134 ad if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1364 1.134 ad pp->pr_ipl == IPL_SOFTSERIAL) {
1365 1.134 ad KERNEL_LOCK(1, NULL);
1366 1.134 ad klock = true;
1367 1.134 ad } else
1368 1.134 ad klock = false;
1369 1.134 ad
1370 1.134 ad /* Reclaim items from the pool's cache (if any). */
1371 1.134 ad if (pp->pr_cache != NULL)
1372 1.134 ad pool_cache_invalidate(pp->pr_cache);
1373 1.134 ad
1374 1.134 ad if (mutex_tryenter(&pp->pr_lock) == 0) {
1375 1.134 ad if (klock) {
1376 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1377 1.134 ad }
1378 1.66 thorpej return (0);
1379 1.134 ad }
1380 1.68 thorpej
1381 1.88 chs LIST_INIT(&pq);
1382 1.43 thorpej
1383 1.151 yamt curtime = time_uptime;
1384 1.21 thorpej
1385 1.88 chs for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1386 1.88 chs phnext = LIST_NEXT(ph, ph_pagelist);
1387 1.3 pk
1388 1.3 pk /* Check our minimum page claim */
1389 1.3 pk if (pp->pr_npages <= pp->pr_minpages)
1390 1.3 pk break;
1391 1.3 pk
1392 1.88 chs KASSERT(ph->ph_nmissing == 0);
1393 1.191 para if (curtime - ph->ph_time < pool_inactive_time)
1394 1.88 chs continue;
1395 1.21 thorpej
1396 1.88 chs /*
1397 1.88 chs * If freeing this page would put us below
1398 1.88 chs * the low water mark, stop now.
1399 1.88 chs */
1400 1.88 chs if ((pp->pr_nitems - pp->pr_itemsperpage) <
1401 1.88 chs pp->pr_minitems)
1402 1.88 chs break;
1403 1.21 thorpej
1404 1.88 chs pr_rmpage(pp, ph, &pq);
1405 1.3 pk }
1406 1.3 pk
1407 1.134 ad mutex_exit(&pp->pr_lock);
1408 1.134 ad
1409 1.134 ad if (LIST_EMPTY(&pq))
1410 1.134 ad rv = 0;
1411 1.134 ad else {
1412 1.134 ad pr_pagelist_free(pp, &pq);
1413 1.134 ad rv = 1;
1414 1.134 ad }
1415 1.134 ad
1416 1.134 ad if (klock) {
1417 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1418 1.134 ad }
1419 1.66 thorpej
1420 1.134 ad return (rv);
1421 1.3 pk }
1422 1.3 pk
1423 1.3 pk /*
1424 1.197 jym * Drain pools, one at a time. The drained pool is returned within ppp.
1425 1.131 ad *
1426 1.134 ad * Note, must never be called from interrupt context.
1427 1.3 pk */
1428 1.197 jym bool
1429 1.197 jym pool_drain(struct pool **ppp)
1430 1.3 pk {
1431 1.197 jym bool reclaimed;
1432 1.3 pk struct pool *pp;
1433 1.134 ad
1434 1.145 ad KASSERT(!TAILQ_EMPTY(&pool_head));
1435 1.3 pk
1436 1.61 chs pp = NULL;
1437 1.134 ad
1438 1.134 ad /* Find next pool to drain, and add a reference. */
1439 1.134 ad mutex_enter(&pool_head_lock);
1440 1.134 ad do {
1441 1.134 ad if (drainpp == NULL) {
1442 1.145 ad drainpp = TAILQ_FIRST(&pool_head);
1443 1.134 ad }
1444 1.134 ad if (drainpp != NULL) {
1445 1.134 ad pp = drainpp;
1446 1.145 ad drainpp = TAILQ_NEXT(pp, pr_poollist);
1447 1.134 ad }
1448 1.134 ad /*
1449 1.134 ad * Skip completely idle pools. We depend on at least
1450 1.134 ad * one pool in the system being active.
1451 1.134 ad */
1452 1.134 ad } while (pp == NULL || pp->pr_npages == 0);
1453 1.134 ad pp->pr_refcnt++;
1454 1.134 ad mutex_exit(&pool_head_lock);
1455 1.134 ad
1456 1.134 ad /* Drain the cache (if any) and pool.. */
1457 1.186 pooka reclaimed = pool_reclaim(pp);
1458 1.134 ad
1459 1.134 ad /* Finally, unlock the pool. */
1460 1.134 ad mutex_enter(&pool_head_lock);
1461 1.134 ad pp->pr_refcnt--;
1462 1.134 ad cv_broadcast(&pool_busy);
1463 1.134 ad mutex_exit(&pool_head_lock);
1464 1.186 pooka
1465 1.197 jym if (ppp != NULL)
1466 1.197 jym *ppp = pp;
1467 1.197 jym
1468 1.186 pooka return reclaimed;
1469 1.3 pk }
1470 1.3 pk
1471 1.3 pk /*
1472 1.217 mrg * Calculate the total number of pages consumed by pools.
1473 1.217 mrg */
1474 1.217 mrg int
1475 1.217 mrg pool_totalpages(void)
1476 1.217 mrg {
1477 1.217 mrg struct pool *pp;
1478 1.218 mrg uint64_t total = 0;
1479 1.217 mrg
1480 1.217 mrg mutex_enter(&pool_head_lock);
1481 1.218 mrg TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1482 1.218 mrg uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1483 1.218 mrg
1484 1.218 mrg if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1485 1.218 mrg bytes -= (pp->pr_nout * pp->pr_size);
1486 1.218 mrg total += bytes;
1487 1.218 mrg }
1488 1.217 mrg mutex_exit(&pool_head_lock);
1489 1.217 mrg
1490 1.218 mrg return atop(total);
1491 1.217 mrg }
1492 1.217 mrg
1493 1.217 mrg /*
1494 1.3 pk * Diagnostic helpers.
1495 1.3 pk */
1496 1.21 thorpej
1497 1.25 thorpej void
1498 1.108 yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
1499 1.108 yamt {
1500 1.108 yamt struct pool *pp;
1501 1.108 yamt
1502 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1503 1.108 yamt pool_printit(pp, modif, pr);
1504 1.108 yamt }
1505 1.108 yamt }
1506 1.108 yamt
1507 1.108 yamt void
1508 1.42 thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1509 1.25 thorpej {
1510 1.25 thorpej
1511 1.25 thorpej if (pp == NULL) {
1512 1.25 thorpej (*pr)("Must specify a pool to print.\n");
1513 1.25 thorpej return;
1514 1.25 thorpej }
1515 1.25 thorpej
1516 1.25 thorpej pool_print1(pp, modif, pr);
1517 1.25 thorpej }
1518 1.25 thorpej
1519 1.21 thorpej static void
1520 1.124 yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1521 1.97 yamt void (*pr)(const char *, ...))
1522 1.88 chs {
1523 1.88 chs struct pool_item_header *ph;
1524 1.207 riastrad struct pool_item *pi __diagused;
1525 1.88 chs
1526 1.88 chs LIST_FOREACH(ph, pl, ph_pagelist) {
1527 1.151 yamt (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1528 1.151 yamt ph->ph_page, ph->ph_nmissing, ph->ph_time);
1529 1.88 chs #ifdef DIAGNOSTIC
1530 1.97 yamt if (!(pp->pr_roflags & PR_NOTOUCH)) {
1531 1.102 chs LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1532 1.97 yamt if (pi->pi_magic != PI_MAGIC) {
1533 1.97 yamt (*pr)("\t\t\titem %p, magic 0x%x\n",
1534 1.97 yamt pi, pi->pi_magic);
1535 1.97 yamt }
1536 1.88 chs }
1537 1.88 chs }
1538 1.88 chs #endif
1539 1.88 chs }
1540 1.88 chs }
1541 1.88 chs
1542 1.88 chs static void
1543 1.42 thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1544 1.3 pk {
1545 1.25 thorpej struct pool_item_header *ph;
1546 1.134 ad pool_cache_t pc;
1547 1.134 ad pcg_t *pcg;
1548 1.134 ad pool_cache_cpu_t *cc;
1549 1.134 ad uint64_t cpuhit, cpumiss;
1550 1.44 thorpej int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1551 1.25 thorpej char c;
1552 1.25 thorpej
1553 1.25 thorpej while ((c = *modif++) != '\0') {
1554 1.25 thorpej if (c == 'l')
1555 1.25 thorpej print_log = 1;
1556 1.25 thorpej if (c == 'p')
1557 1.25 thorpej print_pagelist = 1;
1558 1.44 thorpej if (c == 'c')
1559 1.44 thorpej print_cache = 1;
1560 1.25 thorpej }
1561 1.25 thorpej
1562 1.134 ad if ((pc = pp->pr_cache) != NULL) {
1563 1.134 ad (*pr)("POOL CACHE");
1564 1.134 ad } else {
1565 1.134 ad (*pr)("POOL");
1566 1.134 ad }
1567 1.134 ad
1568 1.134 ad (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1569 1.25 thorpej pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1570 1.25 thorpej pp->pr_roflags);
1571 1.66 thorpej (*pr)("\talloc %p\n", pp->pr_alloc);
1572 1.25 thorpej (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1573 1.25 thorpej pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1574 1.25 thorpej (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1575 1.25 thorpej pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1576 1.25 thorpej
