Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.243
      1  1.243      maxv /*	$NetBSD: subr_pool.c,v 1.243 2019/03/18 20:34:48 maxv Exp $	*/
      2    1.1        pk 
      3  1.229      maxv /*
      4  1.229      maxv  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5  1.183        ad  *     The NetBSD Foundation, Inc.
      6    1.1        pk  * All rights reserved.
      7    1.1        pk  *
      8    1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9   1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  1.204      maxv  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  1.204      maxv  * Maxime Villard.
     12    1.1        pk  *
     13    1.1        pk  * Redistribution and use in source and binary forms, with or without
     14    1.1        pk  * modification, are permitted provided that the following conditions
     15    1.1        pk  * are met:
     16    1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17    1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18    1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19    1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20    1.1        pk  *    documentation and/or other materials provided with the distribution.
     21    1.1        pk  *
     22    1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23    1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24    1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25    1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26    1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27    1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28    1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29    1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30    1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31    1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32    1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33    1.1        pk  */
     34   1.64     lukem 
     35   1.64     lukem #include <sys/cdefs.h>
     36  1.243      maxv __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.243 2019/03/18 20:34:48 maxv Exp $");
     37   1.24    scottr 
     38  1.205     pooka #ifdef _KERNEL_OPT
     39  1.141      yamt #include "opt_ddb.h"
     40   1.28   thorpej #include "opt_lockdebug.h"
     41  1.228      maxv #include "opt_kleak.h"
     42  1.205     pooka #endif
     43    1.1        pk 
     44    1.1        pk #include <sys/param.h>
     45    1.1        pk #include <sys/systm.h>
     46  1.203     joerg #include <sys/sysctl.h>
     47  1.135      yamt #include <sys/bitops.h>
     48    1.1        pk #include <sys/proc.h>
     49    1.1        pk #include <sys/errno.h>
     50    1.1        pk #include <sys/kernel.h>
     51  1.191      para #include <sys/vmem.h>
     52    1.1        pk #include <sys/pool.h>
     53   1.20   thorpej #include <sys/syslog.h>
     54  1.125        ad #include <sys/debug.h>
     55  1.134        ad #include <sys/lockdebug.h>
     56  1.134        ad #include <sys/xcall.h>
     57  1.134        ad #include <sys/cpu.h>
     58  1.145        ad #include <sys/atomic.h>
     59  1.224      maxv #include <sys/asan.h>
     60    1.3        pk 
     61  1.187  uebayasi #include <uvm/uvm_extern.h>
     62    1.3        pk 
     63    1.1        pk /*
     64    1.1        pk  * Pool resource management utility.
     65    1.3        pk  *
     66   1.88       chs  * Memory is allocated in pages which are split into pieces according to
     67   1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     68   1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     69   1.88       chs  * for empty, full and partially-full pages respectively. The individual
     70   1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     71   1.88       chs  * header. The memory for building the page list is either taken from
     72   1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     73   1.88       chs  * an internal pool of page headers (`phpool').
     74    1.1        pk  */
     75    1.1        pk 
     76  1.221      para /* List of all pools. Non static as needed by 'vmstat -m' */
     77  1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     78  1.134        ad 
     79    1.3        pk /* Private pool for page header structures */
     80   1.97      yamt #define	PHPOOL_MAX	8
     81   1.97      yamt static struct pool phpool[PHPOOL_MAX];
     82  1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     83  1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     84    1.3        pk 
     85   1.62     bjh21 #ifdef POOL_SUBPAGE
     86   1.62     bjh21 /* Pool of subpages for use by normal pools. */
     87   1.62     bjh21 static struct pool psppool;
     88   1.62     bjh21 #endif
     89   1.62     bjh21 
     90  1.226      maxv #if defined(KASAN)
     91  1.224      maxv #define POOL_REDZONE
     92  1.224      maxv #endif
     93  1.224      maxv 
     94  1.204      maxv #ifdef POOL_REDZONE
     95  1.224      maxv # ifdef KASAN
     96  1.224      maxv #  define POOL_REDZONE_SIZE 8
     97  1.224      maxv # else
     98  1.224      maxv #  define POOL_REDZONE_SIZE 2
     99  1.224      maxv # endif
    100  1.204      maxv static void pool_redzone_init(struct pool *, size_t);
    101  1.204      maxv static void pool_redzone_fill(struct pool *, void *);
    102  1.204      maxv static void pool_redzone_check(struct pool *, void *);
    103  1.229      maxv static void pool_cache_redzone_check(pool_cache_t, void *);
    104  1.204      maxv #else
    105  1.229      maxv # define pool_redzone_init(pp, sz)		__nothing
    106  1.229      maxv # define pool_redzone_fill(pp, ptr)		__nothing
    107  1.229      maxv # define pool_redzone_check(pp, ptr)		__nothing
    108  1.229      maxv # define pool_cache_redzone_check(pc, ptr)	__nothing
    109  1.204      maxv #endif
    110  1.204      maxv 
    111  1.228      maxv #ifdef KLEAK
    112  1.228      maxv static void pool_kleak_fill(struct pool *, void *);
    113  1.228      maxv static void pool_cache_kleak_fill(pool_cache_t, void *);
    114  1.228      maxv #else
    115  1.228      maxv #define pool_kleak_fill(pp, ptr)	__nothing
    116  1.228      maxv #define pool_cache_kleak_fill(pc, ptr)	__nothing
    117  1.228      maxv #endif
    118  1.228      maxv 
    119  1.229      maxv #define pc_has_ctor(pc) \
    120  1.229      maxv 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
    121  1.229      maxv #define pc_has_dtor(pc) \
    122  1.229      maxv 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
    123  1.229      maxv 
    124   1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    125   1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    126   1.98      yamt 
    127   1.98      yamt /* allocator for pool metadata */
    128  1.134        ad struct pool_allocator pool_allocator_meta = {
    129  1.191      para 	.pa_alloc = pool_page_alloc_meta,
    130  1.191      para 	.pa_free = pool_page_free_meta,
    131  1.191      para 	.pa_pagesz = 0
    132   1.98      yamt };
    133   1.98      yamt 
    134  1.208       chs #define POOL_ALLOCATOR_BIG_BASE 13
    135  1.208       chs extern struct pool_allocator pool_allocator_big[];
    136  1.208       chs static int pool_bigidx(size_t);
    137  1.208       chs 
    138    1.3        pk /* # of seconds to retain page after last use */
    139    1.3        pk int pool_inactive_time = 10;
    140    1.3        pk 
    141    1.3        pk /* Next candidate for drainage (see pool_drain()) */
    142  1.236      maxv static struct pool *drainpp;
    143   1.23   thorpej 
    144  1.134        ad /* This lock protects both pool_head and drainpp. */
    145  1.134        ad static kmutex_t pool_head_lock;
    146  1.134        ad static kcondvar_t pool_busy;
    147    1.3        pk 
    148  1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    149  1.178      elad static kmutex_t pool_allocator_lock;
    150  1.178      elad 
    151  1.135      yamt typedef uint32_t pool_item_bitmap_t;
    152  1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    153  1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    154   1.99      yamt 
    155    1.3        pk struct pool_item_header {
    156    1.3        pk 	/* Page headers */
    157   1.88       chs 	LIST_ENTRY(pool_item_header)
    158    1.3        pk 				ph_pagelist;	/* pool page list */
    159   1.88       chs 	SPLAY_ENTRY(pool_item_header)
    160   1.88       chs 				ph_node;	/* Off-page page headers */
    161  1.128  christos 	void *			ph_page;	/* this page's address */
    162  1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    163  1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    164  1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    165   1.97      yamt 	union {
    166  1.242      maxv 		/* !PR_USEBMAP */
    167   1.97      yamt 		struct {
    168  1.102       chs 			LIST_HEAD(, pool_item)
    169   1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    170   1.97      yamt 		} phu_normal;
    171  1.242      maxv 		/* PR_USEBMAP */
    172   1.97      yamt 		struct {
    173  1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    174   1.97      yamt 		} phu_notouch;
    175   1.97      yamt 	} ph_u;
    176    1.3        pk };
    177   1.97      yamt #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    178  1.135      yamt #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    179    1.3        pk 
    180  1.240      maxv #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    181  1.240      maxv 
    182  1.229      maxv #if defined(DIAGNOSTIC) && !defined(KASAN)
    183  1.229      maxv #define POOL_CHECK_MAGIC
    184  1.229      maxv #endif
    185  1.229      maxv 
    186    1.1        pk struct pool_item {
    187  1.229      maxv #ifdef POOL_CHECK_MAGIC
    188   1.82   thorpej 	u_int pi_magic;
    189   1.33       chs #endif
    190  1.134        ad #define	PI_MAGIC 0xdeaddeadU
    191    1.3        pk 	/* Other entries use only this list entry */
    192  1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    193    1.3        pk };
    194    1.3        pk 
    195   1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    196   1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    197   1.53   thorpej 
    198   1.43   thorpej /*
    199   1.43   thorpej  * Pool cache management.
    200   1.43   thorpej  *
    201   1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    202   1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    203   1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    204   1.43   thorpej  * necessary.
    205   1.43   thorpej  *
    206  1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    207  1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    208  1.134        ad  * object from the pool, it calls the object's constructor and places it
    209  1.134        ad  * into a cache group.  When a cache group frees an object back to the
    210  1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    211  1.134        ad  * to persist in constructed form while freed to the cache.
    212  1.134        ad  *
    213  1.134        ad  * The pool references each cache, so that when a pool is drained by the
    214  1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    215  1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    216  1.134        ad  * its entirety.
    217   1.43   thorpej  *
    218   1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    219   1.43   thorpej  * the complexity of cache management for pools which would not benefit
    220   1.43   thorpej  * from it.
    221   1.43   thorpej  */
    222   1.43   thorpej 
    223  1.142        ad static struct pool pcg_normal_pool;
    224  1.142        ad static struct pool pcg_large_pool;
    225  1.134        ad static struct pool cache_pool;
    226  1.134        ad static struct pool cache_cpu_pool;
    227    1.3        pk 
    228  1.189     pooka pool_cache_t pnbuf_cache;	/* pathname buffer cache */
    229  1.189     pooka 
    230  1.145        ad /* List of all caches. */
    231  1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    232  1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    233  1.145        ad 
    234  1.162        ad int pool_cache_disable;		/* global disable for caching */
    235  1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    236  1.145        ad 
    237  1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    238  1.162        ad 				    void *);
    239  1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    240  1.162        ad 				    void **, paddr_t *, int);
    241  1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    242  1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    243  1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    244  1.196       jym static void	pool_cache_transfer(pool_cache_t);
    245    1.3        pk 
    246   1.42   thorpej static int	pool_catchup(struct pool *);
    247  1.128  christos static void	pool_prime_page(struct pool *, void *,
    248   1.55   thorpej 		    struct pool_item_header *);
    249   1.88       chs static void	pool_update_curpage(struct pool *);
    250   1.66   thorpej 
    251  1.113      yamt static int	pool_grow(struct pool *, int);
    252  1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    253  1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    254    1.3        pk 
    255   1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    256  1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    257   1.42   thorpej static void pool_print1(struct pool *, const char *,
    258  1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    259    1.3        pk 
    260   1.88       chs static int pool_chk_page(struct pool *, const char *,
    261   1.88       chs 			 struct pool_item_header *);
    262   1.88       chs 
    263  1.234      maxv /* -------------------------------------------------------------------------- */
    264  1.234      maxv 
    265  1.135      yamt static inline unsigned int
    266  1.234      maxv pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    267   1.97      yamt     const void *v)
    268   1.97      yamt {
    269   1.97      yamt 	const char *cp = v;
    270  1.135      yamt 	unsigned int idx;
    271   1.97      yamt 
    272  1.242      maxv 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    273  1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    274  1.237      maxv 
    275  1.237      maxv 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    276  1.237      maxv 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    277  1.237      maxv 		    pp->pr_itemsperpage);
    278  1.237      maxv 	}
    279  1.237      maxv 
    280   1.97      yamt 	return idx;
    281   1.97      yamt }
    282   1.97      yamt 
    283  1.110     perry static inline void
    284  1.234      maxv pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    285   1.97      yamt     void *obj)
    286   1.97      yamt {
    287  1.234      maxv 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    288  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    289  1.223     kamil 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    290   1.97      yamt 
    291  1.237      maxv 	if (__predict_false((*bitmap & mask) != 0)) {
    292  1.237      maxv 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    293  1.237      maxv 	}
    294  1.237      maxv 
    295  1.135      yamt 	*bitmap |= mask;
    296   1.97      yamt }
    297   1.97      yamt 
    298  1.110     perry static inline void *
    299  1.234      maxv pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    300   1.97      yamt {
    301  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    302  1.135      yamt 	unsigned int idx;
    303  1.135      yamt 	int i;
    304   1.97      yamt 
    305  1.135      yamt 	for (i = 0; ; i++) {
    306  1.135      yamt 		int bit;
    307   1.97      yamt 
    308  1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    309  1.135      yamt 		bit = ffs32(bitmap[i]);
    310  1.135      yamt 		if (bit) {
    311  1.135      yamt 			pool_item_bitmap_t mask;
    312  1.135      yamt 
    313  1.135      yamt 			bit--;
    314  1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    315  1.222     kamil 			mask = 1U << bit;
    316  1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    317  1.135      yamt 			bitmap[i] &= ~mask;
    318  1.135      yamt 			break;
    319  1.135      yamt 		}
    320  1.135      yamt 	}
    321  1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    322  1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    323   1.97      yamt }
    324   1.97      yamt 
    325  1.135      yamt static inline void
    326  1.234      maxv pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    327  1.135      yamt {
    328  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    329  1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    330  1.135      yamt 	int i;
    331  1.135      yamt 
    332  1.135      yamt 	for (i = 0; i < n; i++) {
    333  1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    334  1.135      yamt 	}
    335  1.135      yamt }
    336  1.135      yamt 
    337  1.234      maxv /* -------------------------------------------------------------------------- */
    338  1.234      maxv 
    339  1.234      maxv static inline void
    340  1.234      maxv pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    341  1.234      maxv     void *obj)
    342  1.234      maxv {
    343  1.234      maxv 	struct pool_item *pi = obj;
    344  1.234      maxv 
    345  1.234      maxv #ifdef POOL_CHECK_MAGIC
    346  1.234      maxv 	pi->pi_magic = PI_MAGIC;
    347  1.234      maxv #endif
    348  1.234      maxv 
    349  1.234      maxv 	if (pp->pr_redzone) {
    350  1.234      maxv 		/*
    351  1.234      maxv 		 * Mark the pool_item as valid. The rest is already
    352  1.234      maxv 		 * invalid.
    353  1.234      maxv 		 */
    354  1.234      maxv 		kasan_mark(pi, sizeof(*pi), sizeof(*pi));
    355  1.234      maxv 	}
    356  1.234      maxv 
    357  1.234      maxv 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    358  1.234      maxv }
    359  1.234      maxv 
    360  1.234      maxv static inline void *
    361  1.234      maxv pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    362  1.234      maxv {
    363  1.234      maxv 	struct pool_item *pi;
    364  1.234      maxv 	void *v;
    365  1.234      maxv 
    366  1.234      maxv 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    367  1.234      maxv 	if (__predict_false(v == NULL)) {
    368  1.234      maxv 		mutex_exit(&pp->pr_lock);
    369  1.234      maxv 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    370  1.234      maxv 	}
    371  1.234      maxv 	KASSERTMSG((pp->pr_nitems > 0),
    372  1.234      maxv 	    "%s: [%s] nitems %u inconsistent on itemlist",
    373  1.234      maxv 	    __func__, pp->pr_wchan, pp->pr_nitems);
    374  1.234      maxv #ifdef POOL_CHECK_MAGIC
    375  1.234      maxv 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    376  1.234      maxv 	    "%s: [%s] free list modified: "
    377  1.234      maxv 	    "magic=%x; page %p; item addr %p", __func__,
    378  1.234      maxv 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    379  1.234      maxv #endif
    380  1.234      maxv 
    381  1.234      maxv 	/*
    382  1.234      maxv 	 * Remove from item list.
