Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.232
      1  1.232  christos /*	$NetBSD: subr_pool.c,v 1.232 2019/02/10 17:13:33 christos Exp $	*/
      2    1.1        pk 
      3  1.229      maxv /*
      4  1.229      maxv  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5  1.183        ad  *     The NetBSD Foundation, Inc.
      6    1.1        pk  * All rights reserved.
      7    1.1        pk  *
      8    1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9   1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  1.204      maxv  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  1.204      maxv  * Maxime Villard.
     12    1.1        pk  *
     13    1.1        pk  * Redistribution and use in source and binary forms, with or without
     14    1.1        pk  * modification, are permitted provided that the following conditions
     15    1.1        pk  * are met:
     16    1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17    1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18    1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19    1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20    1.1        pk  *    documentation and/or other materials provided with the distribution.
     21    1.1        pk  *
     22    1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23    1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24    1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25    1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26    1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27    1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28    1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29    1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30    1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31    1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32    1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33    1.1        pk  */
     34   1.64     lukem 
     35   1.64     lukem #include <sys/cdefs.h>
     36  1.232  christos __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.232 2019/02/10 17:13:33 christos Exp $");
     37   1.24    scottr 
     38  1.205     pooka #ifdef _KERNEL_OPT
     39  1.141      yamt #include "opt_ddb.h"
     40   1.28   thorpej #include "opt_lockdebug.h"
     41  1.228      maxv #include "opt_kleak.h"
     42  1.205     pooka #endif
     43    1.1        pk 
     44    1.1        pk #include <sys/param.h>
     45    1.1        pk #include <sys/systm.h>
     46  1.203     joerg #include <sys/sysctl.h>
     47  1.135      yamt #include <sys/bitops.h>
     48    1.1        pk #include <sys/proc.h>
     49    1.1        pk #include <sys/errno.h>
     50    1.1        pk #include <sys/kernel.h>
     51  1.191      para #include <sys/vmem.h>
     52    1.1        pk #include <sys/pool.h>
     53   1.20   thorpej #include <sys/syslog.h>
     54  1.125        ad #include <sys/debug.h>
     55  1.134        ad #include <sys/lockdebug.h>
     56  1.134        ad #include <sys/xcall.h>
     57  1.134        ad #include <sys/cpu.h>
     58  1.145        ad #include <sys/atomic.h>
     59  1.224      maxv #include <sys/asan.h>
     60    1.3        pk 
     61  1.187  uebayasi #include <uvm/uvm_extern.h>
     62    1.3        pk 
     63    1.1        pk /*
     64    1.1        pk  * Pool resource management utility.
     65    1.3        pk  *
     66   1.88       chs  * Memory is allocated in pages which are split into pieces according to
     67   1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     68   1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     69   1.88       chs  * for empty, full and partially-full pages respectively. The individual
     70   1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     71   1.88       chs  * header. The memory for building the page list is either taken from
     72   1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     73   1.88       chs  * an internal pool of page headers (`phpool').
     74    1.1        pk  */
     75    1.1        pk 
     76  1.221      para /* List of all pools. Non static as needed by 'vmstat -m' */
     77  1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     78  1.134        ad 
     79    1.3        pk /* Private pool for page header structures */
     80   1.97      yamt #define	PHPOOL_MAX	8
     81   1.97      yamt static struct pool phpool[PHPOOL_MAX];
     82  1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     83  1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     84    1.3        pk 
     85   1.62     bjh21 #ifdef POOL_SUBPAGE
     86   1.62     bjh21 /* Pool of subpages for use by normal pools. */
     87   1.62     bjh21 static struct pool psppool;
     88   1.62     bjh21 #endif
     89   1.62     bjh21 
     90  1.226      maxv #if defined(KASAN)
     91  1.224      maxv #define POOL_REDZONE
     92  1.224      maxv #endif
     93  1.224      maxv 
     94  1.204      maxv #ifdef POOL_REDZONE
     95  1.224      maxv # ifdef KASAN
     96  1.224      maxv #  define POOL_REDZONE_SIZE 8
     97  1.224      maxv # else
     98  1.224      maxv #  define POOL_REDZONE_SIZE 2
     99  1.224      maxv # endif
    100  1.204      maxv static void pool_redzone_init(struct pool *, size_t);
    101  1.204      maxv static void pool_redzone_fill(struct pool *, void *);
    102  1.204      maxv static void pool_redzone_check(struct pool *, void *);
    103  1.229      maxv static void pool_cache_redzone_check(pool_cache_t, void *);
    104  1.204      maxv #else
    105  1.229      maxv # define pool_redzone_init(pp, sz)		__nothing
    106  1.229      maxv # define pool_redzone_fill(pp, ptr)		__nothing
    107  1.229      maxv # define pool_redzone_check(pp, ptr)		__nothing
    108  1.229      maxv # define pool_cache_redzone_check(pc, ptr)	__nothing
    109  1.204      maxv #endif
    110  1.204      maxv 
    111  1.228      maxv #ifdef KLEAK
    112  1.228      maxv static void pool_kleak_fill(struct pool *, void *);
    113  1.228      maxv static void pool_cache_kleak_fill(pool_cache_t, void *);
    114  1.228      maxv #else
    115  1.228      maxv #define pool_kleak_fill(pp, ptr)	__nothing
    116  1.228      maxv #define pool_cache_kleak_fill(pc, ptr)	__nothing
    117  1.228      maxv #endif
    118  1.228      maxv 
    119  1.229      maxv #define pc_has_ctor(pc) \
    120  1.229      maxv 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
    121  1.229      maxv #define pc_has_dtor(pc) \
    122  1.229      maxv 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
    123  1.229      maxv 
    124   1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    125   1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    126   1.98      yamt 
    127   1.98      yamt /* allocator for pool metadata */
    128  1.134        ad struct pool_allocator pool_allocator_meta = {
    129  1.191      para 	.pa_alloc = pool_page_alloc_meta,
    130  1.191      para 	.pa_free = pool_page_free_meta,
    131  1.191      para 	.pa_pagesz = 0
    132   1.98      yamt };
    133   1.98      yamt 
    134  1.208       chs #define POOL_ALLOCATOR_BIG_BASE 13
    135  1.208       chs extern struct pool_allocator pool_allocator_big[];
    136  1.208       chs static int pool_bigidx(size_t);
    137  1.208       chs 
    138    1.3        pk /* # of seconds to retain page after last use */
    139    1.3        pk int pool_inactive_time = 10;
    140    1.3        pk 
    141    1.3        pk /* Next candidate for drainage (see pool_drain()) */
    142   1.23   thorpej static struct pool	*drainpp;
    143   1.23   thorpej 
    144  1.134        ad /* This lock protects both pool_head and drainpp. */
    145  1.134        ad static kmutex_t pool_head_lock;
    146  1.134        ad static kcondvar_t pool_busy;
    147    1.3        pk 
    148  1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    149  1.178      elad static kmutex_t pool_allocator_lock;
    150  1.178      elad 
    151  1.135      yamt typedef uint32_t pool_item_bitmap_t;
    152  1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    153  1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    154   1.99      yamt 
    155    1.3        pk struct pool_item_header {
    156    1.3        pk 	/* Page headers */
    157   1.88       chs 	LIST_ENTRY(pool_item_header)
    158    1.3        pk 				ph_pagelist;	/* pool page list */
    159   1.88       chs 	SPLAY_ENTRY(pool_item_header)
    160   1.88       chs 				ph_node;	/* Off-page page headers */
    161  1.128  christos 	void *			ph_page;	/* this page's address */
    162  1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    163  1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    164  1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    165   1.97      yamt 	union {
    166   1.97      yamt 		/* !PR_NOTOUCH */
    167   1.97      yamt 		struct {
    168  1.102       chs 			LIST_HEAD(, pool_item)
    169   1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    170   1.97      yamt 		} phu_normal;
    171   1.97      yamt 		/* PR_NOTOUCH */
    172   1.97      yamt 		struct {
    173  1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    174   1.97      yamt 		} phu_notouch;
    175   1.97      yamt 	} ph_u;
    176    1.3        pk };
    177   1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    178  1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    179    1.3        pk 
    180  1.229      maxv #if defined(DIAGNOSTIC) && !defined(KASAN)
    181  1.229      maxv #define POOL_CHECK_MAGIC
    182  1.229      maxv #endif
    183  1.229      maxv 
    184    1.1        pk struct pool_item {
    185  1.229      maxv #ifdef POOL_CHECK_MAGIC
    186   1.82   thorpej 	u_int pi_magic;
    187   1.33       chs #endif
    188  1.134        ad #define	PI_MAGIC 0xdeaddeadU
    189    1.3        pk 	/* Other entries use only this list entry */
    190  1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    191    1.3        pk };
    192    1.3        pk 
    193   1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    194   1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    195   1.53   thorpej 
    196   1.43   thorpej /*
    197   1.43   thorpej  * Pool cache management.
    198   1.43   thorpej  *
    199   1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    200   1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    201   1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    202   1.43   thorpej  * necessary.
    203   1.43   thorpej  *
    204  1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    205  1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    206  1.134        ad  * object from the pool, it calls the object's constructor and places it
    207  1.134        ad  * into a cache group.  When a cache group frees an object back to the
    208  1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    209  1.134        ad  * to persist in constructed form while freed to the cache.
    210  1.134        ad  *
    211  1.134        ad  * The pool references each cache, so that when a pool is drained by the
    212  1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    213  1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    214  1.134        ad  * its entirety.
    215   1.43   thorpej  *
    216   1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    217   1.43   thorpej  * the complexity of cache management for pools which would not benefit
    218   1.43   thorpej  * from it.
    219   1.43   thorpej  */
    220   1.43   thorpej 
    221  1.142        ad static struct pool pcg_normal_pool;
    222  1.142        ad static struct pool pcg_large_pool;
    223  1.134        ad static struct pool cache_pool;
    224  1.134        ad static struct pool cache_cpu_pool;
    225    1.3        pk 
    226  1.189     pooka pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    227  1.189     pooka 
    228  1.145        ad /* List of all caches. */
    229  1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    230  1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    231  1.145        ad 
    232  1.162        ad int pool_cache_disable;		/* global disable for caching */
    233  1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    234  1.145        ad 
    235  1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    236  1.162        ad 				    void *);
    237  1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    238  1.162        ad 				    void **, paddr_t *, int);
    239  1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    240  1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    241  1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    242  1.196       jym static void	pool_cache_transfer(pool_cache_t);
    243    1.3        pk 
    244   1.42   thorpej static int	pool_catchup(struct pool *);
    245  1.128  christos static void	pool_prime_page(struct pool *, void *,
    246   1.55   thorpej 		    struct pool_item_header *);
    247   1.88       chs static void	pool_update_curpage(struct pool *);
    248   1.66   thorpej 
    249  1.113      yamt static int	pool_grow(struct pool *, int);
    250  1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    251  1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    252    1.3        pk 
    253   1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    254  1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    255   1.42   thorpej static void pool_print1(struct pool *, const char *,
    256  1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    257    1.3        pk 
    258   1.88       chs static int pool_chk_page(struct pool *, const char *,
    259   1.88       chs 			 struct pool_item_header *);
    260   1.88       chs 
    261  1.135      yamt static inline unsigned int
    262   1.97      yamt pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    263   1.97      yamt     const void *v)
    264   1.97      yamt {
    265   1.97      yamt 	const char *cp = v;
    266  1.135      yamt 	unsigned int idx;
    267   1.97      yamt 
    268   1.97      yamt 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    269  1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    270   1.97      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    271   1.97      yamt 	return idx;
    272   1.97      yamt }
    273   1.97      yamt 
    274  1.110     perry static inline void
    275   1.97      yamt pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    276   1.97      yamt     void *obj)
    277   1.97      yamt {
    278  1.135      yamt 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    279  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    280  1.223     kamil 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    281   1.97      yamt 
    282  1.135      yamt 	KASSERT((*bitmap & mask) == 0);
    283  1.135      yamt 	*bitmap |= mask;
    284   1.97      yamt }
    285   1.97      yamt 
    286  1.110     perry static inline void *
    287   1.97      yamt pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    288   1.97      yamt {
    289  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    290  1.135      yamt 	unsigned int idx;
    291  1.135      yamt 	int i;
    292   1.97      yamt 
    293  1.135      yamt 	for (i = 0; ; i++) {
    294  1.135      yamt 		int bit;
    295   1.97      yamt 
    296  1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    297  1.135      yamt 		bit = ffs32(bitmap[i]);
    298  1.135      yamt 		if (bit) {
    299  1.135      yamt 			pool_item_bitmap_t mask;
    300  1.135      yamt 
    301  1.135      yamt 			bit--;
    302  1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    303  1.222     kamil 			mask = 1U << bit;
    304  1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    305  1.135      yamt 			bitmap[i] &= ~mask;
    306  1.135      yamt 			break;
    307  1.135      yamt 		}
    308  1.135      yamt 	}
    309  1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    310  1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    311   1.97      yamt }
    312   1.97      yamt 
    313  1.135      yamt static inline void
    314  1.141      yamt pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    315  1.135      yamt {
    316  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    317  1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    318  1.135      yamt 	int i;
    319  1.135      yamt 
    320  1.135      yamt 	for (i = 0; i < n; i++) {
    321  1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    322  1.135      yamt 	}
    323  1.135      yamt }
    324  1.135      yamt 
    325  1.110     perry static inline int
    326   1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    327   1.88       chs {
    328  1.121      yamt 
    329  1.121      yamt 	/*
    330  1.121      yamt 	 * we consider pool_item_header with smaller ph_page bigger.
    331  1.121      yamt 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    332  1.121      yamt 	 */
    333  1.121      yamt 
    334   1.88       chs 	if (a->ph_page < b->ph_page)
    335  1.121      yamt 		return (1);
    336  1.121      yamt 	else if (a->ph_page > b->ph_page)
    337   1.88       chs 		return (-1);
    338   1.88       chs 	else
    339   1.88       chs 		return (0);
    340   1.88       chs }
    341   1.88       chs 
    342   1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    343   1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    344   1.88       chs 
    345  1.141      yamt static inline struct pool_item_header *
    346  1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    347  1.141      yamt {
    348  1.141      yamt 	struct pool_item_header *ph, tmp;
    349  1.141      yamt 
    350  1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    351  1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    352  1.141      yamt 	if (ph == NULL) {
    353  1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    354  1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    355  1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    356  1.141      yamt 		}
    357  1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    358  1.141      yamt 	}
    359  1.141      yamt 
    360  1.141      yamt 	return ph;
    361  1.141      yamt }
    362  1.141      yamt 
    363    1.3        pk /*
    364  1.121      yamt  * Return the pool page header based on item address.
    365    1.3        pk  */
    366  1.110     perry static inline struct pool_item_header *
    367  1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    368    1.3        pk {
    369   1.88       chs 	struct pool_item_header *ph, tmp;
    370    1.3        pk 
    371  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    372  1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    373  1.121      yamt 	} else {
    374  1.128  christos 		void *page =
    375  1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    376  1.121      yamt 
    377  1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    378  1.128  christos 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    379  1.121      yamt 		} else {
    380  1.121      yamt 			tmp.ph_page = page;
    381  1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    382  1.121      yamt 		}
    383  1.121      yamt 	}
    384    1.3        pk 
    385  1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    386  1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    387  1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    388   1.88       chs 	return ph;
    389    1.3        pk }
    390    1.3        pk 
    391  1.101   thorpej static void
    392  1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    393  1.101   thorpej {
    394  1.101   thorpej 	struct pool_item_header *ph;
    395  1.101   thorpej 
    396  1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    397  1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    398  1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    399  1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    400  1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    401  1.101   thorpej 	}
    402  1.101   thorpej }
    403  1.101   thorpej 
    404    1.3        pk /*
    405    1.3        pk  * Remove a page from the pool.