1577 1.134 ad (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1578 1.25 thorpej pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1579 1.25 thorpej (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1580 1.25 thorpej pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1581 1.25 thorpej
1582 1.25 thorpej if (print_pagelist == 0)
1583 1.25 thorpej goto skip_pagelist;
1584 1.25 thorpej
1585 1.88 chs if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1586 1.88 chs (*pr)("\n\tempty page list:\n");
1587 1.97 yamt pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1588 1.88 chs if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1589 1.88 chs (*pr)("\n\tfull page list:\n");
1590 1.97 yamt pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1591 1.88 chs if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1592 1.88 chs (*pr)("\n\tpartial-page list:\n");
1593 1.97 yamt pool_print_pagelist(pp, &pp->pr_partpages, pr);
1594 1.88 chs
1595 1.25 thorpej if (pp->pr_curpage == NULL)
1596 1.25 thorpej (*pr)("\tno current page\n");
1597 1.25 thorpej else
1598 1.25 thorpej (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1599 1.25 thorpej
1600 1.25 thorpej skip_pagelist:
1601 1.25 thorpej if (print_log == 0)
1602 1.25 thorpej goto skip_log;
1603 1.25 thorpej
1604 1.25 thorpej (*pr)("\n");
1605 1.3 pk
1606 1.25 thorpej skip_log:
1607 1.44 thorpej
1608 1.102 chs #define PR_GROUPLIST(pcg) \
1609 1.102 chs (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1610 1.142 ad for (i = 0; i < pcg->pcg_size; i++) { \
1611 1.102 chs if (pcg->pcg_objects[i].pcgo_pa != \
1612 1.102 chs POOL_PADDR_INVALID) { \
1613 1.102 chs (*pr)("\t\t\t%p, 0x%llx\n", \
1614 1.102 chs pcg->pcg_objects[i].pcgo_va, \
1615 1.102 chs (unsigned long long) \
1616 1.102 chs pcg->pcg_objects[i].pcgo_pa); \
1617 1.102 chs } else { \
1618 1.102 chs (*pr)("\t\t\t%p\n", \
1619 1.102 chs pcg->pcg_objects[i].pcgo_va); \
1620 1.102 chs } \
1621 1.102 chs }
1622 1.102 chs
1623 1.134 ad if (pc != NULL) {
1624 1.134 ad cpuhit = 0;
1625 1.134 ad cpumiss = 0;
1626 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1627 1.134 ad if ((cc = pc->pc_cpus[i]) == NULL)
1628 1.134 ad continue;
1629 1.134 ad cpuhit += cc->cc_hits;
1630 1.134 ad cpumiss += cc->cc_misses;
1631 1.134 ad }
1632 1.134 ad (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1633 1.134 ad (*pr)("\tcache layer hits %llu misses %llu\n",
1634 1.134 ad pc->pc_hits, pc->pc_misses);
1635 1.134 ad (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1636 1.134 ad pc->pc_hits + pc->pc_misses - pc->pc_contended,
1637 1.134 ad pc->pc_contended);
1638 1.134 ad (*pr)("\tcache layer empty groups %u full groups %u\n",
1639 1.134 ad pc->pc_nempty, pc->pc_nfull);
1640 1.134 ad if (print_cache) {
1641 1.134 ad (*pr)("\tfull cache groups:\n");
1642 1.134 ad for (pcg = pc->pc_fullgroups; pcg != NULL;
1643 1.134 ad pcg = pcg->pcg_next) {
1644 1.134 ad PR_GROUPLIST(pcg);
1645 1.134 ad }
1646 1.134 ad (*pr)("\tempty cache groups:\n");
1647 1.134 ad for (pcg = pc->pc_emptygroups; pcg != NULL;
1648 1.134 ad pcg = pcg->pcg_next) {
1649 1.134 ad PR_GROUPLIST(pcg);
1650 1.134 ad }
1651 1.103 chs }
1652 1.44 thorpej }
1653 1.102 chs #undef PR_GROUPLIST
1654 1.88 chs }
1655 1.88 chs
1656 1.88 chs static int
1657 1.88 chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1658 1.88 chs {
1659 1.88 chs struct pool_item *pi;
1660 1.128 christos void *page;
1661 1.88 chs int n;
1662 1.88 chs
1663 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1664 1.128 christos page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1665 1.121 yamt if (page != ph->ph_page &&
1666 1.121 yamt (pp->pr_roflags & PR_PHINPAGE) != 0) {
1667 1.121 yamt if (label != NULL)
1668 1.121 yamt printf("%s: ", label);
1669 1.121 yamt printf("pool(%p:%s): page inconsistency: page %p;"
1670 1.121 yamt " at page head addr %p (p %p)\n", pp,
1671 1.121 yamt pp->pr_wchan, ph->ph_page,
1672 1.121 yamt ph, page);
1673 1.121 yamt return 1;
1674 1.121 yamt }
1675 1.88 chs }
1676 1.3 pk
1677 1.97 yamt if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1678 1.97 yamt return 0;
1679 1.97 yamt
1680 1.102 chs for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1681 1.88 chs pi != NULL;
1682 1.102 chs pi = LIST_NEXT(pi,pi_list), n++) {
1683 1.88 chs
1684 1.88 chs #ifdef DIAGNOSTIC
1685 1.88 chs if (pi->pi_magic != PI_MAGIC) {
1686 1.88 chs if (label != NULL)
1687 1.88 chs printf("%s: ", label);
1688 1.88 chs printf("pool(%s): free list modified: magic=%x;"
1689 1.121 yamt " page %p; item ordinal %d; addr %p\n",
1690 1.88 chs pp->pr_wchan, pi->pi_magic, ph->ph_page,
1691 1.121 yamt n, pi);
1692 1.88 chs panic("pool");
1693 1.88 chs }
1694 1.88 chs #endif
1695 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1696 1.121 yamt continue;
1697 1.121 yamt }
1698 1.128 christos page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1699 1.88 chs if (page == ph->ph_page)
1700 1.88 chs continue;
1701 1.88 chs
1702 1.88 chs if (label != NULL)
1703 1.88 chs printf("%s: ", label);
1704 1.88 chs printf("pool(%p:%s): page inconsistency: page %p;"
1705 1.88 chs " item ordinal %d; addr %p (p %p)\n", pp,
1706 1.88 chs pp->pr_wchan, ph->ph_page,
1707 1.88 chs n, pi, page);
1708 1.88 chs return 1;
1709 1.88 chs }
1710 1.88 chs return 0;
1711 1.3 pk }
1712 1.3 pk
1713 1.88 chs
1714 1.3 pk int
1715 1.42 thorpej pool_chk(struct pool *pp, const char *label)
1716 1.3 pk {
1717 1.3 pk struct pool_item_header *ph;
1718 1.3 pk int r = 0;
1719 1.3 pk
1720 1.134 ad mutex_enter(&pp->pr_lock);
1721 1.88 chs LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1722 1.88 chs r = pool_chk_page(pp, label, ph);
1723 1.88 chs if (r) {
1724 1.88 chs goto out;
1725 1.88 chs }
1726 1.88 chs }
1727 1.88 chs LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1728 1.88 chs r = pool_chk_page(pp, label, ph);
1729 1.88 chs if (r) {
1730 1.3 pk goto out;
1731 1.3 pk }
1732 1.88 chs }
1733 1.88 chs LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1734 1.88 chs r = pool_chk_page(pp, label, ph);
1735 1.88 chs if (r) {
1736 1.3 pk goto out;
1737 1.3 pk }
1738 1.3 pk }
1739 1.88 chs
1740 1.3 pk out:
1741 1.134 ad mutex_exit(&pp->pr_lock);
1742 1.3 pk return (r);
1743 1.43 thorpej }
1744 1.43 thorpej
1745 1.43 thorpej /*
1746 1.43 thorpej * pool_cache_init:
1747 1.43 thorpej *
1748 1.43 thorpej * Initialize a pool cache.
1749 1.134 ad */
1750 1.134 ad pool_cache_t
1751 1.134 ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1752 1.134 ad const char *wchan, struct pool_allocator *palloc, int ipl,
1753 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1754 1.134 ad {
1755 1.134 ad pool_cache_t pc;
1756 1.134 ad
1757 1.134 ad pc = pool_get(&cache_pool, PR_WAITOK);
1758 1.134 ad if (pc == NULL)
1759 1.134 ad return NULL;
1760 1.134 ad
1761 1.134 ad pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1762 1.134 ad palloc, ipl, ctor, dtor, arg);
1763 1.134 ad
1764 1.134 ad return pc;
1765 1.134 ad }
1766 1.134 ad
1767 1.134 ad /*
1768 1.134 ad * pool_cache_bootstrap:
1769 1.43 thorpej *
1770 1.134 ad * Kernel-private version of pool_cache_init(). The caller
1771 1.134 ad * provides initial storage.