    383  1.234      maxv 	 */
    384  1.234      maxv 	LIST_REMOVE(pi, pi_list);
    385  1.234      maxv 
    386  1.234      maxv 	return v;
    387  1.234      maxv }
    388  1.234      maxv 
    389  1.234      maxv /* -------------------------------------------------------------------------- */
    390  1.234      maxv 
    391  1.110     perry static inline int
    392   1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    393   1.88       chs {
    394  1.121      yamt 
    395  1.121      yamt 	/*
    396  1.236      maxv 	 * We consider pool_item_header with smaller ph_page bigger. This
    397  1.236      maxv 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    398  1.121      yamt 	 */
    399   1.88       chs 	if (a->ph_page < b->ph_page)
    400  1.236      maxv 		return 1;
    401  1.121      yamt 	else if (a->ph_page > b->ph_page)
    402  1.236      maxv 		return -1;
    403   1.88       chs 	else
    404  1.236      maxv 		return 0;
    405   1.88       chs }
    406   1.88       chs 
    407   1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    408   1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    409   1.88       chs 
    410  1.141      yamt static inline struct pool_item_header *
    411  1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    412  1.141      yamt {
    413  1.141      yamt 	struct pool_item_header *ph, tmp;
    414  1.141      yamt 
    415  1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    416  1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    417  1.141      yamt 	if (ph == NULL) {
    418  1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    419  1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    420  1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    421  1.141      yamt 		}
    422  1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    423  1.141      yamt 	}
    424  1.141      yamt 
    425  1.141      yamt 	return ph;
    426  1.141      yamt }
    427  1.141      yamt 
    428    1.3        pk /*
    429  1.121      yamt  * Return the pool page header based on item address.
    430    1.3        pk  */
    431  1.110     perry static inline struct pool_item_header *
    432  1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    433    1.3        pk {
    434   1.88       chs 	struct pool_item_header *ph, tmp;
    435    1.3        pk 
    436  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    437  1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    438  1.121      yamt 	} else {
    439  1.128  christos 		void *page =
    440  1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    441  1.121      yamt 
    442  1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    443  1.241      maxv 			ph = (struct pool_item_header *)page;
    444  1.235      maxv 			if (__predict_false((void *)ph->ph_page != page)) {
    445  1.237      maxv 				panic("%s: [%s] item %p not part of pool",
    446  1.237      maxv 				    __func__, pp->pr_wchan, v);
    447  1.237      maxv 			}
    448  1.237      maxv 			if (__predict_false((char *)v < (char *)page +
    449  1.237      maxv 			    ph->ph_off)) {
    450  1.237      maxv 				panic("%s: [%s] item %p below item space",
    451  1.237      maxv 				    __func__, pp->pr_wchan, v);
    452  1.235      maxv 			}
    453  1.121      yamt 		} else {
    454  1.121      yamt 			tmp.ph_page = page;
    455  1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    456  1.121      yamt 		}
    457  1.121      yamt 	}
    458    1.3        pk 
    459  1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    460  1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    461  1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    462   1.88       chs 	return ph;
    463    1.3        pk }
    464    1.3        pk 
    465  1.101   thorpej static void
    466  1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    467  1.101   thorpej {
    468  1.101   thorpej 	struct pool_item_header *ph;
    469  1.101   thorpej 
    470  1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    471  1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    472  1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    473  1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    474  1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    475  1.101   thorpej 	}
    476  1.101   thorpej }
    477  1.101   thorpej 
    478    1.3        pk /*
    479    1.3        pk  * Remove a page from the pool.
    480    1.3        pk  */
    481  1.110     perry static inline void
    482   1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    483   1.61       chs      struct pool_pagelist *pq)
    484    1.3        pk {
    485    1.3        pk 
    486  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    487   1.91      yamt 
    488    1.3        pk 	/*
    489    1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    490    1.3        pk 	 */
    491    1.6   thorpej 	if (ph->ph_nmissing == 0) {
    492  1.207  riastrad 		KASSERT(pp->pr_nidle != 0);
    493  1.207  riastrad 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    494  1.207  riastrad 		    "nitems=%u < itemsperpage=%u",
    495  1.207  riastrad 		    pp->pr_nitems, pp->pr_itemsperpage);
    496    1.6   thorpej 		pp->pr_nidle--;
    497    1.6   thorpej 	}
    498    1.7   thorpej 
    499   1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    500   1.20   thorpej 
    501    1.7   thorpej 	/*
    502  1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    503    1.7   thorpej 	 */
    504   1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    505   1.91      yamt 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    506   1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    507  1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    508  1.101   thorpej 
    509    1.7   thorpej 	pp->pr_npages--;
    510    1.7   thorpej 	pp->pr_npagefree++;
    511    1.6   thorpej 
    512   1.88       chs 	pool_update_curpage(pp);
    513    1.3        pk }
    514    1.3        pk 
    515    1.3        pk /*
    516   1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    517   1.94    simonb  */
    518   1.94    simonb void
    519  1.117      yamt pool_subsystem_init(void)
    520   1.94    simonb {
    521  1.192     rmind 	size_t size;
    522  1.191      para 	int idx;
    523   1.94    simonb 
    524  1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    525  1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    526  1.134        ad 	cv_init(&pool_busy, "poolbusy");
    527  1.134        ad 
    528  1.191      para 	/*
    529  1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    530  1.191      para 	 * haven't done so yet.
    531  1.191      para 	 */
    532  1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    533  1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    534  1.191      para 		int nelem;
    535  1.191      para 		size_t sz;
    536  1.191      para 
    537  1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    538  1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    539  1.191      para 		    "phpool-%d", nelem);
    540  1.191      para 		sz = sizeof(struct pool_item_header);
    541  1.191      para 		if (nelem) {
    542  1.191      para 			sz = offsetof(struct pool_item_header,
    543  1.191      para 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    544  1.191      para 		}
    545  1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    546  1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    547  1.117      yamt 	}
    548  1.191      para #ifdef POOL_SUBPAGE
    549  1.191      para 	pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    550  1.191      para 	    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    551  1.191      para #endif
    552  1.191      para 
    553  1.191      para 	size = sizeof(pcg_t) +
    554  1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    555  1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    556  1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    557  1.191      para 
    558  1.191      para 	size = sizeof(pcg_t) +
    559  1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    560  1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    561  1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    562  1.134        ad 
    563  1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    564  1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    565  1.134        ad 
    566  1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    567  1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    568   1.94    simonb }
    569   1.94    simonb 
    570  1.240      maxv static inline bool
    571  1.240      maxv pool_init_is_phinpage(const struct pool *pp)
    572  1.240      maxv {
    573  1.240      maxv 	size_t pagesize;
    574  1.240      maxv 
    575  1.240      maxv 	if (pp->pr_roflags & PR_PHINPAGE) {
    576  1.240      maxv 		return true;
    577  1.240      maxv 	}
    578  1.240      maxv 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    579  1.240      maxv 		return false;
    580  1.240      maxv 	}
    581  1.240      maxv 
    582  1.240      maxv 	pagesize = pp->pr_alloc->pa_pagesz;
    583  1.240      maxv 
    584  1.240      maxv 	/*
    585  1.240      maxv 	 * Threshold: the item size is below 1/16 of a page size, and below
    586  1.240      maxv 	 * 8 times the page header size. The latter ensures we go off-page
    587  1.240      maxv 	 * if the page header would make us waste a rather big item.
    588  1.240      maxv 	 */
    589  1.240      maxv 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    590  1.240      maxv 		return true;
    591  1.240      maxv 	}
    592  1.240      maxv 
    593  1.240      maxv 	/* Put the header into the page if it doesn't waste any items. */
    594  1.240      maxv 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    595  1.240      maxv 		return true;
    596  1.240      maxv 	}
    597  1.240      maxv 
    598  1.240      maxv 	return false;
    599  1.240      maxv }
    600  1.240      maxv 
    601  1.242      maxv static inline bool
    602  1.242      maxv pool_init_is_usebmap(const struct pool *pp)
    603  1.242      maxv {
    604  1.243      maxv 	size_t bmapsize;
    605  1.243      maxv 
    606  1.242      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
    607  1.242      maxv 		return true;
    608  1.242      maxv 	}
    609  1.242      maxv 
    610  1.243      maxv 	/*
    611  1.243      maxv 	 * If we're on-page, and the page header can already contain a bitmap
    612  1.243      maxv 	 * big enough to cover all the items of the page, go with a bitmap.
    613  1.243      maxv 	 */
    614  1.243      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    615  1.243      maxv 		return false;
    616  1.243      maxv 	}
    617  1.243      maxv 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    618  1.243      maxv 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    619  1.243      maxv 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    620  1.243      maxv 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    621  1.243      maxv 		return true;
    622  1.243      maxv 	}
    623  1.243      maxv 
    624  1.242      maxv 	return false;
    625  1.242      maxv }
    626  1.242      maxv 
    627   1.94    simonb /*
    628    1.3        pk  * Initialize the given pool resource structure.
    629    1.3        pk  *
    630    1.3        pk  * We export this routine to allow other kernel parts to declare
    631  1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    632    1.3        pk  */
    633    1.3        pk void
    634   1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    635  1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    636    1.3        pk {
    637  1.116    simonb 	struct pool *pp1;
    638  1.240      maxv 	size_t prsize;
    639  1.237      maxv 	int itemspace, slack;
    640    1.3        pk 
    641  1.238      maxv 	/* XXX ioff will be removed. */
    642  1.238      maxv 	KASSERT(ioff == 0);
    643  1.238      maxv 
    644  1.116    simonb #ifdef DEBUG
    645  1.198  christos 	if (__predict_true(!cold))
    646  1.198  christos 		mutex_enter(&pool_head_lock);
    647  1.116    simonb 	/*
    648  1.116    simonb 	 * Check that the pool hasn't already been initialised and
    649  1.116    simonb 	 * added to the list of all pools.
    650  1.116    simonb 	 */
    651  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    652  1.116    simonb 		if (pp == pp1)
    653  1.213  christos 			panic("%s: [%s] already initialised", __func__,
    654  1.116    simonb 			    wchan);
    655  1.116    simonb 	}
    656  1.198  christos 	if (__predict_true(!cold))
    657  1.198  christos 		mutex_exit(&pool_head_lock);
    658  1.116    simonb #endif
    659  1.116    simonb 
    660   1.66   thorpej 	if (palloc == NULL)
    661   1.66   thorpej 		palloc = &pool_allocator_kmem;
    662  1.112     bjh21 #ifdef POOL_SUBPAGE
    663  1.112     bjh21 	if (size > palloc->pa_pagesz) {
    664  1.112     bjh21 		if (palloc == &pool_allocator_kmem)
    665  1.112     bjh21 			palloc = &pool_allocator_kmem_fullpage;
    666  1.112     bjh21 		else if (palloc == &pool_allocator_nointr)
    667  1.112     bjh21 			palloc = &pool_allocator_nointr_fullpage;
    668  1.236      maxv 	}
    669   1.66   thorpej #endif /* POOL_SUBPAGE */
    670  1.180   mlelstv 	if (!cold)
    671  1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    672  1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    673  1.112     bjh21 		if (palloc->pa_pagesz == 0)
    674   1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    675   1.66   thorpej 
    676   1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    677   1.66   thorpej 
    678  1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    679   1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    680   1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    681    1.4   thorpej 	}
    682  1.180   mlelstv 	if (!cold)
    683  1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    684    1.3        pk 
    685    1.3        pk 	if (align == 0)
    686    1.3        pk 		align = ALIGN(1);
    687   1.14   thorpej 
    688  1.204      maxv 	prsize = size;
    689  1.204      maxv 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    690  1.204      maxv 		prsize = sizeof(struct pool_item);
    691    1.3        pk 
    692  1.204      maxv 	prsize = roundup(prsize, align);
    693  1.207  riastrad 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    694  1.213  christos 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    695  1.213  christos 	    __func__, wchan, prsize, palloc->pa_pagesz);
    696   1.35        pk 
    697    1.3        pk 	/*
    698    1.3        pk 	 * Initialize the pool structure.
    699    1.3        pk 	 */
    700   1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    701   1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    702   1.88       chs 	LIST_INIT(&pp->pr_partpages);
    703  1.134        ad 	pp->pr_cache = NULL;
    704    1.3        pk 	pp->pr_curpage = NULL;
    705    1.3        pk 	pp->pr_npages = 0;
    706    1.3        pk 	pp->pr_minitems = 0;
    707    1.3        pk 	pp->pr_minpages = 0;
    708    1.3        pk 	pp->pr_maxpages = UINT_MAX;
    709   1.20   thorpej 	pp->pr_roflags = flags;
    710   1.20   thorpej 	pp->pr_flags = 0;
    711  1.204      maxv 	pp->pr_size = prsize;
    712  1.233      maxv 	pp->pr_reqsize = size;
    713    1.3        pk 	pp->pr_align = align;
    714    1.3        pk 	pp->pr_wchan = wchan;
    715   1.66   thorpej 	pp->pr_alloc = palloc;
    716   1.20   thorpej 	pp->pr_nitems = 0;
    717   1.20   thorpej 	pp->pr_nout = 0;
    718   1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    719   1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    720   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    721   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    722   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    723   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    724   1.68   thorpej 	pp->pr_drain_hook = NULL;
    725   1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    726  1.125        ad 	pp->pr_freecheck = NULL;
    727  1.204      maxv 	pool_redzone_init(pp, size);
    728    1.3        pk 
    729    1.3        pk 	/*
    730  1.240      maxv 	 * Decide whether to put the page header off-page to avoid wasting too
    731  1.240      maxv 	 * large a part of the page or too big an item. Off-page page headers
    732  1.240      maxv 	 * go on a hash table, so we can match a returned item with its header
    733  1.240      maxv 	 * based on the page address.
    734    1.3        pk 	 */
    735  1.240      maxv 	if (pool_init_is_phinpage(pp)) {
    736  1.241      maxv 		/* Use the beginning of the page for the page header */
    737  1.241      maxv 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    738  1.241      maxv 		pp->pr_itemoffset = roundup(PHSIZE, align);
    739  1.239      maxv 		pp->pr_roflags |= PR_PHINPAGE;
    740    1.2        pk 	} else {
    741    1.3        pk 		/* The page header will be taken from our page header pool */
    742  1.237      maxv 		itemspace = palloc->pa_pagesz;
    743  1.241      maxv 		pp->pr_itemoffset = 0;
    744   1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    745    1.2        pk 	}
    746    1.1        pk 
    747  1.243      maxv 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    748  1.243      maxv 	KASSERT(pp->pr_itemsperpage != 0);
    749  1.243      maxv 
    750  1.242      maxv 	/*
    751  1.242      maxv 	 * Decide whether to use a bitmap or a linked list to manage freed
    752  1.242      maxv 	 * items.
    753  1.242      maxv 	 */
    754  1.242      maxv 	if (pool_init_is_usebmap(pp)) {
    755  1.242      maxv 		pp->pr_roflags |= PR_USEBMAP;
    756  1.242      maxv 	}
    757  1.242      maxv 
    758  1.242      maxv 	/*
    759  1.242      maxv 	 * If we're off-page and use a bitmap, choose the appropriate pool to
    760  1.242      maxv 	 * allocate page headers, whose size varies depending on the bitmap. If
    761  1.242      maxv 	 * we're just off-page, take the first pool, no extra size. If we're
    762  1.242      maxv 	 * on-page, nothing to do.
    763  1.242      maxv 	 */
    764  1.242      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE) && (pp->pr_roflags & PR_USEBMAP)) {
    765   1.97      yamt 		int idx;
    766   1.97      yamt 
    767   1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    768   1.97      yamt 		    idx++) {
    769   1.97      yamt 			/* nothing */
    770   1.97      yamt 		}
    771   1.97      yamt 		if (idx >= PHPOOL_MAX) {
    772   1.97      yamt 			/*
    773   1.97      yamt 			 * if you see this panic, consider to tweak
    774   1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    775   1.97      yamt 			 */
    776  1.213  christos 			panic("%s: [%s] too large itemsperpage(%d) for "
    777  1.242      maxv 			    "PR_USEBMAP", __func__,
    778   1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    779   1.97      yamt 		}
    780   1.97      yamt 		pp->pr_phpool = &phpool[idx];
    781  1.242      maxv 	} else if (!(pp->pr_roflags & PR_PHINPAGE)) {
    782   1.97      yamt 		pp->pr_phpool = &phpool[0];
    783  1.242      maxv 	} else {
    784   1.97      yamt 		pp->pr_phpool = NULL;
    785   1.97      yamt 	}
    786    1.3        pk 
    787    1.3        pk 	/*
    788    1.3        pk 	 * Use the slack between the chunks and the page header
    789    1.3        pk 	 * for "cache coloring".
    790    1.3        pk 	 */
    791  1.237      maxv 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    792  1.239      maxv 	pp->pr_maxcolor = rounddown(slack, align);
    793    1.3        pk 	pp->pr_curcolor = 0;
    794    1.3        pk 
    795    1.3        pk 	pp->pr_nget = 0;
    796    1.3        pk 	pp->pr_nfail = 0;
    797    1.3        pk 	pp->pr_nput = 0;
    798    1.3        pk 	pp->pr_npagealloc = 0;
    799    1.3        pk 	pp->pr_npagefree = 0;
    800    1.1        pk 	pp->pr_hiwat = 0;
    801    1.8   thorpej 	pp->pr_nidle = 0;
    802  1.134        ad 	pp->pr_refcnt = 0;
    803    1.3        pk 
    804  1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    805  1.134        ad 	cv_init(&pp->pr_cv, wchan);
    806  1.134        ad 	pp->pr_ipl = ipl;
    807    1.1        pk 
    808  1.145        ad 	/* Insert into the list of all pools. */
    809  1.181   mlelstv 	if (!cold)
    810  1.134        ad 		mutex_enter(&pool_head_lock);
    811  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    812  1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    813  1.145        ad 			break;
    814  1.145        ad 	}
    815  1.145        ad 	if (pp1 == NULL)
    816  1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    817  1.145        ad 	else
    818  1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    819  1.181   mlelstv 	if (!cold)
    820  1.134        ad 		mutex_exit(&pool_head_lock);
    821  1.134        ad 
    822  1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    823  1.181   mlelstv 	if (!cold)
    824  1.134        ad 		mutex_enter(&palloc->pa_lock);
    825  1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    826  1.181   mlelstv 	if (!cold)
    827  1.134        ad 		mutex_exit(&palloc->pa_lock);
    828    1.1        pk }
    829    1.1        pk 
    830    1.1        pk /*
    831    1.1        pk  * De-commision a pool resource.
