Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.221.2.2
      1  1.221.2.2  pgoyette /*	$NetBSD: subr_pool.c,v 1.221.2.2 2018/09/06 06:56:42 pgoyette Exp $	*/
      2        1.1        pk 
      3        1.1        pk /*-
      4      1.204      maxv  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015
      5      1.183        ad  *     The NetBSD Foundation, Inc.
      6        1.1        pk  * All rights reserved.
      7        1.1        pk  *
      8        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10      1.204      maxv  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11      1.204      maxv  * Maxime Villard.
     12        1.1        pk  *
     13        1.1        pk  * Redistribution and use in source and binary forms, with or without
     14        1.1        pk  * modification, are permitted provided that the following conditions
     15        1.1        pk  * are met:
     16        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20        1.1        pk  *    documentation and/or other materials provided with the distribution.
     21        1.1        pk  *
     22        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33        1.1        pk  */
     34       1.64     lukem 
     35       1.64     lukem #include <sys/cdefs.h>
     36  1.221.2.2  pgoyette __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.221.2.2 2018/09/06 06:56:42 pgoyette Exp $");
     37       1.24    scottr 
     38      1.205     pooka #ifdef _KERNEL_OPT
     39      1.141      yamt #include "opt_ddb.h"
     40       1.28   thorpej #include "opt_lockdebug.h"
     41      1.205     pooka #endif
     42        1.1        pk 
     43        1.1        pk #include <sys/param.h>
     44        1.1        pk #include <sys/systm.h>
     45      1.203     joerg #include <sys/sysctl.h>
     46      1.135      yamt #include <sys/bitops.h>
     47        1.1        pk #include <sys/proc.h>
     48        1.1        pk #include <sys/errno.h>
     49        1.1        pk #include <sys/kernel.h>
     50      1.191      para #include <sys/vmem.h>
     51        1.1        pk #include <sys/pool.h>
     52       1.20   thorpej #include <sys/syslog.h>
     53      1.125        ad #include <sys/debug.h>
     54      1.134        ad #include <sys/lockdebug.h>
     55      1.134        ad #include <sys/xcall.h>
     56      1.134        ad #include <sys/cpu.h>
     57      1.145        ad #include <sys/atomic.h>
     58  1.221.2.2  pgoyette #include <sys/asan.h>
     59        1.3        pk 
     60      1.187  uebayasi #include <uvm/uvm_extern.h>
     61        1.3        pk 
     62        1.1        pk /*
     63        1.1        pk  * Pool resource management utility.
     64        1.3        pk  *
     65       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     66       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     67       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     68       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     69       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     70       1.88       chs  * header. The memory for building the page list is either taken from
     71       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     72       1.88       chs  * an internal pool of page headers (`phpool').
     73        1.1        pk  */
     74        1.1        pk 
     75      1.221      para /* List of all pools. Non static as needed by 'vmstat -m' */
     76      1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     77      1.134        ad 
     78        1.3        pk /* Private pool for page header structures */
     79       1.97      yamt #define	PHPOOL_MAX	8
     80       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     81      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     82      1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     83        1.3        pk 
     84       1.62     bjh21 #ifdef POOL_SUBPAGE
     85       1.62     bjh21 /* Pool of subpages for use by normal pools. */
     86       1.62     bjh21 static struct pool psppool;
     87       1.62     bjh21 #endif
     88       1.62     bjh21 
     89  1.221.2.2  pgoyette #if defined(KASAN)
     90  1.221.2.2  pgoyette #define POOL_REDZONE
     91  1.221.2.2  pgoyette #endif
     92  1.221.2.2  pgoyette 
     93      1.204      maxv #ifdef POOL_REDZONE
     94  1.221.2.2  pgoyette # ifdef KASAN
     95  1.221.2.2  pgoyette #  define POOL_REDZONE_SIZE 8
     96  1.221.2.2  pgoyette # else
     97  1.221.2.2  pgoyette #  define POOL_REDZONE_SIZE 2
     98  1.221.2.2  pgoyette # endif
     99      1.204      maxv static void pool_redzone_init(struct pool *, size_t);
    100      1.204      maxv static void pool_redzone_fill(struct pool *, void *);
    101      1.204      maxv static void pool_redzone_check(struct pool *, void *);
    102      1.204      maxv #else
    103      1.204      maxv # define pool_redzone_init(pp, sz)	/* NOTHING */
    104      1.204      maxv # define pool_redzone_fill(pp, ptr)	/* NOTHING */
    105      1.204      maxv # define pool_redzone_check(pp, ptr)	/* NOTHING */
    106      1.204      maxv #endif
    107      1.204      maxv 
    108       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    109       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    110       1.98      yamt 
    111       1.98      yamt /* allocator for pool metadata */
    112      1.134        ad struct pool_allocator pool_allocator_meta = {
    113      1.191      para 	.pa_alloc = pool_page_alloc_meta,
    114      1.191      para 	.pa_free = pool_page_free_meta,
    115      1.191      para 	.pa_pagesz = 0
    116       1.98      yamt };
    117       1.98      yamt 
    118      1.208       chs #define POOL_ALLOCATOR_BIG_BASE 13
    119      1.208       chs extern struct pool_allocator pool_allocator_big[];
    120      1.208       chs static int pool_bigidx(size_t);
    121      1.208       chs 
    122        1.3        pk /* # of seconds to retain page after last use */
    123        1.3        pk int pool_inactive_time = 10;
    124        1.3        pk 
    125        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    126       1.23   thorpej static struct pool	*drainpp;
    127       1.23   thorpej 
    128      1.134        ad /* This lock protects both pool_head and drainpp. */
    129      1.134        ad static kmutex_t pool_head_lock;
    130      1.134        ad static kcondvar_t pool_busy;
    131        1.3        pk 
    132      1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    133      1.178      elad static kmutex_t pool_allocator_lock;
    134      1.178      elad 
    135      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    136      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    137      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    138       1.99      yamt 
    139        1.3        pk struct pool_item_header {
    140        1.3        pk 	/* Page headers */
    141       1.88       chs 	LIST_ENTRY(pool_item_header)
    142        1.3        pk 				ph_pagelist;	/* pool page list */
    143       1.88       chs 	SPLAY_ENTRY(pool_item_header)
    144       1.88       chs 				ph_node;	/* Off-page page headers */
    145      1.128  christos 	void *			ph_page;	/* this page's address */
    146      1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    147      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    148      1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    149       1.97      yamt 	union {
    150       1.97      yamt 		/* !PR_NOTOUCH */
    151       1.97      yamt 		struct {
    152      1.102       chs 			LIST_HEAD(, pool_item)
    153       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    154       1.97      yamt 		} phu_normal;
    155       1.97      yamt 		/* PR_NOTOUCH */
    156       1.97      yamt 		struct {
    157      1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    158       1.97      yamt 		} phu_notouch;
    159       1.97      yamt 	} ph_u;
    160        1.3        pk };
    161       1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    162      1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    163        1.3        pk 
    164        1.1        pk struct pool_item {
    165        1.3        pk #ifdef DIAGNOSTIC
    166       1.82   thorpej 	u_int pi_magic;
    167       1.33       chs #endif
    168      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    169        1.3        pk 	/* Other entries use only this list entry */
    170      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    171        1.3        pk };
    172        1.3        pk 
    173       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    174       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    175       1.53   thorpej 
    176       1.43   thorpej /*
    177       1.43   thorpej  * Pool cache management.
    178       1.43   thorpej  *
    179       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    180       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    181       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    182       1.43   thorpej  * necessary.
    183       1.43   thorpej  *
    184      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    185      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    186      1.134        ad  * object from the pool, it calls the object's constructor and places it
    187      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    188      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    189      1.134        ad  * to persist in constructed form while freed to the cache.
    190      1.134        ad  *
    191      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    192      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    193      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    194      1.134        ad  * its entirety.
    195       1.43   thorpej  *
    196       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    197       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    198       1.43   thorpej  * from it.
    199       1.43   thorpej  */
    200       1.43   thorpej 
    201      1.142        ad static struct pool pcg_normal_pool;
    202      1.142        ad static struct pool pcg_large_pool;
    203      1.134        ad static struct pool cache_pool;
    204      1.134        ad static struct pool cache_cpu_pool;
    205        1.3        pk 
    206      1.189     pooka pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    207      1.189     pooka 
    208      1.145        ad /* List of all caches. */
    209      1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    210      1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    211      1.145        ad 
    212      1.162        ad int pool_cache_disable;		/* global disable for caching */
    213      1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    214      1.145        ad 
    215      1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    216      1.162        ad 				    void *);
    217      1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    218      1.162        ad 				    void **, paddr_t *, int);
    219      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    220      1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    221      1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    222      1.196       jym static void	pool_cache_transfer(pool_cache_t);
    223        1.3        pk 
    224       1.42   thorpej static int	pool_catchup(struct pool *);
    225      1.128  christos static void	pool_prime_page(struct pool *, void *,
    226       1.55   thorpej 		    struct pool_item_header *);
    227       1.88       chs static void	pool_update_curpage(struct pool *);
    228       1.66   thorpej 
    229      1.113      yamt static int	pool_grow(struct pool *, int);
    230      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    231      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    232        1.3        pk 
    233       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    234      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    235       1.42   thorpej static void pool_print1(struct pool *, const char *,
    236      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    237        1.3        pk 
    238       1.88       chs static int pool_chk_page(struct pool *, const char *,
    239       1.88       chs 			 struct pool_item_header *);
    240       1.88       chs 
    241      1.135      yamt static inline unsigned int
    242       1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    243       1.97      yamt     const void *v)
    244       1.97      yamt {
    245       1.97      yamt 	const char *cp = v;
    246      1.135      yamt 	unsigned int idx;
    247       1.97      yamt 
    248       1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    249      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    250       1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    251       1.97      yamt 	return idx;
    252       1.97      yamt }
    253       1.97      yamt 
    254      1.110     perry static inline void
    255       1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    256       1.97      yamt     void *obj)
    257       1.97      yamt {
    258      1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    259      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    260  1.221.2.1  pgoyette 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    261       1.97      yamt 
    262      1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    263      1.135      yamt 	*bitmap |= mask;
    264       1.97      yamt }
    265       1.97      yamt 
    266      1.110     perry static inline void *
    267       1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    268       1.97      yamt {
    269      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    270      1.135      yamt 	unsigned int idx;
    271      1.135      yamt 	int i;
    272       1.97      yamt 
    273      1.135      yamt 	for (i = 0; ; i++) {
    274      1.135      yamt 		int bit;
    275       1.97      yamt 
    276      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    277      1.135      yamt 		bit = ffs32(bitmap[i]);
    278      1.135      yamt 		if (bit) {
    279      1.135      yamt 			pool_item_bitmap_t mask;
    280      1.135      yamt 
    281      1.135      yamt 			bit--;
    282      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    283  1.221.2.1  pgoyette 			mask = 1U << bit;
    284      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    285      1.135      yamt 			bitmap[i] &= ~mask;
    286      1.135      yamt 			break;
    287      1.135      yamt 		}
    288      1.135      yamt 	}
    289      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    290      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    291       1.97      yamt }
    292       1.97      yamt 
    293      1.135      yamt static inline void
    294      1.141      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    295      1.135      yamt {
    296      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    297      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    298      1.135      yamt 	int i;
    299      1.135      yamt 
    300      1.135      yamt 	for (i = 0; i < n; i++) {
    301      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    302      1.135      yamt 	}
    303      1.135      yamt }
    304      1.135      yamt 
    305      1.110     perry static inline int
    306       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    307       1.88       chs {
    308      1.121      yamt 
    309      1.121      yamt 	/*
    310      1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    311      1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    312      1.121      yamt 	 */
    313      1.121      yamt 
    314       1.88       chs 	if (a->ph_page < b->ph_page)
    315      1.121      yamt 		return (1);
    316      1.121      yamt 	else if (a->ph_page > b->ph_page)
    317       1.88       chs 		return (-1);
    318       1.88       chs 	else
    319       1.88       chs 		return (0);
    320       1.88       chs }
    321       1.88       chs 
    322       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    323       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    324       1.88       chs 
    325      1.141      yamt static inline struct pool_item_header *
    326      1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    327      1.141      yamt {
    328      1.141      yamt 	struct pool_item_header *ph, tmp;
    329      1.141      yamt 
    330      1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    331      1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    332      1.141      yamt 	if (ph == NULL) {
    333      1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    334      1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    335      1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    336      1.141      yamt 		}
    337      1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    338      1.141      yamt 	}
    339      1.141      yamt 
    340      1.141      yamt 	return ph;
    341      1.141      yamt }
    342      1.141      yamt 
    343        1.3        pk /*
    344      1.121      yamt  * Return the pool page header based on item address.
    345        1.3        pk  */
    346      1.110     perry static inline struct pool_item_header *
    347      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    348        1.3        pk {
    349       1.88       chs 	struct pool_item_header *ph, tmp;
    350        1.3        pk 
    351      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    352      1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    353      1.121      yamt 	} else {
    354      1.128  christos 		void *page =
    355      1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    356      1.121      yamt 
    357      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    358      1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    359      1.121      yamt 		} else {
    360      1.121      yamt 			tmp.ph_page = page;
    361      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    362      1.121      yamt 		}
    363      1.121      yamt 	}
    364        1.3        pk 
    365      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    366      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    367      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    368       1.88       chs 	return ph;
    369        1.3        pk }
    370        1.3        pk 
    371      1.101   thorpej static void
    372      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    373      1.101   thorpej {
    374      1.101   thorpej 	struct pool_item_header *ph;
    375      1.101   thorpej 
    376      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    377      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    378      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    379      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    380      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    381      1.101   thorpej 	}
    382      1.101   thorpej }
    383      1.101   thorpej 
    384        1.3        pk /*
    385        1.3        pk  * Remove a page from the pool.
    386        1.3        pk  */
    387      1.110     perry static inline void
    388       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    389       1.61       chs      struct pool_pagelist *pq)
    390        1.3        pk {
    391        1.3        pk 
    392      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    393       1.91      yamt 
    394        1.3        pk 	/*
    395        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    396        1.3        pk 	 */
    397        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    398      1.207  riastrad 		KASSERT(pp->pr_nidle != 0);
    399      1.207  riastrad 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    400      1.207  riastrad 		    "nitems=%u < itemsperpage=%u",
    401      1.207  riastrad 		    pp->pr_nitems, pp->pr_itemsperpage);
    402        1.6   thorpej 		pp->pr_nidle--;
    403        1.6   thorpej 	}
    404        1.7   thorpej 
    405       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    406       1.20   thorpej 
    407        1.7   thorpej 	/*
    408      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    409        1.7   thorpej 	 */
    410       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    411       1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    412       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    413      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    414      1.101   thorpej 
    415        1.7   thorpej 	pp->pr_npages--;
    416        1.7   thorpej 	pp->pr_npagefree++;
    417        1.6   thorpej 
    418       1.88       chs 	pool_update_curpage(pp);
    419        1.3        pk }
    420        1.3        pk 
    421        1.3        pk /*
    422       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    423       1.94    simonb  */
    424       1.94    simonb void
    425      1.117      yamt pool_subsystem_init(void)
    426       1.94    simonb {
    427      1.192     rmind 	size_t size;
    428      1.191      para 	int idx;
    429       1.94    simonb 
    430      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    431      1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    432      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    433      1.134        ad 
    434      1.191      para 	/*
    435      1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    436      1.191      para 	 * haven't done so yet.