    406    1.3        pk  */
    407  1.110     perry static inline void
    408   1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    409   1.61       chs      struct pool_pagelist *pq)
    410    1.3        pk {
    411    1.3        pk 
    412  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    413   1.91      yamt 
    414    1.3        pk 	/*
    415    1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    416    1.3        pk 	 */
    417    1.6   thorpej 	if (ph->ph_nmissing == 0) {
    418  1.207  riastrad 		KASSERT(pp->pr_nidle != 0);
    419  1.207  riastrad 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    420  1.207  riastrad 		    "nitems=%u < itemsperpage=%u",
    421  1.207  riastrad 		    pp->pr_nitems, pp->pr_itemsperpage);
    422    1.6   thorpej 		pp->pr_nidle--;
    423    1.6   thorpej 	}
    424    1.7   thorpej 
    425   1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    426   1.20   thorpej 
    427    1.7   thorpej 	/*
    428  1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    429    1.7   thorpej 	 */
    430   1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    431   1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    432   1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    433  1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    434  1.101   thorpej 
    435    1.7   thorpej 	pp->pr_npages--;
    436    1.7   thorpej 	pp->pr_npagefree++;
    437    1.6   thorpej 
    438   1.88       chs 	pool_update_curpage(pp);
    439    1.3        pk }
    440    1.3        pk 
    441    1.3        pk /*
    442   1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    443   1.94    simonb  */
    444   1.94    simonb void
    445  1.117      yamt pool_subsystem_init(void)
    446   1.94    simonb {
    447  1.192     rmind 	size_t size;
    448  1.191      para 	int idx;
    449   1.94    simonb 
    450  1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    451  1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    452  1.134        ad 	cv_init(&pool_busy, "poolbusy");
    453  1.134        ad 
    454  1.191      para 	/*
    455  1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    456  1.191      para 	 * haven't done so yet.
    457  1.191      para 	 */
    458  1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    459  1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    460  1.191      para 		int nelem;
    461  1.191      para 		size_t sz;
    462  1.191      para 
    463  1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    464  1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    465  1.191      para 		    "phpool-%d", nelem);
    466  1.191      para 		sz = sizeof(struct pool_item_header);
    467  1.191      para 		if (nelem) {
    468  1.191      para 			sz = offsetof(struct pool_item_header,
    469  1.191      para 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    470  1.191      para 		}
    471  1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    472  1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    473  1.117      yamt 	}
    474  1.191      para #ifdef POOL_SUBPAGE
    475  1.191      para 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    476  1.191      para 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    477  1.191      para #endif
    478  1.191      para 
    479  1.191      para 	size = sizeof(pcg_t) +
    480  1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    481  1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    482  1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    483  1.191      para 
    484  1.191      para 	size = sizeof(pcg_t) +
    485  1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    486  1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    487  1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    488  1.134        ad 
    489  1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    490  1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    491  1.134        ad 
    492  1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    493  1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    494   1.94    simonb }
    495   1.94    simonb 
    496   1.94    simonb /*
    497    1.3        pk  * Initialize the given pool resource structure.
    498    1.3        pk  *
    499    1.3        pk  * We export this routine to allow other kernel parts to declare
    500  1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    501    1.3        pk  */
    502    1.3        pk void
    503   1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    504  1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    505    1.3        pk {
    506  1.116    simonb 	struct pool *pp1;
    507  1.204      maxv 	size_t trysize, phsize, prsize;
    508  1.134        ad 	int off, slack;
    509    1.3        pk 
    510  1.116    simonb #ifdef DEBUG
    511  1.198  christos 	if (__predict_true(!cold))
    512  1.198  christos 		mutex_enter(&pool_head_lock);
    513  1.116    simonb 	/*
    514  1.116    simonb 	 * Check that the pool hasn't already been initialised and
    515  1.116    simonb 	 * added to the list of all pools.
    516  1.116    simonb 	 */
    517  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    518  1.116    simonb 		if (pp == pp1)
    519  1.213  christos 			panic("%s: [%s] already initialised", __func__,
    520  1.116    simonb 			    wchan);
    521  1.116    simonb 	}
    522  1.198  christos 	if (__predict_true(!cold))
    523  1.198  christos 		mutex_exit(&pool_head_lock);
    524  1.116    simonb #endif
    525  1.116    simonb 
    526   1.66   thorpej 	if (palloc == NULL)
    527   1.66   thorpej 		palloc = &pool_allocator_kmem;
    528  1.112     bjh21 #ifdef POOL_SUBPAGE
    529  1.112     bjh21 	if (size > palloc->pa_pagesz) {
    530  1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    531  1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    532  1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    533  1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    534  1.112     bjh21 	}
    535   1.66   thorpej #endif /* POOL_SUBPAGE */
    536  1.180   mlelstv 	if (!cold)
    537  1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    538  1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    539  1.112     bjh21 		if (palloc->pa_pagesz == 0)
    540   1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    541   1.66   thorpej 
    542   1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    543   1.66   thorpej 
    544  1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    545   1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    546   1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    547    1.4   thorpej 	}
    548  1.180   mlelstv 	if (!cold)
    549  1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    550    1.3        pk 
    551    1.3        pk 	if (align == 0)
    552    1.3        pk 		align = ALIGN(1);
    553   1.14   thorpej 
    554  1.204      maxv 	prsize = size;
    555  1.204      maxv 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    556  1.204      maxv 		prsize = sizeof(struct pool_item);
    557    1.3        pk 
    558  1.204      maxv 	prsize = roundup(prsize, align);
    559  1.207  riastrad 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    560  1.213  christos 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    561  1.213  christos 	    __func__, wchan, prsize, palloc->pa_pagesz);
    562   1.35        pk 
    563    1.3        pk 	/*
    564    1.3        pk 	 * Initialize the pool structure.
    565    1.3        pk 	 */
    566   1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    567   1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    568   1.88       chs 	LIST_INIT(&pp->pr_partpages);
    569  1.134        ad 	pp->pr_cache = NULL;
    570    1.3        pk 	pp->pr_curpage = NULL;
    571    1.3        pk 	pp->pr_npages = 0;
    572    1.3        pk 	pp->pr_minitems = 0;
    573    1.3        pk 	pp->pr_minpages = 0;
    574    1.3        pk 	pp->pr_maxpages = UINT_MAX;
    575   1.20   thorpej 	pp->pr_roflags = flags;
    576   1.20   thorpej 	pp->pr_flags = 0;
    577  1.204      maxv 	pp->pr_size = prsize;
    578    1.3        pk 	pp->pr_align = align;
    579    1.3        pk 	pp->pr_wchan = wchan;
    580   1.66   thorpej 	pp->pr_alloc = palloc;
    581   1.20   thorpej 	pp->pr_nitems = 0;
    582   1.20   thorpej 	pp->pr_nout = 0;
    583   1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    584   1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    585   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    586   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    587   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    588   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    589   1.68   thorpej 	pp->pr_drain_hook = NULL;
    590   1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    591  1.125        ad 	pp->pr_freecheck = NULL;
    592  1.204      maxv 	pool_redzone_init(pp, size);
    593    1.3        pk 
    594    1.3        pk 	/*
    595    1.3        pk 	 * Decide whether to put the page header off page to avoid
    596   1.92     enami 	 * wasting too large a part of the page or too big item.
    597   1.92     enami 	 * Off-page page headers go on a hash table, so we can match
    598   1.92     enami 	 * a returned item with its header based on the page address.
    599   1.92     enami 	 * We use 1/16 of the page size and about 8 times of the item
    600   1.92     enami 	 * size as the threshold (XXX: tune)
    601   1.92     enami 	 *
    602   1.92     enami 	 * However, we'll put the header into the page if we can put
    603   1.92     enami 	 * it without wasting any items.
    604   1.92     enami 	 *
    605   1.92     enami 	 * Silently enforce `0 <= ioff < align'.
    606    1.3        pk 	 */
    607   1.92     enami 	pp->pr_itemoffset = ioff %= align;
    608   1.92     enami 	/* See the comment below about reserved bytes. */
    609   1.92     enami 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    610   1.92     enami 	phsize = ALIGN(sizeof(struct pool_item_header));
    611  1.201      para 	if (pp->pr_roflags & PR_PHINPAGE ||
    612  1.201      para 	    ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    613   1.97      yamt 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    614  1.201      para 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) {
    615    1.3        pk 		/* Use the end of the page for the page header */
    616   1.20   thorpej 		pp->pr_roflags |= PR_PHINPAGE;
    617   1.92     enami 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    618    1.2        pk 	} else {
    619    1.3        pk 		/* The page header will be taken from our page header pool */
    620    1.3        pk 		pp->pr_phoffset = 0;
    621   1.66   thorpej 		off = palloc->pa_pagesz;
    622   1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    623    1.2        pk 	}
    624    1.1        pk 
    625    1.3        pk 	/*
    626    1.3        pk 	 * Alignment is to take place at `ioff' within the item. This means
    627    1.3        pk 	 * we must reserve up to `align - 1' bytes on the page to allow
    628    1.3        pk 	 * appropriate positioning of each item.
    629    1.3        pk 	 */
    630    1.3        pk 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    631   1.43   thorpej 	KASSERT(pp->pr_itemsperpage != 0);
    632   1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    633   1.97      yamt 		int idx;
    634   1.97      yamt 
    635   1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    636   1.97      yamt 		    idx++) {
    637   1.97      yamt 			/* nothing */
    638   1.97      yamt 		}
    639   1.97      yamt 		if (idx >= PHPOOL_MAX) {
    640   1.97      yamt 			/*
    641   1.97      yamt 			 * if you see this panic, consider to tweak
    642   1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    643   1.97      yamt 			 */
    644  1.213  christos 			panic("%s: [%s] too large itemsperpage(%d) for "
    645  1.213  christos 			    "PR_NOTOUCH", __func__,
    646   1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    647   1.97      yamt 		}
    648   1.97      yamt 		pp->pr_phpool = &phpool[idx];
    649   1.97      yamt 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    650   1.97      yamt 		pp->pr_phpool = &phpool[0];
    651   1.97      yamt 	}
    652   1.97      yamt #if defined(DIAGNOSTIC)
    653   1.97      yamt 	else {
    654   1.97      yamt 		pp->pr_phpool = NULL;
    655   1.97      yamt 	}
    656   1.97      yamt #endif
    657    1.3        pk 
    658    1.3        pk 	/*
    659    1.3        pk 	 * Use the slack between the chunks and the page header
    660    1.3        pk 	 * for "cache coloring".
    661    1.3        pk 	 */
    662    1.3        pk 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    663    1.3        pk 	pp->pr_maxcolor = (slack / align) * align;
    664    1.3        pk 	pp->pr_curcolor = 0;
    665    1.3        pk 
    666    1.3        pk 	pp->pr_nget = 0;
    667    1.3        pk 	pp->pr_nfail = 0;
    668    1.3        pk 	pp->pr_nput = 0;
    669    1.3        pk 	pp->pr_npagealloc = 0;
    670    1.3        pk 	pp->pr_npagefree = 0;
    671    1.1        pk 	pp->pr_hiwat = 0;
    672    1.8   thorpej 	pp->pr_nidle = 0;
    673  1.134        ad 	pp->pr_refcnt = 0;
    674    1.3        pk 
    675  1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    676  1.134        ad 	cv_init(&pp->pr_cv, wchan);
    677  1.134        ad 	pp->pr_ipl = ipl;
    678    1.1        pk 
    679  1.145        ad 	/* Insert into the list of all pools. */
    680  1.181   mlelstv 	if (!cold)
    681  1.134        ad 		mutex_enter(&pool_head_lock);
    682  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    683  1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    684  1.145        ad 			break;
    685  1.145        ad 	}
    686  1.145        ad 	if (pp1 == NULL)
    687  1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    688  1.145        ad 	else
    689  1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    690  1.181   mlelstv 	if (!cold)
    691  1.134        ad 		mutex_exit(&pool_head_lock);
    692  1.134        ad 
    693  1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    694  1.181   mlelstv 	if (!cold)
    695  1.134        ad 		mutex_enter(&palloc->pa_lock);
    696  1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    697  1.181   mlelstv 	if (!cold)
    698  1.134        ad 		mutex_exit(&palloc->pa_lock);
    699    1.1        pk }
    700    1.1        pk 
    701    1.1        pk /*
    702    1.1        pk  * De-commision a pool resource.
    703    1.1        pk  */
    704    1.1        pk void
    705   1.42   thorpej pool_destroy(struct pool *pp)
    706    1.1        pk {
    707  1.101   thorpej 	struct pool_pagelist pq;
    708    1.3        pk 	struct pool_item_header *ph;
    709   1.43   thorpej 
    710  1.101   thorpej 	/* Remove from global pool list */
    711  1.134        ad 	mutex_enter(&pool_head_lock);
    712  1.134        ad 	while (pp->pr_refcnt != 0)
    713  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    714  1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    715  1.101   thorpej 	if (drainpp == pp)
    716  1.101   thorpej 		drainpp = NULL;
    717  1.134        ad 	mutex_exit(&pool_head_lock);
    718  1.101   thorpej 
    719  1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    720  1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    721   1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    722  1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    723   1.66   thorpej 
    724  1.178      elad 	mutex_enter(&pool_allocator_lock);
    725  1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    726  1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    727  1.178      elad 	mutex_exit(&pool_allocator_lock);
    728  1.178      elad 
    729  1.134        ad 	mutex_enter(&pp->pr_lock);
    730  1.101   thorpej 
    731  1.134        ad 	KASSERT(pp->pr_cache == NULL);
    732  1.207  riastrad 	KASSERTMSG((pp->pr_nout == 0),
    733  1.213  christos 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    734  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    735  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    736  1.101   thorpej 
    737    1.3        pk 	/* Remove all pages */
    738  1.101   thorpej 	LIST_INIT(&pq);
    739   1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    740  1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    741  1.101   thorpej 
    742  1.134        ad 	mutex_exit(&pp->pr_lock);
    743    1.3        pk 
    744  1.101   thorpej 	pr_pagelist_free(pp, &pq);
    745  1.134        ad 	cv_destroy(&pp->pr_cv);
    746  1.134        ad 	mutex_destroy(&pp->pr_lock);
    747    1.1        pk }
    748    1.1        pk 
    749   1.68   thorpej void
    750   1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    751   1.68   thorpej {
    752   1.68   thorpej 
    753   1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    754  1.207  riastrad 	KASSERTMSG((pp->pr_drain_hook == NULL),
    755  1.213  christos 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    756   1.68   thorpej 	pp->pr_drain_hook = fn;
    757   1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    758   1.68   thorpej }
    759   1.68   thorpej 
    760   1.88       chs static struct pool_item_header *
    761  1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    762   1.55   thorpej {
    763   1.55   thorpej 	struct pool_item_header *ph;
    764   1.55   thorpej 
    765   1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    766  1.213  christos 		ph = (void *)((char *)storage + pp->pr_phoffset);
    767  1.134        ad 	else
    768   1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    769   1.55   thorpej 
    770   1.55   thorpej 	return (ph);
    771   1.55   thorpej }
    772    1.1        pk 
    773    1.1        pk /*
    774  1.134        ad  * Grab an item from the pool.
    775    1.1        pk  */
    776    1.3        pk void *
    777   1.56  sommerfe pool_get(struct pool *pp, int flags)
    778    1.1        pk {
    779    1.1        pk 	struct pool_item *pi;
    780    1.3        pk 	struct pool_item_header *ph;
    781   1.55   thorpej 	void *v;
    782    1.1        pk 
    783  1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    784  1.207  riastrad 	KASSERTMSG((pp->pr_itemsperpage != 0),
    785  1.213  christos 	    "%s: [%s] pr_itemsperpage is zero, "
    786  1.213  christos 	    "pool not initialized?", __func__, pp->pr_wchan);
    787  1.207  riastrad 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    788  1.207  riastrad 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    789  1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    790  1.213  christos 	    __func__, pp->pr_wchan);
    791  1.155        ad 	if (flags & PR_WAITOK) {
    792  1.154      yamt 		ASSERT_SLEEPABLE();
    793  1.155        ad 	}
    794    1.1        pk 
    795  1.134        ad 	mutex_enter(&pp->pr_lock);
    796   1.20   thorpej  startover:
    797   1.20   thorpej 	/*
    798   1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    799   1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    800   1.20   thorpej 	 * the pool.
    801   1.20   thorpej 	 */
    802  1.207  riastrad 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    803  1.213  christos 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    804   1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    805   1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    806   1.68   thorpej 			/*
    807   1.68   thorpej 			 * Since the drain hook is going to free things
    808   1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    809   1.68   thorpej 			 * and check the hardlimit condition again.
