Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.221.4.3
      1  1.221.4.2    martin /*	$NetBSD: subr_pool.c,v 1.221.4.3 2020/04/21 18:42:42 martin Exp $	*/
      2        1.1        pk 
      3  1.221.4.1  christos /*
      4  1.221.4.1  christos  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5      1.183        ad  *     The NetBSD Foundation, Inc.
      6        1.1        pk  * All rights reserved.
      7        1.1        pk  *
      8        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10      1.204      maxv  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11      1.204      maxv  * Maxime Villard.
     12        1.1        pk  *
     13        1.1        pk  * Redistribution and use in source and binary forms, with or without
     14        1.1        pk  * modification, are permitted provided that the following conditions
     15        1.1        pk  * are met:
     16        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20        1.1        pk  *    documentation and/or other materials provided with the distribution.
     21        1.1        pk  *
     22        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33        1.1        pk  */
     34       1.64     lukem 
     35       1.64     lukem #include <sys/cdefs.h>
     36  1.221.4.2    martin __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.221.4.3 2020/04/21 18:42:42 martin Exp $");
     37       1.24    scottr 
     38      1.205     pooka #ifdef _KERNEL_OPT
     39      1.141      yamt #include "opt_ddb.h"
     40       1.28   thorpej #include "opt_lockdebug.h"
     41  1.221.4.1  christos #include "opt_pool.h"
     42      1.205     pooka #endif
     43        1.1        pk 
     44        1.1        pk #include <sys/param.h>
     45        1.1        pk #include <sys/systm.h>
     46      1.203     joerg #include <sys/sysctl.h>
     47      1.135      yamt #include <sys/bitops.h>
     48        1.1        pk #include <sys/proc.h>
     49        1.1        pk #include <sys/errno.h>
     50        1.1        pk #include <sys/kernel.h>
     51      1.191      para #include <sys/vmem.h>
     52        1.1        pk #include <sys/pool.h>
     53       1.20   thorpej #include <sys/syslog.h>
     54      1.125        ad #include <sys/debug.h>
     55      1.134        ad #include <sys/lockdebug.h>
     56      1.134        ad #include <sys/xcall.h>
     57      1.134        ad #include <sys/cpu.h>
     58      1.145        ad #include <sys/atomic.h>
     59  1.221.4.1  christos #include <sys/asan.h>
     60  1.221.4.2    martin #include <sys/msan.h>
     61        1.3        pk 
     62      1.187  uebayasi #include <uvm/uvm_extern.h>
     63        1.3        pk 
     64        1.1        pk /*
     65        1.1        pk  * Pool resource management utility.
     66        1.3        pk  *
     67       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     68       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     69       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     70       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     71       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     72       1.88       chs  * header. The memory for building the page list is either taken from
     73       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     74       1.88       chs  * an internal pool of page headers (`phpool').
     75        1.1        pk  */
     76        1.1        pk 
     77      1.221      para /* List of all pools. Non static as needed by 'vmstat -m' */
     78      1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     79      1.134        ad 
     80        1.3        pk /* Private pool for page header structures */
     81       1.97      yamt #define	PHPOOL_MAX	8
     82       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     83      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     84  1.221.4.2    martin 	(((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
     85        1.3        pk 
     86  1.221.4.2    martin #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
     87  1.221.4.1  christos #define POOL_REDZONE
     88       1.62     bjh21 #endif
     89       1.62     bjh21 
     90  1.221.4.3    martin #if defined(POOL_QUARANTINE)
     91  1.221.4.3    martin #define POOL_NOCACHE
     92  1.221.4.3    martin #endif
     93  1.221.4.3    martin 
     94      1.204      maxv #ifdef POOL_REDZONE
     95  1.221.4.1  christos # ifdef KASAN
     96  1.221.4.1  christos #  define POOL_REDZONE_SIZE 8
     97  1.221.4.1  christos # else
     98  1.221.4.1  christos #  define POOL_REDZONE_SIZE 2
     99  1.221.4.1  christos # endif
    100      1.204      maxv static void pool_redzone_init(struct pool *, size_t);
    101      1.204      maxv static void pool_redzone_fill(struct pool *, void *);
    102      1.204      maxv static void pool_redzone_check(struct pool *, void *);
    103  1.221.4.1  christos static void pool_cache_redzone_check(pool_cache_t, void *);
    104      1.204      maxv #else
    105  1.221.4.1  christos # define pool_redzone_init(pp, sz)		__nothing
    106  1.221.4.1  christos # define pool_redzone_fill(pp, ptr)		__nothing
    107  1.221.4.1  christos # define pool_redzone_check(pp, ptr)		__nothing
    108  1.221.4.1  christos # define pool_cache_redzone_check(pc, ptr)	__nothing
    109      1.204      maxv #endif
    110      1.204      maxv 
    111  1.221.4.2    martin #ifdef KMSAN
    112  1.221.4.2    martin static inline void pool_get_kmsan(struct pool *, void *);
    113  1.221.4.2    martin static inline void pool_put_kmsan(struct pool *, void *);
    114  1.221.4.2    martin static inline void pool_cache_get_kmsan(pool_cache_t, void *);
    115  1.221.4.2    martin static inline void pool_cache_put_kmsan(pool_cache_t, void *);
    116  1.221.4.1  christos #else
    117  1.221.4.2    martin #define pool_get_kmsan(pp, ptr)		__nothing
    118  1.221.4.2    martin #define pool_put_kmsan(pp, ptr)		__nothing
    119  1.221.4.2    martin #define pool_cache_get_kmsan(pc, ptr)	__nothing
    120  1.221.4.2    martin #define pool_cache_put_kmsan(pc, ptr)	__nothing
    121  1.221.4.1  christos #endif
    122  1.221.4.1  christos 
    123  1.221.4.1  christos #ifdef POOL_QUARANTINE
    124  1.221.4.1  christos static void pool_quarantine_init(struct pool *);
    125  1.221.4.1  christos static void pool_quarantine_flush(struct pool *);
    126  1.221.4.1  christos static bool pool_put_quarantine(struct pool *, void *,
    127  1.221.4.1  christos     struct pool_pagelist *);
    128  1.221.4.1  christos #else
    129  1.221.4.1  christos #define pool_quarantine_init(a)			__nothing
    130  1.221.4.1  christos #define pool_quarantine_flush(a)		__nothing
    131  1.221.4.1  christos #define pool_put_quarantine(a, b, c)		false
    132  1.221.4.3    martin #endif
    133  1.221.4.3    martin 
    134  1.221.4.3    martin #ifdef POOL_NOCACHE
    135  1.221.4.3    martin static bool pool_cache_put_nocache(pool_cache_t, void *);
    136  1.221.4.3    martin #else
    137  1.221.4.3    martin #define pool_cache_put_nocache(a, b)		false
    138  1.221.4.1  christos #endif
    139  1.221.4.1  christos 
    140  1.221.4.2    martin #define NO_CTOR	__FPTRCAST(int (*)(void *, void *, int), nullop)
    141  1.221.4.2    martin #define NO_DTOR	__FPTRCAST(void (*)(void *, void *), nullop)
    142  1.221.4.2    martin 
    143  1.221.4.2    martin #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
    144  1.221.4.2    martin #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
    145  1.221.4.2    martin 
    146  1.221.4.2    martin /*
    147  1.221.4.2    martin  * Pool backend allocators.
    148  1.221.4.2    martin  *
    149  1.221.4.2    martin  * Each pool has a backend allocator that handles allocation, deallocation,
    150  1.221.4.2    martin  * and any additional draining that might be needed.
    151  1.221.4.2    martin  *
    152  1.221.4.2    martin  * We provide two standard allocators:
    153  1.221.4.2    martin  *
    154  1.221.4.2    martin  *	pool_allocator_kmem - the default when no allocator is specified
    155  1.221.4.2    martin  *
    156  1.221.4.2    martin  *	pool_allocator_nointr - used for pools that will not be accessed
    157  1.221.4.2    martin  *	in interrupt context.
    158  1.221.4.2    martin  */
    159  1.221.4.2    martin void *pool_page_alloc(struct pool *, int);
    160  1.221.4.2    martin void pool_page_free(struct pool *, void *);
    161  1.221.4.1  christos 
    162       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    163       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    164       1.98      yamt 
    165  1.221.4.2    martin struct pool_allocator pool_allocator_kmem = {
    166  1.221.4.2    martin 	.pa_alloc = pool_page_alloc,
    167  1.221.4.2    martin 	.pa_free = pool_page_free,
    168  1.221.4.2    martin 	.pa_pagesz = 0
    169  1.221.4.2    martin };
    170  1.221.4.2    martin 
    171  1.221.4.2    martin struct pool_allocator pool_allocator_nointr = {
    172  1.221.4.2    martin 	.pa_alloc = pool_page_alloc,
    173  1.221.4.2    martin 	.pa_free = pool_page_free,
    174  1.221.4.2    martin 	.pa_pagesz = 0
    175  1.221.4.2    martin };
    176  1.221.4.2    martin 
    177      1.134        ad struct pool_allocator pool_allocator_meta = {
    178      1.191      para 	.pa_alloc = pool_page_alloc_meta,
    179      1.191      para 	.pa_free = pool_page_free_meta,
    180      1.191      para 	.pa_pagesz = 0
    181       1.98      yamt };
    182       1.98      yamt 
    183      1.208       chs #define POOL_ALLOCATOR_BIG_BASE 13
    184  1.221.4.2    martin static struct pool_allocator pool_allocator_big[] = {
    185  1.221.4.2    martin 	{
    186  1.221.4.2    martin 		.pa_alloc = pool_page_alloc,
    187  1.221.4.2    martin 		.pa_free = pool_page_free,
    188  1.221.4.2    martin 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
    189  1.221.4.2    martin 	},
    190  1.221.4.2    martin 	{
    191  1.221.4.2    martin 		.pa_alloc = pool_page_alloc,
    192  1.221.4.2    martin 		.pa_free = pool_page_free,
    193  1.221.4.2    martin 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
    194  1.221.4.2    martin 	},
    195  1.221.4.2    martin 	{
    196  1.221.4.2    martin 		.pa_alloc = pool_page_alloc,
    197  1.221.4.2    martin 		.pa_free = pool_page_free,
    198  1.221.4.2    martin 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
    199  1.221.4.2    martin 	},
    200  1.221.4.2    martin 	{
    201  1.221.4.2    martin 		.pa_alloc = pool_page_alloc,
    202  1.221.4.2    martin 		.pa_free = pool_page_free,
    203  1.221.4.2    martin 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
    204  1.221.4.2    martin 	},
    205  1.221.4.2    martin 	{
    206  1.221.4.2    martin 		.pa_alloc = pool_page_alloc,
    207  1.221.4.2    martin 		.pa_free = pool_page_free,
    208  1.221.4.2    martin 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
    209  1.221.4.2    martin 	},
    210  1.221.4.2    martin 	{
    211  1.221.4.2    martin 		.pa_alloc = pool_page_alloc,
    212  1.221.4.2    martin 		.pa_free = pool_page_free,
    213  1.221.4.2    martin 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
    214  1.221.4.2    martin 	},
    215  1.221.4.2    martin 	{
    216  1.221.4.2    martin 		.pa_alloc = pool_page_alloc,
    217  1.221.4.2    martin 		.pa_free = pool_page_free,
    218  1.221.4.2    martin 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
    219  1.221.4.2    martin 	},
    220  1.221.4.2    martin 	{
    221  1.221.4.2    martin 		.pa_alloc = pool_page_alloc,
    222  1.221.4.2    martin 		.pa_free = pool_page_free,
    223  1.221.4.2    martin 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
    224  1.221.4.2    martin 	}
    225  1.221.4.2    martin };
    226  1.221.4.2    martin 
    227      1.208       chs static int pool_bigidx(size_t);
    228      1.208       chs 
    229        1.3        pk /* # of seconds to retain page after last use */
    230        1.3        pk int pool_inactive_time = 10;
    231        1.3        pk 
    232        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    233  1.221.4.1  christos static struct pool *drainpp;
    234       1.23   thorpej 
    235      1.134        ad /* This lock protects both pool_head and drainpp. */
    236      1.134        ad static kmutex_t pool_head_lock;
    237      1.134        ad static kcondvar_t pool_busy;
    238        1.3        pk 
    239      1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    240      1.178      elad static kmutex_t pool_allocator_lock;
    241      1.178      elad 
    242  1.221.4.1  christos static unsigned int poolid_counter = 0;
    243  1.221.4.1  christos 
    244      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    245      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    246      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    247  1.221.4.2    martin #define	BITMAP_MIN_SIZE	(CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
    248       1.99      yamt 
    249        1.3        pk struct pool_item_header {
    250        1.3        pk 	/* Page headers */
    251       1.88       chs 	LIST_ENTRY(pool_item_header)
    252        1.3        pk 				ph_pagelist;	/* pool page list */
    253  1.221.4.1  christos 	union {
    254  1.221.4.1  christos 		/* !PR_PHINPAGE */
    255  1.221.4.1  christos 		struct {
    256  1.221.4.1  christos 			SPLAY_ENTRY(pool_item_header)
    257  1.221.4.1  christos 				phu_node;	/* off-page page headers */
    258  1.221.4.1  christos 		} phu_offpage;
    259  1.221.4.1  christos 		/* PR_PHINPAGE */
    260  1.221.4.1  christos 		struct {
    261  1.221.4.1  christos 			unsigned int phu_poolid;
    262  1.221.4.1  christos 		} phu_onpage;
    263  1.221.4.1  christos 	} ph_u1;
    264      1.128  christos 	void *			ph_page;	/* this page's address */
    265      1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    266      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    267      1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    268       1.97      yamt 	union {
    269  1.221.4.1  christos 		/* !PR_USEBMAP */
    270       1.97      yamt 		struct {
    271      1.102       chs 			LIST_HEAD(, pool_item)
    272       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    273       1.97      yamt 		} phu_normal;
    274  1.221.4.1  christos 		/* PR_USEBMAP */
    275       1.97      yamt 		struct {
    276      1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    277       1.97      yamt 		} phu_notouch;
    278  1.221.4.1  christos 	} ph_u2;
    279        1.3        pk };
    280  1.221.4.1  christos #define ph_node		ph_u1.phu_offpage.phu_node
    281  1.221.4.1  christos #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    282  1.221.4.1  christos #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    283  1.221.4.1  christos #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    284  1.221.4.1  christos 
    285  1.221.4.1  christos #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    286  1.221.4.1  christos 
    287  1.221.4.2    martin CTASSERT(offsetof(struct pool_item_header, ph_u2) +
    288  1.221.4.2    martin     BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
    289  1.221.4.2    martin 
    290  1.221.4.1  christos #if defined(DIAGNOSTIC) && !defined(KASAN)
    291  1.221.4.1  christos #define POOL_CHECK_MAGIC
    292  1.221.4.1  christos #endif
    293        1.3        pk 
    294        1.1        pk struct pool_item {
    295  1.221.4.1  christos #ifdef POOL_CHECK_MAGIC
    296       1.82   thorpej 	u_int pi_magic;
    297       1.33       chs #endif
    298      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    299        1.3        pk 	/* Other entries use only this list entry */
    300      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    301        1.3        pk };
    302        1.3        pk 
    303       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    304  1.221.4.3    martin 	((pp)->pr_nitems < (pp)->pr_minitems ||				\
    305  1.221.4.3    martin 	 (pp)->pr_npages < (pp)->pr_minpages)
    306  1.221.4.2    martin #define	POOL_OBJ_TO_PAGE(pp, v)						\
    307  1.221.4.2    martin 	(void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
    308       1.53   thorpej 
    309       1.43   thorpej /*
    310       1.43   thorpej  * Pool cache management.
    311       1.43   thorpej  *
    312       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    313       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    314       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    315       1.43   thorpej  * necessary.
    316       1.43   thorpej  *
    317      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    318      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    319      1.134        ad  * object from the pool, it calls the object's constructor and places it
    320      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    321      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    322      1.134        ad  * to persist in constructed form while freed to the cache.
    323      1.134        ad  *
    324      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    325      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    326      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    327      1.134        ad  * its entirety.
    328       1.43   thorpej  *
    329       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    330       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    331       1.43   thorpej  * from it.