    437      1.191      para 	 */
    438      1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    439      1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    440      1.191      para 		int nelem;
    441      1.191      para 		size_t sz;
    442      1.191      para 
    443      1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    444      1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    445      1.191      para 		    "phpool-%d", nelem);
    446      1.191      para 		sz = sizeof(struct pool_item_header);
    447      1.191      para 		if (nelem) {
    448      1.191      para 			sz = offsetof(struct pool_item_header,
    449      1.191      para 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    450      1.191      para 		}
    451      1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    452      1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    453      1.117      yamt 	}
    454      1.191      para #ifdef POOL_SUBPAGE
    455      1.191      para 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    456      1.191      para 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    457      1.191      para #endif
    458      1.191      para 
    459      1.191      para 	size = sizeof(pcg_t) +
    460      1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    461      1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    462      1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    463      1.191      para 
    464      1.191      para 	size = sizeof(pcg_t) +
    465      1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    466      1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    467      1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    468      1.134        ad 
    469      1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    470      1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    471      1.134        ad 
    472      1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    473      1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    474       1.94    simonb }
    475       1.94    simonb 
    476       1.94    simonb /*
    477        1.3        pk  * Initialize the given pool resource structure.
    478        1.3        pk  *
    479        1.3        pk  * We export this routine to allow other kernel parts to declare
    480      1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    481        1.3        pk  */
    482        1.3        pk void
    483       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    484      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    485        1.3        pk {
    486      1.116    simonb 	struct pool *pp1;
    487      1.204      maxv 	size_t trysize, phsize, prsize;
    488      1.134        ad 	int off, slack;
    489        1.3        pk 
    490      1.116    simonb #ifdef DEBUG
    491      1.198  christos 	if (__predict_true(!cold))
    492      1.198  christos 		mutex_enter(&pool_head_lock);
    493      1.116    simonb 	/*
    494      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    495      1.116    simonb 	 * added to the list of all pools.
    496      1.116    simonb 	 */
    497      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    498      1.116    simonb 		if (pp == pp1)
    499      1.213  christos 			panic("%s: [%s] already initialised", __func__,
    500      1.116    simonb 			    wchan);
    501      1.116    simonb 	}
    502      1.198  christos 	if (__predict_true(!cold))
    503      1.198  christos 		mutex_exit(&pool_head_lock);
    504      1.116    simonb #endif
    505      1.116    simonb 
    506       1.66   thorpej 	if (palloc == NULL)
    507       1.66   thorpej 		palloc = &pool_allocator_kmem;
    508      1.112     bjh21 #ifdef POOL_SUBPAGE
    509      1.112     bjh21 	if (size > palloc->pa_pagesz) {
    510      1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    511      1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    512      1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    513      1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    514      1.112     bjh21 	}
    515       1.66   thorpej #endif /* POOL_SUBPAGE */
    516      1.180   mlelstv 	if (!cold)
    517      1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    518      1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    519      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    520       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    521       1.66   thorpej 
    522       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    523       1.66   thorpej 
    524      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    525       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    526       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    527        1.4   thorpej 	}
    528      1.180   mlelstv 	if (!cold)
    529      1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    530        1.3        pk 
    531        1.3        pk 	if (align == 0)
    532        1.3        pk 		align = ALIGN(1);
    533       1.14   thorpej 
    534      1.204      maxv 	prsize = size;
    535      1.204      maxv 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    536      1.204      maxv 		prsize = sizeof(struct pool_item);
    537        1.3        pk 
    538      1.204      maxv 	prsize = roundup(prsize, align);
    539      1.207  riastrad 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    540      1.213  christos 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    541      1.213  christos 	    __func__, wchan, prsize, palloc->pa_pagesz);
    542       1.35        pk 
    543        1.3        pk 	/*
    544        1.3        pk 	 * Initialize the pool structure.
    545        1.3        pk 	 */
    546       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    547       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    548       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    549      1.134        ad 	pp->pr_cache = NULL;
    550        1.3        pk 	pp->pr_curpage = NULL;
    551        1.3        pk 	pp->pr_npages = 0;
    552        1.3        pk 	pp->pr_minitems = 0;
    553        1.3        pk 	pp->pr_minpages = 0;
    554        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    555       1.20   thorpej 	pp->pr_roflags = flags;
    556       1.20   thorpej 	pp->pr_flags = 0;
    557      1.204      maxv 	pp->pr_size = prsize;
    558        1.3        pk 	pp->pr_align = align;
    559        1.3        pk 	pp->pr_wchan = wchan;
    560       1.66   thorpej 	pp->pr_alloc = palloc;
    561       1.20   thorpej 	pp->pr_nitems = 0;
    562       1.20   thorpej 	pp->pr_nout = 0;
    563       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    564       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    565       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    566       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    567       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    568       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    569       1.68   thorpej 	pp->pr_drain_hook = NULL;
    570       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    571      1.125        ad 	pp->pr_freecheck = NULL;
    572      1.204      maxv 	pool_redzone_init(pp, size);
    573        1.3        pk 
    574        1.3        pk 	/*
    575        1.3        pk 	 * Decide whether to put the page header off page to avoid
    576       1.92     enami 	 * wasting too large a part of the page or too big item.
    577       1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    578       1.92     enami 	 * a returned item with its header based on the page address.
    579       1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    580       1.92     enami 	 * size as the threshold (XXX: tune)
    581       1.92     enami 	 *
    582       1.92     enami 	 * However, we'll put the header into the page if we can put
    583       1.92     enami 	 * it without wasting any items.
    584       1.92     enami 	 *
    585       1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    586        1.3        pk 	 */
    587       1.92     enami 	pp->pr_itemoffset = ioff %= align;
    588       1.92     enami 	/* See the comment below about reserved bytes. */
    589       1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    590       1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    591      1.201      para 	if (pp->pr_roflags & PR_PHINPAGE ||
    592      1.201      para 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    593       1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    594      1.201      para 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    595        1.3        pk 		/* Use the end of the page for the page header */
    596       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    597       1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    598        1.2        pk 	} else {
    599        1.3        pk 		/* The page header will be taken from our page header pool */
    600        1.3        pk 		pp->pr_phoffset = 0;
    601       1.66   thorpej 		off = palloc->pa_pagesz;
    602       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    603        1.2        pk 	}
    604        1.1        pk 
    605        1.3        pk 	/*
    606        1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    607        1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    608        1.3        pk 	 * appropriate positioning of each item.
    609        1.3        pk 	 */
    610        1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    611       1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    612       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    613       1.97      yamt 		int idx;
    614       1.97      yamt 
    615       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    616       1.97      yamt 		    idx++) {
    617       1.97      yamt 			/* nothing */
    618       1.97      yamt 		}
    619       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    620       1.97      yamt 			/*
    621       1.97      yamt 			 * if you see this panic, consider to tweak
    622       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    623       1.97      yamt 			 */
    624      1.213  christos 			panic("%s: [%s] too large itemsperpage(%d) for "
    625      1.213  christos 			    "PR_NOTOUCH", __func__,
    626       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    627       1.97      yamt 		}
    628       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    629       1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    630       1.97      yamt 		pp->pr_phpool = &phpool[0];
    631       1.97      yamt 	}
    632       1.97      yamt #if defined(DIAGNOSTIC)
    633       1.97      yamt 	else {
    634       1.97      yamt 		pp->pr_phpool = NULL;
    635       1.97      yamt 	}
    636       1.97      yamt #endif
    637        1.3        pk 
    638        1.3        pk 	/*
    639        1.3        pk 	 * Use the slack between the chunks and the page header
    640        1.3        pk 	 * for "cache coloring".
    641        1.3        pk 	 */
    642        1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    643        1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    644        1.3        pk 	pp->pr_curcolor = 0;
    645        1.3        pk 
    646        1.3        pk 	pp->pr_nget = 0;
    647        1.3        pk 	pp->pr_nfail = 0;
    648        1.3        pk 	pp->pr_nput = 0;
    649        1.3        pk 	pp->pr_npagealloc = 0;
    650        1.3        pk 	pp->pr_npagefree = 0;
    651        1.1        pk 	pp->pr_hiwat = 0;
    652        1.8   thorpej 	pp->pr_nidle = 0;
    653      1.134        ad 	pp->pr_refcnt = 0;
    654        1.3        pk 
    655      1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    656      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    657      1.134        ad 	pp->pr_ipl = ipl;
    658        1.1        pk 
    659      1.145        ad 	/* Insert into the list of all pools. */
    660      1.181   mlelstv 	if (!cold)
    661      1.134        ad 		mutex_enter(&pool_head_lock);
    662      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    663      1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    664      1.145        ad 			break;
    665      1.145        ad 	}
    666      1.145        ad 	if (pp1 == NULL)
    667      1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    668      1.145        ad 	else
    669      1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    670      1.181   mlelstv 	if (!cold)
    671      1.134        ad 		mutex_exit(&pool_head_lock);
    672      1.134        ad 
    673      1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    674      1.181   mlelstv 	if (!cold)
    675      1.134        ad 		mutex_enter(&palloc->pa_lock);
    676      1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    677      1.181   mlelstv 	if (!cold)
    678      1.134        ad 		mutex_exit(&palloc->pa_lock);
    679        1.1        pk }
    680        1.1        pk 
    681        1.1        pk /*
    682        1.1        pk  * De-commision a pool resource.
    683        1.1        pk  */
    684        1.1        pk void
    685       1.42   thorpej pool_destroy(struct pool *pp)
    686        1.1        pk {
    687      1.101   thorpej 	struct pool_pagelist pq;
    688        1.3        pk 	struct pool_item_header *ph;
    689       1.43   thorpej 
    690      1.101   thorpej 	/* Remove from global pool list */
    691      1.134        ad 	mutex_enter(&pool_head_lock);
    692      1.134        ad 	while (pp->pr_refcnt != 0)
    693      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    694      1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    695      1.101   thorpej 	if (drainpp == pp)
    696      1.101   thorpej 		drainpp = NULL;
    697      1.134        ad 	mutex_exit(&pool_head_lock);
    698      1.101   thorpej 
    699      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    700      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    701       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    702      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    703       1.66   thorpej 
    704      1.178      elad 	mutex_enter(&pool_allocator_lock);
    705      1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    706      1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    707      1.178      elad 	mutex_exit(&pool_allocator_lock);
    708      1.178      elad 
    709      1.134        ad 	mutex_enter(&pp->pr_lock);
    710      1.101   thorpej 
    711      1.134        ad 	KASSERT(pp->pr_cache == NULL);
    712      1.207  riastrad 	KASSERTMSG((pp->pr_nout == 0),
    713      1.213  christos 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    714      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    715      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    716      1.101   thorpej 
    717        1.3        pk 	/* Remove all pages */
    718      1.101   thorpej 	LIST_INIT(&pq);
    719       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    720      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    721      1.101   thorpej 
    722      1.134        ad 	mutex_exit(&pp->pr_lock);
    723        1.3        pk 
    724      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    725      1.134        ad 	cv_destroy(&pp->pr_cv);
    726      1.134        ad 	mutex_destroy(&pp->pr_lock);
    727        1.1        pk }
    728        1.1        pk 
    729       1.68   thorpej void
    730       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    731       1.68   thorpej {
    732       1.68   thorpej 
    733       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    734      1.207  riastrad 	KASSERTMSG((pp->pr_drain_hook == NULL),
    735      1.213  christos 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    736       1.68   thorpej 	pp->pr_drain_hook = fn;
    737       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    738       1.68   thorpej }
    739       1.68   thorpej 
    740       1.88       chs static struct pool_item_header *
    741      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    742       1.55   thorpej {
    743       1.55   thorpej 	struct pool_item_header *ph;
    744       1.55   thorpej 
    745       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    746      1.213  christos 		ph = (void *)((char *)storage + pp->pr_phoffset);
    747      1.134        ad 	else
    748       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    749       1.55   thorpej 
    750       1.55   thorpej 	return (ph);
    751       1.55   thorpej }
    752        1.1        pk 
    753        1.1        pk /*
    754      1.134        ad  * Grab an item from the pool.
    755        1.1        pk  */
    756        1.3        pk void *
    757       1.56  sommerfe pool_get(struct pool *pp, int flags)
    758        1.1        pk {
    759        1.1        pk 	struct pool_item *pi;
    760        1.3        pk 	struct pool_item_header *ph;
    761       1.55   thorpej 	void *v;
    762        1.1        pk 
    763      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    764      1.207  riastrad 	KASSERTMSG((pp->pr_itemsperpage != 0),
    765      1.213  christos 	    "%s: [%s] pr_itemsperpage is zero, "
    766      1.213  christos 	    "pool not initialized?", __func__, pp->pr_wchan);
    767      1.207  riastrad 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    768      1.207  riastrad 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    769      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    770      1.213  christos 	    __func__, pp->pr_wchan);
    771      1.155        ad 	if (flags & PR_WAITOK) {
    772      1.154      yamt 		ASSERT_SLEEPABLE();
    773      1.155        ad 	}
    774        1.1        pk 
    775      1.134        ad 	mutex_enter(&pp->pr_lock);
    776       1.20   thorpej  startover:
    777       1.20   thorpej 	/*
    778       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    779       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    780       1.20   thorpej 	 * the pool.
    781       1.20   thorpej 	 */
    782      1.207  riastrad 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    783      1.213  christos 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    784       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    785       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    786       1.68   thorpej 			/*
    787       1.68   thorpej 			 * Since the drain hook is going to free things
    788       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    789       1.68   thorpej 			 * and check the hardlimit condition again.
    790       1.68   thorpej 			 */
    791      1.134        ad 			mutex_exit(&pp->pr_lock);
    792       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    793      1.134        ad 			mutex_enter(&pp->pr_lock);
    794       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    795       1.68   thorpej 				goto startover;
    796       1.68   thorpej 		}
    797       1.68   thorpej 
    798       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    799       1.20   thorpej 			/*
    800       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
    801       1.20   thorpej 			 * it be?
    802       1.20   thorpej 			 */
    803       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
    804      1.212  christos 			do {
    805      1.212  christos 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    806      1.212  christos 			} while (pp->pr_flags & PR_WANTED);
    807       1.20   thorpej 			goto startover;
    808       1.20   thorpej 		}
    809       1.31   thorpej 
    810       1.31   thorpej 		/*
    811       1.31   thorpej 		 * Log a message that the hard limit has been hit.
    812       1.31   thorpej 		 */
    813       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
    814       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
    815       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
    816       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    817       1.21   thorpej 
    818       1.21   thorpej 		pp->pr_nfail++;
    819       1.21   thorpej 
    820      1.134        ad 		mutex_exit(&pp->pr_lock);
    821      1.216  christos 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    822       1.20   thorpej 		return (NULL);
    823       1.20   thorpej 	}
    824       1.20   thorpej 
    825        1.3        pk 	/*
    826        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
    827        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
    828        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
    829        1.3        pk 	 * has no items in its bucket.