    810   1.68   thorpej 			 */
    811  1.134        ad 			mutex_exit(&pp->pr_lock);
    812   1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    813  1.134        ad 			mutex_enter(&pp->pr_lock);
    814   1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    815   1.68   thorpej 				goto startover;
    816   1.68   thorpej 		}
    817   1.68   thorpej 
    818   1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    819   1.20   thorpej 			/*
    820   1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
    821   1.20   thorpej 			 * it be?
    822   1.20   thorpej 			 */
    823   1.20   thorpej 			pp->pr_flags |= PR_WANTED;
    824  1.212  christos 			do {
    825  1.212  christos 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    826  1.212  christos 			} while (pp->pr_flags & PR_WANTED);
    827   1.20   thorpej 			goto startover;
    828   1.20   thorpej 		}
    829   1.31   thorpej 
    830   1.31   thorpej 		/*
    831   1.31   thorpej 		 * Log a message that the hard limit has been hit.
    832   1.31   thorpej 		 */
    833   1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
    834   1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
    835   1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
    836   1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    837   1.21   thorpej 
    838   1.21   thorpej 		pp->pr_nfail++;
    839   1.21   thorpej 
    840  1.134        ad 		mutex_exit(&pp->pr_lock);
    841  1.216  christos 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    842   1.20   thorpej 		return (NULL);
    843   1.20   thorpej 	}
    844   1.20   thorpej 
    845    1.3        pk 	/*
    846    1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
    847    1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
    848    1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
    849    1.3        pk 	 * has no items in its bucket.
    850    1.3        pk 	 */
    851   1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
    852  1.113      yamt 		int error;
    853  1.113      yamt 
    854  1.207  riastrad 		KASSERTMSG((pp->pr_nitems == 0),
    855  1.213  christos 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
    856  1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
    857   1.20   thorpej 
    858   1.21   thorpej 		/*
    859   1.21   thorpej 		 * Call the back-end page allocator for more memory.
    860   1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
    861   1.21   thorpej 		 * may block.
    862   1.21   thorpej 		 */
    863  1.113      yamt 		error = pool_grow(pp, flags);
    864  1.113      yamt 		if (error != 0) {
    865   1.21   thorpej 			/*
    866  1.210   mlelstv 			 * pool_grow aborts when another thread
    867  1.210   mlelstv 			 * is allocating a new page. Retry if it
    868  1.210   mlelstv 			 * waited for it.
    869  1.210   mlelstv 			 */
    870  1.210   mlelstv 			if (error == ERESTART)
    871  1.210   mlelstv 				goto startover;
    872  1.210   mlelstv 
    873  1.210   mlelstv 			/*
    874   1.55   thorpej 			 * We were unable to allocate a page or item
    875   1.55   thorpej 			 * header, but we released the lock during
    876   1.55   thorpej 			 * allocation, so perhaps items were freed
    877   1.55   thorpej 			 * back to the pool.  Check for this case.
    878   1.21   thorpej 			 */
    879   1.21   thorpej 			if (pp->pr_curpage != NULL)
    880   1.21   thorpej 				goto startover;
    881   1.15        pk 
    882  1.117      yamt 			pp->pr_nfail++;
    883  1.134        ad 			mutex_exit(&pp->pr_lock);
    884  1.211  riastrad 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
    885  1.117      yamt 			return (NULL);
    886    1.1        pk 		}
    887    1.3        pk 
    888   1.20   thorpej 		/* Start the allocation process over. */
    889   1.20   thorpej 		goto startover;
    890    1.3        pk 	}
    891   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
    892  1.207  riastrad 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
    893  1.213  christos 		    "%s: %s: page empty", __func__, pp->pr_wchan);
    894   1.97      yamt 		v = pr_item_notouch_get(pp, ph);
    895   1.97      yamt 	} else {
    896  1.102       chs 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    897   1.97      yamt 		if (__predict_false(v == NULL)) {
    898  1.134        ad 			mutex_exit(&pp->pr_lock);
    899  1.213  christos 			panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    900   1.97      yamt 		}
    901  1.207  riastrad 		KASSERTMSG((pp->pr_nitems > 0),
    902  1.213  christos 		    "%s: [%s] nitems %u inconsistent on itemlist",
    903  1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
    904  1.229      maxv #ifdef POOL_CHECK_MAGIC
    905  1.207  riastrad 		KASSERTMSG((pi->pi_magic == PI_MAGIC),
    906  1.213  christos 		    "%s: [%s] free list modified: "
    907  1.213  christos 		    "magic=%x; page %p; item addr %p", __func__,
    908  1.207  riastrad 		    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    909  1.229      maxv #endif
    910    1.3        pk 
    911   1.97      yamt 		/*
    912   1.97      yamt 		 * Remove from item list.
    913   1.97      yamt 		 */
    914  1.102       chs 		LIST_REMOVE(pi, pi_list);
    915   1.97      yamt 	}
    916   1.20   thorpej 	pp->pr_nitems--;
    917   1.20   thorpej 	pp->pr_nout++;
    918    1.6   thorpej 	if (ph->ph_nmissing == 0) {
    919  1.207  riastrad 		KASSERT(pp->pr_nidle > 0);
    920    1.6   thorpej 		pp->pr_nidle--;
    921   1.88       chs 
    922   1.88       chs 		/*
    923   1.88       chs 		 * This page was previously empty.  Move it to the list of
    924   1.88       chs 		 * partially-full pages.  This page is already curpage.
    925   1.88       chs 		 */
    926   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
    927   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    928    1.6   thorpej 	}
    929    1.3        pk 	ph->ph_nmissing++;
    930   1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    931  1.207  riastrad 		KASSERTMSG(((pp->pr_roflags & PR_NOTOUCH) ||
    932  1.207  riastrad 			LIST_EMPTY(&ph->ph_itemlist)),
    933  1.213  christos 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
    934  1.213  christos 			pp->pr_wchan, ph->ph_nmissing);
    935    1.3        pk 		/*
    936   1.88       chs 		 * This page is now full.  Move it to the full list
    937   1.88       chs 		 * and select a new current page.
    938    1.3        pk 		 */
    939   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
    940   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    941   1.88       chs 		pool_update_curpage(pp);
    942    1.1        pk 	}
    943    1.3        pk 
    944    1.3        pk 	pp->pr_nget++;
    945   1.20   thorpej 
    946   1.20   thorpej 	/*
    947   1.20   thorpej 	 * If we have a low water mark and we are now below that low
    948   1.20   thorpej 	 * water mark, add more items to the pool.
    949   1.20   thorpej 	 */
    950   1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    951   1.20   thorpej 		/*
    952   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
    953   1.20   thorpej 		 * to try again in a second or so?  The latter could break
    954   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
    955   1.20   thorpej 		 */
    956   1.20   thorpej 	}
    957   1.20   thorpej 
    958  1.134        ad 	mutex_exit(&pp->pr_lock);
    959  1.125        ad 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
    960  1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
    961  1.204      maxv 	pool_redzone_fill(pp, v);
    962  1.232  christos 	if (flags & PR_ZERO)
    963  1.232  christos 		memset(v, 0, pp->pr_size);
    964  1.232  christos 	else
    965  1.232  christos 		pool_kleak_fill(pp, v);
    966  1.232  christos 	return v;
    967    1.1        pk }
    968    1.1        pk 
    969    1.1        pk /*
    970   1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
    971    1.1        pk  */
    972   1.43   thorpej static void
    973  1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
    974    1.1        pk {
    975    1.1        pk 	struct pool_item *pi = v;
    976    1.3        pk 	struct pool_item_header *ph;
    977    1.3        pk 
    978  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    979  1.204      maxv 	pool_redzone_check(pp, v);
    980  1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
    981  1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
    982   1.61       chs 
    983  1.207  riastrad 	KASSERTMSG((pp->pr_nout > 0),
    984  1.213  christos 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
    985    1.3        pk 
    986  1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
    987  1.213  christos 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
    988    1.3        pk 	}
    989   1.28   thorpej 
    990    1.3        pk 	/*
    991    1.3        pk 	 * Return to item list.
    992    1.3        pk 	 */
    993   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
    994   1.97      yamt 		pr_item_notouch_put(pp, ph, v);
    995   1.97      yamt 	} else {
    996  1.229      maxv #ifdef POOL_CHECK_MAGIC
    997   1.97      yamt 		pi->pi_magic = PI_MAGIC;
    998    1.3        pk #endif
    999   1.32       chs 
   1000  1.229      maxv 		if (pp->pr_redzone) {
   1001  1.229      maxv 			/*
   1002  1.229      maxv 			 * Mark the pool_item as valid. The rest is already
   1003  1.229      maxv 			 * invalid.
   1004  1.229      maxv 			 */
   1005  1.231      maxv 			kasan_mark(pi, sizeof(*pi), sizeof(*pi));
   1006  1.229      maxv 		}
   1007   1.32       chs 
   1008  1.102       chs 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1009   1.97      yamt 	}
   1010   1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1011    1.3        pk 	ph->ph_nmissing--;
   1012    1.3        pk 	pp->pr_nput++;
   1013   1.20   thorpej 	pp->pr_nitems++;
   1014   1.20   thorpej 	pp->pr_nout--;
   1015    1.3        pk 
   1016    1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1017    1.3        pk 	if (pp->pr_curpage == NULL)
   1018    1.3        pk 		pp->pr_curpage = ph;
   1019    1.3        pk 
   1020    1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1021    1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1022  1.134        ad 		cv_broadcast(&pp->pr_cv);
   1023    1.3        pk 	}
   1024    1.3        pk 
   1025    1.3        pk 	/*
   1026   1.88       chs 	 * If this page is now empty, do one of two things:
   1027   1.21   thorpej 	 *
   1028   1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1029   1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1030   1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1031   1.90   thorpej 	 *	    CLAIM.
   1032   1.21   thorpej 	 *
   1033   1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1034   1.88       chs 	 *
   1035   1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1036   1.88       chs 	 * page if one is available).
   1037    1.3        pk 	 */
   1038    1.3        pk 	if (ph->ph_nmissing == 0) {
   1039    1.6   thorpej 		pp->pr_nidle++;
   1040   1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1041  1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1042  1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1043    1.3        pk 		} else {
   1044   1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1045   1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1046    1.3        pk 
   1047   1.21   thorpej 			/*
   1048   1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1049   1.21   thorpej 			 * be idle for some period of time before it can
   1050   1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1051   1.21   thorpej 			 * ping-pong'ing for memory.
   1052  1.151      yamt 			 *
   1053  1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1054  1.151      yamt 			 * a problem for our usage.
   1055   1.21   thorpej 			 */
   1056  1.151      yamt 			ph->ph_time = time_uptime;
   1057    1.1        pk 		}
   1058   1.88       chs 		pool_update_curpage(pp);
   1059    1.1        pk 	}
   1060   1.88       chs 
   1061   1.21   thorpej 	/*
   1062   1.88       chs 	 * If the page was previously completely full, move it to the
   1063   1.88       chs 	 * partially-full list and make it the current page.  The next
   1064   1.88       chs 	 * allocation will get the item from this page, instead of
   1065   1.88       chs 	 * further fragmenting the pool.
   1066   1.21   thorpej 	 */
   1067   1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1068   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1069   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1070   1.21   thorpej 		pp->pr_curpage = ph;
   1071   1.21   thorpej 	}
   1072   1.43   thorpej }
   1073   1.43   thorpej 
   1074   1.56  sommerfe void
   1075   1.56  sommerfe pool_put(struct pool *pp, void *v)
   1076   1.56  sommerfe {
   1077  1.101   thorpej 	struct pool_pagelist pq;
   1078  1.101   thorpej 
   1079  1.101   thorpej 	LIST_INIT(&pq);
   1080   1.56  sommerfe 
   1081  1.134        ad 	mutex_enter(&pp->pr_lock);
   1082  1.101   thorpej 	pool_do_put(pp, v, &pq);
   1083  1.134        ad 	mutex_exit(&pp->pr_lock);
   1084   1.56  sommerfe 
   1085  1.102       chs 	pr_pagelist_free(pp, &pq);
   1086   1.56  sommerfe }
   1087   1.57  sommerfe 
   1088   1.74   thorpej /*
   1089  1.113      yamt  * pool_grow: grow a pool by a page.
   1090  1.113      yamt  *
   1091  1.113      yamt  * => called with pool locked.
   1092  1.113      yamt  * => unlock and relock the pool.
   1093  1.113      yamt  * => return with pool locked.
   1094  1.113      yamt  */
   1095  1.113      yamt 
   1096  1.113      yamt static int
   1097  1.113      yamt pool_grow(struct pool *pp, int flags)
   1098  1.113      yamt {
   1099  1.209  riastrad 	/*
   1100  1.209  riastrad 	 * If there's a pool_grow in progress, wait for it to complete
   1101  1.209  riastrad 	 * and try again from the top.
   1102  1.209  riastrad 	 */
   1103  1.209  riastrad 	if (pp->pr_flags & PR_GROWING) {
   1104  1.209  riastrad 		if (flags & PR_WAITOK) {
   1105  1.209  riastrad 			do {
   1106  1.209  riastrad 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1107  1.209  riastrad 			} while (pp->pr_flags & PR_GROWING);
   1108  1.209  riastrad 			return ERESTART;
   1109  1.209  riastrad 		} else {
   1110  1.219       mrg 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1111  1.219       mrg 				/*
   1112  1.219       mrg 				 * This needs an unlock/relock dance so
   1113  1.219       mrg 				 * that the other caller has a chance to
   1114  1.219       mrg 				 * run and actually do the thing.  Note
   1115  1.219       mrg 				 * that this is effectively a busy-wait.
   1116  1.219       mrg 				 */
   1117  1.219       mrg 				mutex_exit(&pp->pr_lock);
   1118  1.219       mrg 				mutex_enter(&pp->pr_lock);
   1119  1.219       mrg 				return ERESTART;
   1120  1.219       mrg 			}
   1121  1.209  riastrad 			return EWOULDBLOCK;
   1122  1.209  riastrad 		}
   1123  1.209  riastrad 	}
   1124  1.209  riastrad 	pp->pr_flags |= PR_GROWING;
   1125  1.220  christos 	if (flags & PR_WAITOK)
   1126  1.220  christos 		mutex_exit(&pp->pr_lock);
   1127  1.220  christos 	else
   1128  1.219       mrg 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1129  1.113      yamt 
   1130  1.216  christos 	char *cp = pool_allocator_alloc(pp, flags);
   1131  1.216  christos 	if (__predict_false(cp == NULL))
   1132  1.216  christos 		goto out;
   1133  1.216  christos 
   1134  1.216  christos 	struct pool_item_header *ph = pool_alloc_item_header(pp, cp, flags);
   1135  1.216  christos 	if (__predict_false(ph == NULL)) {
   1136  1.216  christos 		pool_allocator_free(pp, cp);
   1137  1.209  riastrad 		goto out;
   1138  1.113      yamt 	}
   1139  1.113      yamt 
   1140  1.220  christos 	if (flags & PR_WAITOK)
   1141  1.220  christos 		mutex_enter(&pp->pr_lock);
   1142  1.113      yamt 	pool_prime_page(pp, cp, ph);
   1143  1.113      yamt 	pp->pr_npagealloc++;
   1144  1.216  christos 	KASSERT(pp->pr_flags & PR_GROWING);
   1145  1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1146  1.209  riastrad 	/*
   1147  1.209  riastrad 	 * If anyone was waiting for pool_grow, notify them that we
   1148  1.209  riastrad 	 * may have just done it.
   1149  1.209  riastrad 	 */
   1150  1.216  christos 	cv_broadcast(&pp->pr_cv);
   1151  1.216  christos 	return 0;
   1152  1.216  christos out:
   1153  1.220  christos 	if (flags & PR_WAITOK)
   1154  1.220  christos 		mutex_enter(&pp->pr_lock);
   1155  1.209  riastrad 	KASSERT(pp->pr_flags & PR_GROWING);
   1156  1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1157  1.216  christos 	return ENOMEM;
   1158  1.113      yamt }
   1159  1.113      yamt 
   1160  1.113      yamt /*
   1161   1.74   thorpej  * Add N items to the pool.