1772 1.43 thorpej */
1773 1.43 thorpej void
1774 1.134 ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1775 1.134 ad u_int align_offset, u_int flags, const char *wchan,
1776 1.134 ad struct pool_allocator *palloc, int ipl,
1777 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1778 1.43 thorpej void *arg)
1779 1.43 thorpej {
1780 1.134 ad CPU_INFO_ITERATOR cii;
1781 1.145 ad pool_cache_t pc1;
1782 1.134 ad struct cpu_info *ci;
1783 1.134 ad struct pool *pp;
1784 1.134 ad
1785 1.134 ad pp = &pc->pc_pool;
1786 1.208 chs if (palloc == NULL && ipl == IPL_NONE) {
1787 1.208 chs if (size > PAGE_SIZE) {
1788 1.208 chs int bigidx = pool_bigidx(size);
1789 1.208 chs
1790 1.208 chs palloc = &pool_allocator_big[bigidx];
1791 1.208 chs } else
1792 1.208 chs palloc = &pool_allocator_nointr;
1793 1.208 chs }
1794 1.134 ad pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1795 1.157 ad mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1796 1.43 thorpej
1797 1.134 ad if (ctor == NULL) {
1798 1.134 ad ctor = (int (*)(void *, void *, int))nullop;
1799 1.134 ad }
1800 1.134 ad if (dtor == NULL) {
1801 1.134 ad dtor = (void (*)(void *, void *))nullop;
1802 1.134 ad }
1803 1.43 thorpej
1804 1.134 ad pc->pc_emptygroups = NULL;
1805 1.134 ad pc->pc_fullgroups = NULL;
1806 1.134 ad pc->pc_partgroups = NULL;
1807 1.43 thorpej pc->pc_ctor = ctor;
1808 1.43 thorpej pc->pc_dtor = dtor;
1809 1.43 thorpej pc->pc_arg = arg;
1810 1.134 ad pc->pc_hits = 0;
1811 1.48 thorpej pc->pc_misses = 0;
1812 1.134 ad pc->pc_nempty = 0;
1813 1.134 ad pc->pc_npart = 0;
1814 1.134 ad pc->pc_nfull = 0;
1815 1.134 ad pc->pc_contended = 0;
1816 1.134 ad pc->pc_refcnt = 0;
1817 1.136 yamt pc->pc_freecheck = NULL;
1818 1.134 ad
1819 1.142 ad if ((flags & PR_LARGECACHE) != 0) {
1820 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1821 1.163 ad pc->pc_pcgpool = &pcg_large_pool;
1822 1.142 ad } else {
1823 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1824 1.163 ad pc->pc_pcgpool = &pcg_normal_pool;
1825 1.142 ad }
1826 1.142 ad
1827 1.134 ad /* Allocate per-CPU caches. */
1828 1.134 ad memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1829 1.134 ad pc->pc_ncpu = 0;
1830 1.139 ad if (ncpu < 2) {
1831 1.137 ad /* XXX For sparc: boot CPU is not attached yet. */
1832 1.137 ad pool_cache_cpu_init1(curcpu(), pc);
1833 1.137 ad } else {
1834 1.137 ad for (CPU_INFO_FOREACH(cii, ci)) {
1835 1.137 ad pool_cache_cpu_init1(ci, pc);
1836 1.137 ad }
1837 1.134 ad }
1838 1.145 ad
1839 1.145 ad /* Add to list of all pools. */
1840 1.145 ad if (__predict_true(!cold))
1841 1.134 ad mutex_enter(&pool_head_lock);
1842 1.145 ad TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1843 1.145 ad if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1844 1.145 ad break;
1845 1.145 ad }
1846 1.145 ad if (pc1 == NULL)
1847 1.145 ad TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1848 1.145 ad else
1849 1.145 ad TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1850 1.145 ad if (__predict_true(!cold))
1851 1.134 ad mutex_exit(&pool_head_lock);
1852 1.145 ad
1853 1.145 ad membar_sync();
1854 1.145 ad pp->pr_cache = pc;
1855 1.43 thorpej }
1856 1.43 thorpej
1857 1.43 thorpej /*
1858 1.43 thorpej * pool_cache_destroy:
1859 1.43 thorpej *
1860 1.43 thorpej * Destroy a pool cache.
1861 1.43 thorpej */
1862 1.43 thorpej void
1863 1.134 ad pool_cache_destroy(pool_cache_t pc)
1864 1.43 thorpej {
1865 1.191 para
1866 1.191 para pool_cache_bootstrap_destroy(pc);
1867 1.191 para pool_put(&cache_pool, pc);
1868 1.191 para }
1869 1.191 para
1870 1.191 para /*
1871 1.191 para * pool_cache_bootstrap_destroy:
1872 1.191 para *
1873 1.191 para * Destroy a pool cache.
1874 1.191 para */
1875 1.191 para void
1876 1.191 para pool_cache_bootstrap_destroy(pool_cache_t pc)
1877 1.191 para {
1878 1.134 ad struct pool *pp = &pc->pc_pool;
1879 1.175 jym u_int i;
1880 1.134 ad
1881 1.134 ad /* Remove it from the global list. */
1882 1.134 ad mutex_enter(&pool_head_lock);
1883 1.134 ad while (pc->pc_refcnt != 0)
1884 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
1885 1.145 ad TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
1886 1.134 ad mutex_exit(&pool_head_lock);
1887 1.43 thorpej
1888 1.43 thorpej /* First, invalidate the entire cache. */
1889 1.43 thorpej pool_cache_invalidate(pc);
1890 1.43 thorpej
1891 1.134 ad /* Disassociate it from the pool. */
1892 1.134 ad mutex_enter(&pp->pr_lock);
1893 1.134 ad pp->pr_cache = NULL;
1894 1.134 ad mutex_exit(&pp->pr_lock);
1895 1.134 ad
1896 1.134 ad /* Destroy per-CPU data */
1897 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++)
1898 1.175 jym pool_cache_invalidate_cpu(pc, i);
1899 1.134 ad
1900 1.134 ad /* Finally, destroy it. */
1901 1.134 ad mutex_destroy(&pc->pc_lock);
1902 1.134 ad pool_destroy(pp);
1903 1.134 ad }
1904 1.134 ad
1905 1.134 ad /*
1906 1.134 ad * pool_cache_cpu_init1:
1907 1.134 ad *
1908 1.134 ad * Called for each pool_cache whenever a new CPU is attached.
1909 1.134 ad */
1910 1.134 ad static void
1911 1.134 ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
1912 1.134 ad {
1913 1.134 ad pool_cache_cpu_t *cc;
1914 1.137 ad int index;
1915 1.134 ad
1916 1.137 ad index = ci->ci_index;
1917 1.137 ad
1918 1.183 ad KASSERT(index < __arraycount(pc->pc_cpus));
1919 1.134 ad
1920 1.137 ad if ((cc = pc->pc_cpus[index]) != NULL) {
1921 1.137 ad KASSERT(cc->cc_cpuindex == index);
1922 1.134 ad return;
1923 1.134 ad }
1924 1.134 ad
1925 1.134 ad /*
1926 1.134 ad * The first CPU is 'free'. This needs to be the case for
1927 1.134 ad * bootstrap - we may not be able to allocate yet.
1928 1.134 ad */
1929 1.134 ad if (pc->pc_ncpu == 0) {
1930 1.134 ad cc = &pc->pc_cpu0;
1931 1.134 ad pc->pc_ncpu = 1;
1932 1.134 ad } else {
1933 1.134 ad mutex_enter(&pc->pc_lock);
1934 1.134 ad pc->pc_ncpu++;
1935 1.134 ad mutex_exit(&pc->pc_lock);
1936 1.134 ad cc = pool_get(&cache_cpu_pool, PR_WAITOK);
1937 1.134 ad }
1938 1.134 ad
1939 1.134 ad cc->cc_ipl = pc->pc_pool.pr_ipl;
1940 1.134 ad cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
1941 1.134 ad cc->cc_cache = pc;
1942 1.137 ad cc->cc_cpuindex = index;
1943 1.134 ad cc->cc_hits = 0;
1944 1.134 ad cc->cc_misses = 0;
1945 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
1946 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
1947 1.134 ad
1948 1.137 ad pc->pc_cpus[index] = cc;
1949 1.43 thorpej }
1950 1.43 thorpej
1951 1.134 ad /*
1952 1.134 ad * pool_cache_cpu_init:
1953 1.134 ad *
1954 1.134 ad * Called whenever a new CPU is attached.
1955 1.134 ad */
1956 1.134 ad void
1957 1.134 ad pool_cache_cpu_init(struct cpu_info *ci)
1958 1.43 thorpej {
1959 1.134 ad pool_cache_t pc;
1960 1.134 ad
1961 1.134 ad mutex_enter(&pool_head_lock);
1962 1.145 ad TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
1963 1.134 ad pc->pc_refcnt++;
1964 1.134 ad mutex_exit(&pool_head_lock);
1965 1.43 thorpej
1966 1.134 ad pool_cache_cpu_init1(ci, pc);
1967 1.43 thorpej
1968 1.134 ad mutex_enter(&pool_head_lock);
1969 1.134 ad pc->pc_refcnt--;
1970 1.134 ad cv_broadcast(&pool_busy);
1971 1.134 ad }
1972 1.134 ad mutex_exit(&pool_head_lock);
1973 1.43 thorpej }
1974 1.43 thorpej
1975 1.134 ad /*
1976 1.134 ad * pool_cache_reclaim:
1977 1.134 ad *
1978 1.134 ad * Reclaim memory from a pool cache.
1979 1.134 ad */
1980 1.134 ad bool
1981 1.134 ad pool_cache_reclaim(pool_cache_t pc)
1982 1.43 thorpej {
1983 1.43 thorpej
1984 1.134 ad return pool_reclaim(&pc->pc_pool);
1985 1.134 ad }
1986 1.43 thorpej
1987 1.136 yamt static void
1988 1.136 yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
1989 1.136 yamt {
1990 1.136 yamt
1991 1.136 yamt (*pc->pc_dtor)(pc->pc_arg, object);
1992 1.136 yamt pool_put(&pc->pc_pool, object);
1993 1.136 yamt }
1994 1.136 yamt
1995 1.134 ad /*
1996 1.134 ad * pool_cache_destruct_object:
1997 1.134 ad *
1998 1.134 ad * Force destruction of an object and its release back into
1999 1.134 ad * the pool.
2000 1.134 ad */
2001 1.134 ad void
2002 1.134 ad pool_cache_destruct_object(pool_cache_t pc, void *object)
2003 1.134 ad {
2004 1.134 ad
2005 1.136 yamt FREECHECK_IN(&pc->pc_freecheck, object);
2006 1.136 yamt
2007 1.136 yamt pool_cache_destruct_object1(pc, object);
2008 1.43 thorpej }
2009 1.43 thorpej
2010 1.134 ad /*
2011 1.134 ad * pool_cache_invalidate_groups:
2012 1.134 ad *
2013 1.134 ad * Invalidate a chain of groups and destruct all objects.