    830        1.3        pk 	 */
    831       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
    832      1.113      yamt 		int error;
    833      1.113      yamt 
    834      1.207  riastrad 		KASSERTMSG((pp->pr_nitems == 0),
    835      1.213  christos 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
    836      1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
    837       1.20   thorpej 
    838       1.21   thorpej 		/*
    839       1.21   thorpej 		 * Call the back-end page allocator for more memory.
    840       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
    841       1.21   thorpej 		 * may block.
    842       1.21   thorpej 		 */
    843      1.113      yamt 		error = pool_grow(pp, flags);
    844      1.113      yamt 		if (error != 0) {
    845       1.21   thorpej 			/*
    846      1.210   mlelstv 			 * pool_grow aborts when another thread
    847      1.210   mlelstv 			 * is allocating a new page. Retry if it
    848      1.210   mlelstv 			 * waited for it.
    849      1.210   mlelstv 			 */
    850      1.210   mlelstv 			if (error == ERESTART)
    851      1.210   mlelstv 				goto startover;
    852      1.210   mlelstv 
    853      1.210   mlelstv 			/*
    854       1.55   thorpej 			 * We were unable to allocate a page or item
    855       1.55   thorpej 			 * header, but we released the lock during
    856       1.55   thorpej 			 * allocation, so perhaps items were freed
    857       1.55   thorpej 			 * back to the pool.  Check for this case.
    858       1.21   thorpej 			 */
    859       1.21   thorpej 			if (pp->pr_curpage != NULL)
    860       1.21   thorpej 				goto startover;
    861       1.15        pk 
    862      1.117      yamt 			pp->pr_nfail++;
    863      1.134        ad 			mutex_exit(&pp->pr_lock);
    864      1.211  riastrad 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
    865      1.117      yamt 			return (NULL);
    866        1.1        pk 		}
    867        1.3        pk 
    868       1.20   thorpej 		/* Start the allocation process over. */
    869       1.20   thorpej 		goto startover;
    870        1.3        pk 	}
    871       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
    872      1.207  riastrad 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
    873      1.213  christos 		    "%s: %s: page empty", __func__, pp->pr_wchan);
    874       1.97      yamt 		v = pr_item_notouch_get(pp, ph);
    875       1.97      yamt 	} else {
    876      1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    877       1.97      yamt 		if (__predict_false(v == NULL)) {
    878      1.134        ad 			mutex_exit(&pp->pr_lock);
    879      1.213  christos 			panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    880       1.97      yamt 		}
    881      1.207  riastrad 		KASSERTMSG((pp->pr_nitems > 0),
    882      1.213  christos 		    "%s: [%s] nitems %u inconsistent on itemlist",
    883      1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
    884      1.207  riastrad 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
    885      1.213  christos 		    "%s: [%s] free list modified: "
    886      1.213  christos 		    "magic=%x; page %p; item addr %p", __func__,
    887      1.207  riastrad 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    888        1.3        pk 
    889       1.97      yamt 		/*
    890       1.97      yamt 		 * Remove from item list.
    891       1.97      yamt 		 */
    892      1.102       chs 		LIST_REMOVE(pi, pi_list);
    893       1.97      yamt 	}
    894       1.20   thorpej 	pp->pr_nitems--;
    895       1.20   thorpej 	pp->pr_nout++;
    896        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    897      1.207  riastrad 		KASSERT(pp->pr_nidle > 0);
    898        1.6   thorpej 		pp->pr_nidle--;
    899       1.88       chs 
    900       1.88       chs 		/*
    901       1.88       chs 		 * This page was previously empty.  Move it to the list of
    902       1.88       chs 		 * partially-full pages.  This page is already curpage.
    903       1.88       chs 		 */
    904       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
    905       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    906        1.6   thorpej 	}
    907        1.3        pk 	ph->ph_nmissing++;
    908       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    909      1.207  riastrad 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
    910      1.207  riastrad 			LIST_EMPTY(&ph->ph_itemlist)),
    911      1.213  christos 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
    912      1.213  christos 			pp->pr_wchan, ph->ph_nmissing);
    913        1.3        pk 		/*
    914       1.88       chs 		 * This page is now full.  Move it to the full list
    915       1.88       chs 		 * and select a new current page.
    916        1.3        pk 		 */
    917       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
    918       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    919       1.88       chs 		pool_update_curpage(pp);
    920        1.1        pk 	}
    921        1.3        pk 
    922        1.3        pk 	pp->pr_nget++;
    923       1.20   thorpej 
    924       1.20   thorpej 	/*
    925       1.20   thorpej 	 * If we have a low water mark and we are now below that low
    926       1.20   thorpej 	 * water mark, add more items to the pool.
    927       1.20   thorpej 	 */
    928       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    929       1.20   thorpej 		/*
    930       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
    931       1.20   thorpej 		 * to try again in a second or so?  The latter could break
    932       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
    933       1.20   thorpej 		 */
    934       1.20   thorpej 	}
    935       1.20   thorpej 
    936      1.134        ad 	mutex_exit(&pp->pr_lock);
    937      1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    938      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
    939      1.204      maxv 	pool_redzone_fill(pp, v);
    940        1.1        pk 	return (v);
    941        1.1        pk }
    942        1.1        pk 
    943        1.1        pk /*
    944       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
    945        1.1        pk  */
    946       1.43   thorpej static void
    947      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    948        1.1        pk {
    949        1.1        pk 	struct pool_item *pi = v;
    950        1.3        pk 	struct pool_item_header *ph;
    951        1.3        pk 
    952      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    953      1.204      maxv 	pool_redzone_check(pp, v);
    954      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
    955      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    956       1.61       chs 
    957      1.207  riastrad 	KASSERTMSG((pp->pr_nout > 0),
    958      1.213  christos 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
    959        1.3        pk 
    960      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    961      1.213  christos 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
    962        1.3        pk 	}
    963       1.28   thorpej 
    964        1.3        pk 	/*
    965        1.3        pk 	 * Return to item list.
    966        1.3        pk 	 */
    967       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
    968       1.97      yamt 		pr_item_notouch_put(pp, ph, v);
    969       1.97      yamt 	} else {
    970        1.2        pk #ifdef DIAGNOSTIC
    971       1.97      yamt 		pi->pi_magic = PI_MAGIC;
    972        1.3        pk #endif
    973       1.32       chs #ifdef DEBUG
    974       1.97      yamt 		{
    975       1.97      yamt 			int i, *ip = v;
    976       1.32       chs 
    977       1.97      yamt 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    978       1.97      yamt 				*ip++ = PI_MAGIC;
    979       1.97      yamt 			}
    980       1.32       chs 		}
    981       1.32       chs #endif
    982       1.32       chs 
    983      1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    984       1.97      yamt 	}
    985       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
    986        1.3        pk 	ph->ph_nmissing--;
    987        1.3        pk 	pp->pr_nput++;
    988       1.20   thorpej 	pp->pr_nitems++;
    989       1.20   thorpej 	pp->pr_nout--;
    990        1.3        pk 
    991        1.3        pk 	/* Cancel "pool empty" condition if it exists */
    992        1.3        pk 	if (pp->pr_curpage == NULL)
    993        1.3        pk 		pp->pr_curpage = ph;
    994        1.3        pk 
    995        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
    996        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
    997      1.134        ad 		cv_broadcast(&pp->pr_cv);
    998        1.3        pk 	}
    999        1.3        pk 
   1000        1.3        pk 	/*
   1001       1.88       chs 	 * If this page is now empty, do one of two things:
   1002       1.21   thorpej 	 *
   1003       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1004       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1005       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1006       1.90   thorpej 	 *	    CLAIM.
   1007       1.21   thorpej 	 *
   1008       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1009       1.88       chs 	 *
   1010       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1011       1.88       chs 	 * page if one is available).
   1012        1.3        pk 	 */
   1013        1.3        pk 	if (ph->ph_nmissing == 0) {
   1014        1.6   thorpej 		pp->pr_nidle++;
   1015       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1016      1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1017      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1018        1.3        pk 		} else {
   1019       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1020       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1021        1.3        pk 
   1022       1.21   thorpej 			/*
   1023       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1024       1.21   thorpej 			 * be idle for some period of time before it can
   1025       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1026       1.21   thorpej 			 * ping-pong'ing for memory.
   1027      1.151      yamt 			 *
   1028      1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1029      1.151      yamt 			 * a problem for our usage.
   1030       1.21   thorpej 			 */
   1031      1.151      yamt 			ph->ph_time = time_uptime;
   1032        1.1        pk 		}
   1033       1.88       chs 		pool_update_curpage(pp);
   1034        1.1        pk 	}
   1035       1.88       chs 
   1036       1.21   thorpej 	/*
   1037       1.88       chs 	 * If the page was previously completely full, move it to the
   1038       1.88       chs 	 * partially-full list and make it the current page.  The next
   1039       1.88       chs 	 * allocation will get the item from this page, instead of
   1040       1.88       chs 	 * further fragmenting the pool.
   1041       1.21   thorpej 	 */
   1042       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1043       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1044       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1045       1.21   thorpej 		pp->pr_curpage = ph;
   1046       1.21   thorpej 	}
   1047       1.43   thorpej }
   1048       1.43   thorpej 
   1049       1.56  sommerfe void
   1050       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1051       1.56  sommerfe {
   1052      1.101   thorpej 	struct pool_pagelist pq;
   1053      1.101   thorpej 
   1054      1.101   thorpej 	LIST_INIT(&pq);
   1055       1.56  sommerfe 
   1056      1.134        ad 	mutex_enter(&pp->pr_lock);
   1057      1.101   thorpej 	pool_do_put(pp, v, &pq);
   1058      1.134        ad 	mutex_exit(&pp->pr_lock);
   1059       1.56  sommerfe 
   1060      1.102       chs 	pr_pagelist_free(pp, &pq);
   1061       1.56  sommerfe }
   1062       1.57  sommerfe 
   1063       1.74   thorpej /*
   1064      1.113      yamt  * pool_grow: grow a pool by a page.
   1065      1.113      yamt  *
   1066      1.113      yamt  * => called with pool locked.
   1067      1.113      yamt  * => unlock and relock the pool.
   1068      1.113      yamt  * => return with pool locked.
   1069      1.113      yamt  */
   1070      1.113      yamt 
   1071      1.113      yamt static int
   1072      1.113      yamt pool_grow(struct pool *pp, int flags)
   1073      1.113      yamt {
   1074      1.209  riastrad 	/*
   1075      1.209  riastrad 	 * If there's a pool_grow in progress, wait for it to complete
   1076      1.209  riastrad 	 * and try again from the top.
   1077      1.209  riastrad 	 */
   1078      1.209  riastrad 	if (pp->pr_flags & PR_GROWING) {
   1079      1.209  riastrad 		if (flags & PR_WAITOK) {
   1080      1.209  riastrad 			do {
   1081      1.209  riastrad 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1082      1.209  riastrad 			} while (pp->pr_flags & PR_GROWING);
   1083      1.209  riastrad 			return ERESTART;
   1084      1.209  riastrad 		} else {
   1085      1.219       mrg 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1086      1.219       mrg 				/*
   1087      1.219       mrg 				 * This needs an unlock/relock dance so
   1088      1.219       mrg 				 * that the other caller has a chance to
   1089      1.219       mrg 				 * run and actually do the thing.  Note
   1090      1.219       mrg 				 * that this is effectively a busy-wait.
   1091      1.219       mrg 				 */
   1092      1.219       mrg 				mutex_exit(&pp->pr_lock);
   1093      1.219       mrg 				mutex_enter(&pp->pr_lock);
   1094      1.219       mrg 				return ERESTART;
   1095      1.219       mrg 			}
   1096      1.209  riastrad 			return EWOULDBLOCK;
   1097      1.209  riastrad 		}
   1098      1.209  riastrad 	}
   1099      1.209  riastrad 	pp->pr_flags |= PR_GROWING;
   1100      1.220  christos 	if (flags & PR_WAITOK)
   1101      1.220  christos 		mutex_exit(&pp->pr_lock);
   1102      1.220  christos 	else
   1103      1.219       mrg 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1104      1.113      yamt 
   1105      1.216  christos 	char *cp = pool_allocator_alloc(pp, flags);
   1106      1.216  christos 	if (__predict_false(cp == NULL))
   1107      1.216  christos 		goto out;
   1108      1.216  christos 
   1109      1.216  christos 	struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
   1110      1.216  christos 	if (__predict_false(ph == NULL)) {
   1111      1.216  christos 		pool_allocator_free(pp, cp);
   1112      1.209  riastrad 		goto out;
   1113      1.113      yamt 	}
   1114      1.113      yamt 
   1115      1.220  christos 	if (flags & PR_WAITOK)
   1116      1.220  christos 		mutex_enter(&pp->pr_lock);
   1117      1.113      yamt 	pool_prime_page(pp, cp, ph);
   1118      1.113      yamt 	pp->pr_npagealloc++;
   1119      1.216  christos 	KASSERT(pp->pr_flags & PR_GROWING);
   1120      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1121      1.209  riastrad 	/*
   1122      1.209  riastrad 	 * If anyone was waiting for pool_grow, notify them that we
   1123      1.209  riastrad 	 * may have just done it.
   1124      1.209  riastrad 	 */
   1125      1.216  christos 	cv_broadcast(&pp->pr_cv);
   1126      1.216  christos 	return 0;
   1127      1.216  christos out:
   1128      1.220  christos 	if (flags & PR_WAITOK)
   1129      1.220  christos 		mutex_enter(&pp->pr_lock);
   1130      1.209  riastrad 	KASSERT(pp->pr_flags & PR_GROWING);
   1131      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1132      1.216  christos 	return ENOMEM;
   1133      1.113      yamt }
   1134      1.113      yamt 
   1135      1.113      yamt /*
   1136       1.74   thorpej  * Add N items to the pool.
   1137       1.74   thorpej  */
   1138       1.74   thorpej int
   1139       1.74   thorpej pool_prime(struct pool *pp, int n)
   1140       1.74   thorpej {
   1141       1.75    simonb 	int newpages;
   1142      1.113      yamt 	int error = 0;
   1143       1.74   thorpej 
   1144      1.134        ad 	mutex_enter(&pp->pr_lock);
   1145       1.74   thorpej 
   1146       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1147       1.74   thorpej 
   1148      1.216  christos 	while (newpages > 0) {
   1149      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1150      1.113      yamt 		if (error) {
   1151      1.214  christos 			if (error == ERESTART)
   1152      1.214  christos 				continue;
   1153       1.74   thorpej 			break;
   1154       1.74   thorpej 		}
   1155       1.74   thorpej 		pp->pr_minpages++;
   1156      1.216  christos 		newpages--;
   1157       1.74   thorpej 	}
   1158       1.74   thorpej 
   1159       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1160       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1161       1.74   thorpej 
   1162      1.134        ad 	mutex_exit(&pp->pr_lock);
   1163      1.113      yamt 	return error;
   1164       1.74   thorpej }
   1165       1.55   thorpej 
   1166       1.55   thorpej /*
   1167        1.3        pk  * Add a page worth of items to the pool.