    332       1.43   thorpej  */
    333       1.43   thorpej 
    334      1.142        ad static struct pool pcg_normal_pool;
    335      1.142        ad static struct pool pcg_large_pool;
    336      1.134        ad static struct pool cache_pool;
    337      1.134        ad static struct pool cache_cpu_pool;
    338        1.3        pk 
    339      1.145        ad /* List of all caches. */
    340      1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    341      1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    342      1.145        ad 
    343      1.162        ad int pool_cache_disable;		/* global disable for caching */
    344      1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    345      1.145        ad 
    346      1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    347      1.162        ad 				    void *);
    348      1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    349      1.162        ad 				    void **, paddr_t *, int);
    350      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    351      1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    352      1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    353      1.196       jym static void	pool_cache_transfer(pool_cache_t);
    354        1.3        pk 
    355       1.42   thorpej static int	pool_catchup(struct pool *);
    356      1.128  christos static void	pool_prime_page(struct pool *, void *,
    357       1.55   thorpej 		    struct pool_item_header *);
    358       1.88       chs static void	pool_update_curpage(struct pool *);
    359       1.66   thorpej 
    360      1.113      yamt static int	pool_grow(struct pool *, int);
    361      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    362      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    363        1.3        pk 
    364       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    365      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    366       1.42   thorpej static void pool_print1(struct pool *, const char *,
    367      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    368        1.3        pk 
    369       1.88       chs static int pool_chk_page(struct pool *, const char *,
    370       1.88       chs 			 struct pool_item_header *);
    371       1.88       chs 
    372  1.221.4.1  christos /* -------------------------------------------------------------------------- */
    373  1.221.4.1  christos 
    374      1.135      yamt static inline unsigned int
    375  1.221.4.1  christos pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    376       1.97      yamt     const void *v)
    377       1.97      yamt {
    378       1.97      yamt 	const char *cp = v;
    379      1.135      yamt 	unsigned int idx;
    380       1.97      yamt 
    381  1.221.4.1  christos 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    382      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    383  1.221.4.1  christos 
    384  1.221.4.1  christos 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    385  1.221.4.1  christos 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    386  1.221.4.1  christos 		    pp->pr_itemsperpage);
    387  1.221.4.1  christos 	}
    388  1.221.4.1  christos 
    389       1.97      yamt 	return idx;
    390       1.97      yamt }
    391       1.97      yamt 
    392      1.110     perry static inline void
    393  1.221.4.1  christos pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    394       1.97      yamt     void *obj)
    395       1.97      yamt {
    396  1.221.4.1  christos 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    397      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    398  1.221.4.1  christos 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    399  1.221.4.1  christos 
    400  1.221.4.1  christos 	if (__predict_false((*bitmap & mask) != 0)) {
    401  1.221.4.1  christos 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    402  1.221.4.1  christos 	}
    403       1.97      yamt 
    404      1.135      yamt 	*bitmap |= mask;
    405       1.97      yamt }
    406       1.97      yamt 
    407      1.110     perry static inline void *
    408  1.221.4.1  christos pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    409       1.97      yamt {
    410      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    411      1.135      yamt 	unsigned int idx;
    412      1.135      yamt 	int i;
    413       1.97      yamt 
    414      1.135      yamt 	for (i = 0; ; i++) {
    415      1.135      yamt 		int bit;
    416       1.97      yamt 
    417      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    418      1.135      yamt 		bit = ffs32(bitmap[i]);
    419      1.135      yamt 		if (bit) {
    420      1.135      yamt 			pool_item_bitmap_t mask;
    421      1.135      yamt 
    422      1.135      yamt 			bit--;
    423      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    424  1.221.4.1  christos 			mask = 1U << bit;
    425      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    426      1.135      yamt 			bitmap[i] &= ~mask;
    427      1.135      yamt 			break;
    428      1.135      yamt 		}
    429      1.135      yamt 	}
    430      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    431      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    432       1.97      yamt }
    433       1.97      yamt 
    434      1.135      yamt static inline void
    435  1.221.4.1  christos pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    436      1.135      yamt {
    437      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    438      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    439      1.135      yamt 	int i;
    440      1.135      yamt 
    441      1.135      yamt 	for (i = 0; i < n; i++) {
    442      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    443      1.135      yamt 	}
    444      1.135      yamt }
    445      1.135      yamt 
    446  1.221.4.1  christos /* -------------------------------------------------------------------------- */
    447  1.221.4.1  christos 
    448  1.221.4.1  christos static inline void
    449  1.221.4.1  christos pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    450  1.221.4.1  christos     void *obj)
    451  1.221.4.1  christos {
    452  1.221.4.1  christos 	struct pool_item *pi = obj;
    453  1.221.4.1  christos 
    454  1.221.4.1  christos #ifdef POOL_CHECK_MAGIC
    455  1.221.4.1  christos 	pi->pi_magic = PI_MAGIC;
    456  1.221.4.1  christos #endif
    457  1.221.4.1  christos 
    458  1.221.4.1  christos 	if (pp->pr_redzone) {
    459  1.221.4.1  christos 		/*
    460  1.221.4.1  christos 		 * Mark the pool_item as valid. The rest is already
    461  1.221.4.1  christos 		 * invalid.
    462  1.221.4.1  christos 		 */
    463  1.221.4.1  christos 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
    464  1.221.4.1  christos 	}
    465  1.221.4.1  christos 
    466  1.221.4.1  christos 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    467  1.221.4.1  christos }
    468  1.221.4.1  christos 
    469  1.221.4.1  christos static inline void *
    470  1.221.4.1  christos pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    471  1.221.4.1  christos {
    472  1.221.4.1  christos 	struct pool_item *pi;
    473  1.221.4.1  christos 	void *v;
    474  1.221.4.1  christos 
    475  1.221.4.1  christos 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    476  1.221.4.1  christos 	if (__predict_false(v == NULL)) {
    477  1.221.4.1  christos 		mutex_exit(&pp->pr_lock);
    478  1.221.4.1  christos 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    479  1.221.4.1  christos 	}
    480  1.221.4.1  christos 	KASSERTMSG((pp->pr_nitems > 0),
    481  1.221.4.1  christos 	    "%s: [%s] nitems %u inconsistent on itemlist",
    482  1.221.4.1  christos 	    __func__, pp->pr_wchan, pp->pr_nitems);
    483  1.221.4.1  christos #ifdef POOL_CHECK_MAGIC
    484  1.221.4.1  christos 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    485  1.221.4.1  christos 	    "%s: [%s] free list modified: "
    486  1.221.4.1  christos 	    "magic=%x; page %p; item addr %p", __func__,
    487  1.221.4.1  christos 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    488  1.221.4.1  christos #endif
    489  1.221.4.1  christos 
    490  1.221.4.1  christos 	/*
    491  1.221.4.1  christos 	 * Remove from item list.
    492  1.221.4.1  christos 	 */
    493  1.221.4.1  christos 	LIST_REMOVE(pi, pi_list);
    494  1.221.4.1  christos 
    495  1.221.4.1  christos 	return v;
    496  1.221.4.1  christos }
    497  1.221.4.1  christos 
    498  1.221.4.1  christos /* -------------------------------------------------------------------------- */
    499  1.221.4.1  christos 
    500  1.221.4.2    martin static inline void
    501  1.221.4.2    martin pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
    502  1.221.4.2    martin     void *object)
    503  1.221.4.2    martin {
    504  1.221.4.2    martin 	if (__predict_false((void *)ph->ph_page != page)) {
    505  1.221.4.2    martin 		panic("%s: [%s] item %p not part of pool", __func__,
    506  1.221.4.2    martin 		    pp->pr_wchan, object);
    507  1.221.4.2    martin 	}
    508  1.221.4.2    martin 	if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
    509  1.221.4.2    martin 		panic("%s: [%s] item %p below item space", __func__,
    510  1.221.4.2    martin 		    pp->pr_wchan, object);
    511  1.221.4.2    martin 	}
    512  1.221.4.2    martin 	if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    513  1.221.4.2    martin 		panic("%s: [%s] item %p poolid %u != %u", __func__,
    514  1.221.4.2    martin 		    pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
    515  1.221.4.2    martin 	}
    516  1.221.4.2    martin }
    517  1.221.4.2    martin 
    518  1.221.4.2    martin static inline void
    519  1.221.4.2    martin pc_phinpage_check(pool_cache_t pc, void *object)
    520  1.221.4.2    martin {
    521  1.221.4.2    martin 	struct pool_item_header *ph;
    522  1.221.4.2    martin 	struct pool *pp;
    523  1.221.4.2    martin 	void *page;
    524  1.221.4.2    martin 
    525  1.221.4.2    martin 	pp = &pc->pc_pool;
    526  1.221.4.2    martin 	page = POOL_OBJ_TO_PAGE(pp, object);
    527  1.221.4.2    martin 	ph = (struct pool_item_header *)page;
    528  1.221.4.2    martin 
    529  1.221.4.2    martin 	pr_phinpage_check(pp, ph, page, object);
    530  1.221.4.2    martin }
    531  1.221.4.2    martin 
    532  1.221.4.2    martin /* -------------------------------------------------------------------------- */
    533  1.221.4.2    martin 
    534      1.110     perry static inline int
    535       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    536       1.88       chs {
    537      1.121      yamt 
    538      1.121      yamt 	/*
    539  1.221.4.1  christos 	 * We consider pool_item_header with smaller ph_page bigger. This
    540  1.221.4.1  christos 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    541      1.121      yamt 	 */
    542       1.88       chs 	if (a->ph_page < b->ph_page)
    543  1.221.4.1  christos 		return 1;
    544      1.121      yamt 	else if (a->ph_page > b->ph_page)
    545  1.221.4.1  christos 		return -1;
    546       1.88       chs 	else
    547  1.221.4.1  christos 		return 0;
    548       1.88       chs }
    549       1.88       chs 
    550       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    551       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    552       1.88       chs 
    553      1.141      yamt static inline struct pool_item_header *
    554      1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    555      1.141      yamt {
    556      1.141      yamt 	struct pool_item_header *ph, tmp;
    557      1.141      yamt 
    558      1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    559      1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    560      1.141      yamt 	if (ph == NULL) {
    561      1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    562      1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    563      1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    564      1.141      yamt 		}
    565      1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    566      1.141      yamt 	}
    567      1.141      yamt 
    568      1.141      yamt 	return ph;
    569      1.141      yamt }
    570      1.141      yamt 
    571        1.3        pk /*
    572      1.121      yamt  * Return the pool page header based on item address.
    573        1.3        pk  */
    574      1.110     perry static inline struct pool_item_header *
    575      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    576        1.3        pk {
    577       1.88       chs 	struct pool_item_header *ph, tmp;
    578        1.3        pk 
    579      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    580      1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    581      1.121      yamt 	} else {
    582  1.221.4.2    martin 		void *page = POOL_OBJ_TO_PAGE(pp, v);
    583      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    584  1.221.4.1  christos 			ph = (struct pool_item_header *)page;
    585  1.221.4.2    martin 			pr_phinpage_check(pp, ph, page, v);
    586      1.121      yamt 		} else {
    587      1.121      yamt 			tmp.ph_page = page;
    588      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    589      1.121      yamt 		}
    590      1.121      yamt 	}
    591        1.3        pk 
    592      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    593      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    594      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    595       1.88       chs 	return ph;
    596        1.3        pk }
    597        1.3        pk 
    598      1.101   thorpej static void
    599      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    600      1.101   thorpej {
    601      1.101   thorpej 	struct pool_item_header *ph;
    602      1.101   thorpej 
    603      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    604      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    605      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    606      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    607      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    608      1.101   thorpej 	}
    609      1.101   thorpej }
    610      1.101   thorpej 
    611        1.3        pk /*
    612        1.3        pk  * Remove a page from the pool.
    613        1.3        pk  */
    614      1.110     perry static inline void
    615       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    616       1.61       chs      struct pool_pagelist *pq)
    617        1.3        pk {
    618        1.3        pk 
    619      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    620       1.91      yamt 
    621        1.3        pk 	/*
    622        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    623        1.3        pk 	 */
    624        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    625      1.207  riastrad 		KASSERT(pp->pr_nidle != 0);
    626      1.207  riastrad 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    627  1.221.4.2    martin 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
    628  1.221.4.2    martin 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
    629        1.6   thorpej 		pp->pr_nidle--;
    630        1.6   thorpej 	}
    631        1.7   thorpej 
    632       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    633       1.20   thorpej 
    634        1.7   thorpej 	/*
    635      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    636        1.7   thorpej 	 */
    637       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    638  1.221.4.1  christos 	if (pp->pr_roflags & PR_PHINPAGE) {
    639  1.221.4.1  christos 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    640  1.221.4.1  christos 			panic("%s: [%s] ph %p poolid %u != %u",
    641  1.221.4.1  christos 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    642  1.221.4.1  christos 			    pp->pr_poolid);
    643  1.221.4.1  christos 		}
    644  1.221.4.1  christos 	} else {
    645       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    646  1.221.4.1  christos 	}
    647      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    648      1.101   thorpej 
    649        1.7   thorpej 	pp->pr_npages--;
    650        1.7   thorpej 	pp->pr_npagefree++;
    651        1.6   thorpej 
    652       1.88       chs 	pool_update_curpage(pp);
    653        1.3        pk }
    654        1.3        pk 
    655        1.3        pk /*
    656       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    657       1.94    simonb  */
    658       1.94    simonb void
    659      1.117      yamt pool_subsystem_init(void)
    660       1.94    simonb {
    661      1.192     rmind 	size_t size;
    662      1.191      para 	int idx;
    663       1.94    simonb 
    664      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    665      1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    666      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    667      1.134        ad 
    668      1.191      para 	/*
    669      1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    670      1.191      para 	 * haven't done so yet.
    671      1.191      para 	 */
    672      1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    673      1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    674      1.191      para 		int nelem;
    675      1.191      para 		size_t sz;
    676      1.191      para 
    677      1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    678  1.221.4.2    martin 		KASSERT(nelem != 0);
    679      1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    680      1.191      para 		    "phpool-%d", nelem);
    681  1.221.4.2    martin 		sz = offsetof(struct pool_item_header,
    682  1.221.4.2    martin 		    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    683      1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    684      1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    685      1.117      yamt 	}
    686      1.191      para 
    687      1.191      para 	size = sizeof(pcg_t) +
    688      1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    689      1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    690      1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    691      1.191      para 
    692      1.191      para 	size = sizeof(pcg_t) +
    693      1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    694      1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    695      1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    696      1.134        ad 
    697      1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    698      1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    699      1.134        ad 
    700      1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    701      1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    702       1.94    simonb }
    703       1.94    simonb 
    704  1.221.4.1  christos static inline bool
    705  1.221.4.1  christos pool_init_is_phinpage(const struct pool *pp)
    706  1.221.4.1  christos {
    707  1.221.4.1  christos 	size_t pagesize;
    708  1.221.4.1  christos 
    709  1.221.4.1  christos 	if (pp->pr_roflags & PR_PHINPAGE) {
    710  1.221.4.1  christos 		return true;
    711  1.221.4.1  christos 	}
    712  1.221.4.1  christos 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    713  1.221.4.1  christos 		return false;
    714  1.221.4.1  christos 	}
    715  1.221.4.1  christos 
    716  1.221.4.1  christos 	pagesize = pp->pr_alloc->pa_pagesz;
    717  1.221.4.1  christos 
    718  1.221.4.1  christos 	/*
    719  1.221.4.1  christos 	 * Threshold: the item size is below 1/16 of a page size, and below
    720  1.221.4.1  christos 	 * 8 times the page header size. The latter ensures we go off-page
    721  1.221.4.1  christos 	 * if the page header would make us waste a rather big item.
    722  1.221.4.1  christos 	 */
    723  1.221.4.1  christos 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    724  1.221.4.1  christos 		return true;
    725  1.221.4.1  christos 	}
    726  1.221.4.1  christos 
    727  1.221.4.1  christos 	/* Put the header into the page if it doesn't waste any items. */
    728  1.221.4.1  christos 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    729  1.221.4.1  christos 		return true;
    730  1.221.4.1  christos 	}
    731  1.221.4.1  christos 
    732  1.221.4.1  christos 	return false;
    733  1.221.4.1  christos }
    734  1.221.4.1  christos 
    735  1.221.4.1  christos static inline bool
    736  1.221.4.1  christos pool_init_is_usebmap(const struct pool *pp)
    737  1.221.4.1  christos {
    738  1.221.4.1  christos 	size_t bmapsize;
    739  1.221.4.1  christos 
    740  1.221.4.1  christos 	if (pp->pr_roflags & PR_NOTOUCH) {
    741  1.221.4.1  christos 		return true;
    742  1.221.4.1  christos 	}
    743  1.221.4.1  christos 
    744  1.221.4.1  christos 	/*
    745  1.221.4.2    martin 	 * If we're off-page, go with a bitmap.
    746  1.221.4.1  christos 	 */
    747  1.221.4.1  christos 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    748  1.221.4.2    martin 		return true;
    749  1.221.4.1  christos 	}
    750  1.221.4.2    martin 
    751  1.221.4.2    martin 	/*
    752  1.221.4.2    martin 	 * If we're on-page, and the page header can already contain a bitmap
    753  1.221.4.2    martin 	 * big enough to cover all the items of the page, go with a bitmap.
    754  1.221.4.2    martin 	 */
    755  1.221.4.1  christos 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    756  1.221.4.1  christos 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    757  1.221.4.1  christos 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    758  1.221.4.1  christos 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    759  1.221.4.1  christos 		return true;
    760  1.221.4.1  christos 	}
    761  1.221.4.1  christos 
    762  1.221.4.1  christos 	return false;
    763  1.221.4.1  christos }
    764  1.221.4.1  christos 
    765       1.94    simonb /*
    766        1.3        pk  * Initialize the given pool resource structure.
    767        1.3        pk  *
    768        1.3        pk  * We export this routine to allow other kernel parts to declare
    769      1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    770        1.3        pk  */
    771        1.3        pk void
    772       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    773      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    774        1.3        pk {
    775      1.116    simonb 	struct pool *pp1;
    776  1.221.4.1  christos 	size_t prsize;
    777  1.221.4.1  christos 	int itemspace, slack;
    778  1.221.4.1  christos 
    779  1.221.4.1  christos 	/* XXX ioff will be removed. */
    780  1.221.4.1  christos 	KASSERT(ioff == 0);
    781        1.3        pk 
    782      1.116    simonb #ifdef DEBUG
    783      1.198  christos 	if (__predict_true(!cold))
    784      1.198  christos 		mutex_enter(&pool_head_lock);
    785      1.116    simonb 	/*
    786      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    787      1.116    simonb 	 * added to the list of all pools.