2014 1.134 ad */
2015 1.102 chs static void
2016 1.134 ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2017 1.102 chs {
2018 1.134 ad void *object;
2019 1.134 ad pcg_t *next;
2020 1.134 ad int i;
2021 1.134 ad
2022 1.134 ad for (; pcg != NULL; pcg = next) {
2023 1.134 ad next = pcg->pcg_next;
2024 1.134 ad
2025 1.134 ad for (i = 0; i < pcg->pcg_avail; i++) {
2026 1.134 ad object = pcg->pcg_objects[i].pcgo_va;
2027 1.136 yamt pool_cache_destruct_object1(pc, object);
2028 1.134 ad }
2029 1.102 chs
2030 1.142 ad if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2031 1.142 ad pool_put(&pcg_large_pool, pcg);
2032 1.142 ad } else {
2033 1.142 ad KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2034 1.142 ad pool_put(&pcg_normal_pool, pcg);
2035 1.142 ad }
2036 1.102 chs }
2037 1.102 chs }
2038 1.102 chs
2039 1.43 thorpej /*
2040 1.134 ad * pool_cache_invalidate:
2041 1.43 thorpej *
2042 1.134 ad * Invalidate a pool cache (destruct and release all of the
2043 1.134 ad * cached objects). Does not reclaim objects from the pool.
2044 1.176 thorpej *
2045 1.176 thorpej * Note: For pool caches that provide constructed objects, there
2046 1.176 thorpej * is an assumption that another level of synchronization is occurring
2047 1.176 thorpej * between the input to the constructor and the cache invalidation.
2048 1.196 jym *
2049 1.196 jym * Invalidation is a costly process and should not be called from
2050 1.196 jym * interrupt context.
2051 1.43 thorpej */
2052 1.134 ad void
2053 1.134 ad pool_cache_invalidate(pool_cache_t pc)
2054 1.134 ad {
2055 1.196 jym uint64_t where;
2056 1.134 ad pcg_t *full, *empty, *part;
2057 1.196 jym
2058 1.196 jym KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2059 1.176 thorpej
2060 1.177 jym if (ncpu < 2 || !mp_online) {
2061 1.176 thorpej /*
2062 1.176 thorpej * We might be called early enough in the boot process
2063 1.176 thorpej * for the CPU data structures to not be fully initialized.
2064 1.196 jym * In this case, transfer the content of the local CPU's
2065 1.196 jym * cache back into global cache as only this CPU is currently
2066 1.196 jym * running.
2067 1.176 thorpej */
2068 1.196 jym pool_cache_transfer(pc);
2069 1.176 thorpej } else {
2070 1.176 thorpej /*
2071 1.196 jym * Signal all CPUs that they must transfer their local
2072 1.196 jym * cache back to the global pool then wait for the xcall to
2073 1.196 jym * complete.
2074 1.176 thorpej */
2075 1.196 jym where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2076 1.196 jym pc, NULL);
2077 1.176 thorpej xc_wait(where);
2078 1.176 thorpej }
2079 1.196 jym
2080 1.196 jym /* Empty pool caches, then invalidate objects */
2081 1.134 ad mutex_enter(&pc->pc_lock);
2082 1.134 ad full = pc->pc_fullgroups;
2083 1.134 ad empty = pc->pc_emptygroups;
2084 1.134 ad part = pc->pc_partgroups;
2085 1.134 ad pc->pc_fullgroups = NULL;
2086 1.134 ad pc->pc_emptygroups = NULL;
2087 1.134 ad pc->pc_partgroups = NULL;
2088 1.134 ad pc->pc_nfull = 0;
2089 1.134 ad pc->pc_nempty = 0;
2090 1.134 ad pc->pc_npart = 0;
2091 1.134 ad mutex_exit(&pc->pc_lock);
2092 1.134 ad
2093 1.134 ad pool_cache_invalidate_groups(pc, full);
2094 1.134 ad pool_cache_invalidate_groups(pc, empty);
2095 1.134 ad pool_cache_invalidate_groups(pc, part);
2096 1.134 ad }
2097 1.134 ad
2098 1.175 jym /*
2099 1.175 jym * pool_cache_invalidate_cpu:
2100 1.175 jym *
2101 1.175 jym * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2102 1.175 jym * identified by its associated index.
2103 1.175 jym * It is caller's responsibility to ensure that no operation is
2104 1.175 jym * taking place on this pool cache while doing this invalidation.
2105 1.175 jym * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2106 1.175 jym * pool cached objects from a CPU different from the one currently running
2107 1.175 jym * may result in an undefined behaviour.
2108 1.175 jym */
2109 1.175 jym static void
2110 1.175 jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2111 1.175 jym {
2112 1.175 jym pool_cache_cpu_t *cc;
2113 1.175 jym pcg_t *pcg;
2114 1.175 jym
2115 1.175 jym if ((cc = pc->pc_cpus[index]) == NULL)
2116 1.175 jym return;
2117 1.175 jym
2118 1.175 jym if ((pcg = cc->cc_current) != &pcg_dummy) {
2119 1.175 jym pcg->pcg_next = NULL;
2120 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2121 1.175 jym }
2122 1.175 jym if ((pcg = cc->cc_previous) != &pcg_dummy) {
2123 1.175 jym pcg->pcg_next = NULL;
2124 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2125 1.175 jym }
2126 1.175 jym if (cc != &pc->pc_cpu0)
2127 1.175 jym pool_put(&cache_cpu_pool, cc);
2128 1.175 jym
2129 1.175 jym }
2130 1.175 jym
2131 1.134 ad void
2132 1.134 ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2133 1.134 ad {
2134 1.134 ad
2135 1.134 ad pool_set_drain_hook(&pc->pc_pool, fn, arg);
2136 1.134 ad }
2137 1.134 ad
2138 1.134 ad void
2139 1.134 ad pool_cache_setlowat(pool_cache_t pc, int n)
2140 1.134 ad {
2141 1.134 ad
2142 1.134 ad pool_setlowat(&pc->pc_pool, n);
2143 1.134 ad }
2144 1.134 ad
2145 1.134 ad void
2146 1.134 ad pool_cache_sethiwat(pool_cache_t pc, int n)
2147 1.134 ad {
2148 1.134 ad
2149 1.134 ad pool_sethiwat(&pc->pc_pool, n);
2150 1.134 ad }
2151 1.134 ad
2152 1.134 ad void
2153 1.134 ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2154 1.134 ad {
2155 1.134 ad
2156 1.134 ad pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2157 1.134 ad }
2158 1.134 ad
2159 1.162 ad static bool __noinline
2160 1.162 ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2161 1.134 ad paddr_t *pap, int flags)
2162 1.43 thorpej {
2163 1.134 ad pcg_t *pcg, *cur;
2164 1.134 ad uint64_t ncsw;
2165 1.134 ad pool_cache_t pc;
2166 1.43 thorpej void *object;
2167 1.58 thorpej
2168 1.168 yamt KASSERT(cc->cc_current->pcg_avail == 0);
2169 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == 0);
2170 1.168 yamt
2171 1.134 ad pc = cc->cc_cache;
2172 1.134 ad cc->cc_misses++;
2173 1.43 thorpej
2174 1.134 ad /*
2175 1.134 ad * Nothing was available locally. Try and grab a group
2176 1.134 ad * from the cache.
2177 1.134 ad */
2178 1.162 ad if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2179 1.134 ad ncsw = curlwp->l_ncsw;
2180 1.134 ad mutex_enter(&pc->pc_lock);
2181 1.134 ad pc->pc_contended++;
2182 1.43 thorpej
2183 1.134 ad /*
2184 1.134 ad * If we context switched while locking, then
2185 1.134 ad * our view of the per-CPU data is invalid:
2186 1.134 ad * retry.
2187 1.134 ad */
2188 1.134 ad if (curlwp->l_ncsw != ncsw) {
2189 1.134 ad mutex_exit(&pc->pc_lock);
2190 1.162 ad return true;
2191 1.43 thorpej }
2192 1.102 chs }
2193 1.43 thorpej
2194 1.162 ad if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2195 1.43 thorpej /*
2196 1.134 ad * If there's a full group, release our empty
2197 1.134 ad * group back to the cache. Install the full
2198 1.134 ad * group as cc_current and return.
2199 1.43 thorpej */
2200 1.162 ad if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2201 1.134 ad KASSERT(cur->pcg_avail == 0);
2202 1.134 ad cur->pcg_next = pc->pc_emptygroups;
2203 1.134 ad pc->pc_emptygroups = cur;
2204 1.134 ad pc->pc_nempty++;
2205 1.87 thorpej }
2206 1.142 ad KASSERT(pcg->pcg_avail == pcg->pcg_size);
2207 1.134 ad cc->cc_current = pcg;
2208 1.134 ad pc->pc_fullgroups = pcg->pcg_next;
2209 1.134 ad pc->pc_hits++;
2210 1.134 ad pc->pc_nfull--;
2211 1.134 ad mutex_exit(&pc->pc_lock);
2212 1.162 ad return true;
2213 1.134 ad }
2214 1.134 ad
2215 1.134 ad /*
2216 1.134 ad * Nothing available locally or in cache. Take the slow
2217 1.134 ad * path: fetch a new object from the pool and construct
2218 1.134 ad * it.