   1168       1.21   thorpej  *
   1169       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1170        1.3        pk  */
   1171       1.55   thorpej static void
   1172      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1173        1.3        pk {
   1174        1.3        pk 	struct pool_item *pi;
   1175      1.128  christos 	void *cp = storage;
   1176      1.125        ad 	const unsigned int align = pp->pr_align;
   1177      1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1178       1.55   thorpej 	int n;
   1179       1.36        pk 
   1180      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1181      1.207  riastrad 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1182      1.207  riastrad 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1183      1.213  christos 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1184        1.3        pk 
   1185        1.3        pk 	/*
   1186        1.3        pk 	 * Insert page header.
   1187        1.3        pk 	 */
   1188       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1189      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1190        1.3        pk 	ph->ph_page = storage;
   1191        1.3        pk 	ph->ph_nmissing = 0;
   1192      1.151      yamt 	ph->ph_time = time_uptime;
   1193       1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1194       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1195        1.3        pk 
   1196        1.6   thorpej 	pp->pr_nidle++;
   1197        1.6   thorpej 
   1198        1.3        pk 	/*
   1199        1.3        pk 	 * Color this page.
   1200        1.3        pk 	 */
   1201      1.141      yamt 	ph->ph_off = pp->pr_curcolor;
   1202      1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1203        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1204        1.3        pk 		pp->pr_curcolor = 0;
   1205        1.3        pk 
   1206        1.3        pk 	/*
   1207        1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1208        1.3        pk 	 */
   1209        1.3        pk 	if (ioff != 0)
   1210      1.128  christos 		cp = (char *)cp + align - ioff;
   1211        1.3        pk 
   1212      1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1213      1.125        ad 
   1214        1.3        pk 	/*
   1215        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1216        1.3        pk 	 */
   1217        1.3        pk 	n = pp->pr_itemsperpage;
   1218       1.20   thorpej 	pp->pr_nitems += n;
   1219        1.3        pk 
   1220       1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1221      1.141      yamt 		pr_item_notouch_init(pp, ph);
   1222       1.97      yamt 	} else {
   1223       1.97      yamt 		while (n--) {
   1224       1.97      yamt 			pi = (struct pool_item *)cp;
   1225       1.78   thorpej 
   1226       1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1227        1.3        pk 
   1228       1.97      yamt 			/* Insert on page list */
   1229      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1230        1.3        pk #ifdef DIAGNOSTIC
   1231       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1232        1.3        pk #endif
   1233      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1234      1.125        ad 
   1235      1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1236       1.97      yamt 		}
   1237        1.3        pk 	}
   1238        1.3        pk 
   1239        1.3        pk 	/*
   1240        1.3        pk 	 * If the pool was depleted, point at the new page.
   1241        1.3        pk 	 */
   1242        1.3        pk 	if (pp->pr_curpage == NULL)
   1243        1.3        pk 		pp->pr_curpage = ph;
   1244        1.3        pk 
   1245        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1246        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1247        1.3        pk }
   1248        1.3        pk 
   1249       1.20   thorpej /*
   1250       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1251       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1252       1.20   thorpej  *
   1253       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1254       1.20   thorpej  *
   1255       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1256       1.20   thorpej  * with it locked.
   1257       1.20   thorpej  */
   1258       1.20   thorpej static int
   1259       1.42   thorpej pool_catchup(struct pool *pp)
   1260       1.20   thorpej {
   1261       1.20   thorpej 	int error = 0;
   1262       1.20   thorpej 
   1263       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1264      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1265      1.113      yamt 		if (error) {
   1266      1.214  christos 			if (error == ERESTART)
   1267      1.214  christos 				continue;
   1268       1.20   thorpej 			break;
   1269       1.20   thorpej 		}
   1270       1.20   thorpej 	}
   1271      1.113      yamt 	return error;
   1272       1.20   thorpej }
   1273       1.20   thorpej 
   1274       1.88       chs static void
   1275       1.88       chs pool_update_curpage(struct pool *pp)
   1276       1.88       chs {
   1277       1.88       chs 
   1278       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1279       1.88       chs 	if (pp->pr_curpage == NULL) {
   1280       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1281       1.88       chs 	}
   1282      1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1283      1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1284       1.88       chs }
   1285       1.88       chs 
   1286        1.3        pk void
   1287       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1288        1.3        pk {
   1289       1.15        pk 
   1290      1.134        ad 	mutex_enter(&pp->pr_lock);
   1291       1.21   thorpej 
   1292        1.3        pk 	pp->pr_minitems = n;
   1293       1.15        pk 	pp->pr_minpages = (n == 0)
   1294       1.15        pk 		? 0
   1295       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1296       1.20   thorpej 
   1297       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1298       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1299       1.20   thorpej 		/*
   1300       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1301       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1302       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1303       1.20   thorpej 		 */
   1304       1.20   thorpej 	}
   1305       1.21   thorpej 
   1306      1.134        ad 	mutex_exit(&pp->pr_lock);
   1307        1.3        pk }
   1308        1.3        pk 
   1309        1.3        pk void
   1310       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1311        1.3        pk {
   1312       1.15        pk 
   1313      1.134        ad 	mutex_enter(&pp->pr_lock);
   1314       1.21   thorpej 
   1315       1.15        pk 	pp->pr_maxpages = (n == 0)
   1316       1.15        pk 		? 0
   1317       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1318       1.21   thorpej 
   1319      1.134        ad 	mutex_exit(&pp->pr_lock);
   1320        1.3        pk }
   1321        1.3        pk 
   1322       1.20   thorpej void
   1323       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1324       1.20   thorpej {
   1325       1.20   thorpej 
   1326      1.134        ad 	mutex_enter(&pp->pr_lock);
   1327       1.20   thorpej 
   1328       1.20   thorpej 	pp->pr_hardlimit = n;
   1329       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1330       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1331       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1332       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1333       1.20   thorpej 
   1334       1.20   thorpej 	/*
   1335       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1336       1.21   thorpej 	 * release the lock.
   1337       1.20   thorpej 	 */
   1338       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1339       1.20   thorpej 		? 0
   1340       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1341       1.21   thorpej 
   1342      1.134        ad 	mutex_exit(&pp->pr_lock);
   1343       1.20   thorpej }
   1344        1.3        pk 
   1345        1.3        pk /*
   1346        1.3        pk  * Release all complete pages that have not been used recently.
   1347      1.184     rmind  *
   1348      1.197       jym  * Must not be called from interrupt context.
   1349        1.3        pk  */
   1350       1.66   thorpej int
   1351       1.56  sommerfe pool_reclaim(struct pool *pp)
   1352        1.3        pk {
   1353        1.3        pk 	struct pool_item_header *ph, *phnext;
   1354       1.61       chs 	struct pool_pagelist pq;
   1355      1.151      yamt 	uint32_t curtime;
   1356      1.134        ad 	bool klock;
   1357      1.134        ad 	int rv;
   1358        1.3        pk 
   1359      1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1360      1.184     rmind 
   1361       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1362       1.68   thorpej 		/*
   1363       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1364       1.68   thorpej 		 */
   1365       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1366       1.68   thorpej 	}
   1367       1.68   thorpej 
   1368      1.134        ad 	/*
   1369      1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1370      1.157        ad 	 * to block.
   1371      1.134        ad 	 */
   1372      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1373      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1374      1.134        ad 		KERNEL_LOCK(1, NULL);
   1375      1.134        ad 		klock = true;
   1376      1.134        ad 	} else
   1377      1.134        ad 		klock = false;
   1378      1.134        ad 
   1379      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1380      1.134        ad 	if (pp->pr_cache != NULL)
   1381      1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1382      1.134        ad 
   1383      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1384      1.134        ad 		if (klock) {
   1385      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1386      1.134        ad 		}
   1387       1.66   thorpej 		return (0);
   1388      1.134        ad 	}
   1389       1.68   thorpej 
   1390       1.88       chs 	LIST_INIT(&pq);
   1391       1.43   thorpej 
   1392      1.151      yamt 	curtime = time_uptime;
   1393       1.21   thorpej 
   1394       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1395       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1396        1.3        pk 
   1397        1.3        pk 		/* Check our minimum page claim */
   1398        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1399        1.3        pk 			break;
   1400        1.3        pk 
   1401       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1402      1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1403       1.88       chs 			continue;
   1404       1.21   thorpej 
   1405       1.88       chs 		/*
   1406       1.88       chs 		 * If freeing this page would put us below
   1407       1.88       chs 		 * the low water mark, stop now.
   1408       1.88       chs 		 */
   1409       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1410       1.88       chs 		    pp->pr_minitems)
   1411       1.88       chs 			break;
   1412       1.21   thorpej 
   1413       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1414        1.3        pk 	}
   1415        1.3        pk 
   1416      1.134        ad 	mutex_exit(&pp->pr_lock);
   1417      1.134        ad 
   1418      1.134        ad 	if (LIST_EMPTY(&pq))
   1419      1.134        ad 		rv = 0;
   1420      1.134        ad 	else {
   1421      1.134        ad 		pr_pagelist_free(pp, &pq);
   1422      1.134        ad 		rv = 1;
   1423      1.134        ad 	}
   1424      1.134        ad 
   1425      1.134        ad 	if (klock) {
   1426      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1427      1.134        ad 	}
   1428       1.66   thorpej 
   1429      1.134        ad 	return (rv);
   1430        1.3        pk }
   1431        1.3        pk 
   1432        1.3        pk /*
   1433      1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1434      1.131        ad  *
   1435      1.134        ad  * Note, must never be called from interrupt context.
   1436        1.3        pk  */
   1437      1.197       jym bool
   1438      1.197       jym pool_drain(struct pool **ppp)
   1439        1.3        pk {
   1440      1.197       jym 	bool reclaimed;
   1441        1.3        pk 	struct pool *pp;
   1442      1.134        ad 
   1443      1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1444        1.3        pk 
   1445       1.61       chs 	pp = NULL;
   1446      1.134        ad 
   1447      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1448      1.134        ad 	mutex_enter(&pool_head_lock);
   1449      1.134        ad 	do {
   1450      1.134        ad 		if (drainpp == NULL) {
   1451      1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1452      1.134        ad 		}
   1453      1.134        ad 		if (drainpp != NULL) {
   1454      1.134        ad 			pp = drainpp;
   1455      1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1456      1.134        ad 		}
   1457      1.134        ad 		/*
   1458      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1459      1.134        ad 		 * one pool in the system being active.
   1460      1.134        ad 		 */
   1461      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1462      1.134        ad 	pp->pr_refcnt++;
   1463      1.134        ad 	mutex_exit(&pool_head_lock);
   1464      1.134        ad 
   1465      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1466      1.186     pooka 	reclaimed = pool_reclaim(pp);
   1467      1.134        ad 
   1468      1.134        ad 	/* Finally, unlock the pool. */
   1469      1.134        ad 	mutex_enter(&pool_head_lock);
   1470      1.134        ad 	pp->pr_refcnt--;
   1471      1.134        ad 	cv_broadcast(&pool_busy);
   1472      1.134        ad 	mutex_exit(&pool_head_lock);
   1473      1.186     pooka 
   1474      1.197       jym 	if (ppp != NULL)
   1475      1.197       jym 		*ppp = pp;
   1476      1.197       jym 
   1477      1.186     pooka 	return reclaimed;
   1478        1.3        pk }
   1479        1.3        pk 
   1480        1.3        pk /*
   1481      1.217       mrg  * Calculate the total number of pages consumed by pools.
   1482      1.217       mrg  */
   1483      1.217       mrg int
   1484      1.217       mrg pool_totalpages(void)
   1485      1.217       mrg {
   1486      1.217       mrg 	struct pool *pp;
   1487      1.218       mrg 	uint64_t total = 0;
   1488      1.217       mrg 
   1489      1.217       mrg 	mutex_enter(&pool_head_lock);
   1490      1.218       mrg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1491      1.218       mrg 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1492      1.218       mrg 
   1493      1.218       mrg 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1494      1.218       mrg 			bytes -= (pp->pr_nout * pp->pr_size);
   1495      1.218       mrg 		total += bytes;
   1496      1.218       mrg 	}
   1497      1.217       mrg 	mutex_exit(&pool_head_lock);
   1498      1.217       mrg 
   1499      1.218       mrg 	return atop(total);
   1500      1.217       mrg }
   1501      1.217       mrg 
   1502      1.217       mrg /*
   1503        1.3        pk  * Diagnostic helpers.
   1504        1.3        pk  */
   1505       1.21   thorpej 
   1506       1.25   thorpej void
   1507      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1508      1.108      yamt {
   1509      1.108      yamt 	struct pool *pp;
   1510      1.108      yamt 
   1511      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1512      1.108      yamt 		pool_printit(pp, modif, pr);
   1513      1.108      yamt 	}
   1514      1.108      yamt }
   1515      1.108      yamt 
   1516      1.108      yamt void
   1517       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1518       1.25   thorpej {
   1519       1.25   thorpej 
   1520       1.25   thorpej 	if (pp == NULL) {
   1521       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1522       1.25   thorpej 		return;
   1523       1.25   thorpej 	}
   1524       1.25   thorpej 
   1525       1.25   thorpej 	pool_print1(pp, modif, pr);
   1526       1.25   thorpej }
   1527       1.25   thorpej 
   1528       1.21   thorpej static void
   1529      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1530       1.97      yamt     void (*pr)(const char *, ...))