    788      1.116    simonb 	 */
    789      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    790      1.116    simonb 		if (pp == pp1)
    791      1.213  christos 			panic("%s: [%s] already initialised", __func__,
    792      1.116    simonb 			    wchan);
    793      1.116    simonb 	}
    794      1.198  christos 	if (__predict_true(!cold))
    795      1.198  christos 		mutex_exit(&pool_head_lock);
    796      1.116    simonb #endif
    797      1.116    simonb 
    798       1.66   thorpej 	if (palloc == NULL)
    799       1.66   thorpej 		palloc = &pool_allocator_kmem;
    800  1.221.4.1  christos 
    801      1.180   mlelstv 	if (!cold)
    802      1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    803      1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    804      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    805       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    806       1.66   thorpej 
    807       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    808       1.66   thorpej 
    809      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    810       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    811       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    812        1.4   thorpej 	}
    813      1.180   mlelstv 	if (!cold)
    814      1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    815        1.3        pk 
    816        1.3        pk 	if (align == 0)
    817        1.3        pk 		align = ALIGN(1);
    818       1.14   thorpej 
    819      1.204      maxv 	prsize = size;
    820      1.204      maxv 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    821      1.204      maxv 		prsize = sizeof(struct pool_item);
    822        1.3        pk 
    823      1.204      maxv 	prsize = roundup(prsize, align);
    824      1.207  riastrad 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    825      1.213  christos 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    826      1.213  christos 	    __func__, wchan, prsize, palloc->pa_pagesz);
    827       1.35        pk 
    828        1.3        pk 	/*
    829        1.3        pk 	 * Initialize the pool structure.
    830        1.3        pk 	 */
    831       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    832       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    833       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    834      1.134        ad 	pp->pr_cache = NULL;
    835        1.3        pk 	pp->pr_curpage = NULL;
    836        1.3        pk 	pp->pr_npages = 0;
    837        1.3        pk 	pp->pr_minitems = 0;
    838        1.3        pk 	pp->pr_minpages = 0;
    839        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    840       1.20   thorpej 	pp->pr_roflags = flags;
    841       1.20   thorpej 	pp->pr_flags = 0;
    842      1.204      maxv 	pp->pr_size = prsize;
    843  1.221.4.1  christos 	pp->pr_reqsize = size;
    844        1.3        pk 	pp->pr_align = align;
    845        1.3        pk 	pp->pr_wchan = wchan;
    846       1.66   thorpej 	pp->pr_alloc = palloc;
    847  1.221.4.1  christos 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    848       1.20   thorpej 	pp->pr_nitems = 0;
    849       1.20   thorpej 	pp->pr_nout = 0;
    850       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    851       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    852       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    853       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    854       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    855       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    856       1.68   thorpej 	pp->pr_drain_hook = NULL;
    857       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    858      1.125        ad 	pp->pr_freecheck = NULL;
    859  1.221.4.2    martin 	pp->pr_redzone = false;
    860      1.204      maxv 	pool_redzone_init(pp, size);
    861  1.221.4.1  christos 	pool_quarantine_init(pp);
    862        1.3        pk 
    863        1.3        pk 	/*
    864  1.221.4.1  christos 	 * Decide whether to put the page header off-page to avoid wasting too
    865  1.221.4.1  christos 	 * large a part of the page or too big an item. Off-page page headers
    866  1.221.4.1  christos 	 * go on a hash table, so we can match a returned item with its header
    867  1.221.4.1  christos 	 * based on the page address.
    868  1.221.4.1  christos 	 */
    869  1.221.4.1  christos 	if (pool_init_is_phinpage(pp)) {
    870  1.221.4.1  christos 		/* Use the beginning of the page for the page header */
    871  1.221.4.1  christos 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    872  1.221.4.1  christos 		pp->pr_itemoffset = roundup(PHSIZE, align);
    873       1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    874        1.2        pk 	} else {
    875        1.3        pk 		/* The page header will be taken from our page header pool */
    876  1.221.4.1  christos 		itemspace = palloc->pa_pagesz;
    877  1.221.4.1  christos 		pp->pr_itemoffset = 0;
    878       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    879        1.2        pk 	}
    880        1.1        pk 
    881  1.221.4.1  christos 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    882  1.221.4.1  christos 	KASSERT(pp->pr_itemsperpage != 0);
    883  1.221.4.1  christos 
    884        1.3        pk 	/*
    885  1.221.4.1  christos 	 * Decide whether to use a bitmap or a linked list to manage freed
    886  1.221.4.1  christos 	 * items.
    887        1.3        pk 	 */
    888  1.221.4.1  christos 	if (pool_init_is_usebmap(pp)) {
    889  1.221.4.1  christos 		pp->pr_roflags |= PR_USEBMAP;
    890  1.221.4.1  christos 	}
    891  1.221.4.1  christos 
    892  1.221.4.1  christos 	/*
    893  1.221.4.2    martin 	 * If we're off-page, then we're using a bitmap; choose the appropriate
    894  1.221.4.2    martin 	 * pool to allocate page headers, whose size varies depending on the
    895  1.221.4.2    martin 	 * bitmap. If we're on-page, nothing to do.
    896  1.221.4.1  christos 	 */
    897  1.221.4.2    martin 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    898       1.97      yamt 		int idx;
    899       1.97      yamt 
    900  1.221.4.2    martin 		KASSERT(pp->pr_roflags & PR_USEBMAP);
    901  1.221.4.2    martin 
    902       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    903       1.97      yamt 		    idx++) {
    904       1.97      yamt 			/* nothing */
    905       1.97      yamt 		}
    906       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    907       1.97      yamt 			/*
    908       1.97      yamt 			 * if you see this panic, consider to tweak
    909       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    910       1.97      yamt 			 */
    911      1.213  christos 			panic("%s: [%s] too large itemsperpage(%d) for "
    912  1.221.4.1  christos 			    "PR_USEBMAP", __func__,
    913       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    914       1.97      yamt 		}
    915       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    916  1.221.4.1  christos 	} else {
    917       1.97      yamt 		pp->pr_phpool = NULL;
    918       1.97      yamt 	}
    919        1.3        pk 
    920        1.3        pk 	/*
    921        1.3        pk 	 * Use the slack between the chunks and the page header
    922        1.3        pk 	 * for "cache coloring".
    923        1.3        pk 	 */
    924  1.221.4.1  christos 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    925  1.221.4.1  christos 	pp->pr_maxcolor = rounddown(slack, align);
    926        1.3        pk 	pp->pr_curcolor = 0;
    927        1.3        pk 
    928        1.3        pk 	pp->pr_nget = 0;
    929        1.3        pk 	pp->pr_nfail = 0;
    930        1.3        pk 	pp->pr_nput = 0;
    931        1.3        pk 	pp->pr_npagealloc = 0;
    932        1.3        pk 	pp->pr_npagefree = 0;
    933        1.1        pk 	pp->pr_hiwat = 0;
    934        1.8   thorpej 	pp->pr_nidle = 0;
    935      1.134        ad 	pp->pr_refcnt = 0;
    936        1.3        pk 
    937      1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    938      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    939      1.134        ad 	pp->pr_ipl = ipl;
    940        1.1        pk 
    941      1.145        ad 	/* Insert into the list of all pools. */
    942      1.181   mlelstv 	if (!cold)
    943      1.134        ad 		mutex_enter(&pool_head_lock);
    944      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    945      1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    946      1.145        ad 			break;
    947      1.145        ad 	}
    948      1.145        ad 	if (pp1 == NULL)
    949      1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    950      1.145        ad 	else
    951      1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    952      1.181   mlelstv 	if (!cold)
    953      1.134        ad 		mutex_exit(&pool_head_lock);
    954      1.134        ad 
    955      1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    956      1.181   mlelstv 	if (!cold)
    957      1.134        ad 		mutex_enter(&palloc->pa_lock);
    958      1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    959      1.181   mlelstv 	if (!cold)
    960      1.134        ad 		mutex_exit(&palloc->pa_lock);
    961        1.1        pk }
    962        1.1        pk 
    963        1.1        pk /*
    964        1.1        pk  * De-commision a pool resource.
    965        1.1        pk  */
    966        1.1        pk void
    967       1.42   thorpej pool_destroy(struct pool *pp)
    968        1.1        pk {
    969      1.101   thorpej 	struct pool_pagelist pq;
    970        1.3        pk 	struct pool_item_header *ph;
    971       1.43   thorpej 
    972  1.221.4.1  christos 	pool_quarantine_flush(pp);
    973  1.221.4.1  christos 
    974      1.101   thorpej 	/* Remove from global pool list */
    975      1.134        ad 	mutex_enter(&pool_head_lock);
    976      1.134        ad 	while (pp->pr_refcnt != 0)
    977      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    978      1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    979      1.101   thorpej 	if (drainpp == pp)
    980      1.101   thorpej 		drainpp = NULL;
    981      1.134        ad 	mutex_exit(&pool_head_lock);
    982      1.101   thorpej 
    983      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    984      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    985       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    986      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    987       1.66   thorpej 
    988      1.178      elad 	mutex_enter(&pool_allocator_lock);
    989      1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    990      1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    991      1.178      elad 	mutex_exit(&pool_allocator_lock);
    992      1.178      elad 
    993      1.134        ad 	mutex_enter(&pp->pr_lock);
    994      1.101   thorpej 
    995      1.134        ad 	KASSERT(pp->pr_cache == NULL);
    996      1.207  riastrad 	KASSERTMSG((pp->pr_nout == 0),
    997  1.221.4.2    martin 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
    998  1.221.4.2    martin 	    pp->pr_nout);
    999      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
   1000      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
   1001      1.101   thorpej 
   1002        1.3        pk 	/* Remove all pages */
   1003      1.101   thorpej 	LIST_INIT(&pq);
   1004       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1005      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
   1006      1.101   thorpej 
   1007      1.134        ad 	mutex_exit(&pp->pr_lock);
   1008        1.3        pk 
   1009      1.101   thorpej 	pr_pagelist_free(pp, &pq);
   1010      1.134        ad 	cv_destroy(&pp->pr_cv);
   1011      1.134        ad 	mutex_destroy(&pp->pr_lock);
   1012        1.1        pk }
   1013        1.1        pk 
   1014       1.68   thorpej void
   1015       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
   1016       1.68   thorpej {
   1017       1.68   thorpej 
   1018       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
   1019      1.207  riastrad 	KASSERTMSG((pp->pr_drain_hook == NULL),
   1020      1.213  christos 	    "%s: [%s] already set", __func__, pp->pr_wchan);
   1021       1.68   thorpej 	pp->pr_drain_hook = fn;
   1022       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
   1023       1.68   thorpej }
   1024       1.68   thorpej 
   1025       1.88       chs static struct pool_item_header *
   1026      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
   1027       1.55   thorpej {
   1028       1.55   thorpej 	struct pool_item_header *ph;
   1029       1.55   thorpej 
   1030       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
   1031  1.221.4.1  christos 		ph = storage;
   1032      1.134        ad 	else
   1033       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
   1034       1.55   thorpej 
   1035  1.221.4.1  christos 	return ph;
   1036       1.55   thorpej }
   1037        1.1        pk 
   1038        1.1        pk /*
   1039      1.134        ad  * Grab an item from the pool.
   1040        1.1        pk  */
   1041        1.3        pk void *
   1042       1.56  sommerfe pool_get(struct pool *pp, int flags)
   1043        1.1        pk {
   1044        1.3        pk 	struct pool_item_header *ph;
   1045       1.55   thorpej 	void *v;
   1046        1.1        pk 
   1047      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   1048      1.207  riastrad 	KASSERTMSG((pp->pr_itemsperpage != 0),
   1049      1.213  christos 	    "%s: [%s] pr_itemsperpage is zero, "
   1050      1.213  christos 	    "pool not initialized?", __func__, pp->pr_wchan);
   1051      1.207  riastrad 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
   1052      1.207  riastrad 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
   1053      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   1054      1.213  christos 	    __func__, pp->pr_wchan);
   1055      1.155        ad 	if (flags & PR_WAITOK) {
   1056      1.154      yamt 		ASSERT_SLEEPABLE();
   1057      1.155        ad 	}
   1058        1.1        pk 
   1059      1.134        ad 	mutex_enter(&pp->pr_lock);
   1060       1.20   thorpej  startover:
   1061       1.20   thorpej 	/*
   1062       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
   1063       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
   1064       1.20   thorpej 	 * the pool.
   1065       1.20   thorpej 	 */
   1066      1.207  riastrad 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
   1067      1.213  christos 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
   1068       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1069       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
   1070       1.68   thorpej 			/*
   1071       1.68   thorpej 			 * Since the drain hook is going to free things
   1072       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
   1073       1.68   thorpej 			 * and check the hardlimit condition again.
   1074       1.68   thorpej 			 */
   1075      1.134        ad 			mutex_exit(&pp->pr_lock);
   1076       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1077      1.134        ad 			mutex_enter(&pp->pr_lock);
   1078       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
   1079       1.68   thorpej 				goto startover;
   1080       1.68   thorpej 		}
   1081       1.68   thorpej 
   1082       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1083       1.20   thorpej 			/*
   1084       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
   1085       1.20   thorpej 			 * it be?
   1086       1.20   thorpej 			 */
   1087       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1088      1.212  christos 			do {
   1089      1.212  christos 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1090      1.212  christos 			} while (pp->pr_flags & PR_WANTED);
   1091       1.20   thorpej 			goto startover;
   1092       1.20   thorpej 		}
   1093       1.31   thorpej 
   1094       1.31   thorpej 		/*
   1095       1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1096       1.31   thorpej 		 */
   1097       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1098       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1099       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1100       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1101       1.21   thorpej 
   1102       1.21   thorpej 		pp->pr_nfail++;
   1103       1.21   thorpej 
   1104      1.134        ad 		mutex_exit(&pp->pr_lock);
   1105      1.216  christos 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1106  1.221.4.1  christos 		return NULL;
   1107       1.20   thorpej 	}
   1108       1.20   thorpej 
   1109        1.3        pk 	/*
   1110        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1111        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1112        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1113        1.3        pk 	 * has no items in its bucket.
   1114        1.3        pk 	 */
   1115       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1116      1.113      yamt 		int error;
   1117      1.113      yamt 
   1118      1.207  riastrad 		KASSERTMSG((pp->pr_nitems == 0),
   1119      1.213  christos 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
   1120      1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
   1121       1.20   thorpej 
   1122       1.21   thorpej 		/*
   1123       1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1124       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1125       1.21   thorpej 		 * may block.
   1126       1.21   thorpej 		 */
   1127      1.113      yamt 		error = pool_grow(pp, flags);
   1128      1.113      yamt 		if (error != 0) {
   1129       1.21   thorpej 			/*
   1130      1.210   mlelstv 			 * pool_grow aborts when another thread
   1131      1.210   mlelstv 			 * is allocating a new page. Retry if it
   1132      1.210   mlelstv 			 * waited for it.
   1133      1.210   mlelstv 			 */
   1134      1.210   mlelstv 			if (error == ERESTART)
   1135      1.210   mlelstv 				goto startover;
   1136      1.210   mlelstv 
   1137      1.210   mlelstv 			/*
   1138       1.55   thorpej 			 * We were unable to allocate a page or item
   1139       1.55   thorpej 			 * header, but we released the lock during
   1140       1.55   thorpej 			 * allocation, so perhaps items were freed
   1141       1.55   thorpej 			 * back to the pool.  Check for this case.
   1142       1.21   thorpej 			 */
   1143       1.21   thorpej 			if (pp->pr_curpage != NULL)
   1144       1.21   thorpej 				goto startover;
   1145       1.15        pk 
   1146      1.117      yamt 			pp->pr_nfail++;
   1147      1.134        ad 			mutex_exit(&pp->pr_lock);
   1148  1.221.4.2    martin 			KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1149  1.221.4.1  christos 			return NULL;
   1150        1.1        pk 		}
   1151        1.3        pk 
   1152       1.20   thorpej 		/* Start the allocation process over. */
   1153       1.20   thorpej 		goto startover;
   1154        1.3        pk 	}
   1155  1.221.4.1  christos 	if (pp->pr_roflags & PR_USEBMAP) {
   1156      1.207  riastrad 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1157  1.221.4.2    martin 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
   1158  1.221.4.1  christos 		v = pr_item_bitmap_get(pp, ph);
   1159       1.97      yamt 	} else {
   1160  1.221.4.1  christos 		v = pr_item_linkedlist_get(pp, ph);
   1161       1.97      yamt 	}
   1162       1.20   thorpej 	pp->pr_nitems--;
   1163       1.20   thorpej 	pp->pr_nout++;
   1164        1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1165      1.207  riastrad 		KASSERT(pp->pr_nidle > 0);
   1166        1.6   thorpej 		pp->pr_nidle--;
   1167       1.88       chs 
   1168       1.88       chs 		/*
   1169       1.88       chs 		 * This page was previously empty.  Move it to the list of
   1170       1.88       chs 		 * partially-full pages.  This page is already curpage.
   1171       1.88       chs 		 */
   1172       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1173       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1174        1.6   thorpej 	}
   1175        1.3        pk 	ph->ph_nmissing++;
   1176       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1177  1.221.4.1  christos 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1178      1.207  riastrad 			LIST_EMPTY(&ph->ph_itemlist)),
   1179      1.213  christos 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1180      1.213  christos 			pp->pr_wchan, ph->ph_nmissing);
   1181        1.3        pk 		/*
   1182       1.88       chs 		 * This page is now full.  Move it to the full list
   1183       1.88       chs 		 * and select a new current page.
   1184        1.3        pk 		 */
   1185       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1186       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1187       1.88       chs 		pool_update_curpage(pp);
   1188        1.1        pk 	}
   1189        1.3        pk 
   1190        1.3        pk 	pp->pr_nget++;
   1191       1.20   thorpej 
   1192       1.20   thorpej 	/*
   1193       1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1194       1.20   thorpej 	 * water mark, add more items to the pool.