   1162   1.74   thorpej  */
   1163   1.74   thorpej int
   1164   1.74   thorpej pool_prime(struct pool *pp, int n)
   1165   1.74   thorpej {
   1166   1.75    simonb 	int newpages;
   1167  1.113      yamt 	int error = 0;
   1168   1.74   thorpej 
   1169  1.134        ad 	mutex_enter(&pp->pr_lock);
   1170   1.74   thorpej 
   1171   1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1172   1.74   thorpej 
   1173  1.216  christos 	while (newpages > 0) {
   1174  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1175  1.113      yamt 		if (error) {
   1176  1.214  christos 			if (error == ERESTART)
   1177  1.214  christos 				continue;
   1178   1.74   thorpej 			break;
   1179   1.74   thorpej 		}
   1180   1.74   thorpej 		pp->pr_minpages++;
   1181  1.216  christos 		newpages--;
   1182   1.74   thorpej 	}
   1183   1.74   thorpej 
   1184   1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1185   1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1186   1.74   thorpej 
   1187  1.134        ad 	mutex_exit(&pp->pr_lock);
   1188  1.113      yamt 	return error;
   1189   1.74   thorpej }
   1190   1.55   thorpej 
   1191   1.55   thorpej /*
   1192    1.3        pk  * Add a page worth of items to the pool.
   1193   1.21   thorpej  *
   1194   1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1195    1.3        pk  */
   1196   1.55   thorpej static void
   1197  1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1198    1.3        pk {
   1199    1.3        pk 	struct pool_item *pi;
   1200  1.128  christos 	void *cp = storage;
   1201  1.125        ad 	const unsigned int align = pp->pr_align;
   1202  1.125        ad 	const unsigned int ioff = pp->pr_itemoffset;
   1203   1.55   thorpej 	int n;
   1204   1.36        pk 
   1205  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1206  1.207  riastrad 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1207  1.207  riastrad 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1208  1.213  christos 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1209    1.3        pk 
   1210    1.3        pk 	/*
   1211    1.3        pk 	 * Insert page header.
   1212    1.3        pk 	 */
   1213   1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1214  1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1215    1.3        pk 	ph->ph_page = storage;
   1216    1.3        pk 	ph->ph_nmissing = 0;
   1217  1.151      yamt 	ph->ph_time = time_uptime;
   1218   1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1219   1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1220    1.3        pk 
   1221    1.6   thorpej 	pp->pr_nidle++;
   1222    1.6   thorpej 
   1223    1.3        pk 	/*
   1224    1.3        pk 	 * Color this page.
   1225    1.3        pk 	 */
   1226  1.141      yamt 	ph->ph_off = pp->pr_curcolor;
   1227  1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1228    1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1229    1.3        pk 		pp->pr_curcolor = 0;
   1230    1.3        pk 
   1231    1.3        pk 	/*
   1232    1.3        pk 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1233    1.3        pk 	 */
   1234    1.3        pk 	if (ioff != 0)
   1235  1.128  christos 		cp = (char *)cp + align - ioff;
   1236    1.3        pk 
   1237  1.125        ad 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1238  1.125        ad 
   1239    1.3        pk 	/*
   1240    1.3        pk 	 * Insert remaining chunks on the bucket list.
   1241    1.3        pk 	 */
   1242    1.3        pk 	n = pp->pr_itemsperpage;
   1243   1.20   thorpej 	pp->pr_nitems += n;
   1244    1.3        pk 
   1245   1.97      yamt 	if (pp->pr_roflags & PR_NOTOUCH) {
   1246  1.141      yamt 		pr_item_notouch_init(pp, ph);
   1247   1.97      yamt 	} else {
   1248   1.97      yamt 		while (n--) {
   1249   1.97      yamt 			pi = (struct pool_item *)cp;
   1250   1.78   thorpej 
   1251   1.97      yamt 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1252    1.3        pk 
   1253   1.97      yamt 			/* Insert on page list */
   1254  1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1255  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1256   1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1257    1.3        pk #endif
   1258  1.128  christos 			cp = (char *)cp + pp->pr_size;
   1259  1.125        ad 
   1260  1.125        ad 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1261   1.97      yamt 		}
   1262    1.3        pk 	}
   1263    1.3        pk 
   1264    1.3        pk 	/*
   1265    1.3        pk 	 * If the pool was depleted, point at the new page.
   1266    1.3        pk 	 */
   1267    1.3        pk 	if (pp->pr_curpage == NULL)
   1268    1.3        pk 		pp->pr_curpage = ph;
   1269    1.3        pk 
   1270    1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1271    1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1272    1.3        pk }
   1273    1.3        pk 
   1274   1.20   thorpej /*
   1275   1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1276   1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1277   1.20   thorpej  *
   1278   1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1279   1.20   thorpej  *
   1280   1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1281   1.20   thorpej  * with it locked.
   1282   1.20   thorpej  */
   1283   1.20   thorpej static int
   1284   1.42   thorpej pool_catchup(struct pool *pp)
   1285   1.20   thorpej {
   1286   1.20   thorpej 	int error = 0;
   1287   1.20   thorpej 
   1288   1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1289  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1290  1.113      yamt 		if (error) {
   1291  1.214  christos 			if (error == ERESTART)
   1292  1.214  christos 				continue;
   1293   1.20   thorpej 			break;
   1294   1.20   thorpej 		}
   1295   1.20   thorpej 	}
   1296  1.113      yamt 	return error;
   1297   1.20   thorpej }
   1298   1.20   thorpej 
   1299   1.88       chs static void
   1300   1.88       chs pool_update_curpage(struct pool *pp)
   1301   1.88       chs {
   1302   1.88       chs 
   1303   1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1304   1.88       chs 	if (pp->pr_curpage == NULL) {
   1305   1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1306   1.88       chs 	}
   1307  1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1308  1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1309   1.88       chs }
   1310   1.88       chs 
   1311    1.3        pk void
   1312   1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1313    1.3        pk {
   1314   1.15        pk 
   1315  1.134        ad 	mutex_enter(&pp->pr_lock);
   1316   1.21   thorpej 
   1317    1.3        pk 	pp->pr_minitems = n;
   1318   1.15        pk 	pp->pr_minpages = (n == 0)
   1319   1.15        pk 		? 0
   1320   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1321   1.20   thorpej 
   1322   1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1323   1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1324   1.20   thorpej 		/*
   1325   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1326   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1327   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1328   1.20   thorpej 		 */
   1329   1.20   thorpej 	}
   1330   1.21   thorpej 
   1331  1.134        ad 	mutex_exit(&pp->pr_lock);
   1332    1.3        pk }
   1333    1.3        pk 
   1334    1.3        pk void
   1335   1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1336    1.3        pk {
   1337   1.15        pk 
   1338  1.134        ad 	mutex_enter(&pp->pr_lock);
   1339   1.21   thorpej 
   1340   1.15        pk 	pp->pr_maxpages = (n == 0)
   1341   1.15        pk 		? 0
   1342   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1343   1.21   thorpej 
   1344  1.134        ad 	mutex_exit(&pp->pr_lock);
   1345    1.3        pk }
   1346    1.3        pk 
   1347   1.20   thorpej void
   1348   1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1349   1.20   thorpej {
   1350   1.20   thorpej 
   1351  1.134        ad 	mutex_enter(&pp->pr_lock);
   1352   1.20   thorpej 
   1353   1.20   thorpej 	pp->pr_hardlimit = n;
   1354   1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1355   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1356   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1357   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1358   1.20   thorpej 
   1359   1.20   thorpej 	/*
   1360   1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1361   1.21   thorpej 	 * release the lock.
   1362   1.20   thorpej 	 */
   1363   1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1364   1.20   thorpej 		? 0
   1365   1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1366   1.21   thorpej 
   1367  1.134        ad 	mutex_exit(&pp->pr_lock);
   1368   1.20   thorpej }
   1369    1.3        pk 
   1370    1.3        pk /*
   1371    1.3        pk  * Release all complete pages that have not been used recently.
   1372  1.184     rmind  *
   1373  1.197       jym  * Must not be called from interrupt context.
   1374    1.3        pk  */
   1375   1.66   thorpej int
   1376   1.56  sommerfe pool_reclaim(struct pool *pp)
   1377    1.3        pk {
   1378    1.3        pk 	struct pool_item_header *ph, *phnext;
   1379   1.61       chs 	struct pool_pagelist pq;
   1380  1.151      yamt 	uint32_t curtime;
   1381  1.134        ad 	bool klock;
   1382  1.134        ad 	int rv;
   1383    1.3        pk 
   1384  1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1385  1.184     rmind 
   1386   1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1387   1.68   thorpej 		/*
   1388   1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1389   1.68   thorpej 		 */
   1390   1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1391   1.68   thorpej 	}
   1392   1.68   thorpej 
   1393  1.134        ad 	/*
   1394  1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1395  1.157        ad 	 * to block.
   1396  1.134        ad 	 */
   1397  1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1398  1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1399  1.134        ad 		KERNEL_LOCK(1, NULL);
   1400  1.134        ad 		klock = true;
   1401  1.134        ad 	} else
   1402  1.134        ad 		klock = false;
   1403  1.134        ad 
   1404  1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1405  1.134        ad 	if (pp->pr_cache != NULL)
   1406  1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1407  1.134        ad 
   1408  1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1409  1.134        ad 		if (klock) {
   1410  1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1411  1.134        ad 		}
   1412   1.66   thorpej 		return (0);
   1413  1.134        ad 	}
   1414   1.68   thorpej 
   1415   1.88       chs 	LIST_INIT(&pq);
   1416   1.43   thorpej 
   1417  1.151      yamt 	curtime = time_uptime;
   1418   1.21   thorpej 
   1419   1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1420   1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1421    1.3        pk 
   1422    1.3        pk 		/* Check our minimum page claim */
   1423    1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1424    1.3        pk 			break;
   1425    1.3        pk 
   1426   1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1427  1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1428   1.88       chs 			continue;
   1429   1.21   thorpej 
   1430   1.88       chs 		/*
   1431   1.88       chs 		 * If freeing this page would put us below
   1432   1.88       chs 		 * the low water mark, stop now.
   1433   1.88       chs 		 */
   1434   1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1435   1.88       chs 		    pp->pr_minitems)
   1436   1.88       chs 			break;
   1437   1.21   thorpej 
   1438   1.88       chs 		pr_rmpage(pp, ph, &pq);
   1439    1.3        pk 	}
   1440    1.3        pk 
   1441  1.134        ad 	mutex_exit(&pp->pr_lock);
   1442  1.134        ad 
   1443  1.134        ad 	if (LIST_EMPTY(&pq))
   1444  1.134        ad 		rv = 0;
   1445  1.134        ad 	else {
   1446  1.134        ad 		pr_pagelist_free(pp, &pq);
   1447  1.134        ad 		rv = 1;
   1448  1.134        ad 	}
   1449  1.134        ad 
   1450  1.134        ad 	if (klock) {
   1451  1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1452  1.134        ad 	}
   1453   1.66   thorpej 
   1454  1.134        ad 	return (rv);
   1455    1.3        pk }
   1456    1.3        pk 
   1457    1.3        pk /*
   1458  1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1459  1.131        ad  *
   1460  1.134        ad  * Note, must never be called from interrupt context.
   1461    1.3        pk  */
   1462  1.197       jym bool
   1463  1.197       jym pool_drain(struct pool **ppp)
   1464    1.3        pk {
   1465  1.197       jym 	bool reclaimed;
   1466    1.3        pk 	struct pool *pp;
   1467  1.134        ad 
   1468  1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1469    1.3        pk 
   1470   1.61       chs 	pp = NULL;
   1471  1.134        ad 
   1472  1.134        ad 	/* Find next pool to drain, and add a reference. */
   1473  1.134        ad 	mutex_enter(&pool_head_lock);
   1474  1.134        ad 	do {
   1475  1.134        ad 		if (drainpp == NULL) {
   1476  1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1477  1.134        ad 		}
   1478  1.134        ad 		if (drainpp != NULL) {
   1479  1.134        ad 			pp = drainpp;
   1480  1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1481  1.134        ad 		}
   1482  1.134        ad 		/*
   1483  1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1484  1.134        ad 		 * one pool in the system being active.
   1485  1.134        ad 		 */
   1486  1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1487  1.134        ad 	pp->pr_refcnt++;
   1488  1.134        ad 	mutex_exit(&pool_head_lock);
   1489  1.134        ad 
   1490  1.134        ad 	/* Drain the cache (if any) and pool.. */
   1491  1.186     pooka 	reclaimed = pool_reclaim(pp);
   1492  1.134        ad 
   1493  1.134        ad 	/* Finally, unlock the pool. */
   1494  1.134        ad 	mutex_enter(&pool_head_lock);
   1495  1.134        ad 	pp->pr_refcnt--;
   1496  1.134        ad 	cv_broadcast(&pool_busy);
   1497  1.134        ad 	mutex_exit(&pool_head_lock);
   1498  1.186     pooka 
   1499  1.197       jym 	if (ppp != NULL)
   1500  1.197       jym 		*ppp = pp;
   1501  1.197       jym 
   1502  1.186     pooka 	return reclaimed;
   1503    1.3        pk }
   1504    1.3        pk 
   1505    1.3        pk /*
   1506  1.217       mrg  * Calculate the total number of pages consumed by pools.
   1507  1.217       mrg  */
   1508  1.217       mrg int
   1509  1.217       mrg pool_totalpages(void)
   1510  1.217       mrg {
   1511  1.217       mrg 	struct pool *pp;
   1512  1.218       mrg 	uint64_t total = 0;
   1513  1.217       mrg 
   1514  1.217       mrg 	mutex_enter(&pool_head_lock);
   1515  1.218       mrg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1516  1.218       mrg 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1517  1.218       mrg 
   1518  1.218       mrg 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1519  1.218       mrg 			bytes -= (pp->pr_nout * pp->pr_size);
   1520  1.218       mrg 		total += bytes;
   1521  1.218       mrg 	}
   1522  1.217       mrg 	mutex_exit(&pool_head_lock);
   1523  1.217       mrg 
   1524  1.218       mrg 	return atop(total);
   1525  1.217       mrg }
   1526  1.217       mrg 
   1527  1.217       mrg /*
   1528    1.3        pk  * Diagnostic helpers.
   1529    1.3        pk  */
   1530   1.21   thorpej 
   1531   1.25   thorpej void
   1532  1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1533  1.108      yamt {
   1534  1.108      yamt 	struct pool *pp;
   1535  1.108      yamt 
   1536  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1537  1.108      yamt 		pool_printit(pp, modif, pr);
   1538  1.108      yamt 	}
   1539  1.108      yamt }
   1540  1.108      yamt 
   1541  1.108      yamt void
   1542   1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1543   1.25   thorpej {
   1544   1.25   thorpej 
   1545   1.25   thorpej 	if (pp == NULL) {
   1546   1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1547   1.25   thorpej 		return;
   1548   1.25   thorpej 	}
   1549   1.25   thorpej 
   1550   1.25   thorpej 	pool_print1(pp, modif, pr);
   1551   1.25   thorpej }
   1552   1.25   thorpej 
   1553   1.21   thorpej static void
   1554  1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1555   1.97      yamt     void (*pr)(const char *, ...))
