subr_pool.c revision 1.248 1 1.248 maxv /* $NetBSD: subr_pool.c,v 1.248 2019/04/07 09:20:04 maxv Exp $ */
2 1.1 pk
3 1.229 maxv /*
4 1.229 maxv * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5 1.183 ad * The NetBSD Foundation, Inc.
6 1.1 pk * All rights reserved.
7 1.1 pk *
8 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
9 1.20 thorpej * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 1.204 maxv * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 1.204 maxv * Maxime Villard.
12 1.1 pk *
13 1.1 pk * Redistribution and use in source and binary forms, with or without
14 1.1 pk * modification, are permitted provided that the following conditions
15 1.1 pk * are met:
16 1.1 pk * 1. Redistributions of source code must retain the above copyright
17 1.1 pk * notice, this list of conditions and the following disclaimer.
18 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
19 1.1 pk * notice, this list of conditions and the following disclaimer in the
20 1.1 pk * documentation and/or other materials provided with the distribution.
21 1.1 pk *
22 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
33 1.1 pk */
34 1.64 lukem
35 1.64 lukem #include <sys/cdefs.h>
36 1.248 maxv __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.248 2019/04/07 09:20:04 maxv Exp $");
37 1.24 scottr
38 1.205 pooka #ifdef _KERNEL_OPT
39 1.141 yamt #include "opt_ddb.h"
40 1.28 thorpej #include "opt_lockdebug.h"
41 1.228 maxv #include "opt_kleak.h"
42 1.205 pooka #endif
43 1.1 pk
44 1.1 pk #include <sys/param.h>
45 1.1 pk #include <sys/systm.h>
46 1.203 joerg #include <sys/sysctl.h>
47 1.135 yamt #include <sys/bitops.h>
48 1.1 pk #include <sys/proc.h>
49 1.1 pk #include <sys/errno.h>
50 1.1 pk #include <sys/kernel.h>
51 1.191 para #include <sys/vmem.h>
52 1.1 pk #include <sys/pool.h>
53 1.20 thorpej #include <sys/syslog.h>
54 1.125 ad #include <sys/debug.h>
55 1.134 ad #include <sys/lockdebug.h>
56 1.134 ad #include <sys/xcall.h>
57 1.134 ad #include <sys/cpu.h>
58 1.145 ad #include <sys/atomic.h>
59 1.224 maxv #include <sys/asan.h>
60 1.3 pk
61 1.187 uebayasi #include <uvm/uvm_extern.h>
62 1.3 pk
63 1.1 pk /*
64 1.1 pk * Pool resource management utility.
65 1.3 pk *
66 1.88 chs * Memory is allocated in pages which are split into pieces according to
67 1.88 chs * the pool item size. Each page is kept on one of three lists in the
68 1.88 chs * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
69 1.88 chs * for empty, full and partially-full pages respectively. The individual
70 1.88 chs * pool items are on a linked list headed by `ph_itemlist' in each page
71 1.88 chs * header. The memory for building the page list is either taken from
72 1.88 chs * the allocated pages themselves (for small pool items) or taken from
73 1.88 chs * an internal pool of page headers (`phpool').
74 1.1 pk */
75 1.1 pk
76 1.221 para /* List of all pools. Non static as needed by 'vmstat -m' */
77 1.202 abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
78 1.134 ad
79 1.3 pk /* Private pool for page header structures */
80 1.97 yamt #define PHPOOL_MAX 8
81 1.97 yamt static struct pool phpool[PHPOOL_MAX];
82 1.135 yamt #define PHPOOL_FREELIST_NELEM(idx) \
83 1.135 yamt (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
84 1.3 pk
85 1.226 maxv #if defined(KASAN)
86 1.224 maxv #define POOL_REDZONE
87 1.224 maxv #endif
88 1.224 maxv
89 1.204 maxv #ifdef POOL_REDZONE
90 1.224 maxv # ifdef KASAN
91 1.224 maxv # define POOL_REDZONE_SIZE 8
92 1.224 maxv # else
93 1.224 maxv # define POOL_REDZONE_SIZE 2
94 1.224 maxv # endif
95 1.204 maxv static void pool_redzone_init(struct pool *, size_t);
96 1.204 maxv static void pool_redzone_fill(struct pool *, void *);
97 1.204 maxv static void pool_redzone_check(struct pool *, void *);
98 1.229 maxv static void pool_cache_redzone_check(pool_cache_t, void *);
99 1.204 maxv #else
100 1.229 maxv # define pool_redzone_init(pp, sz) __nothing
101 1.229 maxv # define pool_redzone_fill(pp, ptr) __nothing
102 1.229 maxv # define pool_redzone_check(pp, ptr) __nothing
103 1.229 maxv # define pool_cache_redzone_check(pc, ptr) __nothing
104 1.204 maxv #endif
105 1.204 maxv
106 1.228 maxv #ifdef KLEAK
107 1.228 maxv static void pool_kleak_fill(struct pool *, void *);
108 1.228 maxv static void pool_cache_kleak_fill(pool_cache_t, void *);
109 1.228 maxv #else
110 1.228 maxv #define pool_kleak_fill(pp, ptr) __nothing
111 1.228 maxv #define pool_cache_kleak_fill(pc, ptr) __nothing
112 1.228 maxv #endif
113 1.228 maxv
114 1.229 maxv #define pc_has_ctor(pc) \
115 1.229 maxv (pc->pc_ctor != (int (*)(void *, void *, int))nullop)
116 1.229 maxv #define pc_has_dtor(pc) \
117 1.229 maxv (pc->pc_dtor != (void (*)(void *, void *))nullop)
118 1.229 maxv
119 1.98 yamt static void *pool_page_alloc_meta(struct pool *, int);
120 1.98 yamt static void pool_page_free_meta(struct pool *, void *);
121 1.98 yamt
122 1.98 yamt /* allocator for pool metadata */
123 1.134 ad struct pool_allocator pool_allocator_meta = {
124 1.191 para .pa_alloc = pool_page_alloc_meta,
125 1.191 para .pa_free = pool_page_free_meta,
126 1.191 para .pa_pagesz = 0
127 1.98 yamt };
128 1.98 yamt
129 1.208 chs #define POOL_ALLOCATOR_BIG_BASE 13
130 1.208 chs extern struct pool_allocator pool_allocator_big[];
131 1.208 chs static int pool_bigidx(size_t);
132 1.208 chs
133 1.3 pk /* # of seconds to retain page after last use */
134 1.3 pk int pool_inactive_time = 10;
135 1.3 pk
136 1.3 pk /* Next candidate for drainage (see pool_drain()) */
137 1.236 maxv static struct pool *drainpp;
138 1.23 thorpej
139 1.134 ad /* This lock protects both pool_head and drainpp. */
140 1.134 ad static kmutex_t pool_head_lock;
141 1.134 ad static kcondvar_t pool_busy;
142 1.3 pk
143 1.178 elad /* This lock protects initialization of a potentially shared pool allocator */
144 1.178 elad static kmutex_t pool_allocator_lock;
145 1.178 elad
146 1.245 maxv static unsigned int poolid_counter = 0;
147 1.245 maxv
148 1.135 yamt typedef uint32_t pool_item_bitmap_t;
149 1.135 yamt #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
150 1.135 yamt #define BITMAP_MASK (BITMAP_SIZE - 1)
151 1.99 yamt
152 1.3 pk struct pool_item_header {
153 1.3 pk /* Page headers */
154 1.88 chs LIST_ENTRY(pool_item_header)
155 1.3 pk ph_pagelist; /* pool page list */
156 1.245 maxv union {
157 1.245 maxv /* !PR_PHINPAGE */
158 1.245 maxv struct {
159 1.245 maxv SPLAY_ENTRY(pool_item_header)
160 1.245 maxv phu_node; /* off-page page headers */
161 1.245 maxv } phu_offpage;
162 1.245 maxv /* PR_PHINPAGE */
163 1.245 maxv struct {
164 1.245 maxv unsigned int phu_poolid;
165 1.245 maxv } phu_onpage;
166 1.245 maxv } ph_u1;
167 1.128 christos void * ph_page; /* this page's address */
168 1.151 yamt uint32_t ph_time; /* last referenced */
169 1.135 yamt uint16_t ph_nmissing; /* # of chunks in use */
170 1.141 yamt uint16_t ph_off; /* start offset in page */
171 1.97 yamt union {
172 1.242 maxv /* !PR_USEBMAP */
173 1.97 yamt struct {
174 1.102 chs LIST_HEAD(, pool_item)
175 1.97 yamt phu_itemlist; /* chunk list for this page */
176 1.97 yamt } phu_normal;
177 1.242 maxv /* PR_USEBMAP */
178 1.97 yamt struct {
179 1.141 yamt pool_item_bitmap_t phu_bitmap[1];
180 1.97 yamt } phu_notouch;
181 1.245 maxv } ph_u2;
182 1.3 pk };
183 1.245 maxv #define ph_node ph_u1.phu_offpage.phu_node
184 1.245 maxv #define ph_poolid ph_u1.phu_onpage.phu_poolid
185 1.245 maxv #define ph_itemlist ph_u2.phu_normal.phu_itemlist
186 1.245 maxv #define ph_bitmap ph_u2.phu_notouch.phu_bitmap
187 1.3 pk
188 1.240 maxv #define PHSIZE ALIGN(sizeof(struct pool_item_header))
189 1.240 maxv
190 1.229 maxv #if defined(DIAGNOSTIC) && !defined(KASAN)
191 1.229 maxv #define POOL_CHECK_MAGIC
192 1.229 maxv #endif
193 1.229 maxv
194 1.1 pk struct pool_item {
195 1.229 maxv #ifdef POOL_CHECK_MAGIC
196 1.82 thorpej u_int pi_magic;
197 1.33 chs #endif
198 1.134 ad #define PI_MAGIC 0xdeaddeadU
199 1.3 pk /* Other entries use only this list entry */
200 1.102 chs LIST_ENTRY(pool_item) pi_list;
201 1.3 pk };
202 1.3 pk
203 1.53 thorpej #define POOL_NEEDS_CATCHUP(pp) \
204 1.53 thorpej ((pp)->pr_nitems < (pp)->pr_minitems)
205 1.53 thorpej
206 1.43 thorpej /*
207 1.43 thorpej * Pool cache management.
208 1.43 thorpej *
209 1.43 thorpej * Pool caches provide a way for constructed objects to be cached by the
210 1.43 thorpej * pool subsystem. This can lead to performance improvements by avoiding
211 1.43 thorpej * needless object construction/destruction; it is deferred until absolutely
212 1.43 thorpej * necessary.
213 1.43 thorpej *
214 1.134 ad * Caches are grouped into cache groups. Each cache group references up
215 1.134 ad * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
216 1.134 ad * object from the pool, it calls the object's constructor and places it
217 1.134 ad * into a cache group. When a cache group frees an object back to the
218 1.134 ad * pool, it first calls the object's destructor. This allows the object
219 1.134 ad * to persist in constructed form while freed to the cache.
220 1.134 ad *
221 1.134 ad * The pool references each cache, so that when a pool is drained by the
222 1.134 ad * pagedaemon, it can drain each individual cache as well. Each time a
223 1.134 ad * cache is drained, the most idle cache group is freed to the pool in
224 1.134 ad * its entirety.
225 1.43 thorpej *
226 1.43 thorpej * Pool caches are layed on top of pools. By layering them, we can avoid
227 1.43 thorpej * the complexity of cache management for pools which would not benefit
228 1.43 thorpej * from it.
229 1.43 thorpej */
230 1.43 thorpej
231 1.142 ad static struct pool pcg_normal_pool;
232 1.142 ad static struct pool pcg_large_pool;
233 1.134 ad static struct pool cache_pool;
234 1.134 ad static struct pool cache_cpu_pool;
235 1.3 pk
236 1.145 ad /* List of all caches. */
237 1.145 ad TAILQ_HEAD(,pool_cache) pool_cache_head =
238 1.145 ad TAILQ_HEAD_INITIALIZER(pool_cache_head);
239 1.145 ad
240 1.162 ad int pool_cache_disable; /* global disable for caching */
241 1.169 yamt static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
242 1.145 ad
243 1.162 ad static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
244 1.162 ad void *);
245 1.162 ad static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
246 1.162 ad void **, paddr_t *, int);
247 1.134 ad static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
248 1.134 ad static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
249 1.175 jym static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
250 1.196 jym static void pool_cache_transfer(pool_cache_t);
251 1.3 pk
252 1.42 thorpej static int pool_catchup(struct pool *);
253 1.128 christos static void pool_prime_page(struct pool *, void *,
254 1.55 thorpej struct pool_item_header *);
255 1.88 chs static void pool_update_curpage(struct pool *);
256 1.66 thorpej
257 1.113 yamt static int pool_grow(struct pool *, int);
258 1.117 yamt static void *pool_allocator_alloc(struct pool *, int);
259 1.117 yamt static void pool_allocator_free(struct pool *, void *);
260 1.3 pk
261 1.97 yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
262 1.199 christos void (*)(const char *, ...) __printflike(1, 2));
263 1.42 thorpej static void pool_print1(struct pool *, const char *,
264 1.199 christos void (*)(const char *, ...) __printflike(1, 2));
265 1.3 pk
266 1.88 chs static int pool_chk_page(struct pool *, const char *,
267 1.88 chs struct pool_item_header *);
268 1.88 chs
269 1.234 maxv /* -------------------------------------------------------------------------- */
270 1.234 maxv
271 1.135 yamt static inline unsigned int
272 1.234 maxv pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
273 1.97 yamt const void *v)
274 1.97 yamt {
275 1.97 yamt const char *cp = v;
276 1.135 yamt unsigned int idx;
277 1.97 yamt
278 1.242 maxv KASSERT(pp->pr_roflags & PR_USEBMAP);
279 1.128 christos idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
280 1.237 maxv
281 1.237 maxv if (__predict_false(idx >= pp->pr_itemsperpage)) {
282 1.237 maxv panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
283 1.237 maxv pp->pr_itemsperpage);
284 1.237 maxv }
285 1.237 maxv
286 1.97 yamt return idx;
287 1.97 yamt }
288 1.97 yamt
289 1.110 perry static inline void
290 1.234 maxv pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
291 1.97 yamt void *obj)
292 1.97 yamt {
293 1.234 maxv unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
294 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
295 1.223 kamil pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
296 1.97 yamt
297 1.237 maxv if (__predict_false((*bitmap & mask) != 0)) {
298 1.237 maxv panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
299 1.237 maxv }
300 1.237 maxv
301 1.135 yamt *bitmap |= mask;
302 1.97 yamt }
303 1.97 yamt
304 1.110 perry static inline void *
305 1.234 maxv pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
306 1.97 yamt {
307 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
308 1.135 yamt unsigned int idx;
309 1.135 yamt int i;
310 1.97 yamt
311 1.135 yamt for (i = 0; ; i++) {
312 1.135 yamt int bit;
313 1.97 yamt
314 1.135 yamt KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
315 1.135 yamt bit = ffs32(bitmap[i]);
316 1.135 yamt if (bit) {
317 1.135 yamt pool_item_bitmap_t mask;
318 1.135 yamt
319 1.135 yamt bit--;
320 1.135 yamt idx = (i * BITMAP_SIZE) + bit;
321 1.222 kamil mask = 1U << bit;
322 1.135 yamt KASSERT((bitmap[i] & mask) != 0);
323 1.135 yamt bitmap[i] &= ~mask;
324 1.135 yamt break;
325 1.135 yamt }
326 1.135 yamt }
327 1.135 yamt KASSERT(idx < pp->pr_itemsperpage);
328 1.128 christos return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
329 1.97 yamt }
330 1.97 yamt
331 1.135 yamt static inline void
332 1.234 maxv pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
333 1.135 yamt {
334 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
335 1.135 yamt const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
336 1.135 yamt int i;
337 1.135 yamt
338 1.135 yamt for (i = 0; i < n; i++) {
339 1.135 yamt bitmap[i] = (pool_item_bitmap_t)-1;
340 1.135 yamt }
341 1.135 yamt }
342 1.135 yamt
343 1.234 maxv /* -------------------------------------------------------------------------- */
344 1.234 maxv
345 1.234 maxv static inline void
346 1.234 maxv pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
347 1.234 maxv void *obj)
348 1.234 maxv {
349 1.234 maxv struct pool_item *pi = obj;
350 1.234 maxv
351 1.234 maxv #ifdef POOL_CHECK_MAGIC
352 1.234 maxv pi->pi_magic = PI_MAGIC;
353 1.234 maxv #endif
354 1.234 maxv
355 1.234 maxv if (pp->pr_redzone) {
356 1.234 maxv /*
357 1.234 maxv * Mark the pool_item as valid. The rest is already
358 1.234 maxv * invalid.