   1195       1.20   thorpej 	 */
   1196       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1197       1.20   thorpej 		/*
   1198       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1199       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1200       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1201       1.20   thorpej 		 */
   1202       1.20   thorpej 	}
   1203       1.20   thorpej 
   1204      1.134        ad 	mutex_exit(&pp->pr_lock);
   1205  1.221.4.1  christos 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1206      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1207      1.204      maxv 	pool_redzone_fill(pp, v);
   1208  1.221.4.2    martin 	pool_get_kmsan(pp, v);
   1209  1.221.4.1  christos 	if (flags & PR_ZERO)
   1210  1.221.4.1  christos 		memset(v, 0, pp->pr_reqsize);
   1211  1.221.4.1  christos 	return v;
   1212        1.1        pk }
   1213        1.1        pk 
   1214        1.1        pk /*
   1215       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1216        1.1        pk  */
   1217       1.43   thorpej static void
   1218      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1219        1.1        pk {
   1220        1.3        pk 	struct pool_item_header *ph;
   1221        1.3        pk 
   1222      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1223      1.204      maxv 	pool_redzone_check(pp, v);
   1224  1.221.4.2    martin 	pool_put_kmsan(pp, v);
   1225      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1226      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1227       1.61       chs 
   1228      1.207  riastrad 	KASSERTMSG((pp->pr_nout > 0),
   1229      1.213  christos 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1230        1.3        pk 
   1231      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1232      1.213  christos 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1233        1.3        pk 	}
   1234       1.28   thorpej 
   1235        1.3        pk 	/*
   1236        1.3        pk 	 * Return to item list.
   1237        1.3        pk 	 */
   1238  1.221.4.1  christos 	if (pp->pr_roflags & PR_USEBMAP) {
   1239  1.221.4.1  christos 		pr_item_bitmap_put(pp, ph, v);
   1240       1.97      yamt 	} else {
   1241  1.221.4.1  christos 		pr_item_linkedlist_put(pp, ph, v);
   1242       1.97      yamt 	}
   1243       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1244        1.3        pk 	ph->ph_nmissing--;
   1245        1.3        pk 	pp->pr_nput++;
   1246       1.20   thorpej 	pp->pr_nitems++;
   1247       1.20   thorpej 	pp->pr_nout--;
   1248        1.3        pk 
   1249        1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1250        1.3        pk 	if (pp->pr_curpage == NULL)
   1251        1.3        pk 		pp->pr_curpage = ph;
   1252        1.3        pk 
   1253        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1254        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1255      1.134        ad 		cv_broadcast(&pp->pr_cv);
   1256        1.3        pk 	}
   1257        1.3        pk 
   1258        1.3        pk 	/*
   1259       1.88       chs 	 * If this page is now empty, do one of two things:
   1260       1.21   thorpej 	 *
   1261       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1262       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1263       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1264       1.90   thorpej 	 *	    CLAIM.
   1265       1.21   thorpej 	 *
   1266       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1267       1.88       chs 	 *
   1268       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1269       1.88       chs 	 * page if one is available).
   1270        1.3        pk 	 */
   1271        1.3        pk 	if (ph->ph_nmissing == 0) {
   1272        1.6   thorpej 		pp->pr_nidle++;
   1273  1.221.4.3    martin 		if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
   1274  1.221.4.3    martin 		    pp->pr_npages > pp->pr_minpages &&
   1275      1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1276      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1277        1.3        pk 		} else {
   1278       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1279       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1280        1.3        pk 
   1281       1.21   thorpej 			/*
   1282       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1283       1.21   thorpej 			 * be idle for some period of time before it can
   1284       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1285       1.21   thorpej 			 * ping-pong'ing for memory.
   1286      1.151      yamt 			 *
   1287      1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1288      1.151      yamt 			 * a problem for our usage.
   1289       1.21   thorpej 			 */
   1290      1.151      yamt 			ph->ph_time = time_uptime;
   1291        1.1        pk 		}
   1292       1.88       chs 		pool_update_curpage(pp);
   1293        1.1        pk 	}
   1294       1.88       chs 
   1295       1.21   thorpej 	/*
   1296       1.88       chs 	 * If the page was previously completely full, move it to the
   1297       1.88       chs 	 * partially-full list and make it the current page.  The next
   1298       1.88       chs 	 * allocation will get the item from this page, instead of
   1299       1.88       chs 	 * further fragmenting the pool.
   1300       1.21   thorpej 	 */
   1301       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1302       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1303       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1304       1.21   thorpej 		pp->pr_curpage = ph;
   1305       1.21   thorpej 	}
   1306       1.43   thorpej }
   1307       1.43   thorpej 
   1308       1.56  sommerfe void
   1309       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1310       1.56  sommerfe {
   1311      1.101   thorpej 	struct pool_pagelist pq;
   1312      1.101   thorpej 
   1313      1.101   thorpej 	LIST_INIT(&pq);
   1314       1.56  sommerfe 
   1315      1.134        ad 	mutex_enter(&pp->pr_lock);
   1316  1.221.4.1  christos 	if (!pool_put_quarantine(pp, v, &pq)) {
   1317  1.221.4.1  christos 		pool_do_put(pp, v, &pq);
   1318  1.221.4.1  christos 	}
   1319      1.134        ad 	mutex_exit(&pp->pr_lock);
   1320       1.56  sommerfe 
   1321      1.102       chs 	pr_pagelist_free(pp, &pq);
   1322       1.56  sommerfe }
   1323       1.57  sommerfe 
   1324       1.74   thorpej /*
   1325      1.113      yamt  * pool_grow: grow a pool by a page.
   1326      1.113      yamt  *
   1327      1.113      yamt  * => called with pool locked.
   1328      1.113      yamt  * => unlock and relock the pool.
   1329      1.113      yamt  * => return with pool locked.
   1330      1.113      yamt  */
   1331      1.113      yamt 
   1332      1.113      yamt static int
   1333      1.113      yamt pool_grow(struct pool *pp, int flags)
   1334      1.113      yamt {
   1335  1.221.4.1  christos 	struct pool_item_header *ph;
   1336  1.221.4.1  christos 	char *storage;
   1337  1.221.4.1  christos 
   1338      1.209  riastrad 	/*
   1339      1.209  riastrad 	 * If there's a pool_grow in progress, wait for it to complete
   1340      1.209  riastrad 	 * and try again from the top.
   1341      1.209  riastrad 	 */
   1342      1.209  riastrad 	if (pp->pr_flags & PR_GROWING) {
   1343      1.209  riastrad 		if (flags & PR_WAITOK) {
   1344      1.209  riastrad 			do {
   1345      1.209  riastrad 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1346      1.209  riastrad 			} while (pp->pr_flags & PR_GROWING);
   1347      1.209  riastrad 			return ERESTART;
   1348      1.209  riastrad 		} else {
   1349      1.219       mrg 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1350      1.219       mrg 				/*
   1351      1.219       mrg 				 * This needs an unlock/relock dance so
   1352      1.219       mrg 				 * that the other caller has a chance to
   1353      1.219       mrg 				 * run and actually do the thing.  Note
   1354      1.219       mrg 				 * that this is effectively a busy-wait.
   1355      1.219       mrg 				 */
   1356      1.219       mrg 				mutex_exit(&pp->pr_lock);
   1357      1.219       mrg 				mutex_enter(&pp->pr_lock);
   1358      1.219       mrg 				return ERESTART;
   1359      1.219       mrg 			}
   1360      1.209  riastrad 			return EWOULDBLOCK;
   1361      1.209  riastrad 		}
   1362      1.209  riastrad 	}
   1363      1.209  riastrad 	pp->pr_flags |= PR_GROWING;
   1364      1.220  christos 	if (flags & PR_WAITOK)
   1365      1.220  christos 		mutex_exit(&pp->pr_lock);
   1366      1.220  christos 	else
   1367      1.219       mrg 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1368      1.113      yamt 
   1369  1.221.4.1  christos 	storage = pool_allocator_alloc(pp, flags);
   1370  1.221.4.1  christos 	if (__predict_false(storage == NULL))
   1371      1.216  christos 		goto out;
   1372      1.216  christos 
   1373  1.221.4.1  christos 	ph = pool_alloc_item_header(pp, storage, flags);
   1374      1.216  christos 	if (__predict_false(ph == NULL)) {
   1375  1.221.4.1  christos 		pool_allocator_free(pp, storage);
   1376      1.209  riastrad 		goto out;
   1377      1.113      yamt 	}
   1378      1.113      yamt 
   1379      1.220  christos 	if (flags & PR_WAITOK)
   1380      1.220  christos 		mutex_enter(&pp->pr_lock);
   1381  1.221.4.1  christos 	pool_prime_page(pp, storage, ph);
   1382      1.113      yamt 	pp->pr_npagealloc++;
   1383      1.216  christos 	KASSERT(pp->pr_flags & PR_GROWING);
   1384      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1385      1.209  riastrad 	/*
   1386      1.209  riastrad 	 * If anyone was waiting for pool_grow, notify them that we
   1387      1.209  riastrad 	 * may have just done it.
   1388      1.209  riastrad 	 */
   1389      1.216  christos 	cv_broadcast(&pp->pr_cv);
   1390      1.216  christos 	return 0;
   1391      1.216  christos out:
   1392      1.220  christos 	if (flags & PR_WAITOK)
   1393      1.220  christos 		mutex_enter(&pp->pr_lock);
   1394      1.209  riastrad 	KASSERT(pp->pr_flags & PR_GROWING);
   1395      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1396      1.216  christos 	return ENOMEM;
   1397      1.113      yamt }
   1398      1.113      yamt 
   1399  1.221.4.3    martin void
   1400       1.74   thorpej pool_prime(struct pool *pp, int n)
   1401       1.74   thorpej {
   1402       1.74   thorpej 
   1403      1.134        ad 	mutex_enter(&pp->pr_lock);
   1404  1.221.4.3    martin 	pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1405  1.221.4.3    martin 	if (pp->pr_maxpages <= pp->pr_minpages)
   1406       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1407  1.221.4.3    martin 	while (pp->pr_npages < pp->pr_minpages)
   1408  1.221.4.3    martin 		(void) pool_grow(pp, PR_WAITOK);
   1409      1.134        ad 	mutex_exit(&pp->pr_lock);
   1410       1.74   thorpej }
   1411       1.55   thorpej 
   1412       1.55   thorpej /*
   1413        1.3        pk  * Add a page worth of items to the pool.
   1414       1.21   thorpej  *
   1415       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1416        1.3        pk  */
   1417       1.55   thorpej static void
   1418      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1419        1.3        pk {
   1420  1.221.4.1  christos 	const unsigned int align = pp->pr_align;
   1421        1.3        pk 	struct pool_item *pi;
   1422      1.128  christos 	void *cp = storage;
   1423       1.55   thorpej 	int n;
   1424       1.36        pk 
   1425      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1426      1.207  riastrad 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1427      1.207  riastrad 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1428      1.213  christos 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1429        1.3        pk 
   1430        1.3        pk 	/*
   1431        1.3        pk 	 * Insert page header.
   1432        1.3        pk 	 */
   1433       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1434      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1435        1.3        pk 	ph->ph_page = storage;
   1436        1.3        pk 	ph->ph_nmissing = 0;
   1437      1.151      yamt 	ph->ph_time = time_uptime;
   1438  1.221.4.1  christos 	if (pp->pr_roflags & PR_PHINPAGE)
   1439  1.221.4.1  christos 		ph->ph_poolid = pp->pr_poolid;
   1440  1.221.4.1  christos 	else
   1441       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1442        1.3        pk 
   1443        1.6   thorpej 	pp->pr_nidle++;
   1444        1.6   thorpej 
   1445        1.3        pk 	/*
   1446  1.221.4.1  christos 	 * The item space starts after the on-page header, if any.
   1447  1.221.4.1  christos 	 */
   1448  1.221.4.1  christos 	ph->ph_off = pp->pr_itemoffset;
   1449  1.221.4.1  christos 
   1450  1.221.4.1  christos 	/*
   1451        1.3        pk 	 * Color this page.
   1452        1.3        pk 	 */
   1453  1.221.4.1  christos 	ph->ph_off += pp->pr_curcolor;
   1454      1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1455        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1456        1.3        pk 		pp->pr_curcolor = 0;
   1457        1.3        pk 
   1458  1.221.4.1  christos 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1459      1.125        ad 
   1460        1.3        pk 	/*
   1461        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1462        1.3        pk 	 */
   1463        1.3        pk 	n = pp->pr_itemsperpage;
   1464       1.20   thorpej 	pp->pr_nitems += n;
   1465        1.3        pk 
   1466  1.221.4.1  christos 	if (pp->pr_roflags & PR_USEBMAP) {
   1467  1.221.4.1  christos 		pr_item_bitmap_init(pp, ph);
   1468       1.97      yamt 	} else {
   1469       1.97      yamt 		while (n--) {
   1470       1.97      yamt 			pi = (struct pool_item *)cp;
   1471       1.78   thorpej 
   1472  1.221.4.1  christos 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1473        1.3        pk 
   1474       1.97      yamt 			/* Insert on page list */
   1475      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1476  1.221.4.1  christos #ifdef POOL_CHECK_MAGIC
   1477       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1478        1.3        pk #endif
   1479      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1480      1.125        ad 
   1481  1.221.4.1  christos 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1482       1.97      yamt 		}
   1483        1.3        pk 	}
   1484        1.3        pk 
   1485        1.3        pk 	/*
   1486        1.3        pk 	 * If the pool was depleted, point at the new page.
   1487        1.3        pk 	 */
   1488        1.3        pk 	if (pp->pr_curpage == NULL)
   1489        1.3        pk 		pp->pr_curpage = ph;
   1490        1.3        pk 
   1491        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1492        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1493        1.3        pk }
   1494        1.3        pk 
   1495       1.20   thorpej /*
   1496       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1497       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1498       1.20   thorpej  *
   1499       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1500       1.20   thorpej  *
   1501       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1502       1.20   thorpej  * with it locked.
   1503       1.20   thorpej  */
   1504       1.20   thorpej static int
   1505       1.42   thorpej pool_catchup(struct pool *pp)
   1506       1.20   thorpej {
   1507       1.20   thorpej 	int error = 0;
   1508       1.20   thorpej 
   1509       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1510      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1511      1.113      yamt 		if (error) {
   1512      1.214  christos 			if (error == ERESTART)
   1513      1.214  christos 				continue;
   1514       1.20   thorpej 			break;
   1515       1.20   thorpej 		}
   1516       1.20   thorpej 	}
   1517      1.113      yamt 	return error;
   1518       1.20   thorpej }
   1519       1.20   thorpej 
   1520       1.88       chs static void
   1521       1.88       chs pool_update_curpage(struct pool *pp)
   1522       1.88       chs {
   1523       1.88       chs 
   1524       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1525       1.88       chs 	if (pp->pr_curpage == NULL) {
   1526       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1527       1.88       chs 	}
   1528      1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1529      1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1530       1.88       chs }
   1531       1.88       chs 
   1532        1.3        pk void
   1533       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1534        1.3        pk {
   1535       1.15        pk 
   1536      1.134        ad 	mutex_enter(&pp->pr_lock);
   1537        1.3        pk 	pp->pr_minitems = n;
   1538       1.20   thorpej 
   1539       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1540       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1541       1.20   thorpej 		/*
   1542       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1543       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1544       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1545       1.20   thorpej 		 */
   1546       1.20   thorpej 	}
   1547       1.21   thorpej 
   1548      1.134        ad 	mutex_exit(&pp->pr_lock);
   1549        1.3        pk }
   1550        1.3        pk 
   1551        1.3        pk void
   1552       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1553        1.3        pk {
   1554       1.15        pk 
   1555      1.134        ad 	mutex_enter(&pp->pr_lock);
   1556       1.21   thorpej 
   1557  1.221.4.3    martin 	pp->pr_maxitems = n;
   1558       1.21   thorpej 
   1559      1.134        ad 	mutex_exit(&pp->pr_lock);
   1560        1.3        pk }
   1561        1.3        pk 
   1562       1.20   thorpej void
   1563       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1564       1.20   thorpej {
   1565       1.20   thorpej 
   1566      1.134        ad 	mutex_enter(&pp->pr_lock);
   1567       1.20   thorpej 
   1568       1.20   thorpej 	pp->pr_hardlimit = n;
   1569       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1570       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1571       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1572       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1573       1.20   thorpej 
   1574  1.221.4.3    martin 	pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1575       1.21   thorpej 
   1576      1.134        ad 	mutex_exit(&pp->pr_lock);
   1577       1.20   thorpej }
   1578        1.3        pk 
   1579        1.3        pk /*
   1580        1.3        pk  * Release all complete pages that have not been used recently.
   1581      1.184     rmind  *
   1582      1.197       jym  * Must not be called from interrupt context.
   1583        1.3        pk  */
   1584       1.66   thorpej int
   1585       1.56  sommerfe pool_reclaim(struct pool *pp)
   1586        1.3        pk {
   1587        1.3        pk 	struct pool_item_header *ph, *phnext;
   1588       1.61       chs 	struct pool_pagelist pq;
   1589      1.151      yamt 	uint32_t curtime;
   1590      1.134        ad 	bool klock;
   1591      1.134        ad 	int rv;
   1592        1.3        pk 
   1593      1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1594      1.184     rmind 
   1595       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1596       1.68   thorpej 		/*
   1597       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1598       1.68   thorpej 		 */
   1599       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1600       1.68   thorpej 	}
   1601       1.68   thorpej 
   1602      1.134        ad 	/*
   1603      1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1604      1.157        ad 	 * to block.