   1556   1.88       chs {
   1557   1.88       chs 	struct pool_item_header *ph;
   1558   1.88       chs 
   1559   1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1560  1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1561  1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1562  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1563  1.229      maxv 		struct pool_item *pi;
   1564   1.97      yamt 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1565  1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1566   1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1567   1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1568   1.97      yamt 					    pi, pi->pi_magic);
   1569   1.97      yamt 				}
   1570   1.88       chs 			}
   1571   1.88       chs 		}
   1572   1.88       chs #endif
   1573   1.88       chs 	}
   1574   1.88       chs }
   1575   1.88       chs 
   1576   1.88       chs static void
   1577   1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1578    1.3        pk {
   1579   1.25   thorpej 	struct pool_item_header *ph;
   1580  1.134        ad 	pool_cache_t pc;
   1581  1.134        ad 	pcg_t *pcg;
   1582  1.134        ad 	pool_cache_cpu_t *cc;
   1583  1.134        ad 	uint64_t cpuhit, cpumiss;
   1584   1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1585   1.25   thorpej 	char c;
   1586   1.25   thorpej 
   1587   1.25   thorpej 	while ((c = *modif++) != '\0') {
   1588   1.25   thorpej 		if (c == 'l')
   1589   1.25   thorpej 			print_log = 1;
   1590   1.25   thorpej 		if (c == 'p')
   1591   1.25   thorpej 			print_pagelist = 1;
   1592   1.44   thorpej 		if (c == 'c')
   1593   1.44   thorpej 			print_cache = 1;
   1594   1.25   thorpej 	}
   1595   1.25   thorpej 
   1596  1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1597  1.134        ad 		(*pr)("POOL CACHE");
   1598  1.134        ad 	} else {
   1599  1.134        ad 		(*pr)("POOL");
   1600  1.134        ad 	}
   1601  1.134        ad 
   1602  1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1603   1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1604   1.25   thorpej 	    pp->pr_roflags);
   1605   1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1606   1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1607   1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1608   1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1609   1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1610   1.25   thorpej 
   1611  1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1612   1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1613   1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1614   1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1615   1.25   thorpej 
   1616   1.25   thorpej 	if (print_pagelist == 0)
   1617   1.25   thorpej 		goto skip_pagelist;
   1618   1.25   thorpej 
   1619   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1620   1.88       chs 		(*pr)("\n\tempty page list:\n");
   1621   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1622   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1623   1.88       chs 		(*pr)("\n\tfull page list:\n");
   1624   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1625   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1626   1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1627   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1628   1.88       chs 
   1629   1.25   thorpej 	if (pp->pr_curpage == NULL)
   1630   1.25   thorpej 		(*pr)("\tno current page\n");
   1631   1.25   thorpej 	else
   1632   1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1633   1.25   thorpej 
   1634   1.25   thorpej  skip_pagelist:
   1635   1.25   thorpej 	if (print_log == 0)
   1636   1.25   thorpej 		goto skip_log;
   1637   1.25   thorpej 
   1638   1.25   thorpej 	(*pr)("\n");
   1639    1.3        pk 
   1640   1.25   thorpej  skip_log:
   1641   1.44   thorpej 
   1642  1.102       chs #define PR_GROUPLIST(pcg)						\
   1643  1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1644  1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1645  1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1646  1.102       chs 		    POOL_PADDR_INVALID) {				\
   1647  1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1648  1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1649  1.102       chs 			    (unsigned long long)			\
   1650  1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1651  1.102       chs 		} else {						\
   1652  1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1653  1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1654  1.102       chs 		}							\
   1655  1.102       chs 	}
   1656  1.102       chs 
   1657  1.134        ad 	if (pc != NULL) {
   1658  1.134        ad 		cpuhit = 0;
   1659  1.134        ad 		cpumiss = 0;
   1660  1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1661  1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1662  1.134        ad 				continue;
   1663  1.134        ad 			cpuhit += cc->cc_hits;
   1664  1.134        ad 			cpumiss += cc->cc_misses;
   1665  1.134        ad 		}
   1666  1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1667  1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1668  1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1669  1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1670  1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1671  1.134        ad 		    pc->pc_contended);
   1672  1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1673  1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1674  1.134        ad 		if (print_cache) {
   1675  1.134        ad 			(*pr)("\tfull cache groups:\n");
   1676  1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1677  1.134        ad 			    pcg = pcg->pcg_next) {
   1678  1.134        ad 				PR_GROUPLIST(pcg);
   1679  1.134        ad 			}
   1680  1.134        ad 			(*pr)("\tempty cache groups:\n");
   1681  1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1682  1.134        ad 			    pcg = pcg->pcg_next) {
   1683  1.134        ad 				PR_GROUPLIST(pcg);
   1684  1.134        ad 			}
   1685  1.103       chs 		}
   1686   1.44   thorpej 	}
   1687  1.102       chs #undef PR_GROUPLIST
   1688   1.88       chs }
   1689   1.88       chs 
   1690   1.88       chs static int
   1691   1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1692   1.88       chs {
   1693   1.88       chs 	struct pool_item *pi;
   1694  1.128  christos 	void *page;
   1695   1.88       chs 	int n;
   1696   1.88       chs 
   1697  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1698  1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1699  1.121      yamt 		if (page != ph->ph_page &&
   1700  1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1701  1.121      yamt 			if (label != NULL)
   1702  1.121      yamt 				printf("%s: ", label);
   1703  1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1704  1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1705  1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1706  1.121      yamt 				ph, page);
   1707  1.121      yamt 			return 1;
   1708  1.121      yamt 		}
   1709   1.88       chs 	}
   1710    1.3        pk 
   1711   1.97      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1712   1.97      yamt 		return 0;
   1713   1.97      yamt 
   1714  1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1715   1.88       chs 	     pi != NULL;
   1716  1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1717   1.88       chs 
   1718  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1719   1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1720   1.88       chs 			if (label != NULL)
   1721   1.88       chs 				printf("%s: ", label);
   1722   1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1723  1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1724   1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1725  1.121      yamt 				n, pi);
   1726   1.88       chs 			panic("pool");
   1727   1.88       chs 		}
   1728   1.88       chs #endif
   1729  1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1730  1.121      yamt 			continue;
   1731  1.121      yamt 		}
   1732  1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1733   1.88       chs 		if (page == ph->ph_page)
   1734   1.88       chs 			continue;
   1735   1.88       chs 
   1736   1.88       chs 		if (label != NULL)
   1737   1.88       chs 			printf("%s: ", label);
   1738   1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1739   1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1740   1.88       chs 			pp->pr_wchan, ph->ph_page,
   1741   1.88       chs 			n, pi, page);
   1742   1.88       chs 		return 1;
   1743   1.88       chs 	}
   1744   1.88       chs 	return 0;
   1745    1.3        pk }
   1746    1.3        pk 
   1747   1.88       chs 
   1748    1.3        pk int
   1749   1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1750    1.3        pk {
   1751    1.3        pk 	struct pool_item_header *ph;
   1752    1.3        pk 	int r = 0;
   1753    1.3        pk 
   1754  1.134        ad 	mutex_enter(&pp->pr_lock);
   1755   1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1756   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1757   1.88       chs 		if (r) {
   1758   1.88       chs 			goto out;
   1759   1.88       chs 		}
   1760   1.88       chs 	}
   1761   1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1762   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1763   1.88       chs 		if (r) {
   1764    1.3        pk 			goto out;
   1765    1.3        pk 		}
   1766   1.88       chs 	}
   1767   1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1768   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1769   1.88       chs 		if (r) {
   1770    1.3        pk 			goto out;
   1771    1.3        pk 		}
   1772    1.3        pk 	}
   1773   1.88       chs 
   1774    1.3        pk out:
   1775  1.134        ad 	mutex_exit(&pp->pr_lock);
   1776    1.3        pk 	return (r);
   1777   1.43   thorpej }
   1778   1.43   thorpej 
   1779   1.43   thorpej /*
   1780   1.43   thorpej  * pool_cache_init:
   1781   1.43   thorpej  *
   1782   1.43   thorpej  *	Initialize a pool cache.
   1783  1.134        ad  */
   1784  1.134        ad pool_cache_t
   1785  1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1786  1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   1787  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1788  1.134        ad {
   1789  1.134        ad 	pool_cache_t pc;
   1790  1.134        ad 
   1791  1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   1792  1.134        ad 	if (pc == NULL)
   1793  1.134        ad 		return NULL;
   1794  1.134        ad 
   1795  1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1796  1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   1797  1.134        ad 
   1798  1.134        ad 	return pc;
   1799  1.134        ad }
   1800  1.134        ad 
   1801  1.134        ad /*
   1802  1.134        ad  * pool_cache_bootstrap:
   1803   1.43   thorpej  *
   1804  1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   1805  1.134        ad  *	provides initial storage.
   1806   1.43   thorpej  */
   1807   1.43   thorpej void
   1808  1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1809  1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   1810  1.134        ad     struct pool_allocator *palloc, int ipl,
   1811  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1812   1.43   thorpej     void *arg)
   1813   1.43   thorpej {
   1814  1.134        ad 	CPU_INFO_ITERATOR cii;
   1815  1.145        ad 	pool_cache_t pc1;
   1816  1.134        ad 	struct cpu_info *ci;
   1817  1.134        ad 	struct pool *pp;
   1818  1.134        ad 
   1819  1.134        ad 	pp = &pc->pc_pool;
   1820  1.208       chs 	if (palloc == NULL && ipl == IPL_NONE) {
   1821  1.208       chs 		if (size > PAGE_SIZE) {
   1822  1.208       chs 			int bigidx = pool_bigidx(size);
   1823  1.208       chs 
   1824  1.208       chs 			palloc = &pool_allocator_big[bigidx];
   1825  1.208       chs 		} else
   1826  1.208       chs 			palloc = &pool_allocator_nointr;
   1827  1.208       chs 	}
   1828  1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1829  1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1830   1.43   thorpej 
   1831  1.134        ad 	if (ctor == NULL) {
   1832  1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   1833  1.134        ad 	}
   1834  1.134        ad 	if (dtor == NULL) {
   1835  1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   1836  1.134        ad 	}
   1837   1.43   thorpej 
   1838  1.134        ad 	pc->pc_emptygroups = NULL;
   1839  1.134        ad 	pc->pc_fullgroups = NULL;
   1840  1.134        ad 	pc->pc_partgroups = NULL;
   1841   1.43   thorpej 	pc->pc_ctor = ctor;
   1842   1.43   thorpej 	pc->pc_dtor = dtor;
   1843   1.43   thorpej 	pc->pc_arg  = arg;
   1844  1.134        ad 	pc->pc_hits  = 0;
   1845   1.48   thorpej 	pc->pc_misses = 0;
   1846  1.134        ad 	pc->pc_nempty = 0;
   1847  1.134        ad 	pc->pc_npart = 0;
   1848  1.134        ad 	pc->pc_nfull = 0;
   1849  1.134        ad 	pc->pc_contended = 0;
   1850  1.134        ad 	pc->pc_refcnt = 0;
   1851  1.136      yamt 	pc->pc_freecheck = NULL;
   1852  1.134        ad 
   1853  1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   1854  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1855  1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   1856  1.142        ad 	} else {
   1857  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1858  1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   1859  1.142        ad 	}
   1860  1.142        ad 
   1861  1.134        ad 	/* Allocate per-CPU caches. */
   1862  1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1863  1.134        ad 	pc->pc_ncpu = 0;
   1864  1.139        ad 	if (ncpu < 2) {
   1865  1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   1866  1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   1867  1.137        ad 	} else {
   1868  1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   1869  1.137        ad 			pool_cache_cpu_init1(ci, pc);
   1870  1.137        ad 		}
   1871  1.134        ad 	}
   1872  1.145        ad 
   1873  1.145        ad 	/* Add to list of all pools. */
   1874  1.145        ad 	if (__predict_true(!cold))
   1875  1.134        ad 		mutex_enter(&pool_head_lock);
   1876  1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1877  1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1878  1.145        ad 			break;
   1879  1.145        ad 	}
   1880  1.145        ad 	if (pc1 == NULL)
   1881  1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1882  1.145        ad 	else
   1883  1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1884  1.145        ad 	if (__predict_true(!cold))
   1885  1.134        ad 		mutex_exit(&pool_head_lock);
   1886  1.145        ad 
   1887  1.145        ad 	membar_sync();
   1888  1.145        ad 	pp->pr_cache = pc;
   1889   1.43   thorpej }
   1890   1.43   thorpej 
   1891   1.43   thorpej /*
   1892   1.43   thorpej  * pool_cache_destroy:
   1893   1.43   thorpej  *
   1894   1.43   thorpej  *	Destroy a pool cache.
   1895   1.43   thorpej  */
   1896   1.43   thorpej void
   1897  1.134        ad pool_cache_destroy(pool_cache_t pc)
   1898   1.43   thorpej {
   1899  1.191      para 
   1900  1.191      para 	pool_cache_bootstrap_destroy(pc);
   1901  1.191      para 	pool_put(&cache_pool, pc);
   1902  1.191      para }
   1903  1.191      para 
   1904  1.191      para /*
   1905  1.191      para  * pool_cache_bootstrap_destroy:
   1906  1.191      para  *
   1907  1.191      para  *	Destroy a pool cache.
   1908  1.191      para  */
   1909  1.191      para void
   1910  1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   1911  1.191      para {
   1912  1.134        ad 	struct pool *pp = &pc->pc_pool;
   1913  1.175       jym 	u_int i;
   1914  1.134        ad 
   1915  1.134        ad 	/* Remove it from the global list. */
   1916  1.134        ad 	mutex_enter(&pool_head_lock);
   1917  1.134        ad 	while (pc->pc_refcnt != 0)
   1918  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   1919  1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   1920  1.134        ad 	mutex_exit(&pool_head_lock);
   1921   1.43   thorpej 
   1922   1.43   thorpej 	/* First, invalidate the entire cache. */
   1923   1.43   thorpej 	pool_cache_invalidate(pc);
   1924   1.43   thorpej 
   1925  1.134        ad 	/* Disassociate it from the pool. */
   1926  1.134        ad 	mutex_enter(&pp->pr_lock);
   1927  1.134        ad 	pp->pr_cache = NULL;
   1928  1.134        ad 	mutex_exit(&pp->pr_lock);
   1929  1.134        ad 
   1930  1.134        ad 	/* Destroy per-CPU data */
   1931  1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   1932  1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   1933  1.134        ad 
   1934  1.134        ad 	/* Finally, destroy it. */
   1935  1.134        ad 	mutex_destroy(&pc->pc_lock);
   1936  1.134        ad 	pool_destroy(pp);
   1937  1.134        ad }
   1938  1.134        ad 
   1939  1.134        ad /*
   1940  1.134        ad  * pool_cache_cpu_init1:
   1941  1.134        ad  *
   1942  1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   1943  1.134        ad  */
   1944  1.134        ad static void
   1945  1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   1946  1.134        ad {
   1947  1.134        ad 	pool_cache_cpu_t *cc;
   1948  1.137        ad 	int index;
   1949  1.134        ad 
   1950  1.137        ad 	index = ci->ci_index;
   1951  1.137        ad 
   1952  1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   1953  1.134        ad 
   1954  1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   1955  1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   1956  1.134        ad 		return;
   1957  1.134        ad 	}
   1958  1.134        ad 
   1959  1.134        ad 	/*
   1960  1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   1961  1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   1962  1.134        ad 	 */
   1963  1.134        ad 	if (pc->pc_ncpu == 0) {
   1964  1.134        ad 		cc = &pc->pc_cpu0;
   1965  1.134        ad 		pc->pc_ncpu = 1;
   1966  1.134        ad 	} else {
   1967  1.134        ad 		mutex_enter(&pc->pc_lock);
   1968  1.134        ad 		pc->pc_ncpu++;
   1969  1.134        ad 		mutex_exit(&pc->pc_lock);
   1970  1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   1971  1.134        ad 	}
   1972  1.134        ad 
   1973  1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   1974  1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   1975  1.134        ad 	cc->cc_cache = pc;
   1976  1.137        ad 	cc->cc_cpuindex = index;
   1977  1.134        ad 	cc->cc_hits = 0;
   1978  1.134        ad 	cc->cc_misses = 0;
   1979  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   1980  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   1981  1.134        ad 
   1982  1.137        ad 	pc->pc_cpus[index] = cc;
   1983   1.43   thorpej }
   1984   1.43   thorpej 
   1985  1.134        ad /*
   1986  1.134        ad  * pool_cache_cpu_init:
   1987  1.134        ad  *
   1988  1.134        ad  *	Called whenever a new CPU is attached.
   1989  1.134        ad  */
   1990  1.134        ad void
   1991  1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   1992   1.43   thorpej {
   1993  1.134        ad 	pool_cache_t pc;
   1994  1.134        ad 
   1995  1.134        ad 	mutex_enter(&pool_head_lock);
   1996  1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   1997  1.134        ad 		pc->pc_refcnt++;
   1998  1.134        ad 		mutex_exit(&pool_head_lock);
   1999   1.43   thorpej 
   2000  1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2001   1.43   thorpej 
   2002  1.134        ad 		mutex_enter(&pool_head_lock);
   2003  1.134        ad 		pc->pc_refcnt--;
   2004  1.134        ad 		cv_broadcast(&pool_busy);
   2005  1.134        ad 	}
   2006  1.134        ad 	mutex_exit(&pool_head_lock);
   2007   1.43   thorpej }
   2008   1.43   thorpej 
   2009  1.134        ad /*
   2010  1.134        ad  * pool_cache_reclaim:
   2011  1.134        ad  *
   2012  1.134        ad  *	Reclaim memory from a pool cache.