359 1.234 maxv */
360 1.248 maxv kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
361 1.234 maxv }
362 1.234 maxv
363 1.234 maxv LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
364 1.234 maxv }
365 1.234 maxv
366 1.234 maxv static inline void *
367 1.234 maxv pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
368 1.234 maxv {
369 1.234 maxv struct pool_item *pi;
370 1.234 maxv void *v;
371 1.234 maxv
372 1.234 maxv v = pi = LIST_FIRST(&ph->ph_itemlist);
373 1.234 maxv if (__predict_false(v == NULL)) {
374 1.234 maxv mutex_exit(&pp->pr_lock);
375 1.234 maxv panic("%s: [%s] page empty", __func__, pp->pr_wchan);
376 1.234 maxv }
377 1.234 maxv KASSERTMSG((pp->pr_nitems > 0),
378 1.234 maxv "%s: [%s] nitems %u inconsistent on itemlist",
379 1.234 maxv __func__, pp->pr_wchan, pp->pr_nitems);
380 1.234 maxv #ifdef POOL_CHECK_MAGIC
381 1.234 maxv KASSERTMSG((pi->pi_magic == PI_MAGIC),
382 1.234 maxv "%s: [%s] free list modified: "
383 1.234 maxv "magic=%x; page %p; item addr %p", __func__,
384 1.234 maxv pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
385 1.234 maxv #endif
386 1.234 maxv
387 1.234 maxv /*
388 1.234 maxv * Remove from item list.
389 1.234 maxv */
390 1.234 maxv LIST_REMOVE(pi, pi_list);
391 1.234 maxv
392 1.234 maxv return v;
393 1.234 maxv }
394 1.234 maxv
395 1.234 maxv /* -------------------------------------------------------------------------- */
396 1.234 maxv
397 1.110 perry static inline int
398 1.88 chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
399 1.88 chs {
400 1.121 yamt
401 1.121 yamt /*
402 1.236 maxv * We consider pool_item_header with smaller ph_page bigger. This
403 1.236 maxv * unnatural ordering is for the benefit of pr_find_pagehead.
404 1.121 yamt */
405 1.88 chs if (a->ph_page < b->ph_page)
406 1.236 maxv return 1;
407 1.121 yamt else if (a->ph_page > b->ph_page)
408 1.236 maxv return -1;
409 1.88 chs else
410 1.236 maxv return 0;
411 1.88 chs }
412 1.88 chs
413 1.88 chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
414 1.88 chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
415 1.88 chs
416 1.141 yamt static inline struct pool_item_header *
417 1.141 yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
418 1.141 yamt {
419 1.141 yamt struct pool_item_header *ph, tmp;
420 1.141 yamt
421 1.141 yamt tmp.ph_page = (void *)(uintptr_t)v;
422 1.141 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
423 1.141 yamt if (ph == NULL) {
424 1.141 yamt ph = SPLAY_ROOT(&pp->pr_phtree);
425 1.141 yamt if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
426 1.141 yamt ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
427 1.141 yamt }
428 1.141 yamt KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
429 1.141 yamt }
430 1.141 yamt
431 1.141 yamt return ph;
432 1.141 yamt }
433 1.141 yamt
434 1.3 pk /*
435 1.121 yamt * Return the pool page header based on item address.
436 1.3 pk */
437 1.110 perry static inline struct pool_item_header *
438 1.121 yamt pr_find_pagehead(struct pool *pp, void *v)
439 1.3 pk {
440 1.88 chs struct pool_item_header *ph, tmp;
441 1.3 pk
442 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
443 1.141 yamt ph = pr_find_pagehead_noalign(pp, v);
444 1.121 yamt } else {
445 1.128 christos void *page =
446 1.128 christos (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
447 1.121 yamt
448 1.121 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
449 1.241 maxv ph = (struct pool_item_header *)page;
450 1.235 maxv if (__predict_false((void *)ph->ph_page != page)) {
451 1.237 maxv panic("%s: [%s] item %p not part of pool",
452 1.237 maxv __func__, pp->pr_wchan, v);
453 1.237 maxv }
454 1.237 maxv if (__predict_false((char *)v < (char *)page +
455 1.237 maxv ph->ph_off)) {
456 1.237 maxv panic("%s: [%s] item %p below item space",
457 1.237 maxv __func__, pp->pr_wchan, v);
458 1.235 maxv }
459 1.245 maxv if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
460 1.245 maxv panic("%s: [%s] item %p poolid %u != %u",
461 1.245 maxv __func__, pp->pr_wchan, v, ph->ph_poolid,
462 1.245 maxv pp->pr_poolid);
463 1.245 maxv }
464 1.121 yamt } else {
465 1.121 yamt tmp.ph_page = page;
466 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
467 1.121 yamt }
468 1.121 yamt }
469 1.3 pk
470 1.121 yamt KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
471 1.128 christos ((char *)ph->ph_page <= (char *)v &&
472 1.128 christos (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
473 1.88 chs return ph;
474 1.3 pk }
475 1.3 pk
476 1.101 thorpej static void
477 1.101 thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
478 1.101 thorpej {
479 1.101 thorpej struct pool_item_header *ph;
480 1.101 thorpej
481 1.101 thorpej while ((ph = LIST_FIRST(pq)) != NULL) {
482 1.101 thorpej LIST_REMOVE(ph, ph_pagelist);
483 1.101 thorpej pool_allocator_free(pp, ph->ph_page);
484 1.134 ad if ((pp->pr_roflags & PR_PHINPAGE) == 0)
485 1.101 thorpej pool_put(pp->pr_phpool, ph);
486 1.101 thorpej }
487 1.101 thorpej }
488 1.101 thorpej
489 1.3 pk /*
490 1.3 pk * Remove a page from the pool.
491 1.3 pk */
492 1.110 perry static inline void
493 1.61 chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
494 1.61 chs struct pool_pagelist *pq)
495 1.3 pk {
496 1.3 pk
497 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
498 1.91 yamt
499 1.3 pk /*
500 1.7 thorpej * If the page was idle, decrement the idle page count.
501 1.3 pk */
502 1.6 thorpej if (ph->ph_nmissing == 0) {
503 1.207 riastrad KASSERT(pp->pr_nidle != 0);
504 1.207 riastrad KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
505 1.207 riastrad "nitems=%u < itemsperpage=%u",
506 1.207 riastrad pp->pr_nitems, pp->pr_itemsperpage);
507 1.6 thorpej pp->pr_nidle--;
508 1.6 thorpej }
509 1.7 thorpej
510 1.20 thorpej pp->pr_nitems -= pp->pr_itemsperpage;
511 1.20 thorpej
512 1.7 thorpej /*
513 1.101 thorpej * Unlink the page from the pool and queue it for release.
514 1.7 thorpej */
515 1.88 chs LIST_REMOVE(ph, ph_pagelist);
516 1.245 maxv if (pp->pr_roflags & PR_PHINPAGE) {
517 1.245 maxv if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
518 1.245 maxv panic("%s: [%s] ph %p poolid %u != %u",
519 1.245 maxv __func__, pp->pr_wchan, ph, ph->ph_poolid,
520 1.245 maxv pp->pr_poolid);
521 1.245 maxv }
522 1.245 maxv } else {
523 1.91 yamt SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
524 1.245 maxv }
525 1.101 thorpej LIST_INSERT_HEAD(pq, ph, ph_pagelist);
526 1.101 thorpej
527 1.7 thorpej pp->pr_npages--;
528 1.7 thorpej pp->pr_npagefree++;
529 1.6 thorpej
530 1.88 chs pool_update_curpage(pp);
531 1.3 pk }
532 1.3 pk
533 1.3 pk /*
534 1.94 simonb * Initialize all the pools listed in the "pools" link set.
535 1.94 simonb */
536 1.94 simonb void
537 1.117 yamt pool_subsystem_init(void)
538 1.94 simonb {
539 1.192 rmind size_t size;
540 1.191 para int idx;
541 1.94 simonb
542 1.134 ad mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
543 1.179 mlelstv mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
544 1.134 ad cv_init(&pool_busy, "poolbusy");
545 1.134 ad
546 1.191 para /*
547 1.191 para * Initialize private page header pool and cache magazine pool if we
548 1.191 para * haven't done so yet.
549 1.191 para */
550 1.191 para for (idx = 0; idx < PHPOOL_MAX; idx++) {
551 1.191 para static char phpool_names[PHPOOL_MAX][6+1+6+1];
552 1.191 para int nelem;
553 1.191 para size_t sz;
554 1.191 para
555 1.191 para nelem = PHPOOL_FREELIST_NELEM(idx);
556 1.191 para snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
557 1.191 para "phpool-%d", nelem);
558 1.191 para sz = sizeof(struct pool_item_header);
559 1.191 para if (nelem) {
560 1.191 para sz = offsetof(struct pool_item_header,
561 1.191 para ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
562 1.191 para }
563 1.191 para pool_init(&phpool[idx], sz, 0, 0, 0,
564 1.191 para phpool_names[idx], &pool_allocator_meta, IPL_VM);
565 1.117 yamt }
566 1.191 para
567 1.191 para size = sizeof(pcg_t) +
568 1.191 para (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
569 1.191 para pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
570 1.191 para "pcgnormal", &pool_allocator_meta, IPL_VM);
571 1.191 para
572 1.191 para size = sizeof(pcg_t) +
573 1.191 para (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
574 1.191 para pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
575 1.191 para "pcglarge", &pool_allocator_meta, IPL_VM);
576 1.134 ad
577 1.156 ad pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
578 1.191 para 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
579 1.134 ad
580 1.156 ad pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
581 1.191 para 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
582 1.94 simonb }
583 1.94 simonb
584 1.240 maxv static inline bool
585 1.240 maxv pool_init_is_phinpage(const struct pool *pp)
586 1.240 maxv {
587 1.240 maxv size_t pagesize;
588 1.240 maxv
589 1.240 maxv if (pp->pr_roflags & PR_PHINPAGE) {
590 1.240 maxv return true;
591 1.240 maxv }
592 1.240 maxv if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
593 1.240 maxv return false;
594 1.240 maxv }
595 1.240 maxv
596 1.240 maxv pagesize = pp->pr_alloc->pa_pagesz;
597 1.240 maxv
598 1.240 maxv /*
599 1.240 maxv * Threshold: the item size is below 1/16 of a page size, and below
600 1.240 maxv * 8 times the page header size. The latter ensures we go off-page
601 1.240 maxv * if the page header would make us waste a rather big item.
602 1.240 maxv */
603 1.240 maxv if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
604 1.240 maxv return true;
605 1.240 maxv }
606 1.240 maxv
607 1.240 maxv /* Put the header into the page if it doesn't waste any items. */
608 1.240 maxv if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
609 1.240 maxv return true;
610 1.240 maxv }
611 1.240 maxv
612 1.240 maxv return false;
613 1.240 maxv }
614 1.240 maxv
615 1.242 maxv static inline bool
616 1.242 maxv pool_init_is_usebmap(const struct pool *pp)
617 1.242 maxv {
618 1.243 maxv size_t bmapsize;
619 1.243 maxv
620 1.242 maxv if (pp->pr_roflags & PR_NOTOUCH) {
621 1.242 maxv return true;
622 1.242 maxv }
623 1.242 maxv
624 1.243 maxv /*
625 1.243 maxv * If we're on-page, and the page header can already contain a bitmap
626 1.243 maxv * big enough to cover all the items of the page, go with a bitmap.
627 1.243 maxv */
628 1.243 maxv if (!(pp->pr_roflags & PR_PHINPAGE)) {
629 1.243 maxv return false;
630 1.243 maxv }
631 1.243 maxv bmapsize = roundup(PHSIZE, pp->pr_align) -
632 1.243 maxv offsetof(struct pool_item_header, ph_bitmap[0]);
633 1.243 maxv KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
634 1.243 maxv if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
635 1.243 maxv return true;
636 1.243 maxv }
637 1.243 maxv
638 1.242 maxv return false;
639 1.242 maxv }
640 1.242 maxv
641 1.94 simonb /*
642 1.3 pk * Initialize the given pool resource structure.
643 1.3 pk *
644 1.3 pk * We export this routine to allow other kernel parts to declare
645 1.195 rmind * static pools that must be initialized before kmem(9) is available.
646 1.3 pk */
647 1.3 pk void
648 1.42 thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
649 1.129 ad const char *wchan, struct pool_allocator *palloc, int ipl)
650 1.3 pk {
651 1.116 simonb struct pool *pp1;
652 1.240 maxv size_t prsize;
653 1.237 maxv int itemspace, slack;
654 1.3 pk
655 1.238 maxv /* XXX ioff will be removed. */
656 1.238 maxv KASSERT(ioff == 0);
657 1.238 maxv
658 1.116 simonb #ifdef DEBUG
659 1.198 christos if (__predict_true(!cold))
660 1.198 christos mutex_enter(&pool_head_lock);
661 1.116 simonb /*
662 1.116 simonb * Check that the pool hasn't already been initialised and
663 1.116 simonb * added to the list of all pools.