2219 1.134 ad */
2220 1.134 ad pc->pc_misses++;
2221 1.134 ad mutex_exit(&pc->pc_lock);
2222 1.162 ad splx(s);
2223 1.134 ad
2224 1.134 ad object = pool_get(&pc->pc_pool, flags);
2225 1.134 ad *objectp = object;
2226 1.211 riastrad if (__predict_false(object == NULL)) {
2227 1.211 riastrad KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2228 1.162 ad return false;
2229 1.211 riastrad }
2230 1.125 ad
2231 1.162 ad if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2232 1.134 ad pool_put(&pc->pc_pool, object);
2233 1.134 ad *objectp = NULL;
2234 1.162 ad return false;
2235 1.43 thorpej }
2236 1.43 thorpej
2237 1.134 ad KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2238 1.134 ad (pc->pc_pool.pr_align - 1)) == 0);
2239 1.43 thorpej
2240 1.134 ad if (pap != NULL) {
2241 1.134 ad #ifdef POOL_VTOPHYS
2242 1.134 ad *pap = POOL_VTOPHYS(object);
2243 1.134 ad #else
2244 1.134 ad *pap = POOL_PADDR_INVALID;
2245 1.134 ad #endif
2246 1.102 chs }
2247 1.43 thorpej
2248 1.125 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2249 1.204 maxv pool_redzone_fill(&pc->pc_pool, object);
2250 1.162 ad return false;
2251 1.43 thorpej }
2252 1.43 thorpej
2253 1.43 thorpej /*
2254 1.134 ad * pool_cache_get{,_paddr}:
2255 1.43 thorpej *
2256 1.134 ad * Get an object from a pool cache (optionally returning
2257 1.134 ad * the physical address of the object).
2258 1.43 thorpej */
2259 1.134 ad void *
2260 1.134 ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2261 1.43 thorpej {
2262 1.134 ad pool_cache_cpu_t *cc;
2263 1.134 ad pcg_t *pcg;
2264 1.134 ad void *object;
2265 1.60 thorpej int s;
2266 1.43 thorpej
2267 1.215 christos KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2268 1.184 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2269 1.185 rmind (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2270 1.213 christos "%s: [%s] is IPL_NONE, but called from interrupt context",
2271 1.213 christos __func__, pc->pc_pool.pr_wchan);
2272 1.184 rmind
2273 1.155 ad if (flags & PR_WAITOK) {
2274 1.154 yamt ASSERT_SLEEPABLE();
2275 1.155 ad }
2276 1.125 ad
2277 1.162 ad /* Lock out interrupts and disable preemption. */
2278 1.162 ad s = splvm();
2279 1.165 yamt while (/* CONSTCOND */ true) {
2280 1.134 ad /* Try and allocate an object from the current group. */
2281 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2282 1.162 ad KASSERT(cc->cc_cache == pc);
2283 1.134 ad pcg = cc->cc_current;
2284 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2285 1.134 ad object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2286 1.162 ad if (__predict_false(pap != NULL))
2287 1.134 ad *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2288 1.148 yamt #if defined(DIAGNOSTIC)
2289 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2290 1.163 ad KASSERT(pcg->pcg_avail < pcg->pcg_size);
2291 1.134 ad KASSERT(object != NULL);
2292 1.163 ad #endif
2293 1.134 ad cc->cc_hits++;
2294 1.162 ad splx(s);
2295 1.134 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2296 1.204 maxv pool_redzone_fill(&pc->pc_pool, object);
2297 1.134 ad return object;
2298 1.43 thorpej }
2299 1.43 thorpej
2300 1.43 thorpej /*
2301 1.134 ad * That failed. If the previous group isn't empty, swap
2302 1.134 ad * it with the current group and allocate from there.
2303 1.43 thorpej */
2304 1.134 ad pcg = cc->cc_previous;
2305 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2306 1.134 ad cc->cc_previous = cc->cc_current;
2307 1.134 ad cc->cc_current = pcg;
2308 1.134 ad continue;
2309 1.43 thorpej }
2310 1.43 thorpej
2311 1.134 ad /*
2312 1.134 ad * Can't allocate from either group: try the slow path.
2313 1.134 ad * If get_slow() allocated an object for us, or if
2314 1.162 ad * no more objects are available, it will return false.
2315 1.134 ad * Otherwise, we need to retry.
2316 1.134 ad */
2317 1.165 yamt if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2318 1.165 yamt break;
2319 1.165 yamt }
2320 1.43 thorpej
2321 1.211 riastrad /*
2322 1.211 riastrad * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2323 1.211 riastrad * pool_cache_get can fail even in the PR_WAITOK case, if the
2324 1.211 riastrad * constructor fails.
2325 1.211 riastrad */
2326 1.134 ad return object;
2327 1.51 thorpej }
2328 1.51 thorpej
2329 1.162 ad static bool __noinline
2330 1.162 ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2331 1.51 thorpej {
2332 1.200 pooka struct lwp *l = curlwp;
2333 1.163 ad pcg_t *pcg, *cur;
2334 1.134 ad uint64_t ncsw;
2335 1.134 ad pool_cache_t pc;
2336 1.51 thorpej
2337 1.168 yamt KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2338 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2339 1.168 yamt
2340 1.134 ad pc = cc->cc_cache;
2341 1.171 ad pcg = NULL;
2342 1.134 ad cc->cc_misses++;
2343 1.200 pooka ncsw = l->l_ncsw;
2344 1.43 thorpej
2345 1.171 ad /*
2346 1.171 ad * If there are no empty groups in the cache then allocate one
2347 1.171 ad * while still unlocked.
2348 1.171 ad */
2349 1.171 ad if (__predict_false(pc->pc_emptygroups == NULL)) {
2350 1.171 ad if (__predict_true(!pool_cache_disable)) {
2351 1.171 ad pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2352 1.171 ad }
2353 1.200 pooka /*
2354 1.200 pooka * If pool_get() blocked, then our view of
2355 1.200 pooka * the per-CPU data is invalid: retry.
2356 1.200 pooka */
2357 1.200 pooka if (__predict_false(l->l_ncsw != ncsw)) {
2358 1.200 pooka if (pcg != NULL) {
2359 1.200 pooka pool_put(pc->pc_pcgpool, pcg);
2360 1.200 pooka }
2361 1.200 pooka return true;
2362 1.200 pooka }
2363 1.171 ad if (__predict_true(pcg != NULL)) {
2364 1.171 ad pcg->pcg_avail = 0;
2365 1.171 ad pcg->pcg_size = pc->pc_pcgsize;
2366 1.171 ad }
2367 1.171 ad }
2368 1.171 ad
2369 1.162 ad /* Lock the cache. */
2370 1.162 ad if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2371 1.134 ad mutex_enter(&pc->pc_lock);
2372 1.134 ad pc->pc_contended++;
2373 1.162 ad
2374 1.163 ad /*
2375 1.163 ad * If we context switched while locking, then our view of
2376 1.163 ad * the per-CPU data is invalid: retry.
2377 1.163 ad */
2378 1.200 pooka if (__predict_false(l->l_ncsw != ncsw)) {
2379 1.163 ad mutex_exit(&pc->pc_lock);
2380 1.171 ad if (pcg != NULL) {
2381 1.171 ad pool_put(pc->pc_pcgpool, pcg);
2382 1.171 ad }
2383 1.163 ad return true;
2384 1.163 ad }
2385 1.162 ad }
2386 1.102 chs
2387 1.163 ad /* If there are no empty groups in the cache then allocate one. */
2388 1.171 ad if (pcg == NULL && pc->pc_emptygroups != NULL) {
2389 1.171 ad pcg = pc->pc_emptygroups;
2390 1.163 ad pc->pc_emptygroups = pcg->pcg_next;
2391 1.163 ad pc->pc_nempty--;
2392 1.134 ad }
2393 1.130 ad
2394 1.162 ad /*
2395 1.162 ad * If there's a empty group, release our full group back
2396 1.162 ad * to the cache. Install the empty group to the local CPU
2397 1.162 ad * and return.
2398 1.162 ad */
2399 1.163 ad if (pcg != NULL) {
2400 1.134 ad KASSERT(pcg->pcg_avail == 0);
2401 1.162 ad if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2402 1.146 ad cc->cc_previous = pcg;
2403 1.146 ad } else {
2404 1.162 ad cur = cc->cc_current;
2405 1.162 ad if (__predict_true(cur != &pcg_dummy)) {
2406 1.163 ad KASSERT(cur->pcg_avail == cur->pcg_size);
2407 1.146 ad cur->pcg_next = pc->pc_fullgroups;
2408 1.146 ad pc->pc_fullgroups = cur;
2409 1.146 ad pc->pc_nfull++;
2410 1.146 ad }
2411 1.146 ad cc->cc_current = pcg;
2412 1.146 ad }
2413 1.163 ad pc->pc_hits++;
2414 1.134 ad mutex_exit(&pc->pc_lock);
2415 1.162 ad return true;
2416 1.102 chs }
2417 1.105 christos
2418 1.134 ad /*
2419 1.162 ad * Nothing available locally or in cache, and we didn't
2420 1.162 ad * allocate an empty group. Take the slow path and destroy
2421 1.162 ad * the object here and now.
2422 1.134 ad */
2423 1.134 ad pc->pc_misses++;
2424 1.134 ad mutex_exit(&pc->pc_lock);
2425 1.162 ad splx(s);
2426 1.162 ad pool_cache_destruct_object(pc, object);
2427 1.105 christos
2428 1.162 ad return false;
2429 1.134 ad }
2430 1.102 chs
2431 1.43 thorpej /*
2432 1.134 ad * pool_cache_put{,_paddr}:
2433 1.43 thorpej *
2434 1.134 ad * Put an object back to the pool cache (optionally caching the
2435 1.134 ad * physical address of the object).
2436 1.43 thorpej */
2437 1.101 thorpej void
2438 1.134 ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2439 1.43 thorpej {
2440 1.134 ad pool_cache_cpu_t *cc;
2441 1.134 ad pcg_t *pcg;
2442 1.134 ad int s;
2443 1.101 thorpej
2444 1.172 yamt KASSERT(object != NULL);
2445 1.204 maxv pool_redzone_check(&pc->pc_pool, object);
2446 1.134 ad FREECHECK_IN(&pc->pc_freecheck, object);
2447 1.101 thorpej
2448 1.162 ad /* Lock out interrupts and disable preemption. */
2449 1.162 ad s = splvm();
2450 1.165 yamt while (/* CONSTCOND */ true) {
2451 1.134 ad /* If the current group isn't full, release it there. */
2452 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2453 1.162 ad KASSERT(cc->cc_cache == pc);
2454 1.134 ad pcg = cc->cc_current;
2455 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2456 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2457 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2458 1.134 ad pcg->pcg_avail++;
2459 1.134 ad cc->cc_hits++;
2460 1.162 ad splx(s);
2461 1.134 ad return;
2462 1.134 ad }
2463 1.43 thorpej
2464 1.134 ad /*
2465 1.162 ad * That failed. If the previous group isn't full, swap
2466 1.134 ad * it with the current group and try again.
