Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.221.4.1
      1  1.221.4.1  christos /*	$NetBSD: subr_pool.c,v 1.221.4.1 2019/06/10 22:09:03 christos Exp $	*/
      2        1.1        pk 
      3  1.221.4.1  christos /*
      4  1.221.4.1  christos  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5      1.183        ad  *     The NetBSD Foundation, Inc.
      6        1.1        pk  * All rights reserved.
      7        1.1        pk  *
      8        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10      1.204      maxv  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11      1.204      maxv  * Maxime Villard.
     12        1.1        pk  *
     13        1.1        pk  * Redistribution and use in source and binary forms, with or without
     14        1.1        pk  * modification, are permitted provided that the following conditions
     15        1.1        pk  * are met:
     16        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20        1.1        pk  *    documentation and/or other materials provided with the distribution.
     21        1.1        pk  *
     22        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33        1.1        pk  */
     34       1.64     lukem 
     35       1.64     lukem #include <sys/cdefs.h>
     36  1.221.4.1  christos __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.221.4.1 2019/06/10 22:09:03 christos Exp $");
     37       1.24    scottr 
     38      1.205     pooka #ifdef _KERNEL_OPT
     39      1.141      yamt #include "opt_ddb.h"
     40       1.28   thorpej #include "opt_lockdebug.h"
     41  1.221.4.1  christos #include "opt_pool.h"
     42  1.221.4.1  christos #include "opt_kleak.h"
     43      1.205     pooka #endif
     44        1.1        pk 
     45        1.1        pk #include <sys/param.h>
     46        1.1        pk #include <sys/systm.h>
     47      1.203     joerg #include <sys/sysctl.h>
     48      1.135      yamt #include <sys/bitops.h>
     49        1.1        pk #include <sys/proc.h>
     50        1.1        pk #include <sys/errno.h>
     51        1.1        pk #include <sys/kernel.h>
     52      1.191      para #include <sys/vmem.h>
     53        1.1        pk #include <sys/pool.h>
     54       1.20   thorpej #include <sys/syslog.h>
     55      1.125        ad #include <sys/debug.h>
     56      1.134        ad #include <sys/lockdebug.h>
     57      1.134        ad #include <sys/xcall.h>
     58      1.134        ad #include <sys/cpu.h>
     59      1.145        ad #include <sys/atomic.h>
     60  1.221.4.1  christos #include <sys/asan.h>
     61        1.3        pk 
     62      1.187  uebayasi #include <uvm/uvm_extern.h>
     63        1.3        pk 
     64        1.1        pk /*
     65        1.1        pk  * Pool resource management utility.
     66        1.3        pk  *
     67       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     68       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     69       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     70       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     71       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     72       1.88       chs  * header. The memory for building the page list is either taken from
     73       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     74       1.88       chs  * an internal pool of page headers (`phpool').
     75        1.1        pk  */
     76        1.1        pk 
     77      1.221      para /* List of all pools. Non static as needed by 'vmstat -m' */
     78      1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     79      1.134        ad 
     80        1.3        pk /* Private pool for page header structures */
     81       1.97      yamt #define	PHPOOL_MAX	8
     82       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     83      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     84      1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     85        1.3        pk 
     86  1.221.4.1  christos #if defined(KASAN)
     87  1.221.4.1  christos #define POOL_REDZONE
     88       1.62     bjh21 #endif
     89       1.62     bjh21 
     90      1.204      maxv #ifdef POOL_REDZONE
     91  1.221.4.1  christos # ifdef KASAN
     92  1.221.4.1  christos #  define POOL_REDZONE_SIZE 8
     93  1.221.4.1  christos # else
     94  1.221.4.1  christos #  define POOL_REDZONE_SIZE 2
     95  1.221.4.1  christos # endif
     96      1.204      maxv static void pool_redzone_init(struct pool *, size_t);
     97      1.204      maxv static void pool_redzone_fill(struct pool *, void *);
     98      1.204      maxv static void pool_redzone_check(struct pool *, void *);
     99  1.221.4.1  christos static void pool_cache_redzone_check(pool_cache_t, void *);
    100      1.204      maxv #else
    101  1.221.4.1  christos # define pool_redzone_init(pp, sz)		__nothing
    102  1.221.4.1  christos # define pool_redzone_fill(pp, ptr)		__nothing
    103  1.221.4.1  christos # define pool_redzone_check(pp, ptr)		__nothing
    104  1.221.4.1  christos # define pool_cache_redzone_check(pc, ptr)	__nothing
    105      1.204      maxv #endif
    106      1.204      maxv 
    107  1.221.4.1  christos #ifdef KLEAK
    108  1.221.4.1  christos static void pool_kleak_fill(struct pool *, void *);
    109  1.221.4.1  christos static void pool_cache_kleak_fill(pool_cache_t, void *);
    110  1.221.4.1  christos #else
    111  1.221.4.1  christos #define pool_kleak_fill(pp, ptr)	__nothing
    112  1.221.4.1  christos #define pool_cache_kleak_fill(pc, ptr)	__nothing
    113  1.221.4.1  christos #endif
    114  1.221.4.1  christos 
    115  1.221.4.1  christos #ifdef POOL_QUARANTINE
    116  1.221.4.1  christos static void pool_quarantine_init(struct pool *);
    117  1.221.4.1  christos static void pool_quarantine_flush(struct pool *);
    118  1.221.4.1  christos static bool pool_put_quarantine(struct pool *, void *,
    119  1.221.4.1  christos     struct pool_pagelist *);
    120  1.221.4.1  christos static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t);
    121  1.221.4.1  christos #else
    122  1.221.4.1  christos #define pool_quarantine_init(a)			__nothing
    123  1.221.4.1  christos #define pool_quarantine_flush(a)		__nothing
    124  1.221.4.1  christos #define pool_put_quarantine(a, b, c)		false
    125  1.221.4.1  christos #define pool_cache_put_quarantine(a, b, c)	false
    126  1.221.4.1  christos #endif
    127  1.221.4.1  christos 
    128  1.221.4.1  christos #define pc_has_ctor(pc) \
    129  1.221.4.1  christos 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
    130  1.221.4.1  christos #define pc_has_dtor(pc) \
    131  1.221.4.1  christos 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
    132  1.221.4.1  christos 
    133       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    134       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    135       1.98      yamt 
    136       1.98      yamt /* allocator for pool metadata */
    137      1.134        ad struct pool_allocator pool_allocator_meta = {
    138      1.191      para 	.pa_alloc = pool_page_alloc_meta,
    139      1.191      para 	.pa_free = pool_page_free_meta,
    140      1.191      para 	.pa_pagesz = 0
    141       1.98      yamt };
    142       1.98      yamt 
    143      1.208       chs #define POOL_ALLOCATOR_BIG_BASE 13
    144      1.208       chs extern struct pool_allocator pool_allocator_big[];
    145      1.208       chs static int pool_bigidx(size_t);
    146      1.208       chs 
    147        1.3        pk /* # of seconds to retain page after last use */
    148        1.3        pk int pool_inactive_time = 10;
    149        1.3        pk 
    150        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    151  1.221.4.1  christos static struct pool *drainpp;
    152       1.23   thorpej 
    153      1.134        ad /* This lock protects both pool_head and drainpp. */
    154      1.134        ad static kmutex_t pool_head_lock;
    155      1.134        ad static kcondvar_t pool_busy;
    156        1.3        pk 
    157      1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    158      1.178      elad static kmutex_t pool_allocator_lock;
    159      1.178      elad 
    160  1.221.4.1  christos static unsigned int poolid_counter = 0;
    161  1.221.4.1  christos 
    162      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    163      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    164      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    165       1.99      yamt 
    166        1.3        pk struct pool_item_header {
    167        1.3        pk 	/* Page headers */
    168       1.88       chs 	LIST_ENTRY(pool_item_header)
    169        1.3        pk 				ph_pagelist;	/* pool page list */
    170  1.221.4.1  christos 	union {
    171  1.221.4.1  christos 		/* !PR_PHINPAGE */
    172  1.221.4.1  christos 		struct {
    173  1.221.4.1  christos 			SPLAY_ENTRY(pool_item_header)
    174  1.221.4.1  christos 				phu_node;	/* off-page page headers */
    175  1.221.4.1  christos 		} phu_offpage;
    176  1.221.4.1  christos 		/* PR_PHINPAGE */
    177  1.221.4.1  christos 		struct {
    178  1.221.4.1  christos 			unsigned int phu_poolid;
    179  1.221.4.1  christos 		} phu_onpage;
    180  1.221.4.1  christos 	} ph_u1;
    181      1.128  christos 	void *			ph_page;	/* this page's address */
    182      1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    183      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    184      1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    185       1.97      yamt 	union {
    186  1.221.4.1  christos 		/* !PR_USEBMAP */
    187       1.97      yamt 		struct {
    188      1.102       chs 			LIST_HEAD(, pool_item)
    189       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    190       1.97      yamt 		} phu_normal;
    191  1.221.4.1  christos 		/* PR_USEBMAP */
    192       1.97      yamt 		struct {
    193      1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    194       1.97      yamt 		} phu_notouch;
    195  1.221.4.1  christos 	} ph_u2;
    196        1.3        pk };
    197  1.221.4.1  christos #define ph_node		ph_u1.phu_offpage.phu_node
    198  1.221.4.1  christos #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    199  1.221.4.1  christos #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    200  1.221.4.1  christos #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    201  1.221.4.1  christos 
    202  1.221.4.1  christos #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    203  1.221.4.1  christos 
    204  1.221.4.1  christos #if defined(DIAGNOSTIC) && !defined(KASAN)
    205  1.221.4.1  christos #define POOL_CHECK_MAGIC
    206  1.221.4.1  christos #endif
    207        1.3        pk 
    208        1.1        pk struct pool_item {
    209  1.221.4.1  christos #ifdef POOL_CHECK_MAGIC
    210       1.82   thorpej 	u_int pi_magic;
    211       1.33       chs #endif
    212      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    213        1.3        pk 	/* Other entries use only this list entry */
    214      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    215        1.3        pk };
    216        1.3        pk 
    217       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    218       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    219       1.53   thorpej 
    220       1.43   thorpej /*
    221       1.43   thorpej  * Pool cache management.
    222       1.43   thorpej  *
    223       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    224       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    225       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    226       1.43   thorpej  * necessary.
    227       1.43   thorpej  *
    228      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    229      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    230      1.134        ad  * object from the pool, it calls the object's constructor and places it
    231      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    232      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    233      1.134        ad  * to persist in constructed form while freed to the cache.
    234      1.134        ad  *
    235      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    236      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    237      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    238      1.134        ad  * its entirety.
    239       1.43   thorpej  *
    240       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    241       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    242       1.43   thorpej  * from it.
    243       1.43   thorpej  */
    244       1.43   thorpej 
    245      1.142        ad static struct pool pcg_normal_pool;
    246      1.142        ad static struct pool pcg_large_pool;
    247      1.134        ad static struct pool cache_pool;
    248      1.134        ad static struct pool cache_cpu_pool;
    249        1.3        pk 
    250      1.145        ad /* List of all caches. */
    251      1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    252      1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    253      1.145        ad 
    254      1.162        ad int pool_cache_disable;		/* global disable for caching */
    255      1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    256      1.145        ad 
    257      1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    258      1.162        ad 				    void *);
    259      1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    260      1.162        ad 				    void **, paddr_t *, int);
    261      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    262      1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    263      1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    264      1.196       jym static void	pool_cache_transfer(pool_cache_t);
    265        1.3        pk 
    266       1.42   thorpej static int	pool_catchup(struct pool *);
    267      1.128  christos static void	pool_prime_page(struct pool *, void *,
    268       1.55   thorpej 		    struct pool_item_header *);
    269       1.88       chs static void	pool_update_curpage(struct pool *);
    270       1.66   thorpej 
    271      1.113      yamt static int	pool_grow(struct pool *, int);
    272      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    273      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    274        1.3        pk 
    275       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    276      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    277       1.42   thorpej static void pool_print1(struct pool *, const char *,
    278      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    279        1.3        pk 
    280       1.88       chs static int pool_chk_page(struct pool *, const char *,
    281       1.88       chs 			 struct pool_item_header *);
    282       1.88       chs 
    283  1.221.4.1  christos /* -------------------------------------------------------------------------- */
    284  1.221.4.1  christos 
    285      1.135      yamt static inline unsigned int
    286  1.221.4.1  christos pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    287       1.97      yamt     const void *v)
    288       1.97      yamt {
    289       1.97      yamt 	const char *cp = v;
    290      1.135      yamt 	unsigned int idx;
    291       1.97      yamt 
    292  1.221.4.1  christos 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    293      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    294  1.221.4.1  christos 
    295  1.221.4.1  christos 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    296  1.221.4.1  christos 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    297  1.221.4.1  christos 		    pp->pr_itemsperpage);
    298  1.221.4.1  christos 	}
    299  1.221.4.1  christos 
    300       1.97      yamt 	return idx;
    301       1.97      yamt }
    302       1.97      yamt 
    303      1.110     perry static inline void
    304  1.221.4.1  christos pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    305       1.97      yamt     void *obj)
    306       1.97      yamt {
    307  1.221.4.1  christos 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    308      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    309  1.221.4.1  christos 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    310  1.221.4.1  christos 
    311  1.221.4.1  christos 	if (__predict_false((*bitmap & mask) != 0)) {
    312  1.221.4.1  christos 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    313  1.221.4.1  christos 	}
    314       1.97      yamt 
    315      1.135      yamt 	*bitmap |= mask;
    316       1.97      yamt }
    317       1.97      yamt 
    318      1.110     perry static inline void *
    319  1.221.4.1  christos pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    320       1.97      yamt {
    321      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    322      1.135      yamt 	unsigned int idx;
    323      1.135      yamt 	int i;
    324       1.97      yamt 
    325      1.135      yamt 	for (i = 0; ; i++) {
    326      1.135      yamt 		int bit;
    327       1.97      yamt 
    328      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    329      1.135      yamt 		bit = ffs32(bitmap[i]);
    330      1.135      yamt 		if (bit) {
    331      1.135      yamt 			pool_item_bitmap_t mask;
    332      1.135      yamt 
    333      1.135      yamt 			bit--;
    334      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    335  1.221.4.1  christos 			mask = 1U << bit;
    336      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    337      1.135      yamt 			bitmap[i] &= ~mask;
    338      1.135      yamt 			break;
    339      1.135      yamt 		}
    340      1.135      yamt 	}
    341      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    342      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    343       1.97      yamt }
    344       1.97      yamt 
    345      1.135      yamt static inline void
    346  1.221.4.1  christos pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    347      1.135      yamt {
    348      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    349      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    350      1.135      yamt 	int i;
    351      1.135      yamt 
    352      1.135      yamt 	for (i = 0; i < n; i++) {
    353      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    354      1.135      yamt 	}
    355      1.135      yamt }
    356      1.135      yamt 
    357  1.221.4.1  christos /* -------------------------------------------------------------------------- */
    358  1.221.4.1  christos 
    359  1.221.4.1  christos static inline void
    360  1.221.4.1  christos pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    361  1.221.4.1  christos     void *obj)
    362  1.221.4.1  christos {
    363  1.221.4.1  christos 	struct pool_item *pi = obj;
    364  1.221.4.1  christos 
    365  1.221.4.1  christos #ifdef POOL_CHECK_MAGIC
    366  1.221.4.1  christos 	pi->pi_magic = PI_MAGIC;
    367  1.221.4.1  christos #endif
    368  1.221.4.1  christos 
    369  1.221.4.1  christos 	if (pp->pr_redzone) {
    370  1.221.4.1  christos 		/*
    371  1.221.4.1  christos 		 * Mark the pool_item as valid. The rest is already
    372  1.221.4.1  christos 		 * invalid.
    373  1.221.4.1  christos 		 */
    374  1.221.4.1  christos 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
    375  1.221.4.1  christos 	}
    376  1.221.4.1  christos 
    377  1.221.4.1  christos 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    378  1.221.4.1  christos }
    379  1.221.4.1  christos 
    380  1.221.4.1  christos static inline void *
    381  1.221.4.1  christos pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    382  1.221.4.1  christos {
    383  1.221.4.1  christos 	struct pool_item *pi;
    384  1.221.4.1  christos 	void *v;
    385  1.221.4.1  christos 
    386  1.221.4.1  christos 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    387  1.221.4.1  christos 	if (__predict_false(v == NULL)) {
    388  1.221.4.1  christos 		mutex_exit(&pp->pr_lock);
    389  1.221.4.1  christos 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    390  1.221.4.1  christos 	}
    391  1.221.4.1  christos 	KASSERTMSG((pp->pr_nitems > 0),
    392  1.221.4.1  christos 	    "%s: [%s] nitems %u inconsistent on itemlist",
    393  1.221.4.1  christos 	    __func__, pp->pr_wchan, pp->pr_nitems);
    394  1.221.4.1  christos #ifdef POOL_CHECK_MAGIC
    395  1.221.4.1  christos 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    396  1.221.4.1  christos 	    "%s: [%s] free list modified: "
    397  1.221.4.1  christos 	    "magic=%x; page %p; item addr %p", __func__,
    398  1.221.4.1  christos 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    399  1.221.4.1  christos #endif
    400  1.221.4.1  christos 
    401  1.221.4.1  christos 	/*
    402  1.221.4.1  christos 	 * Remove from item list.