    832    1.1        pk  */
    833    1.1        pk void
    834   1.42   thorpej pool_destroy(struct pool *pp)
    835    1.1        pk {
    836  1.101   thorpej 	struct pool_pagelist pq;
    837    1.3        pk 	struct pool_item_header *ph;
    838   1.43   thorpej 
    839  1.101   thorpej 	/* Remove from global pool list */
    840  1.134        ad 	mutex_enter(&pool_head_lock);
    841  1.134        ad 	while (pp->pr_refcnt != 0)
    842  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    843  1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    844  1.101   thorpej 	if (drainpp == pp)
    845  1.101   thorpej 		drainpp = NULL;
    846  1.134        ad 	mutex_exit(&pool_head_lock);
    847  1.101   thorpej 
    848  1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    849  1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    850   1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    851  1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    852   1.66   thorpej 
    853  1.178      elad 	mutex_enter(&pool_allocator_lock);
    854  1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    855  1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    856  1.178      elad 	mutex_exit(&pool_allocator_lock);
    857  1.178      elad 
    858  1.134        ad 	mutex_enter(&pp->pr_lock);
    859  1.101   thorpej 
    860  1.134        ad 	KASSERT(pp->pr_cache == NULL);
    861  1.207  riastrad 	KASSERTMSG((pp->pr_nout == 0),
    862  1.213  christos 	    "%s: pool busy: still out: %u", __func__, pp->pr_nout);
    863  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    864  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    865  1.101   thorpej 
    866    1.3        pk 	/* Remove all pages */
    867  1.101   thorpej 	LIST_INIT(&pq);
    868   1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    869  1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    870  1.101   thorpej 
    871  1.134        ad 	mutex_exit(&pp->pr_lock);
    872    1.3        pk 
    873  1.101   thorpej 	pr_pagelist_free(pp, &pq);
    874  1.134        ad 	cv_destroy(&pp->pr_cv);
    875  1.134        ad 	mutex_destroy(&pp->pr_lock);
    876    1.1        pk }
    877    1.1        pk 
    878   1.68   thorpej void
    879   1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    880   1.68   thorpej {
    881   1.68   thorpej 
    882   1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    883  1.207  riastrad 	KASSERTMSG((pp->pr_drain_hook == NULL),
    884  1.213  christos 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    885   1.68   thorpej 	pp->pr_drain_hook = fn;
    886   1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    887   1.68   thorpej }
    888   1.68   thorpej 
    889   1.88       chs static struct pool_item_header *
    890  1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    891   1.55   thorpej {
    892   1.55   thorpej 	struct pool_item_header *ph;
    893   1.55   thorpej 
    894   1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    895  1.241      maxv 		ph = storage;
    896  1.134        ad 	else
    897   1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    898   1.55   thorpej 
    899  1.236      maxv 	return ph;
    900   1.55   thorpej }
    901    1.1        pk 
    902    1.1        pk /*
    903  1.134        ad  * Grab an item from the pool.
    904    1.1        pk  */
    905    1.3        pk void *
    906   1.56  sommerfe pool_get(struct pool *pp, int flags)
    907    1.1        pk {
    908    1.3        pk 	struct pool_item_header *ph;
    909   1.55   thorpej 	void *v;
    910    1.1        pk 
    911  1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    912  1.207  riastrad 	KASSERTMSG((pp->pr_itemsperpage != 0),
    913  1.213  christos 	    "%s: [%s] pr_itemsperpage is zero, "
    914  1.213  christos 	    "pool not initialized?", __func__, pp->pr_wchan);
    915  1.207  riastrad 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    916  1.207  riastrad 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    917  1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    918  1.213  christos 	    __func__, pp->pr_wchan);
    919  1.155        ad 	if (flags & PR_WAITOK) {
    920  1.154      yamt 		ASSERT_SLEEPABLE();
    921  1.155        ad 	}
    922    1.1        pk 
    923  1.134        ad 	mutex_enter(&pp->pr_lock);
    924   1.20   thorpej  startover:
    925   1.20   thorpej 	/*
    926   1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    927   1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    928   1.20   thorpej 	 * the pool.
    929   1.20   thorpej 	 */
    930  1.207  riastrad 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    931  1.213  christos 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    932   1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    933   1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    934   1.68   thorpej 			/*
    935   1.68   thorpej 			 * Since the drain hook is going to free things
    936   1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    937   1.68   thorpej 			 * and check the hardlimit condition again.
    938   1.68   thorpej 			 */
    939  1.134        ad 			mutex_exit(&pp->pr_lock);
    940   1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    941  1.134        ad 			mutex_enter(&pp->pr_lock);
    942   1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    943   1.68   thorpej 				goto startover;
    944   1.68   thorpej 		}
    945   1.68   thorpej 
    946   1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    947   1.20   thorpej 			/*
    948   1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
    949   1.20   thorpej 			 * it be?
    950   1.20   thorpej 			 */
    951   1.20   thorpej 			pp->pr_flags |= PR_WANTED;
    952  1.212  christos 			do {
    953  1.212  christos 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    954  1.212  christos 			} while (pp->pr_flags & PR_WANTED);
    955   1.20   thorpej 			goto startover;
    956   1.20   thorpej 		}
    957   1.31   thorpej 
    958   1.31   thorpej 		/*
    959   1.31   thorpej 		 * Log a message that the hard limit has been hit.
    960   1.31   thorpej 		 */
    961   1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
    962   1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
    963   1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
    964   1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    965   1.21   thorpej 
    966   1.21   thorpej 		pp->pr_nfail++;
    967   1.21   thorpej 
    968  1.134        ad 		mutex_exit(&pp->pr_lock);
    969  1.216  christos 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    970  1.236      maxv 		return NULL;
    971   1.20   thorpej 	}
    972   1.20   thorpej 
    973    1.3        pk 	/*
    974    1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
    975    1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
    976    1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
    977    1.3        pk 	 * has no items in its bucket.
    978    1.3        pk 	 */
    979   1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
    980  1.113      yamt 		int error;
    981  1.113      yamt 
    982  1.207  riastrad 		KASSERTMSG((pp->pr_nitems == 0),
    983  1.213  christos 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
    984  1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
    985   1.20   thorpej 
    986   1.21   thorpej 		/*
    987   1.21   thorpej 		 * Call the back-end page allocator for more memory.
    988   1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
    989   1.21   thorpej 		 * may block.
    990   1.21   thorpej 		 */
    991  1.113      yamt 		error = pool_grow(pp, flags);
    992  1.113      yamt 		if (error != 0) {
    993   1.21   thorpej 			/*
    994  1.210   mlelstv 			 * pool_grow aborts when another thread
    995  1.210   mlelstv 			 * is allocating a new page. Retry if it
    996  1.210   mlelstv 			 * waited for it.
    997  1.210   mlelstv 			 */
    998  1.210   mlelstv 			if (error == ERESTART)
    999  1.210   mlelstv 				goto startover;
   1000  1.210   mlelstv 
   1001  1.210   mlelstv 			/*
   1002   1.55   thorpej 			 * We were unable to allocate a page or item
   1003   1.55   thorpej 			 * header, but we released the lock during
   1004   1.55   thorpej 			 * allocation, so perhaps items were freed
   1005   1.55   thorpej 			 * back to the pool.  Check for this case.
   1006   1.21   thorpej 			 */
   1007   1.21   thorpej 			if (pp->pr_curpage != NULL)
   1008   1.21   thorpej 				goto startover;
   1009   1.15        pk 
   1010  1.117      yamt 			pp->pr_nfail++;
   1011  1.134        ad 			mutex_exit(&pp->pr_lock);
   1012  1.211  riastrad 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   1013  1.236      maxv 			return NULL;
   1014    1.1        pk 		}
   1015    1.3        pk 
   1016   1.20   thorpej 		/* Start the allocation process over. */
   1017   1.20   thorpej 		goto startover;
   1018    1.3        pk 	}
   1019  1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1020  1.207  riastrad 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1021  1.213  christos 		    "%s: %s: page empty", __func__, pp->pr_wchan);
   1022  1.234      maxv 		v = pr_item_bitmap_get(pp, ph);
   1023   1.97      yamt 	} else {
   1024  1.234      maxv 		v = pr_item_linkedlist_get(pp, ph);
   1025   1.97      yamt 	}
   1026   1.20   thorpej 	pp->pr_nitems--;
   1027   1.20   thorpej 	pp->pr_nout++;
   1028    1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1029  1.207  riastrad 		KASSERT(pp->pr_nidle > 0);
   1030    1.6   thorpej 		pp->pr_nidle--;
   1031   1.88       chs 
   1032   1.88       chs 		/*
   1033   1.88       chs 		 * This page was previously empty.  Move it to the list of
   1034   1.88       chs 		 * partially-full pages.  This page is already curpage.
   1035   1.88       chs 		 */
   1036   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1037   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1038    1.6   thorpej 	}
   1039    1.3        pk 	ph->ph_nmissing++;
   1040   1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1041  1.242      maxv 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1042  1.207  riastrad 			LIST_EMPTY(&ph->ph_itemlist)),
   1043  1.213  christos 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1044  1.213  christos 			pp->pr_wchan, ph->ph_nmissing);
   1045    1.3        pk 		/*
   1046   1.88       chs 		 * This page is now full.  Move it to the full list
   1047   1.88       chs 		 * and select a new current page.
   1048    1.3        pk 		 */
   1049   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1050   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1051   1.88       chs 		pool_update_curpage(pp);
   1052    1.1        pk 	}
   1053    1.3        pk 
   1054    1.3        pk 	pp->pr_nget++;
   1055   1.20   thorpej 
   1056   1.20   thorpej 	/*
   1057   1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1058   1.20   thorpej 	 * water mark, add more items to the pool.
   1059   1.20   thorpej 	 */
   1060   1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1061   1.20   thorpej 		/*
   1062   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1063   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1064   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1065   1.20   thorpej 		 */
   1066   1.20   thorpej 	}
   1067   1.20   thorpej 
   1068  1.134        ad 	mutex_exit(&pp->pr_lock);
   1069  1.238      maxv 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1070  1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1071  1.204      maxv 	pool_redzone_fill(pp, v);
   1072  1.232  christos 	if (flags & PR_ZERO)
   1073  1.233      maxv 		memset(v, 0, pp->pr_reqsize);
   1074  1.232  christos 	else
   1075  1.232  christos 		pool_kleak_fill(pp, v);
   1076  1.232  christos 	return v;
   1077    1.1        pk }
   1078    1.1        pk 
   1079    1.1        pk /*
   1080   1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1081    1.1        pk  */
   1082   1.43   thorpej static void
   1083  1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1084    1.1        pk {
   1085    1.3        pk 	struct pool_item_header *ph;
   1086    1.3        pk 
   1087  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1088  1.204      maxv 	pool_redzone_check(pp, v);
   1089  1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1090  1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1091   1.61       chs 
   1092  1.207  riastrad 	KASSERTMSG((pp->pr_nout > 0),
   1093  1.213  christos 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1094    1.3        pk 
   1095  1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1096  1.213  christos 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1097    1.3        pk 	}
   1098   1.28   thorpej 
   1099    1.3        pk 	/*
   1100    1.3        pk 	 * Return to item list.
   1101    1.3        pk 	 */
   1102  1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1103  1.234      maxv 		pr_item_bitmap_put(pp, ph, v);
   1104   1.97      yamt 	} else {
   1105  1.234      maxv 		pr_item_linkedlist_put(pp, ph, v);
   1106   1.97      yamt 	}
   1107   1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1108    1.3        pk 	ph->ph_nmissing--;
   1109    1.3        pk 	pp->pr_nput++;
   1110   1.20   thorpej 	pp->pr_nitems++;
   1111   1.20   thorpej 	pp->pr_nout--;
   1112    1.3        pk 
   1113    1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1114    1.3        pk 	if (pp->pr_curpage == NULL)
   1115    1.3        pk 		pp->pr_curpage = ph;
   1116    1.3        pk 
   1117    1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1118    1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1119  1.134        ad 		cv_broadcast(&pp->pr_cv);
   1120    1.3        pk 	}
   1121    1.3        pk 
   1122    1.3        pk 	/*
   1123   1.88       chs 	 * If this page is now empty, do one of two things:
   1124   1.21   thorpej 	 *
   1125   1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1126   1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1127   1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1128   1.90   thorpej 	 *	    CLAIM.
   1129   1.21   thorpej 	 *
   1130   1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1131   1.88       chs 	 *
   1132   1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1133   1.88       chs 	 * page if one is available).
   1134    1.3        pk 	 */
   1135    1.3        pk 	if (ph->ph_nmissing == 0) {
   1136    1.6   thorpej 		pp->pr_nidle++;
   1137   1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1138  1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1139  1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1140    1.3        pk 		} else {
   1141   1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1142   1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1143    1.3        pk 
   1144   1.21   thorpej 			/*
   1145   1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1146   1.21   thorpej 			 * be idle for some period of time before it can
   1147   1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1148   1.21   thorpej 			 * ping-pong'ing for memory.
   1149  1.151      yamt 			 *
   1150  1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1151  1.151      yamt 			 * a problem for our usage.
   1152   1.21   thorpej 			 */
   1153  1.151      yamt 			ph->ph_time = time_uptime;
   1154    1.1        pk 		}
   1155   1.88       chs 		pool_update_curpage(pp);
   1156    1.1        pk 	}
   1157   1.88       chs 
   1158   1.21   thorpej 	/*
   1159   1.88       chs 	 * If the page was previously completely full, move it to the
   1160   1.88       chs 	 * partially-full list and make it the current page.  The next
   1161   1.88       chs 	 * allocation will get the item from this page, instead of
   1162   1.88       chs 	 * further fragmenting the pool.
   1163   1.21   thorpej 	 */
   1164   1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1165   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1166   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1167   1.21   thorpej 		pp->pr_curpage = ph;
   1168   1.21   thorpej 	}
   1169   1.43   thorpej }
   1170   1.43   thorpej 
   1171   1.56  sommerfe void
   1172   1.56  sommerfe pool_put(struct pool *pp, void *v)
   1173   1.56  sommerfe {
   1174  1.101   thorpej 	struct pool_pagelist pq;
   1175  1.101   thorpej 
   1176  1.101   thorpej 	LIST_INIT(&pq);
   1177   1.56  sommerfe 
   1178  1.134        ad 	mutex_enter(&pp->pr_lock);
   1179  1.101   thorpej 	pool_do_put(pp, v, &pq);
   1180  1.134        ad 	mutex_exit(&pp->pr_lock);
   1181   1.56  sommerfe 
   1182  1.102       chs 	pr_pagelist_free(pp, &pq);
   1183   1.56  sommerfe }
   1184   1.57  sommerfe 
   1185   1.74   thorpej /*
   1186  1.113      yamt  * pool_grow: grow a pool by a page.
   1187  1.113      yamt  *
   1188  1.113      yamt  * => called with pool locked.
   1189  1.113      yamt  * => unlock and relock the pool.
   1190  1.113      yamt  * => return with pool locked.
   1191  1.113      yamt  */
   1192  1.113      yamt 
   1193  1.113      yamt static int
   1194  1.113      yamt pool_grow(struct pool *pp, int flags)
   1195  1.113      yamt {
   1196  1.236      maxv 	struct pool_item_header *ph;
   1197  1.237      maxv 	char *storage;
   1198  1.236      maxv 
   1199  1.209  riastrad 	/*
   1200  1.209  riastrad 	 * If there's a pool_grow in progress, wait for it to complete
   1201  1.209  riastrad 	 * and try again from the top.
   1202  1.209  riastrad 	 */
   1203  1.209  riastrad 	if (pp->pr_flags & PR_GROWING) {
   1204  1.209  riastrad 		if (flags & PR_WAITOK) {
   1205  1.209  riastrad 			do {
   1206  1.209  riastrad 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1207  1.209  riastrad 			} while (pp->pr_flags & PR_GROWING);
   1208  1.209  riastrad 			return ERESTART;
   1209  1.209  riastrad 		} else {
   1210  1.219       mrg 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1211  1.219       mrg 				/*
   1212  1.219       mrg 				 * This needs an unlock/relock dance so
   1213  1.219       mrg 				 * that the other caller has a chance to
   1214  1.219       mrg 				 * run and actually do the thing.  Note
   1215  1.219       mrg 				 * that this is effectively a busy-wait.