2467 1.134 ad */
2468 1.134 ad pcg = cc->cc_previous;
2469 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2470 1.134 ad cc->cc_previous = cc->cc_current;
2471 1.134 ad cc->cc_current = pcg;
2472 1.134 ad continue;
2473 1.134 ad }
2474 1.43 thorpej
2475 1.134 ad /*
2476 1.134 ad * Can't free to either group: try the slow path.
2477 1.134 ad * If put_slow() releases the object for us, it
2478 1.162 ad * will return false. Otherwise we need to retry.
2479 1.134 ad */
2480 1.165 yamt if (!pool_cache_put_slow(cc, s, object))
2481 1.165 yamt break;
2482 1.165 yamt }
2483 1.43 thorpej }
2484 1.43 thorpej
2485 1.43 thorpej /*
2486 1.196 jym * pool_cache_transfer:
2487 1.43 thorpej *
2488 1.134 ad * Transfer objects from the per-CPU cache to the global cache.
2489 1.134 ad * Run within a cross-call thread.
2490 1.43 thorpej */
2491 1.43 thorpej static void
2492 1.196 jym pool_cache_transfer(pool_cache_t pc)
2493 1.43 thorpej {
2494 1.134 ad pool_cache_cpu_t *cc;
2495 1.134 ad pcg_t *prev, *cur, **list;
2496 1.162 ad int s;
2497 1.134 ad
2498 1.162 ad s = splvm();
2499 1.162 ad mutex_enter(&pc->pc_lock);
2500 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2501 1.134 ad cur = cc->cc_current;
2502 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
2503 1.134 ad prev = cc->cc_previous;
2504 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
2505 1.162 ad if (cur != &pcg_dummy) {
2506 1.142 ad if (cur->pcg_avail == cur->pcg_size) {
2507 1.134 ad list = &pc->pc_fullgroups;
2508 1.134 ad pc->pc_nfull++;
2509 1.134 ad } else if (cur->pcg_avail == 0) {
2510 1.134 ad list = &pc->pc_emptygroups;
2511 1.134 ad pc->pc_nempty++;
2512 1.134 ad } else {
2513 1.134 ad list = &pc->pc_partgroups;
2514 1.134 ad pc->pc_npart++;
2515 1.134 ad }
2516 1.134 ad cur->pcg_next = *list;
2517 1.134 ad *list = cur;
2518 1.134 ad }
2519 1.162 ad if (prev != &pcg_dummy) {
2520 1.142 ad if (prev->pcg_avail == prev->pcg_size) {
2521 1.134 ad list = &pc->pc_fullgroups;
2522 1.134 ad pc->pc_nfull++;
2523 1.134 ad } else if (prev->pcg_avail == 0) {
2524 1.134 ad list = &pc->pc_emptygroups;
2525 1.134 ad pc->pc_nempty++;
2526 1.134 ad } else {
2527 1.134 ad list = &pc->pc_partgroups;
2528 1.134 ad pc->pc_npart++;
2529 1.134 ad }
2530 1.134 ad prev->pcg_next = *list;
2531 1.134 ad *list = prev;
2532 1.134 ad }
2533 1.134 ad mutex_exit(&pc->pc_lock);
2534 1.134 ad splx(s);
2535 1.3 pk }
2536 1.66 thorpej
2537 1.66 thorpej /*
2538 1.66 thorpej * Pool backend allocators.
2539 1.66 thorpej *
2540 1.66 thorpej * Each pool has a backend allocator that handles allocation, deallocation,
2541 1.66 thorpej * and any additional draining that might be needed.
2542 1.66 thorpej *
2543 1.66 thorpej * We provide two standard allocators:
2544 1.66 thorpej *
2545 1.66 thorpej * pool_allocator_kmem - the default when no allocator is specified
2546 1.66 thorpej *
2547 1.66 thorpej * pool_allocator_nointr - used for pools that will not be accessed
2548 1.66 thorpej * in interrupt context.
2549 1.66 thorpej */
2550 1.66 thorpej void *pool_page_alloc(struct pool *, int);
2551 1.66 thorpej void pool_page_free(struct pool *, void *);
2552 1.66 thorpej
2553 1.112 bjh21 #ifdef POOL_SUBPAGE
2554 1.112 bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
2555 1.192 rmind .pa_alloc = pool_page_alloc,
2556 1.192 rmind .pa_free = pool_page_free,
2557 1.192 rmind .pa_pagesz = 0
2558 1.112 bjh21 };
2559 1.112 bjh21 #else
2560 1.66 thorpej struct pool_allocator pool_allocator_kmem = {
2561 1.191 para .pa_alloc = pool_page_alloc,
2562 1.191 para .pa_free = pool_page_free,
2563 1.191 para .pa_pagesz = 0
2564 1.66 thorpej };
2565 1.112 bjh21 #endif
2566 1.66 thorpej
2567 1.112 bjh21 #ifdef POOL_SUBPAGE
2568 1.112 bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
2569 1.194 para .pa_alloc = pool_page_alloc,
2570 1.194 para .pa_free = pool_page_free,
2571 1.192 rmind .pa_pagesz = 0
2572 1.112 bjh21 };
2573 1.112 bjh21 #else
2574 1.66 thorpej struct pool_allocator pool_allocator_nointr = {
2575 1.191 para .pa_alloc = pool_page_alloc,
2576 1.191 para .pa_free = pool_page_free,
2577 1.191 para .pa_pagesz = 0
2578 1.66 thorpej };
2579 1.112 bjh21 #endif
2580 1.66 thorpej
2581 1.66 thorpej #ifdef POOL_SUBPAGE
2582 1.66 thorpej void *pool_subpage_alloc(struct pool *, int);
2583 1.66 thorpej void pool_subpage_free(struct pool *, void *);
2584 1.66 thorpej
2585 1.112 bjh21 struct pool_allocator pool_allocator_kmem = {
2586 1.193 he .pa_alloc = pool_subpage_alloc,
2587 1.193 he .pa_free = pool_subpage_free,
2588 1.193 he .pa_pagesz = POOL_SUBPAGE
2589 1.112 bjh21 };
2590 1.112 bjh21
2591 1.112 bjh21 struct pool_allocator pool_allocator_nointr = {
2592 1.192 rmind .pa_alloc = pool_subpage_alloc,
2593 1.192 rmind .pa_free = pool_subpage_free,
2594 1.192 rmind .pa_pagesz = POOL_SUBPAGE
2595 1.66 thorpej };
2596 1.66 thorpej #endif /* POOL_SUBPAGE */
2597 1.66 thorpej
2598 1.208 chs struct pool_allocator pool_allocator_big[] = {
2599 1.208 chs {
2600 1.208 chs .pa_alloc = pool_page_alloc,
2601 1.208 chs .pa_free = pool_page_free,
2602 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2603 1.208 chs },
2604 1.208 chs {
2605 1.208 chs .pa_alloc = pool_page_alloc,
2606 1.208 chs .pa_free = pool_page_free,
2607 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2608 1.208 chs },
2609 1.208 chs {
2610 1.208 chs .pa_alloc = pool_page_alloc,
2611 1.208 chs .pa_free = pool_page_free,
2612 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2613 1.208 chs },
2614 1.208 chs {
2615 1.208 chs .pa_alloc = pool_page_alloc,
2616 1.208 chs .pa_free = pool_page_free,
2617 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2618 1.208 chs },
2619 1.208 chs {
2620 1.208 chs .pa_alloc = pool_page_alloc,
2621 1.208 chs .pa_free = pool_page_free,
2622 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2623 1.208 chs },
2624 1.208 chs {
2625 1.208 chs .pa_alloc = pool_page_alloc,
2626 1.208 chs .pa_free = pool_page_free,
2627 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2628 1.208 chs },
2629 1.208 chs {
2630 1.208 chs .pa_alloc = pool_page_alloc,
2631 1.208 chs .pa_free = pool_page_free,
2632 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2633 1.208 chs },
2634 1.208 chs {
2635 1.208 chs .pa_alloc = pool_page_alloc,
2636 1.208 chs .pa_free = pool_page_free,
2637 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2638 1.208 chs }
2639 1.208 chs };
2640 1.208 chs
2641 1.208 chs static int
2642 1.208 chs pool_bigidx(size_t size)
2643 1.208 chs {
2644 1.208 chs int i;
2645 1.208 chs
2646 1.208 chs for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2647 1.208 chs if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2648 1.208 chs return i;
2649 1.208 chs }
2650 1.208 chs panic("pool item size %zu too large, use a custom allocator", size);
2651 1.208 chs }
2652 1.208 chs
2653 1.117 yamt static void *
2654 1.117 yamt pool_allocator_alloc(struct pool *pp, int flags)
2655 1.66 thorpej {
2656 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
2657 1.66 thorpej void *res;
2658 1.66 thorpej
2659 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2660 1.117 yamt if (res == NULL && (flags & PR_WAITOK) == 0) {
2661 1.66 thorpej /*
2662 1.117 yamt * We only run the drain hook here if PR_NOWAIT.
2663 1.117 yamt * In other cases, the hook will be run in
2664 1.117 yamt * pool_reclaim().