    403  1.221.4.1  christos 	 */
    404  1.221.4.1  christos 	LIST_REMOVE(pi, pi_list);
    405  1.221.4.1  christos 
    406  1.221.4.1  christos 	return v;
    407  1.221.4.1  christos }
    408  1.221.4.1  christos 
    409  1.221.4.1  christos /* -------------------------------------------------------------------------- */
    410  1.221.4.1  christos 
    411      1.110     perry static inline int
    412       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    413       1.88       chs {
    414      1.121      yamt 
    415      1.121      yamt 	/*
    416  1.221.4.1  christos 	 * We consider pool_item_header with smaller ph_page bigger. This
    417  1.221.4.1  christos 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    418      1.121      yamt 	 */
    419       1.88       chs 	if (a->ph_page < b->ph_page)
    420  1.221.4.1  christos 		return 1;
    421      1.121      yamt 	else if (a->ph_page > b->ph_page)
    422  1.221.4.1  christos 		return -1;
    423       1.88       chs 	else
    424  1.221.4.1  christos 		return 0;
    425       1.88       chs }
    426       1.88       chs 
    427       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    428       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    429       1.88       chs 
    430      1.141      yamt static inline struct pool_item_header *
    431      1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    432      1.141      yamt {
    433      1.141      yamt 	struct pool_item_header *ph, tmp;
    434      1.141      yamt 
    435      1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    436      1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    437      1.141      yamt 	if (ph == NULL) {
    438      1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    439      1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    440      1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    441      1.141      yamt 		}
    442      1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    443      1.141      yamt 	}
    444      1.141      yamt 
    445      1.141      yamt 	return ph;
    446      1.141      yamt }
    447      1.141      yamt 
    448        1.3        pk /*
    449      1.121      yamt  * Return the pool page header based on item address.
    450        1.3        pk  */
    451      1.110     perry static inline struct pool_item_header *
    452      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    453        1.3        pk {
    454       1.88       chs 	struct pool_item_header *ph, tmp;
    455        1.3        pk 
    456      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    457      1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    458      1.121      yamt 	} else {
    459      1.128  christos 		void *page =
    460      1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    461      1.121      yamt 
    462      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    463  1.221.4.1  christos 			ph = (struct pool_item_header *)page;
    464  1.221.4.1  christos 			if (__predict_false((void *)ph->ph_page != page)) {
    465  1.221.4.1  christos 				panic("%s: [%s] item %p not part of pool",
    466  1.221.4.1  christos 				    __func__, pp->pr_wchan, v);
    467  1.221.4.1  christos 			}
    468  1.221.4.1  christos 			if (__predict_false((char *)v < (char *)page +
    469  1.221.4.1  christos 			    ph->ph_off)) {
    470  1.221.4.1  christos 				panic("%s: [%s] item %p below item space",
    471  1.221.4.1  christos 				    __func__, pp->pr_wchan, v);
    472  1.221.4.1  christos 			}
    473  1.221.4.1  christos 			if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    474  1.221.4.1  christos 				panic("%s: [%s] item %p poolid %u != %u",
    475  1.221.4.1  christos 				    __func__, pp->pr_wchan, v, ph->ph_poolid,
    476  1.221.4.1  christos 				    pp->pr_poolid);
    477  1.221.4.1  christos 			}
    478      1.121      yamt 		} else {
    479      1.121      yamt 			tmp.ph_page = page;
    480      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    481      1.121      yamt 		}
    482      1.121      yamt 	}
    483        1.3        pk 
    484      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    485      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    486      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    487       1.88       chs 	return ph;
    488        1.3        pk }
    489        1.3        pk 
    490      1.101   thorpej static void
    491      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    492      1.101   thorpej {
    493      1.101   thorpej 	struct pool_item_header *ph;
    494      1.101   thorpej 
    495      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    496      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    497      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    498      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    499      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    500      1.101   thorpej 	}
    501      1.101   thorpej }
    502      1.101   thorpej 
    503        1.3        pk /*
    504        1.3        pk  * Remove a page from the pool.
    505        1.3        pk  */
    506      1.110     perry static inline void
    507       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    508       1.61       chs      struct pool_pagelist *pq)
    509        1.3        pk {
    510        1.3        pk 
    511      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    512       1.91      yamt 
    513        1.3        pk 	/*
    514        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    515        1.3        pk 	 */
    516        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    517      1.207  riastrad 		KASSERT(pp->pr_nidle != 0);
    518      1.207  riastrad 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    519      1.207  riastrad 		    "nitems=%u < itemsperpage=%u",
    520      1.207  riastrad 		    pp->pr_nitems, pp->pr_itemsperpage);
    521        1.6   thorpej 		pp->pr_nidle--;
    522        1.6   thorpej 	}
    523        1.7   thorpej 
    524       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    525       1.20   thorpej 
    526        1.7   thorpej 	/*
    527      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    528        1.7   thorpej 	 */
    529       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    530  1.221.4.1  christos 	if (pp->pr_roflags & PR_PHINPAGE) {
    531  1.221.4.1  christos 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    532  1.221.4.1  christos 			panic("%s: [%s] ph %p poolid %u != %u",
    533  1.221.4.1  christos 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    534  1.221.4.1  christos 			    pp->pr_poolid);
    535  1.221.4.1  christos 		}
    536  1.221.4.1  christos 	} else {
    537       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    538  1.221.4.1  christos 	}
    539      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    540      1.101   thorpej 
    541        1.7   thorpej 	pp->pr_npages--;
    542        1.7   thorpej 	pp->pr_npagefree++;
    543        1.6   thorpej 
    544       1.88       chs 	pool_update_curpage(pp);
    545        1.3        pk }
    546        1.3        pk 
    547        1.3        pk /*
    548       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    549       1.94    simonb  */
    550       1.94    simonb void
    551      1.117      yamt pool_subsystem_init(void)
    552       1.94    simonb {
    553      1.192     rmind 	size_t size;
    554      1.191      para 	int idx;
    555       1.94    simonb 
    556      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    557      1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    558      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    559      1.134        ad 
    560      1.191      para 	/*
    561      1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    562      1.191      para 	 * haven't done so yet.
    563      1.191      para 	 */
    564      1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    565      1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    566      1.191      para 		int nelem;
    567      1.191      para 		size_t sz;
    568      1.191      para 
    569      1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    570      1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    571      1.191      para 		    "phpool-%d", nelem);
    572      1.191      para 		sz = sizeof(struct pool_item_header);
    573      1.191      para 		if (nelem) {
    574      1.191      para 			sz = offsetof(struct pool_item_header,
    575      1.191      para 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    576      1.191      para 		}
    577      1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    578      1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    579      1.117      yamt 	}
    580      1.191      para 
    581      1.191      para 	size = sizeof(pcg_t) +
    582      1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    583      1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    584      1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    585      1.191      para 
    586      1.191      para 	size = sizeof(pcg_t) +
    587      1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    588      1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    589      1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    590      1.134        ad 
    591      1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    592      1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    593      1.134        ad 
    594      1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    595      1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    596       1.94    simonb }
    597       1.94    simonb 
    598  1.221.4.1  christos static inline bool
    599  1.221.4.1  christos pool_init_is_phinpage(const struct pool *pp)
    600  1.221.4.1  christos {
    601  1.221.4.1  christos 	size_t pagesize;
    602  1.221.4.1  christos 
    603  1.221.4.1  christos 	if (pp->pr_roflags & PR_PHINPAGE) {
    604  1.221.4.1  christos 		return true;
    605  1.221.4.1  christos 	}
    606  1.221.4.1  christos 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    607  1.221.4.1  christos 		return false;
    608  1.221.4.1  christos 	}
    609  1.221.4.1  christos 
    610  1.221.4.1  christos 	pagesize = pp->pr_alloc->pa_pagesz;
    611  1.221.4.1  christos 
    612  1.221.4.1  christos 	/*
    613  1.221.4.1  christos 	 * Threshold: the item size is below 1/16 of a page size, and below
    614  1.221.4.1  christos 	 * 8 times the page header size. The latter ensures we go off-page
    615  1.221.4.1  christos 	 * if the page header would make us waste a rather big item.
    616  1.221.4.1  christos 	 */
    617  1.221.4.1  christos 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    618  1.221.4.1  christos 		return true;
    619  1.221.4.1  christos 	}
    620  1.221.4.1  christos 
    621  1.221.4.1  christos 	/* Put the header into the page if it doesn't waste any items. */
    622  1.221.4.1  christos 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    623  1.221.4.1  christos 		return true;
    624  1.221.4.1  christos 	}
    625  1.221.4.1  christos 
    626  1.221.4.1  christos 	return false;
    627  1.221.4.1  christos }
    628  1.221.4.1  christos 
    629  1.221.4.1  christos static inline bool
    630  1.221.4.1  christos pool_init_is_usebmap(const struct pool *pp)
    631  1.221.4.1  christos {
    632  1.221.4.1  christos 	size_t bmapsize;
    633  1.221.4.1  christos 
    634  1.221.4.1  christos 	if (pp->pr_roflags & PR_NOTOUCH) {
    635  1.221.4.1  christos 		return true;
    636  1.221.4.1  christos 	}
    637  1.221.4.1  christos 
    638  1.221.4.1  christos 	/*
    639  1.221.4.1  christos 	 * If we're on-page, and the page header can already contain a bitmap
    640  1.221.4.1  christos 	 * big enough to cover all the items of the page, go with a bitmap.
    641  1.221.4.1  christos 	 */
    642  1.221.4.1  christos 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    643  1.221.4.1  christos 		return false;
    644  1.221.4.1  christos 	}
    645  1.221.4.1  christos 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    646  1.221.4.1  christos 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    647  1.221.4.1  christos 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    648  1.221.4.1  christos 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    649  1.221.4.1  christos 		return true;
    650  1.221.4.1  christos 	}
    651  1.221.4.1  christos 
    652  1.221.4.1  christos 	return false;
    653  1.221.4.1  christos }
    654  1.221.4.1  christos 
    655       1.94    simonb /*
    656        1.3        pk  * Initialize the given pool resource structure.
    657        1.3        pk  *
    658        1.3        pk  * We export this routine to allow other kernel parts to declare
    659      1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    660        1.3        pk  */
    661        1.3        pk void
    662       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    663      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    664        1.3        pk {
    665      1.116    simonb 	struct pool *pp1;
    666  1.221.4.1  christos 	size_t prsize;
    667  1.221.4.1  christos 	int itemspace, slack;
    668  1.221.4.1  christos 
    669  1.221.4.1  christos 	/* XXX ioff will be removed. */
    670  1.221.4.1  christos 	KASSERT(ioff == 0);
    671        1.3        pk 
    672      1.116    simonb #ifdef DEBUG
    673      1.198  christos 	if (__predict_true(!cold))
    674      1.198  christos 		mutex_enter(&pool_head_lock);
    675      1.116    simonb 	/*
    676      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    677      1.116    simonb 	 * added to the list of all pools.
    678      1.116    simonb 	 */
    679      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    680      1.116    simonb 		if (pp == pp1)
    681      1.213  christos 			panic("%s: [%s] already initialised", __func__,
    682      1.116    simonb 			    wchan);
    683      1.116    simonb 	}
    684      1.198  christos 	if (__predict_true(!cold))
    685      1.198  christos 		mutex_exit(&pool_head_lock);
    686      1.116    simonb #endif
    687      1.116    simonb 
    688       1.66   thorpej 	if (palloc == NULL)
    689       1.66   thorpej 		palloc = &pool_allocator_kmem;
    690  1.221.4.1  christos 
    691      1.180   mlelstv 	if (!cold)
    692      1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    693      1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    694      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    695       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    696       1.66   thorpej 
    697       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    698       1.66   thorpej 
    699      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    700       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    701       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    702        1.4   thorpej 	}
    703      1.180   mlelstv 	if (!cold)
    704      1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    705        1.3        pk 
    706        1.3        pk 	if (align == 0)
    707        1.3        pk 		align = ALIGN(1);
    708       1.14   thorpej 
    709      1.204      maxv 	prsize = size;
    710      1.204      maxv 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    711      1.204      maxv 		prsize = sizeof(struct pool_item);
    712        1.3        pk 
    713      1.204      maxv 	prsize = roundup(prsize, align);
    714      1.207  riastrad 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    715      1.213  christos 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    716      1.213  christos 	    __func__, wchan, prsize, palloc->pa_pagesz);
    717       1.35        pk 
    718        1.3        pk 	/*
    719        1.3        pk 	 * Initialize the pool structure.
    720        1.3        pk 	 */
    721       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    722       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    723       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    724      1.134        ad 	pp->pr_cache = NULL;
    725        1.3        pk 	pp->pr_curpage = NULL;
    726        1.3        pk 	pp->pr_npages = 0;
    727        1.3        pk 	pp->pr_minitems = 0;
    728        1.3        pk 	pp->pr_minpages = 0;
    729        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    730       1.20   thorpej 	pp->pr_roflags = flags;
    731       1.20   thorpej 	pp->pr_flags = 0;
    732      1.204      maxv 	pp->pr_size = prsize;
    733  1.221.4.1  christos 	pp->pr_reqsize = size;
    734        1.3        pk 	pp->pr_align = align;
    735        1.3        pk 	pp->pr_wchan = wchan;
    736       1.66   thorpej 	pp->pr_alloc = palloc;
    737  1.221.4.1  christos 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    738       1.20   thorpej 	pp->pr_nitems = 0;
    739       1.20   thorpej 	pp->pr_nout = 0;
    740       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    741       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    742       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    743       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    744       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    745       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    746       1.68   thorpej 	pp->pr_drain_hook = NULL;
    747       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    748      1.125        ad 	pp->pr_freecheck = NULL;
    749      1.204      maxv 	pool_redzone_init(pp, size);
    750  1.221.4.1  christos 	pool_quarantine_init(pp);
    751        1.3        pk 
    752        1.3        pk 	/*
    753  1.221.4.1  christos 	 * Decide whether to put the page header off-page to avoid wasting too
    754  1.221.4.1  christos 	 * large a part of the page or too big an item. Off-page page headers
    755  1.221.4.1  christos 	 * go on a hash table, so we can match a returned item with its header
    756  1.221.4.1  christos 	 * based on the page address.
    757  1.221.4.1  christos 	 */
    758  1.221.4.1  christos 	if (pool_init_is_phinpage(pp)) {
    759  1.221.4.1  christos 		/* Use the beginning of the page for the page header */
    760  1.221.4.1  christos 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    761  1.221.4.1  christos 		pp->pr_itemoffset = roundup(PHSIZE, align);
    762       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    763        1.2        pk 	} else {
    764        1.3        pk 		/* The page header will be taken from our page header pool */
    765  1.221.4.1  christos 		itemspace = palloc->pa_pagesz;
    766  1.221.4.1  christos 		pp->pr_itemoffset = 0;
    767       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    768        1.2        pk 	}
    769        1.1        pk 
    770  1.221.4.1  christos 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    771  1.221.4.1  christos 	KASSERT(pp->pr_itemsperpage != 0);
    772  1.221.4.1  christos 
    773        1.3        pk 	/*
    774  1.221.4.1  christos 	 * Decide whether to use a bitmap or a linked list to manage freed
    775  1.221.4.1  christos 	 * items.
    776        1.3        pk 	 */
    777  1.221.4.1  christos 	if (pool_init_is_usebmap(pp)) {
    778  1.221.4.1  christos 		pp->pr_roflags |= PR_USEBMAP;
    779  1.221.4.1  christos 	}
    780  1.221.4.1  christos 
    781  1.221.4.1  christos 	/*
    782  1.221.4.1  christos 	 * If we're off-page and use a bitmap, choose the appropriate pool to
    783  1.221.4.1  christos 	 * allocate page headers, whose size varies depending on the bitmap. If
    784  1.221.4.1  christos 	 * we're just off-page, take the first pool, no extra size. If we're
    785  1.221.4.1  christos 	 * on-page, nothing to do.
    786  1.221.4.1  christos 	 */
    787  1.221.4.1  christos 	if (!(pp->pr_roflags & PR_PHINPAGE) && (pp->pr_roflags & PR_USEBMAP)) {
    788       1.97      yamt 		int idx;
    789       1.97      yamt 
    790       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    791       1.97      yamt 		    idx++) {
    792       1.97      yamt 			/* nothing */
    793       1.97      yamt 		}
    794       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    795       1.97      yamt 			/*
    796       1.97      yamt 			 * if you see this panic, consider to tweak
    797       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    798       1.97      yamt 			 */
    799      1.213  christos 			panic("%s: [%s] too large itemsperpage(%d) for "
    800  1.221.4.1  christos 			    "PR_USEBMAP", __func__,
    801       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    802       1.97      yamt 		}
    803       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    804  1.221.4.1  christos 	} else if (!(pp->pr_roflags & PR_PHINPAGE)) {
    805       1.97      yamt 		pp->pr_phpool = &phpool[0];
    806  1.221.4.1  christos 	} else {
    807       1.97      yamt 		pp->pr_phpool = NULL;
    808       1.97      yamt 	}
    809        1.3        pk 
    810        1.3        pk 	/*
    811        1.3        pk 	 * Use the slack between the chunks and the page header
    812        1.3        pk 	 * for "cache coloring".