   1216  1.219       mrg 				 */
   1217  1.219       mrg 				mutex_exit(&pp->pr_lock);
   1218  1.219       mrg 				mutex_enter(&pp->pr_lock);
   1219  1.219       mrg 				return ERESTART;
   1220  1.219       mrg 			}
   1221  1.209  riastrad 			return EWOULDBLOCK;
   1222  1.209  riastrad 		}
   1223  1.209  riastrad 	}
   1224  1.209  riastrad 	pp->pr_flags |= PR_GROWING;
   1225  1.220  christos 	if (flags & PR_WAITOK)
   1226  1.220  christos 		mutex_exit(&pp->pr_lock);
   1227  1.220  christos 	else
   1228  1.219       mrg 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1229  1.113      yamt 
   1230  1.237      maxv 	storage = pool_allocator_alloc(pp, flags);
   1231  1.237      maxv 	if (__predict_false(storage == NULL))
   1232  1.216  christos 		goto out;
   1233  1.216  christos 
   1234  1.237      maxv 	ph = pool_alloc_item_header(pp, storage, flags);
   1235  1.216  christos 	if (__predict_false(ph == NULL)) {
   1236  1.237      maxv 		pool_allocator_free(pp, storage);
   1237  1.209  riastrad 		goto out;
   1238  1.113      yamt 	}
   1239  1.113      yamt 
   1240  1.220  christos 	if (flags & PR_WAITOK)
   1241  1.220  christos 		mutex_enter(&pp->pr_lock);
   1242  1.237      maxv 	pool_prime_page(pp, storage, ph);
   1243  1.113      yamt 	pp->pr_npagealloc++;
   1244  1.216  christos 	KASSERT(pp->pr_flags & PR_GROWING);
   1245  1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1246  1.209  riastrad 	/*
   1247  1.209  riastrad 	 * If anyone was waiting for pool_grow, notify them that we
   1248  1.209  riastrad 	 * may have just done it.
   1249  1.209  riastrad 	 */
   1250  1.216  christos 	cv_broadcast(&pp->pr_cv);
   1251  1.216  christos 	return 0;
   1252  1.216  christos out:
   1253  1.220  christos 	if (flags & PR_WAITOK)
   1254  1.220  christos 		mutex_enter(&pp->pr_lock);
   1255  1.209  riastrad 	KASSERT(pp->pr_flags & PR_GROWING);
   1256  1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1257  1.216  christos 	return ENOMEM;
   1258  1.113      yamt }
   1259  1.113      yamt 
   1260  1.113      yamt /*
   1261   1.74   thorpej  * Add N items to the pool.
   1262   1.74   thorpej  */
   1263   1.74   thorpej int
   1264   1.74   thorpej pool_prime(struct pool *pp, int n)
   1265   1.74   thorpej {
   1266   1.75    simonb 	int newpages;
   1267  1.113      yamt 	int error = 0;
   1268   1.74   thorpej 
   1269  1.134        ad 	mutex_enter(&pp->pr_lock);
   1270   1.74   thorpej 
   1271   1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1272   1.74   thorpej 
   1273  1.216  christos 	while (newpages > 0) {
   1274  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1275  1.113      yamt 		if (error) {
   1276  1.214  christos 			if (error == ERESTART)
   1277  1.214  christos 				continue;
   1278   1.74   thorpej 			break;
   1279   1.74   thorpej 		}
   1280   1.74   thorpej 		pp->pr_minpages++;
   1281  1.216  christos 		newpages--;
   1282   1.74   thorpej 	}
   1283   1.74   thorpej 
   1284   1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1285   1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1286   1.74   thorpej 
   1287  1.134        ad 	mutex_exit(&pp->pr_lock);
   1288  1.113      yamt 	return error;
   1289   1.74   thorpej }
   1290   1.55   thorpej 
   1291   1.55   thorpej /*
   1292    1.3        pk  * Add a page worth of items to the pool.
   1293   1.21   thorpej  *
   1294   1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1295    1.3        pk  */
   1296   1.55   thorpej static void
   1297  1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1298    1.3        pk {
   1299  1.236      maxv 	const unsigned int align = pp->pr_align;
   1300    1.3        pk 	struct pool_item *pi;
   1301  1.128  christos 	void *cp = storage;
   1302   1.55   thorpej 	int n;
   1303   1.36        pk 
   1304  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1305  1.207  riastrad 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1306  1.207  riastrad 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1307  1.213  christos 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1308    1.3        pk 
   1309    1.3        pk 	/*
   1310    1.3        pk 	 * Insert page header.
   1311    1.3        pk 	 */
   1312   1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1313  1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1314    1.3        pk 	ph->ph_page = storage;
   1315    1.3        pk 	ph->ph_nmissing = 0;
   1316  1.151      yamt 	ph->ph_time = time_uptime;
   1317   1.88       chs 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1318   1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1319    1.3        pk 
   1320    1.6   thorpej 	pp->pr_nidle++;
   1321    1.6   thorpej 
   1322    1.3        pk 	/*
   1323  1.241      maxv 	 * The item space starts after the on-page header, if any.
   1324  1.241      maxv 	 */
   1325  1.241      maxv 	ph->ph_off = pp->pr_itemoffset;
   1326  1.241      maxv 
   1327  1.241      maxv 	/*
   1328    1.3        pk 	 * Color this page.
   1329    1.3        pk 	 */
   1330  1.241      maxv 	ph->ph_off += pp->pr_curcolor;
   1331  1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1332    1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1333    1.3        pk 		pp->pr_curcolor = 0;
   1334    1.3        pk 
   1335  1.238      maxv 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1336  1.125        ad 
   1337    1.3        pk 	/*
   1338    1.3        pk 	 * Insert remaining chunks on the bucket list.
   1339    1.3        pk 	 */
   1340    1.3        pk 	n = pp->pr_itemsperpage;
   1341   1.20   thorpej 	pp->pr_nitems += n;
   1342    1.3        pk 
   1343  1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1344  1.234      maxv 		pr_item_bitmap_init(pp, ph);
   1345   1.97      yamt 	} else {
   1346   1.97      yamt 		while (n--) {
   1347   1.97      yamt 			pi = (struct pool_item *)cp;
   1348   1.78   thorpej 
   1349  1.238      maxv 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1350    1.3        pk 
   1351   1.97      yamt 			/* Insert on page list */
   1352  1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1353  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1354   1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1355    1.3        pk #endif
   1356  1.128  christos 			cp = (char *)cp + pp->pr_size;
   1357  1.125        ad 
   1358  1.238      maxv 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1359   1.97      yamt 		}
   1360    1.3        pk 	}
   1361    1.3        pk 
   1362    1.3        pk 	/*
   1363    1.3        pk 	 * If the pool was depleted, point at the new page.
   1364    1.3        pk 	 */
   1365    1.3        pk 	if (pp->pr_curpage == NULL)
   1366    1.3        pk 		pp->pr_curpage = ph;
   1367    1.3        pk 
   1368    1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1369    1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1370    1.3        pk }
   1371    1.3        pk 
   1372   1.20   thorpej /*
   1373   1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1374   1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1375   1.20   thorpej  *
   1376   1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1377   1.20   thorpej  *
   1378   1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1379   1.20   thorpej  * with it locked.
   1380   1.20   thorpej  */
   1381   1.20   thorpej static int
   1382   1.42   thorpej pool_catchup(struct pool *pp)
   1383   1.20   thorpej {
   1384   1.20   thorpej 	int error = 0;
   1385   1.20   thorpej 
   1386   1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1387  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1388  1.113      yamt 		if (error) {
   1389  1.214  christos 			if (error == ERESTART)
   1390  1.214  christos 				continue;
   1391   1.20   thorpej 			break;
   1392   1.20   thorpej 		}
   1393   1.20   thorpej 	}
   1394  1.113      yamt 	return error;
   1395   1.20   thorpej }
   1396   1.20   thorpej 
   1397   1.88       chs static void
   1398   1.88       chs pool_update_curpage(struct pool *pp)
   1399   1.88       chs {
   1400   1.88       chs 
   1401   1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1402   1.88       chs 	if (pp->pr_curpage == NULL) {
   1403   1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1404   1.88       chs 	}
   1405  1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1406  1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1407   1.88       chs }
   1408   1.88       chs 
   1409    1.3        pk void
   1410   1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1411    1.3        pk {
   1412   1.15        pk 
   1413  1.134        ad 	mutex_enter(&pp->pr_lock);
   1414   1.21   thorpej 
   1415    1.3        pk 	pp->pr_minitems = n;
   1416   1.15        pk 	pp->pr_minpages = (n == 0)
   1417   1.15        pk 		? 0
   1418   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1419   1.20   thorpej 
   1420   1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1421   1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1422   1.20   thorpej 		/*
   1423   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1424   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1425   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1426   1.20   thorpej 		 */
   1427   1.20   thorpej 	}
   1428   1.21   thorpej 
   1429  1.134        ad 	mutex_exit(&pp->pr_lock);
   1430    1.3        pk }
   1431    1.3        pk 
   1432    1.3        pk void
   1433   1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1434    1.3        pk {
   1435   1.15        pk 
   1436  1.134        ad 	mutex_enter(&pp->pr_lock);
   1437   1.21   thorpej 
   1438   1.15        pk 	pp->pr_maxpages = (n == 0)
   1439   1.15        pk 		? 0
   1440   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1441   1.21   thorpej 
   1442  1.134        ad 	mutex_exit(&pp->pr_lock);
   1443    1.3        pk }
   1444    1.3        pk 
   1445   1.20   thorpej void
   1446   1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1447   1.20   thorpej {
   1448   1.20   thorpej 
   1449  1.134        ad 	mutex_enter(&pp->pr_lock);
   1450   1.20   thorpej 
   1451   1.20   thorpej 	pp->pr_hardlimit = n;
   1452   1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1453   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1454   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1455   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1456   1.20   thorpej 
   1457   1.20   thorpej 	/*
   1458   1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1459   1.21   thorpej 	 * release the lock.
   1460   1.20   thorpej 	 */
   1461   1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1462   1.20   thorpej 		? 0
   1463   1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1464   1.21   thorpej 
   1465  1.134        ad 	mutex_exit(&pp->pr_lock);
   1466   1.20   thorpej }
   1467    1.3        pk 
   1468    1.3        pk /*
   1469    1.3        pk  * Release all complete pages that have not been used recently.
   1470  1.184     rmind  *
   1471  1.197       jym  * Must not be called from interrupt context.
   1472    1.3        pk  */
   1473   1.66   thorpej int
   1474   1.56  sommerfe pool_reclaim(struct pool *pp)
   1475    1.3        pk {
   1476    1.3        pk 	struct pool_item_header *ph, *phnext;
   1477   1.61       chs 	struct pool_pagelist pq;
   1478  1.151      yamt 	uint32_t curtime;
   1479  1.134        ad 	bool klock;
   1480  1.134        ad 	int rv;
   1481    1.3        pk 
   1482  1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1483  1.184     rmind 
   1484   1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1485   1.68   thorpej 		/*
   1486   1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1487   1.68   thorpej 		 */
   1488   1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1489   1.68   thorpej 	}
   1490   1.68   thorpej 
   1491  1.134        ad 	/*
   1492  1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1493  1.157        ad 	 * to block.
   1494  1.134        ad 	 */
   1495  1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1496  1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1497  1.134        ad 		KERNEL_LOCK(1, NULL);
   1498  1.134        ad 		klock = true;
   1499  1.134        ad 	} else
   1500  1.134        ad 		klock = false;
   1501  1.134        ad 
   1502  1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1503  1.134        ad 	if (pp->pr_cache != NULL)
   1504  1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1505  1.134        ad 
   1506  1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1507  1.134        ad 		if (klock) {
   1508  1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1509  1.134        ad 		}
   1510  1.236      maxv 		return 0;
   1511  1.134        ad 	}
   1512   1.68   thorpej 
   1513   1.88       chs 	LIST_INIT(&pq);
   1514   1.43   thorpej 
   1515  1.151      yamt 	curtime = time_uptime;
   1516   1.21   thorpej 
   1517   1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1518   1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1519    1.3        pk 
   1520    1.3        pk 		/* Check our minimum page claim */
   1521    1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1522    1.3        pk 			break;
   1523    1.3        pk 
   1524   1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1525  1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1526   1.88       chs 			continue;
   1527   1.21   thorpej 
   1528   1.88       chs 		/*
   1529   1.88       chs 		 * If freeing this page would put us below
   1530   1.88       chs 		 * the low water mark, stop now.
   1531   1.88       chs 		 */
   1532   1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1533   1.88       chs 		    pp->pr_minitems)
   1534   1.88       chs 			break;
   1535   1.21   thorpej 
   1536   1.88       chs 		pr_rmpage(pp, ph, &pq);
   1537    1.3        pk 	}
   1538    1.3        pk 
   1539  1.134        ad 	mutex_exit(&pp->pr_lock);
   1540  1.134        ad 
   1541  1.134        ad 	if (LIST_EMPTY(&pq))
   1542  1.134        ad 		rv = 0;
   1543  1.134        ad 	else {
   1544  1.134        ad 		pr_pagelist_free(pp, &pq);
   1545  1.134        ad 		rv = 1;
   1546  1.134        ad 	}
   1547  1.134        ad 
   1548  1.134        ad 	if (klock) {
   1549  1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1550  1.134        ad 	}
   1551   1.66   thorpej 
   1552  1.236      maxv 	return rv;
   1553    1.3        pk }
   1554    1.3        pk 
   1555    1.3        pk /*
   1556  1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1557  1.131        ad  *
   1558  1.134        ad  * Note, must never be called from interrupt context.
   1559    1.3        pk  */
   1560  1.197       jym bool
   1561  1.197       jym pool_drain(struct pool **ppp)
   1562    1.3        pk {
   1563  1.197       jym 	bool reclaimed;
   1564    1.3        pk 	struct pool *pp;
   1565  1.134        ad 
   1566  1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1567    1.3        pk 
   1568   1.61       chs 	pp = NULL;
   1569  1.134        ad 
   1570  1.134        ad 	/* Find next pool to drain, and add a reference. */
   1571  1.134        ad 	mutex_enter(&pool_head_lock);
   1572  1.134        ad 	do {
   1573  1.134        ad 		if (drainpp == NULL) {
   1574  1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1575  1.134        ad 		}
   1576  1.134        ad 		if (drainpp != NULL) {
   1577  1.134        ad 			pp = drainpp;
   1578  1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1579  1.134        ad 		}
   1580  1.134        ad 		/*
   1581  1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1582  1.134        ad 		 * one pool in the system being active.
   1583  1.134        ad 		 */
   1584  1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1585  1.134        ad 	pp->pr_refcnt++;
   1586  1.134        ad 	mutex_exit(&pool_head_lock);
   1587  1.134        ad 
   1588  1.134        ad 	/* Drain the cache (if any) and pool.. */
   1589  1.186     pooka 	reclaimed = pool_reclaim(pp);
   1590  1.134        ad 
   1591  1.134        ad 	/* Finally, unlock the pool. */
   1592  1.134        ad 	mutex_enter(&pool_head_lock);
   1593  1.134        ad 	pp->pr_refcnt--;
   1594  1.134        ad 	cv_broadcast(&pool_busy);
   1595  1.134        ad 	mutex_exit(&pool_head_lock);
   1596  1.186     pooka 
   1597  1.197       jym 	if (ppp != NULL)
   1598  1.197       jym 		*ppp = pp;
   1599  1.197       jym 
   1600  1.186     pooka 	return reclaimed;
   1601    1.3        pk }
   1602    1.3        pk 
   1603    1.3        pk /*
   1604  1.217       mrg  * Calculate the total number of pages consumed by pools.
   1605  1.217       mrg  */
   1606  1.217       mrg int
   1607  1.217       mrg pool_totalpages(void)
   1608  1.217       mrg {
   1609  1.217       mrg 	struct pool *pp;
   1610  1.218       mrg 	uint64_t total = 0;
   1611  1.217       mrg 
   1612  1.217       mrg 	mutex_enter(&pool_head_lock);
   1613  1.218       mrg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1614  1.218       mrg 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1615  1.218       mrg 
   1616  1.218       mrg 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1617  1.218       mrg 			bytes -= (pp->pr_nout * pp->pr_size);
   1618  1.218       mrg 		total += bytes;
   1619  1.218       mrg 	}
   1620  1.217       mrg 	mutex_exit(&pool_head_lock);
   1621  1.217       mrg 
   1622  1.218       mrg 	return atop(total);
   1623  1.217       mrg }
   1624  1.217       mrg 
   1625  1.217       mrg /*
   1626    1.3        pk  * Diagnostic helpers.