664 1.116 simonb */
665 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
666 1.116 simonb if (pp == pp1)
667 1.213 christos panic("%s: [%s] already initialised", __func__,
668 1.116 simonb wchan);
669 1.116 simonb }
670 1.198 christos if (__predict_true(!cold))
671 1.198 christos mutex_exit(&pool_head_lock);
672 1.116 simonb #endif
673 1.116 simonb
674 1.66 thorpej if (palloc == NULL)
675 1.66 thorpej palloc = &pool_allocator_kmem;
676 1.244 maxv
677 1.180 mlelstv if (!cold)
678 1.180 mlelstv mutex_enter(&pool_allocator_lock);
679 1.178 elad if (palloc->pa_refcnt++ == 0) {
680 1.112 bjh21 if (palloc->pa_pagesz == 0)
681 1.66 thorpej palloc->pa_pagesz = PAGE_SIZE;
682 1.66 thorpej
683 1.66 thorpej TAILQ_INIT(&palloc->pa_list);
684 1.66 thorpej
685 1.134 ad mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
686 1.66 thorpej palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
687 1.66 thorpej palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
688 1.4 thorpej }
689 1.180 mlelstv if (!cold)
690 1.180 mlelstv mutex_exit(&pool_allocator_lock);
691 1.3 pk
692 1.3 pk if (align == 0)
693 1.3 pk align = ALIGN(1);
694 1.14 thorpej
695 1.204 maxv prsize = size;
696 1.204 maxv if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
697 1.204 maxv prsize = sizeof(struct pool_item);
698 1.3 pk
699 1.204 maxv prsize = roundup(prsize, align);
700 1.207 riastrad KASSERTMSG((prsize <= palloc->pa_pagesz),
701 1.213 christos "%s: [%s] pool item size (%zu) larger than page size (%u)",
702 1.213 christos __func__, wchan, prsize, palloc->pa_pagesz);
703 1.35 pk
704 1.3 pk /*
705 1.3 pk * Initialize the pool structure.
706 1.3 pk */
707 1.88 chs LIST_INIT(&pp->pr_emptypages);
708 1.88 chs LIST_INIT(&pp->pr_fullpages);
709 1.88 chs LIST_INIT(&pp->pr_partpages);
710 1.134 ad pp->pr_cache = NULL;
711 1.3 pk pp->pr_curpage = NULL;
712 1.3 pk pp->pr_npages = 0;
713 1.3 pk pp->pr_minitems = 0;
714 1.3 pk pp->pr_minpages = 0;
715 1.3 pk pp->pr_maxpages = UINT_MAX;
716 1.20 thorpej pp->pr_roflags = flags;
717 1.20 thorpej pp->pr_flags = 0;
718 1.204 maxv pp->pr_size = prsize;
719 1.233 maxv pp->pr_reqsize = size;
720 1.3 pk pp->pr_align = align;
721 1.3 pk pp->pr_wchan = wchan;
722 1.66 thorpej pp->pr_alloc = palloc;
723 1.245 maxv pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
724 1.20 thorpej pp->pr_nitems = 0;
725 1.20 thorpej pp->pr_nout = 0;
726 1.20 thorpej pp->pr_hardlimit = UINT_MAX;
727 1.20 thorpej pp->pr_hardlimit_warning = NULL;
728 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = 0;
729 1.31 thorpej pp->pr_hardlimit_ratecap.tv_usec = 0;
730 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
731 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
732 1.68 thorpej pp->pr_drain_hook = NULL;
733 1.68 thorpej pp->pr_drain_hook_arg = NULL;
734 1.125 ad pp->pr_freecheck = NULL;
735 1.204 maxv pool_redzone_init(pp, size);
736 1.3 pk
737 1.3 pk /*
738 1.240 maxv * Decide whether to put the page header off-page to avoid wasting too
739 1.240 maxv * large a part of the page or too big an item. Off-page page headers
740 1.240 maxv * go on a hash table, so we can match a returned item with its header
741 1.240 maxv * based on the page address.
742 1.3 pk */
743 1.240 maxv if (pool_init_is_phinpage(pp)) {
744 1.241 maxv /* Use the beginning of the page for the page header */
745 1.241 maxv itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
746 1.241 maxv pp->pr_itemoffset = roundup(PHSIZE, align);
747 1.239 maxv pp->pr_roflags |= PR_PHINPAGE;
748 1.2 pk } else {
749 1.3 pk /* The page header will be taken from our page header pool */
750 1.237 maxv itemspace = palloc->pa_pagesz;
751 1.241 maxv pp->pr_itemoffset = 0;
752 1.88 chs SPLAY_INIT(&pp->pr_phtree);
753 1.2 pk }
754 1.1 pk
755 1.243 maxv pp->pr_itemsperpage = itemspace / pp->pr_size;
756 1.243 maxv KASSERT(pp->pr_itemsperpage != 0);
757 1.243 maxv
758 1.242 maxv /*
759 1.242 maxv * Decide whether to use a bitmap or a linked list to manage freed
760 1.242 maxv * items.
761 1.242 maxv */
762 1.242 maxv if (pool_init_is_usebmap(pp)) {
763 1.242 maxv pp->pr_roflags |= PR_USEBMAP;
764 1.242 maxv }
765 1.242 maxv
766 1.242 maxv /*
767 1.242 maxv * If we're off-page and use a bitmap, choose the appropriate pool to
768 1.242 maxv * allocate page headers, whose size varies depending on the bitmap. If
769 1.242 maxv * we're just off-page, take the first pool, no extra size. If we're
770 1.242 maxv * on-page, nothing to do.
771 1.242 maxv */
772 1.242 maxv if (!(pp->pr_roflags & PR_PHINPAGE) && (pp->pr_roflags & PR_USEBMAP)) {
773 1.97 yamt int idx;
774 1.97 yamt
775 1.97 yamt for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
776 1.97 yamt idx++) {
777 1.97 yamt /* nothing */
778 1.97 yamt }
779 1.97 yamt if (idx >= PHPOOL_MAX) {
780 1.97 yamt /*
781 1.97 yamt * if you see this panic, consider to tweak
782 1.97 yamt * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
783 1.97 yamt */
784 1.213 christos panic("%s: [%s] too large itemsperpage(%d) for "
785 1.242 maxv "PR_USEBMAP", __func__,
786 1.97 yamt pp->pr_wchan, pp->pr_itemsperpage);
787 1.97 yamt }
788 1.97 yamt pp->pr_phpool = &phpool[idx];
789 1.242 maxv } else if (!(pp->pr_roflags & PR_PHINPAGE)) {
790 1.97 yamt pp->pr_phpool = &phpool[0];
791 1.242 maxv } else {
792 1.97 yamt pp->pr_phpool = NULL;
793 1.97 yamt }
794 1.3 pk
795 1.3 pk /*
796 1.3 pk * Use the slack between the chunks and the page header
797 1.3 pk * for "cache coloring".
798 1.3 pk */
799 1.237 maxv slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
800 1.239 maxv pp->pr_maxcolor = rounddown(slack, align);
801 1.3 pk pp->pr_curcolor = 0;
802 1.3 pk
803 1.3 pk pp->pr_nget = 0;
804 1.3 pk pp->pr_nfail = 0;
805 1.3 pk pp->pr_nput = 0;
806 1.3 pk pp->pr_npagealloc = 0;
807 1.3 pk pp->pr_npagefree = 0;
808 1.1 pk pp->pr_hiwat = 0;
809 1.8 thorpej pp->pr_nidle = 0;
810 1.134 ad pp->pr_refcnt = 0;
811 1.3 pk
812 1.157 ad mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
813 1.134 ad cv_init(&pp->pr_cv, wchan);
814 1.134 ad pp->pr_ipl = ipl;
815 1.1 pk
816 1.145 ad /* Insert into the list of all pools. */
817 1.181 mlelstv if (!cold)
818 1.134 ad mutex_enter(&pool_head_lock);
819 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
820 1.145 ad if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
821 1.145 ad break;
822 1.145 ad }
823 1.145 ad if (pp1 == NULL)
824 1.145 ad TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
825 1.145 ad else
826 1.145 ad TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
827 1.181 mlelstv if (!cold)
828 1.134 ad mutex_exit(&pool_head_lock);
829 1.134 ad
830 1.167 skrll /* Insert this into the list of pools using this allocator. */
831 1.181 mlelstv if (!cold)
832 1.134 ad mutex_enter(&palloc->pa_lock);
833 1.145 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
834 1.181 mlelstv if (!cold)
835 1.134 ad mutex_exit(&palloc->pa_lock);
836 1.1 pk }
837 1.1 pk
838 1.1 pk /*
839 1.1 pk * De-commision a pool resource.
840 1.1 pk */
841 1.1 pk void
842 1.42 thorpej pool_destroy(struct pool *pp)
843 1.1 pk {
844 1.101 thorpej struct pool_pagelist pq;
845 1.3 pk struct pool_item_header *ph;
846 1.43 thorpej
847 1.101 thorpej /* Remove from global pool list */
848 1.134 ad mutex_enter(&pool_head_lock);
849 1.134 ad while (pp->pr_refcnt != 0)
850 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
851 1.145 ad TAILQ_REMOVE(&pool_head, pp, pr_poollist);
852 1.101 thorpej if (drainpp == pp)
853 1.101 thorpej drainpp = NULL;
854 1.134 ad mutex_exit(&pool_head_lock);
855 1.101 thorpej
856 1.101 thorpej /* Remove this pool from its allocator's list of pools. */
857 1.134 ad mutex_enter(&pp->pr_alloc->pa_lock);
858 1.66 thorpej TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
859 1.134 ad mutex_exit(&pp->pr_alloc->pa_lock);
860 1.66 thorpej
861 1.178 elad mutex_enter(&pool_allocator_lock);
862 1.178 elad if (--pp->pr_alloc->pa_refcnt == 0)
863 1.178 elad mutex_destroy(&pp->pr_alloc->pa_lock);
864 1.178 elad mutex_exit(&pool_allocator_lock);
865 1.178 elad
866 1.134 ad mutex_enter(&pp->pr_lock);
867 1.101 thorpej
868 1.134 ad KASSERT(pp->pr_cache == NULL);
869 1.207 riastrad KASSERTMSG((pp->pr_nout == 0),
870 1.213 christos "%s: pool busy: still out: %u", __func__, pp->pr_nout);
871 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_fullpages));
872 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_partpages));
873 1.101 thorpej
874 1.3 pk /* Remove all pages */
875 1.101 thorpej LIST_INIT(&pq);
876 1.88 chs while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
877 1.101 thorpej pr_rmpage(pp, ph, &pq);
878 1.101 thorpej
879 1.134 ad mutex_exit(&pp->pr_lock);
880 1.3 pk
881 1.101 thorpej pr_pagelist_free(pp, &pq);
882 1.134 ad cv_destroy(&pp->pr_cv);
883 1.134 ad mutex_destroy(&pp->pr_lock);
884 1.1 pk }
885 1.1 pk
886 1.68 thorpej void
887 1.68 thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
888 1.68 thorpej {
889 1.68 thorpej
890 1.68 thorpej /* XXX no locking -- must be used just after pool_init() */
891 1.207 riastrad KASSERTMSG((pp->pr_drain_hook == NULL),
892 1.213 christos "%s: [%s] already set", __func__, pp->pr_wchan);
893 1.68 thorpej pp->pr_drain_hook = fn;
894 1.68 thorpej pp->pr_drain_hook_arg = arg;
895 1.68 thorpej }
896 1.68 thorpej
897 1.88 chs static struct pool_item_header *
898 1.128 christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
899 1.55 thorpej {
900 1.55 thorpej struct pool_item_header *ph;
901 1.55 thorpej
902 1.55 thorpej if ((pp->pr_roflags & PR_PHINPAGE) != 0)
903 1.241 maxv ph = storage;
904 1.134 ad else
905 1.97 yamt ph = pool_get(pp->pr_phpool, flags);
906 1.55 thorpej
907 1.236 maxv return ph;
908 1.55 thorpej }
909 1.1 pk
910 1.1 pk /*
911 1.134 ad * Grab an item from the pool.
912 1.1 pk */
913 1.3 pk void *
914 1.56 sommerfe pool_get(struct pool *pp, int flags)
915 1.1 pk {
916 1.3 pk struct pool_item_header *ph;
917 1.55 thorpej void *v;
918 1.1 pk
919 1.215 christos KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
920 1.207 riastrad KASSERTMSG((pp->pr_itemsperpage != 0),
921 1.213 christos "%s: [%s] pr_itemsperpage is zero, "
922 1.213 christos "pool not initialized?", __func__, pp->pr_wchan);
923 1.207 riastrad KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
924 1.207 riastrad || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
925 1.213 christos "%s: [%s] is IPL_NONE, but called from interrupt context",
926 1.213 christos __func__, pp->pr_wchan);
927 1.155 ad if (flags & PR_WAITOK) {
928 1.154 yamt ASSERT_SLEEPABLE();
929 1.155 ad }
930 1.1 pk
931 1.134 ad mutex_enter(&pp->pr_lock);
932 1.20 thorpej startover:
933 1.20 thorpej /*
934 1.20 thorpej * Check to see if we've reached the hard limit. If we have,
935 1.20 thorpej * and we can wait, then wait until an item has been returned to
936 1.20 thorpej * the pool.
937 1.20 thorpej */
938 1.207 riastrad KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
939 1.213 christos "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
940 1.34 thorpej if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
941 1.68 thorpej if (pp->pr_drain_hook != NULL) {
942 1.68 thorpej /*
943 1.68 thorpej * Since the drain hook is going to free things
944 1.68 thorpej * back to the pool, unlock, call the hook, re-lock,
945 1.68 thorpej * and check the hardlimit condition again.
946 1.68 thorpej */
947 1.134 ad mutex_exit(&pp->pr_lock);
948 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
949 1.134 ad mutex_enter(&pp->pr_lock);
950 1.68 thorpej if (pp->pr_nout < pp->pr_hardlimit)
951 1.68 thorpej goto startover;
952 1.68 thorpej }
953 1.68 thorpej
954 1.29 sommerfe if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
955 1.20 thorpej /*
956 1.20 thorpej * XXX: A warning isn't logged in this case. Should
957 1.20 thorpej * it be?
958 1.20 thorpej */
959 1.20 thorpej pp->pr_flags |= PR_WANTED;
960 1.212 christos do {
961 1.212 christos cv_wait(&pp->pr_cv, &pp->pr_lock);
962 1.212 christos } while (pp->pr_flags & PR_WANTED);
963 1.20 thorpej goto startover;
964 1.20 thorpej }
965 1.31 thorpej
966 1.31 thorpej /*
967 1.31 thorpej * Log a message that the hard limit has been hit.