   1531       1.88       chs {
   1532       1.88       chs 	struct pool_item_header *ph;
   1533      1.207  riastrad 	struct pool_item *pi __diagused;
   1534       1.88       chs 
   1535       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1536      1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1537      1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1538       1.88       chs #ifdef DIAGNOSTIC
   1539       1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1540      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1541       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1542       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1543       1.97      yamt 					    pi, pi->pi_magic);
   1544       1.97      yamt 				}
   1545       1.88       chs 			}
   1546       1.88       chs 		}
   1547       1.88       chs #endif
   1548       1.88       chs 	}
   1549       1.88       chs }
   1550       1.88       chs 
   1551       1.88       chs static void
   1552       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1553        1.3        pk {
   1554       1.25   thorpej 	struct pool_item_header *ph;
   1555      1.134        ad 	pool_cache_t pc;
   1556      1.134        ad 	pcg_t *pcg;
   1557      1.134        ad 	pool_cache_cpu_t *cc;
   1558      1.134        ad 	uint64_t cpuhit, cpumiss;
   1559       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1560       1.25   thorpej 	char c;
   1561       1.25   thorpej 
   1562       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1563       1.25   thorpej 		if (c == 'l')
   1564       1.25   thorpej 			print_log = 1;
   1565       1.25   thorpej 		if (c == 'p')
   1566       1.25   thorpej 			print_pagelist = 1;
   1567       1.44   thorpej 		if (c == 'c')
   1568       1.44   thorpej 			print_cache = 1;
   1569       1.25   thorpej 	}
   1570       1.25   thorpej 
   1571      1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1572      1.134        ad 		(*pr)("POOL CACHE");
   1573      1.134        ad 	} else {
   1574      1.134        ad 		(*pr)("POOL");
   1575      1.134        ad 	}
   1576      1.134        ad 
   1577      1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1578       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1579       1.25   thorpej 	    pp->pr_roflags);
   1580       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1581       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1582       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1583       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1584       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1585       1.25   thorpej 
   1586      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1587       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1588       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1589       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1590       1.25   thorpej 
   1591       1.25   thorpej 	if (print_pagelist == 0)
   1592       1.25   thorpej 		goto skip_pagelist;
   1593       1.25   thorpej 
   1594       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1595       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1596       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1597       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1598       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1599       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1600       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1601       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1602       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1603       1.88       chs 
   1604       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1605       1.25   thorpej 		(*pr)("\tno current page\n");
   1606       1.25   thorpej 	else
   1607       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1608       1.25   thorpej 
   1609       1.25   thorpej  skip_pagelist:
   1610       1.25   thorpej 	if (print_log == 0)
   1611       1.25   thorpej 		goto skip_log;
   1612       1.25   thorpej 
   1613       1.25   thorpej 	(*pr)("\n");
   1614        1.3        pk 
   1615       1.25   thorpej  skip_log:
   1616       1.44   thorpej 
   1617      1.102       chs #define PR_GROUPLIST(pcg)						\
   1618      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1619      1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1620      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1621      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1622      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1623      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1624      1.102       chs 			    (unsigned long long)			\
   1625      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1626      1.102       chs 		} else {						\
   1627      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1628      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1629      1.102       chs 		}							\
   1630      1.102       chs 	}
   1631      1.102       chs 
   1632      1.134        ad 	if (pc != NULL) {
   1633      1.134        ad 		cpuhit = 0;
   1634      1.134        ad 		cpumiss = 0;
   1635      1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1636      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1637      1.134        ad 				continue;
   1638      1.134        ad 			cpuhit += cc->cc_hits;
   1639      1.134        ad 			cpumiss += cc->cc_misses;
   1640      1.134        ad 		}
   1641      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1642      1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1643      1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1644      1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1645      1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1646      1.134        ad 		    pc->pc_contended);
   1647      1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1648      1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1649      1.134        ad 		if (print_cache) {
   1650      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1651      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1652      1.134        ad 			    pcg = pcg->pcg_next) {
   1653      1.134        ad 				PR_GROUPLIST(pcg);
   1654      1.134        ad 			}
   1655      1.134        ad 			(*pr)("\tempty cache groups:\n");
   1656      1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1657      1.134        ad 			    pcg = pcg->pcg_next) {
   1658      1.134        ad 				PR_GROUPLIST(pcg);
   1659      1.134        ad 			}
   1660      1.103       chs 		}
   1661       1.44   thorpej 	}
   1662      1.102       chs #undef PR_GROUPLIST
   1663       1.88       chs }
   1664       1.88       chs 
   1665       1.88       chs static int
   1666       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1667       1.88       chs {
   1668       1.88       chs 	struct pool_item *pi;
   1669      1.128  christos 	void *page;
   1670       1.88       chs 	int n;
   1671       1.88       chs 
   1672      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1673      1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1674      1.121      yamt 		if (page != ph->ph_page &&
   1675      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1676      1.121      yamt 			if (label != NULL)
   1677      1.121      yamt 				printf("%s: ", label);
   1678      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1679      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1680      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1681      1.121      yamt 				ph, page);
   1682      1.121      yamt 			return 1;
   1683      1.121      yamt 		}
   1684       1.88       chs 	}
   1685        1.3        pk 
   1686       1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1687       1.97      yamt 		return 0;
   1688       1.97      yamt 
   1689      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1690       1.88       chs 	     pi != NULL;
   1691      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1692       1.88       chs 
   1693       1.88       chs #ifdef DIAGNOSTIC
   1694       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1695       1.88       chs 			if (label != NULL)
   1696       1.88       chs 				printf("%s: ", label);
   1697       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1698      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1699       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1700      1.121      yamt 				n, pi);
   1701       1.88       chs 			panic("pool");
   1702       1.88       chs 		}
   1703       1.88       chs #endif
   1704      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1705      1.121      yamt 			continue;
   1706      1.121      yamt 		}
   1707      1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1708       1.88       chs 		if (page == ph->ph_page)
   1709       1.88       chs 			continue;
   1710       1.88       chs 
   1711       1.88       chs 		if (label != NULL)
   1712       1.88       chs 			printf("%s: ", label);
   1713       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1714       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1715       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1716       1.88       chs 			n, pi, page);
   1717       1.88       chs 		return 1;
   1718       1.88       chs 	}
   1719       1.88       chs 	return 0;
   1720        1.3        pk }
   1721        1.3        pk 
   1722       1.88       chs 
   1723        1.3        pk int
   1724       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1725        1.3        pk {
   1726        1.3        pk 	struct pool_item_header *ph;
   1727        1.3        pk 	int r = 0;
   1728        1.3        pk 
   1729      1.134        ad 	mutex_enter(&pp->pr_lock);
   1730       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1731       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1732       1.88       chs 		if (r) {
   1733       1.88       chs 			goto out;
   1734       1.88       chs 		}
   1735       1.88       chs 	}
   1736       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1737       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1738       1.88       chs 		if (r) {
   1739        1.3        pk 			goto out;
   1740        1.3        pk 		}
   1741       1.88       chs 	}
   1742       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1743       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1744       1.88       chs 		if (r) {
   1745        1.3        pk 			goto out;
   1746        1.3        pk 		}
   1747        1.3        pk 	}
   1748       1.88       chs 
   1749        1.3        pk out:
   1750      1.134        ad 	mutex_exit(&pp->pr_lock);
   1751        1.3        pk 	return (r);
   1752       1.43   thorpej }
   1753       1.43   thorpej 
   1754       1.43   thorpej /*
   1755       1.43   thorpej  * pool_cache_init:
   1756       1.43   thorpej  *
   1757       1.43   thorpej  *	Initialize a pool cache.
   1758      1.134        ad  */
   1759      1.134        ad pool_cache_t
   1760      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1761      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   1762      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1763      1.134        ad {
   1764      1.134        ad 	pool_cache_t pc;
   1765      1.134        ad 
   1766      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   1767      1.134        ad 	if (pc == NULL)
   1768      1.134        ad 		return NULL;
   1769      1.134        ad 
   1770      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1771      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   1772      1.134        ad 
   1773      1.134        ad 	return pc;
   1774      1.134        ad }
   1775      1.134        ad 
   1776      1.134        ad /*
   1777      1.134        ad  * pool_cache_bootstrap:
   1778       1.43   thorpej  *
   1779      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   1780      1.134        ad  *	provides initial storage.
   1781       1.43   thorpej  */
   1782       1.43   thorpej void
   1783      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1784      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   1785      1.134        ad     struct pool_allocator *palloc, int ipl,
   1786      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1787       1.43   thorpej     void *arg)
   1788       1.43   thorpej {
   1789      1.134        ad 	CPU_INFO_ITERATOR cii;
   1790      1.145        ad 	pool_cache_t pc1;
   1791      1.134        ad 	struct cpu_info *ci;
   1792      1.134        ad 	struct pool *pp;
   1793      1.134        ad 
   1794      1.134        ad 	pp = &pc->pc_pool;
   1795      1.208       chs 	if (palloc == NULL && ipl == IPL_NONE) {
   1796      1.208       chs 		if (size > PAGE_SIZE) {
   1797      1.208       chs 			int bigidx = pool_bigidx(size);
   1798      1.208       chs 
   1799      1.208       chs 			palloc = &pool_allocator_big[bigidx];
   1800      1.208       chs 		} else
   1801      1.208       chs 			palloc = &pool_allocator_nointr;
   1802      1.208       chs 	}
   1803      1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1804      1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1805       1.43   thorpej 
   1806      1.134        ad 	if (ctor == NULL) {
   1807      1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   1808      1.134        ad 	}
   1809      1.134        ad 	if (dtor == NULL) {
   1810      1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   1811      1.134        ad 	}
   1812       1.43   thorpej 
   1813      1.134        ad 	pc->pc_emptygroups = NULL;
   1814      1.134        ad 	pc->pc_fullgroups = NULL;
   1815      1.134        ad 	pc->pc_partgroups = NULL;
   1816       1.43   thorpej 	pc->pc_ctor = ctor;
   1817       1.43   thorpej 	pc->pc_dtor = dtor;
   1818       1.43   thorpej 	pc->pc_arg  = arg;
   1819      1.134        ad 	pc->pc_hits  = 0;
   1820       1.48   thorpej 	pc->pc_misses = 0;
   1821      1.134        ad 	pc->pc_nempty = 0;
   1822      1.134        ad 	pc->pc_npart = 0;
   1823      1.134        ad 	pc->pc_nfull = 0;
   1824      1.134        ad 	pc->pc_contended = 0;
   1825      1.134        ad 	pc->pc_refcnt = 0;
   1826      1.136      yamt 	pc->pc_freecheck = NULL;
   1827      1.134        ad 
   1828      1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   1829      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1830      1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   1831      1.142        ad 	} else {
   1832      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1833      1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   1834      1.142        ad 	}
   1835      1.142        ad 
   1836      1.134        ad 	/* Allocate per-CPU caches. */
   1837      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1838      1.134        ad 	pc->pc_ncpu = 0;
   1839      1.139        ad 	if (ncpu < 2) {
   1840      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   1841      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   1842      1.137        ad 	} else {
   1843      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   1844      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   1845      1.137        ad 		}
   1846      1.134        ad 	}
   1847      1.145        ad 
   1848      1.145        ad 	/* Add to list of all pools. */
   1849      1.145        ad 	if (__predict_true(!cold))
   1850      1.134        ad 		mutex_enter(&pool_head_lock);
   1851      1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1852      1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1853      1.145        ad 			break;
   1854      1.145        ad 	}
   1855      1.145        ad 	if (pc1 == NULL)
   1856      1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1857      1.145        ad 	else
   1858      1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1859      1.145        ad 	if (__predict_true(!cold))
   1860      1.134        ad 		mutex_exit(&pool_head_lock);
   1861      1.145        ad 
   1862      1.145        ad 	membar_sync();
   1863      1.145        ad 	pp->pr_cache = pc;
   1864       1.43   thorpej }
   1865       1.43   thorpej 
   1866       1.43   thorpej /*
   1867       1.43   thorpej  * pool_cache_destroy:
   1868       1.43   thorpej  *
   1869       1.43   thorpej  *	Destroy a pool cache.
   1870       1.43   thorpej  */
   1871       1.43   thorpej void
   1872      1.134        ad pool_cache_destroy(pool_cache_t pc)
   1873       1.43   thorpej {
   1874      1.191      para 
   1875      1.191      para 	pool_cache_bootstrap_destroy(pc);
   1876      1.191      para 	pool_put(&cache_pool, pc);
   1877      1.191      para }
   1878      1.191      para 
   1879      1.191      para /*
   1880      1.191      para  * pool_cache_bootstrap_destroy:
   1881      1.191      para  *
   1882      1.191      para  *	Destroy a pool cache.
   1883      1.191      para  */
   1884      1.191      para void
   1885      1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   1886      1.191      para {
   1887      1.134        ad 	struct pool *pp = &pc->pc_pool;
   1888      1.175       jym 	u_int i;
   1889      1.134        ad 
   1890      1.134        ad 	/* Remove it from the global list. */
   1891      1.134        ad 	mutex_enter(&pool_head_lock);
   1892      1.134        ad 	while (pc->pc_refcnt != 0)
   1893      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   1894      1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1895      1.134        ad 	mutex_exit(&pool_head_lock);
   1896       1.43   thorpej 
   1897       1.43   thorpej 	/* First, invalidate the entire cache. */
   1898       1.43   thorpej 	pool_cache_invalidate(pc);
   1899       1.43   thorpej 
   1900      1.134        ad 	/* Disassociate it from the pool. */
   1901      1.134        ad 	mutex_enter(&pp->pr_lock);
   1902      1.134        ad 	pp->pr_cache = NULL;
   1903      1.134        ad 	mutex_exit(&pp->pr_lock);
   1904      1.134        ad 
   1905      1.134        ad 	/* Destroy per-CPU data */
   1906      1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1907      1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   1908      1.134        ad 
   1909      1.134        ad 	/* Finally, destroy it. */
   1910      1.134        ad 	mutex_destroy(&pc->pc_lock);
   1911      1.134        ad 	pool_destroy(pp);
   1912      1.134        ad }
   1913      1.134        ad 
   1914      1.134        ad /*
   1915      1.134        ad  * pool_cache_cpu_init1:
   1916      1.134        ad  *
   1917      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   1918      1.134        ad  */
   1919      1.134        ad static void
   1920      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1921      1.134        ad {
   1922      1.134        ad 	pool_cache_cpu_t *cc;
   1923      1.137        ad 	int index;
   1924      1.134        ad 
   1925      1.137        ad 	index = ci->ci_index;
   1926      1.137        ad 
   1927      1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   1928      1.134        ad 
   1929      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1930      1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   1931      1.134        ad 		return;
   1932      1.134        ad 	}
   1933      1.134        ad 
   1934      1.134        ad 	/*
   1935      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   1936      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   1937      1.134        ad 	 */
   1938      1.134        ad 	if (pc->pc_ncpu == 0) {
   1939      1.134        ad 		cc = &pc->pc_cpu0;
   1940      1.134        ad 		pc->pc_ncpu = 1;
   1941      1.134        ad 	} else {
   1942      1.134        ad 		mutex_enter(&pc->pc_lock);
   1943      1.134        ad 		pc->pc_ncpu++;
   1944      1.134        ad 		mutex_exit(&pc->pc_lock);
   1945      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1946      1.134        ad 	}
   1947      1.134        ad 
   1948      1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1949      1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1950      1.134        ad 	cc->cc_cache = pc;
   1951      1.137        ad 	cc->cc_cpuindex = index;
   1952      1.134        ad 	cc->cc_hits = 0;
   1953      1.134        ad 	cc->cc_misses = 0;
   1954      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   1955      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1956      1.134        ad 
   1957      1.137        ad 	pc->pc_cpus[index] = cc;
   1958       1.43   thorpej }
   1959       1.43   thorpej 
   1960      1.134        ad /*
   1961      1.134        ad  * pool_cache_cpu_init:
   1962      1.134        ad  *
   1963      1.134        ad  *	Called whenever a new CPU is attached.
   1964      1.134        ad  */
   1965      1.134        ad void
   1966      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   1967       1.43   thorpej {
   1968      1.134        ad 	pool_cache_t pc;
   1969      1.134        ad 
   1970      1.134        ad 	mutex_enter(&pool_head_lock);
   1971      1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1972      1.134        ad 		pc->pc_refcnt++;
   1973      1.134        ad 		mutex_exit(&pool_head_lock);
   1974       1.43   thorpej 
   1975      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   1976       1.43   thorpej 
   1977      1.134        ad 		mutex_enter(&pool_head_lock);
   1978      1.134        ad 		pc->pc_refcnt--;
   1979      1.134        ad 		cv_broadcast(&pool_busy);
   1980      1.134        ad 	}
   1981      1.134        ad 	mutex_exit(&pool_head_lock);
   1982       1.43   thorpej }
   1983       1.43   thorpej 
   1984      1.134        ad /*
   1985      1.134        ad  * pool_cache_reclaim:
   1986      1.134        ad  *
   1987      1.134        ad  *	Reclaim memory from a pool cache.