    813        1.3        pk 	 */
    814  1.221.4.1  christos 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    815  1.221.4.1  christos 	pp->pr_maxcolor = rounddown(slack, align);
    816        1.3        pk 	pp->pr_curcolor = 0;
    817        1.3        pk 
    818        1.3        pk 	pp->pr_nget = 0;
    819        1.3        pk 	pp->pr_nfail = 0;
    820        1.3        pk 	pp->pr_nput = 0;
    821        1.3        pk 	pp->pr_npagealloc = 0;
    822        1.3        pk 	pp->pr_npagefree = 0;
    823        1.1        pk 	pp->pr_hiwat = 0;
    824        1.8   thorpej 	pp->pr_nidle = 0;
    825      1.134        ad 	pp->pr_refcnt = 0;
    826        1.3        pk 
    827      1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    828      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    829      1.134        ad 	pp->pr_ipl = ipl;
    830        1.1        pk 
    831      1.145        ad 	/* Insert into the list of all pools. */
    832      1.181   mlelstv 	if (!cold)
    833      1.134        ad 		mutex_enter(&pool_head_lock);
    834      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    835      1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    836      1.145        ad 			break;
    837      1.145        ad 	}
    838      1.145        ad 	if (pp1 == NULL)
    839      1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    840      1.145        ad 	else
    841      1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    842      1.181   mlelstv 	if (!cold)
    843      1.134        ad 		mutex_exit(&pool_head_lock);
    844      1.134        ad 
    845      1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    846      1.181   mlelstv 	if (!cold)
    847      1.134        ad 		mutex_enter(&palloc->pa_lock);
    848      1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    849      1.181   mlelstv 	if (!cold)
    850      1.134        ad 		mutex_exit(&palloc->pa_lock);
    851        1.1        pk }
    852        1.1        pk 
    853        1.1        pk /*
    854        1.1        pk  * De-commision a pool resource.
    855        1.1        pk  */
    856        1.1        pk void
    857       1.42   thorpej pool_destroy(struct pool *pp)
    858        1.1        pk {
    859      1.101   thorpej 	struct pool_pagelist pq;
    860        1.3        pk 	struct pool_item_header *ph;
    861       1.43   thorpej 
    862  1.221.4.1  christos 	pool_quarantine_flush(pp);
    863  1.221.4.1  christos 
    864      1.101   thorpej 	/* Remove from global pool list */
    865      1.134        ad 	mutex_enter(&pool_head_lock);
    866      1.134        ad 	while (pp->pr_refcnt != 0)
    867      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    868      1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    869      1.101   thorpej 	if (drainpp == pp)
    870      1.101   thorpej 		drainpp = NULL;
    871      1.134        ad 	mutex_exit(&pool_head_lock);
    872      1.101   thorpej 
    873      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    874      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    875       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    876      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    877       1.66   thorpej 
    878      1.178      elad 	mutex_enter(&pool_allocator_lock);
    879      1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    880      1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    881      1.178      elad 	mutex_exit(&pool_allocator_lock);
    882      1.178      elad 
    883      1.134        ad 	mutex_enter(&pp->pr_lock);
    884      1.101   thorpej 
    885      1.134        ad 	KASSERT(pp->pr_cache == NULL);
    886      1.207  riastrad 	KASSERTMSG((pp->pr_nout == 0),
    887      1.213  christos 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    888      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    889      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    890      1.101   thorpej 
    891        1.3        pk 	/* Remove all pages */
    892      1.101   thorpej 	LIST_INIT(&pq);
    893       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    894      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    895      1.101   thorpej 
    896      1.134        ad 	mutex_exit(&pp->pr_lock);
    897        1.3        pk 
    898      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    899      1.134        ad 	cv_destroy(&pp->pr_cv);
    900      1.134        ad 	mutex_destroy(&pp->pr_lock);
    901        1.1        pk }
    902        1.1        pk 
    903       1.68   thorpej void
    904       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    905       1.68   thorpej {
    906       1.68   thorpej 
    907       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    908      1.207  riastrad 	KASSERTMSG((pp->pr_drain_hook == NULL),
    909      1.213  christos 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    910       1.68   thorpej 	pp->pr_drain_hook = fn;
    911       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    912       1.68   thorpej }
    913       1.68   thorpej 
    914       1.88       chs static struct pool_item_header *
    915      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    916       1.55   thorpej {
    917       1.55   thorpej 	struct pool_item_header *ph;
    918       1.55   thorpej 
    919       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    920  1.221.4.1  christos 		ph = storage;
    921      1.134        ad 	else
    922       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    923       1.55   thorpej 
    924  1.221.4.1  christos 	return ph;
    925       1.55   thorpej }
    926        1.1        pk 
    927        1.1        pk /*
    928      1.134        ad  * Grab an item from the pool.
    929        1.1        pk  */
    930        1.3        pk void *
    931       1.56  sommerfe pool_get(struct pool *pp, int flags)
    932        1.1        pk {
    933        1.3        pk 	struct pool_item_header *ph;
    934       1.55   thorpej 	void *v;
    935        1.1        pk 
    936      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    937      1.207  riastrad 	KASSERTMSG((pp->pr_itemsperpage != 0),
    938      1.213  christos 	    "%s: [%s] pr_itemsperpage is zero, "
    939      1.213  christos 	    "pool not initialized?", __func__, pp->pr_wchan);
    940      1.207  riastrad 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    941      1.207  riastrad 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    942      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    943      1.213  christos 	    __func__, pp->pr_wchan);
    944      1.155        ad 	if (flags & PR_WAITOK) {
    945      1.154      yamt 		ASSERT_SLEEPABLE();
    946      1.155        ad 	}
    947        1.1        pk 
    948      1.134        ad 	mutex_enter(&pp->pr_lock);
    949       1.20   thorpej  startover:
    950       1.20   thorpej 	/*
    951       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    952       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    953       1.20   thorpej 	 * the pool.
    954       1.20   thorpej 	 */
    955      1.207  riastrad 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    956      1.213  christos 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    957       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    958       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    959       1.68   thorpej 			/*
    960       1.68   thorpej 			 * Since the drain hook is going to free things
    961       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    962       1.68   thorpej 			 * and check the hardlimit condition again.
    963       1.68   thorpej 			 */
    964      1.134        ad 			mutex_exit(&pp->pr_lock);
    965       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    966      1.134        ad 			mutex_enter(&pp->pr_lock);
    967       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    968       1.68   thorpej 				goto startover;
    969       1.68   thorpej 		}
    970       1.68   thorpej 
    971       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    972       1.20   thorpej 			/*
    973       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
    974       1.20   thorpej 			 * it be?
    975       1.20   thorpej 			 */
    976       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
    977      1.212  christos 			do {
    978      1.212  christos 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    979      1.212  christos 			} while (pp->pr_flags & PR_WANTED);
    980       1.20   thorpej 			goto startover;
    981       1.20   thorpej 		}
    982       1.31   thorpej 
    983       1.31   thorpej 		/*
    984       1.31   thorpej 		 * Log a message that the hard limit has been hit.
    985       1.31   thorpej 		 */
    986       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
    987       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
    988       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
    989       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    990       1.21   thorpej 
    991       1.21   thorpej 		pp->pr_nfail++;
    992       1.21   thorpej 
    993      1.134        ad 		mutex_exit(&pp->pr_lock);
    994      1.216  christos 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    995  1.221.4.1  christos 		return NULL;
    996       1.20   thorpej 	}
    997       1.20   thorpej 
    998        1.3        pk 	/*
    999        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1000        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1001        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1002        1.3        pk 	 * has no items in its bucket.
   1003        1.3        pk 	 */
   1004       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1005      1.113      yamt 		int error;
   1006      1.113      yamt 
   1007      1.207  riastrad 		KASSERTMSG((pp->pr_nitems == 0),
   1008      1.213  christos 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
   1009      1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
   1010       1.20   thorpej 
   1011       1.21   thorpej 		/*
   1012       1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1013       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1014       1.21   thorpej 		 * may block.
   1015       1.21   thorpej 		 */
   1016      1.113      yamt 		error = pool_grow(pp, flags);
   1017      1.113      yamt 		if (error != 0) {
   1018       1.21   thorpej 			/*
   1019      1.210   mlelstv 			 * pool_grow aborts when another thread
   1020      1.210   mlelstv 			 * is allocating a new page. Retry if it
   1021      1.210   mlelstv 			 * waited for it.
   1022      1.210   mlelstv 			 */
   1023      1.210   mlelstv 			if (error == ERESTART)
   1024      1.210   mlelstv 				goto startover;
   1025      1.210   mlelstv 
   1026      1.210   mlelstv 			/*
   1027       1.55   thorpej 			 * We were unable to allocate a page or item
   1028       1.55   thorpej 			 * header, but we released the lock during
   1029       1.55   thorpej 			 * allocation, so perhaps items were freed
   1030       1.55   thorpej 			 * back to the pool.  Check for this case.
   1031       1.21   thorpej 			 */
   1032       1.21   thorpej 			if (pp->pr_curpage != NULL)
   1033       1.21   thorpej 				goto startover;
   1034       1.15        pk 
   1035      1.117      yamt 			pp->pr_nfail++;
   1036      1.134        ad 			mutex_exit(&pp->pr_lock);
   1037      1.211  riastrad 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   1038  1.221.4.1  christos 			return NULL;
   1039        1.1        pk 		}
   1040        1.3        pk 
   1041       1.20   thorpej 		/* Start the allocation process over. */
   1042       1.20   thorpej 		goto startover;
   1043        1.3        pk 	}
   1044  1.221.4.1  christos 	if (pp->pr_roflags & PR_USEBMAP) {
   1045      1.207  riastrad 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1046      1.213  christos 		    "%s: %s: page empty", __func__, pp->pr_wchan);
   1047  1.221.4.1  christos 		v = pr_item_bitmap_get(pp, ph);
   1048       1.97      yamt 	} else {
   1049  1.221.4.1  christos 		v = pr_item_linkedlist_get(pp, ph);
   1050       1.97      yamt 	}
   1051       1.20   thorpej 	pp->pr_nitems--;
   1052       1.20   thorpej 	pp->pr_nout++;
   1053        1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1054      1.207  riastrad 		KASSERT(pp->pr_nidle > 0);
   1055        1.6   thorpej 		pp->pr_nidle--;
   1056       1.88       chs 
   1057       1.88       chs 		/*
   1058       1.88       chs 		 * This page was previously empty.  Move it to the list of
   1059       1.88       chs 		 * partially-full pages.  This page is already curpage.
   1060       1.88       chs 		 */
   1061       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1062       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1063        1.6   thorpej 	}
   1064        1.3        pk 	ph->ph_nmissing++;
   1065       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1066  1.221.4.1  christos 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1067      1.207  riastrad 			LIST_EMPTY(&ph->ph_itemlist)),
   1068      1.213  christos 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1069      1.213  christos 			pp->pr_wchan, ph->ph_nmissing);
   1070        1.3        pk 		/*
   1071       1.88       chs 		 * This page is now full.  Move it to the full list
   1072       1.88       chs 		 * and select a new current page.
   1073        1.3        pk 		 */
   1074       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1075       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1076       1.88       chs 		pool_update_curpage(pp);
   1077        1.1        pk 	}
   1078        1.3        pk 
   1079        1.3        pk 	pp->pr_nget++;
   1080       1.20   thorpej 
   1081       1.20   thorpej 	/*
   1082       1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1083       1.20   thorpej 	 * water mark, add more items to the pool.
   1084       1.20   thorpej 	 */
   1085       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1086       1.20   thorpej 		/*
   1087       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1088       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1089       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1090       1.20   thorpej 		 */
   1091       1.20   thorpej 	}
   1092       1.20   thorpej 
   1093      1.134        ad 	mutex_exit(&pp->pr_lock);
   1094  1.221.4.1  christos 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1095      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1096      1.204      maxv 	pool_redzone_fill(pp, v);
   1097  1.221.4.1  christos 	if (flags & PR_ZERO)
   1098  1.221.4.1  christos 		memset(v, 0, pp->pr_reqsize);
   1099  1.221.4.1  christos 	else
   1100  1.221.4.1  christos 		pool_kleak_fill(pp, v);
   1101  1.221.4.1  christos 	return v;
   1102        1.1        pk }
   1103        1.1        pk 
   1104        1.1        pk /*
   1105       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1106        1.1        pk  */
   1107       1.43   thorpej static void
   1108      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1109        1.1        pk {
   1110        1.3        pk 	struct pool_item_header *ph;
   1111        1.3        pk 
   1112      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1113      1.204      maxv 	pool_redzone_check(pp, v);
   1114      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1115      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1116       1.61       chs 
   1117      1.207  riastrad 	KASSERTMSG((pp->pr_nout > 0),
   1118      1.213  christos 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1119        1.3        pk 
   1120      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1121      1.213  christos 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1122        1.3        pk 	}
   1123       1.28   thorpej 
   1124        1.3        pk 	/*
   1125        1.3        pk 	 * Return to item list.
   1126        1.3        pk 	 */
   1127  1.221.4.1  christos 	if (pp->pr_roflags & PR_USEBMAP) {
   1128  1.221.4.1  christos 		pr_item_bitmap_put(pp, ph, v);
   1129       1.97      yamt 	} else {
   1130  1.221.4.1  christos 		pr_item_linkedlist_put(pp, ph, v);
   1131       1.97      yamt 	}
   1132       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1133        1.3        pk 	ph->ph_nmissing--;
   1134        1.3        pk 	pp->pr_nput++;
   1135       1.20   thorpej 	pp->pr_nitems++;
   1136       1.20   thorpej 	pp->pr_nout--;
   1137        1.3        pk 
   1138        1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1139        1.3        pk 	if (pp->pr_curpage == NULL)
   1140        1.3        pk 		pp->pr_curpage = ph;
   1141        1.3        pk 
   1142        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1143        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1144      1.134        ad 		cv_broadcast(&pp->pr_cv);
   1145        1.3        pk 	}
   1146        1.3        pk 
   1147        1.3        pk 	/*
   1148       1.88       chs 	 * If this page is now empty, do one of two things:
   1149       1.21   thorpej 	 *
   1150       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1151       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1152       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1153       1.90   thorpej 	 *	    CLAIM.
   1154       1.21   thorpej 	 *
   1155       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1156       1.88       chs 	 *
   1157       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1158       1.88       chs 	 * page if one is available).
   1159        1.3        pk 	 */
   1160        1.3        pk 	if (ph->ph_nmissing == 0) {
   1161        1.6   thorpej 		pp->pr_nidle++;
   1162       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1163      1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1164      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1165        1.3        pk 		} else {
   1166       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1167       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1168        1.3        pk 
   1169       1.21   thorpej 			/*
   1170       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1171       1.21   thorpej 			 * be idle for some period of time before it can
   1172       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1173       1.21   thorpej 			 * ping-pong'ing for memory.
   1174      1.151      yamt 			 *
   1175      1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1176      1.151      yamt 			 * a problem for our usage.
   1177       1.21   thorpej 			 */
   1178      1.151      yamt 			ph->ph_time = time_uptime;
   1179        1.1        pk 		}
   1180       1.88       chs 		pool_update_curpage(pp);
   1181        1.1        pk 	}
   1182       1.88       chs 
   1183       1.21   thorpej 	/*
   1184       1.88       chs 	 * If the page was previously completely full, move it to the
   1185       1.88       chs 	 * partially-full list and make it the current page.  The next
   1186       1.88       chs 	 * allocation will get the item from this page, instead of
   1187       1.88       chs 	 * further fragmenting the pool.
   1188       1.21   thorpej 	 */
   1189       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1190       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1191       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1192       1.21   thorpej 		pp->pr_curpage = ph;
   1193       1.21   thorpej 	}
   1194       1.43   thorpej }
   1195       1.43   thorpej 
   1196       1.56  sommerfe void
   1197       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1198       1.56  sommerfe {
   1199      1.101   thorpej 	struct pool_pagelist pq;
   1200      1.101   thorpej 
   1201      1.101   thorpej 	LIST_INIT(&pq);
   1202       1.56  sommerfe 
   1203      1.134        ad 	mutex_enter(&pp->pr_lock);
   1204  1.221.4.1  christos 	if (!pool_put_quarantine(pp, v, &pq)) {
   1205  1.221.4.1  christos 		pool_do_put(pp, v, &pq);
   1206  1.221.4.1  christos 	}
   1207      1.134        ad 	mutex_exit(&pp->pr_lock);
   1208       1.56  sommerfe 
   1209      1.102       chs 	pr_pagelist_free(pp, &pq);
   1210       1.56  sommerfe }
   1211       1.57  sommerfe 
   1212       1.74   thorpej /*
   1213      1.113      yamt  * pool_grow: grow a pool by a page.