   2013  1.134        ad  */
   2014  1.134        ad bool
   2015  1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2016   1.43   thorpej {
   2017   1.43   thorpej 
   2018  1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2019  1.134        ad }
   2020   1.43   thorpej 
   2021  1.136      yamt static void
   2022  1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2023  1.136      yamt {
   2024  1.229      maxv 	if (pc->pc_pool.pr_redzone) {
   2025  1.229      maxv 		/*
   2026  1.229      maxv 		 * The object is marked as invalid. Temporarily mark it as
   2027  1.229      maxv 		 * valid for the destructor. pool_put below will re-mark it
   2028  1.229      maxv 		 * as invalid.
   2029  1.229      maxv 		 */
   2030  1.231      maxv 		kasan_mark(object, pc->pc_pool.pr_reqsize,
   2031  1.229      maxv 		    pc->pc_pool.pr_reqsize_with_redzone);
   2032  1.229      maxv 	}
   2033  1.136      yamt 
   2034  1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2035  1.136      yamt 	pool_put(&pc->pc_pool, object);
   2036  1.136      yamt }
   2037  1.136      yamt 
   2038  1.134        ad /*
   2039  1.134        ad  * pool_cache_destruct_object:
   2040  1.134        ad  *
   2041  1.134        ad  *	Force destruction of an object and its release back into
   2042  1.134        ad  *	the pool.
   2043  1.134        ad  */
   2044  1.134        ad void
   2045  1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2046  1.134        ad {
   2047  1.134        ad 
   2048  1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2049  1.136      yamt 
   2050  1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2051   1.43   thorpej }
   2052   1.43   thorpej 
   2053  1.134        ad /*
   2054  1.134        ad  * pool_cache_invalidate_groups:
   2055  1.134        ad  *
   2056  1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2057  1.134        ad  */
   2058  1.102       chs static void
   2059  1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2060  1.102       chs {
   2061  1.134        ad 	void *object;
   2062  1.134        ad 	pcg_t *next;
   2063  1.134        ad 	int i;
   2064  1.134        ad 
   2065  1.134        ad 	for (; pcg != NULL; pcg = next) {
   2066  1.134        ad 		next = pcg->pcg_next;
   2067  1.134        ad 
   2068  1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2069  1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2070  1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2071  1.134        ad 		}
   2072  1.102       chs 
   2073  1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2074  1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2075  1.142        ad 		} else {
   2076  1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2077  1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2078  1.142        ad 		}
   2079  1.102       chs 	}
   2080  1.102       chs }
   2081  1.102       chs 
   2082   1.43   thorpej /*
   2083  1.134        ad  * pool_cache_invalidate:
   2084   1.43   thorpej  *
   2085  1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2086  1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2087  1.176   thorpej  *
   2088  1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2089  1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2090  1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2091  1.196       jym  *
   2092  1.196       jym  *	Invalidation is a costly process and should not be called from
   2093  1.196       jym  *	interrupt context.
   2094   1.43   thorpej  */
   2095  1.134        ad void
   2096  1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2097  1.134        ad {
   2098  1.196       jym 	uint64_t where;
   2099  1.134        ad 	pcg_t *full, *empty, *part;
   2100  1.196       jym 
   2101  1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2102  1.176   thorpej 
   2103  1.177       jym 	if (ncpu < 2 || !mp_online) {
   2104  1.176   thorpej 		/*
   2105  1.176   thorpej 		 * We might be called early enough in the boot process
   2106  1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2107  1.196       jym 		 * In this case, transfer the content of the local CPU's
   2108  1.196       jym 		 * cache back into global cache as only this CPU is currently
   2109  1.196       jym 		 * running.
   2110  1.176   thorpej 		 */
   2111  1.196       jym 		pool_cache_transfer(pc);
   2112  1.176   thorpej 	} else {
   2113  1.176   thorpej 		/*
   2114  1.196       jym 		 * Signal all CPUs that they must transfer their local
   2115  1.196       jym 		 * cache back to the global pool then wait for the xcall to
   2116  1.196       jym 		 * complete.
   2117  1.176   thorpej 		 */
   2118  1.196       jym 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2119  1.196       jym 		    pc, NULL);
   2120  1.176   thorpej 		xc_wait(where);
   2121  1.176   thorpej 	}
   2122  1.196       jym 
   2123  1.196       jym 	/* Empty pool caches, then invalidate objects */
   2124  1.134        ad 	mutex_enter(&pc->pc_lock);
   2125  1.134        ad 	full = pc->pc_fullgroups;
   2126  1.134        ad 	empty = pc->pc_emptygroups;
   2127  1.134        ad 	part = pc->pc_partgroups;
   2128  1.134        ad 	pc->pc_fullgroups = NULL;
   2129  1.134        ad 	pc->pc_emptygroups = NULL;
   2130  1.134        ad 	pc->pc_partgroups = NULL;
   2131  1.134        ad 	pc->pc_nfull = 0;
   2132  1.134        ad 	pc->pc_nempty = 0;
   2133  1.134        ad 	pc->pc_npart = 0;
   2134  1.134        ad 	mutex_exit(&pc->pc_lock);
   2135  1.134        ad 
   2136  1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2137  1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2138  1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2139  1.134        ad }
   2140  1.134        ad 
   2141  1.175       jym /*
   2142  1.175       jym  * pool_cache_invalidate_cpu:
   2143  1.175       jym  *
   2144  1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2145  1.175       jym  *	identified by its associated index.
   2146  1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2147  1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2148  1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2149  1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2150  1.175       jym  *	may result in an undefined behaviour.
   2151  1.175       jym  */
   2152  1.175       jym static void
   2153  1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2154  1.175       jym {
   2155  1.175       jym 	pool_cache_cpu_t *cc;
   2156  1.175       jym 	pcg_t *pcg;
   2157  1.175       jym 
   2158  1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2159  1.175       jym 		return;
   2160  1.175       jym 
   2161  1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2162  1.175       jym 		pcg->pcg_next = NULL;
   2163  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2164  1.175       jym 	}
   2165  1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2166  1.175       jym 		pcg->pcg_next = NULL;
   2167  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2168  1.175       jym 	}
   2169  1.175       jym 	if (cc != &pc->pc_cpu0)
   2170  1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2171  1.175       jym 
   2172  1.175       jym }
   2173  1.175       jym 
   2174  1.134        ad void
   2175  1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2176  1.134        ad {
   2177  1.134        ad 
   2178  1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2179  1.134        ad }
   2180  1.134        ad 
   2181  1.134        ad void
   2182  1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2183  1.134        ad {
   2184  1.134        ad 
   2185  1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2186  1.134        ad }
   2187  1.134        ad 
   2188  1.134        ad void
   2189  1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2190  1.134        ad {
   2191  1.134        ad 
   2192  1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2193  1.134        ad }
   2194  1.134        ad 
   2195  1.134        ad void
   2196  1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2197  1.134        ad {
   2198  1.134        ad 
   2199  1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2200  1.134        ad }
   2201  1.134        ad 
   2202  1.162        ad static bool __noinline
   2203  1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2204  1.134        ad 		    paddr_t *pap, int flags)
   2205   1.43   thorpej {
   2206  1.134        ad 	pcg_t *pcg, *cur;
   2207  1.134        ad 	uint64_t ncsw;
   2208  1.134        ad 	pool_cache_t pc;
   2209   1.43   thorpej 	void *object;
   2210   1.58   thorpej 
   2211  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2212  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2213  1.168      yamt 
   2214  1.134        ad 	pc = cc->cc_cache;
   2215  1.134        ad 	cc->cc_misses++;
   2216   1.43   thorpej 
   2217  1.134        ad 	/*
   2218  1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2219  1.134        ad 	 * from the cache.
   2220  1.134        ad 	 */
   2221  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2222  1.134        ad 		ncsw = curlwp->l_ncsw;
   2223  1.134        ad 		mutex_enter(&pc->pc_lock);
   2224  1.134        ad 		pc->pc_contended++;
   2225   1.43   thorpej 
   2226  1.134        ad 		/*
   2227  1.134        ad 		 * If we context switched while locking, then
   2228  1.134        ad 		 * our view of the per-CPU data is invalid:
   2229  1.134        ad 		 * retry.
   2230  1.134        ad 		 */
   2231  1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2232  1.134        ad 			mutex_exit(&pc->pc_lock);
   2233  1.162        ad 			return true;
   2234   1.43   thorpej 		}
   2235  1.102       chs 	}
   2236   1.43   thorpej 
   2237  1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2238   1.43   thorpej 		/*
   2239  1.134        ad 		 * If there's a full group, release our empty
   2240  1.134        ad 		 * group back to the cache.  Install the full
   2241  1.134        ad 		 * group as cc_current and return.
   2242   1.43   thorpej 		 */
   2243  1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2244  1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2245  1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2246  1.134        ad 			pc->pc_emptygroups = cur;
   2247  1.134        ad 			pc->pc_nempty++;
   2248   1.87   thorpej 		}
   2249  1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2250  1.134        ad 		cc->cc_current = pcg;
   2251  1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2252  1.134        ad 		pc->pc_hits++;
   2253  1.134        ad 		pc->pc_nfull--;
   2254  1.134        ad 		mutex_exit(&pc->pc_lock);
   2255  1.162        ad 		return true;
   2256  1.134        ad 	}
   2257  1.134        ad 
   2258  1.134        ad 	/*
   2259  1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2260  1.134        ad 	 * path: fetch a new object from the pool and construct
   2261  1.134        ad 	 * it.
   2262  1.134        ad 	 */
   2263  1.134        ad 	pc->pc_misses++;
   2264  1.134        ad 	mutex_exit(&pc->pc_lock);
   2265  1.162        ad 	splx(s);
   2266  1.134        ad 
   2267  1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2268  1.134        ad 	*objectp = object;
   2269  1.211  riastrad 	if (__predict_false(object == NULL)) {
   2270  1.211  riastrad 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2271  1.162        ad 		return false;
   2272  1.211  riastrad 	}
   2273  1.125        ad 
   2274  1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2275  1.134        ad 		pool_put(&pc->pc_pool, object);
   2276  1.134        ad 		*objectp = NULL;
   2277  1.162        ad 		return false;
   2278   1.43   thorpej 	}
   2279   1.43   thorpej 
   2280  1.134        ad 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2281  1.134        ad 	    (pc->pc_pool.pr_align - 1)) == 0);
   2282   1.43   thorpej 
   2283  1.134        ad 	if (pap != NULL) {
   2284  1.134        ad #ifdef POOL_VTOPHYS
   2285  1.134        ad 		*pap = POOL_VTOPHYS(object);
   2286  1.134        ad #else
   2287  1.134        ad 		*pap = POOL_PADDR_INVALID;
   2288  1.134        ad #endif
   2289  1.102       chs 	}
   2290   1.43   thorpej 
   2291  1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2292  1.204      maxv 	pool_redzone_fill(&pc->pc_pool, object);
   2293  1.228      maxv 	pool_cache_kleak_fill(pc, object);
   2294  1.162        ad 	return false;
   2295   1.43   thorpej }
   2296   1.43   thorpej 
   2297   1.43   thorpej /*
   2298  1.134        ad  * pool_cache_get{,_paddr}:
   2299   1.43   thorpej  *
   2300  1.134        ad  *	Get an object from a pool cache (optionally returning
   2301  1.134        ad  *	the physical address of the object).
   2302   1.43   thorpej  */
   2303  1.134        ad void *
   2304  1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2305   1.43   thorpej {
   2306  1.134        ad 	pool_cache_cpu_t *cc;
   2307  1.134        ad 	pcg_t *pcg;
   2308  1.134        ad 	void *object;
   2309   1.60   thorpej 	int s;
   2310   1.43   thorpej 
   2311  1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2312  1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2313  1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2314  1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2315  1.213  christos 	    __func__, pc->pc_pool.pr_wchan);
   2316  1.184     rmind 
   2317  1.155        ad 	if (flags & PR_WAITOK) {
   2318  1.154      yamt 		ASSERT_SLEEPABLE();
   2319  1.155        ad 	}
   2320  1.125        ad 
   2321  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2322  1.162        ad 	s = splvm();
   2323  1.165      yamt 	while (/* CONSTCOND */ true) {
   2324  1.134        ad 		/* Try and allocate an object from the current group. */
   2325  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2326  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2327  1.134        ad 	 	pcg = cc->cc_current;
   2328  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2329  1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2330  1.162        ad 			if (__predict_false(pap != NULL))
   2331  1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2332  1.148      yamt #if defined(DIAGNOSTIC)
   2333  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2334  1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2335  1.134        ad 			KASSERT(object != NULL);
   2336  1.163        ad #endif
   2337  1.134        ad 			cc->cc_hits++;
   2338  1.162        ad 			splx(s);
   2339  1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2340  1.204      maxv 			pool_redzone_fill(&pc->pc_pool, object);
   2341  1.228      maxv 			pool_cache_kleak_fill(pc, object);
   2342  1.134        ad 			return object;
   2343   1.43   thorpej 		}
   2344   1.43   thorpej 
   2345   1.43   thorpej 		/*
   2346  1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2347  1.134        ad 		 * it with the current group and allocate from there.
   2348   1.43   thorpej 		 */
   2349  1.134        ad 		pcg = cc->cc_previous;
   2350  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2351  1.134        ad 			cc->cc_previous = cc->cc_current;
   2352  1.134        ad 			cc->cc_current = pcg;
   2353  1.134        ad 			continue;
   2354   1.43   thorpej 		}
   2355   1.43   thorpej 
   2356  1.134        ad 		/*
   2357  1.134        ad 		 * Can't allocate from either group: try the slow path.
   2358  1.134        ad 		 * If get_slow() allocated an object for us, or if
   2359  1.162        ad 		 * no more objects are available, it will return false.
   2360  1.134        ad 		 * Otherwise, we need to retry.
   2361  1.134        ad 		 */
   2362  1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2363  1.165      yamt 			break;
   2364  1.165      yamt 	}
   2365   1.43   thorpej 
   2366  1.211  riastrad 	/*
   2367  1.211  riastrad 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2368  1.211  riastrad 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2369  1.211  riastrad 	 * constructor fails.
   2370  1.211  riastrad 	 */
   2371  1.134        ad 	return object;
   2372   1.51   thorpej }
   2373   1.51   thorpej 
   2374  1.162        ad static bool __noinline
   2375  1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2376   1.51   thorpej {
   2377  1.200     pooka 	struct lwp *l = curlwp;
   2378  1.163        ad 	pcg_t *pcg, *cur;
   2379  1.134        ad 	uint64_t ncsw;
   2380  1.134        ad 	pool_cache_t pc;
   2381   1.51   thorpej 
   2382  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2383  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2384  1.168      yamt 
   2385  1.134        ad 	pc = cc->cc_cache;
   2386  1.171        ad 	pcg = NULL;
   2387  1.134        ad 	cc->cc_misses++;
   2388  1.200     pooka 	ncsw = l->l_ncsw;
   2389   1.43   thorpej 
   2390  1.171        ad 	/*
   2391  1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2392  1.171        ad 	 * while still unlocked.
   2393  1.171        ad 	 */
   2394  1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2395  1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2396  1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2397  1.171        ad 		}
   2398  1.200     pooka 		/*
   2399  1.200     pooka 		 * If pool_get() blocked, then our view of
   2400  1.200     pooka 		 * the per-CPU data is invalid: retry.
   2401  1.200     pooka 		 */
   2402  1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2403  1.200     pooka 			if (pcg != NULL) {
   2404  1.200     pooka 				pool_put(pc->pc_pcgpool, pcg);
   2405  1.200     pooka 			}
   2406  1.200     pooka 			return true;
   2407  1.200     pooka 		}
   2408  1.171        ad 		if (__predict_true(pcg != NULL)) {
   2409  1.171        ad 			pcg->pcg_avail = 0;
   2410  1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2411  1.171        ad 		}
   2412  1.171        ad 	}
   2413  1.171        ad 
   2414  1.162        ad 	/* Lock the cache. */
   2415  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2416  1.134        ad 		mutex_enter(&pc->pc_lock);
   2417  1.134        ad 		pc->pc_contended++;
   2418  1.162        ad 
   2419  1.163        ad 		/*
   2420  1.163        ad 		 * If we context switched while locking, then our view of
   2421  1.163        ad 		 * the per-CPU data is invalid: retry.