   1988      1.134        ad  */
   1989      1.134        ad bool
   1990      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   1991       1.43   thorpej {
   1992       1.43   thorpej 
   1993      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   1994      1.134        ad }
   1995       1.43   thorpej 
   1996      1.136      yamt static void
   1997      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   1998      1.136      yamt {
   1999      1.136      yamt 
   2000      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2001      1.136      yamt 	pool_put(&pc->pc_pool, object);
   2002      1.136      yamt }
   2003      1.136      yamt 
   2004      1.134        ad /*
   2005      1.134        ad  * pool_cache_destruct_object:
   2006      1.134        ad  *
   2007      1.134        ad  *	Force destruction of an object and its release back into
   2008      1.134        ad  *	the pool.
   2009      1.134        ad  */
   2010      1.134        ad void
   2011      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2012      1.134        ad {
   2013      1.134        ad 
   2014      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2015      1.136      yamt 
   2016      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2017       1.43   thorpej }
   2018       1.43   thorpej 
   2019      1.134        ad /*
   2020      1.134        ad  * pool_cache_invalidate_groups:
   2021      1.134        ad  *
   2022      1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2023      1.134        ad  */
   2024      1.102       chs static void
   2025      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2026      1.102       chs {
   2027      1.134        ad 	void *object;
   2028      1.134        ad 	pcg_t *next;
   2029      1.134        ad 	int i;
   2030      1.134        ad 
   2031      1.134        ad 	for (; pcg != NULL; pcg = next) {
   2032      1.134        ad 		next = pcg->pcg_next;
   2033      1.134        ad 
   2034      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2035      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2036      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2037      1.134        ad 		}
   2038      1.102       chs 
   2039      1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2040      1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2041      1.142        ad 		} else {
   2042      1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2043      1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2044      1.142        ad 		}
   2045      1.102       chs 	}
   2046      1.102       chs }
   2047      1.102       chs 
   2048       1.43   thorpej /*
   2049      1.134        ad  * pool_cache_invalidate:
   2050       1.43   thorpej  *
   2051      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2052      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2053      1.176   thorpej  *
   2054      1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2055      1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2056      1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2057      1.196       jym  *
   2058      1.196       jym  *	Invalidation is a costly process and should not be called from
   2059      1.196       jym  *	interrupt context.
   2060       1.43   thorpej  */
   2061      1.134        ad void
   2062      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2063      1.134        ad {
   2064      1.196       jym 	uint64_t where;
   2065      1.134        ad 	pcg_t *full, *empty, *part;
   2066      1.196       jym 
   2067      1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2068      1.176   thorpej 
   2069      1.177       jym 	if (ncpu < 2 || !mp_online) {
   2070      1.176   thorpej 		/*
   2071      1.176   thorpej 		 * We might be called early enough in the boot process
   2072      1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2073      1.196       jym 		 * In this case, transfer the content of the local CPU's
   2074      1.196       jym 		 * cache back into global cache as only this CPU is currently
   2075      1.196       jym 		 * running.
   2076      1.176   thorpej 		 */
   2077      1.196       jym 		pool_cache_transfer(pc);
   2078      1.176   thorpej 	} else {
   2079      1.176   thorpej 		/*
   2080      1.196       jym 		 * Signal all CPUs that they must transfer their local
   2081      1.196       jym 		 * cache back to the global pool then wait for the xcall to
   2082      1.196       jym 		 * complete.
   2083      1.176   thorpej 		 */
   2084      1.196       jym 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2085      1.196       jym 		    pc, NULL);
   2086      1.176   thorpej 		xc_wait(where);
   2087      1.176   thorpej 	}
   2088      1.196       jym 
   2089      1.196       jym 	/* Empty pool caches, then invalidate objects */
   2090      1.134        ad 	mutex_enter(&pc->pc_lock);
   2091      1.134        ad 	full = pc->pc_fullgroups;
   2092      1.134        ad 	empty = pc->pc_emptygroups;
   2093      1.134        ad 	part = pc->pc_partgroups;
   2094      1.134        ad 	pc->pc_fullgroups = NULL;
   2095      1.134        ad 	pc->pc_emptygroups = NULL;
   2096      1.134        ad 	pc->pc_partgroups = NULL;
   2097      1.134        ad 	pc->pc_nfull = 0;
   2098      1.134        ad 	pc->pc_nempty = 0;
   2099      1.134        ad 	pc->pc_npart = 0;
   2100      1.134        ad 	mutex_exit(&pc->pc_lock);
   2101      1.134        ad 
   2102      1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2103      1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2104      1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2105      1.134        ad }
   2106      1.134        ad 
   2107      1.175       jym /*
   2108      1.175       jym  * pool_cache_invalidate_cpu:
   2109      1.175       jym  *
   2110      1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2111      1.175       jym  *	identified by its associated index.
   2112      1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2113      1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2114      1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2115      1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2116      1.175       jym  *	may result in an undefined behaviour.
   2117      1.175       jym  */
   2118      1.175       jym static void
   2119      1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2120      1.175       jym {
   2121      1.175       jym 	pool_cache_cpu_t *cc;
   2122      1.175       jym 	pcg_t *pcg;
   2123      1.175       jym 
   2124      1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2125      1.175       jym 		return;
   2126      1.175       jym 
   2127      1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2128      1.175       jym 		pcg->pcg_next = NULL;
   2129      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2130      1.175       jym 	}
   2131      1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2132      1.175       jym 		pcg->pcg_next = NULL;
   2133      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2134      1.175       jym 	}
   2135      1.175       jym 	if (cc != &pc->pc_cpu0)
   2136      1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2137      1.175       jym 
   2138      1.175       jym }
   2139      1.175       jym 
   2140      1.134        ad void
   2141      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2142      1.134        ad {
   2143      1.134        ad 
   2144      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2145      1.134        ad }
   2146      1.134        ad 
   2147      1.134        ad void
   2148      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2149      1.134        ad {
   2150      1.134        ad 
   2151      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2152      1.134        ad }
   2153      1.134        ad 
   2154      1.134        ad void
   2155      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2156      1.134        ad {
   2157      1.134        ad 
   2158      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2159      1.134        ad }
   2160      1.134        ad 
   2161      1.134        ad void
   2162      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2163      1.134        ad {
   2164      1.134        ad 
   2165      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2166      1.134        ad }
   2167      1.134        ad 
   2168      1.162        ad static bool __noinline
   2169      1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2170      1.134        ad 		    paddr_t *pap, int flags)
   2171       1.43   thorpej {
   2172      1.134        ad 	pcg_t *pcg, *cur;
   2173      1.134        ad 	uint64_t ncsw;
   2174      1.134        ad 	pool_cache_t pc;
   2175       1.43   thorpej 	void *object;
   2176       1.58   thorpej 
   2177      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2178      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2179      1.168      yamt 
   2180      1.134        ad 	pc = cc->cc_cache;
   2181      1.134        ad 	cc->cc_misses++;
   2182       1.43   thorpej 
   2183      1.134        ad 	/*
   2184      1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2185      1.134        ad 	 * from the cache.
   2186      1.134        ad 	 */
   2187      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2188      1.134        ad 		ncsw = curlwp->l_ncsw;
   2189      1.134        ad 		mutex_enter(&pc->pc_lock);
   2190      1.134        ad 		pc->pc_contended++;
   2191       1.43   thorpej 
   2192      1.134        ad 		/*
   2193      1.134        ad 		 * If we context switched while locking, then
   2194      1.134        ad 		 * our view of the per-CPU data is invalid:
   2195      1.134        ad 		 * retry.
   2196      1.134        ad 		 */
   2197      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2198      1.134        ad 			mutex_exit(&pc->pc_lock);
   2199      1.162        ad 			return true;
   2200       1.43   thorpej 		}
   2201      1.102       chs 	}
   2202       1.43   thorpej 
   2203      1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2204       1.43   thorpej 		/*
   2205      1.134        ad 		 * If there's a full group, release our empty
   2206      1.134        ad 		 * group back to the cache.  Install the full
   2207      1.134        ad 		 * group as cc_current and return.
   2208       1.43   thorpej 		 */
   2209      1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2210      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2211      1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2212      1.134        ad 			pc->pc_emptygroups = cur;
   2213      1.134        ad 			pc->pc_nempty++;
   2214       1.87   thorpej 		}
   2215      1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2216      1.134        ad 		cc->cc_current = pcg;
   2217      1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2218      1.134        ad 		pc->pc_hits++;
   2219      1.134        ad 		pc->pc_nfull--;
   2220      1.134        ad 		mutex_exit(&pc->pc_lock);
   2221      1.162        ad 		return true;
   2222      1.134        ad 	}
   2223      1.134        ad 
   2224      1.134        ad 	/*
   2225      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2226      1.134        ad 	 * path: fetch a new object from the pool and construct
   2227      1.134        ad 	 * it.
   2228      1.134        ad 	 */
   2229      1.134        ad 	pc->pc_misses++;
   2230      1.134        ad 	mutex_exit(&pc->pc_lock);
   2231      1.162        ad 	splx(s);
   2232      1.134        ad 
   2233      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2234      1.134        ad 	*objectp = object;
   2235      1.211  riastrad 	if (__predict_false(object == NULL)) {
   2236      1.211  riastrad 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2237      1.162        ad 		return false;
   2238      1.211  riastrad 	}
   2239      1.125        ad 
   2240      1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2241      1.134        ad 		pool_put(&pc->pc_pool, object);
   2242      1.134        ad 		*objectp = NULL;
   2243      1.162        ad 		return false;
   2244       1.43   thorpej 	}
   2245       1.43   thorpej 
   2246      1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2247      1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2248       1.43   thorpej 
   2249      1.134        ad 	if (pap != NULL) {
   2250      1.134        ad #ifdef POOL_VTOPHYS
   2251      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2252      1.134        ad #else
   2253      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2254      1.134        ad #endif
   2255      1.102       chs 	}
   2256       1.43   thorpej 
   2257      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2258      1.204      maxv 	pool_redzone_fill(&pc->pc_pool, object);
   2259      1.162        ad 	return false;
   2260       1.43   thorpej }
   2261       1.43   thorpej 
   2262       1.43   thorpej /*
   2263      1.134        ad  * pool_cache_get{,_paddr}:
   2264       1.43   thorpej  *
   2265      1.134        ad  *	Get an object from a pool cache (optionally returning
   2266      1.134        ad  *	the physical address of the object).
   2267       1.43   thorpej  */
   2268      1.134        ad void *
   2269      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2270       1.43   thorpej {
   2271      1.134        ad 	pool_cache_cpu_t *cc;
   2272      1.134        ad 	pcg_t *pcg;
   2273      1.134        ad 	void *object;
   2274       1.60   thorpej 	int s;
   2275       1.43   thorpej 
   2276      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2277      1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2278      1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2279      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2280      1.213  christos 	    __func__, pc->pc_pool.pr_wchan);
   2281      1.184     rmind 
   2282      1.155        ad 	if (flags & PR_WAITOK) {
   2283      1.154      yamt 		ASSERT_SLEEPABLE();
   2284      1.155        ad 	}
   2285      1.125        ad 
   2286      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2287      1.162        ad 	s = splvm();
   2288      1.165      yamt 	while (/* CONSTCOND */ true) {
   2289      1.134        ad 		/* Try and allocate an object from the current group. */
   2290      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2291      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2292      1.134        ad 	 	pcg = cc->cc_current;
   2293      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2294      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2295      1.162        ad 			if (__predict_false(pap != NULL))
   2296      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2297      1.148      yamt #if defined(DIAGNOSTIC)
   2298      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2299      1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2300      1.134        ad 			KASSERT(object != NULL);
   2301      1.163        ad #endif
   2302      1.134        ad 			cc->cc_hits++;
   2303      1.162        ad 			splx(s);
   2304      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2305      1.204      maxv 			pool_redzone_fill(&pc->pc_pool, object);
   2306      1.134        ad 			return object;
   2307       1.43   thorpej 		}
   2308       1.43   thorpej 
   2309       1.43   thorpej 		/*
   2310      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2311      1.134        ad 		 * it with the current group and allocate from there.
   2312       1.43   thorpej 		 */
   2313      1.134        ad 		pcg = cc->cc_previous;
   2314      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2315      1.134        ad 			cc->cc_previous = cc->cc_current;
   2316      1.134        ad 			cc->cc_current = pcg;
   2317      1.134        ad 			continue;
   2318       1.43   thorpej 		}
   2319       1.43   thorpej 
   2320      1.134        ad 		/*
   2321      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2322      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2323      1.162        ad 		 * no more objects are available, it will return false.
   2324      1.134        ad 		 * Otherwise, we need to retry.
   2325      1.134        ad 		 */
   2326      1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2327      1.165      yamt 			break;
   2328      1.165      yamt 	}
   2329       1.43   thorpej 
   2330      1.211  riastrad 	/*
   2331      1.211  riastrad 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2332      1.211  riastrad 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2333      1.211  riastrad 	 * constructor fails.
   2334      1.211  riastrad 	 */
   2335      1.134        ad 	return object;
   2336       1.51   thorpej }
   2337       1.51   thorpej 
   2338      1.162        ad static bool __noinline
   2339      1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2340       1.51   thorpej {
   2341      1.200     pooka 	struct lwp *l = curlwp;
   2342      1.163        ad 	pcg_t *pcg, *cur;
   2343      1.134        ad 	uint64_t ncsw;
   2344      1.134        ad 	pool_cache_t pc;
   2345       1.51   thorpej 
   2346      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2347      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2348      1.168      yamt 
   2349      1.134        ad 	pc = cc->cc_cache;
   2350      1.171        ad 	pcg = NULL;
   2351      1.134        ad 	cc->cc_misses++;
   2352      1.200     pooka 	ncsw = l->l_ncsw;
   2353       1.43   thorpej 
   2354      1.171        ad 	/*
   2355      1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2356      1.171        ad 	 * while still unlocked.
   2357      1.171        ad 	 */
   2358      1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2359      1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2360      1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2361      1.171        ad 		}
   2362      1.200     pooka 		/*
   2363      1.200     pooka 		 * If pool_get() blocked, then our view of
   2364      1.200     pooka 		 * the per-CPU data is invalid: retry.
   2365      1.200     pooka 		 */
   2366      1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2367      1.200     pooka 			if (pcg != NULL) {
   2368      1.200     pooka 				pool_put(pc->pc_pcgpool, pcg);
   2369      1.200     pooka 			}
   2370      1.200     pooka 			return true;
   2371      1.200     pooka 		}
   2372      1.171        ad 		if (__predict_true(pcg != NULL)) {
   2373      1.171        ad 			pcg->pcg_avail = 0;
   2374      1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2375      1.171        ad 		}
   2376      1.171        ad 	}
   2377      1.171        ad 
   2378      1.162        ad 	/* Lock the cache. */
   2379      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2380      1.134        ad 		mutex_enter(&pc->pc_lock);
   2381      1.134        ad 		pc->pc_contended++;
   2382      1.162        ad 
   2383      1.163        ad 		/*
   2384      1.163        ad 		 * If we context switched while locking, then our view of
   2385      1.163        ad 		 * the per-CPU data is invalid: retry.