   1214      1.113      yamt  *
   1215      1.113      yamt  * => called with pool locked.
   1216      1.113      yamt  * => unlock and relock the pool.
   1217      1.113      yamt  * => return with pool locked.
   1218      1.113      yamt  */
   1219      1.113      yamt 
   1220      1.113      yamt static int
   1221      1.113      yamt pool_grow(struct pool *pp, int flags)
   1222      1.113      yamt {
   1223  1.221.4.1  christos 	struct pool_item_header *ph;
   1224  1.221.4.1  christos 	char *storage;
   1225  1.221.4.1  christos 
   1226      1.209  riastrad 	/*
   1227      1.209  riastrad 	 * If there's a pool_grow in progress, wait for it to complete
   1228      1.209  riastrad 	 * and try again from the top.
   1229      1.209  riastrad 	 */
   1230      1.209  riastrad 	if (pp->pr_flags & PR_GROWING) {
   1231      1.209  riastrad 		if (flags & PR_WAITOK) {
   1232      1.209  riastrad 			do {
   1233      1.209  riastrad 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1234      1.209  riastrad 			} while (pp->pr_flags & PR_GROWING);
   1235      1.209  riastrad 			return ERESTART;
   1236      1.209  riastrad 		} else {
   1237      1.219       mrg 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1238      1.219       mrg 				/*
   1239      1.219       mrg 				 * This needs an unlock/relock dance so
   1240      1.219       mrg 				 * that the other caller has a chance to
   1241      1.219       mrg 				 * run and actually do the thing.  Note
   1242      1.219       mrg 				 * that this is effectively a busy-wait.
   1243      1.219       mrg 				 */
   1244      1.219       mrg 				mutex_exit(&pp->pr_lock);
   1245      1.219       mrg 				mutex_enter(&pp->pr_lock);
   1246      1.219       mrg 				return ERESTART;
   1247      1.219       mrg 			}
   1248      1.209  riastrad 			return EWOULDBLOCK;
   1249      1.209  riastrad 		}
   1250      1.209  riastrad 	}
   1251      1.209  riastrad 	pp->pr_flags |= PR_GROWING;
   1252      1.220  christos 	if (flags & PR_WAITOK)
   1253      1.220  christos 		mutex_exit(&pp->pr_lock);
   1254      1.220  christos 	else
   1255      1.219       mrg 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1256      1.113      yamt 
   1257  1.221.4.1  christos 	storage = pool_allocator_alloc(pp, flags);
   1258  1.221.4.1  christos 	if (__predict_false(storage == NULL))
   1259      1.216  christos 		goto out;
   1260      1.216  christos 
   1261  1.221.4.1  christos 	ph = pool_alloc_item_header(pp, storage, flags);
   1262      1.216  christos 	if (__predict_false(ph == NULL)) {
   1263  1.221.4.1  christos 		pool_allocator_free(pp, storage);
   1264      1.209  riastrad 		goto out;
   1265      1.113      yamt 	}
   1266      1.113      yamt 
   1267      1.220  christos 	if (flags & PR_WAITOK)
   1268      1.220  christos 		mutex_enter(&pp->pr_lock);
   1269  1.221.4.1  christos 	pool_prime_page(pp, storage, ph);
   1270      1.113      yamt 	pp->pr_npagealloc++;
   1271      1.216  christos 	KASSERT(pp->pr_flags & PR_GROWING);
   1272      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1273      1.209  riastrad 	/*
   1274      1.209  riastrad 	 * If anyone was waiting for pool_grow, notify them that we
   1275      1.209  riastrad 	 * may have just done it.
   1276      1.209  riastrad 	 */
   1277      1.216  christos 	cv_broadcast(&pp->pr_cv);
   1278      1.216  christos 	return 0;
   1279      1.216  christos out:
   1280      1.220  christos 	if (flags & PR_WAITOK)
   1281      1.220  christos 		mutex_enter(&pp->pr_lock);
   1282      1.209  riastrad 	KASSERT(pp->pr_flags & PR_GROWING);
   1283      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1284      1.216  christos 	return ENOMEM;
   1285      1.113      yamt }
   1286      1.113      yamt 
   1287      1.113      yamt /*
   1288       1.74   thorpej  * Add N items to the pool.
   1289       1.74   thorpej  */
   1290       1.74   thorpej int
   1291       1.74   thorpej pool_prime(struct pool *pp, int n)
   1292       1.74   thorpej {
   1293       1.75    simonb 	int newpages;
   1294      1.113      yamt 	int error = 0;
   1295       1.74   thorpej 
   1296      1.134        ad 	mutex_enter(&pp->pr_lock);
   1297       1.74   thorpej 
   1298       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1299       1.74   thorpej 
   1300      1.216  christos 	while (newpages > 0) {
   1301      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1302      1.113      yamt 		if (error) {
   1303      1.214  christos 			if (error == ERESTART)
   1304      1.214  christos 				continue;
   1305       1.74   thorpej 			break;
   1306       1.74   thorpej 		}
   1307       1.74   thorpej 		pp->pr_minpages++;
   1308      1.216  christos 		newpages--;
   1309       1.74   thorpej 	}
   1310       1.74   thorpej 
   1311       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1312       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1313       1.74   thorpej 
   1314      1.134        ad 	mutex_exit(&pp->pr_lock);
   1315      1.113      yamt 	return error;
   1316       1.74   thorpej }
   1317       1.55   thorpej 
   1318       1.55   thorpej /*
   1319        1.3        pk  * Add a page worth of items to the pool.
   1320       1.21   thorpej  *
   1321       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1322        1.3        pk  */
   1323       1.55   thorpej static void
   1324      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1325        1.3        pk {
   1326  1.221.4.1  christos 	const unsigned int align = pp->pr_align;
   1327        1.3        pk 	struct pool_item *pi;
   1328      1.128  christos 	void *cp = storage;
   1329       1.55   thorpej 	int n;
   1330       1.36        pk 
   1331      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1332      1.207  riastrad 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1333      1.207  riastrad 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1334      1.213  christos 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1335        1.3        pk 
   1336        1.3        pk 	/*
   1337        1.3        pk 	 * Insert page header.
   1338        1.3        pk 	 */
   1339       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1340      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1341        1.3        pk 	ph->ph_page = storage;
   1342        1.3        pk 	ph->ph_nmissing = 0;
   1343      1.151      yamt 	ph->ph_time = time_uptime;
   1344  1.221.4.1  christos 	if (pp->pr_roflags & PR_PHINPAGE)
   1345  1.221.4.1  christos 		ph->ph_poolid = pp->pr_poolid;
   1346  1.221.4.1  christos 	else
   1347       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1348        1.3        pk 
   1349        1.6   thorpej 	pp->pr_nidle++;
   1350        1.6   thorpej 
   1351        1.3        pk 	/*
   1352  1.221.4.1  christos 	 * The item space starts after the on-page header, if any.
   1353  1.221.4.1  christos 	 */
   1354  1.221.4.1  christos 	ph->ph_off = pp->pr_itemoffset;
   1355  1.221.4.1  christos 
   1356  1.221.4.1  christos 	/*
   1357        1.3        pk 	 * Color this page.
   1358        1.3        pk 	 */
   1359  1.221.4.1  christos 	ph->ph_off += pp->pr_curcolor;
   1360      1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1361        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1362        1.3        pk 		pp->pr_curcolor = 0;
   1363        1.3        pk 
   1364  1.221.4.1  christos 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1365      1.125        ad 
   1366        1.3        pk 	/*
   1367        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1368        1.3        pk 	 */
   1369        1.3        pk 	n = pp->pr_itemsperpage;
   1370       1.20   thorpej 	pp->pr_nitems += n;
   1371        1.3        pk 
   1372  1.221.4.1  christos 	if (pp->pr_roflags & PR_USEBMAP) {
   1373  1.221.4.1  christos 		pr_item_bitmap_init(pp, ph);
   1374       1.97      yamt 	} else {
   1375       1.97      yamt 		while (n--) {
   1376       1.97      yamt 			pi = (struct pool_item *)cp;
   1377       1.78   thorpej 
   1378  1.221.4.1  christos 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1379        1.3        pk 
   1380       1.97      yamt 			/* Insert on page list */
   1381      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1382  1.221.4.1  christos #ifdef POOL_CHECK_MAGIC
   1383       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1384        1.3        pk #endif
   1385      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1386      1.125        ad 
   1387  1.221.4.1  christos 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1388       1.97      yamt 		}
   1389        1.3        pk 	}
   1390        1.3        pk 
   1391        1.3        pk 	/*
   1392        1.3        pk 	 * If the pool was depleted, point at the new page.
   1393        1.3        pk 	 */
   1394        1.3        pk 	if (pp->pr_curpage == NULL)
   1395        1.3        pk 		pp->pr_curpage = ph;
   1396        1.3        pk 
   1397        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1398        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1399        1.3        pk }
   1400        1.3        pk 
   1401       1.20   thorpej /*
   1402       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1403       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1404       1.20   thorpej  *
   1405       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1406       1.20   thorpej  *
   1407       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1408       1.20   thorpej  * with it locked.
   1409       1.20   thorpej  */
   1410       1.20   thorpej static int
   1411       1.42   thorpej pool_catchup(struct pool *pp)
   1412       1.20   thorpej {
   1413       1.20   thorpej 	int error = 0;
   1414       1.20   thorpej 
   1415       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1416      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1417      1.113      yamt 		if (error) {
   1418      1.214  christos 			if (error == ERESTART)
   1419      1.214  christos 				continue;
   1420       1.20   thorpej 			break;
   1421       1.20   thorpej 		}
   1422       1.20   thorpej 	}
   1423      1.113      yamt 	return error;
   1424       1.20   thorpej }
   1425       1.20   thorpej 
   1426       1.88       chs static void
   1427       1.88       chs pool_update_curpage(struct pool *pp)
   1428       1.88       chs {
   1429       1.88       chs 
   1430       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1431       1.88       chs 	if (pp->pr_curpage == NULL) {
   1432       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1433       1.88       chs 	}
   1434      1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1435      1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1436       1.88       chs }
   1437       1.88       chs 
   1438        1.3        pk void
   1439       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1440        1.3        pk {
   1441       1.15        pk 
   1442      1.134        ad 	mutex_enter(&pp->pr_lock);
   1443       1.21   thorpej 
   1444        1.3        pk 	pp->pr_minitems = n;
   1445       1.15        pk 	pp->pr_minpages = (n == 0)
   1446       1.15        pk 		? 0
   1447       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1448       1.20   thorpej 
   1449       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1450       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1451       1.20   thorpej 		/*
   1452       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1453       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1454       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1455       1.20   thorpej 		 */
   1456       1.20   thorpej 	}
   1457       1.21   thorpej 
   1458      1.134        ad 	mutex_exit(&pp->pr_lock);
   1459        1.3        pk }
   1460        1.3        pk 
   1461        1.3        pk void
   1462       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1463        1.3        pk {
   1464       1.15        pk 
   1465      1.134        ad 	mutex_enter(&pp->pr_lock);
   1466       1.21   thorpej 
   1467       1.15        pk 	pp->pr_maxpages = (n == 0)
   1468       1.15        pk 		? 0
   1469       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1470       1.21   thorpej 
   1471      1.134        ad 	mutex_exit(&pp->pr_lock);
   1472        1.3        pk }
   1473        1.3        pk 
   1474       1.20   thorpej void
   1475       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1476       1.20   thorpej {
   1477       1.20   thorpej 
   1478      1.134        ad 	mutex_enter(&pp->pr_lock);
   1479       1.20   thorpej 
   1480       1.20   thorpej 	pp->pr_hardlimit = n;
   1481       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1482       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1483       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1484       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1485       1.20   thorpej 
   1486       1.20   thorpej 	/*
   1487       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1488       1.21   thorpej 	 * release the lock.
   1489       1.20   thorpej 	 */
   1490       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1491       1.20   thorpej 		? 0
   1492       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1493       1.21   thorpej 
   1494      1.134        ad 	mutex_exit(&pp->pr_lock);
   1495       1.20   thorpej }
   1496        1.3        pk 
   1497        1.3        pk /*
   1498        1.3        pk  * Release all complete pages that have not been used recently.
   1499      1.184     rmind  *
   1500      1.197       jym  * Must not be called from interrupt context.
   1501        1.3        pk  */
   1502       1.66   thorpej int
   1503       1.56  sommerfe pool_reclaim(struct pool *pp)
   1504        1.3        pk {
   1505        1.3        pk 	struct pool_item_header *ph, *phnext;
   1506       1.61       chs 	struct pool_pagelist pq;
   1507      1.151      yamt 	uint32_t curtime;
   1508      1.134        ad 	bool klock;
   1509      1.134        ad 	int rv;
   1510        1.3        pk 
   1511      1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1512      1.184     rmind 
   1513       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1514       1.68   thorpej 		/*
   1515       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1516       1.68   thorpej 		 */
   1517       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1518       1.68   thorpej 	}
   1519       1.68   thorpej 
   1520      1.134        ad 	/*
   1521      1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1522      1.157        ad 	 * to block.
   1523      1.134        ad 	 */
   1524      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1525      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1526      1.134        ad 		KERNEL_LOCK(1, NULL);
   1527      1.134        ad 		klock = true;
   1528      1.134        ad 	} else
   1529      1.134        ad 		klock = false;
   1530      1.134        ad 
   1531      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1532      1.134        ad 	if (pp->pr_cache != NULL)
   1533      1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1534      1.134        ad 
   1535      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1536      1.134        ad 		if (klock) {
   1537      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1538      1.134        ad 		}
   1539  1.221.4.1  christos 		return 0;
   1540      1.134        ad 	}
   1541       1.68   thorpej 
   1542       1.88       chs 	LIST_INIT(&pq);
   1543       1.43   thorpej 
   1544      1.151      yamt 	curtime = time_uptime;
   1545       1.21   thorpej 
   1546       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1547       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1548        1.3        pk 
   1549        1.3        pk 		/* Check our minimum page claim */
   1550        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1551        1.3        pk 			break;
   1552        1.3        pk 
   1553       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1554      1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1555       1.88       chs 			continue;
   1556       1.21   thorpej 
   1557       1.88       chs 		/*
   1558       1.88       chs 		 * If freeing this page would put us below
   1559       1.88       chs 		 * the low water mark, stop now.
   1560       1.88       chs 		 */
   1561       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1562       1.88       chs 		    pp->pr_minitems)
   1563       1.88       chs 			break;
   1564       1.21   thorpej 
   1565       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1566        1.3        pk 	}
   1567        1.3        pk 
   1568      1.134        ad 	mutex_exit(&pp->pr_lock);
   1569      1.134        ad 
   1570      1.134        ad 	if (LIST_EMPTY(&pq))
   1571      1.134        ad 		rv = 0;
   1572      1.134        ad 	else {
   1573      1.134        ad 		pr_pagelist_free(pp, &pq);
   1574      1.134        ad 		rv = 1;
   1575      1.134        ad 	}
   1576      1.134        ad 
   1577      1.134        ad 	if (klock) {
   1578      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1579      1.134        ad 	}
   1580       1.66   thorpej 
   1581  1.221.4.1  christos 	return rv;
   1582        1.3        pk }
   1583        1.3        pk 
   1584        1.3        pk /*
   1585      1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1586      1.131        ad  *
   1587      1.134        ad  * Note, must never be called from interrupt context.
   1588        1.3        pk  */
   1589      1.197       jym bool
   1590      1.197       jym pool_drain(struct pool **ppp)
   1591        1.3        pk {
   1592      1.197       jym 	bool reclaimed;
   1593        1.3        pk 	struct pool *pp;
   1594      1.134        ad 
   1595      1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1596        1.3        pk 
   1597       1.61       chs 	pp = NULL;
   1598      1.134        ad 
   1599      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1600      1.134        ad 	mutex_enter(&pool_head_lock);
   1601      1.134        ad 	do {
   1602      1.134        ad 		if (drainpp == NULL) {
   1603      1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1604      1.134        ad 		}
   1605      1.134        ad 		if (drainpp != NULL) {
   1606      1.134        ad 			pp = drainpp;
   1607      1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1608      1.134        ad 		}
   1609      1.134        ad 		/*
   1610      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1611      1.134        ad 		 * one pool in the system being active.
   1612      1.134        ad 		 */
   1613      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1614      1.134        ad 	pp->pr_refcnt++;
   1615      1.134        ad 	mutex_exit(&pool_head_lock);
   1616      1.134        ad 
   1617      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1618      1.186     pooka 	reclaimed = pool_reclaim(pp);
   1619      1.134        ad 
   1620      1.134        ad 	/* Finally, unlock the pool. */
   1621      1.134        ad 	mutex_enter(&pool_head_lock);
   1622      1.134        ad 	pp->pr_refcnt--;
   1623      1.134        ad 	cv_broadcast(&pool_busy);
   1624      1.134        ad 	mutex_exit(&pool_head_lock);
   1625      1.186     pooka 
   1626      1.197       jym 	if (ppp != NULL)
   1627      1.197       jym 		*ppp = pp;
   1628      1.197       jym 
   1629      1.186     pooka 	return reclaimed;
   1630        1.3        pk }
   1631        1.3        pk 
   1632        1.3        pk /*
   1633      1.217       mrg  * Calculate the total number of pages consumed by pools.