   1605      1.134        ad 	 */
   1606      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1607      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1608      1.134        ad 		KERNEL_LOCK(1, NULL);
   1609      1.134        ad 		klock = true;
   1610      1.134        ad 	} else
   1611      1.134        ad 		klock = false;
   1612      1.134        ad 
   1613      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1614      1.134        ad 	if (pp->pr_cache != NULL)
   1615      1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1616      1.134        ad 
   1617      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1618      1.134        ad 		if (klock) {
   1619      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1620      1.134        ad 		}
   1621  1.221.4.1  christos 		return 0;
   1622      1.134        ad 	}
   1623       1.68   thorpej 
   1624       1.88       chs 	LIST_INIT(&pq);
   1625       1.43   thorpej 
   1626      1.151      yamt 	curtime = time_uptime;
   1627       1.21   thorpej 
   1628       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1629       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1630        1.3        pk 
   1631        1.3        pk 		/* Check our minimum page claim */
   1632        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1633        1.3        pk 			break;
   1634        1.3        pk 
   1635       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1636      1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1637       1.88       chs 			continue;
   1638       1.21   thorpej 
   1639       1.88       chs 		/*
   1640  1.221.4.3    martin 		 * If freeing this page would put us below the minimum free items
   1641  1.221.4.3    martin 		 * or the minimum pages, stop now.
   1642       1.88       chs 		 */
   1643  1.221.4.3    martin 		if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
   1644  1.221.4.3    martin 		    pp->pr_npages - 1 < pp->pr_minpages)
   1645       1.88       chs 			break;
   1646       1.21   thorpej 
   1647       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1648        1.3        pk 	}
   1649        1.3        pk 
   1650      1.134        ad 	mutex_exit(&pp->pr_lock);
   1651      1.134        ad 
   1652      1.134        ad 	if (LIST_EMPTY(&pq))
   1653      1.134        ad 		rv = 0;
   1654      1.134        ad 	else {
   1655      1.134        ad 		pr_pagelist_free(pp, &pq);
   1656      1.134        ad 		rv = 1;
   1657      1.134        ad 	}
   1658      1.134        ad 
   1659      1.134        ad 	if (klock) {
   1660      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1661      1.134        ad 	}
   1662       1.66   thorpej 
   1663  1.221.4.1  christos 	return rv;
   1664        1.3        pk }
   1665        1.3        pk 
   1666        1.3        pk /*
   1667      1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1668      1.131        ad  *
   1669      1.134        ad  * Note, must never be called from interrupt context.
   1670        1.3        pk  */
   1671      1.197       jym bool
   1672      1.197       jym pool_drain(struct pool **ppp)
   1673        1.3        pk {
   1674      1.197       jym 	bool reclaimed;
   1675        1.3        pk 	struct pool *pp;
   1676      1.134        ad 
   1677      1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1678        1.3        pk 
   1679       1.61       chs 	pp = NULL;
   1680      1.134        ad 
   1681      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1682      1.134        ad 	mutex_enter(&pool_head_lock);
   1683      1.134        ad 	do {
   1684      1.134        ad 		if (drainpp == NULL) {
   1685      1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1686      1.134        ad 		}
   1687      1.134        ad 		if (drainpp != NULL) {
   1688      1.134        ad 			pp = drainpp;
   1689      1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1690      1.134        ad 		}
   1691      1.134        ad 		/*
   1692      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1693      1.134        ad 		 * one pool in the system being active.
   1694      1.134        ad 		 */
   1695      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1696      1.134        ad 	pp->pr_refcnt++;
   1697      1.134        ad 	mutex_exit(&pool_head_lock);
   1698      1.134        ad 
   1699      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1700      1.186     pooka 	reclaimed = pool_reclaim(pp);
   1701      1.134        ad 
   1702      1.134        ad 	/* Finally, unlock the pool. */
   1703      1.134        ad 	mutex_enter(&pool_head_lock);
   1704      1.134        ad 	pp->pr_refcnt--;
   1705      1.134        ad 	cv_broadcast(&pool_busy);
   1706      1.134        ad 	mutex_exit(&pool_head_lock);
   1707      1.186     pooka 
   1708      1.197       jym 	if (ppp != NULL)
   1709      1.197       jym 		*ppp = pp;
   1710      1.197       jym 
   1711      1.186     pooka 	return reclaimed;
   1712        1.3        pk }
   1713        1.3        pk 
   1714        1.3        pk /*
   1715      1.217       mrg  * Calculate the total number of pages consumed by pools.
   1716      1.217       mrg  */
   1717      1.217       mrg int
   1718      1.217       mrg pool_totalpages(void)
   1719      1.217       mrg {
   1720  1.221.4.1  christos 
   1721  1.221.4.1  christos 	mutex_enter(&pool_head_lock);
   1722  1.221.4.1  christos 	int pages = pool_totalpages_locked();
   1723  1.221.4.1  christos 	mutex_exit(&pool_head_lock);
   1724  1.221.4.1  christos 
   1725  1.221.4.1  christos 	return pages;
   1726  1.221.4.1  christos }
   1727  1.221.4.1  christos 
   1728  1.221.4.1  christos int
   1729  1.221.4.1  christos pool_totalpages_locked(void)
   1730  1.221.4.1  christos {
   1731      1.217       mrg 	struct pool *pp;
   1732      1.218       mrg 	uint64_t total = 0;
   1733      1.217       mrg 
   1734      1.218       mrg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1735      1.218       mrg 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1736      1.218       mrg 
   1737      1.218       mrg 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1738      1.218       mrg 			bytes -= (pp->pr_nout * pp->pr_size);
   1739      1.218       mrg 		total += bytes;
   1740      1.218       mrg 	}
   1741      1.217       mrg 
   1742      1.218       mrg 	return atop(total);
   1743      1.217       mrg }
   1744      1.217       mrg 
   1745      1.217       mrg /*
   1746        1.3        pk  * Diagnostic helpers.
   1747        1.3        pk  */
   1748       1.21   thorpej 
   1749       1.25   thorpej void
   1750      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1751      1.108      yamt {
   1752      1.108      yamt 	struct pool *pp;
   1753      1.108      yamt 
   1754      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1755      1.108      yamt 		pool_printit(pp, modif, pr);
   1756      1.108      yamt 	}
   1757      1.108      yamt }
   1758      1.108      yamt 
   1759      1.108      yamt void
   1760       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1761       1.25   thorpej {
   1762       1.25   thorpej 
   1763       1.25   thorpej 	if (pp == NULL) {
   1764       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1765       1.25   thorpej 		return;
   1766       1.25   thorpej 	}
   1767       1.25   thorpej 
   1768       1.25   thorpej 	pool_print1(pp, modif, pr);
   1769       1.25   thorpej }
   1770       1.25   thorpej 
   1771       1.21   thorpej static void
   1772      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1773       1.97      yamt     void (*pr)(const char *, ...))
   1774       1.88       chs {
   1775       1.88       chs 	struct pool_item_header *ph;
   1776       1.88       chs 
   1777       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1778      1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1779      1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1780  1.221.4.1  christos #ifdef POOL_CHECK_MAGIC
   1781  1.221.4.1  christos 		struct pool_item *pi;
   1782  1.221.4.1  christos 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1783      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1784       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1785       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1786       1.97      yamt 					    pi, pi->pi_magic);
   1787       1.97      yamt 				}
   1788       1.88       chs 			}
   1789       1.88       chs 		}
   1790       1.88       chs #endif
   1791       1.88       chs 	}
   1792       1.88       chs }
   1793       1.88       chs 
   1794       1.88       chs static void
   1795       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1796        1.3        pk {
   1797       1.25   thorpej 	struct pool_item_header *ph;
   1798      1.134        ad 	pool_cache_t pc;
   1799      1.134        ad 	pcg_t *pcg;
   1800      1.134        ad 	pool_cache_cpu_t *cc;
   1801      1.134        ad 	uint64_t cpuhit, cpumiss;
   1802       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1803       1.25   thorpej 	char c;
   1804       1.25   thorpej 
   1805       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1806       1.25   thorpej 		if (c == 'l')
   1807       1.25   thorpej 			print_log = 1;
   1808       1.25   thorpej 		if (c == 'p')
   1809       1.25   thorpej 			print_pagelist = 1;
   1810       1.44   thorpej 		if (c == 'c')
   1811       1.44   thorpej 			print_cache = 1;
   1812       1.25   thorpej 	}
   1813       1.25   thorpej 
   1814      1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1815      1.134        ad 		(*pr)("POOL CACHE");
   1816      1.134        ad 	} else {
   1817      1.134        ad 		(*pr)("POOL");
   1818      1.134        ad 	}
   1819      1.134        ad 
   1820      1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1821       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1822       1.25   thorpej 	    pp->pr_roflags);
   1823       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1824       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1825       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1826       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1827       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1828       1.25   thorpej 
   1829      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1830       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1831       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1832       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1833       1.25   thorpej 
   1834       1.25   thorpej 	if (print_pagelist == 0)
   1835       1.25   thorpej 		goto skip_pagelist;
   1836       1.25   thorpej 
   1837       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1838       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1839       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1840       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1841       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1842       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1843       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1844       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1845       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1846       1.88       chs 
   1847       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1848       1.25   thorpej 		(*pr)("\tno current page\n");
   1849       1.25   thorpej 	else
   1850       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1851       1.25   thorpej 
   1852       1.25   thorpej  skip_pagelist:
   1853       1.25   thorpej 	if (print_log == 0)
   1854       1.25   thorpej 		goto skip_log;
   1855       1.25   thorpej 
   1856       1.25   thorpej 	(*pr)("\n");
   1857        1.3        pk 
   1858       1.25   thorpej  skip_log:
   1859       1.44   thorpej 
   1860      1.102       chs #define PR_GROUPLIST(pcg)						\
   1861      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1862      1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1863      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1864      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1865      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1866      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1867      1.102       chs 			    (unsigned long long)			\
   1868      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1869      1.102       chs 		} else {						\
   1870      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1871      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1872      1.102       chs 		}							\
   1873      1.102       chs 	}
   1874      1.102       chs 
   1875      1.134        ad 	if (pc != NULL) {
   1876      1.134        ad 		cpuhit = 0;
   1877      1.134        ad 		cpumiss = 0;
   1878      1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1879      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1880      1.134        ad 				continue;
   1881      1.134        ad 			cpuhit += cc->cc_hits;
   1882      1.134        ad 			cpumiss += cc->cc_misses;
   1883      1.134        ad 		}
   1884      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1885      1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1886      1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1887      1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1888      1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1889      1.134        ad 		    pc->pc_contended);
   1890      1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1891      1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1892      1.134        ad 		if (print_cache) {
   1893      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1894      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1895      1.134        ad 			    pcg = pcg->pcg_next) {
   1896      1.134        ad 				PR_GROUPLIST(pcg);
   1897      1.134        ad 			}
   1898      1.134        ad 			(*pr)("\tempty cache groups:\n");
   1899      1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1900      1.134        ad 			    pcg = pcg->pcg_next) {
   1901      1.134        ad 				PR_GROUPLIST(pcg);
   1902      1.134        ad 			}
   1903      1.103       chs 		}
   1904       1.44   thorpej 	}
   1905      1.102       chs #undef PR_GROUPLIST
   1906       1.88       chs }
   1907       1.88       chs 
   1908       1.88       chs static int
   1909       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1910       1.88       chs {
   1911       1.88       chs 	struct pool_item *pi;
   1912      1.128  christos 	void *page;
   1913       1.88       chs 	int n;
   1914       1.88       chs 
   1915      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1916  1.221.4.2    martin 		page = POOL_OBJ_TO_PAGE(pp, ph);
   1917      1.121      yamt 		if (page != ph->ph_page &&
   1918      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1919      1.121      yamt 			if (label != NULL)
   1920      1.121      yamt 				printf("%s: ", label);
   1921      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1922      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1923      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1924      1.121      yamt 				ph, page);
   1925      1.121      yamt 			return 1;
   1926      1.121      yamt 		}
   1927       1.88       chs 	}
   1928        1.3        pk 
   1929  1.221.4.1  christos 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1930       1.97      yamt 		return 0;
   1931       1.97      yamt 
   1932      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1933       1.88       chs 	     pi != NULL;
   1934      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1935       1.88       chs 
   1936  1.221.4.1  christos #ifdef POOL_CHECK_MAGIC
   1937       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1938       1.88       chs 			if (label != NULL)
   1939       1.88       chs 				printf("%s: ", label);
   1940       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1941      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1942       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1943      1.121      yamt 				n, pi);
   1944       1.88       chs 			panic("pool");
   1945       1.88       chs 		}
   1946       1.88       chs #endif
   1947      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1948      1.121      yamt 			continue;
   1949      1.121      yamt 		}
   1950  1.221.4.2    martin 		page = POOL_OBJ_TO_PAGE(pp, pi);
   1951       1.88       chs 		if (page == ph->ph_page)
   1952       1.88       chs 			continue;
   1953       1.88       chs 
   1954       1.88       chs 		if (label != NULL)
   1955       1.88       chs 			printf("%s: ", label);
   1956       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1957       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1958       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1959       1.88       chs 			n, pi, page);
   1960       1.88       chs 		return 1;
   1961       1.88       chs 	}
   1962       1.88       chs 	return 0;
   1963        1.3        pk }
   1964        1.3        pk 
   1965       1.88       chs 
   1966        1.3        pk int
   1967       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1968        1.3        pk {
   1969        1.3        pk 	struct pool_item_header *ph;
   1970        1.3        pk 	int r = 0;
   1971        1.3        pk 
   1972      1.134        ad 	mutex_enter(&pp->pr_lock);
   1973       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1974       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1975       1.88       chs 		if (r) {
   1976       1.88       chs 			goto out;
   1977       1.88       chs 		}
   1978       1.88       chs 	}
   1979       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1980       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1981       1.88       chs 		if (r) {
   1982        1.3        pk 			goto out;
   1983        1.3        pk 		}
   1984       1.88       chs 	}
   1985       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1986       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1987       1.88       chs 		if (r) {
   1988        1.3        pk 			goto out;
   1989        1.3        pk 		}
   1990        1.3        pk 	}
   1991       1.88       chs 
   1992        1.3        pk out:
   1993      1.134        ad 	mutex_exit(&pp->pr_lock);
   1994  1.221.4.1  christos 	return r;
   1995       1.43   thorpej }
   1996       1.43   thorpej 
   1997       1.43   thorpej /*
   1998       1.43   thorpej  * pool_cache_init:
   1999       1.43   thorpej  *
   2000       1.43   thorpej  *	Initialize a pool cache.
   2001      1.134        ad  */
   2002      1.134        ad pool_cache_t
   2003      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2004      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   2005      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2006      1.134        ad {
   2007      1.134        ad 	pool_cache_t pc;
   2008      1.134        ad 
   2009      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   2010      1.134        ad 	if (pc == NULL)
   2011      1.134        ad 		return NULL;
   2012      1.134        ad 
   2013      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2014      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   2015      1.134        ad 
   2016      1.134        ad 	return pc;
   2017      1.134        ad }
   2018      1.134        ad 
   2019      1.134        ad /*
   2020      1.134        ad  * pool_cache_bootstrap:
   2021       1.43   thorpej  *
   2022      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   2023      1.134        ad  *	provides initial storage.
   2024       1.43   thorpej  */
   2025       1.43   thorpej void
   2026      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2027      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   2028      1.134        ad     struct pool_allocator *palloc, int ipl,
   2029      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2030       1.43   thorpej     void *arg)
   2031       1.43   thorpej {
   2032      1.134        ad 	CPU_INFO_ITERATOR cii;
   2033      1.145        ad 	pool_cache_t pc1;
   2034      1.134        ad 	struct cpu_info *ci;
   2035      1.134        ad 	struct pool *pp;
   2036      1.134        ad 
   2037      1.134        ad 	pp = &pc->pc_pool;
   2038      1.208       chs 	if (palloc == NULL && ipl == IPL_NONE) {
   2039      1.208       chs 		if (size > PAGE_SIZE) {
   2040      1.208       chs 			int bigidx = pool_bigidx(size);
   2041      1.208       chs 
   2042      1.208       chs 			palloc = &pool_allocator_big[bigidx];
   2043  1.221.4.2    martin 			flags |= PR_NOALIGN;
   2044      1.208       chs 		} else
   2045      1.208       chs 			palloc = &pool_allocator_nointr;
   2046      1.208       chs 	}
   2047      1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2048      1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2049       1.43   thorpej 
   2050      1.134        ad 	if (ctor == NULL) {
   2051  1.221.4.2    martin 		ctor = NO_CTOR;
   2052      1.134        ad 	}
   2053      1.134        ad 	if (dtor == NULL) {
   2054  1.221.4.2    martin 		dtor = NO_DTOR;
   2055      1.134        ad 	}
   2056       1.43   thorpej 
   2057      1.134        ad 	pc->pc_emptygroups = NULL;
   2058      1.134        ad 	pc->pc_fullgroups = NULL;
   2059      1.134        ad 	pc->pc_partgroups = NULL;
   2060       1.43   thorpej 	pc->pc_ctor = ctor;
   2061       1.43   thorpej 	pc->pc_dtor = dtor;
   2062       1.43   thorpej 	pc->pc_arg  = arg;
   2063      1.134        ad 	pc->pc_hits  = 0;
   2064       1.48   thorpej 	pc->pc_misses = 0;
   2065      1.134        ad 	pc->pc_nempty = 0;
   2066      1.134        ad 	pc->pc_npart = 0;
   2067      1.134        ad 	pc->pc_nfull = 0;
   2068      1.134        ad 	pc->pc_contended = 0;
   2069      1.134        ad 	pc->pc_refcnt = 0;
   2070      1.136      yamt 	pc->pc_freecheck = NULL;
   2071      1.134        ad 
   2072      1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   2073      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2074      1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   2075      1.142        ad 	} else {
   2076      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2077      1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   2078      1.142        ad 	}
   2079      1.142        ad 
   2080      1.134        ad 	/* Allocate per-CPU caches. */
   2081      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2082      1.134        ad 	pc->pc_ncpu = 0;
   2083      1.139        ad 	if (ncpu < 2) {
   2084      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2085      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2086      1.137        ad 	} else {
   2087      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2088      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2089      1.137        ad 		}
   2090      1.134        ad 	}
   2091      1.145        ad 
   2092      1.145        ad 	/* Add to list of all pools. */
   2093      1.145        ad 	if (__predict_true(!cold))
   2094      1.134        ad 		mutex_enter(&pool_head_lock);
   2095      1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2096      1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2097      1.145        ad 			break;
   2098      1.145        ad 	}
   2099      1.145        ad 	if (pc1 == NULL)
   2100      1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2101      1.145        ad 	else
   2102      1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2103      1.145        ad 	if (__predict_true(!cold))
   2104      1.134        ad 		mutex_exit(&pool_head_lock);
   2105      1.145        ad 
   2106      1.145        ad 	membar_sync();
   2107      1.145        ad 	pp->pr_cache = pc;
   2108       1.43   thorpej }
   2109       1.43   thorpej 
   2110       1.43   thorpej /*
   2111       1.43   thorpej  * pool_cache_destroy:
   2112       1.43   thorpej  *
   2113       1.43   thorpej  *	Destroy a pool cache.