   2386      1.163        ad 		 */
   2387      1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2388      1.163        ad 			mutex_exit(&pc->pc_lock);
   2389      1.171        ad 			if (pcg != NULL) {
   2390      1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2391      1.171        ad 			}
   2392      1.163        ad 			return true;
   2393      1.163        ad 		}
   2394      1.162        ad 	}
   2395      1.102       chs 
   2396      1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2397      1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2398      1.171        ad 		pcg = pc->pc_emptygroups;
   2399      1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2400      1.163        ad 		pc->pc_nempty--;
   2401      1.134        ad 	}
   2402      1.130        ad 
   2403      1.162        ad 	/*
   2404      1.162        ad 	 * If there's a empty group, release our full group back
   2405      1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2406      1.162        ad 	 * and return.
   2407      1.162        ad 	 */
   2408      1.163        ad 	if (pcg != NULL) {
   2409      1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2410      1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2411      1.146        ad 			cc->cc_previous = pcg;
   2412      1.146        ad 		} else {
   2413      1.162        ad 			cur = cc->cc_current;
   2414      1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2415      1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2416      1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2417      1.146        ad 				pc->pc_fullgroups = cur;
   2418      1.146        ad 				pc->pc_nfull++;
   2419      1.146        ad 			}
   2420      1.146        ad 			cc->cc_current = pcg;
   2421      1.146        ad 		}
   2422      1.163        ad 		pc->pc_hits++;
   2423      1.134        ad 		mutex_exit(&pc->pc_lock);
   2424      1.162        ad 		return true;
   2425      1.102       chs 	}
   2426      1.105  christos 
   2427      1.134        ad 	/*
   2428      1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2429      1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2430      1.162        ad 	 * the object here and now.
   2431      1.134        ad 	 */
   2432      1.134        ad 	pc->pc_misses++;
   2433      1.134        ad 	mutex_exit(&pc->pc_lock);
   2434      1.162        ad 	splx(s);
   2435      1.162        ad 	pool_cache_destruct_object(pc, object);
   2436      1.105  christos 
   2437      1.162        ad 	return false;
   2438      1.134        ad }
   2439      1.102       chs 
   2440       1.43   thorpej /*
   2441      1.134        ad  * pool_cache_put{,_paddr}:
   2442       1.43   thorpej  *
   2443      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2444      1.134        ad  *	physical address of the object).
   2445       1.43   thorpej  */
   2446      1.101   thorpej void
   2447      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2448       1.43   thorpej {
   2449      1.134        ad 	pool_cache_cpu_t *cc;
   2450      1.134        ad 	pcg_t *pcg;
   2451      1.134        ad 	int s;
   2452      1.101   thorpej 
   2453      1.172      yamt 	KASSERT(object != NULL);
   2454      1.204      maxv 	pool_redzone_check(&pc->pc_pool, object);
   2455      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2456      1.101   thorpej 
   2457      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2458      1.162        ad 	s = splvm();
   2459      1.165      yamt 	while (/* CONSTCOND */ true) {
   2460      1.134        ad 		/* If the current group isn't full, release it there. */
   2461      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2462      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2463      1.134        ad 	 	pcg = cc->cc_current;
   2464      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2465      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2466      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2467      1.134        ad 			pcg->pcg_avail++;
   2468      1.134        ad 			cc->cc_hits++;
   2469      1.162        ad 			splx(s);
   2470      1.134        ad 			return;
   2471      1.134        ad 		}
   2472       1.43   thorpej 
   2473      1.134        ad 		/*
   2474      1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2475      1.134        ad 		 * it with the current group and try again.
   2476      1.134        ad 		 */
   2477      1.134        ad 		pcg = cc->cc_previous;
   2478      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2479      1.134        ad 			cc->cc_previous = cc->cc_current;
   2480      1.134        ad 			cc->cc_current = pcg;
   2481      1.134        ad 			continue;
   2482      1.134        ad 		}
   2483       1.43   thorpej 
   2484      1.134        ad 		/*
   2485      1.134        ad 		 * Can't free to either group: try the slow path.
   2486      1.134        ad 		 * If put_slow() releases the object for us, it
   2487      1.162        ad 		 * will return false.  Otherwise we need to retry.
   2488      1.134        ad 		 */
   2489      1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2490      1.165      yamt 			break;
   2491      1.165      yamt 	}
   2492       1.43   thorpej }
   2493       1.43   thorpej 
   2494       1.43   thorpej /*
   2495      1.196       jym  * pool_cache_transfer:
   2496       1.43   thorpej  *
   2497      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2498      1.134        ad  *	Run within a cross-call thread.
   2499       1.43   thorpej  */
   2500       1.43   thorpej static void
   2501      1.196       jym pool_cache_transfer(pool_cache_t pc)
   2502       1.43   thorpej {
   2503      1.134        ad 	pool_cache_cpu_t *cc;
   2504      1.134        ad 	pcg_t *prev, *cur, **list;
   2505      1.162        ad 	int s;
   2506      1.134        ad 
   2507      1.162        ad 	s = splvm();
   2508      1.162        ad 	mutex_enter(&pc->pc_lock);
   2509      1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2510      1.134        ad 	cur = cc->cc_current;
   2511      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2512      1.134        ad 	prev = cc->cc_previous;
   2513      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2514      1.162        ad 	if (cur != &pcg_dummy) {
   2515      1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2516      1.134        ad 			list = &pc->pc_fullgroups;
   2517      1.134        ad 			pc->pc_nfull++;
   2518      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2519      1.134        ad 			list = &pc->pc_emptygroups;
   2520      1.134        ad 			pc->pc_nempty++;
   2521      1.134        ad 		} else {
   2522      1.134        ad 			list = &pc->pc_partgroups;
   2523      1.134        ad 			pc->pc_npart++;
   2524      1.134        ad 		}
   2525      1.134        ad 		cur->pcg_next = *list;
   2526      1.134        ad 		*list = cur;
   2527      1.134        ad 	}
   2528      1.162        ad 	if (prev != &pcg_dummy) {
   2529      1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2530      1.134        ad 			list = &pc->pc_fullgroups;
   2531      1.134        ad 			pc->pc_nfull++;
   2532      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2533      1.134        ad 			list = &pc->pc_emptygroups;
   2534      1.134        ad 			pc->pc_nempty++;
   2535      1.134        ad 		} else {
   2536      1.134        ad 			list = &pc->pc_partgroups;
   2537      1.134        ad 			pc->pc_npart++;
   2538      1.134        ad 		}
   2539      1.134        ad 		prev->pcg_next = *list;
   2540      1.134        ad 		*list = prev;
   2541      1.134        ad 	}
   2542      1.134        ad 	mutex_exit(&pc->pc_lock);
   2543      1.134        ad 	splx(s);
   2544        1.3        pk }
   2545       1.66   thorpej 
   2546       1.66   thorpej /*
   2547       1.66   thorpej  * Pool backend allocators.
   2548       1.66   thorpej  *
   2549       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2550       1.66   thorpej  * and any additional draining that might be needed.
   2551       1.66   thorpej  *
   2552       1.66   thorpej  * We provide two standard allocators:
   2553       1.66   thorpej  *
   2554       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2555       1.66   thorpej  *
   2556       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2557       1.66   thorpej  *	in interrupt context.
   2558       1.66   thorpej  */
   2559       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2560       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2561       1.66   thorpej 
   2562      1.112     bjh21 #ifdef POOL_SUBPAGE
   2563      1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2564      1.192     rmind 	.pa_alloc = pool_page_alloc,
   2565      1.192     rmind 	.pa_free = pool_page_free,
   2566      1.192     rmind 	.pa_pagesz = 0
   2567      1.112     bjh21 };
   2568      1.112     bjh21 #else
   2569       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2570      1.191      para 	.pa_alloc = pool_page_alloc,
   2571      1.191      para 	.pa_free = pool_page_free,
   2572      1.191      para 	.pa_pagesz = 0
   2573       1.66   thorpej };
   2574      1.112     bjh21 #endif
   2575       1.66   thorpej 
   2576      1.112     bjh21 #ifdef POOL_SUBPAGE
   2577      1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2578      1.194      para 	.pa_alloc = pool_page_alloc,
   2579      1.194      para 	.pa_free = pool_page_free,
   2580      1.192     rmind 	.pa_pagesz = 0
   2581      1.112     bjh21 };
   2582      1.112     bjh21 #else
   2583       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2584      1.191      para 	.pa_alloc = pool_page_alloc,
   2585      1.191      para 	.pa_free = pool_page_free,
   2586      1.191      para 	.pa_pagesz = 0
   2587       1.66   thorpej };
   2588      1.112     bjh21 #endif
   2589       1.66   thorpej 
   2590       1.66   thorpej #ifdef POOL_SUBPAGE
   2591       1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2592       1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2593       1.66   thorpej 
   2594      1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2595      1.193        he 	.pa_alloc = pool_subpage_alloc,
   2596      1.193        he 	.pa_free = pool_subpage_free,
   2597      1.193        he 	.pa_pagesz = POOL_SUBPAGE
   2598      1.112     bjh21 };
   2599      1.112     bjh21 
   2600      1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2601      1.192     rmind 	.pa_alloc = pool_subpage_alloc,
   2602      1.192     rmind 	.pa_free = pool_subpage_free,
   2603      1.192     rmind 	.pa_pagesz = POOL_SUBPAGE
   2604       1.66   thorpej };
   2605       1.66   thorpej #endif /* POOL_SUBPAGE */
   2606       1.66   thorpej 
   2607      1.208       chs struct pool_allocator pool_allocator_big[] = {
   2608      1.208       chs 	{
   2609      1.208       chs 		.pa_alloc = pool_page_alloc,
   2610      1.208       chs 		.pa_free = pool_page_free,
   2611      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2612      1.208       chs 	},
   2613      1.208       chs 	{
   2614      1.208       chs 		.pa_alloc = pool_page_alloc,
   2615      1.208       chs 		.pa_free = pool_page_free,
   2616      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2617      1.208       chs 	},
   2618      1.208       chs 	{
   2619      1.208       chs 		.pa_alloc = pool_page_alloc,
   2620      1.208       chs 		.pa_free = pool_page_free,
   2621      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2622      1.208       chs 	},
   2623      1.208       chs 	{
   2624      1.208       chs 		.pa_alloc = pool_page_alloc,
   2625      1.208       chs 		.pa_free = pool_page_free,
   2626      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2627      1.208       chs 	},
   2628      1.208       chs 	{
   2629      1.208       chs 		.pa_alloc = pool_page_alloc,
   2630      1.208       chs 		.pa_free = pool_page_free,
   2631      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2632      1.208       chs 	},
   2633      1.208       chs 	{
   2634      1.208       chs 		.pa_alloc = pool_page_alloc,
   2635      1.208       chs 		.pa_free = pool_page_free,
   2636      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2637      1.208       chs 	},
   2638      1.208       chs 	{
   2639      1.208       chs 		.pa_alloc = pool_page_alloc,
   2640      1.208       chs 		.pa_free = pool_page_free,
   2641      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2642      1.208       chs 	},
   2643      1.208       chs 	{
   2644      1.208       chs 		.pa_alloc = pool_page_alloc,
   2645      1.208       chs 		.pa_free = pool_page_free,
   2646      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2647      1.208       chs 	}
   2648      1.208       chs };
   2649      1.208       chs 
   2650      1.208       chs static int
   2651      1.208       chs pool_bigidx(size_t size)
   2652      1.208       chs {
   2653      1.208       chs 	int i;
   2654      1.208       chs 
   2655      1.208       chs 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2656      1.208       chs 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2657      1.208       chs 			return i;
   2658      1.208       chs 	}
   2659      1.208       chs 	panic("pool item size %zu too large, use a custom allocator", size);
   2660      1.208       chs }
   2661      1.208       chs 
   2662      1.117      yamt static void *
   2663      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2664       1.66   thorpej {
   2665      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2666       1.66   thorpej 	void *res;
   2667       1.66   thorpej 
   2668      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2669      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2670       1.66   thorpej 		/*
   2671      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2672      1.117      yamt 		 * In other cases, the hook will be run in
   2673      1.117      yamt 		 * pool_reclaim().
   2674       1.66   thorpej 		 */
   2675      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2676      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2677      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2678       1.66   thorpej 		}
   2679      1.117      yamt 	}
   2680      1.117      yamt 	return res;
   2681       1.66   thorpej }
   2682       1.66   thorpej 
   2683      1.117      yamt static void
   2684       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2685       1.66   thorpej {
   2686       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2687       1.66   thorpej 
   2688       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2689       1.66   thorpej }
   2690       1.66   thorpej 
   2691       1.66   thorpej void *
   2692      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2693       1.66   thorpej {
   2694      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2695      1.191      para 	vmem_addr_t va;
   2696      1.192     rmind 	int ret;
   2697      1.191      para 
   2698      1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2699      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2700       1.66   thorpej 
   2701      1.192     rmind 	return ret ? NULL : (void *)va;
   2702       1.66   thorpej }
   2703       1.66   thorpej 
   2704       1.66   thorpej void
   2705      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2706       1.66   thorpej {
   2707       1.66   thorpej 
   2708      1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2709       1.98      yamt }
   2710       1.98      yamt 
   2711       1.98      yamt static void *
   2712      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2713       1.98      yamt {
   2714      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2715      1.192     rmind 	vmem_addr_t va;
   2716      1.192     rmind 	int ret;
   2717      1.191      para 
   2718      1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2719      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2720       1.98      yamt 
   2721      1.192     rmind 	return ret ? NULL : (void *)va;
   2722       1.98      yamt }
   2723       1.98      yamt 
   2724       1.98      yamt static void
   2725      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2726       1.98      yamt {
   2727       1.98      yamt 
   2728      1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2729       1.66   thorpej }
   2730       1.66   thorpej 
   2731      1.204      maxv #ifdef POOL_REDZONE
   2732      1.204      maxv #if defined(_LP64)
   2733      1.204      maxv # define PRIME 0x9e37fffffffc0000UL
   2734      1.204      maxv #else /* defined(_LP64) */
   2735      1.204      maxv # define PRIME 0x9e3779b1
   2736      1.204      maxv #endif /* defined(_LP64) */
   2737      1.204      maxv #define STATIC_BYTE	0xFE
   2738      1.204      maxv CTASSERT(POOL_REDZONE_SIZE > 1);
   2739      1.204      maxv 
   2740  1.221.2.2  pgoyette #ifndef KASAN
   2741      1.204      maxv static inline uint8_t
   2742      1.204      maxv pool_pattern_generate(const void *p)
   2743      1.204      maxv {
   2744      1.204      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
   2745      1.204      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2746      1.204      maxv }
   2747  1.221.2.2  pgoyette #endif
   2748      1.204      maxv 
   2749      1.204      maxv static void
   2750      1.204      maxv pool_redzone_init(struct pool *pp, size_t requested_size)
   2751      1.204      maxv {
   2752      1.204      maxv 	size_t nsz;
   2753      1.204      maxv 
   2754      1.204      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   2755      1.204      maxv 		pp->pr_reqsize = 0;
   2756      1.204      maxv 		pp->pr_redzone = false;
   2757      1.204      maxv 		return;
   2758      1.204      maxv 	}
   2759      1.204      maxv 
   2760      1.204      maxv 	/*
   2761      1.204      maxv 	 * We may have extended the requested size earlier; check if
   2762      1.204      maxv 	 * there's naturally space in the padding for a red zone.