   1634      1.217       mrg  */
   1635      1.217       mrg int
   1636      1.217       mrg pool_totalpages(void)
   1637      1.217       mrg {
   1638  1.221.4.1  christos 
   1639  1.221.4.1  christos 	mutex_enter(&pool_head_lock);
   1640  1.221.4.1  christos 	int pages = pool_totalpages_locked();
   1641  1.221.4.1  christos 	mutex_exit(&pool_head_lock);
   1642  1.221.4.1  christos 
   1643  1.221.4.1  christos 	return pages;
   1644  1.221.4.1  christos }
   1645  1.221.4.1  christos 
   1646  1.221.4.1  christos int
   1647  1.221.4.1  christos pool_totalpages_locked(void)
   1648  1.221.4.1  christos {
   1649      1.217       mrg 	struct pool *pp;
   1650      1.218       mrg 	uint64_t total = 0;
   1651      1.217       mrg 
   1652      1.218       mrg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1653      1.218       mrg 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1654      1.218       mrg 
   1655      1.218       mrg 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1656      1.218       mrg 			bytes -= (pp->pr_nout * pp->pr_size);
   1657      1.218       mrg 		total += bytes;
   1658      1.218       mrg 	}
   1659      1.217       mrg 
   1660      1.218       mrg 	return atop(total);
   1661      1.217       mrg }
   1662      1.217       mrg 
   1663      1.217       mrg /*
   1664        1.3        pk  * Diagnostic helpers.
   1665        1.3        pk  */
   1666       1.21   thorpej 
   1667       1.25   thorpej void
   1668      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1669      1.108      yamt {
   1670      1.108      yamt 	struct pool *pp;
   1671      1.108      yamt 
   1672      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1673      1.108      yamt 		pool_printit(pp, modif, pr);
   1674      1.108      yamt 	}
   1675      1.108      yamt }
   1676      1.108      yamt 
   1677      1.108      yamt void
   1678       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1679       1.25   thorpej {
   1680       1.25   thorpej 
   1681       1.25   thorpej 	if (pp == NULL) {
   1682       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1683       1.25   thorpej 		return;
   1684       1.25   thorpej 	}
   1685       1.25   thorpej 
   1686       1.25   thorpej 	pool_print1(pp, modif, pr);
   1687       1.25   thorpej }
   1688       1.25   thorpej 
   1689       1.21   thorpej static void
   1690      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1691       1.97      yamt     void (*pr)(const char *, ...))
   1692       1.88       chs {
   1693       1.88       chs 	struct pool_item_header *ph;
   1694       1.88       chs 
   1695       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1696      1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1697      1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1698  1.221.4.1  christos #ifdef POOL_CHECK_MAGIC
   1699  1.221.4.1  christos 		struct pool_item *pi;
   1700  1.221.4.1  christos 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1701      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1702       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1703       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1704       1.97      yamt 					    pi, pi->pi_magic);
   1705       1.97      yamt 				}
   1706       1.88       chs 			}
   1707       1.88       chs 		}
   1708       1.88       chs #endif
   1709       1.88       chs 	}
   1710       1.88       chs }
   1711       1.88       chs 
   1712       1.88       chs static void
   1713       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1714        1.3        pk {
   1715       1.25   thorpej 	struct pool_item_header *ph;
   1716      1.134        ad 	pool_cache_t pc;
   1717      1.134        ad 	pcg_t *pcg;
   1718      1.134        ad 	pool_cache_cpu_t *cc;
   1719      1.134        ad 	uint64_t cpuhit, cpumiss;
   1720       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1721       1.25   thorpej 	char c;
   1722       1.25   thorpej 
   1723       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1724       1.25   thorpej 		if (c == 'l')
   1725       1.25   thorpej 			print_log = 1;
   1726       1.25   thorpej 		if (c == 'p')
   1727       1.25   thorpej 			print_pagelist = 1;
   1728       1.44   thorpej 		if (c == 'c')
   1729       1.44   thorpej 			print_cache = 1;
   1730       1.25   thorpej 	}
   1731       1.25   thorpej 
   1732      1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1733      1.134        ad 		(*pr)("POOL CACHE");
   1734      1.134        ad 	} else {
   1735      1.134        ad 		(*pr)("POOL");
   1736      1.134        ad 	}
   1737      1.134        ad 
   1738      1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1739       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1740       1.25   thorpej 	    pp->pr_roflags);
   1741       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1742       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1743       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1744       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1745       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1746       1.25   thorpej 
   1747      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1748       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1749       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1750       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1751       1.25   thorpej 
   1752       1.25   thorpej 	if (print_pagelist == 0)
   1753       1.25   thorpej 		goto skip_pagelist;
   1754       1.25   thorpej 
   1755       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1756       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1757       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1758       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1759       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1760       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1761       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1762       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1763       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1764       1.88       chs 
   1765       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1766       1.25   thorpej 		(*pr)("\tno current page\n");
   1767       1.25   thorpej 	else
   1768       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1769       1.25   thorpej 
   1770       1.25   thorpej  skip_pagelist:
   1771       1.25   thorpej 	if (print_log == 0)
   1772       1.25   thorpej 		goto skip_log;
   1773       1.25   thorpej 
   1774       1.25   thorpej 	(*pr)("\n");
   1775        1.3        pk 
   1776       1.25   thorpej  skip_log:
   1777       1.44   thorpej 
   1778      1.102       chs #define PR_GROUPLIST(pcg)						\
   1779      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1780      1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1781      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1782      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1783      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1784      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1785      1.102       chs 			    (unsigned long long)			\
   1786      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1787      1.102       chs 		} else {						\
   1788      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1789      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1790      1.102       chs 		}							\
   1791      1.102       chs 	}
   1792      1.102       chs 
   1793      1.134        ad 	if (pc != NULL) {
   1794      1.134        ad 		cpuhit = 0;
   1795      1.134        ad 		cpumiss = 0;
   1796      1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1797      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1798      1.134        ad 				continue;
   1799      1.134        ad 			cpuhit += cc->cc_hits;
   1800      1.134        ad 			cpumiss += cc->cc_misses;
   1801      1.134        ad 		}
   1802      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1803      1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1804      1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1805      1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1806      1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1807      1.134        ad 		    pc->pc_contended);
   1808      1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1809      1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1810      1.134        ad 		if (print_cache) {
   1811      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1812      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1813      1.134        ad 			    pcg = pcg->pcg_next) {
   1814      1.134        ad 				PR_GROUPLIST(pcg);
   1815      1.134        ad 			}
   1816      1.134        ad 			(*pr)("\tempty cache groups:\n");
   1817      1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1818      1.134        ad 			    pcg = pcg->pcg_next) {
   1819      1.134        ad 				PR_GROUPLIST(pcg);
   1820      1.134        ad 			}
   1821      1.103       chs 		}
   1822       1.44   thorpej 	}
   1823      1.102       chs #undef PR_GROUPLIST
   1824       1.88       chs }
   1825       1.88       chs 
   1826       1.88       chs static int
   1827       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1828       1.88       chs {
   1829       1.88       chs 	struct pool_item *pi;
   1830      1.128  christos 	void *page;
   1831       1.88       chs 	int n;
   1832       1.88       chs 
   1833      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1834      1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1835      1.121      yamt 		if (page != ph->ph_page &&
   1836      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1837      1.121      yamt 			if (label != NULL)
   1838      1.121      yamt 				printf("%s: ", label);
   1839      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1840      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1841      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1842      1.121      yamt 				ph, page);
   1843      1.121      yamt 			return 1;
   1844      1.121      yamt 		}
   1845       1.88       chs 	}
   1846        1.3        pk 
   1847  1.221.4.1  christos 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1848       1.97      yamt 		return 0;
   1849       1.97      yamt 
   1850      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1851       1.88       chs 	     pi != NULL;
   1852      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1853       1.88       chs 
   1854  1.221.4.1  christos #ifdef POOL_CHECK_MAGIC
   1855       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1856       1.88       chs 			if (label != NULL)
   1857       1.88       chs 				printf("%s: ", label);
   1858       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1859      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1860       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1861      1.121      yamt 				n, pi);
   1862       1.88       chs 			panic("pool");
   1863       1.88       chs 		}
   1864       1.88       chs #endif
   1865      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1866      1.121      yamt 			continue;
   1867      1.121      yamt 		}
   1868      1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1869       1.88       chs 		if (page == ph->ph_page)
   1870       1.88       chs 			continue;
   1871       1.88       chs 
   1872       1.88       chs 		if (label != NULL)
   1873       1.88       chs 			printf("%s: ", label);
   1874       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1875       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1876       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1877       1.88       chs 			n, pi, page);
   1878       1.88       chs 		return 1;
   1879       1.88       chs 	}
   1880       1.88       chs 	return 0;
   1881        1.3        pk }
   1882        1.3        pk 
   1883       1.88       chs 
   1884        1.3        pk int
   1885       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1886        1.3        pk {
   1887        1.3        pk 	struct pool_item_header *ph;
   1888        1.3        pk 	int r = 0;
   1889        1.3        pk 
   1890      1.134        ad 	mutex_enter(&pp->pr_lock);
   1891       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1892       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1893       1.88       chs 		if (r) {
   1894       1.88       chs 			goto out;
   1895       1.88       chs 		}
   1896       1.88       chs 	}
   1897       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1898       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1899       1.88       chs 		if (r) {
   1900        1.3        pk 			goto out;
   1901        1.3        pk 		}
   1902       1.88       chs 	}
   1903       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1904       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1905       1.88       chs 		if (r) {
   1906        1.3        pk 			goto out;
   1907        1.3        pk 		}
   1908        1.3        pk 	}
   1909       1.88       chs 
   1910        1.3        pk out:
   1911      1.134        ad 	mutex_exit(&pp->pr_lock);
   1912  1.221.4.1  christos 	return r;
   1913       1.43   thorpej }
   1914       1.43   thorpej 
   1915       1.43   thorpej /*
   1916       1.43   thorpej  * pool_cache_init:
   1917       1.43   thorpej  *
   1918       1.43   thorpej  *	Initialize a pool cache.
   1919      1.134        ad  */
   1920      1.134        ad pool_cache_t
   1921      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1922      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   1923      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1924      1.134        ad {
   1925      1.134        ad 	pool_cache_t pc;
   1926      1.134        ad 
   1927      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   1928      1.134        ad 	if (pc == NULL)
   1929      1.134        ad 		return NULL;
   1930      1.134        ad 
   1931      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1932      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   1933      1.134        ad 
   1934      1.134        ad 	return pc;
   1935      1.134        ad }
   1936      1.134        ad 
   1937      1.134        ad /*
   1938      1.134        ad  * pool_cache_bootstrap:
   1939       1.43   thorpej  *
   1940      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   1941      1.134        ad  *	provides initial storage.
   1942       1.43   thorpej  */
   1943       1.43   thorpej void
   1944      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1945      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   1946      1.134        ad     struct pool_allocator *palloc, int ipl,
   1947      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1948       1.43   thorpej     void *arg)
   1949       1.43   thorpej {
   1950      1.134        ad 	CPU_INFO_ITERATOR cii;
   1951      1.145        ad 	pool_cache_t pc1;
   1952      1.134        ad 	struct cpu_info *ci;
   1953      1.134        ad 	struct pool *pp;
   1954      1.134        ad 
   1955      1.134        ad 	pp = &pc->pc_pool;
   1956      1.208       chs 	if (palloc == NULL && ipl == IPL_NONE) {
   1957      1.208       chs 		if (size > PAGE_SIZE) {
   1958      1.208       chs 			int bigidx = pool_bigidx(size);
   1959      1.208       chs 
   1960      1.208       chs 			palloc = &pool_allocator_big[bigidx];
   1961      1.208       chs 		} else
   1962      1.208       chs 			palloc = &pool_allocator_nointr;
   1963      1.208       chs 	}
   1964      1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1965      1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1966       1.43   thorpej 
   1967      1.134        ad 	if (ctor == NULL) {
   1968      1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   1969      1.134        ad 	}
   1970      1.134        ad 	if (dtor == NULL) {
   1971      1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   1972      1.134        ad 	}
   1973       1.43   thorpej 
   1974      1.134        ad 	pc->pc_emptygroups = NULL;
   1975      1.134        ad 	pc->pc_fullgroups = NULL;
   1976      1.134        ad 	pc->pc_partgroups = NULL;
   1977       1.43   thorpej 	pc->pc_ctor = ctor;
   1978       1.43   thorpej 	pc->pc_dtor = dtor;
   1979       1.43   thorpej 	pc->pc_arg  = arg;
   1980      1.134        ad 	pc->pc_hits  = 0;
   1981       1.48   thorpej 	pc->pc_misses = 0;
   1982      1.134        ad 	pc->pc_nempty = 0;
   1983      1.134        ad 	pc->pc_npart = 0;
   1984      1.134        ad 	pc->pc_nfull = 0;
   1985      1.134        ad 	pc->pc_contended = 0;
   1986      1.134        ad 	pc->pc_refcnt = 0;
   1987      1.136      yamt 	pc->pc_freecheck = NULL;
   1988      1.134        ad 
   1989      1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   1990      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1991      1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   1992      1.142        ad 	} else {
   1993      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1994      1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   1995      1.142        ad 	}
   1996      1.142        ad 
   1997      1.134        ad 	/* Allocate per-CPU caches. */
   1998      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1999      1.134        ad 	pc->pc_ncpu = 0;
   2000      1.139        ad 	if (ncpu < 2) {
   2001      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2002      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2003      1.137        ad 	} else {
   2004      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2005      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2006      1.137        ad 		}
   2007      1.134        ad 	}
   2008      1.145        ad 
   2009      1.145        ad 	/* Add to list of all pools. */
   2010      1.145        ad 	if (__predict_true(!cold))
   2011      1.134        ad 		mutex_enter(&pool_head_lock);
   2012      1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2013      1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2014      1.145        ad 			break;
   2015      1.145        ad 	}
   2016      1.145        ad 	if (pc1 == NULL)
   2017      1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2018      1.145        ad 	else
   2019      1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2020      1.145        ad 	if (__predict_true(!cold))
   2021      1.134        ad 		mutex_exit(&pool_head_lock);
   2022      1.145        ad 
   2023      1.145        ad 	membar_sync();
   2024      1.145        ad 	pp->pr_cache = pc;
   2025       1.43   thorpej }
   2026       1.43   thorpej 
   2027       1.43   thorpej /*
   2028       1.43   thorpej  * pool_cache_destroy:
   2029       1.43   thorpej  *
   2030       1.43   thorpej  *	Destroy a pool cache.
   2031       1.43   thorpej  */
   2032       1.43   thorpej void
   2033      1.134        ad pool_cache_destroy(pool_cache_t pc)
   2034       1.43   thorpej {
   2035      1.191      para 
   2036      1.191      para 	pool_cache_bootstrap_destroy(pc);
   2037      1.191      para 	pool_put(&cache_pool, pc);
   2038      1.191      para }
   2039      1.191      para 
   2040      1.191      para /*
   2041      1.191      para  * pool_cache_bootstrap_destroy:
   2042      1.191      para  *
   2043      1.191      para  *	Destroy a pool cache.
   2044      1.191      para  */
   2045      1.191      para void
   2046      1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   2047      1.191      para {
   2048      1.134        ad 	struct pool *pp = &pc->pc_pool;
   2049      1.175       jym 	u_int i;
   2050      1.134        ad 
   2051      1.134        ad 	/* Remove it from the global list. */
   2052      1.134        ad 	mutex_enter(&pool_head_lock);
   2053      1.134        ad 	while (pc->pc_refcnt != 0)
   2054      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2055      1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2056      1.134        ad 	mutex_exit(&pool_head_lock);
   2057       1.43   thorpej 
   2058       1.43   thorpej 	/* First, invalidate the entire cache. */
   2059       1.43   thorpej 	pool_cache_invalidate(pc);
   2060       1.43   thorpej 
   2061      1.134        ad 	/* Disassociate it from the pool. */
   2062      1.134        ad 	mutex_enter(&pp->pr_lock);
   2063      1.134        ad 	pp->pr_cache = NULL;
   2064      1.134        ad 	mutex_exit(&pp->pr_lock);
   2065      1.134        ad 
   2066      1.134        ad 	/* Destroy per-CPU data */
   2067      1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2068      1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   2069      1.134        ad 
   2070      1.134        ad 	/* Finally, destroy it. */
   2071      1.134        ad 	mutex_destroy(&pc->pc_lock);
   2072      1.134        ad 	pool_destroy(pp);
   2073      1.134        ad }
   2074      1.134        ad 
   2075      1.134        ad /*
   2076      1.134        ad  * pool_cache_cpu_init1:
   2077      1.134        ad  *
   2078      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2079      1.134        ad  */
   2080      1.134        ad static void
   2081      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2082      1.134        ad {
   2083      1.134        ad 	pool_cache_cpu_t *cc;
   2084      1.137        ad 	int index;
   2085      1.134        ad 
   2086      1.137        ad 	index = ci->ci_index;
   2087      1.137        ad 
   2088      1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   2089      1.134        ad 
   2090      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2091      1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2092      1.134        ad 		return;
   2093      1.134        ad 	}
   2094      1.134        ad 
   2095      1.134        ad 	/*
   2096      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2097      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2098      1.134        ad 	 */
   2099      1.134        ad 	if (pc->pc_ncpu == 0) {
   2100      1.134        ad 		cc = &pc->pc_cpu0;
   2101      1.134        ad 		pc->pc_ncpu = 1;
   2102      1.134        ad 	} else {
   2103      1.134        ad 		mutex_enter(&pc->pc_lock);
   2104      1.134        ad 		pc->pc_ncpu++;
   2105      1.134        ad 		mutex_exit(&pc->pc_lock);
   2106      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2107      1.134        ad 	}
   2108      1.134        ad 
   2109      1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2110      1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2111      1.134        ad 	cc->cc_cache = pc;
   2112      1.137        ad 	cc->cc_cpuindex = index;
   2113      1.134        ad 	cc->cc_hits = 0;
   2114      1.134        ad 	cc->cc_misses = 0;
   2115      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2116      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2117      1.134        ad 
   2118      1.137        ad 	pc->pc_cpus[index] = cc;
   2119       1.43   thorpej }
   2120       1.43   thorpej 
   2121      1.134        ad /*
   2122      1.134        ad  * pool_cache_cpu_init:
   2123      1.134        ad  *
   2124      1.134        ad  *	Called whenever a new CPU is attached.