   2114       1.43   thorpej  */
   2115       1.43   thorpej void
   2116      1.134        ad pool_cache_destroy(pool_cache_t pc)
   2117       1.43   thorpej {
   2118      1.191      para 
   2119      1.191      para 	pool_cache_bootstrap_destroy(pc);
   2120      1.191      para 	pool_put(&cache_pool, pc);
   2121      1.191      para }
   2122      1.191      para 
   2123      1.191      para /*
   2124      1.191      para  * pool_cache_bootstrap_destroy:
   2125      1.191      para  *
   2126      1.191      para  *	Destroy a pool cache.
   2127      1.191      para  */
   2128      1.191      para void
   2129      1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   2130      1.191      para {
   2131      1.134        ad 	struct pool *pp = &pc->pc_pool;
   2132      1.175       jym 	u_int i;
   2133      1.134        ad 
   2134      1.134        ad 	/* Remove it from the global list. */
   2135      1.134        ad 	mutex_enter(&pool_head_lock);
   2136      1.134        ad 	while (pc->pc_refcnt != 0)
   2137      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2138      1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2139      1.134        ad 	mutex_exit(&pool_head_lock);
   2140       1.43   thorpej 
   2141       1.43   thorpej 	/* First, invalidate the entire cache. */
   2142       1.43   thorpej 	pool_cache_invalidate(pc);
   2143       1.43   thorpej 
   2144      1.134        ad 	/* Disassociate it from the pool. */
   2145      1.134        ad 	mutex_enter(&pp->pr_lock);
   2146      1.134        ad 	pp->pr_cache = NULL;
   2147      1.134        ad 	mutex_exit(&pp->pr_lock);
   2148      1.134        ad 
   2149      1.134        ad 	/* Destroy per-CPU data */
   2150      1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2151      1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   2152      1.134        ad 
   2153      1.134        ad 	/* Finally, destroy it. */
   2154      1.134        ad 	mutex_destroy(&pc->pc_lock);
   2155      1.134        ad 	pool_destroy(pp);
   2156      1.134        ad }
   2157      1.134        ad 
   2158      1.134        ad /*
   2159      1.134        ad  * pool_cache_cpu_init1:
   2160      1.134        ad  *
   2161      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2162      1.134        ad  */
   2163      1.134        ad static void
   2164      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2165      1.134        ad {
   2166      1.134        ad 	pool_cache_cpu_t *cc;
   2167      1.137        ad 	int index;
   2168      1.134        ad 
   2169      1.137        ad 	index = ci->ci_index;
   2170      1.137        ad 
   2171      1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   2172      1.134        ad 
   2173      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2174      1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2175      1.134        ad 		return;
   2176      1.134        ad 	}
   2177      1.134        ad 
   2178      1.134        ad 	/*
   2179      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2180      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2181      1.134        ad 	 */
   2182      1.134        ad 	if (pc->pc_ncpu == 0) {
   2183      1.134        ad 		cc = &pc->pc_cpu0;
   2184      1.134        ad 		pc->pc_ncpu = 1;
   2185      1.134        ad 	} else {
   2186      1.134        ad 		mutex_enter(&pc->pc_lock);
   2187      1.134        ad 		pc->pc_ncpu++;
   2188      1.134        ad 		mutex_exit(&pc->pc_lock);
   2189      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2190      1.134        ad 	}
   2191      1.134        ad 
   2192      1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2193      1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2194      1.134        ad 	cc->cc_cache = pc;
   2195      1.137        ad 	cc->cc_cpuindex = index;
   2196      1.134        ad 	cc->cc_hits = 0;
   2197      1.134        ad 	cc->cc_misses = 0;
   2198      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2199      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2200      1.134        ad 
   2201      1.137        ad 	pc->pc_cpus[index] = cc;
   2202       1.43   thorpej }
   2203       1.43   thorpej 
   2204      1.134        ad /*
   2205      1.134        ad  * pool_cache_cpu_init:
   2206      1.134        ad  *
   2207      1.134        ad  *	Called whenever a new CPU is attached.
   2208      1.134        ad  */
   2209      1.134        ad void
   2210      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2211       1.43   thorpej {
   2212      1.134        ad 	pool_cache_t pc;
   2213      1.134        ad 
   2214      1.134        ad 	mutex_enter(&pool_head_lock);
   2215      1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2216      1.134        ad 		pc->pc_refcnt++;
   2217      1.134        ad 		mutex_exit(&pool_head_lock);
   2218       1.43   thorpej 
   2219      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2220       1.43   thorpej 
   2221      1.134        ad 		mutex_enter(&pool_head_lock);
   2222      1.134        ad 		pc->pc_refcnt--;
   2223      1.134        ad 		cv_broadcast(&pool_busy);
   2224      1.134        ad 	}
   2225      1.134        ad 	mutex_exit(&pool_head_lock);
   2226       1.43   thorpej }
   2227       1.43   thorpej 
   2228      1.134        ad /*
   2229      1.134        ad  * pool_cache_reclaim:
   2230      1.134        ad  *
   2231      1.134        ad  *	Reclaim memory from a pool cache.
   2232      1.134        ad  */
   2233      1.134        ad bool
   2234      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2235       1.43   thorpej {
   2236       1.43   thorpej 
   2237      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2238      1.134        ad }
   2239       1.43   thorpej 
   2240      1.136      yamt static void
   2241      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2242      1.136      yamt {
   2243      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2244      1.136      yamt 	pool_put(&pc->pc_pool, object);
   2245      1.136      yamt }
   2246      1.136      yamt 
   2247      1.134        ad /*
   2248      1.134        ad  * pool_cache_destruct_object:
   2249      1.134        ad  *
   2250      1.134        ad  *	Force destruction of an object and its release back into
   2251      1.134        ad  *	the pool.
   2252      1.134        ad  */
   2253      1.134        ad void
   2254      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2255      1.134        ad {
   2256      1.134        ad 
   2257      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2258      1.136      yamt 
   2259      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2260       1.43   thorpej }
   2261       1.43   thorpej 
   2262      1.134        ad /*
   2263      1.134        ad  * pool_cache_invalidate_groups:
   2264      1.134        ad  *
   2265      1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2266      1.134        ad  */
   2267      1.102       chs static void
   2268      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2269      1.102       chs {
   2270      1.134        ad 	void *object;
   2271      1.134        ad 	pcg_t *next;
   2272      1.134        ad 	int i;
   2273      1.134        ad 
   2274      1.134        ad 	for (; pcg != NULL; pcg = next) {
   2275      1.134        ad 		next = pcg->pcg_next;
   2276      1.134        ad 
   2277      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2278      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2279      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2280      1.134        ad 		}
   2281      1.102       chs 
   2282      1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2283      1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2284      1.142        ad 		} else {
   2285      1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2286      1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2287      1.142        ad 		}
   2288      1.102       chs 	}
   2289      1.102       chs }
   2290      1.102       chs 
   2291       1.43   thorpej /*
   2292      1.134        ad  * pool_cache_invalidate:
   2293       1.43   thorpej  *
   2294      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2295      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2296      1.176   thorpej  *
   2297      1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2298      1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2299      1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2300      1.196       jym  *
   2301      1.196       jym  *	Invalidation is a costly process and should not be called from
   2302      1.196       jym  *	interrupt context.
   2303       1.43   thorpej  */
   2304      1.134        ad void
   2305      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2306      1.134        ad {
   2307      1.196       jym 	uint64_t where;
   2308      1.134        ad 	pcg_t *full, *empty, *part;
   2309      1.196       jym 
   2310      1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2311      1.176   thorpej 
   2312      1.177       jym 	if (ncpu < 2 || !mp_online) {
   2313      1.176   thorpej 		/*
   2314      1.176   thorpej 		 * We might be called early enough in the boot process
   2315      1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2316      1.196       jym 		 * In this case, transfer the content of the local CPU's
   2317      1.196       jym 		 * cache back into global cache as only this CPU is currently
   2318      1.196       jym 		 * running.
   2319      1.176   thorpej 		 */
   2320      1.196       jym 		pool_cache_transfer(pc);
   2321      1.176   thorpej 	} else {
   2322      1.176   thorpej 		/*
   2323      1.196       jym 		 * Signal all CPUs that they must transfer their local
   2324      1.196       jym 		 * cache back to the global pool then wait for the xcall to
   2325      1.196       jym 		 * complete.
   2326      1.176   thorpej 		 */
   2327  1.221.4.2    martin 		where = xc_broadcast(0,
   2328  1.221.4.2    martin 		    __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
   2329      1.176   thorpej 		xc_wait(where);
   2330      1.176   thorpej 	}
   2331      1.196       jym 
   2332      1.196       jym 	/* Empty pool caches, then invalidate objects */
   2333      1.134        ad 	mutex_enter(&pc->pc_lock);
   2334      1.134        ad 	full = pc->pc_fullgroups;
   2335      1.134        ad 	empty = pc->pc_emptygroups;
   2336      1.134        ad 	part = pc->pc_partgroups;
   2337      1.134        ad 	pc->pc_fullgroups = NULL;
   2338      1.134        ad 	pc->pc_emptygroups = NULL;
   2339      1.134        ad 	pc->pc_partgroups = NULL;
   2340      1.134        ad 	pc->pc_nfull = 0;
   2341      1.134        ad 	pc->pc_nempty = 0;
   2342      1.134        ad 	pc->pc_npart = 0;
   2343      1.134        ad 	mutex_exit(&pc->pc_lock);
   2344      1.134        ad 
   2345      1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2346      1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2347      1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2348      1.134        ad }
   2349      1.134        ad 
   2350      1.175       jym /*
   2351      1.175       jym  * pool_cache_invalidate_cpu:
   2352      1.175       jym  *
   2353      1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2354      1.175       jym  *	identified by its associated index.
   2355      1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2356      1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2357      1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2358      1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2359      1.175       jym  *	may result in an undefined behaviour.
   2360      1.175       jym  */
   2361      1.175       jym static void
   2362      1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2363      1.175       jym {
   2364      1.175       jym 	pool_cache_cpu_t *cc;
   2365      1.175       jym 	pcg_t *pcg;
   2366      1.175       jym 
   2367      1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2368      1.175       jym 		return;
   2369      1.175       jym 
   2370      1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2371      1.175       jym 		pcg->pcg_next = NULL;
   2372      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2373      1.175       jym 	}
   2374      1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2375      1.175       jym 		pcg->pcg_next = NULL;
   2376      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2377      1.175       jym 	}
   2378      1.175       jym 	if (cc != &pc->pc_cpu0)
   2379      1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2380      1.175       jym 
   2381      1.175       jym }
   2382      1.175       jym 
   2383      1.134        ad void
   2384      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2385      1.134        ad {
   2386      1.134        ad 
   2387      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2388      1.134        ad }
   2389      1.134        ad 
   2390      1.134        ad void
   2391      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2392      1.134        ad {
   2393      1.134        ad 
   2394      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2395      1.134        ad }
   2396      1.134        ad 
   2397      1.134        ad void
   2398      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2399      1.134        ad {
   2400      1.134        ad 
   2401      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2402      1.134        ad }
   2403      1.134        ad 
   2404      1.134        ad void
   2405      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2406      1.134        ad {
   2407      1.134        ad 
   2408      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2409      1.134        ad }
   2410      1.134        ad 
   2411  1.221.4.3    martin void
   2412  1.221.4.3    martin pool_cache_prime(pool_cache_t pc, int n)
   2413  1.221.4.3    martin {
   2414  1.221.4.3    martin 
   2415  1.221.4.3    martin 	pool_prime(&pc->pc_pool, n);
   2416  1.221.4.3    martin }
   2417  1.221.4.3    martin 
   2418      1.162        ad static bool __noinline
   2419      1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2420      1.134        ad 		    paddr_t *pap, int flags)
   2421       1.43   thorpej {
   2422      1.134        ad 	pcg_t *pcg, *cur;
   2423      1.134        ad 	uint64_t ncsw;
   2424      1.134        ad 	pool_cache_t pc;
   2425       1.43   thorpej 	void *object;
   2426       1.58   thorpej 
   2427      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2428      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2429      1.168      yamt 
   2430      1.134        ad 	pc = cc->cc_cache;
   2431      1.134        ad 	cc->cc_misses++;
   2432       1.43   thorpej 
   2433      1.134        ad 	/*
   2434      1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2435      1.134        ad 	 * from the cache.
   2436      1.134        ad 	 */
   2437      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2438      1.134        ad 		ncsw = curlwp->l_ncsw;
   2439  1.221.4.2    martin 		__insn_barrier();
   2440      1.134        ad 		mutex_enter(&pc->pc_lock);
   2441      1.134        ad 		pc->pc_contended++;
   2442       1.43   thorpej 
   2443      1.134        ad 		/*
   2444      1.134        ad 		 * If we context switched while locking, then
   2445      1.134        ad 		 * our view of the per-CPU data is invalid:
   2446      1.134        ad 		 * retry.
   2447      1.134        ad 		 */
   2448  1.221.4.2    martin 		__insn_barrier();
   2449      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2450      1.134        ad 			mutex_exit(&pc->pc_lock);
   2451      1.162        ad 			return true;
   2452       1.43   thorpej 		}
   2453      1.102       chs 	}
   2454       1.43   thorpej 
   2455      1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2456       1.43   thorpej 		/*
   2457      1.134        ad 		 * If there's a full group, release our empty
   2458      1.134        ad 		 * group back to the cache.  Install the full
   2459      1.134        ad 		 * group as cc_current and return.
   2460       1.43   thorpej 		 */
   2461      1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2462      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2463      1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2464      1.134        ad 			pc->pc_emptygroups = cur;
   2465      1.134        ad 			pc->pc_nempty++;
   2466       1.87   thorpej 		}
   2467      1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2468      1.134        ad 		cc->cc_current = pcg;
   2469      1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2470      1.134        ad 		pc->pc_hits++;
   2471      1.134        ad 		pc->pc_nfull--;
   2472      1.134        ad 		mutex_exit(&pc->pc_lock);
   2473      1.162        ad 		return true;
   2474      1.134        ad 	}
   2475      1.134        ad 
   2476      1.134        ad 	/*
   2477      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2478      1.134        ad 	 * path: fetch a new object from the pool and construct
   2479      1.134        ad 	 * it.
   2480      1.134        ad 	 */
   2481      1.134        ad 	pc->pc_misses++;
   2482      1.134        ad 	mutex_exit(&pc->pc_lock);
   2483      1.162        ad 	splx(s);
   2484      1.134        ad 
   2485      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2486      1.134        ad 	*objectp = object;
   2487      1.211  riastrad 	if (__predict_false(object == NULL)) {
   2488  1.221.4.2    martin 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   2489      1.162        ad 		return false;
   2490      1.211  riastrad 	}
   2491      1.125        ad 
   2492      1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2493      1.134        ad 		pool_put(&pc->pc_pool, object);
   2494      1.134        ad 		*objectp = NULL;
   2495      1.162        ad 		return false;
   2496       1.43   thorpej 	}
   2497       1.43   thorpej 
   2498  1.221.4.1  christos 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2499       1.43   thorpej 
   2500      1.134        ad 	if (pap != NULL) {
   2501      1.134        ad #ifdef POOL_VTOPHYS
   2502      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2503      1.134        ad #else
   2504      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2505      1.134        ad #endif
   2506      1.102       chs 	}
   2507       1.43   thorpej 
   2508      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2509      1.162        ad 	return false;
   2510       1.43   thorpej }
   2511       1.43   thorpej 
   2512       1.43   thorpej /*
   2513      1.134        ad  * pool_cache_get{,_paddr}:
   2514       1.43   thorpej  *
   2515      1.134        ad  *	Get an object from a pool cache (optionally returning
   2516      1.134        ad  *	the physical address of the object).
   2517       1.43   thorpej  */
   2518      1.134        ad void *
   2519      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2520       1.43   thorpej {
   2521      1.134        ad 	pool_cache_cpu_t *cc;
   2522      1.134        ad 	pcg_t *pcg;
   2523      1.134        ad 	void *object;
   2524       1.60   thorpej 	int s;
   2525       1.43   thorpej 
   2526      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2527      1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2528      1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2529      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2530      1.213  christos 	    __func__, pc->pc_pool.pr_wchan);
   2531      1.184     rmind 
   2532      1.155        ad 	if (flags & PR_WAITOK) {
   2533      1.154      yamt 		ASSERT_SLEEPABLE();
   2534      1.155        ad 	}
   2535      1.125        ad 
   2536      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2537      1.162        ad 	s = splvm();
   2538      1.165      yamt 	while (/* CONSTCOND */ true) {
   2539      1.134        ad 		/* Try and allocate an object from the current group. */
   2540      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2541      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2542      1.134        ad 	 	pcg = cc->cc_current;
   2543      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2544      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2545      1.162        ad 			if (__predict_false(pap != NULL))
   2546      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2547      1.148      yamt #if defined(DIAGNOSTIC)
   2548      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2549      1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2550      1.134        ad 			KASSERT(object != NULL);
   2551      1.163        ad #endif
   2552      1.134        ad 			cc->cc_hits++;
   2553      1.162        ad 			splx(s);
   2554      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2555      1.204      maxv 			pool_redzone_fill(&pc->pc_pool, object);
   2556  1.221.4.2    martin 			pool_cache_get_kmsan(pc, object);
   2557      1.134        ad 			return object;
   2558       1.43   thorpej 		}
   2559       1.43   thorpej 
   2560       1.43   thorpej 		/*
   2561      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2562      1.134        ad 		 * it with the current group and allocate from there.