   2422  1.163        ad 		 */
   2423  1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2424  1.163        ad 			mutex_exit(&pc->pc_lock);
   2425  1.171        ad 			if (pcg != NULL) {
   2426  1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2427  1.171        ad 			}
   2428  1.163        ad 			return true;
   2429  1.163        ad 		}
   2430  1.162        ad 	}
   2431  1.102       chs 
   2432  1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2433  1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2434  1.171        ad 		pcg = pc->pc_emptygroups;
   2435  1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2436  1.163        ad 		pc->pc_nempty--;
   2437  1.134        ad 	}
   2438  1.130        ad 
   2439  1.162        ad 	/*
   2440  1.162        ad 	 * If there's a empty group, release our full group back
   2441  1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2442  1.162        ad 	 * and return.
   2443  1.162        ad 	 */
   2444  1.163        ad 	if (pcg != NULL) {
   2445  1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2446  1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2447  1.146        ad 			cc->cc_previous = pcg;
   2448  1.146        ad 		} else {
   2449  1.162        ad 			cur = cc->cc_current;
   2450  1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2451  1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2452  1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2453  1.146        ad 				pc->pc_fullgroups = cur;
   2454  1.146        ad 				pc->pc_nfull++;
   2455  1.146        ad 			}
   2456  1.146        ad 			cc->cc_current = pcg;
   2457  1.146        ad 		}
   2458  1.163        ad 		pc->pc_hits++;
   2459  1.134        ad 		mutex_exit(&pc->pc_lock);
   2460  1.162        ad 		return true;
   2461  1.102       chs 	}
   2462  1.105  christos 
   2463  1.134        ad 	/*
   2464  1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2465  1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2466  1.162        ad 	 * the object here and now.
   2467  1.134        ad 	 */
   2468  1.134        ad 	pc->pc_misses++;
   2469  1.134        ad 	mutex_exit(&pc->pc_lock);
   2470  1.162        ad 	splx(s);
   2471  1.162        ad 	pool_cache_destruct_object(pc, object);
   2472  1.105  christos 
   2473  1.162        ad 	return false;
   2474  1.134        ad }
   2475  1.102       chs 
   2476   1.43   thorpej /*
   2477  1.134        ad  * pool_cache_put{,_paddr}:
   2478   1.43   thorpej  *
   2479  1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2480  1.134        ad  *	physical address of the object).
   2481   1.43   thorpej  */
   2482  1.101   thorpej void
   2483  1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2484   1.43   thorpej {
   2485  1.134        ad 	pool_cache_cpu_t *cc;
   2486  1.134        ad 	pcg_t *pcg;
   2487  1.134        ad 	int s;
   2488  1.101   thorpej 
   2489  1.172      yamt 	KASSERT(object != NULL);
   2490  1.229      maxv 	pool_cache_redzone_check(pc, object);
   2491  1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2492  1.101   thorpej 
   2493  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2494  1.162        ad 	s = splvm();
   2495  1.165      yamt 	while (/* CONSTCOND */ true) {
   2496  1.134        ad 		/* If the current group isn't full, release it there. */
   2497  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2498  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2499  1.134        ad 	 	pcg = cc->cc_current;
   2500  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2501  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2502  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2503  1.134        ad 			pcg->pcg_avail++;
   2504  1.134        ad 			cc->cc_hits++;
   2505  1.162        ad 			splx(s);
   2506  1.134        ad 			return;
   2507  1.134        ad 		}
   2508   1.43   thorpej 
   2509  1.134        ad 		/*
   2510  1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2511  1.134        ad 		 * it with the current group and try again.
   2512  1.134        ad 		 */
   2513  1.134        ad 		pcg = cc->cc_previous;
   2514  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2515  1.134        ad 			cc->cc_previous = cc->cc_current;
   2516  1.134        ad 			cc->cc_current = pcg;
   2517  1.134        ad 			continue;
   2518  1.134        ad 		}
   2519   1.43   thorpej 
   2520  1.134        ad 		/*
   2521  1.134        ad 		 * Can't free to either group: try the slow path.
   2522  1.134        ad 		 * If put_slow() releases the object for us, it
   2523  1.162        ad 		 * will return false.  Otherwise we need to retry.
   2524  1.134        ad 		 */
   2525  1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2526  1.165      yamt 			break;
   2527  1.165      yamt 	}
   2528   1.43   thorpej }
   2529   1.43   thorpej 
   2530   1.43   thorpej /*
   2531  1.196       jym  * pool_cache_transfer:
   2532   1.43   thorpej  *
   2533  1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2534  1.134        ad  *	Run within a cross-call thread.
   2535   1.43   thorpej  */
   2536   1.43   thorpej static void
   2537  1.196       jym pool_cache_transfer(pool_cache_t pc)
   2538   1.43   thorpej {
   2539  1.134        ad 	pool_cache_cpu_t *cc;
   2540  1.134        ad 	pcg_t *prev, *cur, **list;
   2541  1.162        ad 	int s;
   2542  1.134        ad 
   2543  1.162        ad 	s = splvm();
   2544  1.162        ad 	mutex_enter(&pc->pc_lock);
   2545  1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2546  1.134        ad 	cur = cc->cc_current;
   2547  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2548  1.134        ad 	prev = cc->cc_previous;
   2549  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2550  1.162        ad 	if (cur != &pcg_dummy) {
   2551  1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2552  1.134        ad 			list = &pc->pc_fullgroups;
   2553  1.134        ad 			pc->pc_nfull++;
   2554  1.134        ad 		} else if (cur->pcg_avail == 0) {
   2555  1.134        ad 			list = &pc->pc_emptygroups;
   2556  1.134        ad 			pc->pc_nempty++;
   2557  1.134        ad 		} else {
   2558  1.134        ad 			list = &pc->pc_partgroups;
   2559  1.134        ad 			pc->pc_npart++;
   2560  1.134        ad 		}
   2561  1.134        ad 		cur->pcg_next = *list;
   2562  1.134        ad 		*list = cur;
   2563  1.134        ad 	}
   2564  1.162        ad 	if (prev != &pcg_dummy) {
   2565  1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2566  1.134        ad 			list = &pc->pc_fullgroups;
   2567  1.134        ad 			pc->pc_nfull++;
   2568  1.134        ad 		} else if (prev->pcg_avail == 0) {
   2569  1.134        ad 			list = &pc->pc_emptygroups;
   2570  1.134        ad 			pc->pc_nempty++;
   2571  1.134        ad 		} else {
   2572  1.134        ad 			list = &pc->pc_partgroups;
   2573  1.134        ad 			pc->pc_npart++;
   2574  1.134        ad 		}
   2575  1.134        ad 		prev->pcg_next = *list;
   2576  1.134        ad 		*list = prev;
   2577  1.134        ad 	}
   2578  1.134        ad 	mutex_exit(&pc->pc_lock);
   2579  1.134        ad 	splx(s);
   2580    1.3        pk }
   2581   1.66   thorpej 
   2582   1.66   thorpej /*
   2583   1.66   thorpej  * Pool backend allocators.
   2584   1.66   thorpej  *
   2585   1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2586   1.66   thorpej  * and any additional draining that might be needed.
   2587   1.66   thorpej  *
   2588   1.66   thorpej  * We provide two standard allocators:
   2589   1.66   thorpej  *
   2590   1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2591   1.66   thorpej  *
   2592   1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2593   1.66   thorpej  *	in interrupt context.
   2594   1.66   thorpej  */
   2595   1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2596   1.66   thorpej void	pool_page_free(struct pool *, void *);
   2597   1.66   thorpej 
   2598  1.112     bjh21 #ifdef POOL_SUBPAGE
   2599  1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2600  1.192     rmind 	.pa_alloc = pool_page_alloc,
   2601  1.192     rmind 	.pa_free = pool_page_free,
   2602  1.192     rmind 	.pa_pagesz = 0
   2603  1.112     bjh21 };
   2604  1.112     bjh21 #else
   2605   1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2606  1.191      para 	.pa_alloc = pool_page_alloc,
   2607  1.191      para 	.pa_free = pool_page_free,
   2608  1.191      para 	.pa_pagesz = 0
   2609   1.66   thorpej };
   2610  1.112     bjh21 #endif
   2611   1.66   thorpej 
   2612  1.112     bjh21 #ifdef POOL_SUBPAGE
   2613  1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2614  1.194      para 	.pa_alloc = pool_page_alloc,
   2615  1.194      para 	.pa_free = pool_page_free,
   2616  1.192     rmind 	.pa_pagesz = 0
   2617  1.112     bjh21 };
   2618  1.112     bjh21 #else
   2619   1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2620  1.191      para 	.pa_alloc = pool_page_alloc,
   2621  1.191      para 	.pa_free = pool_page_free,
   2622  1.191      para 	.pa_pagesz = 0
   2623   1.66   thorpej };
   2624  1.112     bjh21 #endif
   2625   1.66   thorpej 
   2626   1.66   thorpej #ifdef POOL_SUBPAGE
   2627   1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2628   1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2629   1.66   thorpej 
   2630  1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2631  1.193        he 	.pa_alloc = pool_subpage_alloc,
   2632  1.193        he 	.pa_free = pool_subpage_free,
   2633  1.193        he 	.pa_pagesz = POOL_SUBPAGE
   2634  1.112     bjh21 };
   2635  1.112     bjh21 
   2636  1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2637  1.192     rmind 	.pa_alloc = pool_subpage_alloc,
   2638  1.192     rmind 	.pa_free = pool_subpage_free,
   2639  1.192     rmind 	.pa_pagesz = POOL_SUBPAGE
   2640   1.66   thorpej };
   2641   1.66   thorpej #endif /* POOL_SUBPAGE */
   2642   1.66   thorpej 
   2643  1.208       chs struct pool_allocator pool_allocator_big[] = {
   2644  1.208       chs 	{
   2645  1.208       chs 		.pa_alloc = pool_page_alloc,
   2646  1.208       chs 		.pa_free = pool_page_free,
   2647  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2648  1.208       chs 	},
   2649  1.208       chs 	{
   2650  1.208       chs 		.pa_alloc = pool_page_alloc,
   2651  1.208       chs 		.pa_free = pool_page_free,
   2652  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2653  1.208       chs 	},
   2654  1.208       chs 	{
   2655  1.208       chs 		.pa_alloc = pool_page_alloc,
   2656  1.208       chs 		.pa_free = pool_page_free,
   2657  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2658  1.208       chs 	},
   2659  1.208       chs 	{
   2660  1.208       chs 		.pa_alloc = pool_page_alloc,
   2661  1.208       chs 		.pa_free = pool_page_free,
   2662  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2663  1.208       chs 	},
   2664  1.208       chs 	{
   2665  1.208       chs 		.pa_alloc = pool_page_alloc,
   2666  1.208       chs 		.pa_free = pool_page_free,
   2667  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2668  1.208       chs 	},
   2669  1.208       chs 	{
   2670  1.208       chs 		.pa_alloc = pool_page_alloc,
   2671  1.208       chs 		.pa_free = pool_page_free,
   2672  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2673  1.208       chs 	},
   2674  1.208       chs 	{
   2675  1.208       chs 		.pa_alloc = pool_page_alloc,
   2676  1.208       chs 		.pa_free = pool_page_free,
   2677  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2678  1.208       chs 	},
   2679  1.208       chs 	{
   2680  1.208       chs 		.pa_alloc = pool_page_alloc,
   2681  1.208       chs 		.pa_free = pool_page_free,
   2682  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2683  1.208       chs 	}
   2684  1.208       chs };
   2685  1.208       chs 
   2686  1.208       chs static int
   2687  1.208       chs pool_bigidx(size_t size)
   2688  1.208       chs {
   2689  1.208       chs 	int i;
   2690  1.208       chs 
   2691  1.208       chs 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2692  1.208       chs 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2693  1.208       chs 			return i;
   2694  1.208       chs 	}
   2695  1.208       chs 	panic("pool item size %zu too large, use a custom allocator", size);
   2696  1.208       chs }
   2697  1.208       chs 
   2698  1.117      yamt static void *
   2699  1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2700   1.66   thorpej {
   2701  1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2702   1.66   thorpej 	void *res;
   2703   1.66   thorpej 
   2704  1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2705  1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2706   1.66   thorpej 		/*
   2707  1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2708  1.117      yamt 		 * In other cases, the hook will be run in
   2709  1.117      yamt 		 * pool_reclaim().
   2710   1.66   thorpej 		 */
   2711  1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2712  1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2713  1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2714   1.66   thorpej 		}
   2715  1.117      yamt 	}
   2716  1.117      yamt 	return res;
   2717   1.66   thorpej }
   2718   1.66   thorpej 
   2719  1.117      yamt static void
   2720   1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2721   1.66   thorpej {
   2722   1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2723   1.66   thorpej 
   2724  1.229      maxv 	if (pp->pr_redzone) {
   2725  1.231      maxv 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz);
   2726  1.229      maxv 	}
   2727   1.66   thorpej 	(*pa->pa_free)(pp, v);
   2728   1.66   thorpej }
   2729   1.66   thorpej 
   2730   1.66   thorpej void *
   2731  1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2732   1.66   thorpej {
   2733  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2734  1.191      para 	vmem_addr_t va;
   2735  1.192     rmind 	int ret;
   2736  1.191      para 
   2737  1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2738  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2739   1.66   thorpej 
   2740  1.192     rmind 	return ret ? NULL : (void *)va;
   2741   1.66   thorpej }
   2742   1.66   thorpej 
   2743   1.66   thorpej void
   2744  1.124      yamt pool_page_free(struct pool *pp, void *v)
   2745   1.66   thorpej {
   2746   1.66   thorpej 
   2747  1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2748   1.98      yamt }
   2749   1.98      yamt 
   2750   1.98      yamt static void *
   2751  1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2752   1.98      yamt {
   2753  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2754  1.192     rmind 	vmem_addr_t va;
   2755  1.192     rmind 	int ret;
   2756  1.191      para 
   2757  1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2758  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2759   1.98      yamt 
   2760  1.192     rmind 	return ret ? NULL : (void *)va;
   2761   1.98      yamt }
   2762   1.98      yamt 
   2763   1.98      yamt static void
   2764  1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2765   1.98      yamt {
   2766   1.98      yamt 
   2767  1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2768   1.66   thorpej }
   2769   1.66   thorpej 
   2770  1.228      maxv #ifdef KLEAK
   2771  1.228      maxv static void
   2772  1.228      maxv pool_kleak_fill(struct pool *pp, void *p)
   2773  1.228      maxv {
   2774  1.228      maxv 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
   2775  1.228      maxv 		return;
   2776  1.228      maxv 	}
   2777  1.228      maxv 	kleak_fill_area(p, pp->pr_size);
   2778  1.228      maxv }
   2779  1.228      maxv 
   2780  1.228      maxv static void
   2781  1.228      maxv pool_cache_kleak_fill(pool_cache_t pc, void *p)
   2782  1.228      maxv {
   2783  1.229      maxv 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2784  1.228      maxv 		return;
   2785  1.228      maxv 	}
   2786  1.228      maxv 	pool_kleak_fill(&pc->pc_pool, p);
   2787  1.228      maxv }
   2788  1.228      maxv #endif
   2789  1.228      maxv 
   2790  1.204      maxv #ifdef POOL_REDZONE
   2791  1.204      maxv #if defined(_LP64)
   2792  1.204      maxv # define PRIME 0x9e37fffffffc0000UL
   2793  1.204      maxv #else /* defined(_LP64) */
   2794  1.204      maxv # define PRIME 0x9e3779b1
   2795  1.204      maxv #endif /* defined(_LP64) */
   2796  1.204      maxv #define STATIC_BYTE	0xFE
   2797  1.204      maxv CTASSERT(POOL_REDZONE_SIZE > 1);
   2798  1.204      maxv 
   2799  1.224      maxv #ifndef KASAN
   2800  1.204      maxv static inline uint8_t
   2801  1.204      maxv pool_pattern_generate(const void *p)
   2802  1.204      maxv {
   2803  1.204      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
   2804  1.204      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2805  1.204      maxv }
   2806  1.224      maxv #endif
   2807  1.204      maxv 
   2808  1.204      maxv static void
   2809  1.204      maxv pool_redzone_init(struct pool *pp, size_t requested_size)
   2810  1.204      maxv {
   2811  1.227      maxv 	size_t redzsz;
   2812  1.204      maxv 	size_t nsz;
   2813  1.204      maxv 
   2814  1.227      maxv #ifdef KASAN
   2815  1.227      maxv 	redzsz = requested_size;
   2816  1.227      maxv 	kasan_add_redzone(&redzsz);
   2817  1.227      maxv 	redzsz -= requested_size;
   2818  1.227      maxv #else
   2819  1.227      maxv 	redzsz = POOL_REDZONE_SIZE;
   2820  1.227      maxv #endif
   2821  1.227      maxv 
   2822  1.204      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   2823  1.204      maxv 		pp->pr_reqsize = 0;
   2824  1.204      maxv 		pp->pr_redzone = false;
   2825  1.204      maxv 		return;
   2826  1.204      maxv 	}
   2827  1.204      maxv 
   2828  1.204      maxv 	/*
   2829  1.204      maxv 	 * We may have extended the requested size earlier; check if
   2830  1.204      maxv 	 * there's naturally space in the padding for a red zone.