   2125      1.134        ad  */
   2126      1.134        ad void
   2127      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2128       1.43   thorpej {
   2129      1.134        ad 	pool_cache_t pc;
   2130      1.134        ad 
   2131      1.134        ad 	mutex_enter(&pool_head_lock);
   2132      1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2133      1.134        ad 		pc->pc_refcnt++;
   2134      1.134        ad 		mutex_exit(&pool_head_lock);
   2135       1.43   thorpej 
   2136      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2137       1.43   thorpej 
   2138      1.134        ad 		mutex_enter(&pool_head_lock);
   2139      1.134        ad 		pc->pc_refcnt--;
   2140      1.134        ad 		cv_broadcast(&pool_busy);
   2141      1.134        ad 	}
   2142      1.134        ad 	mutex_exit(&pool_head_lock);
   2143       1.43   thorpej }
   2144       1.43   thorpej 
   2145      1.134        ad /*
   2146      1.134        ad  * pool_cache_reclaim:
   2147      1.134        ad  *
   2148      1.134        ad  *	Reclaim memory from a pool cache.
   2149      1.134        ad  */
   2150      1.134        ad bool
   2151      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2152       1.43   thorpej {
   2153       1.43   thorpej 
   2154      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2155      1.134        ad }
   2156       1.43   thorpej 
   2157      1.136      yamt static void
   2158      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2159      1.136      yamt {
   2160      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2161      1.136      yamt 	pool_put(&pc->pc_pool, object);
   2162      1.136      yamt }
   2163      1.136      yamt 
   2164      1.134        ad /*
   2165      1.134        ad  * pool_cache_destruct_object:
   2166      1.134        ad  *
   2167      1.134        ad  *	Force destruction of an object and its release back into
   2168      1.134        ad  *	the pool.
   2169      1.134        ad  */
   2170      1.134        ad void
   2171      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2172      1.134        ad {
   2173      1.134        ad 
   2174      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2175      1.136      yamt 
   2176      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2177       1.43   thorpej }
   2178       1.43   thorpej 
   2179      1.134        ad /*
   2180      1.134        ad  * pool_cache_invalidate_groups:
   2181      1.134        ad  *
   2182      1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2183      1.134        ad  */
   2184      1.102       chs static void
   2185      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2186      1.102       chs {
   2187      1.134        ad 	void *object;
   2188      1.134        ad 	pcg_t *next;
   2189      1.134        ad 	int i;
   2190      1.134        ad 
   2191      1.134        ad 	for (; pcg != NULL; pcg = next) {
   2192      1.134        ad 		next = pcg->pcg_next;
   2193      1.134        ad 
   2194      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2195      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2196      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2197      1.134        ad 		}
   2198      1.102       chs 
   2199      1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2200      1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2201      1.142        ad 		} else {
   2202      1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2203      1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2204      1.142        ad 		}
   2205      1.102       chs 	}
   2206      1.102       chs }
   2207      1.102       chs 
   2208       1.43   thorpej /*
   2209      1.134        ad  * pool_cache_invalidate:
   2210       1.43   thorpej  *
   2211      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2212      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2213      1.176   thorpej  *
   2214      1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2215      1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2216      1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2217      1.196       jym  *
   2218      1.196       jym  *	Invalidation is a costly process and should not be called from
   2219      1.196       jym  *	interrupt context.
   2220       1.43   thorpej  */
   2221      1.134        ad void
   2222      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2223      1.134        ad {
   2224      1.196       jym 	uint64_t where;
   2225      1.134        ad 	pcg_t *full, *empty, *part;
   2226      1.196       jym 
   2227      1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2228      1.176   thorpej 
   2229      1.177       jym 	if (ncpu < 2 || !mp_online) {
   2230      1.176   thorpej 		/*
   2231      1.176   thorpej 		 * We might be called early enough in the boot process
   2232      1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2233      1.196       jym 		 * In this case, transfer the content of the local CPU's
   2234      1.196       jym 		 * cache back into global cache as only this CPU is currently
   2235      1.196       jym 		 * running.
   2236      1.176   thorpej 		 */
   2237      1.196       jym 		pool_cache_transfer(pc);
   2238      1.176   thorpej 	} else {
   2239      1.176   thorpej 		/*
   2240      1.196       jym 		 * Signal all CPUs that they must transfer their local
   2241      1.196       jym 		 * cache back to the global pool then wait for the xcall to
   2242      1.196       jym 		 * complete.
   2243      1.176   thorpej 		 */
   2244      1.196       jym 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2245      1.196       jym 		    pc, NULL);
   2246      1.176   thorpej 		xc_wait(where);
   2247      1.176   thorpej 	}
   2248      1.196       jym 
   2249      1.196       jym 	/* Empty pool caches, then invalidate objects */
   2250      1.134        ad 	mutex_enter(&pc->pc_lock);
   2251      1.134        ad 	full = pc->pc_fullgroups;
   2252      1.134        ad 	empty = pc->pc_emptygroups;
   2253      1.134        ad 	part = pc->pc_partgroups;
   2254      1.134        ad 	pc->pc_fullgroups = NULL;
   2255      1.134        ad 	pc->pc_emptygroups = NULL;
   2256      1.134        ad 	pc->pc_partgroups = NULL;
   2257      1.134        ad 	pc->pc_nfull = 0;
   2258      1.134        ad 	pc->pc_nempty = 0;
   2259      1.134        ad 	pc->pc_npart = 0;
   2260      1.134        ad 	mutex_exit(&pc->pc_lock);
   2261      1.134        ad 
   2262      1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2263      1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2264      1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2265      1.134        ad }
   2266      1.134        ad 
   2267      1.175       jym /*
   2268      1.175       jym  * pool_cache_invalidate_cpu:
   2269      1.175       jym  *
   2270      1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2271      1.175       jym  *	identified by its associated index.
   2272      1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2273      1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2274      1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2275      1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2276      1.175       jym  *	may result in an undefined behaviour.
   2277      1.175       jym  */
   2278      1.175       jym static void
   2279      1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2280      1.175       jym {
   2281      1.175       jym 	pool_cache_cpu_t *cc;
   2282      1.175       jym 	pcg_t *pcg;
   2283      1.175       jym 
   2284      1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2285      1.175       jym 		return;
   2286      1.175       jym 
   2287      1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2288      1.175       jym 		pcg->pcg_next = NULL;
   2289      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2290      1.175       jym 	}
   2291      1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2292      1.175       jym 		pcg->pcg_next = NULL;
   2293      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2294      1.175       jym 	}
   2295      1.175       jym 	if (cc != &pc->pc_cpu0)
   2296      1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2297      1.175       jym 
   2298      1.175       jym }
   2299      1.175       jym 
   2300      1.134        ad void
   2301      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2302      1.134        ad {
   2303      1.134        ad 
   2304      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2305      1.134        ad }
   2306      1.134        ad 
   2307      1.134        ad void
   2308      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2309      1.134        ad {
   2310      1.134        ad 
   2311      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2312      1.134        ad }
   2313      1.134        ad 
   2314      1.134        ad void
   2315      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2316      1.134        ad {
   2317      1.134        ad 
   2318      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2319      1.134        ad }
   2320      1.134        ad 
   2321      1.134        ad void
   2322      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2323      1.134        ad {
   2324      1.134        ad 
   2325      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2326      1.134        ad }
   2327      1.134        ad 
   2328      1.162        ad static bool __noinline
   2329      1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2330      1.134        ad 		    paddr_t *pap, int flags)
   2331       1.43   thorpej {
   2332      1.134        ad 	pcg_t *pcg, *cur;
   2333      1.134        ad 	uint64_t ncsw;
   2334      1.134        ad 	pool_cache_t pc;
   2335       1.43   thorpej 	void *object;
   2336       1.58   thorpej 
   2337      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2338      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2339      1.168      yamt 
   2340      1.134        ad 	pc = cc->cc_cache;
   2341      1.134        ad 	cc->cc_misses++;
   2342       1.43   thorpej 
   2343      1.134        ad 	/*
   2344      1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2345      1.134        ad 	 * from the cache.
   2346      1.134        ad 	 */
   2347      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2348      1.134        ad 		ncsw = curlwp->l_ncsw;
   2349      1.134        ad 		mutex_enter(&pc->pc_lock);
   2350      1.134        ad 		pc->pc_contended++;
   2351       1.43   thorpej 
   2352      1.134        ad 		/*
   2353      1.134        ad 		 * If we context switched while locking, then
   2354      1.134        ad 		 * our view of the per-CPU data is invalid:
   2355      1.134        ad 		 * retry.
   2356      1.134        ad 		 */
   2357      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2358      1.134        ad 			mutex_exit(&pc->pc_lock);
   2359      1.162        ad 			return true;
   2360       1.43   thorpej 		}
   2361      1.102       chs 	}
   2362       1.43   thorpej 
   2363      1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2364       1.43   thorpej 		/*
   2365      1.134        ad 		 * If there's a full group, release our empty
   2366      1.134        ad 		 * group back to the cache.  Install the full
   2367      1.134        ad 		 * group as cc_current and return.
   2368       1.43   thorpej 		 */
   2369      1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2370      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2371      1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2372      1.134        ad 			pc->pc_emptygroups = cur;
   2373      1.134        ad 			pc->pc_nempty++;
   2374       1.87   thorpej 		}
   2375      1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2376      1.134        ad 		cc->cc_current = pcg;
   2377      1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2378      1.134        ad 		pc->pc_hits++;
   2379      1.134        ad 		pc->pc_nfull--;
   2380      1.134        ad 		mutex_exit(&pc->pc_lock);
   2381      1.162        ad 		return true;
   2382      1.134        ad 	}
   2383      1.134        ad 
   2384      1.134        ad 	/*
   2385      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2386      1.134        ad 	 * path: fetch a new object from the pool and construct
   2387      1.134        ad 	 * it.
   2388      1.134        ad 	 */
   2389      1.134        ad 	pc->pc_misses++;
   2390      1.134        ad 	mutex_exit(&pc->pc_lock);
   2391      1.162        ad 	splx(s);
   2392      1.134        ad 
   2393      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2394      1.134        ad 	*objectp = object;
   2395      1.211  riastrad 	if (__predict_false(object == NULL)) {
   2396      1.211  riastrad 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2397      1.162        ad 		return false;
   2398      1.211  riastrad 	}
   2399      1.125        ad 
   2400      1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2401      1.134        ad 		pool_put(&pc->pc_pool, object);
   2402      1.134        ad 		*objectp = NULL;
   2403      1.162        ad 		return false;
   2404       1.43   thorpej 	}
   2405       1.43   thorpej 
   2406  1.221.4.1  christos 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2407       1.43   thorpej 
   2408      1.134        ad 	if (pap != NULL) {
   2409      1.134        ad #ifdef POOL_VTOPHYS
   2410      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2411      1.134        ad #else
   2412      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2413      1.134        ad #endif
   2414      1.102       chs 	}
   2415       1.43   thorpej 
   2416      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2417  1.221.4.1  christos 	pool_cache_kleak_fill(pc, object);
   2418      1.162        ad 	return false;
   2419       1.43   thorpej }
   2420       1.43   thorpej 
   2421       1.43   thorpej /*
   2422      1.134        ad  * pool_cache_get{,_paddr}:
   2423       1.43   thorpej  *
   2424      1.134        ad  *	Get an object from a pool cache (optionally returning
   2425      1.134        ad  *	the physical address of the object).
   2426       1.43   thorpej  */
   2427      1.134        ad void *
   2428      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2429       1.43   thorpej {
   2430      1.134        ad 	pool_cache_cpu_t *cc;
   2431      1.134        ad 	pcg_t *pcg;
   2432      1.134        ad 	void *object;
   2433       1.60   thorpej 	int s;
   2434       1.43   thorpej 
   2435      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2436      1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2437      1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2438      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2439      1.213  christos 	    __func__, pc->pc_pool.pr_wchan);
   2440      1.184     rmind 
   2441      1.155        ad 	if (flags & PR_WAITOK) {
   2442      1.154      yamt 		ASSERT_SLEEPABLE();
   2443      1.155        ad 	}
   2444      1.125        ad 
   2445      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2446      1.162        ad 	s = splvm();
   2447      1.165      yamt 	while (/* CONSTCOND */ true) {
   2448      1.134        ad 		/* Try and allocate an object from the current group. */
   2449      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2450      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2451      1.134        ad 	 	pcg = cc->cc_current;
   2452      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2453      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2454      1.162        ad 			if (__predict_false(pap != NULL))
   2455      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2456      1.148      yamt #if defined(DIAGNOSTIC)
   2457      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2458      1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2459      1.134        ad 			KASSERT(object != NULL);
   2460      1.163        ad #endif
   2461      1.134        ad 			cc->cc_hits++;
   2462      1.162        ad 			splx(s);
   2463      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2464      1.204      maxv 			pool_redzone_fill(&pc->pc_pool, object);
   2465  1.221.4.1  christos 			pool_cache_kleak_fill(pc, object);
   2466      1.134        ad 			return object;
   2467       1.43   thorpej 		}
   2468       1.43   thorpej 
   2469       1.43   thorpej 		/*
   2470      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2471      1.134        ad 		 * it with the current group and allocate from there.
   2472       1.43   thorpej 		 */
   2473      1.134        ad 		pcg = cc->cc_previous;
   2474      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2475      1.134        ad 			cc->cc_previous = cc->cc_current;
   2476      1.134        ad 			cc->cc_current = pcg;
   2477      1.134        ad 			continue;
   2478       1.43   thorpej 		}
   2479       1.43   thorpej 
   2480      1.134        ad 		/*
   2481      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2482      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2483      1.162        ad 		 * no more objects are available, it will return false.
   2484      1.134        ad 		 * Otherwise, we need to retry.
   2485      1.134        ad 		 */
   2486      1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2487      1.165      yamt 			break;
   2488      1.165      yamt 	}
   2489       1.43   thorpej 
   2490      1.211  riastrad 	/*
   2491      1.211  riastrad 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2492      1.211  riastrad 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2493      1.211  riastrad 	 * constructor fails.
   2494      1.211  riastrad 	 */
   2495      1.134        ad 	return object;
   2496       1.51   thorpej }
   2497       1.51   thorpej 
   2498      1.162        ad static bool __noinline
   2499      1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2500       1.51   thorpej {
   2501      1.200     pooka 	struct lwp *l = curlwp;
   2502      1.163        ad 	pcg_t *pcg, *cur;
   2503      1.134        ad 	uint64_t ncsw;
   2504      1.134        ad 	pool_cache_t pc;
   2505       1.51   thorpej 
   2506      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2507      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2508      1.168      yamt 
   2509      1.134        ad 	pc = cc->cc_cache;
   2510      1.171        ad 	pcg = NULL;
   2511      1.134        ad 	cc->cc_misses++;
   2512      1.200     pooka 	ncsw = l->l_ncsw;
   2513       1.43   thorpej 
   2514      1.171        ad 	/*
   2515      1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2516      1.171        ad 	 * while still unlocked.
   2517      1.171        ad 	 */
   2518      1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2519      1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2520      1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2521      1.171        ad 		}
   2522      1.200     pooka 		/*
   2523      1.200     pooka 		 * If pool_get() blocked, then our view of
   2524      1.200     pooka 		 * the per-CPU data is invalid: retry.