   2563       1.43   thorpej 		 */
   2564      1.134        ad 		pcg = cc->cc_previous;
   2565      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2566      1.134        ad 			cc->cc_previous = cc->cc_current;
   2567      1.134        ad 			cc->cc_current = pcg;
   2568      1.134        ad 			continue;
   2569       1.43   thorpej 		}
   2570       1.43   thorpej 
   2571      1.134        ad 		/*
   2572      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2573      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2574      1.162        ad 		 * no more objects are available, it will return false.
   2575      1.134        ad 		 * Otherwise, we need to retry.
   2576      1.134        ad 		 */
   2577      1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2578      1.165      yamt 			break;
   2579      1.165      yamt 	}
   2580       1.43   thorpej 
   2581      1.211  riastrad 	/*
   2582      1.211  riastrad 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2583      1.211  riastrad 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2584      1.211  riastrad 	 * constructor fails.
   2585      1.211  riastrad 	 */
   2586      1.134        ad 	return object;
   2587       1.51   thorpej }
   2588       1.51   thorpej 
   2589      1.162        ad static bool __noinline
   2590      1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2591       1.51   thorpej {
   2592      1.200     pooka 	struct lwp *l = curlwp;
   2593      1.163        ad 	pcg_t *pcg, *cur;
   2594      1.134        ad 	uint64_t ncsw;
   2595      1.134        ad 	pool_cache_t pc;
   2596       1.51   thorpej 
   2597      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2598      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2599      1.168      yamt 
   2600      1.134        ad 	pc = cc->cc_cache;
   2601      1.171        ad 	pcg = NULL;
   2602      1.134        ad 	cc->cc_misses++;
   2603      1.200     pooka 	ncsw = l->l_ncsw;
   2604  1.221.4.2    martin 	__insn_barrier();
   2605       1.43   thorpej 
   2606      1.171        ad 	/*
   2607      1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2608      1.171        ad 	 * while still unlocked.
   2609      1.171        ad 	 */
   2610      1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2611      1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2612      1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2613      1.171        ad 		}
   2614      1.200     pooka 		/*
   2615      1.200     pooka 		 * If pool_get() blocked, then our view of
   2616      1.200     pooka 		 * the per-CPU data is invalid: retry.
   2617      1.200     pooka 		 */
   2618  1.221.4.2    martin 		__insn_barrier();
   2619      1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2620      1.200     pooka 			if (pcg != NULL) {
   2621      1.200     pooka 				pool_put(pc->pc_pcgpool, pcg);
   2622      1.200     pooka 			}
   2623      1.200     pooka 			return true;
   2624      1.200     pooka 		}
   2625      1.171        ad 		if (__predict_true(pcg != NULL)) {
   2626      1.171        ad 			pcg->pcg_avail = 0;
   2627      1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2628      1.171        ad 		}
   2629      1.171        ad 	}
   2630      1.171        ad 
   2631      1.162        ad 	/* Lock the cache. */
   2632      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2633      1.134        ad 		mutex_enter(&pc->pc_lock);
   2634      1.134        ad 		pc->pc_contended++;
   2635      1.162        ad 
   2636      1.163        ad 		/*
   2637      1.163        ad 		 * If we context switched while locking, then our view of
   2638      1.163        ad 		 * the per-CPU data is invalid: retry.
   2639      1.163        ad 		 */
   2640  1.221.4.2    martin 		__insn_barrier();
   2641      1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2642      1.163        ad 			mutex_exit(&pc->pc_lock);
   2643      1.171        ad 			if (pcg != NULL) {
   2644      1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2645      1.171        ad 			}
   2646      1.163        ad 			return true;
   2647      1.163        ad 		}
   2648      1.162        ad 	}
   2649      1.102       chs 
   2650      1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2651      1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2652      1.171        ad 		pcg = pc->pc_emptygroups;
   2653      1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2654      1.163        ad 		pc->pc_nempty--;
   2655      1.134        ad 	}
   2656      1.130        ad 
   2657      1.162        ad 	/*
   2658      1.162        ad 	 * If there's a empty group, release our full group back
   2659      1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2660      1.162        ad 	 * and return.
   2661      1.162        ad 	 */
   2662      1.163        ad 	if (pcg != NULL) {
   2663      1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2664      1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2665      1.146        ad 			cc->cc_previous = pcg;
   2666      1.146        ad 		} else {
   2667      1.162        ad 			cur = cc->cc_current;
   2668      1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2669      1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2670      1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2671      1.146        ad 				pc->pc_fullgroups = cur;
   2672      1.146        ad 				pc->pc_nfull++;
   2673      1.146        ad 			}
   2674      1.146        ad 			cc->cc_current = pcg;
   2675      1.146        ad 		}
   2676      1.163        ad 		pc->pc_hits++;
   2677      1.134        ad 		mutex_exit(&pc->pc_lock);
   2678      1.162        ad 		return true;
   2679      1.102       chs 	}
   2680      1.105  christos 
   2681      1.134        ad 	/*
   2682      1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2683      1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2684      1.162        ad 	 * the object here and now.
   2685      1.134        ad 	 */
   2686      1.134        ad 	pc->pc_misses++;
   2687      1.134        ad 	mutex_exit(&pc->pc_lock);
   2688      1.162        ad 	splx(s);
   2689      1.162        ad 	pool_cache_destruct_object(pc, object);
   2690      1.105  christos 
   2691      1.162        ad 	return false;
   2692  1.221.4.1  christos }
   2693      1.102       chs 
   2694       1.43   thorpej /*
   2695      1.134        ad  * pool_cache_put{,_paddr}:
   2696       1.43   thorpej  *
   2697      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2698      1.134        ad  *	physical address of the object).
   2699       1.43   thorpej  */
   2700      1.101   thorpej void
   2701      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2702       1.43   thorpej {
   2703      1.134        ad 	pool_cache_cpu_t *cc;
   2704      1.134        ad 	pcg_t *pcg;
   2705      1.134        ad 	int s;
   2706      1.101   thorpej 
   2707      1.172      yamt 	KASSERT(object != NULL);
   2708  1.221.4.2    martin 	pool_cache_put_kmsan(pc, object);
   2709  1.221.4.1  christos 	pool_cache_redzone_check(pc, object);
   2710      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2711      1.101   thorpej 
   2712  1.221.4.2    martin 	if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
   2713  1.221.4.2    martin 		pc_phinpage_check(pc, object);
   2714  1.221.4.2    martin 	}
   2715  1.221.4.2    martin 
   2716  1.221.4.3    martin 	if (pool_cache_put_nocache(pc, object)) {
   2717  1.221.4.1  christos 		return;
   2718  1.221.4.1  christos 	}
   2719  1.221.4.1  christos 
   2720      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2721      1.162        ad 	s = splvm();
   2722      1.165      yamt 	while (/* CONSTCOND */ true) {
   2723      1.134        ad 		/* If the current group isn't full, release it there. */
   2724      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2725      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2726      1.134        ad 	 	pcg = cc->cc_current;
   2727      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2728      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2729      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2730      1.134        ad 			pcg->pcg_avail++;
   2731      1.134        ad 			cc->cc_hits++;
   2732      1.162        ad 			splx(s);
   2733      1.134        ad 			return;
   2734      1.134        ad 		}
   2735       1.43   thorpej 
   2736      1.134        ad 		/*
   2737      1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2738      1.134        ad 		 * it with the current group and try again.
   2739      1.134        ad 		 */
   2740      1.134        ad 		pcg = cc->cc_previous;
   2741      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2742      1.134        ad 			cc->cc_previous = cc->cc_current;
   2743      1.134        ad 			cc->cc_current = pcg;
   2744      1.134        ad 			continue;
   2745      1.134        ad 		}
   2746       1.43   thorpej 
   2747      1.134        ad 		/*
   2748  1.221.4.1  christos 		 * Can't free to either group: try the slow path.
   2749      1.134        ad 		 * If put_slow() releases the object for us, it
   2750      1.162        ad 		 * will return false.  Otherwise we need to retry.
   2751      1.134        ad 		 */
   2752      1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2753      1.165      yamt 			break;
   2754      1.165      yamt 	}
   2755       1.43   thorpej }
   2756       1.43   thorpej 
   2757       1.43   thorpej /*
   2758      1.196       jym  * pool_cache_transfer:
   2759       1.43   thorpej  *
   2760      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2761      1.134        ad  *	Run within a cross-call thread.
   2762       1.43   thorpej  */
   2763       1.43   thorpej static void
   2764      1.196       jym pool_cache_transfer(pool_cache_t pc)
   2765       1.43   thorpej {
   2766      1.134        ad 	pool_cache_cpu_t *cc;
   2767      1.134        ad 	pcg_t *prev, *cur, **list;
   2768      1.162        ad 	int s;
   2769      1.134        ad 
   2770      1.162        ad 	s = splvm();
   2771      1.162        ad 	mutex_enter(&pc->pc_lock);
   2772      1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2773      1.134        ad 	cur = cc->cc_current;
   2774      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2775      1.134        ad 	prev = cc->cc_previous;
   2776      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2777      1.162        ad 	if (cur != &pcg_dummy) {
   2778      1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2779      1.134        ad 			list = &pc->pc_fullgroups;
   2780      1.134        ad 			pc->pc_nfull++;
   2781      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2782      1.134        ad 			list = &pc->pc_emptygroups;
   2783      1.134        ad 			pc->pc_nempty++;
   2784      1.134        ad 		} else {
   2785      1.134        ad 			list = &pc->pc_partgroups;
   2786      1.134        ad 			pc->pc_npart++;
   2787      1.134        ad 		}
   2788      1.134        ad 		cur->pcg_next = *list;
   2789      1.134        ad 		*list = cur;
   2790      1.134        ad 	}
   2791      1.162        ad 	if (prev != &pcg_dummy) {
   2792      1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2793      1.134        ad 			list = &pc->pc_fullgroups;
   2794      1.134        ad 			pc->pc_nfull++;
   2795      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2796      1.134        ad 			list = &pc->pc_emptygroups;
   2797      1.134        ad 			pc->pc_nempty++;
   2798      1.134        ad 		} else {
   2799      1.134        ad 			list = &pc->pc_partgroups;
   2800      1.134        ad 			pc->pc_npart++;
   2801      1.134        ad 		}
   2802      1.134        ad 		prev->pcg_next = *list;
   2803      1.134        ad 		*list = prev;
   2804      1.134        ad 	}
   2805      1.134        ad 	mutex_exit(&pc->pc_lock);
   2806      1.134        ad 	splx(s);
   2807        1.3        pk }
   2808       1.66   thorpej 
   2809      1.208       chs static int
   2810      1.208       chs pool_bigidx(size_t size)
   2811      1.208       chs {
   2812      1.208       chs 	int i;
   2813      1.208       chs 
   2814      1.208       chs 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2815      1.208       chs 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2816      1.208       chs 			return i;
   2817      1.208       chs 	}
   2818      1.208       chs 	panic("pool item size %zu too large, use a custom allocator", size);
   2819      1.208       chs }
   2820      1.208       chs 
   2821      1.117      yamt static void *
   2822      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2823       1.66   thorpej {
   2824      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2825       1.66   thorpej 	void *res;
   2826       1.66   thorpej 
   2827      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2828      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2829       1.66   thorpej 		/*
   2830      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2831      1.117      yamt 		 * In other cases, the hook will be run in
   2832      1.117      yamt 		 * pool_reclaim().
   2833       1.66   thorpej 		 */
   2834      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2835      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2836      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2837       1.66   thorpej 		}
   2838      1.117      yamt 	}
   2839      1.117      yamt 	return res;
   2840       1.66   thorpej }
   2841       1.66   thorpej 
   2842      1.117      yamt static void
   2843       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2844       1.66   thorpej {
   2845       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2846       1.66   thorpej 
   2847  1.221.4.1  christos 	if (pp->pr_redzone) {
   2848  1.221.4.1  christos 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
   2849  1.221.4.1  christos 	}
   2850       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2851       1.66   thorpej }
   2852       1.66   thorpej 
   2853       1.66   thorpej void *
   2854      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2855       1.66   thorpej {
   2856      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2857      1.191      para 	vmem_addr_t va;
   2858      1.192     rmind 	int ret;
   2859      1.191      para 
   2860      1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2861      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2862       1.66   thorpej 
   2863      1.192     rmind 	return ret ? NULL : (void *)va;
   2864       1.66   thorpej }
   2865       1.66   thorpej 
   2866       1.66   thorpej void
   2867      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2868       1.66   thorpej {
   2869       1.66   thorpej 
   2870      1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2871       1.98      yamt }
   2872       1.98      yamt 
   2873       1.98      yamt static void *
   2874      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2875       1.98      yamt {
   2876      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2877      1.192     rmind 	vmem_addr_t va;
   2878      1.192     rmind 	int ret;
   2879      1.191      para 
   2880      1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2881      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2882       1.98      yamt 
   2883      1.192     rmind 	return ret ? NULL : (void *)va;
   2884       1.98      yamt }
   2885       1.98      yamt 
   2886       1.98      yamt static void
   2887      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2888       1.98      yamt {
   2889       1.98      yamt 
   2890      1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2891       1.66   thorpej }
   2892       1.66   thorpej 
   2893  1.221.4.2    martin #ifdef KMSAN
   2894  1.221.4.2    martin static inline void
   2895  1.221.4.2    martin pool_get_kmsan(struct pool *pp, void *p)
   2896  1.221.4.1  christos {
   2897  1.221.4.2    martin 	kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
   2898  1.221.4.2    martin 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
   2899  1.221.4.1  christos }
   2900  1.221.4.1  christos 
   2901  1.221.4.2    martin static inline void
   2902  1.221.4.2    martin pool_put_kmsan(struct pool *pp, void *p)
   2903  1.221.4.1  christos {
   2904  1.221.4.2    martin 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
   2905  1.221.4.2    martin }
   2906  1.221.4.2    martin 
   2907  1.221.4.2    martin static inline void
   2908  1.221.4.2    martin pool_cache_get_kmsan(pool_cache_t pc, void *p)
   2909  1.221.4.2    martin {
   2910  1.221.4.2    martin 	if (__predict_false(pc_has_ctor(pc))) {
   2911  1.221.4.1  christos 		return;
   2912  1.221.4.1  christos 	}
   2913  1.221.4.2    martin 	pool_get_kmsan(&pc->pc_pool, p);
   2914  1.221.4.2    martin }
   2915  1.221.4.2    martin 
   2916  1.221.4.2    martin static inline void
   2917  1.221.4.2    martin pool_cache_put_kmsan(pool_cache_t pc, void *p)
   2918  1.221.4.2    martin {
   2919  1.221.4.2    martin 	pool_put_kmsan(&pc->pc_pool, p);
   2920  1.221.4.1  christos }
   2921  1.221.4.1  christos #endif
   2922  1.221.4.1  christos 
   2923  1.221.4.1  christos #ifdef POOL_QUARANTINE
   2924  1.221.4.1  christos static void
   2925  1.221.4.1  christos pool_quarantine_init(struct pool *pp)
   2926  1.221.4.1  christos {
   2927  1.221.4.1  christos 	pp->pr_quar.rotor = 0;
   2928  1.221.4.1  christos 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
   2929  1.221.4.1  christos }
   2930  1.221.4.1  christos 
   2931  1.221.4.1  christos static void
   2932  1.221.4.1  christos pool_quarantine_flush(struct pool *pp)
   2933  1.221.4.1  christos {
   2934  1.221.4.1  christos 	pool_quar_t *quar = &pp->pr_quar;
   2935  1.221.4.1  christos 	struct pool_pagelist pq;
   2936  1.221.4.1  christos 	size_t i;
   2937  1.221.4.1  christos 
   2938  1.221.4.1  christos 	LIST_INIT(&pq);
   2939  1.221.4.1  christos 
   2940  1.221.4.1  christos 	mutex_enter(&pp->pr_lock);
   2941  1.221.4.1  christos 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
   2942  1.221.4.1  christos 		if (quar->list[i] == 0)
   2943  1.221.4.1  christos 			continue;
   2944  1.221.4.1  christos 		pool_do_put(pp, (void *)quar->list[i], &pq);
   2945  1.221.4.1  christos 	}
   2946  1.221.4.1  christos 	mutex_exit(&pp->pr_lock);
   2947  1.221.4.1  christos 
   2948  1.221.4.1  christos 	pr_pagelist_free(pp, &pq);
   2949  1.221.4.1  christos }
   2950  1.221.4.1  christos 
   2951  1.221.4.1  christos static bool
   2952  1.221.4.1  christos pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
   2953  1.221.4.1  christos {
   2954  1.221.4.1  christos 	pool_quar_t *quar = &pp->pr_quar;
   2955  1.221.4.1  christos 	uintptr_t old;
   2956  1.221.4.1  christos 
   2957  1.221.4.1  christos 	if (pp->pr_roflags & PR_NOTOUCH) {
   2958  1.221.4.1  christos 		return false;
   2959  1.221.4.1  christos 	}
   2960  1.221.4.1  christos 
   2961  1.221.4.1  christos 	pool_redzone_check(pp, v);
   2962  1.221.4.1  christos 
   2963  1.221.4.1  christos 	old = quar->list[quar->rotor];
   2964  1.221.4.1  christos 	quar->list[quar->rotor] = (uintptr_t)v;
   2965  1.221.4.1  christos 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
   2966  1.221.4.1  christos 	if (old != 0) {
   2967  1.221.4.1  christos 		pool_do_put(pp, (void *)old, pq);
   2968  1.221.4.1  christos 	}
   2969  1.221.4.1  christos 
   2970  1.221.4.1  christos 	return true;
   2971  1.221.4.1  christos }
   2972  1.221.4.3    martin #endif
   2973  1.221.4.1  christos 
   2974  1.221.4.3    martin #ifdef POOL_NOCACHE
   2975  1.221.4.1  christos static bool
   2976  1.221.4.3    martin pool_cache_put_nocache(pool_cache_t pc, void *p)
   2977  1.221.4.1  christos {
   2978  1.221.4.1  christos 	pool_cache_destruct_object(pc, p);
   2979  1.221.4.1  christos 	return true;
   2980  1.221.4.1  christos }
   2981  1.221.4.1  christos #endif
   2982  1.221.4.1  christos 
   2983      1.204      maxv #ifdef POOL_REDZONE
   2984      1.204      maxv #if defined(_LP64)
   2985      1.204      maxv # define PRIME 0x9e37fffffffc0000UL
   2986      1.204      maxv #else /* defined(_LP64) */
   2987      1.204      maxv # define PRIME 0x9e3779b1
   2988      1.204      maxv #endif /* defined(_LP64) */
   2989      1.204      maxv #define STATIC_BYTE	0xFE
   2990      1.204      maxv CTASSERT(POOL_REDZONE_SIZE > 1);
   2991      1.204      maxv 
   2992  1.221.4.1  christos #ifndef KASAN
   2993      1.204      maxv static inline uint8_t
   2994      1.204      maxv pool_pattern_generate(const void *p)
   2995      1.204      maxv {
   2996      1.204      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
   2997      1.204      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2998      1.204      maxv }
   2999  1.221.4.1  christos #endif
   3000      1.204      maxv 
   3001      1.204      maxv static void
   3002      1.204      maxv pool_redzone_init(struct pool *pp, size_t requested_size)
   3003      1.204      maxv {
   3004  1.221.4.1  christos 	size_t redzsz;
   3005      1.204      maxv 	size_t nsz;
   3006      1.204      maxv 
   3007  1.221.4.1  christos #ifdef KASAN
   3008  1.221.4.1  christos 	redzsz = requested_size;
   3009  1.221.4.1  christos 	kasan_add_redzone(&redzsz);
   3010  1.221.4.1  christos 	redzsz -= requested_size;
   3011  1.221.4.1  christos #else
   3012  1.221.4.1  christos 	redzsz = POOL_REDZONE_SIZE;
   3013  1.221.4.1  christos #endif
   3014  1.221.4.1  christos 
   3015      1.204      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   3016      1.204      maxv 		pp->pr_redzone = false;
   3017      1.204      maxv 		return;
   3018      1.204      maxv 	}
   3019      1.204      maxv 
   3020      1.204      maxv 	/*
   3021      1.204      maxv 	 * We may have extended the requested size earlier; check if
   3022      1.204      maxv 	 * there's naturally space in the padding for a red zone.