   1627    1.3        pk  */
   1628   1.21   thorpej 
   1629   1.25   thorpej void
   1630  1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1631  1.108      yamt {
   1632  1.108      yamt 	struct pool *pp;
   1633  1.108      yamt 
   1634  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1635  1.108      yamt 		pool_printit(pp, modif, pr);
   1636  1.108      yamt 	}
   1637  1.108      yamt }
   1638  1.108      yamt 
   1639  1.108      yamt void
   1640   1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1641   1.25   thorpej {
   1642   1.25   thorpej 
   1643   1.25   thorpej 	if (pp == NULL) {
   1644   1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1645   1.25   thorpej 		return;
   1646   1.25   thorpej 	}
   1647   1.25   thorpej 
   1648   1.25   thorpej 	pool_print1(pp, modif, pr);
   1649   1.25   thorpej }
   1650   1.25   thorpej 
   1651   1.21   thorpej static void
   1652  1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1653   1.97      yamt     void (*pr)(const char *, ...))
   1654   1.88       chs {
   1655   1.88       chs 	struct pool_item_header *ph;
   1656   1.88       chs 
   1657   1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1658  1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1659  1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1660  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1661  1.229      maxv 		struct pool_item *pi;
   1662  1.242      maxv 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1663  1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1664   1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1665   1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1666   1.97      yamt 					    pi, pi->pi_magic);
   1667   1.97      yamt 				}
   1668   1.88       chs 			}
   1669   1.88       chs 		}
   1670   1.88       chs #endif
   1671   1.88       chs 	}
   1672   1.88       chs }
   1673   1.88       chs 
   1674   1.88       chs static void
   1675   1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1676    1.3        pk {
   1677   1.25   thorpej 	struct pool_item_header *ph;
   1678  1.134        ad 	pool_cache_t pc;
   1679  1.134        ad 	pcg_t *pcg;
   1680  1.134        ad 	pool_cache_cpu_t *cc;
   1681  1.134        ad 	uint64_t cpuhit, cpumiss;
   1682   1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1683   1.25   thorpej 	char c;
   1684   1.25   thorpej 
   1685   1.25   thorpej 	while ((c = *modif++) != '\0') {
   1686   1.25   thorpej 		if (c == 'l')
   1687   1.25   thorpej 			print_log = 1;
   1688   1.25   thorpej 		if (c == 'p')
   1689   1.25   thorpej 			print_pagelist = 1;
   1690   1.44   thorpej 		if (c == 'c')
   1691   1.44   thorpej 			print_cache = 1;
   1692   1.25   thorpej 	}
   1693   1.25   thorpej 
   1694  1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1695  1.134        ad 		(*pr)("POOL CACHE");
   1696  1.134        ad 	} else {
   1697  1.134        ad 		(*pr)("POOL");
   1698  1.134        ad 	}
   1699  1.134        ad 
   1700  1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1701   1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1702   1.25   thorpej 	    pp->pr_roflags);
   1703   1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1704   1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1705   1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1706   1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1707   1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1708   1.25   thorpej 
   1709  1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1710   1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1711   1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1712   1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1713   1.25   thorpej 
   1714   1.25   thorpej 	if (print_pagelist == 0)
   1715   1.25   thorpej 		goto skip_pagelist;
   1716   1.25   thorpej 
   1717   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1718   1.88       chs 		(*pr)("\n\tempty page list:\n");
   1719   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1720   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1721   1.88       chs 		(*pr)("\n\tfull page list:\n");
   1722   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1723   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1724   1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1725   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1726   1.88       chs 
   1727   1.25   thorpej 	if (pp->pr_curpage == NULL)
   1728   1.25   thorpej 		(*pr)("\tno current page\n");
   1729   1.25   thorpej 	else
   1730   1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1731   1.25   thorpej 
   1732   1.25   thorpej  skip_pagelist:
   1733   1.25   thorpej 	if (print_log == 0)
   1734   1.25   thorpej 		goto skip_log;
   1735   1.25   thorpej 
   1736   1.25   thorpej 	(*pr)("\n");
   1737    1.3        pk 
   1738   1.25   thorpej  skip_log:
   1739   1.44   thorpej 
   1740  1.102       chs #define PR_GROUPLIST(pcg)						\
   1741  1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1742  1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1743  1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1744  1.102       chs 		    POOL_PADDR_INVALID) {				\
   1745  1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1746  1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1747  1.102       chs 			    (unsigned long long)			\
   1748  1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1749  1.102       chs 		} else {						\
   1750  1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1751  1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1752  1.102       chs 		}							\
   1753  1.102       chs 	}
   1754  1.102       chs 
   1755  1.134        ad 	if (pc != NULL) {
   1756  1.134        ad 		cpuhit = 0;
   1757  1.134        ad 		cpumiss = 0;
   1758  1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1759  1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1760  1.134        ad 				continue;
   1761  1.134        ad 			cpuhit += cc->cc_hits;
   1762  1.134        ad 			cpumiss += cc->cc_misses;
   1763  1.134        ad 		}
   1764  1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1765  1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1766  1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1767  1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1768  1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1769  1.134        ad 		    pc->pc_contended);
   1770  1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1771  1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1772  1.134        ad 		if (print_cache) {
   1773  1.134        ad 			(*pr)("\tfull cache groups:\n");
   1774  1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1775  1.134        ad 			    pcg = pcg->pcg_next) {
   1776  1.134        ad 				PR_GROUPLIST(pcg);
   1777  1.134        ad 			}
   1778  1.134        ad 			(*pr)("\tempty cache groups:\n");
   1779  1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1780  1.134        ad 			    pcg = pcg->pcg_next) {
   1781  1.134        ad 				PR_GROUPLIST(pcg);
   1782  1.134        ad 			}
   1783  1.103       chs 		}
   1784   1.44   thorpej 	}
   1785  1.102       chs #undef PR_GROUPLIST
   1786   1.88       chs }
   1787   1.88       chs 
   1788   1.88       chs static int
   1789   1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1790   1.88       chs {
   1791   1.88       chs 	struct pool_item *pi;
   1792  1.128  christos 	void *page;
   1793   1.88       chs 	int n;
   1794   1.88       chs 
   1795  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1796  1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1797  1.121      yamt 		if (page != ph->ph_page &&
   1798  1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1799  1.121      yamt 			if (label != NULL)
   1800  1.121      yamt 				printf("%s: ", label);
   1801  1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1802  1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1803  1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1804  1.121      yamt 				ph, page);
   1805  1.121      yamt 			return 1;
   1806  1.121      yamt 		}
   1807   1.88       chs 	}
   1808    1.3        pk 
   1809  1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1810   1.97      yamt 		return 0;
   1811   1.97      yamt 
   1812  1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1813   1.88       chs 	     pi != NULL;
   1814  1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1815   1.88       chs 
   1816  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1817   1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1818   1.88       chs 			if (label != NULL)
   1819   1.88       chs 				printf("%s: ", label);
   1820   1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1821  1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1822   1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1823  1.121      yamt 				n, pi);
   1824   1.88       chs 			panic("pool");
   1825   1.88       chs 		}
   1826   1.88       chs #endif
   1827  1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1828  1.121      yamt 			continue;
   1829  1.121      yamt 		}
   1830  1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1831   1.88       chs 		if (page == ph->ph_page)
   1832   1.88       chs 			continue;
   1833   1.88       chs 
   1834   1.88       chs 		if (label != NULL)
   1835   1.88       chs 			printf("%s: ", label);
   1836   1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1837   1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1838   1.88       chs 			pp->pr_wchan, ph->ph_page,
   1839   1.88       chs 			n, pi, page);
   1840   1.88       chs 		return 1;
   1841   1.88       chs 	}
   1842   1.88       chs 	return 0;
   1843    1.3        pk }
   1844    1.3        pk 
   1845   1.88       chs 
   1846    1.3        pk int
   1847   1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1848    1.3        pk {
   1849    1.3        pk 	struct pool_item_header *ph;
   1850    1.3        pk 	int r = 0;
   1851    1.3        pk 
   1852  1.134        ad 	mutex_enter(&pp->pr_lock);
   1853   1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1854   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1855   1.88       chs 		if (r) {
   1856   1.88       chs 			goto out;
   1857   1.88       chs 		}
   1858   1.88       chs 	}
   1859   1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1860   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1861   1.88       chs 		if (r) {
   1862    1.3        pk 			goto out;
   1863    1.3        pk 		}
   1864   1.88       chs 	}
   1865   1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1866   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1867   1.88       chs 		if (r) {
   1868    1.3        pk 			goto out;
   1869    1.3        pk 		}
   1870    1.3        pk 	}
   1871   1.88       chs 
   1872    1.3        pk out:
   1873  1.134        ad 	mutex_exit(&pp->pr_lock);
   1874  1.236      maxv 	return r;
   1875   1.43   thorpej }
   1876   1.43   thorpej 
   1877   1.43   thorpej /*
   1878   1.43   thorpej  * pool_cache_init:
   1879   1.43   thorpej  *
   1880   1.43   thorpej  *	Initialize a pool cache.
   1881  1.134        ad  */
   1882  1.134        ad pool_cache_t
   1883  1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1884  1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   1885  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1886  1.134        ad {
   1887  1.134        ad 	pool_cache_t pc;
   1888  1.134        ad 
   1889  1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   1890  1.134        ad 	if (pc == NULL)
   1891  1.134        ad 		return NULL;
   1892  1.134        ad 
   1893  1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1894  1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   1895  1.134        ad 
   1896  1.134        ad 	return pc;
   1897  1.134        ad }
   1898  1.134        ad 
   1899  1.134        ad /*
   1900  1.134        ad  * pool_cache_bootstrap:
   1901   1.43   thorpej  *
   1902  1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   1903  1.134        ad  *	provides initial storage.
   1904   1.43   thorpej  */
   1905   1.43   thorpej void
   1906  1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1907  1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   1908  1.134        ad     struct pool_allocator *palloc, int ipl,
   1909  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1910   1.43   thorpej     void *arg)
   1911   1.43   thorpej {
   1912  1.134        ad 	CPU_INFO_ITERATOR cii;
   1913  1.145        ad 	pool_cache_t pc1;
   1914  1.134        ad 	struct cpu_info *ci;
   1915  1.134        ad 	struct pool *pp;
   1916  1.134        ad 
   1917  1.134        ad 	pp = &pc->pc_pool;
   1918  1.208       chs 	if (palloc == NULL && ipl == IPL_NONE) {
   1919  1.208       chs 		if (size > PAGE_SIZE) {
   1920  1.208       chs 			int bigidx = pool_bigidx(size);
   1921  1.208       chs 
   1922  1.208       chs 			palloc = &pool_allocator_big[bigidx];
   1923  1.208       chs 		} else
   1924  1.208       chs 			palloc = &pool_allocator_nointr;
   1925  1.208       chs 	}
   1926  1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1927  1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1928   1.43   thorpej 
   1929  1.134        ad 	if (ctor == NULL) {
   1930  1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   1931  1.134        ad 	}
   1932  1.134        ad 	if (dtor == NULL) {
   1933  1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   1934  1.134        ad 	}
   1935   1.43   thorpej 
   1936  1.134        ad 	pc->pc_emptygroups = NULL;
   1937  1.134        ad 	pc->pc_fullgroups = NULL;
   1938  1.134        ad 	pc->pc_partgroups = NULL;
   1939   1.43   thorpej 	pc->pc_ctor = ctor;
   1940   1.43   thorpej 	pc->pc_dtor = dtor;
   1941   1.43   thorpej 	pc->pc_arg  = arg;
   1942  1.134        ad 	pc->pc_hits  = 0;
   1943   1.48   thorpej 	pc->pc_misses = 0;
   1944  1.134        ad 	pc->pc_nempty = 0;
   1945  1.134        ad 	pc->pc_npart = 0;
   1946  1.134        ad 	pc->pc_nfull = 0;
   1947  1.134        ad 	pc->pc_contended = 0;
   1948  1.134        ad 	pc->pc_refcnt = 0;
   1949  1.136      yamt 	pc->pc_freecheck = NULL;
   1950  1.134        ad 
   1951  1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   1952  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1953  1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   1954  1.142        ad 	} else {
   1955  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1956  1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   1957  1.142        ad 	}
   1958  1.142        ad 
   1959  1.134        ad 	/* Allocate per-CPU caches. */
   1960  1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   1961  1.134        ad 	pc->pc_ncpu = 0;
   1962  1.139        ad 	if (ncpu < 2) {
   1963  1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   1964  1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   1965  1.137        ad 	} else {
   1966  1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   1967  1.137        ad 			pool_cache_cpu_init1(ci, pc);
   1968  1.137        ad 		}
   1969  1.134        ad 	}
   1970  1.145        ad 
   1971  1.145        ad 	/* Add to list of all pools. */
   1972  1.145        ad 	if (__predict_true(!cold))
   1973  1.134        ad 		mutex_enter(&pool_head_lock);
   1974  1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   1975  1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   1976  1.145        ad 			break;
   1977  1.145        ad 	}
   1978  1.145        ad 	if (pc1 == NULL)
   1979  1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   1980  1.145        ad 	else
   1981  1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   1982  1.145        ad 	if (__predict_true(!cold))
   1983  1.134        ad 		mutex_exit(&pool_head_lock);
   1984  1.145        ad 
   1985  1.145        ad 	membar_sync();
   1986  1.145        ad 	pp->pr_cache = pc;
   1987   1.43   thorpej }
   1988   1.43   thorpej 
   1989   1.43   thorpej /*
   1990   1.43   thorpej  * pool_cache_destroy:
   1991   1.43   thorpej  *
   1992   1.43   thorpej  *	Destroy a pool cache.
   1993   1.43   thorpej  */
   1994   1.43   thorpej void
   1995  1.134        ad pool_cache_destroy(pool_cache_t pc)
   1996   1.43   thorpej {
   1997  1.191      para 
   1998  1.191      para 	pool_cache_bootstrap_destroy(pc);
   1999  1.191      para 	pool_put(&cache_pool, pc);
   2000  1.191      para }
   2001  1.191      para 
   2002  1.191      para /*
   2003  1.191      para  * pool_cache_bootstrap_destroy:
   2004  1.191      para  *
   2005  1.191      para  *	Destroy a pool cache.
   2006  1.191      para  */
   2007  1.191      para void
   2008  1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   2009  1.191      para {
   2010  1.134        ad 	struct pool *pp = &pc->pc_pool;
   2011  1.175       jym 	u_int i;
   2012  1.134        ad 
   2013  1.134        ad 	/* Remove it from the global list. */
   2014  1.134        ad 	mutex_enter(&pool_head_lock);
   2015  1.134        ad 	while (pc->pc_refcnt != 0)
   2016  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2017  1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2018  1.134        ad 	mutex_exit(&pool_head_lock);
   2019   1.43   thorpej 
   2020   1.43   thorpej 	/* First, invalidate the entire cache. */
   2021   1.43   thorpej 	pool_cache_invalidate(pc);
   2022   1.43   thorpej 
   2023  1.134        ad 	/* Disassociate it from the pool. */
   2024  1.134        ad 	mutex_enter(&pp->pr_lock);
   2025  1.134        ad 	pp->pr_cache = NULL;
   2026  1.134        ad 	mutex_exit(&pp->pr_lock);
   2027  1.134        ad 
   2028  1.134        ad 	/* Destroy per-CPU data */
   2029  1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2030  1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   2031  1.134        ad 
   2032  1.134        ad 	/* Finally, destroy it. */
   2033  1.134        ad 	mutex_destroy(&pc->pc_lock);
   2034  1.134        ad 	pool_destroy(pp);
   2035  1.134        ad }
   2036  1.134        ad 
   2037  1.134        ad /*
   2038  1.134        ad  * pool_cache_cpu_init1:
   2039  1.134        ad  *
   2040  1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2041  1.134        ad  */
   2042  1.134        ad static void
   2043  1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2044  1.134        ad {
   2045  1.134        ad 	pool_cache_cpu_t *cc;
   2046  1.137        ad 	int index;
   2047  1.134        ad 
   2048  1.137        ad 	index = ci->ci_index;
   2049  1.137        ad 
   2050  1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   2051  1.134        ad 
   2052  1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2053  1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2054  1.134        ad 		return;
   2055  1.134        ad 	}
   2056  1.134        ad 
   2057  1.134        ad 	/*
   2058  1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2059  1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2060  1.134        ad 	 */
   2061  1.134        ad 	if (pc->pc_ncpu == 0) {
   2062  1.134        ad 		cc = &pc->pc_cpu0;
   2063  1.134        ad 		pc->pc_ncpu = 1;
   2064  1.134        ad 	} else {
   2065  1.134        ad 		mutex_enter(&pc->pc_lock);
   2066  1.134        ad 		pc->pc_ncpu++;
   2067  1.134        ad 		mutex_exit(&pc->pc_lock);
   2068  1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2069  1.134        ad 	}
   2070  1.134        ad 
   2071  1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2072  1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2073  1.134        ad 	cc->cc_cache = pc;
   2074  1.137        ad 	cc->cc_cpuindex = index;
   2075  1.134        ad 	cc->cc_hits = 0;
   2076  1.134        ad 	cc->cc_misses = 0;
   2077  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2078  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2079  1.134        ad 
   2080  1.137        ad 	pc->pc_cpus[index] = cc;
   2081   1.43   thorpej }
   2082   1.43   thorpej 
   2083  1.134        ad /*
   2084  1.134        ad  * pool_cache_cpu_init:
   2085  1.134        ad  *
   2086  1.134        ad  *	Called whenever a new CPU is attached.