968 1.31 thorpej */
969 1.31 thorpej if (pp->pr_hardlimit_warning != NULL &&
970 1.31 thorpej ratecheck(&pp->pr_hardlimit_warning_last,
971 1.31 thorpej &pp->pr_hardlimit_ratecap))
972 1.31 thorpej log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
973 1.21 thorpej
974 1.21 thorpej pp->pr_nfail++;
975 1.21 thorpej
976 1.134 ad mutex_exit(&pp->pr_lock);
977 1.216 christos KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
978 1.236 maxv return NULL;
979 1.20 thorpej }
980 1.20 thorpej
981 1.3 pk /*
982 1.3 pk * The convention we use is that if `curpage' is not NULL, then
983 1.3 pk * it points at a non-empty bucket. In particular, `curpage'
984 1.3 pk * never points at a page header which has PR_PHINPAGE set and
985 1.3 pk * has no items in its bucket.
986 1.3 pk */
987 1.20 thorpej if ((ph = pp->pr_curpage) == NULL) {
988 1.113 yamt int error;
989 1.113 yamt
990 1.207 riastrad KASSERTMSG((pp->pr_nitems == 0),
991 1.213 christos "%s: [%s] curpage NULL, inconsistent nitems %u",
992 1.213 christos __func__, pp->pr_wchan, pp->pr_nitems);
993 1.20 thorpej
994 1.21 thorpej /*
995 1.21 thorpej * Call the back-end page allocator for more memory.
996 1.21 thorpej * Release the pool lock, as the back-end page allocator
997 1.21 thorpej * may block.
998 1.21 thorpej */
999 1.113 yamt error = pool_grow(pp, flags);
1000 1.113 yamt if (error != 0) {
1001 1.21 thorpej /*
1002 1.210 mlelstv * pool_grow aborts when another thread
1003 1.210 mlelstv * is allocating a new page. Retry if it
1004 1.210 mlelstv * waited for it.
1005 1.210 mlelstv */
1006 1.210 mlelstv if (error == ERESTART)
1007 1.210 mlelstv goto startover;
1008 1.210 mlelstv
1009 1.210 mlelstv /*
1010 1.55 thorpej * We were unable to allocate a page or item
1011 1.55 thorpej * header, but we released the lock during
1012 1.55 thorpej * allocation, so perhaps items were freed
1013 1.55 thorpej * back to the pool. Check for this case.
1014 1.21 thorpej */
1015 1.21 thorpej if (pp->pr_curpage != NULL)
1016 1.21 thorpej goto startover;
1017 1.15 pk
1018 1.117 yamt pp->pr_nfail++;
1019 1.134 ad mutex_exit(&pp->pr_lock);
1020 1.211 riastrad KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
1021 1.236 maxv return NULL;
1022 1.1 pk }
1023 1.3 pk
1024 1.20 thorpej /* Start the allocation process over. */
1025 1.20 thorpej goto startover;
1026 1.3 pk }
1027 1.242 maxv if (pp->pr_roflags & PR_USEBMAP) {
1028 1.207 riastrad KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1029 1.213 christos "%s: %s: page empty", __func__, pp->pr_wchan);
1030 1.234 maxv v = pr_item_bitmap_get(pp, ph);
1031 1.97 yamt } else {
1032 1.234 maxv v = pr_item_linkedlist_get(pp, ph);
1033 1.97 yamt }
1034 1.20 thorpej pp->pr_nitems--;
1035 1.20 thorpej pp->pr_nout++;
1036 1.6 thorpej if (ph->ph_nmissing == 0) {
1037 1.207 riastrad KASSERT(pp->pr_nidle > 0);
1038 1.6 thorpej pp->pr_nidle--;
1039 1.88 chs
1040 1.88 chs /*
1041 1.88 chs * This page was previously empty. Move it to the list of
1042 1.88 chs * partially-full pages. This page is already curpage.
1043 1.88 chs */
1044 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1045 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1046 1.6 thorpej }
1047 1.3 pk ph->ph_nmissing++;
1048 1.97 yamt if (ph->ph_nmissing == pp->pr_itemsperpage) {
1049 1.242 maxv KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1050 1.207 riastrad LIST_EMPTY(&ph->ph_itemlist)),
1051 1.213 christos "%s: [%s] nmissing (%u) inconsistent", __func__,
1052 1.213 christos pp->pr_wchan, ph->ph_nmissing);
1053 1.3 pk /*
1054 1.88 chs * This page is now full. Move it to the full list
1055 1.88 chs * and select a new current page.
1056 1.3 pk */
1057 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1058 1.88 chs LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1059 1.88 chs pool_update_curpage(pp);
1060 1.1 pk }
1061 1.3 pk
1062 1.3 pk pp->pr_nget++;
1063 1.20 thorpej
1064 1.20 thorpej /*
1065 1.20 thorpej * If we have a low water mark and we are now below that low
1066 1.20 thorpej * water mark, add more items to the pool.
1067 1.20 thorpej */
1068 1.53 thorpej if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1069 1.20 thorpej /*
1070 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1071 1.20 thorpej * to try again in a second or so? The latter could break
1072 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1073 1.20 thorpej */
1074 1.20 thorpej }
1075 1.20 thorpej
1076 1.134 ad mutex_exit(&pp->pr_lock);
1077 1.238 maxv KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1078 1.125 ad FREECHECK_OUT(&pp->pr_freecheck, v);
1079 1.204 maxv pool_redzone_fill(pp, v);
1080 1.232 christos if (flags & PR_ZERO)
1081 1.233 maxv memset(v, 0, pp->pr_reqsize);
1082 1.232 christos else
1083 1.232 christos pool_kleak_fill(pp, v);
1084 1.232 christos return v;
1085 1.1 pk }
1086 1.1 pk
1087 1.1 pk /*
1088 1.43 thorpej * Internal version of pool_put(). Pool is already locked/entered.
1089 1.1 pk */
1090 1.43 thorpej static void
1091 1.101 thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1092 1.1 pk {
1093 1.3 pk struct pool_item_header *ph;
1094 1.3 pk
1095 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1096 1.204 maxv pool_redzone_check(pp, v);
1097 1.125 ad FREECHECK_IN(&pp->pr_freecheck, v);
1098 1.134 ad LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1099 1.61 chs
1100 1.207 riastrad KASSERTMSG((pp->pr_nout > 0),
1101 1.213 christos "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1102 1.3 pk
1103 1.121 yamt if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1104 1.213 christos panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1105 1.3 pk }
1106 1.28 thorpej
1107 1.3 pk /*
1108 1.3 pk * Return to item list.
1109 1.3 pk */
1110 1.242 maxv if (pp->pr_roflags & PR_USEBMAP) {
1111 1.234 maxv pr_item_bitmap_put(pp, ph, v);
1112 1.97 yamt } else {
1113 1.234 maxv pr_item_linkedlist_put(pp, ph, v);
1114 1.97 yamt }
1115 1.79 thorpej KDASSERT(ph->ph_nmissing != 0);
1116 1.3 pk ph->ph_nmissing--;
1117 1.3 pk pp->pr_nput++;
1118 1.20 thorpej pp->pr_nitems++;
1119 1.20 thorpej pp->pr_nout--;
1120 1.3 pk
1121 1.3 pk /* Cancel "pool empty" condition if it exists */
1122 1.3 pk if (pp->pr_curpage == NULL)
1123 1.3 pk pp->pr_curpage = ph;
1124 1.3 pk
1125 1.3 pk if (pp->pr_flags & PR_WANTED) {
1126 1.3 pk pp->pr_flags &= ~PR_WANTED;
1127 1.134 ad cv_broadcast(&pp->pr_cv);
1128 1.3 pk }
1129 1.3 pk
1130 1.3 pk /*
1131 1.88 chs * If this page is now empty, do one of two things:
1132 1.21 thorpej *
1133 1.88 chs * (1) If we have more pages than the page high water mark,
1134 1.96 thorpej * free the page back to the system. ONLY CONSIDER
1135 1.90 thorpej * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1136 1.90 thorpej * CLAIM.
1137 1.21 thorpej *
1138 1.88 chs * (2) Otherwise, move the page to the empty page list.
1139 1.88 chs *
1140 1.88 chs * Either way, select a new current page (so we use a partially-full
1141 1.88 chs * page if one is available).
1142 1.3 pk */
1143 1.3 pk if (ph->ph_nmissing == 0) {
1144 1.6 thorpej pp->pr_nidle++;
1145 1.90 thorpej if (pp->pr_npages > pp->pr_minpages &&
1146 1.152 yamt pp->pr_npages > pp->pr_maxpages) {
1147 1.101 thorpej pr_rmpage(pp, ph, pq);
1148 1.3 pk } else {
1149 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1150 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1151 1.3 pk
1152 1.21 thorpej /*
1153 1.21 thorpej * Update the timestamp on the page. A page must
1154 1.21 thorpej * be idle for some period of time before it can
1155 1.21 thorpej * be reclaimed by the pagedaemon. This minimizes
1156 1.21 thorpej * ping-pong'ing for memory.
1157 1.151 yamt *
1158 1.151 yamt * note for 64-bit time_t: truncating to 32-bit is not
1159 1.151 yamt * a problem for our usage.
1160 1.21 thorpej */
1161 1.151 yamt ph->ph_time = time_uptime;
1162 1.1 pk }
1163 1.88 chs pool_update_curpage(pp);
1164 1.1 pk }
1165 1.88 chs
1166 1.21 thorpej /*
1167 1.88 chs * If the page was previously completely full, move it to the
1168 1.88 chs * partially-full list and make it the current page. The next
1169 1.88 chs * allocation will get the item from this page, instead of
1170 1.88 chs * further fragmenting the pool.
1171 1.21 thorpej */
1172 1.21 thorpej else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1173 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1174 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1175 1.21 thorpej pp->pr_curpage = ph;
1176 1.21 thorpej }
1177 1.43 thorpej }
1178 1.43 thorpej
1179 1.56 sommerfe void
1180 1.56 sommerfe pool_put(struct pool *pp, void *v)
1181 1.56 sommerfe {
1182 1.101 thorpej struct pool_pagelist pq;
1183 1.101 thorpej
1184 1.101 thorpej LIST_INIT(&pq);
1185 1.56 sommerfe
1186 1.134 ad mutex_enter(&pp->pr_lock);
1187 1.101 thorpej pool_do_put(pp, v, &pq);
1188 1.134 ad mutex_exit(&pp->pr_lock);
1189 1.56 sommerfe
1190 1.102 chs pr_pagelist_free(pp, &pq);
1191 1.56 sommerfe }
1192 1.57 sommerfe
1193 1.74 thorpej /*
1194 1.113 yamt * pool_grow: grow a pool by a page.
1195 1.113 yamt *
1196 1.113 yamt * => called with pool locked.
1197 1.113 yamt * => unlock and relock the pool.
1198 1.113 yamt * => return with pool locked.
1199 1.113 yamt */
1200 1.113 yamt
1201 1.113 yamt static int
1202 1.113 yamt pool_grow(struct pool *pp, int flags)
1203 1.113 yamt {
1204 1.236 maxv struct pool_item_header *ph;
1205 1.237 maxv char *storage;
1206 1.236 maxv
1207 1.209 riastrad /*
1208 1.209 riastrad * If there's a pool_grow in progress, wait for it to complete
1209 1.209 riastrad * and try again from the top.
1210 1.209 riastrad */
1211 1.209 riastrad if (pp->pr_flags & PR_GROWING) {
1212 1.209 riastrad if (flags & PR_WAITOK) {
1213 1.209 riastrad do {
1214 1.209 riastrad cv_wait(&pp->pr_cv, &pp->pr_lock);
1215 1.209 riastrad } while (pp->pr_flags & PR_GROWING);
1216 1.209 riastrad return ERESTART;
1217 1.209 riastrad } else {
1218 1.219 mrg if (pp->pr_flags & PR_GROWINGNOWAIT) {
1219 1.219 mrg /*
1220 1.219 mrg * This needs an unlock/relock dance so
1221 1.219 mrg * that the other caller has a chance to
1222 1.219 mrg * run and actually do the thing. Note
1223 1.219 mrg * that this is effectively a busy-wait.
1224 1.219 mrg */
1225 1.219 mrg mutex_exit(&pp->pr_lock);
1226 1.219 mrg mutex_enter(&pp->pr_lock);
1227 1.219 mrg return ERESTART;
1228 1.219 mrg }
1229 1.209 riastrad return EWOULDBLOCK;
1230 1.209 riastrad }
1231 1.209 riastrad }
1232 1.209 riastrad pp->pr_flags |= PR_GROWING;
1233 1.220 christos if (flags & PR_WAITOK)
1234 1.220 christos mutex_exit(&pp->pr_lock);
1235 1.220 christos else
1236 1.219 mrg pp->pr_flags |= PR_GROWINGNOWAIT;
1237 1.113 yamt
1238 1.237 maxv storage = pool_allocator_alloc(pp, flags);
1239 1.237 maxv if (__predict_false(storage == NULL))
1240 1.216 christos goto out;
1241 1.216 christos
1242 1.237 maxv ph = pool_alloc_item_header(pp, storage, flags);
1243 1.216 christos if (__predict_false(ph == NULL)) {
1244 1.237 maxv pool_allocator_free(pp, storage);
1245 1.209 riastrad goto out;
1246 1.113 yamt }
1247 1.113 yamt
1248 1.220 christos if (flags & PR_WAITOK)
1249 1.220 christos mutex_enter(&pp->pr_lock);
1250 1.237 maxv pool_prime_page(pp, storage, ph);
1251 1.113 yamt pp->pr_npagealloc++;
1252 1.216 christos KASSERT(pp->pr_flags & PR_GROWING);
1253 1.219 mrg pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1254 1.209 riastrad /*
1255 1.209 riastrad * If anyone was waiting for pool_grow, notify them that we
1256 1.209 riastrad * may have just done it.
1257 1.209 riastrad */
1258 1.216 christos cv_broadcast(&pp->pr_cv);
1259 1.216 christos return 0;
1260 1.216 christos out:
1261 1.220 christos if (flags & PR_WAITOK)
1262 1.220 christos mutex_enter(&pp->pr_lock);
1263 1.209 riastrad KASSERT(pp->pr_flags & PR_GROWING);
1264 1.219 mrg pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1265 1.216 christos return ENOMEM;
1266 1.113 yamt }
1267 1.113 yamt
1268 1.113 yamt /*
1269 1.74 thorpej * Add N items to the pool.