   2525      1.200     pooka 		 */
   2526      1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2527      1.200     pooka 			if (pcg != NULL) {
   2528      1.200     pooka 				pool_put(pc->pc_pcgpool, pcg);
   2529      1.200     pooka 			}
   2530      1.200     pooka 			return true;
   2531      1.200     pooka 		}
   2532      1.171        ad 		if (__predict_true(pcg != NULL)) {
   2533      1.171        ad 			pcg->pcg_avail = 0;
   2534      1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2535      1.171        ad 		}
   2536      1.171        ad 	}
   2537      1.171        ad 
   2538      1.162        ad 	/* Lock the cache. */
   2539      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2540      1.134        ad 		mutex_enter(&pc->pc_lock);
   2541      1.134        ad 		pc->pc_contended++;
   2542      1.162        ad 
   2543      1.163        ad 		/*
   2544      1.163        ad 		 * If we context switched while locking, then our view of
   2545      1.163        ad 		 * the per-CPU data is invalid: retry.
   2546      1.163        ad 		 */
   2547      1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2548      1.163        ad 			mutex_exit(&pc->pc_lock);
   2549      1.171        ad 			if (pcg != NULL) {
   2550      1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2551      1.171        ad 			}
   2552      1.163        ad 			return true;
   2553      1.163        ad 		}
   2554      1.162        ad 	}
   2555      1.102       chs 
   2556      1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2557      1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2558      1.171        ad 		pcg = pc->pc_emptygroups;
   2559      1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2560      1.163        ad 		pc->pc_nempty--;
   2561      1.134        ad 	}
   2562      1.130        ad 
   2563      1.162        ad 	/*
   2564      1.162        ad 	 * If there's a empty group, release our full group back
   2565      1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2566      1.162        ad 	 * and return.
   2567      1.162        ad 	 */
   2568      1.163        ad 	if (pcg != NULL) {
   2569      1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2570      1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2571      1.146        ad 			cc->cc_previous = pcg;
   2572      1.146        ad 		} else {
   2573      1.162        ad 			cur = cc->cc_current;
   2574      1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2575      1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2576      1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2577      1.146        ad 				pc->pc_fullgroups = cur;
   2578      1.146        ad 				pc->pc_nfull++;
   2579      1.146        ad 			}
   2580      1.146        ad 			cc->cc_current = pcg;
   2581      1.146        ad 		}
   2582      1.163        ad 		pc->pc_hits++;
   2583      1.134        ad 		mutex_exit(&pc->pc_lock);
   2584      1.162        ad 		return true;
   2585      1.102       chs 	}
   2586      1.105  christos 
   2587      1.134        ad 	/*
   2588      1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2589      1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2590      1.162        ad 	 * the object here and now.
   2591      1.134        ad 	 */
   2592      1.134        ad 	pc->pc_misses++;
   2593      1.134        ad 	mutex_exit(&pc->pc_lock);
   2594      1.162        ad 	splx(s);
   2595      1.162        ad 	pool_cache_destruct_object(pc, object);
   2596      1.105  christos 
   2597      1.162        ad 	return false;
   2598  1.221.4.1  christos }
   2599      1.102       chs 
   2600       1.43   thorpej /*
   2601      1.134        ad  * pool_cache_put{,_paddr}:
   2602       1.43   thorpej  *
   2603      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2604      1.134        ad  *	physical address of the object).
   2605       1.43   thorpej  */
   2606      1.101   thorpej void
   2607      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2608       1.43   thorpej {
   2609      1.134        ad 	pool_cache_cpu_t *cc;
   2610      1.134        ad 	pcg_t *pcg;
   2611      1.134        ad 	int s;
   2612      1.101   thorpej 
   2613      1.172      yamt 	KASSERT(object != NULL);
   2614  1.221.4.1  christos 	pool_cache_redzone_check(pc, object);
   2615      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2616      1.101   thorpej 
   2617  1.221.4.1  christos 	if (pool_cache_put_quarantine(pc, object, pa)) {
   2618  1.221.4.1  christos 		return;
   2619  1.221.4.1  christos 	}
   2620  1.221.4.1  christos 
   2621      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2622      1.162        ad 	s = splvm();
   2623      1.165      yamt 	while (/* CONSTCOND */ true) {
   2624      1.134        ad 		/* If the current group isn't full, release it there. */
   2625      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2626      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2627      1.134        ad 	 	pcg = cc->cc_current;
   2628      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2629      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2630      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2631      1.134        ad 			pcg->pcg_avail++;
   2632      1.134        ad 			cc->cc_hits++;
   2633      1.162        ad 			splx(s);
   2634      1.134        ad 			return;
   2635      1.134        ad 		}
   2636       1.43   thorpej 
   2637      1.134        ad 		/*
   2638      1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2639      1.134        ad 		 * it with the current group and try again.
   2640      1.134        ad 		 */
   2641      1.134        ad 		pcg = cc->cc_previous;
   2642      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2643      1.134        ad 			cc->cc_previous = cc->cc_current;
   2644      1.134        ad 			cc->cc_current = pcg;
   2645      1.134        ad 			continue;
   2646      1.134        ad 		}
   2647       1.43   thorpej 
   2648      1.134        ad 		/*
   2649  1.221.4.1  christos 		 * Can't free to either group: try the slow path.
   2650      1.134        ad 		 * If put_slow() releases the object for us, it
   2651      1.162        ad 		 * will return false.  Otherwise we need to retry.
   2652      1.134        ad 		 */
   2653      1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2654      1.165      yamt 			break;
   2655      1.165      yamt 	}
   2656       1.43   thorpej }
   2657       1.43   thorpej 
   2658       1.43   thorpej /*
   2659      1.196       jym  * pool_cache_transfer:
   2660       1.43   thorpej  *
   2661      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2662      1.134        ad  *	Run within a cross-call thread.
   2663       1.43   thorpej  */
   2664       1.43   thorpej static void
   2665      1.196       jym pool_cache_transfer(pool_cache_t pc)
   2666       1.43   thorpej {
   2667      1.134        ad 	pool_cache_cpu_t *cc;
   2668      1.134        ad 	pcg_t *prev, *cur, **list;
   2669      1.162        ad 	int s;
   2670      1.134        ad 
   2671      1.162        ad 	s = splvm();
   2672      1.162        ad 	mutex_enter(&pc->pc_lock);
   2673      1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2674      1.134        ad 	cur = cc->cc_current;
   2675      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2676      1.134        ad 	prev = cc->cc_previous;
   2677      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2678      1.162        ad 	if (cur != &pcg_dummy) {
   2679      1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2680      1.134        ad 			list = &pc->pc_fullgroups;
   2681      1.134        ad 			pc->pc_nfull++;
   2682      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2683      1.134        ad 			list = &pc->pc_emptygroups;
   2684      1.134        ad 			pc->pc_nempty++;
   2685      1.134        ad 		} else {
   2686      1.134        ad 			list = &pc->pc_partgroups;
   2687      1.134        ad 			pc->pc_npart++;
   2688      1.134        ad 		}
   2689      1.134        ad 		cur->pcg_next = *list;
   2690      1.134        ad 		*list = cur;
   2691      1.134        ad 	}
   2692      1.162        ad 	if (prev != &pcg_dummy) {
   2693      1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2694      1.134        ad 			list = &pc->pc_fullgroups;
   2695      1.134        ad 			pc->pc_nfull++;
   2696      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2697      1.134        ad 			list = &pc->pc_emptygroups;
   2698      1.134        ad 			pc->pc_nempty++;
   2699      1.134        ad 		} else {
   2700      1.134        ad 			list = &pc->pc_partgroups;
   2701      1.134        ad 			pc->pc_npart++;
   2702      1.134        ad 		}
   2703      1.134        ad 		prev->pcg_next = *list;
   2704      1.134        ad 		*list = prev;
   2705      1.134        ad 	}
   2706      1.134        ad 	mutex_exit(&pc->pc_lock);
   2707      1.134        ad 	splx(s);
   2708        1.3        pk }
   2709       1.66   thorpej 
   2710       1.66   thorpej /*
   2711       1.66   thorpej  * Pool backend allocators.
   2712       1.66   thorpej  *
   2713       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2714       1.66   thorpej  * and any additional draining that might be needed.
   2715       1.66   thorpej  *
   2716       1.66   thorpej  * We provide two standard allocators:
   2717       1.66   thorpej  *
   2718       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2719       1.66   thorpej  *
   2720       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2721       1.66   thorpej  *	in interrupt context.
   2722       1.66   thorpej  */
   2723       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2724       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2725       1.66   thorpej 
   2726       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2727      1.191      para 	.pa_alloc = pool_page_alloc,
   2728      1.191      para 	.pa_free = pool_page_free,
   2729      1.191      para 	.pa_pagesz = 0
   2730       1.66   thorpej };
   2731       1.66   thorpej 
   2732       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2733      1.191      para 	.pa_alloc = pool_page_alloc,
   2734      1.191      para 	.pa_free = pool_page_free,
   2735      1.191      para 	.pa_pagesz = 0
   2736       1.66   thorpej };
   2737       1.66   thorpej 
   2738      1.208       chs struct pool_allocator pool_allocator_big[] = {
   2739      1.208       chs 	{
   2740      1.208       chs 		.pa_alloc = pool_page_alloc,
   2741      1.208       chs 		.pa_free = pool_page_free,
   2742      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2743      1.208       chs 	},
   2744      1.208       chs 	{
   2745      1.208       chs 		.pa_alloc = pool_page_alloc,
   2746      1.208       chs 		.pa_free = pool_page_free,
   2747      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2748      1.208       chs 	},
   2749      1.208       chs 	{
   2750      1.208       chs 		.pa_alloc = pool_page_alloc,
   2751      1.208       chs 		.pa_free = pool_page_free,
   2752      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2753      1.208       chs 	},
   2754      1.208       chs 	{
   2755      1.208       chs 		.pa_alloc = pool_page_alloc,
   2756      1.208       chs 		.pa_free = pool_page_free,
   2757      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2758      1.208       chs 	},
   2759      1.208       chs 	{
   2760      1.208       chs 		.pa_alloc = pool_page_alloc,
   2761      1.208       chs 		.pa_free = pool_page_free,
   2762      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2763      1.208       chs 	},
   2764      1.208       chs 	{
   2765      1.208       chs 		.pa_alloc = pool_page_alloc,
   2766      1.208       chs 		.pa_free = pool_page_free,
   2767      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2768      1.208       chs 	},
   2769      1.208       chs 	{
   2770      1.208       chs 		.pa_alloc = pool_page_alloc,
   2771      1.208       chs 		.pa_free = pool_page_free,
   2772      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2773      1.208       chs 	},
   2774      1.208       chs 	{
   2775      1.208       chs 		.pa_alloc = pool_page_alloc,
   2776      1.208       chs 		.pa_free = pool_page_free,
   2777      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2778      1.208       chs 	}
   2779      1.208       chs };
   2780      1.208       chs 
   2781      1.208       chs static int
   2782      1.208       chs pool_bigidx(size_t size)
   2783      1.208       chs {
   2784      1.208       chs 	int i;
   2785      1.208       chs 
   2786      1.208       chs 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2787      1.208       chs 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2788      1.208       chs 			return i;
   2789      1.208       chs 	}
   2790      1.208       chs 	panic("pool item size %zu too large, use a custom allocator", size);
   2791      1.208       chs }
   2792      1.208       chs 
   2793      1.117      yamt static void *
   2794      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2795       1.66   thorpej {
   2796      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2797       1.66   thorpej 	void *res;
   2798       1.66   thorpej 
   2799      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2800      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2801       1.66   thorpej 		/*
   2802      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2803      1.117      yamt 		 * In other cases, the hook will be run in
   2804      1.117      yamt 		 * pool_reclaim().
   2805       1.66   thorpej 		 */
   2806      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2807      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2808      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2809       1.66   thorpej 		}
   2810      1.117      yamt 	}
   2811      1.117      yamt 	return res;
   2812       1.66   thorpej }
   2813       1.66   thorpej 
   2814      1.117      yamt static void
   2815       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2816       1.66   thorpej {
   2817       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2818       1.66   thorpej 
   2819  1.221.4.1  christos 	if (pp->pr_redzone) {
   2820  1.221.4.1  christos 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
   2821  1.221.4.1  christos 	}
   2822       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2823       1.66   thorpej }
   2824       1.66   thorpej 
   2825       1.66   thorpej void *
   2826      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2827       1.66   thorpej {
   2828      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2829      1.191      para 	vmem_addr_t va;
   2830      1.192     rmind 	int ret;
   2831      1.191      para 
   2832      1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2833      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2834       1.66   thorpej 
   2835      1.192     rmind 	return ret ? NULL : (void *)va;
   2836       1.66   thorpej }
   2837       1.66   thorpej 
   2838       1.66   thorpej void
   2839      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2840       1.66   thorpej {
   2841       1.66   thorpej 
   2842      1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2843       1.98      yamt }
   2844       1.98      yamt 
   2845       1.98      yamt static void *
   2846      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2847       1.98      yamt {
   2848      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2849      1.192     rmind 	vmem_addr_t va;
   2850      1.192     rmind 	int ret;
   2851      1.191      para 
   2852      1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2853      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2854       1.98      yamt 
   2855      1.192     rmind 	return ret ? NULL : (void *)va;
   2856       1.98      yamt }
   2857       1.98      yamt 
   2858       1.98      yamt static void
   2859      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2860       1.98      yamt {
   2861       1.98      yamt 
   2862      1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2863       1.66   thorpej }
   2864       1.66   thorpej 
   2865  1.221.4.1  christos #ifdef KLEAK
   2866  1.221.4.1  christos static void
   2867  1.221.4.1  christos pool_kleak_fill(struct pool *pp, void *p)
   2868  1.221.4.1  christos {
   2869  1.221.4.1  christos 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
   2870  1.221.4.1  christos 		return;
   2871  1.221.4.1  christos 	}
   2872  1.221.4.1  christos 	kleak_fill_area(p, pp->pr_size);
   2873  1.221.4.1  christos }
   2874  1.221.4.1  christos 
   2875  1.221.4.1  christos static void
   2876  1.221.4.1  christos pool_cache_kleak_fill(pool_cache_t pc, void *p)
   2877  1.221.4.1  christos {
   2878  1.221.4.1  christos 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2879  1.221.4.1  christos 		return;
   2880  1.221.4.1  christos 	}
   2881  1.221.4.1  christos 	pool_kleak_fill(&pc->pc_pool, p);
   2882  1.221.4.1  christos }
   2883  1.221.4.1  christos #endif
   2884  1.221.4.1  christos 
   2885  1.221.4.1  christos #ifdef POOL_QUARANTINE
   2886  1.221.4.1  christos static void
   2887  1.221.4.1  christos pool_quarantine_init(struct pool *pp)
   2888  1.221.4.1  christos {
   2889  1.221.4.1  christos 	pp->pr_quar.rotor = 0;
   2890  1.221.4.1  christos 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
   2891  1.221.4.1  christos }
   2892  1.221.4.1  christos 
   2893  1.221.4.1  christos static void
   2894  1.221.4.1  christos pool_quarantine_flush(struct pool *pp)
   2895  1.221.4.1  christos {
   2896  1.221.4.1  christos 	pool_quar_t *quar = &pp->pr_quar;
   2897  1.221.4.1  christos 	struct pool_pagelist pq;
   2898  1.221.4.1  christos 	size_t i;
   2899  1.221.4.1  christos 
   2900  1.221.4.1  christos 	LIST_INIT(&pq);
   2901  1.221.4.1  christos 
   2902  1.221.4.1  christos 	mutex_enter(&pp->pr_lock);
   2903  1.221.4.1  christos 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
   2904  1.221.4.1  christos 		if (quar->list[i] == 0)
   2905  1.221.4.1  christos 			continue;
   2906  1.221.4.1  christos 		pool_do_put(pp, (void *)quar->list[i], &pq);
   2907  1.221.4.1  christos 	}
   2908  1.221.4.1  christos 	mutex_exit(&pp->pr_lock);
   2909  1.221.4.1  christos 
   2910  1.221.4.1  christos 	pr_pagelist_free(pp, &pq);
   2911  1.221.4.1  christos }
   2912  1.221.4.1  christos 
   2913  1.221.4.1  christos static bool
   2914  1.221.4.1  christos pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
   2915  1.221.4.1  christos {
   2916  1.221.4.1  christos 	pool_quar_t *quar = &pp->pr_quar;
   2917  1.221.4.1  christos 	uintptr_t old;
   2918  1.221.4.1  christos 
   2919  1.221.4.1  christos 	if (pp->pr_roflags & PR_NOTOUCH) {
   2920  1.221.4.1  christos 		return false;
   2921  1.221.4.1  christos 	}
   2922  1.221.4.1  christos 
   2923  1.221.4.1  christos 	pool_redzone_check(pp, v);
   2924  1.221.4.1  christos 
   2925  1.221.4.1  christos 	old = quar->list[quar->rotor];
   2926  1.221.4.1  christos 	quar->list[quar->rotor] = (uintptr_t)v;
   2927  1.221.4.1  christos 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
   2928  1.221.4.1  christos 	if (old != 0) {
   2929  1.221.4.1  christos 		pool_do_put(pp, (void *)old, pq);
   2930  1.221.4.1  christos 	}
   2931  1.221.4.1  christos 
   2932  1.221.4.1  christos 	return true;
   2933  1.221.4.1  christos }
   2934  1.221.4.1  christos 
   2935  1.221.4.1  christos static bool
   2936  1.221.4.1  christos pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa)
   2937  1.221.4.1  christos {
   2938  1.221.4.1  christos 	pool_cache_destruct_object(pc, p);
   2939  1.221.4.1  christos 	return true;
   2940  1.221.4.1  christos }
   2941  1.221.4.1  christos #endif
   2942  1.221.4.1  christos 
   2943      1.204      maxv #ifdef POOL_REDZONE
   2944      1.204      maxv #if defined(_LP64)
   2945      1.204      maxv # define PRIME 0x9e37fffffffc0000UL
   2946      1.204      maxv #else /* defined(_LP64) */
   2947      1.204      maxv # define PRIME 0x9e3779b1
   2948      1.204      maxv #endif /* defined(_LP64) */
   2949      1.204      maxv #define STATIC_BYTE	0xFE
   2950      1.204      maxv CTASSERT(POOL_REDZONE_SIZE > 1);
   2951      1.204      maxv 
   2952  1.221.4.1  christos #ifndef KASAN
   2953      1.204      maxv static inline uint8_t
   2954      1.204      maxv pool_pattern_generate(const void *p)
   2955      1.204      maxv {
   2956      1.204      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
   2957      1.204      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2958      1.204      maxv }
   2959  1.221.4.1  christos #endif
   2960      1.204      maxv 
   2961      1.204      maxv static void
   2962      1.204      maxv pool_redzone_init(struct pool *pp, size_t requested_size)
   2963      1.204      maxv {
   2964  1.221.4.1  christos 	size_t redzsz;
   2965      1.204      maxv 	size_t nsz;
   2966      1.204      maxv 
   2967  1.221.4.1  christos #ifdef KASAN
   2968  1.221.4.1  christos 	redzsz = requested_size;
   2969  1.221.4.1  christos 	kasan_add_redzone(&redzsz);
   2970  1.221.4.1  christos 	redzsz -= requested_size;
   2971  1.221.4.1  christos #else
   2972  1.221.4.1  christos 	redzsz = POOL_REDZONE_SIZE;
   2973  1.221.4.1  christos #endif
   2974  1.221.4.1  christos 
   2975      1.204      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   2976      1.204      maxv 		pp->pr_redzone = false;
   2977      1.204      maxv 		return;
   2978      1.204      maxv 	}
   2979      1.204      maxv 
   2980      1.204      maxv 	/*
   2981      1.204      maxv 	 * We may have extended the requested size earlier; check if
   2982      1.204      maxv 	 * there's naturally space in the padding for a red zone.