   2087  1.134        ad  */
   2088  1.134        ad void
   2089  1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2090   1.43   thorpej {
   2091  1.134        ad 	pool_cache_t pc;
   2092  1.134        ad 
   2093  1.134        ad 	mutex_enter(&pool_head_lock);
   2094  1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2095  1.134        ad 		pc->pc_refcnt++;
   2096  1.134        ad 		mutex_exit(&pool_head_lock);
   2097   1.43   thorpej 
   2098  1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2099   1.43   thorpej 
   2100  1.134        ad 		mutex_enter(&pool_head_lock);
   2101  1.134        ad 		pc->pc_refcnt--;
   2102  1.134        ad 		cv_broadcast(&pool_busy);
   2103  1.134        ad 	}
   2104  1.134        ad 	mutex_exit(&pool_head_lock);
   2105   1.43   thorpej }
   2106   1.43   thorpej 
   2107  1.134        ad /*
   2108  1.134        ad  * pool_cache_reclaim:
   2109  1.134        ad  *
   2110  1.134        ad  *	Reclaim memory from a pool cache.
   2111  1.134        ad  */
   2112  1.134        ad bool
   2113  1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2114   1.43   thorpej {
   2115   1.43   thorpej 
   2116  1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2117  1.134        ad }
   2118   1.43   thorpej 
   2119  1.136      yamt static void
   2120  1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2121  1.136      yamt {
   2122  1.229      maxv 	if (pc->pc_pool.pr_redzone) {
   2123  1.229      maxv 		/*
   2124  1.229      maxv 		 * The object is marked as invalid. Temporarily mark it as
   2125  1.229      maxv 		 * valid for the destructor. pool_put below will re-mark it
   2126  1.229      maxv 		 * as invalid.
   2127  1.229      maxv 		 */
   2128  1.231      maxv 		kasan_mark(object, pc->pc_pool.pr_reqsize,
   2129  1.229      maxv 		    pc->pc_pool.pr_reqsize_with_redzone);
   2130  1.229      maxv 	}
   2131  1.136      yamt 
   2132  1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2133  1.136      yamt 	pool_put(&pc->pc_pool, object);
   2134  1.136      yamt }
   2135  1.136      yamt 
   2136  1.134        ad /*
   2137  1.134        ad  * pool_cache_destruct_object:
   2138  1.134        ad  *
   2139  1.134        ad  *	Force destruction of an object and its release back into
   2140  1.134        ad  *	the pool.
   2141  1.134        ad  */
   2142  1.134        ad void
   2143  1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2144  1.134        ad {
   2145  1.134        ad 
   2146  1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2147  1.136      yamt 
   2148  1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2149   1.43   thorpej }
   2150   1.43   thorpej 
   2151  1.134        ad /*
   2152  1.134        ad  * pool_cache_invalidate_groups:
   2153  1.134        ad  *
   2154  1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2155  1.134        ad  */
   2156  1.102       chs static void
   2157  1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2158  1.102       chs {
   2159  1.134        ad 	void *object;
   2160  1.134        ad 	pcg_t *next;
   2161  1.134        ad 	int i;
   2162  1.134        ad 
   2163  1.134        ad 	for (; pcg != NULL; pcg = next) {
   2164  1.134        ad 		next = pcg->pcg_next;
   2165  1.134        ad 
   2166  1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2167  1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2168  1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2169  1.134        ad 		}
   2170  1.102       chs 
   2171  1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2172  1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2173  1.142        ad 		} else {
   2174  1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2175  1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2176  1.142        ad 		}
   2177  1.102       chs 	}
   2178  1.102       chs }
   2179  1.102       chs 
   2180   1.43   thorpej /*
   2181  1.134        ad  * pool_cache_invalidate:
   2182   1.43   thorpej  *
   2183  1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2184  1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2185  1.176   thorpej  *
   2186  1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2187  1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2188  1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2189  1.196       jym  *
   2190  1.196       jym  *	Invalidation is a costly process and should not be called from
   2191  1.196       jym  *	interrupt context.
   2192   1.43   thorpej  */
   2193  1.134        ad void
   2194  1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2195  1.134        ad {
   2196  1.196       jym 	uint64_t where;
   2197  1.134        ad 	pcg_t *full, *empty, *part;
   2198  1.196       jym 
   2199  1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2200  1.176   thorpej 
   2201  1.177       jym 	if (ncpu < 2 || !mp_online) {
   2202  1.176   thorpej 		/*
   2203  1.176   thorpej 		 * We might be called early enough in the boot process
   2204  1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2205  1.196       jym 		 * In this case, transfer the content of the local CPU's
   2206  1.196       jym 		 * cache back into global cache as only this CPU is currently
   2207  1.196       jym 		 * running.
   2208  1.176   thorpej 		 */
   2209  1.196       jym 		pool_cache_transfer(pc);
   2210  1.176   thorpej 	} else {
   2211  1.176   thorpej 		/*
   2212  1.196       jym 		 * Signal all CPUs that they must transfer their local
   2213  1.196       jym 		 * cache back to the global pool then wait for the xcall to
   2214  1.196       jym 		 * complete.
   2215  1.176   thorpej 		 */
   2216  1.196       jym 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2217  1.196       jym 		    pc, NULL);
   2218  1.176   thorpej 		xc_wait(where);
   2219  1.176   thorpej 	}
   2220  1.196       jym 
   2221  1.196       jym 	/* Empty pool caches, then invalidate objects */
   2222  1.134        ad 	mutex_enter(&pc->pc_lock);
   2223  1.134        ad 	full = pc->pc_fullgroups;
   2224  1.134        ad 	empty = pc->pc_emptygroups;
   2225  1.134        ad 	part = pc->pc_partgroups;
   2226  1.134        ad 	pc->pc_fullgroups = NULL;
   2227  1.134        ad 	pc->pc_emptygroups = NULL;
   2228  1.134        ad 	pc->pc_partgroups = NULL;
   2229  1.134        ad 	pc->pc_nfull = 0;
   2230  1.134        ad 	pc->pc_nempty = 0;
   2231  1.134        ad 	pc->pc_npart = 0;
   2232  1.134        ad 	mutex_exit(&pc->pc_lock);
   2233  1.134        ad 
   2234  1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2235  1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2236  1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2237  1.134        ad }
   2238  1.134        ad 
   2239  1.175       jym /*
   2240  1.175       jym  * pool_cache_invalidate_cpu:
   2241  1.175       jym  *
   2242  1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2243  1.175       jym  *	identified by its associated index.
   2244  1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2245  1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2246  1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2247  1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2248  1.175       jym  *	may result in an undefined behaviour.
   2249  1.175       jym  */
   2250  1.175       jym static void
   2251  1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2252  1.175       jym {
   2253  1.175       jym 	pool_cache_cpu_t *cc;
   2254  1.175       jym 	pcg_t *pcg;
   2255  1.175       jym 
   2256  1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2257  1.175       jym 		return;
   2258  1.175       jym 
   2259  1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2260  1.175       jym 		pcg->pcg_next = NULL;
   2261  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2262  1.175       jym 	}
   2263  1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2264  1.175       jym 		pcg->pcg_next = NULL;
   2265  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2266  1.175       jym 	}
   2267  1.175       jym 	if (cc != &pc->pc_cpu0)
   2268  1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2269  1.175       jym 
   2270  1.175       jym }
   2271  1.175       jym 
   2272  1.134        ad void
   2273  1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2274  1.134        ad {
   2275  1.134        ad 
   2276  1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2277  1.134        ad }
   2278  1.134        ad 
   2279  1.134        ad void
   2280  1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2281  1.134        ad {
   2282  1.134        ad 
   2283  1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2284  1.134        ad }
   2285  1.134        ad 
   2286  1.134        ad void
   2287  1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2288  1.134        ad {
   2289  1.134        ad 
   2290  1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2291  1.134        ad }
   2292  1.134        ad 
   2293  1.134        ad void
   2294  1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2295  1.134        ad {
   2296  1.134        ad 
   2297  1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2298  1.134        ad }
   2299  1.134        ad 
   2300  1.162        ad static bool __noinline
   2301  1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2302  1.134        ad 		    paddr_t *pap, int flags)
   2303   1.43   thorpej {
   2304  1.134        ad 	pcg_t *pcg, *cur;
   2305  1.134        ad 	uint64_t ncsw;
   2306  1.134        ad 	pool_cache_t pc;
   2307   1.43   thorpej 	void *object;
   2308   1.58   thorpej 
   2309  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2310  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2311  1.168      yamt 
   2312  1.134        ad 	pc = cc->cc_cache;
   2313  1.134        ad 	cc->cc_misses++;
   2314   1.43   thorpej 
   2315  1.134        ad 	/*
   2316  1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2317  1.134        ad 	 * from the cache.
   2318  1.134        ad 	 */
   2319  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2320  1.134        ad 		ncsw = curlwp->l_ncsw;
   2321  1.134        ad 		mutex_enter(&pc->pc_lock);
   2322  1.134        ad 		pc->pc_contended++;
   2323   1.43   thorpej 
   2324  1.134        ad 		/*
   2325  1.134        ad 		 * If we context switched while locking, then
   2326  1.134        ad 		 * our view of the per-CPU data is invalid:
   2327  1.134        ad 		 * retry.
   2328  1.134        ad 		 */
   2329  1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2330  1.134        ad 			mutex_exit(&pc->pc_lock);
   2331  1.162        ad 			return true;
   2332   1.43   thorpej 		}
   2333  1.102       chs 	}
   2334   1.43   thorpej 
   2335  1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2336   1.43   thorpej 		/*
   2337  1.134        ad 		 * If there's a full group, release our empty
   2338  1.134        ad 		 * group back to the cache.  Install the full
   2339  1.134        ad 		 * group as cc_current and return.
   2340   1.43   thorpej 		 */
   2341  1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2342  1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2343  1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2344  1.134        ad 			pc->pc_emptygroups = cur;
   2345  1.134        ad 			pc->pc_nempty++;
   2346   1.87   thorpej 		}
   2347  1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2348  1.134        ad 		cc->cc_current = pcg;
   2349  1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2350  1.134        ad 		pc->pc_hits++;
   2351  1.134        ad 		pc->pc_nfull--;
   2352  1.134        ad 		mutex_exit(&pc->pc_lock);
   2353  1.162        ad 		return true;
   2354  1.134        ad 	}
   2355  1.134        ad 
   2356  1.134        ad 	/*
   2357  1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2358  1.134        ad 	 * path: fetch a new object from the pool and construct
   2359  1.134        ad 	 * it.
   2360  1.134        ad 	 */
   2361  1.134        ad 	pc->pc_misses++;
   2362  1.134        ad 	mutex_exit(&pc->pc_lock);
   2363  1.162        ad 	splx(s);
   2364  1.134        ad 
   2365  1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2366  1.134        ad 	*objectp = object;
   2367  1.211  riastrad 	if (__predict_false(object == NULL)) {
   2368  1.211  riastrad 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2369  1.162        ad 		return false;
   2370  1.211  riastrad 	}
   2371  1.125        ad 
   2372  1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2373  1.134        ad 		pool_put(&pc->pc_pool, object);
   2374  1.134        ad 		*objectp = NULL;
   2375  1.162        ad 		return false;
   2376   1.43   thorpej 	}
   2377   1.43   thorpej 
   2378  1.238      maxv 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2379   1.43   thorpej 
   2380  1.134        ad 	if (pap != NULL) {
   2381  1.134        ad #ifdef POOL_VTOPHYS
   2382  1.134        ad 		*pap = POOL_VTOPHYS(object);
   2383  1.134        ad #else
   2384  1.134        ad 		*pap = POOL_PADDR_INVALID;
   2385  1.134        ad #endif
   2386  1.102       chs 	}
   2387   1.43   thorpej 
   2388  1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2389  1.204      maxv 	pool_redzone_fill(&pc->pc_pool, object);
   2390  1.228      maxv 	pool_cache_kleak_fill(pc, object);
   2391  1.162        ad 	return false;
   2392   1.43   thorpej }
   2393   1.43   thorpej 
   2394   1.43   thorpej /*
   2395  1.134        ad  * pool_cache_get{,_paddr}:
   2396   1.43   thorpej  *
   2397  1.134        ad  *	Get an object from a pool cache (optionally returning
   2398  1.134        ad  *	the physical address of the object).
   2399   1.43   thorpej  */
   2400  1.134        ad void *
   2401  1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2402   1.43   thorpej {
   2403  1.134        ad 	pool_cache_cpu_t *cc;
   2404  1.134        ad 	pcg_t *pcg;
   2405  1.134        ad 	void *object;
   2406   1.60   thorpej 	int s;
   2407   1.43   thorpej 
   2408  1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2409  1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2410  1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2411  1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2412  1.213  christos 	    __func__, pc->pc_pool.pr_wchan);
   2413  1.184     rmind 
   2414  1.155        ad 	if (flags & PR_WAITOK) {
   2415  1.154      yamt 		ASSERT_SLEEPABLE();
   2416  1.155        ad 	}
   2417  1.125        ad 
   2418  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2419  1.162        ad 	s = splvm();
   2420  1.165      yamt 	while (/* CONSTCOND */ true) {
   2421  1.134        ad 		/* Try and allocate an object from the current group. */
   2422  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2423  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2424  1.134        ad 	 	pcg = cc->cc_current;
   2425  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2426  1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2427  1.162        ad 			if (__predict_false(pap != NULL))
   2428  1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2429  1.148      yamt #if defined(DIAGNOSTIC)
   2430  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2431  1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2432  1.134        ad 			KASSERT(object != NULL);
   2433  1.163        ad #endif
   2434  1.134        ad 			cc->cc_hits++;
   2435  1.162        ad 			splx(s);
   2436  1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2437  1.204      maxv 			pool_redzone_fill(&pc->pc_pool, object);
   2438  1.228      maxv 			pool_cache_kleak_fill(pc, object);
   2439  1.134        ad 			return object;
   2440   1.43   thorpej 		}
   2441   1.43   thorpej 
   2442   1.43   thorpej 		/*
   2443  1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2444  1.134        ad 		 * it with the current group and allocate from there.
   2445   1.43   thorpej 		 */
   2446  1.134        ad 		pcg = cc->cc_previous;
   2447  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2448  1.134        ad 			cc->cc_previous = cc->cc_current;
   2449  1.134        ad 			cc->cc_current = pcg;
   2450  1.134        ad 			continue;
   2451   1.43   thorpej 		}
   2452   1.43   thorpej 
   2453  1.134        ad 		/*
   2454  1.134        ad 		 * Can't allocate from either group: try the slow path.
   2455  1.134        ad 		 * If get_slow() allocated an object for us, or if
   2456  1.162        ad 		 * no more objects are available, it will return false.
   2457  1.134        ad 		 * Otherwise, we need to retry.
   2458  1.134        ad 		 */
   2459  1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2460  1.165      yamt 			break;
   2461  1.165      yamt 	}
   2462   1.43   thorpej 
   2463  1.211  riastrad 	/*
   2464  1.211  riastrad 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2465  1.211  riastrad 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2466  1.211  riastrad 	 * constructor fails.
   2467  1.211  riastrad 	 */
   2468  1.134        ad 	return object;
   2469   1.51   thorpej }
   2470   1.51   thorpej 
   2471  1.162        ad static bool __noinline
   2472  1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2473   1.51   thorpej {
   2474  1.200     pooka 	struct lwp *l = curlwp;
   2475  1.163        ad 	pcg_t *pcg, *cur;
   2476  1.134        ad 	uint64_t ncsw;
   2477  1.134        ad 	pool_cache_t pc;
   2478   1.51   thorpej 
   2479  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2480  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2481  1.168      yamt 
   2482  1.134        ad 	pc = cc->cc_cache;
   2483  1.171        ad 	pcg = NULL;
   2484  1.134        ad 	cc->cc_misses++;
   2485  1.200     pooka 	ncsw = l->l_ncsw;
   2486   1.43   thorpej 
   2487  1.171        ad 	/*
   2488  1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2489  1.171        ad 	 * while still unlocked.
   2490  1.171        ad 	 */
   2491  1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2492  1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2493  1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2494  1.171        ad 		}
   2495  1.200     pooka 		/*
   2496  1.200     pooka 		 * If pool_get() blocked, then our view of
   2497  1.200     pooka 		 * the per-CPU data is invalid: retry.