1270 1.74 thorpej */
1271 1.74 thorpej int
1272 1.74 thorpej pool_prime(struct pool *pp, int n)
1273 1.74 thorpej {
1274 1.75 simonb int newpages;
1275 1.113 yamt int error = 0;
1276 1.74 thorpej
1277 1.134 ad mutex_enter(&pp->pr_lock);
1278 1.74 thorpej
1279 1.74 thorpej newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1280 1.74 thorpej
1281 1.216 christos while (newpages > 0) {
1282 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1283 1.113 yamt if (error) {
1284 1.214 christos if (error == ERESTART)
1285 1.214 christos continue;
1286 1.74 thorpej break;
1287 1.74 thorpej }
1288 1.74 thorpej pp->pr_minpages++;
1289 1.216 christos newpages--;
1290 1.74 thorpej }
1291 1.74 thorpej
1292 1.74 thorpej if (pp->pr_minpages >= pp->pr_maxpages)
1293 1.74 thorpej pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1294 1.74 thorpej
1295 1.134 ad mutex_exit(&pp->pr_lock);
1296 1.113 yamt return error;
1297 1.74 thorpej }
1298 1.55 thorpej
1299 1.55 thorpej /*
1300 1.3 pk * Add a page worth of items to the pool.
1301 1.21 thorpej *
1302 1.21 thorpej * Note, we must be called with the pool descriptor LOCKED.
1303 1.3 pk */
1304 1.55 thorpej static void
1305 1.128 christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1306 1.3 pk {
1307 1.236 maxv const unsigned int align = pp->pr_align;
1308 1.3 pk struct pool_item *pi;
1309 1.128 christos void *cp = storage;
1310 1.55 thorpej int n;
1311 1.36 pk
1312 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1313 1.207 riastrad KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1314 1.207 riastrad (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1315 1.213 christos "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1316 1.3 pk
1317 1.3 pk /*
1318 1.3 pk * Insert page header.
1319 1.3 pk */
1320 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1321 1.102 chs LIST_INIT(&ph->ph_itemlist);
1322 1.3 pk ph->ph_page = storage;
1323 1.3 pk ph->ph_nmissing = 0;
1324 1.151 yamt ph->ph_time = time_uptime;
1325 1.245 maxv if (pp->pr_roflags & PR_PHINPAGE)
1326 1.245 maxv ph->ph_poolid = pp->pr_poolid;
1327 1.245 maxv else
1328 1.88 chs SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1329 1.3 pk
1330 1.6 thorpej pp->pr_nidle++;
1331 1.6 thorpej
1332 1.3 pk /*
1333 1.241 maxv * The item space starts after the on-page header, if any.
1334 1.241 maxv */
1335 1.241 maxv ph->ph_off = pp->pr_itemoffset;
1336 1.241 maxv
1337 1.241 maxv /*
1338 1.3 pk * Color this page.
1339 1.3 pk */
1340 1.241 maxv ph->ph_off += pp->pr_curcolor;
1341 1.141 yamt cp = (char *)cp + ph->ph_off;
1342 1.3 pk if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1343 1.3 pk pp->pr_curcolor = 0;
1344 1.3 pk
1345 1.238 maxv KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1346 1.125 ad
1347 1.3 pk /*
1348 1.3 pk * Insert remaining chunks on the bucket list.
1349 1.3 pk */
1350 1.3 pk n = pp->pr_itemsperpage;
1351 1.20 thorpej pp->pr_nitems += n;
1352 1.3 pk
1353 1.242 maxv if (pp->pr_roflags & PR_USEBMAP) {
1354 1.234 maxv pr_item_bitmap_init(pp, ph);
1355 1.97 yamt } else {
1356 1.97 yamt while (n--) {
1357 1.97 yamt pi = (struct pool_item *)cp;
1358 1.78 thorpej
1359 1.238 maxv KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1360 1.3 pk
1361 1.97 yamt /* Insert on page list */
1362 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1363 1.229 maxv #ifdef POOL_CHECK_MAGIC
1364 1.97 yamt pi->pi_magic = PI_MAGIC;
1365 1.3 pk #endif
1366 1.128 christos cp = (char *)cp + pp->pr_size;
1367 1.125 ad
1368 1.238 maxv KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1369 1.97 yamt }
1370 1.3 pk }
1371 1.3 pk
1372 1.3 pk /*
1373 1.3 pk * If the pool was depleted, point at the new page.
1374 1.3 pk */
1375 1.3 pk if (pp->pr_curpage == NULL)
1376 1.3 pk pp->pr_curpage = ph;
1377 1.3 pk
1378 1.3 pk if (++pp->pr_npages > pp->pr_hiwat)
1379 1.3 pk pp->pr_hiwat = pp->pr_npages;
1380 1.3 pk }
1381 1.3 pk
1382 1.20 thorpej /*
1383 1.52 thorpej * Used by pool_get() when nitems drops below the low water mark. This
1384 1.88 chs * is used to catch up pr_nitems with the low water mark.
1385 1.20 thorpej *
1386 1.21 thorpej * Note 1, we never wait for memory here, we let the caller decide what to do.
1387 1.20 thorpej *
1388 1.73 thorpej * Note 2, we must be called with the pool already locked, and we return
1389 1.20 thorpej * with it locked.
1390 1.20 thorpej */
1391 1.20 thorpej static int
1392 1.42 thorpej pool_catchup(struct pool *pp)
1393 1.20 thorpej {
1394 1.20 thorpej int error = 0;
1395 1.20 thorpej
1396 1.54 thorpej while (POOL_NEEDS_CATCHUP(pp)) {
1397 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1398 1.113 yamt if (error) {
1399 1.214 christos if (error == ERESTART)
1400 1.214 christos continue;
1401 1.20 thorpej break;
1402 1.20 thorpej }
1403 1.20 thorpej }
1404 1.113 yamt return error;
1405 1.20 thorpej }
1406 1.20 thorpej
1407 1.88 chs static void
1408 1.88 chs pool_update_curpage(struct pool *pp)
1409 1.88 chs {
1410 1.88 chs
1411 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1412 1.88 chs if (pp->pr_curpage == NULL) {
1413 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1414 1.88 chs }
1415 1.168 yamt KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1416 1.168 yamt (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1417 1.88 chs }
1418 1.88 chs
1419 1.3 pk void
1420 1.42 thorpej pool_setlowat(struct pool *pp, int n)
1421 1.3 pk {
1422 1.15 pk
1423 1.134 ad mutex_enter(&pp->pr_lock);
1424 1.21 thorpej
1425 1.3 pk pp->pr_minitems = n;
1426 1.15 pk pp->pr_minpages = (n == 0)
1427 1.15 pk ? 0
1428 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1429 1.20 thorpej
1430 1.20 thorpej /* Make sure we're caught up with the newly-set low water mark. */
1431 1.75 simonb if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1432 1.20 thorpej /*
1433 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1434 1.20 thorpej * to try again in a second or so? The latter could break
1435 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1436 1.20 thorpej */
1437 1.20 thorpej }
1438 1.21 thorpej
1439 1.134 ad mutex_exit(&pp->pr_lock);
1440 1.3 pk }
1441 1.3 pk
1442 1.3 pk void
1443 1.42 thorpej pool_sethiwat(struct pool *pp, int n)
1444 1.3 pk {
1445 1.15 pk
1446 1.134 ad mutex_enter(&pp->pr_lock);
1447 1.21 thorpej
1448 1.15 pk pp->pr_maxpages = (n == 0)
1449 1.15 pk ? 0
1450 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1451 1.21 thorpej
1452 1.134 ad mutex_exit(&pp->pr_lock);
1453 1.3 pk }
1454 1.3 pk
1455 1.20 thorpej void
1456 1.42 thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1457 1.20 thorpej {
1458 1.20 thorpej
1459 1.134 ad mutex_enter(&pp->pr_lock);
1460 1.20 thorpej
1461 1.20 thorpej pp->pr_hardlimit = n;
1462 1.20 thorpej pp->pr_hardlimit_warning = warnmess;
1463 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1464 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
1465 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
1466 1.20 thorpej
1467 1.20 thorpej /*
1468 1.21 thorpej * In-line version of pool_sethiwat(), because we don't want to
1469 1.21 thorpej * release the lock.
1470 1.20 thorpej */
1471 1.20 thorpej pp->pr_maxpages = (n == 0)
1472 1.20 thorpej ? 0
1473 1.20 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1474 1.21 thorpej
1475 1.134 ad mutex_exit(&pp->pr_lock);
1476 1.20 thorpej }
1477 1.3 pk
1478 1.3 pk /*
1479 1.3 pk * Release all complete pages that have not been used recently.
1480 1.184 rmind *
1481 1.197 jym * Must not be called from interrupt context.
1482 1.3 pk */
1483 1.66 thorpej int
1484 1.56 sommerfe pool_reclaim(struct pool *pp)
1485 1.3 pk {
1486 1.3 pk struct pool_item_header *ph, *phnext;
1487 1.61 chs struct pool_pagelist pq;
1488 1.151 yamt uint32_t curtime;
1489 1.134 ad bool klock;
1490 1.134 ad int rv;
1491 1.3 pk
1492 1.197 jym KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1493 1.184 rmind
1494 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1495 1.68 thorpej /*
1496 1.68 thorpej * The drain hook must be called with the pool unlocked.
1497 1.68 thorpej */
1498 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1499 1.68 thorpej }
1500 1.68 thorpej
1501 1.134 ad /*
1502 1.157 ad * XXXSMP Because we do not want to cause non-MPSAFE code
1503 1.157 ad * to block.
1504 1.134 ad */
1505 1.134 ad if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1506 1.134 ad pp->pr_ipl == IPL_SOFTSERIAL) {
1507 1.134 ad KERNEL_LOCK(1, NULL);
1508 1.134 ad klock = true;
1509 1.134 ad } else
1510 1.134 ad klock = false;
1511 1.134 ad
1512 1.134 ad /* Reclaim items from the pool's cache (if any). */
1513 1.134 ad if (pp->pr_cache != NULL)
1514 1.134 ad pool_cache_invalidate(pp->pr_cache);
1515 1.134 ad
1516 1.134 ad if (mutex_tryenter(&pp->pr_lock) == 0) {
1517 1.134 ad if (klock) {
1518 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1519 1.134 ad }
1520 1.236 maxv return 0;
1521 1.134 ad }
1522 1.68 thorpej
1523 1.88 chs LIST_INIT(&pq);
1524 1.43 thorpej
1525 1.151 yamt curtime = time_uptime;
1526 1.21 thorpej
1527 1.88 chs for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1528 1.88 chs phnext = LIST_NEXT(ph, ph_pagelist);
1529 1.3 pk
1530 1.3 pk /* Check our minimum page claim */
1531 1.3 pk if (pp->pr_npages <= pp->pr_minpages)
1532 1.3 pk break;
1533 1.3 pk
1534 1.88 chs KASSERT(ph->ph_nmissing == 0);
1535 1.191 para if (curtime - ph->ph_time < pool_inactive_time)
1536 1.88 chs continue;
1537 1.21 thorpej
1538 1.88 chs /*
1539 1.88 chs * If freeing this page would put us below
1540 1.88 chs * the low water mark, stop now.
1541 1.88 chs */
1542 1.88 chs if ((pp->pr_nitems - pp->pr_itemsperpage) <
1543 1.88 chs pp->pr_minitems)
1544 1.88 chs break;
1545 1.21 thorpej
1546 1.88 chs pr_rmpage(pp, ph, &pq);
1547 1.3 pk }
1548 1.3 pk
1549 1.134 ad mutex_exit(&pp->pr_lock);
1550 1.134 ad
1551 1.134 ad if (LIST_EMPTY(&pq))
1552 1.134 ad rv = 0;
1553 1.134 ad else {
1554 1.134 ad pr_pagelist_free(pp, &pq);
1555 1.134 ad rv = 1;
1556 1.134 ad }
1557 1.134 ad
1558 1.134 ad if (klock) {
1559 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1560 1.134 ad }
1561 1.66 thorpej
1562 1.236 maxv return rv;
1563 1.3 pk }
1564 1.3 pk
1565 1.3 pk /*
1566 1.197 jym * Drain pools, one at a time. The drained pool is returned within ppp.
1567 1.131 ad *
1568 1.134 ad * Note, must never be called from interrupt context.
1569 1.3 pk */
1570 1.197 jym bool
1571 1.197 jym pool_drain(struct pool **ppp)
1572 1.3 pk {
1573 1.197 jym bool reclaimed;
1574 1.3 pk struct pool *pp;
1575 1.134 ad
1576 1.145 ad KASSERT(!TAILQ_EMPTY(&pool_head));
1577 1.3 pk
1578 1.61 chs pp = NULL;
1579 1.134 ad
1580 1.134 ad /* Find next pool to drain, and add a reference. */
1581 1.134 ad mutex_enter(&pool_head_lock);
1582 1.134 ad do {
1583 1.134 ad if (drainpp == NULL) {
1584 1.145 ad drainpp = TAILQ_FIRST(&pool_head);
1585 1.134 ad }
1586 1.134 ad if (drainpp != NULL) {
1587 1.134 ad pp = drainpp;
1588 1.145 ad drainpp = TAILQ_NEXT(pp, pr_poollist);
1589 1.134 ad }
1590 1.134 ad /*
1591 1.134 ad * Skip completely idle pools. We depend on at least
1592 1.134 ad * one pool in the system being active.
1593 1.134 ad */
1594 1.134 ad } while (pp == NULL || pp->pr_npages == 0);
1595 1.134 ad pp->pr_refcnt++;
1596 1.134 ad mutex_exit(&pool_head_lock);
1597 1.134 ad
1598 1.134 ad /* Drain the cache (if any) and pool.. */
1599 1.186 pooka reclaimed = pool_reclaim(pp);
1600 1.134 ad
1601 1.134 ad /* Finally, unlock the pool. */
1602 1.134 ad mutex_enter(&pool_head_lock);
1603 1.134 ad pp->pr_refcnt--;
1604 1.134 ad cv_broadcast(&pool_busy);
1605 1.134 ad mutex_exit(&pool_head_lock);
1606 1.186 pooka
1607 1.197 jym if (ppp != NULL)
1608 1.197 jym *ppp = pp;
1609 1.197 jym
1610 1.186 pooka return reclaimed;
1611 1.3 pk }
1612 1.3 pk
1613 1.3 pk /*
1614 1.217 mrg * Calculate the total number of pages consumed by pools.
1615 1.217 mrg */
1616 1.217 mrg int
1617 1.217 mrg pool_totalpages(void)
1618 1.217 mrg {
1619 1.217 mrg struct pool *pp;
1620 1.218 mrg uint64_t total = 0;
1621 1.217 mrg
1622 1.217 mrg mutex_enter(&pool_head_lock);
1623 1.218 mrg TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1624 1.218 mrg uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1625 1.218 mrg
1626 1.218 mrg if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1627 1.218 mrg bytes -= (pp->pr_nout * pp->pr_size);
1628 1.218 mrg total += bytes;
1629 1.218 mrg }
1630 1.217 mrg mutex_exit(&pool_head_lock);
1631 1.217 mrg
1632 1.218 mrg return atop(total);
1633 1.217 mrg }
1634 1.217 mrg
1635 1.217 mrg /*
1636 1.3 pk * Diagnostic helpers.