   2831  1.204      maxv 	 */
   2832  1.227      maxv 	if (pp->pr_size - requested_size >= redzsz) {
   2833  1.204      maxv 		pp->pr_reqsize = requested_size;
   2834  1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2835  1.204      maxv 		pp->pr_redzone = true;
   2836  1.204      maxv 		return;
   2837  1.204      maxv 	}
   2838  1.204      maxv 
   2839  1.204      maxv 	/*
   2840  1.204      maxv 	 * No space in the natural padding; check if we can extend a
   2841  1.204      maxv 	 * bit the size of the pool.
   2842  1.204      maxv 	 */
   2843  1.227      maxv 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   2844  1.204      maxv 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2845  1.204      maxv 		/* Ok, we can */
   2846  1.204      maxv 		pp->pr_size = nsz;
   2847  1.204      maxv 		pp->pr_reqsize = requested_size;
   2848  1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2849  1.204      maxv 		pp->pr_redzone = true;
   2850  1.204      maxv 	} else {
   2851  1.204      maxv 		/* No space for a red zone... snif :'( */
   2852  1.204      maxv 		pp->pr_reqsize = 0;
   2853  1.204      maxv 		pp->pr_redzone = false;
   2854  1.204      maxv 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2855  1.204      maxv 	}
   2856  1.204      maxv }
   2857  1.204      maxv 
   2858  1.204      maxv static void
   2859  1.204      maxv pool_redzone_fill(struct pool *pp, void *p)
   2860  1.204      maxv {
   2861  1.224      maxv 	if (!pp->pr_redzone)
   2862  1.224      maxv 		return;
   2863  1.224      maxv #ifdef KASAN
   2864  1.231      maxv 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone);
   2865  1.224      maxv #else
   2866  1.204      maxv 	uint8_t *cp, pat;
   2867  1.204      maxv 	const uint8_t *ep;
   2868  1.204      maxv 
   2869  1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   2870  1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   2871  1.204      maxv 
   2872  1.204      maxv 	/*
   2873  1.204      maxv 	 * We really don't want the first byte of the red zone to be '\0';
   2874  1.204      maxv 	 * an off-by-one in a string may not be properly detected.
   2875  1.204      maxv 	 */
   2876  1.204      maxv 	pat = pool_pattern_generate(cp);
   2877  1.204      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2878  1.204      maxv 	cp++;
   2879  1.204      maxv 
   2880  1.204      maxv 	while (cp < ep) {
   2881  1.204      maxv 		*cp = pool_pattern_generate(cp);
   2882  1.204      maxv 		cp++;
   2883  1.204      maxv 	}
   2884  1.224      maxv #endif
   2885  1.204      maxv }
   2886  1.204      maxv 
   2887  1.204      maxv static void
   2888  1.204      maxv pool_redzone_check(struct pool *pp, void *p)
   2889  1.204      maxv {
   2890  1.224      maxv 	if (!pp->pr_redzone)
   2891  1.224      maxv 		return;
   2892  1.224      maxv #ifdef KASAN
   2893  1.231      maxv 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone);
   2894  1.224      maxv #else
   2895  1.204      maxv 	uint8_t *cp, pat, expected;
   2896  1.204      maxv 	const uint8_t *ep;
   2897  1.204      maxv 
   2898  1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   2899  1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   2900  1.204      maxv 
   2901  1.204      maxv 	pat = pool_pattern_generate(cp);
   2902  1.204      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2903  1.225      maxv 	if (__predict_false(expected != *cp)) {
   2904  1.225      maxv 		printf("%s: %p: 0x%02x != 0x%02x\n",
   2905  1.204      maxv 		   __func__, cp, *cp, expected);
   2906  1.204      maxv 	}
   2907  1.204      maxv 	cp++;
   2908  1.204      maxv 
   2909  1.204      maxv 	while (cp < ep) {
   2910  1.204      maxv 		expected = pool_pattern_generate(cp);
   2911  1.225      maxv 		if (__predict_false(*cp != expected)) {
   2912  1.225      maxv 			printf("%s: %p: 0x%02x != 0x%02x\n",
   2913  1.204      maxv 			   __func__, cp, *cp, expected);
   2914  1.204      maxv 		}
   2915  1.204      maxv 		cp++;
   2916  1.204      maxv 	}
   2917  1.224      maxv #endif
   2918  1.204      maxv }
   2919  1.204      maxv 
   2920  1.229      maxv static void
   2921  1.229      maxv pool_cache_redzone_check(pool_cache_t pc, void *p)
   2922  1.229      maxv {
   2923  1.229      maxv #ifdef KASAN
   2924  1.229      maxv 	/* If there is a ctor/dtor, leave the data as valid. */
   2925  1.229      maxv 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2926  1.229      maxv 		return;
   2927  1.229      maxv 	}
   2928  1.229      maxv #endif
   2929  1.229      maxv 	pool_redzone_check(&pc->pc_pool, p);
   2930  1.229      maxv }
   2931  1.229      maxv 
   2932  1.204      maxv #endif /* POOL_REDZONE */
   2933  1.204      maxv 
   2934  1.204      maxv 
   2935   1.66   thorpej #ifdef POOL_SUBPAGE
   2936   1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   2937   1.66   thorpej void *
   2938   1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   2939   1.66   thorpej {
   2940  1.134        ad 	return pool_get(&psppool, flags);
   2941   1.66   thorpej }
   2942   1.66   thorpej 
   2943   1.66   thorpej void
   2944   1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   2945   1.66   thorpej {
   2946   1.66   thorpej 	pool_put(&psppool, v);
   2947   1.66   thorpej }
   2948   1.66   thorpej 
   2949  1.112     bjh21 #endif /* POOL_SUBPAGE */
   2950  1.141      yamt 
   2951  1.141      yamt #if defined(DDB)
   2952  1.141      yamt static bool
   2953  1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2954  1.141      yamt {
   2955  1.141      yamt 
   2956  1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   2957  1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2958  1.141      yamt }
   2959  1.141      yamt 
   2960  1.143      yamt static bool
   2961  1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2962  1.143      yamt {
   2963  1.143      yamt 
   2964  1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2965  1.143      yamt }
   2966  1.143      yamt 
   2967  1.143      yamt static bool
   2968  1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2969  1.143      yamt {
   2970  1.143      yamt 	int i;
   2971  1.143      yamt 
   2972  1.143      yamt 	if (pcg == NULL) {
   2973  1.143      yamt 		return false;
   2974  1.143      yamt 	}
   2975  1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   2976  1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2977  1.143      yamt 			return true;
   2978  1.143      yamt 		}
   2979  1.143      yamt 	}
   2980  1.143      yamt 	return false;
   2981  1.143      yamt }
   2982  1.143      yamt 
   2983  1.143      yamt static bool
   2984  1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2985  1.143      yamt {
   2986  1.143      yamt 
   2987  1.143      yamt 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2988  1.143      yamt 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2989  1.143      yamt 		pool_item_bitmap_t *bitmap =
   2990  1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2991  1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2992  1.143      yamt 
   2993  1.143      yamt 		return (*bitmap & mask) == 0;
   2994  1.143      yamt 	} else {
   2995  1.143      yamt 		struct pool_item *pi;
   2996  1.143      yamt 
   2997  1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2998  1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   2999  1.143      yamt 				return false;
   3000  1.143      yamt 			}
   3001  1.143      yamt 		}
   3002  1.143      yamt 		return true;
   3003  1.143      yamt 	}
   3004  1.143      yamt }
   3005  1.143      yamt 
   3006  1.141      yamt void
   3007  1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3008  1.141      yamt {
   3009  1.141      yamt 	struct pool *pp;
   3010  1.141      yamt 
   3011  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3012  1.141      yamt 		struct pool_item_header *ph;
   3013  1.141      yamt 		uintptr_t item;
   3014  1.143      yamt 		bool allocated = true;
   3015  1.143      yamt 		bool incache = false;
   3016  1.143      yamt 		bool incpucache = false;
   3017  1.143      yamt 		char cpucachestr[32];
   3018  1.141      yamt 
   3019  1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3020  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3021  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3022  1.141      yamt 					goto found;
   3023  1.141      yamt 				}
   3024  1.141      yamt 			}
   3025  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3026  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3027  1.143      yamt 					allocated =
   3028  1.143      yamt 					    pool_allocated(pp, ph, addr);
   3029  1.143      yamt 					goto found;
   3030  1.143      yamt 				}
   3031  1.143      yamt 			}
   3032  1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3033  1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   3034  1.143      yamt 					allocated = false;
   3035  1.141      yamt 					goto found;
   3036  1.141      yamt 				}
   3037  1.141      yamt 			}
   3038  1.141      yamt 			continue;
   3039  1.141      yamt 		} else {
   3040  1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3041  1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3042  1.141      yamt 				continue;
   3043  1.141      yamt 			}
   3044  1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3045  1.141      yamt 		}
   3046  1.141      yamt found:
   3047  1.143      yamt 		if (allocated && pp->pr_cache) {
   3048  1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   3049  1.143      yamt 			struct pool_cache_group *pcg;
   3050  1.143      yamt 			int i;
   3051  1.143      yamt 
   3052  1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3053  1.143      yamt 			    pcg = pcg->pcg_next) {
   3054  1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3055  1.143      yamt 					incache = true;
   3056  1.143      yamt 					goto print;
   3057  1.143      yamt 				}
   3058  1.143      yamt 			}
   3059  1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3060  1.143      yamt 				pool_cache_cpu_t *cc;
   3061  1.143      yamt 
   3062  1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3063  1.143      yamt 					continue;
   3064  1.143      yamt 				}
   3065  1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3066  1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3067  1.143      yamt 					struct cpu_info *ci =
   3068  1.170        ad 					    cpu_lookup(i);
   3069  1.143      yamt 
   3070  1.143      yamt 					incpucache = true;
   3071  1.143      yamt 					snprintf(cpucachestr,
   3072  1.143      yamt 					    sizeof(cpucachestr),
   3073  1.143      yamt 					    "cached by CPU %u",
   3074  1.153    martin 					    ci->ci_index);
   3075  1.143      yamt 					goto print;
   3076  1.143      yamt 				}
   3077  1.143      yamt 			}
   3078  1.143      yamt 		}
   3079  1.143      yamt print:
   3080  1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3081  1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3082  1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3083  1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3084  1.143      yamt 		    pp->pr_wchan,
   3085  1.143      yamt 		    incpucache ? cpucachestr :
   3086  1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3087  1.141      yamt 	}
   3088  1.141      yamt }
   3089  1.141      yamt #endif /* defined(DDB) */
   3090  1.203     joerg 
   3091  1.203     joerg static int
   3092  1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   3093  1.203     joerg {
   3094  1.203     joerg 	struct pool_sysctl data;
   3095  1.203     joerg 	struct pool *pp;
   3096  1.203     joerg 	struct pool_cache *pc;
   3097  1.203     joerg 	pool_cache_cpu_t *cc;
   3098  1.203     joerg 	int error;
   3099  1.203     joerg 	size_t i, written;
   3100  1.203     joerg 
   3101  1.203     joerg 	if (oldp == NULL) {
   3102  1.203     joerg 		*oldlenp = 0;
   3103  1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3104  1.203     joerg 			*oldlenp += sizeof(data);
   3105  1.203     joerg 		return 0;
   3106  1.203     joerg 	}
   3107  1.203     joerg 
   3108  1.203     joerg 	memset(&data, 0, sizeof(data));
   3109  1.203     joerg 	error = 0;
   3110  1.203     joerg 	written = 0;
   3111  1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3112  1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   3113  1.203     joerg 			break;
   3114  1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3115  1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3116  1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3117  1.203     joerg #define COPY(field) data.field = pp->field
   3118  1.203     joerg 		COPY(pr_size);
   3119  1.203     joerg 
   3120  1.203     joerg 		COPY(pr_itemsperpage);
   3121  1.203     joerg 		COPY(pr_nitems);
   3122  1.203     joerg 		COPY(pr_nout);
   3123  1.203     joerg 		COPY(pr_hardlimit);
   3124  1.203     joerg 		COPY(pr_npages);
   3125  1.203     joerg 		COPY(pr_minpages);
   3126  1.203     joerg 		COPY(pr_maxpages);
   3127  1.203     joerg 
   3128  1.203     joerg 		COPY(pr_nget);
   3129  1.203     joerg 		COPY(pr_nfail);
   3130  1.203     joerg 		COPY(pr_nput);
   3131  1.203     joerg 		COPY(pr_npagealloc);
   3132  1.203     joerg 		COPY(pr_npagefree);
   3133  1.203     joerg 		COPY(pr_hiwat);
   3134  1.203     joerg 		COPY(pr_nidle);
   3135  1.203     joerg #undef COPY
   3136  1.203     joerg 
   3137  1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   3138  1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   3139  1.203     joerg 		if (pp->pr_cache) {
   3140  1.203     joerg 			pc = pp->pr_cache;
   3141  1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3142  1.203     joerg 			data.pr_cache_nfull = pc->pc_nfull;
   3143  1.203     joerg 			data.pr_cache_npartial = pc->pc_npart;
   3144  1.203     joerg 			data.pr_cache_nempty = pc->pc_nempty;
   3145  1.203     joerg 			data.pr_cache_ncontended = pc->pc_contended;
   3146  1.203     joerg 			data.pr_cache_nmiss_global = pc->pc_misses;
   3147  1.203     joerg 			data.pr_cache_nhit_global = pc->pc_hits;
   3148  1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3149  1.203     joerg 				cc = pc->pc_cpus[i];
   3150  1.203     joerg 				if (cc == NULL)
   3151  1.203     joerg 					continue;
   3152  1.206  knakahar 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3153  1.206  knakahar 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3154  1.203     joerg 			}
   3155  1.203     joerg 		} else {
   3156  1.203     joerg 			data.pr_cache_meta_size = 0;
   3157  1.203     joerg 			data.pr_cache_nfull = 0;
   3158  1.203     joerg 			data.pr_cache_npartial = 0;
   3159  1.203     joerg 			data.pr_cache_nempty = 0;
   3160  1.203     joerg 			data.pr_cache_ncontended = 0;
   3161  1.203     joerg 			data.pr_cache_nmiss_global = 0;
   3162  1.203     joerg 			data.pr_cache_nhit_global = 0;
   3163  1.203     joerg 		}
   3164  1.203     joerg 
   3165  1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3166  1.203     joerg 		if (error)
   3167  1.203     joerg 			break;
   3168  1.203     joerg 		written += sizeof(data);
   3169  1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   3170  1.203     joerg 	}
   3171  1.203     joerg 
   3172  1.203     joerg 	*oldlenp = written;
   3173  1.203     joerg 	return error;
   3174  1.203     joerg }
   3175  1.203     joerg 
   3176  1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3177  1.203     joerg {
   3178  1.203     joerg 	const struct sysctlnode *rnode = NULL;
   3179  1.203     joerg 
   3180  1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   3181  1.203     joerg 		       CTLFLAG_PERMANENT,
   3182  1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   3183  1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   3184  1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   3185  1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3186  1.203     joerg }
   3187