   2763      1.204      maxv 	 */
   2764      1.204      maxv 	if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) {
   2765      1.204      maxv 		pp->pr_reqsize = requested_size;
   2766      1.204      maxv 		pp->pr_redzone = true;
   2767      1.204      maxv 		return;
   2768      1.204      maxv 	}
   2769      1.204      maxv 
   2770      1.204      maxv 	/*
   2771      1.204      maxv 	 * No space in the natural padding; check if we can extend a
   2772      1.204      maxv 	 * bit the size of the pool.
   2773      1.204      maxv 	 */
   2774      1.204      maxv 	nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align);
   2775      1.204      maxv 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2776      1.204      maxv 		/* Ok, we can */
   2777      1.204      maxv 		pp->pr_size = nsz;
   2778      1.204      maxv 		pp->pr_reqsize = requested_size;
   2779      1.204      maxv 		pp->pr_redzone = true;
   2780      1.204      maxv 	} else {
   2781      1.204      maxv 		/* No space for a red zone... snif :'( */
   2782      1.204      maxv 		pp->pr_reqsize = 0;
   2783      1.204      maxv 		pp->pr_redzone = false;
   2784      1.204      maxv 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2785      1.204      maxv 	}
   2786      1.204      maxv }
   2787      1.204      maxv 
   2788      1.204      maxv static void
   2789      1.204      maxv pool_redzone_fill(struct pool *pp, void *p)
   2790      1.204      maxv {
   2791      1.204      maxv 	if (!pp->pr_redzone)
   2792      1.204      maxv 		return;
   2793  1.221.2.2  pgoyette #ifdef KASAN
   2794  1.221.2.2  pgoyette 	kasan_alloc(p, pp->pr_reqsize, pp->pr_reqsize + POOL_REDZONE_SIZE);
   2795  1.221.2.2  pgoyette #else
   2796  1.221.2.2  pgoyette 	uint8_t *cp, pat;
   2797  1.221.2.2  pgoyette 	const uint8_t *ep;
   2798      1.204      maxv 
   2799      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   2800      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   2801      1.204      maxv 
   2802      1.204      maxv 	/*
   2803      1.204      maxv 	 * We really don't want the first byte of the red zone to be '\0';
   2804      1.204      maxv 	 * an off-by-one in a string may not be properly detected.
   2805      1.204      maxv 	 */
   2806      1.204      maxv 	pat = pool_pattern_generate(cp);
   2807      1.204      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2808      1.204      maxv 	cp++;
   2809      1.204      maxv 
   2810      1.204      maxv 	while (cp < ep) {
   2811      1.204      maxv 		*cp = pool_pattern_generate(cp);
   2812      1.204      maxv 		cp++;
   2813      1.204      maxv 	}
   2814  1.221.2.2  pgoyette #endif
   2815      1.204      maxv }
   2816      1.204      maxv 
   2817      1.204      maxv static void
   2818      1.204      maxv pool_redzone_check(struct pool *pp, void *p)
   2819      1.204      maxv {
   2820      1.204      maxv 	if (!pp->pr_redzone)
   2821      1.204      maxv 		return;
   2822  1.221.2.2  pgoyette #ifdef KASAN
   2823  1.221.2.2  pgoyette 	kasan_free(p, pp->pr_reqsize + POOL_REDZONE_SIZE);
   2824  1.221.2.2  pgoyette #else
   2825  1.221.2.2  pgoyette 	uint8_t *cp, pat, expected;
   2826  1.221.2.2  pgoyette 	const uint8_t *ep;
   2827      1.204      maxv 
   2828      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   2829      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   2830      1.204      maxv 
   2831      1.204      maxv 	pat = pool_pattern_generate(cp);
   2832      1.204      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2833  1.221.2.2  pgoyette 	if (__predict_false(expected != *cp)) {
   2834  1.221.2.2  pgoyette 		printf("%s: %p: 0x%02x != 0x%02x\n",
   2835      1.204      maxv 		   __func__, cp, *cp, expected);
   2836      1.204      maxv 	}
   2837      1.204      maxv 	cp++;
   2838      1.204      maxv 
   2839      1.204      maxv 	while (cp < ep) {
   2840      1.204      maxv 		expected = pool_pattern_generate(cp);
   2841  1.221.2.2  pgoyette 		if (__predict_false(*cp != expected)) {
   2842  1.221.2.2  pgoyette 			printf("%s: %p: 0x%02x != 0x%02x\n",
   2843      1.204      maxv 			   __func__, cp, *cp, expected);
   2844      1.204      maxv 		}
   2845      1.204      maxv 		cp++;
   2846      1.204      maxv 	}
   2847  1.221.2.2  pgoyette #endif
   2848      1.204      maxv }
   2849      1.204      maxv 
   2850      1.204      maxv #endif /* POOL_REDZONE */
   2851      1.204      maxv 
   2852      1.204      maxv 
   2853       1.66   thorpej #ifdef POOL_SUBPAGE
   2854       1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2855       1.66   thorpej void *
   2856       1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2857       1.66   thorpej {
   2858      1.134        ad 	return pool_get(&psppool, flags);
   2859       1.66   thorpej }
   2860       1.66   thorpej 
   2861       1.66   thorpej void
   2862       1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2863       1.66   thorpej {
   2864       1.66   thorpej 	pool_put(&psppool, v);
   2865       1.66   thorpej }
   2866       1.66   thorpej 
   2867      1.112     bjh21 #endif /* POOL_SUBPAGE */
   2868      1.141      yamt 
   2869      1.141      yamt #if defined(DDB)
   2870      1.141      yamt static bool
   2871      1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2872      1.141      yamt {
   2873      1.141      yamt 
   2874      1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   2875      1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2876      1.141      yamt }
   2877      1.141      yamt 
   2878      1.143      yamt static bool
   2879      1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2880      1.143      yamt {
   2881      1.143      yamt 
   2882      1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2883      1.143      yamt }
   2884      1.143      yamt 
   2885      1.143      yamt static bool
   2886      1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2887      1.143      yamt {
   2888      1.143      yamt 	int i;
   2889      1.143      yamt 
   2890      1.143      yamt 	if (pcg == NULL) {
   2891      1.143      yamt 		return false;
   2892      1.143      yamt 	}
   2893      1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   2894      1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2895      1.143      yamt 			return true;
   2896      1.143      yamt 		}
   2897      1.143      yamt 	}
   2898      1.143      yamt 	return false;
   2899      1.143      yamt }
   2900      1.143      yamt 
   2901      1.143      yamt static bool
   2902      1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2903      1.143      yamt {
   2904      1.143      yamt 
   2905      1.143      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2906      1.143      yamt 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2907      1.143      yamt 		pool_item_bitmap_t *bitmap =
   2908      1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2909      1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2910      1.143      yamt 
   2911      1.143      yamt 		return (*bitmap & mask) == 0;
   2912      1.143      yamt 	} else {
   2913      1.143      yamt 		struct pool_item *pi;
   2914      1.143      yamt 
   2915      1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2916      1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   2917      1.143      yamt 				return false;
   2918      1.143      yamt 			}
   2919      1.143      yamt 		}
   2920      1.143      yamt 		return true;
   2921      1.143      yamt 	}
   2922      1.143      yamt }
   2923      1.143      yamt 
   2924      1.141      yamt void
   2925      1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2926      1.141      yamt {
   2927      1.141      yamt 	struct pool *pp;
   2928      1.141      yamt 
   2929      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2930      1.141      yamt 		struct pool_item_header *ph;
   2931      1.141      yamt 		uintptr_t item;
   2932      1.143      yamt 		bool allocated = true;
   2933      1.143      yamt 		bool incache = false;
   2934      1.143      yamt 		bool incpucache = false;
   2935      1.143      yamt 		char cpucachestr[32];
   2936      1.141      yamt 
   2937      1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2938      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2939      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2940      1.141      yamt 					goto found;
   2941      1.141      yamt 				}
   2942      1.141      yamt 			}
   2943      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2944      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   2945      1.143      yamt 					allocated =
   2946      1.143      yamt 					    pool_allocated(pp, ph, addr);
   2947      1.143      yamt 					goto found;
   2948      1.143      yamt 				}
   2949      1.143      yamt 			}
   2950      1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2951      1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   2952      1.143      yamt 					allocated = false;
   2953      1.141      yamt 					goto found;
   2954      1.141      yamt 				}
   2955      1.141      yamt 			}
   2956      1.141      yamt 			continue;
   2957      1.141      yamt 		} else {
   2958      1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2959      1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2960      1.141      yamt 				continue;
   2961      1.141      yamt 			}
   2962      1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   2963      1.141      yamt 		}
   2964      1.141      yamt found:
   2965      1.143      yamt 		if (allocated && pp->pr_cache) {
   2966      1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   2967      1.143      yamt 			struct pool_cache_group *pcg;
   2968      1.143      yamt 			int i;
   2969      1.143      yamt 
   2970      1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2971      1.143      yamt 			    pcg = pcg->pcg_next) {
   2972      1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   2973      1.143      yamt 					incache = true;
   2974      1.143      yamt 					goto print;
   2975      1.143      yamt 				}
   2976      1.143      yamt 			}
   2977      1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   2978      1.143      yamt 				pool_cache_cpu_t *cc;
   2979      1.143      yamt 
   2980      1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2981      1.143      yamt 					continue;
   2982      1.143      yamt 				}
   2983      1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2984      1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2985      1.143      yamt 					struct cpu_info *ci =
   2986      1.170        ad 					    cpu_lookup(i);
   2987      1.143      yamt 
   2988      1.143      yamt 					incpucache = true;
   2989      1.143      yamt 					snprintf(cpucachestr,
   2990      1.143      yamt 					    sizeof(cpucachestr),
   2991      1.143      yamt 					    "cached by CPU %u",
   2992      1.153    martin 					    ci->ci_index);
   2993      1.143      yamt 					goto print;
   2994      1.143      yamt 				}
   2995      1.143      yamt 			}
   2996      1.143      yamt 		}
   2997      1.143      yamt print:
   2998      1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2999      1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3000      1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3001      1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3002      1.143      yamt 		    pp->pr_wchan,
   3003      1.143      yamt 		    incpucache ? cpucachestr :
   3004      1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3005      1.141      yamt 	}
   3006      1.141      yamt }
   3007      1.141      yamt #endif /* defined(DDB) */
   3008      1.203     joerg 
   3009      1.203     joerg static int
   3010      1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   3011      1.203     joerg {
   3012      1.203     joerg 	struct pool_sysctl data;
   3013      1.203     joerg 	struct pool *pp;
   3014      1.203     joerg 	struct pool_cache *pc;
   3015      1.203     joerg 	pool_cache_cpu_t *cc;
   3016      1.203     joerg 	int error;
   3017      1.203     joerg 	size_t i, written;
   3018      1.203     joerg 
   3019      1.203     joerg 	if (oldp == NULL) {
   3020      1.203     joerg 		*oldlenp = 0;
   3021      1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3022      1.203     joerg 			*oldlenp += sizeof(data);
   3023      1.203     joerg 		return 0;
   3024      1.203     joerg 	}
   3025      1.203     joerg 
   3026      1.203     joerg 	memset(&data, 0, sizeof(data));
   3027      1.203     joerg 	error = 0;
   3028      1.203     joerg 	written = 0;
   3029      1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3030      1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   3031      1.203     joerg 			break;
   3032      1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3033      1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3034      1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3035      1.203     joerg #define COPY(field) data.field = pp->field
   3036      1.203     joerg 		COPY(pr_size);
   3037      1.203     joerg 
   3038      1.203     joerg 		COPY(pr_itemsperpage);
   3039      1.203     joerg 		COPY(pr_nitems);
   3040      1.203     joerg 		COPY(pr_nout);
   3041      1.203     joerg 		COPY(pr_hardlimit);
   3042      1.203     joerg 		COPY(pr_npages);
   3043      1.203     joerg 		COPY(pr_minpages);
   3044      1.203     joerg 		COPY(pr_maxpages);
   3045      1.203     joerg 
   3046      1.203     joerg 		COPY(pr_nget);
   3047      1.203     joerg 		COPY(pr_nfail);
   3048      1.203     joerg 		COPY(pr_nput);
   3049      1.203     joerg 		COPY(pr_npagealloc);
   3050      1.203     joerg 		COPY(pr_npagefree);
   3051      1.203     joerg 		COPY(pr_hiwat);
   3052      1.203     joerg 		COPY(pr_nidle);
   3053      1.203     joerg #undef COPY
   3054      1.203     joerg 
   3055      1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   3056      1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   3057      1.203     joerg 		if (pp->pr_cache) {
   3058      1.203     joerg 			pc = pp->pr_cache;
   3059      1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3060      1.203     joerg 			data.pr_cache_nfull = pc->pc_nfull;
   3061      1.203     joerg 			data.pr_cache_npartial = pc->pc_npart;
   3062      1.203     joerg 			data.pr_cache_nempty = pc->pc_nempty;
   3063      1.203     joerg 			data.pr_cache_ncontended = pc->pc_contended;
   3064      1.203     joerg 			data.pr_cache_nmiss_global = pc->pc_misses;
   3065      1.203     joerg 			data.pr_cache_nhit_global = pc->pc_hits;
   3066      1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3067      1.203     joerg 				cc = pc->pc_cpus[i];
   3068      1.203     joerg 				if (cc == NULL)
   3069      1.203     joerg 					continue;
   3070      1.206  knakahar 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3071      1.206  knakahar 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3072      1.203     joerg 			}
   3073      1.203     joerg 		} else {
   3074      1.203     joerg 			data.pr_cache_meta_size = 0;
   3075      1.203     joerg 			data.pr_cache_nfull = 0;
   3076      1.203     joerg 			data.pr_cache_npartial = 0;
   3077      1.203     joerg 			data.pr_cache_nempty = 0;
   3078      1.203     joerg 			data.pr_cache_ncontended = 0;
   3079      1.203     joerg 			data.pr_cache_nmiss_global = 0;
   3080      1.203     joerg 			data.pr_cache_nhit_global = 0;
   3081      1.203     joerg 		}
   3082      1.203     joerg 
   3083      1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3084      1.203     joerg 		if (error)
   3085      1.203     joerg 			break;
   3086      1.203     joerg 		written += sizeof(data);
   3087      1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   3088      1.203     joerg 	}
   3089      1.203     joerg 
   3090      1.203     joerg 	*oldlenp = written;
   3091      1.203     joerg 	return error;
   3092      1.203     joerg }
   3093      1.203     joerg 
   3094      1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3095      1.203     joerg {
   3096      1.203     joerg 	const struct sysctlnode *rnode = NULL;
   3097      1.203     joerg 
   3098      1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   3099      1.203     joerg 		       CTLFLAG_PERMANENT,
   3100      1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   3101      1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   3102      1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   3103      1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3104      1.203     joerg }
   3105