1637 1.3 pk */
1638 1.21 thorpej
1639 1.25 thorpej void
1640 1.108 yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
1641 1.108 yamt {
1642 1.108 yamt struct pool *pp;
1643 1.108 yamt
1644 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1645 1.108 yamt pool_printit(pp, modif, pr);
1646 1.108 yamt }
1647 1.108 yamt }
1648 1.108 yamt
1649 1.108 yamt void
1650 1.42 thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1651 1.25 thorpej {
1652 1.25 thorpej
1653 1.25 thorpej if (pp == NULL) {
1654 1.25 thorpej (*pr)("Must specify a pool to print.\n");
1655 1.25 thorpej return;
1656 1.25 thorpej }
1657 1.25 thorpej
1658 1.25 thorpej pool_print1(pp, modif, pr);
1659 1.25 thorpej }
1660 1.25 thorpej
1661 1.21 thorpej static void
1662 1.124 yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1663 1.97 yamt void (*pr)(const char *, ...))
1664 1.88 chs {
1665 1.88 chs struct pool_item_header *ph;
1666 1.88 chs
1667 1.88 chs LIST_FOREACH(ph, pl, ph_pagelist) {
1668 1.151 yamt (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1669 1.151 yamt ph->ph_page, ph->ph_nmissing, ph->ph_time);
1670 1.229 maxv #ifdef POOL_CHECK_MAGIC
1671 1.229 maxv struct pool_item *pi;
1672 1.242 maxv if (!(pp->pr_roflags & PR_USEBMAP)) {
1673 1.102 chs LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1674 1.97 yamt if (pi->pi_magic != PI_MAGIC) {
1675 1.97 yamt (*pr)("\t\t\titem %p, magic 0x%x\n",
1676 1.97 yamt pi, pi->pi_magic);
1677 1.97 yamt }
1678 1.88 chs }
1679 1.88 chs }
1680 1.88 chs #endif
1681 1.88 chs }
1682 1.88 chs }
1683 1.88 chs
1684 1.88 chs static void
1685 1.42 thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1686 1.3 pk {
1687 1.25 thorpej struct pool_item_header *ph;
1688 1.134 ad pool_cache_t pc;
1689 1.134 ad pcg_t *pcg;
1690 1.134 ad pool_cache_cpu_t *cc;
1691 1.134 ad uint64_t cpuhit, cpumiss;
1692 1.44 thorpej int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1693 1.25 thorpej char c;
1694 1.25 thorpej
1695 1.25 thorpej while ((c = *modif++) != '\0') {
1696 1.25 thorpej if (c == 'l')
1697 1.25 thorpej print_log = 1;
1698 1.25 thorpej if (c == 'p')
1699 1.25 thorpej print_pagelist = 1;
1700 1.44 thorpej if (c == 'c')
1701 1.44 thorpej print_cache = 1;
1702 1.25 thorpej }
1703 1.25 thorpej
1704 1.134 ad if ((pc = pp->pr_cache) != NULL) {
1705 1.134 ad (*pr)("POOL CACHE");
1706 1.134 ad } else {
1707 1.134 ad (*pr)("POOL");
1708 1.134 ad }
1709 1.134 ad
1710 1.134 ad (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1711 1.25 thorpej pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1712 1.25 thorpej pp->pr_roflags);
1713 1.66 thorpej (*pr)("\talloc %p\n", pp->pr_alloc);
1714 1.25 thorpej (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1715 1.25 thorpej pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1716 1.25 thorpej (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1717 1.25 thorpej pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1718 1.25 thorpej
1719 1.134 ad (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1720 1.25 thorpej pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1721 1.25 thorpej (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1722 1.25 thorpej pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1723 1.25 thorpej
1724 1.25 thorpej if (print_pagelist == 0)
1725 1.25 thorpej goto skip_pagelist;
1726 1.25 thorpej
1727 1.88 chs if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1728 1.88 chs (*pr)("\n\tempty page list:\n");
1729 1.97 yamt pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1730 1.88 chs if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1731 1.88 chs (*pr)("\n\tfull page list:\n");
1732 1.97 yamt pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1733 1.88 chs if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1734 1.88 chs (*pr)("\n\tpartial-page list:\n");
1735 1.97 yamt pool_print_pagelist(pp, &pp->pr_partpages, pr);
1736 1.88 chs
1737 1.25 thorpej if (pp->pr_curpage == NULL)
1738 1.25 thorpej (*pr)("\tno current page\n");
1739 1.25 thorpej else
1740 1.25 thorpej (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1741 1.25 thorpej
1742 1.25 thorpej skip_pagelist:
1743 1.25 thorpej if (print_log == 0)
1744 1.25 thorpej goto skip_log;
1745 1.25 thorpej
1746 1.25 thorpej (*pr)("\n");
1747 1.3 pk
1748 1.25 thorpej skip_log:
1749 1.44 thorpej
1750 1.102 chs #define PR_GROUPLIST(pcg) \
1751 1.102 chs (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1752 1.142 ad for (i = 0; i < pcg->pcg_size; i++) { \
1753 1.102 chs if (pcg->pcg_objects[i].pcgo_pa != \
1754 1.102 chs POOL_PADDR_INVALID) { \
1755 1.102 chs (*pr)("\t\t\t%p, 0x%llx\n", \
1756 1.102 chs pcg->pcg_objects[i].pcgo_va, \
1757 1.102 chs (unsigned long long) \
1758 1.102 chs pcg->pcg_objects[i].pcgo_pa); \
1759 1.102 chs } else { \
1760 1.102 chs (*pr)("\t\t\t%p\n", \
1761 1.102 chs pcg->pcg_objects[i].pcgo_va); \
1762 1.102 chs } \
1763 1.102 chs }
1764 1.102 chs
1765 1.134 ad if (pc != NULL) {
1766 1.134 ad cpuhit = 0;
1767 1.134 ad cpumiss = 0;
1768 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1769 1.134 ad if ((cc = pc->pc_cpus[i]) == NULL)
1770 1.134 ad continue;
1771 1.134 ad cpuhit += cc->cc_hits;
1772 1.134 ad cpumiss += cc->cc_misses;
1773 1.134 ad }
1774 1.134 ad (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1775 1.134 ad (*pr)("\tcache layer hits %llu misses %llu\n",
1776 1.134 ad pc->pc_hits, pc->pc_misses);
1777 1.134 ad (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1778 1.134 ad pc->pc_hits + pc->pc_misses - pc->pc_contended,
1779 1.134 ad pc->pc_contended);
1780 1.134 ad (*pr)("\tcache layer empty groups %u full groups %u\n",
1781 1.134 ad pc->pc_nempty, pc->pc_nfull);
1782 1.134 ad if (print_cache) {
1783 1.134 ad (*pr)("\tfull cache groups:\n");
1784 1.134 ad for (pcg = pc->pc_fullgroups; pcg != NULL;
1785 1.134 ad pcg = pcg->pcg_next) {
1786 1.134 ad PR_GROUPLIST(pcg);
1787 1.134 ad }
1788 1.134 ad (*pr)("\tempty cache groups:\n");
1789 1.134 ad for (pcg = pc->pc_emptygroups; pcg != NULL;
1790 1.134 ad pcg = pcg->pcg_next) {
1791 1.134 ad PR_GROUPLIST(pcg);
1792 1.134 ad }
1793 1.103 chs }
1794 1.44 thorpej }
1795 1.102 chs #undef PR_GROUPLIST
1796 1.88 chs }
1797 1.88 chs
1798 1.88 chs static int
1799 1.88 chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1800 1.88 chs {
1801 1.88 chs struct pool_item *pi;
1802 1.128 christos void *page;
1803 1.88 chs int n;
1804 1.88 chs
1805 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1806 1.128 christos page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1807 1.121 yamt if (page != ph->ph_page &&
1808 1.121 yamt (pp->pr_roflags & PR_PHINPAGE) != 0) {
1809 1.121 yamt if (label != NULL)
1810 1.121 yamt printf("%s: ", label);
1811 1.121 yamt printf("pool(%p:%s): page inconsistency: page %p;"
1812 1.121 yamt " at page head addr %p (p %p)\n", pp,
1813 1.121 yamt pp->pr_wchan, ph->ph_page,
1814 1.121 yamt ph, page);
1815 1.121 yamt return 1;
1816 1.121 yamt }
1817 1.88 chs }
1818 1.3 pk
1819 1.242 maxv if ((pp->pr_roflags & PR_USEBMAP) != 0)
1820 1.97 yamt return 0;
1821 1.97 yamt
1822 1.102 chs for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1823 1.88 chs pi != NULL;
1824 1.102 chs pi = LIST_NEXT(pi,pi_list), n++) {
1825 1.88 chs
1826 1.229 maxv #ifdef POOL_CHECK_MAGIC
1827 1.88 chs if (pi->pi_magic != PI_MAGIC) {
1828 1.88 chs if (label != NULL)
1829 1.88 chs printf("%s: ", label);
1830 1.88 chs printf("pool(%s): free list modified: magic=%x;"
1831 1.121 yamt " page %p; item ordinal %d; addr %p\n",
1832 1.88 chs pp->pr_wchan, pi->pi_magic, ph->ph_page,
1833 1.121 yamt n, pi);
1834 1.88 chs panic("pool");
1835 1.88 chs }
1836 1.88 chs #endif
1837 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1838 1.121 yamt continue;
1839 1.121 yamt }
1840 1.128 christos page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1841 1.88 chs if (page == ph->ph_page)
1842 1.88 chs continue;
1843 1.88 chs
1844 1.88 chs if (label != NULL)
1845 1.88 chs printf("%s: ", label);
1846 1.88 chs printf("pool(%p:%s): page inconsistency: page %p;"
1847 1.88 chs " item ordinal %d; addr %p (p %p)\n", pp,
1848 1.88 chs pp->pr_wchan, ph->ph_page,
1849 1.88 chs n, pi, page);
1850 1.88 chs return 1;
1851 1.88 chs }
1852 1.88 chs return 0;
1853 1.3 pk }
1854 1.3 pk
1855 1.88 chs
1856 1.3 pk int
1857 1.42 thorpej pool_chk(struct pool *pp, const char *label)
1858 1.3 pk {
1859 1.3 pk struct pool_item_header *ph;
1860 1.3 pk int r = 0;
1861 1.3 pk
1862 1.134 ad mutex_enter(&pp->pr_lock);
1863 1.88 chs LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1864 1.88 chs r = pool_chk_page(pp, label, ph);
1865 1.88 chs if (r) {
1866 1.88 chs goto out;
1867 1.88 chs }
1868 1.88 chs }
1869 1.88 chs LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1870 1.88 chs r = pool_chk_page(pp, label, ph);
1871 1.88 chs if (r) {
1872 1.3 pk goto out;
1873 1.3 pk }
1874 1.88 chs }
1875 1.88 chs LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1876 1.88 chs r = pool_chk_page(pp, label, ph);
1877 1.88 chs if (r) {
1878 1.3 pk goto out;
1879 1.3 pk }
1880 1.3 pk }
1881 1.88 chs
1882 1.3 pk out:
1883 1.134 ad mutex_exit(&pp->pr_lock);
1884 1.236 maxv return r;
1885 1.43 thorpej }
1886 1.43 thorpej
1887 1.43 thorpej /*
1888 1.43 thorpej * pool_cache_init:
1889 1.43 thorpej *
1890 1.43 thorpej * Initialize a pool cache.
1891 1.134 ad */
1892 1.134 ad pool_cache_t
1893 1.134 ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1894 1.134 ad const char *wchan, struct pool_allocator *palloc, int ipl,
1895 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1896 1.134 ad {
1897 1.134 ad pool_cache_t pc;
1898 1.134 ad
1899 1.134 ad pc = pool_get(&cache_pool, PR_WAITOK);
1900 1.134 ad if (pc == NULL)
1901 1.134 ad return NULL;
1902 1.134 ad
1903 1.134 ad pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1904 1.134 ad palloc, ipl, ctor, dtor, arg);
1905 1.134 ad
1906 1.134 ad return pc;
1907 1.134 ad }
1908 1.134 ad
1909 1.134 ad /*
1910 1.134 ad * pool_cache_bootstrap:
1911 1.43 thorpej *
1912 1.134 ad * Kernel-private version of pool_cache_init(). The caller
1913 1.134 ad * provides initial storage.
1914 1.43 thorpej */
1915 1.43 thorpej void
1916 1.134 ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1917 1.134 ad u_int align_offset, u_int flags, const char *wchan,
1918 1.134 ad struct pool_allocator *palloc, int ipl,
1919 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1920 1.43 thorpej void *arg)
1921 1.43 thorpej {
1922 1.134 ad CPU_INFO_ITERATOR cii;
1923 1.145 ad pool_cache_t pc1;
1924 1.134 ad struct cpu_info *ci;
1925 1.134 ad struct pool *pp;
1926 1.134 ad
1927 1.134 ad pp = &pc->pc_pool;
1928 1.208 chs if (palloc == NULL && ipl == IPL_NONE) {
1929 1.208 chs if (size > PAGE_SIZE) {
1930 1.208 chs int bigidx = pool_bigidx(size);
1931 1.208 chs
1932 1.208 chs palloc = &pool_allocator_big[bigidx];
1933 1.208 chs } else
1934 1.208 chs palloc = &pool_allocator_nointr;
1935 1.208 chs }
1936 1.134 ad pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1937 1.157 ad mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1938 1.43 thorpej
1939 1.134 ad if (ctor == NULL) {
1940 1.134 ad ctor = (int (*)(void *, void *, int))nullop;
1941 1.134 ad }
1942 1.134 ad if (dtor == NULL) {
1943 1.134 ad dtor = (void (*)(void *, void *))nullop;
1944 1.134 ad }
1945 1.43 thorpej
1946 1.134 ad pc->pc_emptygroups = NULL;
1947 1.134 ad pc->pc_fullgroups = NULL;
1948 1.134 ad pc->pc_partgroups = NULL;
1949 1.43 thorpej pc->pc_ctor = ctor;
1950 1.43 thorpej pc->pc_dtor = dtor;
1951 1.43 thorpej pc->pc_arg = arg;
1952 1.134 ad pc->pc_hits = 0;
1953 1.48 thorpej pc->pc_misses = 0;
1954 1.134 ad pc->pc_nempty = 0;
1955 1.134 ad pc->pc_npart = 0;
1956 1.134 ad pc->pc_nfull = 0;
1957 1.134 ad pc->pc_contended = 0;
1958 1.134 ad pc->pc_refcnt = 0;
1959 1.136 yamt pc->pc_freecheck = NULL;
1960 1.134 ad
1961 1.142 ad if ((flags & PR_LARGECACHE) != 0) {
1962 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1963 1.163 ad pc->pc_pcgpool = &pcg_large_pool;
1964 1.142 ad } else {
1965 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1966 1.163 ad pc->pc_pcgpool = &pcg_normal_pool;
1967 1.142 ad }
1968 1.142 ad
1969 1.134 ad /* Allocate per-CPU caches. */
1970 1.134 ad memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1971 1.134 ad pc->pc_ncpu = 0;
1972 1.139 ad if (ncpu < 2) {
1973 1.137 ad /* XXX For sparc: boot CPU is not attached yet. */
1974 1.137 ad pool_cache_cpu_init1(curcpu(), pc);
1975 1.137 ad } else {
1976 1.137 ad for (CPU_INFO_FOREACH(cii, ci)) {
1977 1.137 ad pool_cache_cpu_init1(ci, pc);
1978 1.137 ad }
1979 1.134 ad }
1980 1.145 ad
1981 1.145 ad /* Add to list of all pools. */
1982 1.145 ad if (__predict_true(!cold))
1983 1.134 ad mutex_enter(&pool_head_lock);
1984 1.145 ad TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
1985 1.145 ad if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
1986 1.145 ad break;
1987 1.145 ad }
1988 1.145 ad if (pc1 == NULL)
1989 1.145 ad TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
1990 1.145 ad else
1991 1.145 ad TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
1992 1.145 ad if (__predict_true(!cold))
1993 1.134 ad mutex_exit(&pool_head_lock);
1994 1.145 ad
1995 1.145 ad membar_sync();
1996 1.145 ad pp->pr_cache = pc;
1997 1.43 thorpej }
1998 1.43 thorpej
1999 1.43 thorpej /*
2000 1.43 thorpej * pool_cache_destroy:
2001 1.43 thorpej *
2002 1.43 thorpej * Destroy a pool cache.