2665 1.66 thorpej */
2666 1.117 yamt if (pp->pr_drain_hook != NULL) {
2667 1.117 yamt (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2668 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2669 1.66 thorpej }
2670 1.117 yamt }
2671 1.117 yamt return res;
2672 1.66 thorpej }
2673 1.66 thorpej
2674 1.117 yamt static void
2675 1.66 thorpej pool_allocator_free(struct pool *pp, void *v)
2676 1.66 thorpej {
2677 1.66 thorpej struct pool_allocator *pa = pp->pr_alloc;
2678 1.66 thorpej
2679 1.66 thorpej (*pa->pa_free)(pp, v);
2680 1.66 thorpej }
2681 1.66 thorpej
2682 1.66 thorpej void *
2683 1.124 yamt pool_page_alloc(struct pool *pp, int flags)
2684 1.66 thorpej {
2685 1.192 rmind const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2686 1.191 para vmem_addr_t va;
2687 1.192 rmind int ret;
2688 1.191 para
2689 1.192 rmind ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2690 1.192 rmind vflags | VM_INSTANTFIT, &va);
2691 1.66 thorpej
2692 1.192 rmind return ret ? NULL : (void *)va;
2693 1.66 thorpej }
2694 1.66 thorpej
2695 1.66 thorpej void
2696 1.124 yamt pool_page_free(struct pool *pp, void *v)
2697 1.66 thorpej {
2698 1.66 thorpej
2699 1.191 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2700 1.98 yamt }
2701 1.98 yamt
2702 1.98 yamt static void *
2703 1.124 yamt pool_page_alloc_meta(struct pool *pp, int flags)
2704 1.98 yamt {
2705 1.192 rmind const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2706 1.192 rmind vmem_addr_t va;
2707 1.192 rmind int ret;
2708 1.191 para
2709 1.192 rmind ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2710 1.192 rmind vflags | VM_INSTANTFIT, &va);
2711 1.98 yamt
2712 1.192 rmind return ret ? NULL : (void *)va;
2713 1.98 yamt }
2714 1.98 yamt
2715 1.98 yamt static void
2716 1.124 yamt pool_page_free_meta(struct pool *pp, void *v)
2717 1.98 yamt {
2718 1.98 yamt
2719 1.192 rmind vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2720 1.66 thorpej }
2721 1.66 thorpej
2722 1.204 maxv #ifdef POOL_REDZONE
2723 1.204 maxv #if defined(_LP64)
2724 1.204 maxv # define PRIME 0x9e37fffffffc0000UL
2725 1.204 maxv #else /* defined(_LP64) */
2726 1.204 maxv # define PRIME 0x9e3779b1
2727 1.204 maxv #endif /* defined(_LP64) */
2728 1.204 maxv #define STATIC_BYTE 0xFE
2729 1.204 maxv CTASSERT(POOL_REDZONE_SIZE > 1);
2730 1.204 maxv
2731 1.204 maxv static inline uint8_t
2732 1.204 maxv pool_pattern_generate(const void *p)
2733 1.204 maxv {
2734 1.204 maxv return (uint8_t)(((uintptr_t)p) * PRIME
2735 1.204 maxv >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2736 1.204 maxv }
2737 1.204 maxv
2738 1.204 maxv static void
2739 1.204 maxv pool_redzone_init(struct pool *pp, size_t requested_size)
2740 1.204 maxv {
2741 1.204 maxv size_t nsz;
2742 1.204 maxv
2743 1.204 maxv if (pp->pr_roflags & PR_NOTOUCH) {
2744 1.204 maxv pp->pr_reqsize = 0;
2745 1.204 maxv pp->pr_redzone = false;
2746 1.204 maxv return;
2747 1.204 maxv }
2748 1.204 maxv
2749 1.204 maxv /*
2750 1.204 maxv * We may have extended the requested size earlier; check if
2751 1.204 maxv * there's naturally space in the padding for a red zone.
2752 1.204 maxv */
2753 1.204 maxv if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
2754 1.204 maxv pp->pr_reqsize = requested_size;
2755 1.204 maxv pp->pr_redzone = true;
2756 1.204 maxv return;
2757 1.204 maxv }
2758 1.204 maxv
2759 1.204 maxv /*
2760 1.204 maxv * No space in the natural padding; check if we can extend a
2761 1.204 maxv * bit the size of the pool.
2762 1.204 maxv */
2763 1.204 maxv nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
2764 1.204 maxv if (nsz <= pp->pr_alloc->pa_pagesz) {
2765 1.204 maxv /* Ok, we can */
2766 1.204 maxv pp->pr_size = nsz;
2767 1.204 maxv pp->pr_reqsize = requested_size;
2768 1.204 maxv pp->pr_redzone = true;
2769 1.204 maxv } else {
2770 1.204 maxv /* No space for a red zone... snif :'( */
2771 1.204 maxv pp->pr_reqsize = 0;
2772 1.204 maxv pp->pr_redzone = false;
2773 1.204 maxv printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2774 1.204 maxv }
2775 1.204 maxv }
2776 1.204 maxv
2777 1.204 maxv static void
2778 1.204 maxv pool_redzone_fill(struct pool *pp, void *p)
2779 1.204 maxv {
2780 1.204 maxv uint8_t *cp, pat;
2781 1.204 maxv const uint8_t *ep;
2782 1.204 maxv
2783 1.204 maxv if (!pp->pr_redzone)
2784 1.204 maxv return;
2785 1.204 maxv
2786 1.204 maxv cp = (uint8_t *)p + pp->pr_reqsize;
2787 1.204 maxv ep = cp + POOL_REDZONE_SIZE;
2788 1.204 maxv
2789 1.204 maxv /*
2790 1.204 maxv * We really don't want the first byte of the red zone to be '\0';
2791 1.204 maxv * an off-by-one in a string may not be properly detected.
2792 1.204 maxv */
2793 1.204 maxv pat = pool_pattern_generate(cp);
2794 1.204 maxv *cp = (pat == '\0') ? STATIC_BYTE: pat;
2795 1.204 maxv cp++;
2796 1.204 maxv
2797 1.204 maxv while (cp < ep) {
2798 1.204 maxv *cp = pool_pattern_generate(cp);
2799 1.204 maxv cp++;
2800 1.204 maxv }
2801 1.204 maxv }
2802 1.204 maxv
2803 1.204 maxv static void
2804 1.204 maxv pool_redzone_check(struct pool *pp, void *p)
2805 1.204 maxv {
2806 1.204 maxv uint8_t *cp, pat, expected;
2807 1.204 maxv const uint8_t *ep;
2808 1.204 maxv
2809 1.204 maxv if (!pp->pr_redzone)
2810 1.204 maxv return;
2811 1.204 maxv
2812 1.204 maxv cp = (uint8_t *)p + pp->pr_reqsize;
2813 1.204 maxv ep = cp + POOL_REDZONE_SIZE;
2814 1.204 maxv
2815 1.204 maxv pat = pool_pattern_generate(cp);
2816 1.204 maxv expected = (pat == '\0') ? STATIC_BYTE: pat;
2817 1.204 maxv if (expected != *cp) {
2818 1.204 maxv panic("%s: %p: 0x%02x != 0x%02x\n",
2819 1.204 maxv __func__, cp, *cp, expected);
2820 1.204 maxv }
2821 1.204 maxv cp++;
2822 1.204 maxv
2823 1.204 maxv while (cp < ep) {
2824 1.204 maxv expected = pool_pattern_generate(cp);
2825 1.204 maxv if (*cp != expected) {
2826 1.204 maxv panic("%s: %p: 0x%02x != 0x%02x\n",
2827 1.204 maxv __func__, cp, *cp, expected);
2828 1.204 maxv }
2829 1.204 maxv cp++;
2830 1.204 maxv }
2831 1.204 maxv }
2832 1.204 maxv
2833 1.204 maxv #endif /* POOL_REDZONE */
2834 1.204 maxv
2835 1.204 maxv
2836 1.66 thorpej #ifdef POOL_SUBPAGE
2837 1.66 thorpej /* Sub-page allocator, for machines with large hardware pages. */
2838 1.66 thorpej void *
2839 1.66 thorpej pool_subpage_alloc(struct pool *pp, int flags)
2840 1.66 thorpej {
2841 1.134 ad return pool_get(&psppool, flags);
2842 1.66 thorpej }
2843 1.66 thorpej
2844 1.66 thorpej void
2845 1.66 thorpej pool_subpage_free(struct pool *pp, void *v)
2846 1.66 thorpej {
2847 1.66 thorpej pool_put(&psppool, v);
2848 1.66 thorpej }
2849 1.66 thorpej
2850 1.112 bjh21 #endif /* POOL_SUBPAGE */
2851 1.141 yamt
2852 1.141 yamt #if defined(DDB)
2853 1.141 yamt static bool
2854 1.141 yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2855 1.141 yamt {
2856 1.141 yamt
2857 1.141 yamt return (uintptr_t)ph->ph_page <= addr &&
2858 1.141 yamt addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2859 1.141 yamt }
2860 1.141 yamt
2861 1.143 yamt static bool
2862 1.143 yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2863 1.143 yamt {
2864 1.143 yamt
2865 1.143 yamt return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2866 1.143 yamt }
2867 1.143 yamt
2868 1.143 yamt static bool
2869 1.143 yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2870 1.143 yamt {
2871 1.143 yamt int i;
2872 1.143 yamt
2873 1.143 yamt if (pcg == NULL) {
2874 1.143 yamt return false;
2875 1.143 yamt }
2876 1.144 yamt for (i = 0; i < pcg->pcg_avail; i++) {
2877 1.143 yamt if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2878 1.143 yamt return true;
2879 1.143 yamt }
2880 1.143 yamt }
2881 1.143 yamt return false;
2882 1.143 yamt }
2883 1.143 yamt
2884 1.143 yamt static bool