   2498  1.200     pooka 		 */
   2499  1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2500  1.200     pooka 			if (pcg != NULL) {
   2501  1.200     pooka 				pool_put(pc->pc_pcgpool, pcg);
   2502  1.200     pooka 			}
   2503  1.200     pooka 			return true;
   2504  1.200     pooka 		}
   2505  1.171        ad 		if (__predict_true(pcg != NULL)) {
   2506  1.171        ad 			pcg->pcg_avail = 0;
   2507  1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2508  1.171        ad 		}
   2509  1.171        ad 	}
   2510  1.171        ad 
   2511  1.162        ad 	/* Lock the cache. */
   2512  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2513  1.134        ad 		mutex_enter(&pc->pc_lock);
   2514  1.134        ad 		pc->pc_contended++;
   2515  1.162        ad 
   2516  1.163        ad 		/*
   2517  1.163        ad 		 * If we context switched while locking, then our view of
   2518  1.163        ad 		 * the per-CPU data is invalid: retry.
   2519  1.163        ad 		 */
   2520  1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2521  1.163        ad 			mutex_exit(&pc->pc_lock);
   2522  1.171        ad 			if (pcg != NULL) {
   2523  1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2524  1.171        ad 			}
   2525  1.163        ad 			return true;
   2526  1.163        ad 		}
   2527  1.162        ad 	}
   2528  1.102       chs 
   2529  1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2530  1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2531  1.171        ad 		pcg = pc->pc_emptygroups;
   2532  1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2533  1.163        ad 		pc->pc_nempty--;
   2534  1.134        ad 	}
   2535  1.130        ad 
   2536  1.162        ad 	/*
   2537  1.162        ad 	 * If there's a empty group, release our full group back
   2538  1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2539  1.162        ad 	 * and return.
   2540  1.162        ad 	 */
   2541  1.163        ad 	if (pcg != NULL) {
   2542  1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2543  1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2544  1.146        ad 			cc->cc_previous = pcg;
   2545  1.146        ad 		} else {
   2546  1.162        ad 			cur = cc->cc_current;
   2547  1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2548  1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2549  1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2550  1.146        ad 				pc->pc_fullgroups = cur;
   2551  1.146        ad 				pc->pc_nfull++;
   2552  1.146        ad 			}
   2553  1.146        ad 			cc->cc_current = pcg;
   2554  1.146        ad 		}
   2555  1.163        ad 		pc->pc_hits++;
   2556  1.134        ad 		mutex_exit(&pc->pc_lock);
   2557  1.162        ad 		return true;
   2558  1.102       chs 	}
   2559  1.105  christos 
   2560  1.134        ad 	/*
   2561  1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2562  1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2563  1.162        ad 	 * the object here and now.
   2564  1.134        ad 	 */
   2565  1.134        ad 	pc->pc_misses++;
   2566  1.134        ad 	mutex_exit(&pc->pc_lock);
   2567  1.162        ad 	splx(s);
   2568  1.162        ad 	pool_cache_destruct_object(pc, object);
   2569  1.105  christos 
   2570  1.162        ad 	return false;
   2571  1.236      maxv }
   2572  1.102       chs 
   2573   1.43   thorpej /*
   2574  1.134        ad  * pool_cache_put{,_paddr}:
   2575   1.43   thorpej  *
   2576  1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2577  1.134        ad  *	physical address of the object).
   2578   1.43   thorpej  */
   2579  1.101   thorpej void
   2580  1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2581   1.43   thorpej {
   2582  1.134        ad 	pool_cache_cpu_t *cc;
   2583  1.134        ad 	pcg_t *pcg;
   2584  1.134        ad 	int s;
   2585  1.101   thorpej 
   2586  1.172      yamt 	KASSERT(object != NULL);
   2587  1.229      maxv 	pool_cache_redzone_check(pc, object);
   2588  1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2589  1.101   thorpej 
   2590  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2591  1.162        ad 	s = splvm();
   2592  1.165      yamt 	while (/* CONSTCOND */ true) {
   2593  1.134        ad 		/* If the current group isn't full, release it there. */
   2594  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2595  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2596  1.134        ad 	 	pcg = cc->cc_current;
   2597  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2598  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2599  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2600  1.134        ad 			pcg->pcg_avail++;
   2601  1.134        ad 			cc->cc_hits++;
   2602  1.162        ad 			splx(s);
   2603  1.134        ad 			return;
   2604  1.134        ad 		}
   2605   1.43   thorpej 
   2606  1.134        ad 		/*
   2607  1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2608  1.134        ad 		 * it with the current group and try again.
   2609  1.134        ad 		 */
   2610  1.134        ad 		pcg = cc->cc_previous;
   2611  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2612  1.134        ad 			cc->cc_previous = cc->cc_current;
   2613  1.134        ad 			cc->cc_current = pcg;
   2614  1.134        ad 			continue;
   2615  1.134        ad 		}
   2616   1.43   thorpej 
   2617  1.134        ad 		/*
   2618  1.236      maxv 		 * Can't free to either group: try the slow path.
   2619  1.134        ad 		 * If put_slow() releases the object for us, it
   2620  1.162        ad 		 * will return false.  Otherwise we need to retry.
   2621  1.134        ad 		 */
   2622  1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2623  1.165      yamt 			break;
   2624  1.165      yamt 	}
   2625   1.43   thorpej }
   2626   1.43   thorpej 
   2627   1.43   thorpej /*
   2628  1.196       jym  * pool_cache_transfer:
   2629   1.43   thorpej  *
   2630  1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2631  1.134        ad  *	Run within a cross-call thread.
   2632   1.43   thorpej  */
   2633   1.43   thorpej static void
   2634  1.196       jym pool_cache_transfer(pool_cache_t pc)
   2635   1.43   thorpej {
   2636  1.134        ad 	pool_cache_cpu_t *cc;
   2637  1.134        ad 	pcg_t *prev, *cur, **list;
   2638  1.162        ad 	int s;
   2639  1.134        ad 
   2640  1.162        ad 	s = splvm();
   2641  1.162        ad 	mutex_enter(&pc->pc_lock);
   2642  1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2643  1.134        ad 	cur = cc->cc_current;
   2644  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2645  1.134        ad 	prev = cc->cc_previous;
   2646  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2647  1.162        ad 	if (cur != &pcg_dummy) {
   2648  1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2649  1.134        ad 			list = &pc->pc_fullgroups;
   2650  1.134        ad 			pc->pc_nfull++;
   2651  1.134        ad 		} else if (cur->pcg_avail == 0) {
   2652  1.134        ad 			list = &pc->pc_emptygroups;
   2653  1.134        ad 			pc->pc_nempty++;
   2654  1.134        ad 		} else {
   2655  1.134        ad 			list = &pc->pc_partgroups;
   2656  1.134        ad 			pc->pc_npart++;
   2657  1.134        ad 		}
   2658  1.134        ad 		cur->pcg_next = *list;
   2659  1.134        ad 		*list = cur;
   2660  1.134        ad 	}
   2661  1.162        ad 	if (prev != &pcg_dummy) {
   2662  1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2663  1.134        ad 			list = &pc->pc_fullgroups;
   2664  1.134        ad 			pc->pc_nfull++;
   2665  1.134        ad 		} else if (prev->pcg_avail == 0) {
   2666  1.134        ad 			list = &pc->pc_emptygroups;
   2667  1.134        ad 			pc->pc_nempty++;
   2668  1.134        ad 		} else {
   2669  1.134        ad 			list = &pc->pc_partgroups;
   2670  1.134        ad 			pc->pc_npart++;
   2671  1.134        ad 		}
   2672  1.134        ad 		prev->pcg_next = *list;
   2673  1.134        ad 		*list = prev;
   2674  1.134        ad 	}
   2675  1.134        ad 	mutex_exit(&pc->pc_lock);
   2676  1.134        ad 	splx(s);
   2677    1.3        pk }
   2678   1.66   thorpej 
   2679   1.66   thorpej /*
   2680   1.66   thorpej  * Pool backend allocators.
   2681   1.66   thorpej  *
   2682   1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2683   1.66   thorpej  * and any additional draining that might be needed.
   2684   1.66   thorpej  *
   2685   1.66   thorpej  * We provide two standard allocators:
   2686   1.66   thorpej  *
   2687   1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2688   1.66   thorpej  *
   2689   1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2690   1.66   thorpej  *	in interrupt context.
   2691   1.66   thorpej  */
   2692   1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2693   1.66   thorpej void	pool_page_free(struct pool *, void *);
   2694   1.66   thorpej 
   2695  1.112     bjh21 #ifdef POOL_SUBPAGE
   2696  1.112     bjh21 struct pool_allocator pool_allocator_kmem_fullpage = {
   2697  1.192     rmind 	.pa_alloc = pool_page_alloc,
   2698  1.192     rmind 	.pa_free = pool_page_free,
   2699  1.192     rmind 	.pa_pagesz = 0
   2700  1.112     bjh21 };
   2701  1.112     bjh21 #else
   2702   1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2703  1.191      para 	.pa_alloc = pool_page_alloc,
   2704  1.191      para 	.pa_free = pool_page_free,
   2705  1.191      para 	.pa_pagesz = 0
   2706   1.66   thorpej };
   2707  1.112     bjh21 #endif
   2708   1.66   thorpej 
   2709  1.112     bjh21 #ifdef POOL_SUBPAGE
   2710  1.112     bjh21 struct pool_allocator pool_allocator_nointr_fullpage = {
   2711  1.194      para 	.pa_alloc = pool_page_alloc,
   2712  1.194      para 	.pa_free = pool_page_free,
   2713  1.192     rmind 	.pa_pagesz = 0
   2714  1.112     bjh21 };
   2715  1.112     bjh21 #else
   2716   1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2717  1.191      para 	.pa_alloc = pool_page_alloc,
   2718  1.191      para 	.pa_free = pool_page_free,
   2719  1.191      para 	.pa_pagesz = 0
   2720   1.66   thorpej };
   2721  1.112     bjh21 #endif
   2722   1.66   thorpej 
   2723   1.66   thorpej #ifdef POOL_SUBPAGE
   2724   1.66   thorpej void	*pool_subpage_alloc(struct pool *, int);
   2725   1.66   thorpej void	pool_subpage_free(struct pool *, void *);
   2726   1.66   thorpej 
   2727  1.112     bjh21 struct pool_allocator pool_allocator_kmem = {
   2728  1.193        he 	.pa_alloc = pool_subpage_alloc,
   2729  1.193        he 	.pa_free = pool_subpage_free,
   2730  1.193        he 	.pa_pagesz = POOL_SUBPAGE
   2731  1.112     bjh21 };
   2732  1.112     bjh21 
   2733  1.112     bjh21 struct pool_allocator pool_allocator_nointr = {
   2734  1.192     rmind 	.pa_alloc = pool_subpage_alloc,
   2735  1.192     rmind 	.pa_free = pool_subpage_free,
   2736  1.192     rmind 	.pa_pagesz = POOL_SUBPAGE
   2737   1.66   thorpej };
   2738   1.66   thorpej #endif /* POOL_SUBPAGE */
   2739   1.66   thorpej 
   2740  1.208       chs struct pool_allocator pool_allocator_big[] = {
   2741  1.208       chs 	{
   2742  1.208       chs 		.pa_alloc = pool_page_alloc,
   2743  1.208       chs 		.pa_free = pool_page_free,
   2744  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2745  1.208       chs 	},
   2746  1.208       chs 	{
   2747  1.208       chs 		.pa_alloc = pool_page_alloc,
   2748  1.208       chs 		.pa_free = pool_page_free,
   2749  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2750  1.208       chs 	},
   2751  1.208       chs 	{
   2752  1.208       chs 		.pa_alloc = pool_page_alloc,
   2753  1.208       chs 		.pa_free = pool_page_free,
   2754  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2755  1.208       chs 	},
   2756  1.208       chs 	{
   2757  1.208       chs 		.pa_alloc = pool_page_alloc,
   2758  1.208       chs 		.pa_free = pool_page_free,
   2759  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2760  1.208       chs 	},
   2761  1.208       chs 	{
   2762  1.208       chs 		.pa_alloc = pool_page_alloc,
   2763  1.208       chs 		.pa_free = pool_page_free,
   2764  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2765  1.208       chs 	},
   2766  1.208       chs 	{
   2767  1.208       chs 		.pa_alloc = pool_page_alloc,
   2768  1.208       chs 		.pa_free = pool_page_free,
   2769  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2770  1.208       chs 	},
   2771  1.208       chs 	{
   2772  1.208       chs 		.pa_alloc = pool_page_alloc,
   2773  1.208       chs 		.pa_free = pool_page_free,
   2774  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2775  1.208       chs 	},
   2776  1.208       chs 	{
   2777  1.208       chs 		.pa_alloc = pool_page_alloc,
   2778  1.208       chs 		.pa_free = pool_page_free,
   2779  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2780  1.208       chs 	}
   2781  1.208       chs };
   2782  1.208       chs 
   2783  1.208       chs static int
   2784  1.208       chs pool_bigidx(size_t size)
   2785  1.208       chs {
   2786  1.208       chs 	int i;
   2787  1.208       chs 
   2788  1.208       chs 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2789  1.208       chs 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2790  1.208       chs 			return i;
   2791  1.208       chs 	}
   2792  1.208       chs 	panic("pool item size %zu too large, use a custom allocator", size);
   2793  1.208       chs }
   2794  1.208       chs 
   2795  1.117      yamt static void *
   2796  1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2797   1.66   thorpej {
   2798  1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2799   1.66   thorpej 	void *res;
   2800   1.66   thorpej 
   2801  1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2802  1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2803   1.66   thorpej 		/*
   2804  1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2805  1.117      yamt 		 * In other cases, the hook will be run in
   2806  1.117      yamt 		 * pool_reclaim().
   2807   1.66   thorpej 		 */
   2808  1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2809  1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2810  1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2811   1.66   thorpej 		}
   2812  1.117      yamt 	}
   2813  1.117      yamt 	return res;
   2814   1.66   thorpej }
   2815   1.66   thorpej 
   2816  1.117      yamt static void
   2817   1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2818   1.66   thorpej {
   2819   1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2820   1.66   thorpej 
   2821  1.229      maxv 	if (pp->pr_redzone) {
   2822  1.231      maxv 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz);
   2823  1.229      maxv 	}
   2824   1.66   thorpej 	(*pa->pa_free)(pp, v);
   2825   1.66   thorpej }
   2826   1.66   thorpej 
   2827   1.66   thorpej void *
   2828  1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2829   1.66   thorpej {
   2830  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2831  1.191      para 	vmem_addr_t va;
   2832  1.192     rmind 	int ret;
   2833  1.191      para 
   2834  1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2835  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2836   1.66   thorpej 
   2837  1.192     rmind 	return ret ? NULL : (void *)va;
   2838   1.66   thorpej }
   2839   1.66   thorpej 
   2840   1.66   thorpej void
   2841  1.124      yamt pool_page_free(struct pool *pp, void *v)
   2842   1.66   thorpej {
   2843   1.66   thorpej 
   2844  1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2845   1.98      yamt }
   2846   1.98      yamt 
   2847   1.98      yamt static void *
   2848  1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2849   1.98      yamt {
   2850  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2851  1.192     rmind 	vmem_addr_t va;
   2852  1.192     rmind 	int ret;
   2853  1.191      para 
   2854  1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2855  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2856   1.98      yamt 
   2857  1.192     rmind 	return ret ? NULL : (void *)va;
   2858   1.98      yamt }
   2859   1.98      yamt 
   2860   1.98      yamt static void
   2861  1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2862   1.98      yamt {
   2863   1.98      yamt 
   2864  1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2865   1.66   thorpej }
   2866   1.66   thorpej 
   2867  1.228      maxv #ifdef KLEAK
   2868  1.228      maxv static void
   2869  1.228      maxv pool_kleak_fill(struct pool *pp, void *p)
   2870  1.228      maxv {
   2871  1.228      maxv 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
   2872  1.228      maxv 		return;
   2873  1.228      maxv 	}
   2874  1.228      maxv 	kleak_fill_area(p, pp->pr_size);
   2875  1.228      maxv }
   2876  1.228      maxv 
   2877  1.228      maxv static void
   2878  1.228      maxv pool_cache_kleak_fill(pool_cache_t pc, void *p)
   2879  1.228      maxv {
   2880  1.229      maxv 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2881  1.228      maxv 		return;
   2882  1.228      maxv 	}
   2883  1.228      maxv 	pool_kleak_fill(&pc->pc_pool, p);
   2884  1.228      maxv }
   2885  1.228      maxv #endif
   2886  1.228      maxv 
   2887  1.204      maxv #ifdef POOL_REDZONE
   2888  1.204      maxv #if defined(_LP64)
   2889  1.204      maxv # define PRIME 0x9e37fffffffc0000UL
   2890  1.204      maxv #else /* defined(_LP64) */
   2891  1.204      maxv # define PRIME 0x9e3779b1
   2892  1.204      maxv #endif /* defined(_LP64) */
   2893  1.204      maxv #define STATIC_BYTE	0xFE
   2894  1.204      maxv CTASSERT(POOL_REDZONE_SIZE > 1);
   2895  1.204      maxv 
   2896  1.224      maxv #ifndef KASAN
   2897  1.204      maxv static inline uint8_t
   2898  1.204      maxv pool_pattern_generate(const void *p)
   2899  1.204      maxv {
   2900  1.204      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
   2901  1.204      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2902  1.204      maxv }
   2903  1.224      maxv #endif
   2904  1.204      maxv 
   2905  1.204      maxv static void
   2906  1.204      maxv pool_redzone_init(struct pool *pp, size_t requested_size)
   2907  1.204      maxv {
   2908  1.227      maxv 	size_t redzsz;
   2909  1.204      maxv 	size_t nsz;
   2910  1.204      maxv 
   2911  1.227      maxv #ifdef KASAN
   2912  1.227      maxv 	redzsz = requested_size;
   2913  1.227      maxv 	kasan_add_redzone(&redzsz);
   2914  1.227      maxv 	redzsz -= requested_size;
   2915  1.227      maxv #else
   2916  1.227      maxv 	redzsz = POOL_REDZONE_SIZE;
   2917  1.227      maxv #endif
   2918  1.227      maxv 
   2919  1.204      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   2920  1.204      maxv 		pp->pr_redzone = false;
   2921  1.204      maxv 		return;
   2922  1.204      maxv 	}
   2923  1.204      maxv 
   2924  1.204      maxv 	/*
   2925  1.204      maxv 	 * We may have extended the requested size earlier; check if
   2926  1.204      maxv 	 * there's naturally space in the padding for a red zone.