2003 1.43 thorpej */
2004 1.43 thorpej void
2005 1.134 ad pool_cache_destroy(pool_cache_t pc)
2006 1.43 thorpej {
2007 1.191 para
2008 1.191 para pool_cache_bootstrap_destroy(pc);
2009 1.191 para pool_put(&cache_pool, pc);
2010 1.191 para }
2011 1.191 para
2012 1.191 para /*
2013 1.191 para * pool_cache_bootstrap_destroy:
2014 1.191 para *
2015 1.191 para * Destroy a pool cache.
2016 1.191 para */
2017 1.191 para void
2018 1.191 para pool_cache_bootstrap_destroy(pool_cache_t pc)
2019 1.191 para {
2020 1.134 ad struct pool *pp = &pc->pc_pool;
2021 1.175 jym u_int i;
2022 1.134 ad
2023 1.134 ad /* Remove it from the global list. */
2024 1.134 ad mutex_enter(&pool_head_lock);
2025 1.134 ad while (pc->pc_refcnt != 0)
2026 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
2027 1.145 ad TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2028 1.134 ad mutex_exit(&pool_head_lock);
2029 1.43 thorpej
2030 1.43 thorpej /* First, invalidate the entire cache. */
2031 1.43 thorpej pool_cache_invalidate(pc);
2032 1.43 thorpej
2033 1.134 ad /* Disassociate it from the pool. */
2034 1.134 ad mutex_enter(&pp->pr_lock);
2035 1.134 ad pp->pr_cache = NULL;
2036 1.134 ad mutex_exit(&pp->pr_lock);
2037 1.134 ad
2038 1.134 ad /* Destroy per-CPU data */
2039 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2040 1.175 jym pool_cache_invalidate_cpu(pc, i);
2041 1.134 ad
2042 1.134 ad /* Finally, destroy it. */
2043 1.134 ad mutex_destroy(&pc->pc_lock);
2044 1.134 ad pool_destroy(pp);
2045 1.134 ad }
2046 1.134 ad
2047 1.134 ad /*
2048 1.134 ad * pool_cache_cpu_init1:
2049 1.134 ad *
2050 1.134 ad * Called for each pool_cache whenever a new CPU is attached.
2051 1.134 ad */
2052 1.134 ad static void
2053 1.134 ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2054 1.134 ad {
2055 1.134 ad pool_cache_cpu_t *cc;
2056 1.137 ad int index;
2057 1.134 ad
2058 1.137 ad index = ci->ci_index;
2059 1.137 ad
2060 1.183 ad KASSERT(index < __arraycount(pc->pc_cpus));
2061 1.134 ad
2062 1.137 ad if ((cc = pc->pc_cpus[index]) != NULL) {
2063 1.137 ad KASSERT(cc->cc_cpuindex == index);
2064 1.134 ad return;
2065 1.134 ad }
2066 1.134 ad
2067 1.134 ad /*
2068 1.134 ad * The first CPU is 'free'. This needs to be the case for
2069 1.134 ad * bootstrap - we may not be able to allocate yet.
2070 1.134 ad */
2071 1.134 ad if (pc->pc_ncpu == 0) {
2072 1.134 ad cc = &pc->pc_cpu0;
2073 1.134 ad pc->pc_ncpu = 1;
2074 1.134 ad } else {
2075 1.134 ad mutex_enter(&pc->pc_lock);
2076 1.134 ad pc->pc_ncpu++;
2077 1.134 ad mutex_exit(&pc->pc_lock);
2078 1.134 ad cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2079 1.134 ad }
2080 1.134 ad
2081 1.134 ad cc->cc_ipl = pc->pc_pool.pr_ipl;
2082 1.134 ad cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2083 1.134 ad cc->cc_cache = pc;
2084 1.137 ad cc->cc_cpuindex = index;
2085 1.134 ad cc->cc_hits = 0;
2086 1.134 ad cc->cc_misses = 0;
2087 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
2088 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
2089 1.134 ad
2090 1.137 ad pc->pc_cpus[index] = cc;
2091 1.43 thorpej }
2092 1.43 thorpej
2093 1.134 ad /*
2094 1.134 ad * pool_cache_cpu_init:
2095 1.134 ad *
2096 1.134 ad * Called whenever a new CPU is attached.
2097 1.134 ad */
2098 1.134 ad void
2099 1.134 ad pool_cache_cpu_init(struct cpu_info *ci)
2100 1.43 thorpej {
2101 1.134 ad pool_cache_t pc;
2102 1.134 ad
2103 1.134 ad mutex_enter(&pool_head_lock);
2104 1.145 ad TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2105 1.134 ad pc->pc_refcnt++;
2106 1.134 ad mutex_exit(&pool_head_lock);
2107 1.43 thorpej
2108 1.134 ad pool_cache_cpu_init1(ci, pc);
2109 1.43 thorpej
2110 1.134 ad mutex_enter(&pool_head_lock);
2111 1.134 ad pc->pc_refcnt--;
2112 1.134 ad cv_broadcast(&pool_busy);
2113 1.134 ad }
2114 1.134 ad mutex_exit(&pool_head_lock);
2115 1.43 thorpej }
2116 1.43 thorpej
2117 1.134 ad /*
2118 1.134 ad * pool_cache_reclaim:
2119 1.134 ad *
2120 1.134 ad * Reclaim memory from a pool cache.
2121 1.134 ad */
2122 1.134 ad bool
2123 1.134 ad pool_cache_reclaim(pool_cache_t pc)
2124 1.43 thorpej {
2125 1.43 thorpej
2126 1.134 ad return pool_reclaim(&pc->pc_pool);
2127 1.134 ad }
2128 1.43 thorpej
2129 1.136 yamt static void
2130 1.136 yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
2131 1.136 yamt {
2132 1.136 yamt (*pc->pc_dtor)(pc->pc_arg, object);
2133 1.136 yamt pool_put(&pc->pc_pool, object);
2134 1.136 yamt }
2135 1.136 yamt
2136 1.134 ad /*
2137 1.134 ad * pool_cache_destruct_object:
2138 1.134 ad *
2139 1.134 ad * Force destruction of an object and its release back into
2140 1.134 ad * the pool.
2141 1.134 ad */
2142 1.134 ad void
2143 1.134 ad pool_cache_destruct_object(pool_cache_t pc, void *object)
2144 1.134 ad {
2145 1.134 ad
2146 1.136 yamt FREECHECK_IN(&pc->pc_freecheck, object);
2147 1.136 yamt
2148 1.136 yamt pool_cache_destruct_object1(pc, object);
2149 1.43 thorpej }
2150 1.43 thorpej
2151 1.134 ad /*
2152 1.134 ad * pool_cache_invalidate_groups:
2153 1.134 ad *
2154 1.134 ad * Invalidate a chain of groups and destruct all objects.
2155 1.134 ad */
2156 1.102 chs static void
2157 1.134 ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2158 1.102 chs {
2159 1.134 ad void *object;
2160 1.134 ad pcg_t *next;
2161 1.134 ad int i;
2162 1.134 ad
2163 1.134 ad for (; pcg != NULL; pcg = next) {
2164 1.134 ad next = pcg->pcg_next;
2165 1.134 ad
2166 1.134 ad for (i = 0; i < pcg->pcg_avail; i++) {
2167 1.134 ad object = pcg->pcg_objects[i].pcgo_va;
2168 1.136 yamt pool_cache_destruct_object1(pc, object);
2169 1.134 ad }
2170 1.102 chs
2171 1.142 ad if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2172 1.142 ad pool_put(&pcg_large_pool, pcg);
2173 1.142 ad } else {
2174 1.142 ad KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2175 1.142 ad pool_put(&pcg_normal_pool, pcg);
2176 1.142 ad }
2177 1.102 chs }
2178 1.102 chs }
2179 1.102 chs
2180 1.43 thorpej /*
2181 1.134 ad * pool_cache_invalidate:
2182 1.43 thorpej *
2183 1.134 ad * Invalidate a pool cache (destruct and release all of the
2184 1.134 ad * cached objects). Does not reclaim objects from the pool.
2185 1.176 thorpej *
2186 1.176 thorpej * Note: For pool caches that provide constructed objects, there
2187 1.176 thorpej * is an assumption that another level of synchronization is occurring
2188 1.176 thorpej * between the input to the constructor and the cache invalidation.
2189 1.196 jym *
2190 1.196 jym * Invalidation is a costly process and should not be called from
2191 1.196 jym * interrupt context.
2192 1.43 thorpej */
2193 1.134 ad void
2194 1.134 ad pool_cache_invalidate(pool_cache_t pc)
2195 1.134 ad {
2196 1.196 jym uint64_t where;
2197 1.134 ad pcg_t *full, *empty, *part;
2198 1.196 jym
2199 1.196 jym KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2200 1.176 thorpej
2201 1.177 jym if (ncpu < 2 || !mp_online) {
2202 1.176 thorpej /*
2203 1.176 thorpej * We might be called early enough in the boot process
2204 1.176 thorpej * for the CPU data structures to not be fully initialized.
2205 1.196 jym * In this case, transfer the content of the local CPU's
2206 1.196 jym * cache back into global cache as only this CPU is currently
2207 1.196 jym * running.
2208 1.176 thorpej */
2209 1.196 jym pool_cache_transfer(pc);
2210 1.176 thorpej } else {
2211 1.176 thorpej /*
2212 1.196 jym * Signal all CPUs that they must transfer their local
2213 1.196 jym * cache back to the global pool then wait for the xcall to
2214 1.196 jym * complete.
2215 1.176 thorpej */
2216 1.196 jym where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2217 1.196 jym pc, NULL);
2218 1.176 thorpej xc_wait(where);
2219 1.176 thorpej }
2220 1.196 jym
2221 1.196 jym /* Empty pool caches, then invalidate objects */
2222 1.134 ad mutex_enter(&pc->pc_lock);
2223 1.134 ad full = pc->pc_fullgroups;
2224 1.134 ad empty = pc->pc_emptygroups;
2225 1.134 ad part = pc->pc_partgroups;
2226 1.134 ad pc->pc_fullgroups = NULL;
2227 1.134 ad pc->pc_emptygroups = NULL;
2228 1.134 ad pc->pc_partgroups = NULL;
2229 1.134 ad pc->pc_nfull = 0;
2230 1.134 ad pc->pc_nempty = 0;
2231 1.134 ad pc->pc_npart = 0;
2232 1.134 ad mutex_exit(&pc->pc_lock);
2233 1.134 ad
2234 1.134 ad pool_cache_invalidate_groups(pc, full);
2235 1.134 ad pool_cache_invalidate_groups(pc, empty);
2236 1.134 ad pool_cache_invalidate_groups(pc, part);
2237 1.134 ad }
2238 1.134 ad
2239 1.175 jym /*
2240 1.175 jym * pool_cache_invalidate_cpu:
2241 1.175 jym *
2242 1.175 jym * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2243 1.175 jym * identified by its associated index.
2244 1.175 jym * It is caller's responsibility to ensure that no operation is
2245 1.175 jym * taking place on this pool cache while doing this invalidation.
2246 1.175 jym * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2247 1.175 jym * pool cached objects from a CPU different from the one currently running
2248 1.175 jym * may result in an undefined behaviour.
2249 1.175 jym */
2250 1.175 jym static void
2251 1.175 jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2252 1.175 jym {
2253 1.175 jym pool_cache_cpu_t *cc;
2254 1.175 jym pcg_t *pcg;
2255 1.175 jym
2256 1.175 jym if ((cc = pc->pc_cpus[index]) == NULL)
2257 1.175 jym return;
2258 1.175 jym
2259 1.175 jym if ((pcg = cc->cc_current) != &pcg_dummy) {
2260 1.175 jym pcg->pcg_next = NULL;
2261 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2262 1.175 jym }
2263 1.175 jym if ((pcg = cc->cc_previous) != &pcg_dummy) {
2264 1.175 jym pcg->pcg_next = NULL;
2265 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2266 1.175 jym }
2267 1.175 jym if (cc != &pc->pc_cpu0)
2268 1.175 jym pool_put(&cache_cpu_pool, cc);
2269 1.175 jym
2270 1.175 jym }
2271 1.175 jym
2272 1.134 ad void
2273 1.134 ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2274 1.134 ad {
2275 1.134 ad
2276 1.134 ad pool_set_drain_hook(&pc->pc_pool, fn, arg);
2277 1.134 ad }
2278 1.134 ad
2279 1.134 ad void
2280 1.134 ad pool_cache_setlowat(pool_cache_t pc, int n)
2281 1.134 ad {
2282 1.134 ad
2283 1.134 ad pool_setlowat(&pc->pc_pool, n);
2284 1.134 ad }
2285 1.134 ad
2286 1.134 ad void
2287 1.134 ad pool_cache_sethiwat(pool_cache_t pc, int n)
2288 1.134 ad {
2289 1.134 ad
2290 1.134 ad pool_sethiwat(&pc->pc_pool, n);
2291 1.134 ad }
2292 1.134 ad
2293 1.134 ad void
2294 1.134 ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2295 1.134 ad {
2296 1.134 ad
2297 1.134 ad pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2298 1.134 ad }
2299 1.134 ad
2300 1.162 ad static bool __noinline
2301 1.162 ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2302 1.134 ad paddr_t *pap, int flags)
2303 1.43 thorpej {
2304 1.134 ad pcg_t *pcg, *cur;
2305 1.134 ad uint64_t ncsw;
2306 1.134 ad pool_cache_t pc;
2307 1.43 thorpej void *object;
2308 1.58 thorpej
2309 1.168 yamt KASSERT(cc->cc_current->pcg_avail == 0);
2310 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == 0);
2311 1.168 yamt
2312 1.134 ad pc = cc->cc_cache;
2313 1.134 ad cc->cc_misses++;
2314 1.43 thorpej
2315 1.134 ad /*
2316 1.134 ad * Nothing was available locally. Try and grab a group
2317 1.134 ad * from the cache.