2885 1.143 yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2886 1.143 yamt {
2887 1.143 yamt
2888 1.143 yamt if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2889 1.143 yamt unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2890 1.143 yamt pool_item_bitmap_t *bitmap =
2891 1.143 yamt ph->ph_bitmap + (idx / BITMAP_SIZE);
2892 1.143 yamt pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2893 1.143 yamt
2894 1.143 yamt return (*bitmap & mask) == 0;
2895 1.143 yamt } else {
2896 1.143 yamt struct pool_item *pi;
2897 1.143 yamt
2898 1.143 yamt LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2899 1.143 yamt if (pool_in_item(pp, pi, addr)) {
2900 1.143 yamt return false;
2901 1.143 yamt }
2902 1.143 yamt }
2903 1.143 yamt return true;
2904 1.143 yamt }
2905 1.143 yamt }
2906 1.143 yamt
2907 1.141 yamt void
2908 1.141 yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2909 1.141 yamt {
2910 1.141 yamt struct pool *pp;
2911 1.141 yamt
2912 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2913 1.141 yamt struct pool_item_header *ph;
2914 1.141 yamt uintptr_t item;
2915 1.143 yamt bool allocated = true;
2916 1.143 yamt bool incache = false;
2917 1.143 yamt bool incpucache = false;
2918 1.143 yamt char cpucachestr[32];
2919 1.141 yamt
2920 1.141 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2921 1.141 yamt LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2922 1.141 yamt if (pool_in_page(pp, ph, addr)) {
2923 1.141 yamt goto found;
2924 1.141 yamt }
2925 1.141 yamt }
2926 1.141 yamt LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2927 1.141 yamt if (pool_in_page(pp, ph, addr)) {
2928 1.143 yamt allocated =
2929 1.143 yamt pool_allocated(pp, ph, addr);
2930 1.143 yamt goto found;
2931 1.143 yamt }
2932 1.143 yamt }
2933 1.143 yamt LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2934 1.143 yamt if (pool_in_page(pp, ph, addr)) {
2935 1.143 yamt allocated = false;
2936 1.141 yamt goto found;
2937 1.141 yamt }
2938 1.141 yamt }
2939 1.141 yamt continue;
2940 1.141 yamt } else {
2941 1.141 yamt ph = pr_find_pagehead_noalign(pp, (void *)addr);
2942 1.141 yamt if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2943 1.141 yamt continue;
2944 1.141 yamt }
2945 1.143 yamt allocated = pool_allocated(pp, ph, addr);
2946 1.141 yamt }
2947 1.141 yamt found:
2948 1.143 yamt if (allocated && pp->pr_cache) {
2949 1.143 yamt pool_cache_t pc = pp->pr_cache;
2950 1.143 yamt struct pool_cache_group *pcg;
2951 1.143 yamt int i;
2952 1.143 yamt
2953 1.143 yamt for (pcg = pc->pc_fullgroups; pcg != NULL;
2954 1.143 yamt pcg = pcg->pcg_next) {
2955 1.143 yamt if (pool_in_cg(pp, pcg, addr)) {
2956 1.143 yamt incache = true;
2957 1.143 yamt goto print;
2958 1.143 yamt }
2959 1.143 yamt }
2960 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
2961 1.143 yamt pool_cache_cpu_t *cc;
2962 1.143 yamt
2963 1.143 yamt if ((cc = pc->pc_cpus[i]) == NULL) {
2964 1.143 yamt continue;
2965 1.143 yamt }
2966 1.143 yamt if (pool_in_cg(pp, cc->cc_current, addr) ||
2967 1.143 yamt pool_in_cg(pp, cc->cc_previous, addr)) {
2968 1.143 yamt struct cpu_info *ci =
2969 1.170 ad cpu_lookup(i);
2970 1.143 yamt
2971 1.143 yamt incpucache = true;
2972 1.143 yamt snprintf(cpucachestr,
2973 1.143 yamt sizeof(cpucachestr),
2974 1.143 yamt "cached by CPU %u",
2975 1.153 martin ci->ci_index);
2976 1.143 yamt goto print;
2977 1.143 yamt }
2978 1.143 yamt }
2979 1.143 yamt }
2980 1.143 yamt print:
2981 1.141 yamt item = (uintptr_t)ph->ph_page + ph->ph_off;
2982 1.141 yamt item = item + rounddown(addr - item, pp->pr_size);
2983 1.143 yamt (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
2984 1.141 yamt (void *)addr, item, (size_t)(addr - item),
2985 1.143 yamt pp->pr_wchan,
2986 1.143 yamt incpucache ? cpucachestr :
2987 1.143 yamt incache ? "cached" : allocated ? "allocated" : "free");
2988 1.141 yamt }
2989 1.141 yamt }
2990 1.141 yamt #endif /* defined(DDB) */
2991 1.203 joerg
2992 1.203 joerg static int
2993 1.203 joerg pool_sysctl(SYSCTLFN_ARGS)
2994 1.203 joerg {
2995 1.203 joerg struct pool_sysctl data;
2996 1.203 joerg struct pool *pp;
2997 1.203 joerg struct pool_cache *pc;
2998 1.203 joerg pool_cache_cpu_t *cc;
2999 1.203 joerg int error;
3000 1.203 joerg size_t i, written;
3001 1.203 joerg
3002 1.203 joerg if (oldp == NULL) {
3003 1.203 joerg *oldlenp = 0;
3004 1.203 joerg TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3005 1.203 joerg *oldlenp += sizeof(data);
3006 1.203 joerg return 0;
3007 1.203 joerg }
3008 1.203 joerg
3009 1.203 joerg memset(&data, 0, sizeof(data));
3010 1.203 joerg error = 0;
3011 1.203 joerg written = 0;
3012 1.203 joerg TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3013 1.203 joerg if (written + sizeof(data) > *oldlenp)
3014 1.203 joerg break;
3015 1.203 joerg strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3016 1.203 joerg data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3017 1.203 joerg data.pr_flags = pp->pr_roflags | pp->pr_flags;
3018 1.203 joerg #define COPY(field) data.field = pp->field
3019 1.203 joerg COPY(pr_size);
3020 1.203 joerg
3021 1.203 joerg COPY(pr_itemsperpage);
3022 1.203 joerg COPY(pr_nitems);
3023 1.203 joerg COPY(pr_nout);
3024 1.203 joerg COPY(pr_hardlimit);
3025 1.203 joerg COPY(pr_npages);
3026 1.203 joerg COPY(pr_minpages);
3027 1.203 joerg COPY(pr_maxpages);
3028 1.203 joerg
3029 1.203 joerg COPY(pr_nget);
3030 1.203 joerg COPY(pr_nfail);
3031 1.203 joerg COPY(pr_nput);
3032 1.203 joerg COPY(pr_npagealloc);
3033 1.203 joerg COPY(pr_npagefree);
3034 1.203 joerg COPY(pr_hiwat);
3035 1.203 joerg COPY(pr_nidle);
3036 1.203 joerg #undef COPY
3037 1.203 joerg
3038 1.203 joerg data.pr_cache_nmiss_pcpu = 0;
3039 1.203 joerg data.pr_cache_nhit_pcpu = 0;
3040 1.203 joerg if (pp->pr_cache) {
3041 1.203 joerg pc = pp->pr_cache;
3042 1.203 joerg data.pr_cache_meta_size = pc->pc_pcgsize;
3043 1.203 joerg data.pr_cache_nfull = pc->pc_nfull;
3044 1.203 joerg data.pr_cache_npartial = pc->pc_npart;
3045 1.203 joerg data.pr_cache_nempty = pc->pc_nempty;
3046 1.203 joerg data.pr_cache_ncontended = pc->pc_contended;
3047 1.203 joerg data.pr_cache_nmiss_global = pc->pc_misses;
3048 1.203 joerg data.pr_cache_nhit_global = pc->pc_hits;
3049 1.203 joerg for (i = 0; i < pc->pc_ncpu; ++i) {
3050 1.203 joerg cc = pc->pc_cpus[i];
3051 1.203 joerg if (cc == NULL)
3052 1.203 joerg continue;
3053 1.206 knakahar data.pr_cache_nmiss_pcpu += cc->cc_misses;
3054 1.206 knakahar data.pr_cache_nhit_pcpu += cc->cc_hits;
3055 1.203 joerg }
3056 1.203 joerg } else {
3057 1.203 joerg data.pr_cache_meta_size = 0;
3058 1.203 joerg data.pr_cache_nfull = 0;
3059 1.203 joerg data.pr_cache_npartial = 0;
3060 1.203 joerg data.pr_cache_nempty = 0;
3061 1.203 joerg data.pr_cache_ncontended = 0;
3062 1.203 joerg data.pr_cache_nmiss_global = 0;
3063 1.203 joerg data.pr_cache_nhit_global = 0;
3064 1.203 joerg }
3065 1.203 joerg
3066 1.203 joerg error = sysctl_copyout(l, &data, oldp, sizeof(data));
3067 1.203 joerg if (error)
3068 1.203 joerg break;
3069 1.203 joerg written += sizeof(data);
3070 1.203 joerg oldp = (char *)oldp + sizeof(data);
3071 1.203 joerg }
3072 1.203 joerg
3073 1.203 joerg *oldlenp = written;
3074 1.203 joerg return error;
3075 1.203 joerg }
3076 1.203 joerg
3077 1.203 joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3078 1.203 joerg {
3079 1.203 joerg const struct sysctlnode *rnode = NULL;
3080 1.203 joerg
3081 1.203 joerg sysctl_createv(clog, 0, NULL, &rnode,
3082 1.203 joerg CTLFLAG_PERMANENT,
3083 1.203 joerg CTLTYPE_STRUCT, "pool",
3084 1.203 joerg SYSCTL_DESCR("Get pool statistics"),
3085 1.203 joerg pool_sysctl, 0, NULL, 0,
3086 1.203 joerg CTL_KERN, CTL_CREATE, CTL_EOL);
3087 1.203 joerg }
3088