   3023      1.204      maxv 	 */
   3024  1.221.4.1  christos 	if (pp->pr_size - requested_size >= redzsz) {
   3025  1.221.4.1  christos 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3026      1.204      maxv 		pp->pr_redzone = true;
   3027      1.204      maxv 		return;
   3028      1.204      maxv 	}
   3029      1.204      maxv 
   3030      1.204      maxv 	/*
   3031      1.204      maxv 	 * No space in the natural padding; check if we can extend a
   3032      1.204      maxv 	 * bit the size of the pool.
   3033      1.204      maxv 	 */
   3034  1.221.4.1  christos 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   3035      1.204      maxv 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   3036      1.204      maxv 		/* Ok, we can */
   3037      1.204      maxv 		pp->pr_size = nsz;
   3038  1.221.4.1  christos 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3039      1.204      maxv 		pp->pr_redzone = true;
   3040      1.204      maxv 	} else {
   3041      1.204      maxv 		/* No space for a red zone... snif :'( */
   3042      1.204      maxv 		pp->pr_redzone = false;
   3043      1.204      maxv 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   3044      1.204      maxv 	}
   3045      1.204      maxv }
   3046      1.204      maxv 
   3047      1.204      maxv static void
   3048      1.204      maxv pool_redzone_fill(struct pool *pp, void *p)
   3049      1.204      maxv {
   3050      1.204      maxv 	if (!pp->pr_redzone)
   3051      1.204      maxv 		return;
   3052  1.221.4.1  christos #ifdef KASAN
   3053  1.221.4.1  christos 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
   3054  1.221.4.1  christos 	    KASAN_POOL_REDZONE);
   3055  1.221.4.1  christos #else
   3056  1.221.4.1  christos 	uint8_t *cp, pat;
   3057  1.221.4.1  christos 	const uint8_t *ep;
   3058      1.204      maxv 
   3059      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3060      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3061      1.204      maxv 
   3062      1.204      maxv 	/*
   3063      1.204      maxv 	 * We really don't want the first byte of the red zone to be '\0';
   3064      1.204      maxv 	 * an off-by-one in a string may not be properly detected.
   3065      1.204      maxv 	 */
   3066      1.204      maxv 	pat = pool_pattern_generate(cp);
   3067      1.204      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   3068      1.204      maxv 	cp++;
   3069      1.204      maxv 
   3070      1.204      maxv 	while (cp < ep) {
   3071      1.204      maxv 		*cp = pool_pattern_generate(cp);
   3072      1.204      maxv 		cp++;
   3073      1.204      maxv 	}
   3074  1.221.4.1  christos #endif
   3075      1.204      maxv }
   3076      1.204      maxv 
   3077      1.204      maxv static void
   3078      1.204      maxv pool_redzone_check(struct pool *pp, void *p)
   3079      1.204      maxv {
   3080      1.204      maxv 	if (!pp->pr_redzone)
   3081      1.204      maxv 		return;
   3082  1.221.4.1  christos #ifdef KASAN
   3083  1.221.4.1  christos 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
   3084  1.221.4.1  christos #else
   3085  1.221.4.1  christos 	uint8_t *cp, pat, expected;
   3086  1.221.4.1  christos 	const uint8_t *ep;
   3087      1.204      maxv 
   3088      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3089      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3090      1.204      maxv 
   3091      1.204      maxv 	pat = pool_pattern_generate(cp);
   3092      1.204      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   3093  1.221.4.2    martin 	if (__predict_false(*cp != expected)) {
   3094  1.221.4.2    martin 		panic("%s: [%s] 0x%02x != 0x%02x", __func__,
   3095  1.221.4.2    martin 		    pp->pr_wchan, *cp, expected);
   3096      1.204      maxv 	}
   3097      1.204      maxv 	cp++;
   3098      1.204      maxv 
   3099      1.204      maxv 	while (cp < ep) {
   3100      1.204      maxv 		expected = pool_pattern_generate(cp);
   3101  1.221.4.1  christos 		if (__predict_false(*cp != expected)) {
   3102  1.221.4.2    martin 			panic("%s: [%s] 0x%02x != 0x%02x", __func__,
   3103  1.221.4.2    martin 			    pp->pr_wchan, *cp, expected);
   3104      1.204      maxv 		}
   3105      1.204      maxv 		cp++;
   3106      1.204      maxv 	}
   3107  1.221.4.1  christos #endif
   3108      1.204      maxv }
   3109      1.204      maxv 
   3110  1.221.4.1  christos static void
   3111  1.221.4.1  christos pool_cache_redzone_check(pool_cache_t pc, void *p)
   3112       1.66   thorpej {
   3113  1.221.4.1  christos #ifdef KASAN
   3114  1.221.4.1  christos 	/* If there is a ctor/dtor, leave the data as valid. */
   3115  1.221.4.1  christos 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   3116  1.221.4.1  christos 		return;
   3117  1.221.4.1  christos 	}
   3118  1.221.4.1  christos #endif
   3119  1.221.4.1  christos 	pool_redzone_check(&pc->pc_pool, p);
   3120       1.66   thorpej }
   3121       1.66   thorpej 
   3122  1.221.4.1  christos #endif /* POOL_REDZONE */
   3123      1.141      yamt 
   3124      1.141      yamt #if defined(DDB)
   3125      1.141      yamt static bool
   3126      1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3127      1.141      yamt {
   3128      1.141      yamt 
   3129      1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   3130      1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3131      1.141      yamt }
   3132      1.141      yamt 
   3133      1.143      yamt static bool
   3134      1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3135      1.143      yamt {
   3136      1.143      yamt 
   3137      1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3138      1.143      yamt }
   3139      1.143      yamt 
   3140      1.143      yamt static bool
   3141      1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3142      1.143      yamt {
   3143      1.143      yamt 	int i;
   3144      1.143      yamt 
   3145      1.143      yamt 	if (pcg == NULL) {
   3146      1.143      yamt 		return false;
   3147      1.143      yamt 	}
   3148      1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   3149      1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3150      1.143      yamt 			return true;
   3151      1.143      yamt 		}
   3152      1.143      yamt 	}
   3153      1.143      yamt 	return false;
   3154      1.143      yamt }
   3155      1.143      yamt 
   3156      1.143      yamt static bool
   3157      1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3158      1.143      yamt {
   3159      1.143      yamt 
   3160  1.221.4.1  christos 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3161  1.221.4.1  christos 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3162      1.143      yamt 		pool_item_bitmap_t *bitmap =
   3163      1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3164      1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3165      1.143      yamt 
   3166      1.143      yamt 		return (*bitmap & mask) == 0;
   3167      1.143      yamt 	} else {
   3168      1.143      yamt 		struct pool_item *pi;
   3169      1.143      yamt 
   3170      1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3171      1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   3172      1.143      yamt 				return false;
   3173      1.143      yamt 			}
   3174      1.143      yamt 		}
   3175      1.143      yamt 		return true;
   3176      1.143      yamt 	}
   3177      1.143      yamt }
   3178      1.143      yamt 
   3179      1.141      yamt void
   3180      1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3181      1.141      yamt {
   3182      1.141      yamt 	struct pool *pp;
   3183      1.141      yamt 
   3184      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3185      1.141      yamt 		struct pool_item_header *ph;
   3186      1.141      yamt 		uintptr_t item;
   3187      1.143      yamt 		bool allocated = true;
   3188      1.143      yamt 		bool incache = false;
   3189      1.143      yamt 		bool incpucache = false;
   3190      1.143      yamt 		char cpucachestr[32];
   3191      1.141      yamt 
   3192      1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3193      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3194      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3195      1.141      yamt 					goto found;
   3196      1.141      yamt 				}
   3197      1.141      yamt 			}
   3198      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3199      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3200      1.143      yamt 					allocated =
   3201      1.143      yamt 					    pool_allocated(pp, ph, addr);
   3202      1.143      yamt 					goto found;
   3203      1.143      yamt 				}
   3204      1.143      yamt 			}
   3205      1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3206      1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   3207      1.143      yamt 					allocated = false;
   3208      1.141      yamt 					goto found;
   3209      1.141      yamt 				}
   3210      1.141      yamt 			}
   3211      1.141      yamt 			continue;
   3212      1.141      yamt 		} else {
   3213      1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3214      1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3215      1.141      yamt 				continue;
   3216      1.141      yamt 			}
   3217      1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3218      1.141      yamt 		}
   3219      1.141      yamt found:
   3220      1.143      yamt 		if (allocated && pp->pr_cache) {
   3221      1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   3222      1.143      yamt 			struct pool_cache_group *pcg;
   3223      1.143      yamt 			int i;
   3224      1.143      yamt 
   3225      1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3226      1.143      yamt 			    pcg = pcg->pcg_next) {
   3227      1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3228      1.143      yamt 					incache = true;
   3229      1.143      yamt 					goto print;
   3230      1.143      yamt 				}
   3231      1.143      yamt 			}
   3232      1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3233      1.143      yamt 				pool_cache_cpu_t *cc;
   3234      1.143      yamt 
   3235      1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3236      1.143      yamt 					continue;
   3237      1.143      yamt 				}
   3238      1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3239      1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3240      1.143      yamt 					struct cpu_info *ci =
   3241      1.170        ad 					    cpu_lookup(i);
   3242      1.143      yamt 
   3243      1.143      yamt 					incpucache = true;
   3244      1.143      yamt 					snprintf(cpucachestr,
   3245      1.143      yamt 					    sizeof(cpucachestr),
   3246      1.143      yamt 					    "cached by CPU %u",
   3247      1.153    martin 					    ci->ci_index);
   3248      1.143      yamt 					goto print;
   3249      1.143      yamt 				}
   3250      1.143      yamt 			}
   3251      1.143      yamt 		}
   3252      1.143      yamt print:
   3253      1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3254      1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3255      1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3256      1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3257      1.143      yamt 		    pp->pr_wchan,
   3258      1.143      yamt 		    incpucache ? cpucachestr :
   3259      1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3260      1.141      yamt 	}
   3261      1.141      yamt }
   3262      1.141      yamt #endif /* defined(DDB) */
   3263      1.203     joerg 
   3264      1.203     joerg static int
   3265      1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   3266      1.203     joerg {
   3267      1.203     joerg 	struct pool_sysctl data;
   3268      1.203     joerg 	struct pool *pp;
   3269      1.203     joerg 	struct pool_cache *pc;
   3270      1.203     joerg 	pool_cache_cpu_t *cc;
   3271      1.203     joerg 	int error;
   3272      1.203     joerg 	size_t i, written;
   3273      1.203     joerg 
   3274      1.203     joerg 	if (oldp == NULL) {
   3275      1.203     joerg 		*oldlenp = 0;
   3276      1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3277      1.203     joerg 			*oldlenp += sizeof(data);
   3278      1.203     joerg 		return 0;
   3279      1.203     joerg 	}
   3280      1.203     joerg 
   3281      1.203     joerg 	memset(&data, 0, sizeof(data));
   3282      1.203     joerg 	error = 0;
   3283      1.203     joerg 	written = 0;
   3284      1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3285      1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   3286      1.203     joerg 			break;
   3287      1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3288      1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3289      1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3290      1.203     joerg #define COPY(field) data.field = pp->field
   3291      1.203     joerg 		COPY(pr_size);
   3292      1.203     joerg 
   3293      1.203     joerg 		COPY(pr_itemsperpage);
   3294      1.203     joerg 		COPY(pr_nitems);
   3295      1.203     joerg 		COPY(pr_nout);
   3296      1.203     joerg 		COPY(pr_hardlimit);
   3297      1.203     joerg 		COPY(pr_npages);
   3298      1.203     joerg 		COPY(pr_minpages);
   3299      1.203     joerg 		COPY(pr_maxpages);
   3300      1.203     joerg 
   3301      1.203     joerg 		COPY(pr_nget);
   3302      1.203     joerg 		COPY(pr_nfail);
   3303      1.203     joerg 		COPY(pr_nput);
   3304      1.203     joerg 		COPY(pr_npagealloc);
   3305      1.203     joerg 		COPY(pr_npagefree);
   3306      1.203     joerg 		COPY(pr_hiwat);
   3307      1.203     joerg 		COPY(pr_nidle);
   3308      1.203     joerg #undef COPY
   3309      1.203     joerg 
   3310      1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   3311      1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   3312      1.203     joerg 		if (pp->pr_cache) {
   3313      1.203     joerg 			pc = pp->pr_cache;
   3314      1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3315      1.203     joerg 			data.pr_cache_nfull = pc->pc_nfull;
   3316      1.203     joerg 			data.pr_cache_npartial = pc->pc_npart;
   3317      1.203     joerg 			data.pr_cache_nempty = pc->pc_nempty;
   3318      1.203     joerg 			data.pr_cache_ncontended = pc->pc_contended;
   3319      1.203     joerg 			data.pr_cache_nmiss_global = pc->pc_misses;
   3320      1.203     joerg 			data.pr_cache_nhit_global = pc->pc_hits;
   3321      1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3322      1.203     joerg 				cc = pc->pc_cpus[i];
   3323      1.203     joerg 				if (cc == NULL)
   3324      1.203     joerg 					continue;
   3325      1.206  knakahar 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3326      1.206  knakahar 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3327      1.203     joerg 			}
   3328      1.203     joerg 		} else {
   3329      1.203     joerg 			data.pr_cache_meta_size = 0;
   3330      1.203     joerg 			data.pr_cache_nfull = 0;
   3331      1.203     joerg 			data.pr_cache_npartial = 0;
   3332      1.203     joerg 			data.pr_cache_nempty = 0;
   3333      1.203     joerg 			data.pr_cache_ncontended = 0;
   3334      1.203     joerg 			data.pr_cache_nmiss_global = 0;
   3335      1.203     joerg 			data.pr_cache_nhit_global = 0;
   3336      1.203     joerg 		}
   3337      1.203     joerg 
   3338      1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3339      1.203     joerg 		if (error)
   3340      1.203     joerg 			break;
   3341      1.203     joerg 		written += sizeof(data);
   3342      1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   3343      1.203     joerg 	}
   3344      1.203     joerg 
   3345      1.203     joerg 	*oldlenp = written;
   3346      1.203     joerg 	return error;
   3347      1.203     joerg }
   3348      1.203     joerg 
   3349      1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3350      1.203     joerg {
   3351      1.203     joerg 	const struct sysctlnode *rnode = NULL;
   3352      1.203     joerg 
   3353      1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   3354      1.203     joerg 		       CTLFLAG_PERMANENT,
   3355      1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   3356      1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   3357      1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   3358      1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3359      1.203     joerg }
   3360