   2927  1.204      maxv 	 */
   2928  1.227      maxv 	if (pp->pr_size - requested_size >= redzsz) {
   2929  1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2930  1.204      maxv 		pp->pr_redzone = true;
   2931  1.204      maxv 		return;
   2932  1.204      maxv 	}
   2933  1.204      maxv 
   2934  1.204      maxv 	/*
   2935  1.204      maxv 	 * No space in the natural padding; check if we can extend a
   2936  1.204      maxv 	 * bit the size of the pool.
   2937  1.204      maxv 	 */
   2938  1.227      maxv 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   2939  1.204      maxv 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2940  1.204      maxv 		/* Ok, we can */
   2941  1.204      maxv 		pp->pr_size = nsz;
   2942  1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2943  1.204      maxv 		pp->pr_redzone = true;
   2944  1.204      maxv 	} else {
   2945  1.204      maxv 		/* No space for a red zone... snif :'( */
   2946  1.204      maxv 		pp->pr_redzone = false;
   2947  1.204      maxv 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   2948  1.204      maxv 	}
   2949  1.204      maxv }
   2950  1.204      maxv 
   2951  1.204      maxv static void
   2952  1.204      maxv pool_redzone_fill(struct pool *pp, void *p)
   2953  1.204      maxv {
   2954  1.224      maxv 	if (!pp->pr_redzone)
   2955  1.224      maxv 		return;
   2956  1.224      maxv #ifdef KASAN
   2957  1.231      maxv 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone);
   2958  1.224      maxv #else
   2959  1.204      maxv 	uint8_t *cp, pat;
   2960  1.204      maxv 	const uint8_t *ep;
   2961  1.204      maxv 
   2962  1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   2963  1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   2964  1.204      maxv 
   2965  1.204      maxv 	/*
   2966  1.204      maxv 	 * We really don't want the first byte of the red zone to be '\0';
   2967  1.204      maxv 	 * an off-by-one in a string may not be properly detected.
   2968  1.204      maxv 	 */
   2969  1.204      maxv 	pat = pool_pattern_generate(cp);
   2970  1.204      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   2971  1.204      maxv 	cp++;
   2972  1.204      maxv 
   2973  1.204      maxv 	while (cp < ep) {
   2974  1.204      maxv 		*cp = pool_pattern_generate(cp);
   2975  1.204      maxv 		cp++;
   2976  1.204      maxv 	}
   2977  1.224      maxv #endif
   2978  1.204      maxv }
   2979  1.204      maxv 
   2980  1.204      maxv static void
   2981  1.204      maxv pool_redzone_check(struct pool *pp, void *p)
   2982  1.204      maxv {
   2983  1.224      maxv 	if (!pp->pr_redzone)
   2984  1.224      maxv 		return;
   2985  1.224      maxv #ifdef KASAN
   2986  1.231      maxv 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone);
   2987  1.224      maxv #else
   2988  1.204      maxv 	uint8_t *cp, pat, expected;
   2989  1.204      maxv 	const uint8_t *ep;
   2990  1.204      maxv 
   2991  1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   2992  1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   2993  1.204      maxv 
   2994  1.204      maxv 	pat = pool_pattern_generate(cp);
   2995  1.204      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   2996  1.225      maxv 	if (__predict_false(expected != *cp)) {
   2997  1.225      maxv 		printf("%s: %p: 0x%02x != 0x%02x\n",
   2998  1.204      maxv 		   __func__, cp, *cp, expected);
   2999  1.204      maxv 	}
   3000  1.204      maxv 	cp++;
   3001  1.204      maxv 
   3002  1.204      maxv 	while (cp < ep) {
   3003  1.204      maxv 		expected = pool_pattern_generate(cp);
   3004  1.225      maxv 		if (__predict_false(*cp != expected)) {
   3005  1.225      maxv 			printf("%s: %p: 0x%02x != 0x%02x\n",
   3006  1.204      maxv 			   __func__, cp, *cp, expected);
   3007  1.204      maxv 		}
   3008  1.204      maxv 		cp++;
   3009  1.204      maxv 	}
   3010  1.224      maxv #endif
   3011  1.204      maxv }
   3012  1.204      maxv 
   3013  1.229      maxv static void
   3014  1.229      maxv pool_cache_redzone_check(pool_cache_t pc, void *p)
   3015  1.229      maxv {
   3016  1.229      maxv #ifdef KASAN
   3017  1.229      maxv 	/* If there is a ctor/dtor, leave the data as valid. */
   3018  1.229      maxv 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   3019  1.229      maxv 		return;
   3020  1.229      maxv 	}
   3021  1.229      maxv #endif
   3022  1.229      maxv 	pool_redzone_check(&pc->pc_pool, p);
   3023  1.229      maxv }
   3024  1.229      maxv 
   3025  1.204      maxv #endif /* POOL_REDZONE */
   3026  1.204      maxv 
   3027  1.204      maxv 
   3028   1.66   thorpej #ifdef POOL_SUBPAGE
   3029   1.66   thorpej /* Sub-page allocator, for machines with large hardware pages. */
   3030   1.66   thorpej void *
   3031   1.66   thorpej pool_subpage_alloc(struct pool *pp, int flags)
   3032   1.66   thorpej {
   3033  1.134        ad 	return pool_get(&psppool, flags);
   3034   1.66   thorpej }
   3035   1.66   thorpej 
   3036   1.66   thorpej void
   3037   1.66   thorpej pool_subpage_free(struct pool *pp, void *v)
   3038   1.66   thorpej {
   3039   1.66   thorpej 	pool_put(&psppool, v);
   3040   1.66   thorpej }
   3041   1.66   thorpej 
   3042  1.112     bjh21 #endif /* POOL_SUBPAGE */
   3043  1.141      yamt 
   3044  1.141      yamt #if defined(DDB)
   3045  1.141      yamt static bool
   3046  1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3047  1.141      yamt {
   3048  1.141      yamt 
   3049  1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   3050  1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3051  1.141      yamt }
   3052  1.141      yamt 
   3053  1.143      yamt static bool
   3054  1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3055  1.143      yamt {
   3056  1.143      yamt 
   3057  1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3058  1.143      yamt }
   3059  1.143      yamt 
   3060  1.143      yamt static bool
   3061  1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3062  1.143      yamt {
   3063  1.143      yamt 	int i;
   3064  1.143      yamt 
   3065  1.143      yamt 	if (pcg == NULL) {
   3066  1.143      yamt 		return false;
   3067  1.143      yamt 	}
   3068  1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   3069  1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3070  1.143      yamt 			return true;
   3071  1.143      yamt 		}
   3072  1.143      yamt 	}
   3073  1.143      yamt 	return false;
   3074  1.143      yamt }
   3075  1.143      yamt 
   3076  1.143      yamt static bool
   3077  1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3078  1.143      yamt {
   3079  1.143      yamt 
   3080  1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3081  1.234      maxv 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3082  1.143      yamt 		pool_item_bitmap_t *bitmap =
   3083  1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3084  1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3085  1.143      yamt 
   3086  1.143      yamt 		return (*bitmap & mask) == 0;
   3087  1.143      yamt 	} else {
   3088  1.143      yamt 		struct pool_item *pi;
   3089  1.143      yamt 
   3090  1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3091  1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   3092  1.143      yamt 				return false;
   3093  1.143      yamt 			}
   3094  1.143      yamt 		}
   3095  1.143      yamt 		return true;
   3096  1.143      yamt 	}
   3097  1.143      yamt }
   3098  1.143      yamt 
   3099  1.141      yamt void
   3100  1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3101  1.141      yamt {
   3102  1.141      yamt 	struct pool *pp;
   3103  1.141      yamt 
   3104  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3105  1.141      yamt 		struct pool_item_header *ph;
   3106  1.141      yamt 		uintptr_t item;
   3107  1.143      yamt 		bool allocated = true;
   3108  1.143      yamt 		bool incache = false;
   3109  1.143      yamt 		bool incpucache = false;
   3110  1.143      yamt 		char cpucachestr[32];
   3111  1.141      yamt 
   3112  1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3113  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3114  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3115  1.141      yamt 					goto found;
   3116  1.141      yamt 				}
   3117  1.141      yamt 			}
   3118  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3119  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3120  1.143      yamt 					allocated =
   3121  1.143      yamt 					    pool_allocated(pp, ph, addr);
   3122  1.143      yamt 					goto found;
   3123  1.143      yamt 				}
   3124  1.143      yamt 			}
   3125  1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3126  1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   3127  1.143      yamt 					allocated = false;
   3128  1.141      yamt 					goto found;
   3129  1.141      yamt 				}
   3130  1.141      yamt 			}
   3131  1.141      yamt 			continue;
   3132  1.141      yamt 		} else {
   3133  1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3134  1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3135  1.141      yamt 				continue;
   3136  1.141      yamt 			}
   3137  1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3138  1.141      yamt 		}
   3139  1.141      yamt found:
   3140  1.143      yamt 		if (allocated && pp->pr_cache) {
   3141  1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   3142  1.143      yamt 			struct pool_cache_group *pcg;
   3143  1.143      yamt 			int i;
   3144  1.143      yamt 
   3145  1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3146  1.143      yamt 			    pcg = pcg->pcg_next) {
   3147  1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3148  1.143      yamt 					incache = true;
   3149  1.143      yamt 					goto print;
   3150  1.143      yamt 				}
   3151  1.143      yamt 			}
   3152  1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3153  1.143      yamt 				pool_cache_cpu_t *cc;
   3154  1.143      yamt 
   3155  1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3156  1.143      yamt 					continue;
   3157  1.143      yamt 				}
   3158  1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3159  1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3160  1.143      yamt 					struct cpu_info *ci =
   3161  1.170        ad 					    cpu_lookup(i);
   3162  1.143      yamt 
   3163  1.143      yamt 					incpucache = true;
   3164  1.143      yamt 					snprintf(cpucachestr,
   3165  1.143      yamt 					    sizeof(cpucachestr),
   3166  1.143      yamt 					    "cached by CPU %u",
   3167  1.153    martin 					    ci->ci_index);
   3168  1.143      yamt 					goto print;
   3169  1.143      yamt 				}
   3170  1.143      yamt 			}
   3171  1.143      yamt 		}
   3172  1.143      yamt print:
   3173  1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3174  1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3175  1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3176  1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3177  1.143      yamt 		    pp->pr_wchan,
   3178  1.143      yamt 		    incpucache ? cpucachestr :
   3179  1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3180  1.141      yamt 	}
   3181  1.141      yamt }
   3182  1.141      yamt #endif /* defined(DDB) */
   3183  1.203     joerg 
   3184  1.203     joerg static int
   3185  1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   3186  1.203     joerg {
   3187  1.203     joerg 	struct pool_sysctl data;
   3188  1.203     joerg 	struct pool *pp;
   3189  1.203     joerg 	struct pool_cache *pc;
   3190  1.203     joerg 	pool_cache_cpu_t *cc;
   3191  1.203     joerg 	int error;
   3192  1.203     joerg 	size_t i, written;
   3193  1.203     joerg 
   3194  1.203     joerg 	if (oldp == NULL) {
   3195  1.203     joerg 		*oldlenp = 0;
   3196  1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3197  1.203     joerg 			*oldlenp += sizeof(data);
   3198  1.203     joerg 		return 0;
   3199  1.203     joerg 	}
   3200  1.203     joerg 
   3201  1.203     joerg 	memset(&data, 0, sizeof(data));
   3202  1.203     joerg 	error = 0;
   3203  1.203     joerg 	written = 0;
   3204  1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3205  1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   3206  1.203     joerg 			break;
   3207  1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3208  1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3209  1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3210  1.203     joerg #define COPY(field) data.field = pp->field
   3211  1.203     joerg 		COPY(pr_size);
   3212  1.203     joerg 
   3213  1.203     joerg 		COPY(pr_itemsperpage);
   3214  1.203     joerg 		COPY(pr_nitems);
   3215  1.203     joerg 		COPY(pr_nout);
   3216  1.203     joerg 		COPY(pr_hardlimit);
   3217  1.203     joerg 		COPY(pr_npages);
   3218  1.203     joerg 		COPY(pr_minpages);
   3219  1.203     joerg 		COPY(pr_maxpages);
   3220  1.203     joerg 
   3221  1.203     joerg 		COPY(pr_nget);
   3222  1.203     joerg 		COPY(pr_nfail);
   3223  1.203     joerg 		COPY(pr_nput);
   3224  1.203     joerg 		COPY(pr_npagealloc);
   3225  1.203     joerg 		COPY(pr_npagefree);
   3226  1.203     joerg 		COPY(pr_hiwat);
   3227  1.203     joerg 		COPY(pr_nidle);
   3228  1.203     joerg #undef COPY
   3229  1.203     joerg 
   3230  1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   3231  1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   3232  1.203     joerg 		if (pp->pr_cache) {
   3233  1.203     joerg 			pc = pp->pr_cache;
   3234  1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3235  1.203     joerg 			data.pr_cache_nfull = pc->pc_nfull;
   3236  1.203     joerg 			data.pr_cache_npartial = pc->pc_npart;
   3237  1.203     joerg 			data.pr_cache_nempty = pc->pc_nempty;
   3238  1.203     joerg 			data.pr_cache_ncontended = pc->pc_contended;
   3239  1.203     joerg 			data.pr_cache_nmiss_global = pc->pc_misses;
   3240  1.203     joerg 			data.pr_cache_nhit_global = pc->pc_hits;
   3241  1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3242  1.203     joerg 				cc = pc->pc_cpus[i];
   3243  1.203     joerg 				if (cc == NULL)
   3244  1.203     joerg 					continue;
   3245  1.206  knakahar 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3246  1.206  knakahar 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3247  1.203     joerg 			}
   3248  1.203     joerg 		} else {
   3249  1.203     joerg 			data.pr_cache_meta_size = 0;
   3250  1.203     joerg 			data.pr_cache_nfull = 0;
   3251  1.203     joerg 			data.pr_cache_npartial = 0;
   3252  1.203     joerg 			data.pr_cache_nempty = 0;
   3253  1.203     joerg 			data.pr_cache_ncontended = 0;
   3254  1.203     joerg 			data.pr_cache_nmiss_global = 0;
   3255  1.203     joerg 			data.pr_cache_nhit_global = 0;
   3256  1.203     joerg 		}
   3257  1.203     joerg 
   3258  1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3259  1.203     joerg 		if (error)
   3260  1.203     joerg 			break;
   3261  1.203     joerg 		written += sizeof(data);
   3262  1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   3263  1.203     joerg 	}
   3264  1.203     joerg 
   3265  1.203     joerg 	*oldlenp = written;
   3266  1.203     joerg 	return error;
   3267  1.203     joerg }
   3268  1.203     joerg 
   3269  1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3270  1.203     joerg {
   3271  1.203     joerg 	const struct sysctlnode *rnode = NULL;
   3272  1.203     joerg 
   3273  1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   3274  1.203     joerg 		       CTLFLAG_PERMANENT,
   3275  1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   3276  1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   3277  1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   3278  1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3279  1.203     joerg }
   3280