   2983      1.204      maxv 	 */
   2984  1.221.4.1  christos 	if (pp->pr_size - requested_size >= redzsz) {
   2985  1.221.4.1  christos 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2986      1.204      maxv 		pp->pr_redzone = true;
   2987      1.204      maxv 		return;
   2988      1.204      maxv 	}
   2989      1.204      maxv 
   2990      1.204      maxv 	/*
   2991      1.204      maxv 	 * No space in the natural padding; check if we can extend a
   2992      1.204      maxv 	 * bit the size of the pool.
   2993      1.204      maxv 	 */
   2994  1.221.4.1  christos 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   2995      1.204      maxv 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2996      1.204      maxv 		/* Ok, we can */
   2997      1.204      maxv 		pp->pr_size = nsz;
   2998  1.221.4.1  christos 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2999      1.204      maxv 		pp->pr_redzone = true;
   3000      1.204      maxv 	} else {
   3001      1.204      maxv 		/* No space for a red zone... snif :'( */
   3002      1.204      maxv 		pp->pr_redzone = false;
   3003      1.204      maxv 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   3004      1.204      maxv 	}
   3005      1.204      maxv }
   3006      1.204      maxv 
   3007      1.204      maxv static void
   3008      1.204      maxv pool_redzone_fill(struct pool *pp, void *p)
   3009      1.204      maxv {
   3010      1.204      maxv 	if (!pp->pr_redzone)
   3011      1.204      maxv 		return;
   3012  1.221.4.1  christos #ifdef KASAN
   3013  1.221.4.1  christos 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
   3014  1.221.4.1  christos 	    KASAN_POOL_REDZONE);
   3015  1.221.4.1  christos #else
   3016  1.221.4.1  christos 	uint8_t *cp, pat;
   3017  1.221.4.1  christos 	const uint8_t *ep;
   3018      1.204      maxv 
   3019      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3020      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3021      1.204      maxv 
   3022      1.204      maxv 	/*
   3023      1.204      maxv 	 * We really don't want the first byte of the red zone to be '\0';
   3024      1.204      maxv 	 * an off-by-one in a string may not be properly detected.
   3025      1.204      maxv 	 */
   3026      1.204      maxv 	pat = pool_pattern_generate(cp);
   3027      1.204      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   3028      1.204      maxv 	cp++;
   3029      1.204      maxv 
   3030      1.204      maxv 	while (cp < ep) {
   3031      1.204      maxv 		*cp = pool_pattern_generate(cp);
   3032      1.204      maxv 		cp++;
   3033      1.204      maxv 	}
   3034  1.221.4.1  christos #endif
   3035      1.204      maxv }
   3036      1.204      maxv 
   3037      1.204      maxv static void
   3038      1.204      maxv pool_redzone_check(struct pool *pp, void *p)
   3039      1.204      maxv {
   3040      1.204      maxv 	if (!pp->pr_redzone)
   3041      1.204      maxv 		return;
   3042  1.221.4.1  christos #ifdef KASAN
   3043  1.221.4.1  christos 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
   3044  1.221.4.1  christos #else
   3045  1.221.4.1  christos 	uint8_t *cp, pat, expected;
   3046  1.221.4.1  christos 	const uint8_t *ep;
   3047      1.204      maxv 
   3048      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3049      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3050      1.204      maxv 
   3051      1.204      maxv 	pat = pool_pattern_generate(cp);
   3052      1.204      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   3053  1.221.4.1  christos 	if (__predict_false(expected != *cp)) {
   3054  1.221.4.1  christos 		printf("%s: %p: 0x%02x != 0x%02x\n",
   3055      1.204      maxv 		   __func__, cp, *cp, expected);
   3056      1.204      maxv 	}
   3057      1.204      maxv 	cp++;
   3058      1.204      maxv 
   3059      1.204      maxv 	while (cp < ep) {
   3060      1.204      maxv 		expected = pool_pattern_generate(cp);
   3061  1.221.4.1  christos 		if (__predict_false(*cp != expected)) {
   3062  1.221.4.1  christos 			printf("%s: %p: 0x%02x != 0x%02x\n",
   3063      1.204      maxv 			   __func__, cp, *cp, expected);
   3064      1.204      maxv 		}
   3065      1.204      maxv 		cp++;
   3066      1.204      maxv 	}
   3067  1.221.4.1  christos #endif
   3068      1.204      maxv }
   3069      1.204      maxv 
   3070  1.221.4.1  christos static void
   3071  1.221.4.1  christos pool_cache_redzone_check(pool_cache_t pc, void *p)
   3072       1.66   thorpej {
   3073  1.221.4.1  christos #ifdef KASAN
   3074  1.221.4.1  christos 	/* If there is a ctor/dtor, leave the data as valid. */
   3075  1.221.4.1  christos 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   3076  1.221.4.1  christos 		return;
   3077  1.221.4.1  christos 	}
   3078  1.221.4.1  christos #endif
   3079  1.221.4.1  christos 	pool_redzone_check(&pc->pc_pool, p);
   3080       1.66   thorpej }
   3081       1.66   thorpej 
   3082  1.221.4.1  christos #endif /* POOL_REDZONE */
   3083      1.141      yamt 
   3084      1.141      yamt #if defined(DDB)
   3085      1.141      yamt static bool
   3086      1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3087      1.141      yamt {
   3088      1.141      yamt 
   3089      1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   3090      1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3091      1.141      yamt }
   3092      1.141      yamt 
   3093      1.143      yamt static bool
   3094      1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3095      1.143      yamt {
   3096      1.143      yamt 
   3097      1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3098      1.143      yamt }
   3099      1.143      yamt 
   3100      1.143      yamt static bool
   3101      1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3102      1.143      yamt {
   3103      1.143      yamt 	int i;
   3104      1.143      yamt 
   3105      1.143      yamt 	if (pcg == NULL) {
   3106      1.143      yamt 		return false;
   3107      1.143      yamt 	}
   3108      1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   3109      1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3110      1.143      yamt 			return true;
   3111      1.143      yamt 		}
   3112      1.143      yamt 	}
   3113      1.143      yamt 	return false;
   3114      1.143      yamt }
   3115      1.143      yamt 
   3116      1.143      yamt static bool
   3117      1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3118      1.143      yamt {
   3119      1.143      yamt 
   3120  1.221.4.1  christos 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3121  1.221.4.1  christos 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3122      1.143      yamt 		pool_item_bitmap_t *bitmap =
   3123      1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3124      1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3125      1.143      yamt 
   3126      1.143      yamt 		return (*bitmap & mask) == 0;
   3127      1.143      yamt 	} else {
   3128      1.143      yamt 		struct pool_item *pi;
   3129      1.143      yamt 
   3130      1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3131      1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   3132      1.143      yamt 				return false;
   3133      1.143      yamt 			}
   3134      1.143      yamt 		}
   3135      1.143      yamt 		return true;
   3136      1.143      yamt 	}
   3137      1.143      yamt }
   3138      1.143      yamt 
   3139      1.141      yamt void
   3140      1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3141      1.141      yamt {
   3142      1.141      yamt 	struct pool *pp;
   3143      1.141      yamt 
   3144      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3145      1.141      yamt 		struct pool_item_header *ph;
   3146      1.141      yamt 		uintptr_t item;
   3147      1.143      yamt 		bool allocated = true;
   3148      1.143      yamt 		bool incache = false;
   3149      1.143      yamt 		bool incpucache = false;
   3150      1.143      yamt 		char cpucachestr[32];
   3151      1.141      yamt 
   3152      1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3153      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3154      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3155      1.141      yamt 					goto found;
   3156      1.141      yamt 				}
   3157      1.141      yamt 			}
   3158      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3159      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3160      1.143      yamt 					allocated =
   3161      1.143      yamt 					    pool_allocated(pp, ph, addr);
   3162      1.143      yamt 					goto found;
   3163      1.143      yamt 				}
   3164      1.143      yamt 			}
   3165      1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3166      1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   3167      1.143      yamt 					allocated = false;
   3168      1.141      yamt 					goto found;
   3169      1.141      yamt 				}
   3170      1.141      yamt 			}
   3171      1.141      yamt 			continue;
   3172      1.141      yamt 		} else {
   3173      1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3174      1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3175      1.141      yamt 				continue;
   3176      1.141      yamt 			}
   3177      1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3178      1.141      yamt 		}
   3179      1.141      yamt found:
   3180      1.143      yamt 		if (allocated && pp->pr_cache) {
   3181      1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   3182      1.143      yamt 			struct pool_cache_group *pcg;
   3183      1.143      yamt 			int i;
   3184      1.143      yamt 
   3185      1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3186      1.143      yamt 			    pcg = pcg->pcg_next) {
   3187      1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3188      1.143      yamt 					incache = true;
   3189      1.143      yamt 					goto print;
   3190      1.143      yamt 				}
   3191      1.143      yamt 			}
   3192      1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3193      1.143      yamt 				pool_cache_cpu_t *cc;
   3194      1.143      yamt 
   3195      1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3196      1.143      yamt 					continue;
   3197      1.143      yamt 				}
   3198      1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3199      1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3200      1.143      yamt 					struct cpu_info *ci =
   3201      1.170        ad 					    cpu_lookup(i);
   3202      1.143      yamt 
   3203      1.143      yamt 					incpucache = true;
   3204      1.143      yamt 					snprintf(cpucachestr,
   3205      1.143      yamt 					    sizeof(cpucachestr),
   3206      1.143      yamt 					    "cached by CPU %u",
   3207      1.153    martin 					    ci->ci_index);
   3208      1.143      yamt 					goto print;
   3209      1.143      yamt 				}
   3210      1.143      yamt 			}
   3211      1.143      yamt 		}
   3212      1.143      yamt print:
   3213      1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3214      1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3215      1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3216      1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3217      1.143      yamt 		    pp->pr_wchan,
   3218      1.143      yamt 		    incpucache ? cpucachestr :
   3219      1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3220      1.141      yamt 	}
   3221      1.141      yamt }
   3222      1.141      yamt #endif /* defined(DDB) */
   3223      1.203     joerg 
   3224      1.203     joerg static int
   3225      1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   3226      1.203     joerg {
   3227      1.203     joerg 	struct pool_sysctl data;
   3228      1.203     joerg 	struct pool *pp;
   3229      1.203     joerg 	struct pool_cache *pc;
   3230      1.203     joerg 	pool_cache_cpu_t *cc;
   3231      1.203     joerg 	int error;
   3232      1.203     joerg 	size_t i, written;
   3233      1.203     joerg 
   3234      1.203     joerg 	if (oldp == NULL) {
   3235      1.203     joerg 		*oldlenp = 0;
   3236      1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3237      1.203     joerg 			*oldlenp += sizeof(data);
   3238      1.203     joerg 		return 0;
   3239      1.203     joerg 	}
   3240      1.203     joerg 
   3241      1.203     joerg 	memset(&data, 0, sizeof(data));
   3242      1.203     joerg 	error = 0;
   3243      1.203     joerg 	written = 0;
   3244      1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3245      1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   3246      1.203     joerg 			break;
   3247      1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3248      1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3249      1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3250      1.203     joerg #define COPY(field) data.field = pp->field
   3251      1.203     joerg 		COPY(pr_size);
   3252      1.203     joerg 
   3253      1.203     joerg 		COPY(pr_itemsperpage);
   3254      1.203     joerg 		COPY(pr_nitems);
   3255      1.203     joerg 		COPY(pr_nout);
   3256      1.203     joerg 		COPY(pr_hardlimit);
   3257      1.203     joerg 		COPY(pr_npages);
   3258      1.203     joerg 		COPY(pr_minpages);
   3259      1.203     joerg 		COPY(pr_maxpages);
   3260      1.203     joerg 
   3261      1.203     joerg 		COPY(pr_nget);
   3262      1.203     joerg 		COPY(pr_nfail);
   3263      1.203     joerg 		COPY(pr_nput);
   3264      1.203     joerg 		COPY(pr_npagealloc);
   3265      1.203     joerg 		COPY(pr_npagefree);
   3266      1.203     joerg 		COPY(pr_hiwat);
   3267      1.203     joerg 		COPY(pr_nidle);
   3268      1.203     joerg #undef COPY
   3269      1.203     joerg 
   3270      1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   3271      1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   3272      1.203     joerg 		if (pp->pr_cache) {
   3273      1.203     joerg 			pc = pp->pr_cache;
   3274      1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3275      1.203     joerg 			data.pr_cache_nfull = pc->pc_nfull;
   3276      1.203     joerg 			data.pr_cache_npartial = pc->pc_npart;
   3277      1.203     joerg 			data.pr_cache_nempty = pc->pc_nempty;
   3278      1.203     joerg 			data.pr_cache_ncontended = pc->pc_contended;
   3279      1.203     joerg 			data.pr_cache_nmiss_global = pc->pc_misses;
   3280      1.203     joerg 			data.pr_cache_nhit_global = pc->pc_hits;
   3281      1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3282      1.203     joerg 				cc = pc->pc_cpus[i];
   3283      1.203     joerg 				if (cc == NULL)
   3284      1.203     joerg 					continue;
   3285      1.206  knakahar 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3286      1.206  knakahar 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3287      1.203     joerg 			}
   3288      1.203     joerg 		} else {
   3289      1.203     joerg 			data.pr_cache_meta_size = 0;
   3290      1.203     joerg 			data.pr_cache_nfull = 0;
   3291      1.203     joerg 			data.pr_cache_npartial = 0;
   3292      1.203     joerg 			data.pr_cache_nempty = 0;
   3293      1.203     joerg 			data.pr_cache_ncontended = 0;
   3294      1.203     joerg 			data.pr_cache_nmiss_global = 0;
   3295      1.203     joerg 			data.pr_cache_nhit_global = 0;
   3296      1.203     joerg 		}
   3297      1.203     joerg 
   3298      1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3299      1.203     joerg 		if (error)
   3300      1.203     joerg 			break;
   3301      1.203     joerg 		written += sizeof(data);
   3302      1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   3303      1.203     joerg 	}
   3304      1.203     joerg 
   3305      1.203     joerg 	*oldlenp = written;
   3306      1.203     joerg 	return error;
   3307      1.203     joerg }
   3308      1.203     joerg 
   3309      1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3310      1.203     joerg {
   3311      1.203     joerg 	const struct sysctlnode *rnode = NULL;
   3312      1.203     joerg 
   3313      1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   3314      1.203     joerg 		       CTLFLAG_PERMANENT,
   3315      1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   3316      1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   3317      1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   3318      1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3319      1.203     joerg }
   3320