2318 1.134 ad */
2319 1.162 ad if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2320 1.134 ad ncsw = curlwp->l_ncsw;
2321 1.134 ad mutex_enter(&pc->pc_lock);
2322 1.134 ad pc->pc_contended++;
2323 1.43 thorpej
2324 1.134 ad /*
2325 1.134 ad * If we context switched while locking, then
2326 1.134 ad * our view of the per-CPU data is invalid:
2327 1.134 ad * retry.
2328 1.134 ad */
2329 1.134 ad if (curlwp->l_ncsw != ncsw) {
2330 1.134 ad mutex_exit(&pc->pc_lock);
2331 1.162 ad return true;
2332 1.43 thorpej }
2333 1.102 chs }
2334 1.43 thorpej
2335 1.162 ad if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2336 1.43 thorpej /*
2337 1.134 ad * If there's a full group, release our empty
2338 1.134 ad * group back to the cache. Install the full
2339 1.134 ad * group as cc_current and return.
2340 1.43 thorpej */
2341 1.162 ad if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2342 1.134 ad KASSERT(cur->pcg_avail == 0);
2343 1.134 ad cur->pcg_next = pc->pc_emptygroups;
2344 1.134 ad pc->pc_emptygroups = cur;
2345 1.134 ad pc->pc_nempty++;
2346 1.87 thorpej }
2347 1.142 ad KASSERT(pcg->pcg_avail == pcg->pcg_size);
2348 1.134 ad cc->cc_current = pcg;
2349 1.134 ad pc->pc_fullgroups = pcg->pcg_next;
2350 1.134 ad pc->pc_hits++;
2351 1.134 ad pc->pc_nfull--;
2352 1.134 ad mutex_exit(&pc->pc_lock);
2353 1.162 ad return true;
2354 1.134 ad }
2355 1.134 ad
2356 1.134 ad /*
2357 1.134 ad * Nothing available locally or in cache. Take the slow
2358 1.134 ad * path: fetch a new object from the pool and construct
2359 1.134 ad * it.
2360 1.134 ad */
2361 1.134 ad pc->pc_misses++;
2362 1.134 ad mutex_exit(&pc->pc_lock);
2363 1.162 ad splx(s);
2364 1.134 ad
2365 1.134 ad object = pool_get(&pc->pc_pool, flags);
2366 1.134 ad *objectp = object;
2367 1.211 riastrad if (__predict_false(object == NULL)) {
2368 1.211 riastrad KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2369 1.162 ad return false;
2370 1.211 riastrad }
2371 1.125 ad
2372 1.162 ad if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2373 1.134 ad pool_put(&pc->pc_pool, object);
2374 1.134 ad *objectp = NULL;
2375 1.162 ad return false;
2376 1.43 thorpej }
2377 1.43 thorpej
2378 1.238 maxv KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2379 1.43 thorpej
2380 1.134 ad if (pap != NULL) {
2381 1.134 ad #ifdef POOL_VTOPHYS
2382 1.134 ad *pap = POOL_VTOPHYS(object);
2383 1.134 ad #else
2384 1.134 ad *pap = POOL_PADDR_INVALID;
2385 1.134 ad #endif
2386 1.102 chs }
2387 1.43 thorpej
2388 1.125 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2389 1.228 maxv pool_cache_kleak_fill(pc, object);
2390 1.162 ad return false;
2391 1.43 thorpej }
2392 1.43 thorpej
2393 1.43 thorpej /*
2394 1.134 ad * pool_cache_get{,_paddr}:
2395 1.43 thorpej *
2396 1.134 ad * Get an object from a pool cache (optionally returning
2397 1.134 ad * the physical address of the object).
2398 1.43 thorpej */
2399 1.134 ad void *
2400 1.134 ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2401 1.43 thorpej {
2402 1.134 ad pool_cache_cpu_t *cc;
2403 1.134 ad pcg_t *pcg;
2404 1.134 ad void *object;
2405 1.60 thorpej int s;
2406 1.43 thorpej
2407 1.215 christos KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2408 1.184 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2409 1.185 rmind (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2410 1.213 christos "%s: [%s] is IPL_NONE, but called from interrupt context",
2411 1.213 christos __func__, pc->pc_pool.pr_wchan);
2412 1.184 rmind
2413 1.155 ad if (flags & PR_WAITOK) {
2414 1.154 yamt ASSERT_SLEEPABLE();
2415 1.155 ad }
2416 1.125 ad
2417 1.162 ad /* Lock out interrupts and disable preemption. */
2418 1.162 ad s = splvm();
2419 1.165 yamt while (/* CONSTCOND */ true) {
2420 1.134 ad /* Try and allocate an object from the current group. */
2421 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2422 1.162 ad KASSERT(cc->cc_cache == pc);
2423 1.134 ad pcg = cc->cc_current;
2424 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2425 1.134 ad object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2426 1.162 ad if (__predict_false(pap != NULL))
2427 1.134 ad *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2428 1.148 yamt #if defined(DIAGNOSTIC)
2429 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2430 1.163 ad KASSERT(pcg->pcg_avail < pcg->pcg_size);
2431 1.134 ad KASSERT(object != NULL);
2432 1.163 ad #endif
2433 1.134 ad cc->cc_hits++;
2434 1.162 ad splx(s);
2435 1.134 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2436 1.204 maxv pool_redzone_fill(&pc->pc_pool, object);
2437 1.228 maxv pool_cache_kleak_fill(pc, object);
2438 1.134 ad return object;
2439 1.43 thorpej }
2440 1.43 thorpej
2441 1.43 thorpej /*
2442 1.134 ad * That failed. If the previous group isn't empty, swap
2443 1.134 ad * it with the current group and allocate from there.
2444 1.43 thorpej */
2445 1.134 ad pcg = cc->cc_previous;
2446 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2447 1.134 ad cc->cc_previous = cc->cc_current;
2448 1.134 ad cc->cc_current = pcg;
2449 1.134 ad continue;
2450 1.43 thorpej }
2451 1.43 thorpej
2452 1.134 ad /*
2453 1.134 ad * Can't allocate from either group: try the slow path.
2454 1.134 ad * If get_slow() allocated an object for us, or if
2455 1.162 ad * no more objects are available, it will return false.
2456 1.134 ad * Otherwise, we need to retry.
2457 1.134 ad */
2458 1.165 yamt if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2459 1.165 yamt break;
2460 1.165 yamt }
2461 1.43 thorpej
2462 1.211 riastrad /*
2463 1.211 riastrad * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2464 1.211 riastrad * pool_cache_get can fail even in the PR_WAITOK case, if the
2465 1.211 riastrad * constructor fails.
2466 1.211 riastrad */
2467 1.134 ad return object;
2468 1.51 thorpej }
2469 1.51 thorpej
2470 1.162 ad static bool __noinline
2471 1.162 ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2472 1.51 thorpej {
2473 1.200 pooka struct lwp *l = curlwp;
2474 1.163 ad pcg_t *pcg, *cur;
2475 1.134 ad uint64_t ncsw;
2476 1.134 ad pool_cache_t pc;
2477 1.51 thorpej
2478 1.168 yamt KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2479 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2480 1.168 yamt
2481 1.134 ad pc = cc->cc_cache;
2482 1.171 ad pcg = NULL;
2483 1.134 ad cc->cc_misses++;
2484 1.200 pooka ncsw = l->l_ncsw;
2485 1.43 thorpej
2486 1.171 ad /*
2487 1.171 ad * If there are no empty groups in the cache then allocate one
2488 1.171 ad * while still unlocked.
2489 1.171 ad */
2490 1.171 ad if (__predict_false(pc->pc_emptygroups == NULL)) {
2491 1.171 ad if (__predict_true(!pool_cache_disable)) {
2492 1.171 ad pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2493 1.171 ad }
2494 1.200 pooka /*
2495 1.200 pooka * If pool_get() blocked, then our view of
2496 1.200 pooka * the per-CPU data is invalid: retry.
2497 1.200 pooka */
2498 1.200 pooka if (__predict_false(l->l_ncsw != ncsw)) {
2499 1.200 pooka if (pcg != NULL) {
2500 1.200 pooka pool_put(pc->pc_pcgpool, pcg);
2501 1.200 pooka }
2502 1.200 pooka return true;
2503 1.200 pooka }
2504 1.171 ad if (__predict_true(pcg != NULL)) {
2505 1.171 ad pcg->pcg_avail = 0;
2506 1.171 ad pcg->pcg_size = pc->pc_pcgsize;
2507 1.171 ad }
2508 1.171 ad }
2509 1.171 ad
2510 1.162 ad /* Lock the cache. */
2511 1.162 ad if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2512 1.134 ad mutex_enter(&pc->pc_lock);
2513 1.134 ad pc->pc_contended++;
2514 1.162 ad
2515 1.163 ad /*
2516 1.163 ad * If we context switched while locking, then our view of
2517 1.163 ad * the per-CPU data is invalid: retry.
2518 1.163 ad */
2519 1.200 pooka if (__predict_false(l->l_ncsw != ncsw)) {
2520 1.163 ad mutex_exit(&pc->pc_lock);
2521 1.171 ad if (pcg != NULL) {
2522 1.171 ad pool_put(pc->pc_pcgpool, pcg);
2523 1.171 ad }
2524 1.163 ad return true;
2525 1.163 ad }
2526 1.162 ad }
2527 1.102 chs
2528 1.163 ad /* If there are no empty groups in the cache then allocate one. */
2529 1.171 ad if (pcg == NULL && pc->pc_emptygroups != NULL) {
2530 1.171 ad pcg = pc->pc_emptygroups;
2531 1.163 ad pc->pc_emptygroups = pcg->pcg_next;
2532 1.163 ad pc->pc_nempty--;
2533 1.134 ad }
2534 1.130 ad
2535 1.162 ad /*
2536 1.162 ad * If there's a empty group, release our full group back
2537 1.162 ad * to the cache. Install the empty group to the local CPU
2538 1.162 ad * and return.
2539 1.162 ad */
2540 1.163 ad if (pcg != NULL) {
2541 1.134 ad KASSERT(pcg->pcg_avail == 0);
2542 1.162 ad if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2543 1.146 ad cc->cc_previous = pcg;
2544 1.146 ad } else {
2545 1.162 ad cur = cc->cc_current;
2546 1.162 ad if (__predict_true(cur != &pcg_dummy)) {
2547 1.163 ad KASSERT(cur->pcg_avail == cur->pcg_size);
2548 1.146 ad cur->pcg_next = pc->pc_fullgroups;
2549 1.146 ad pc->pc_fullgroups = cur;
2550 1.146 ad pc->pc_nfull++;
2551 1.146 ad }
2552 1.146 ad cc->cc_current = pcg;
2553 1.146 ad }
2554 1.163 ad pc->pc_hits++;
2555 1.134 ad mutex_exit(&pc->pc_lock);
2556 1.162 ad return true;
2557 1.102 chs }
2558 1.105 christos
2559 1.134 ad /*
2560 1.162 ad * Nothing available locally or in cache, and we didn't
2561 1.162 ad * allocate an empty group. Take the slow path and destroy
2562 1.162 ad * the object here and now.
2563 1.134 ad */
2564 1.134 ad pc->pc_misses++;
2565 1.134 ad mutex_exit(&pc->pc_lock);
2566 1.162 ad splx(s);
2567 1.162 ad pool_cache_destruct_object(pc, object);
2568 1.105 christos
2569 1.162 ad return false;
2570 1.236 maxv }
2571 1.102 chs
2572 1.43 thorpej /*
2573 1.134 ad * pool_cache_put{,_paddr}:
2574 1.43 thorpej *
2575 1.134 ad * Put an object back to the pool cache (optionally caching the
2576 1.134 ad * physical address of the object).
2577 1.43 thorpej */
2578 1.101 thorpej void
2579 1.134 ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2580 1.43 thorpej {
2581 1.134 ad pool_cache_cpu_t *cc;
2582 1.134 ad pcg_t *pcg;
2583 1.134 ad int s;
2584 1.101 thorpej
2585 1.172 yamt KASSERT(object != NULL);
2586 1.229 maxv pool_cache_redzone_check(pc, object);
2587 1.134 ad FREECHECK_IN(&pc->pc_freecheck, object);
2588 1.101 thorpej
2589 1.162 ad /* Lock out interrupts and disable preemption. */
2590 1.162 ad s = splvm();
2591 1.165 yamt while (/* CONSTCOND */ true) {
2592 1.134 ad /* If the current group isn't full, release it there. */
2593 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2594 1.162 ad KASSERT(cc->cc_cache == pc);
2595 1.134 ad pcg = cc->cc_current;
2596 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2597 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2598 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2599 1.134 ad pcg->pcg_avail++;
2600 1.134 ad cc->cc_hits++;
2601 1.162 ad splx(s);
2602 1.134 ad return;
2603 1.134 ad }
2604 1.43 thorpej
2605 1.134 ad /*
2606 1.162 ad * That failed. If the previous group isn't full, swap
2607 1.134 ad * it with the current group and try again.
2608 1.134 ad */
2609 1.134 ad pcg = cc->cc_previous;
2610 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2611 1.134 ad cc->cc_previous = cc->cc_current;
2612 1.134 ad cc->cc_current = pcg;
2613 1.134 ad continue;
2614 1.134 ad }
2615 1.43 thorpej
2616 1.134 ad /*
2617 1.236 maxv * Can't free to either group: try the slow path.
2618 1.134 ad * If put_slow() releases the object for us, it
2619 1.162 ad * will return false. Otherwise we need to retry.
2620 1.134 ad */
2621 1.165 yamt if (!pool_cache_put_slow(cc, s, object))
2622 1.165 yamt break;
2623 1.165 yamt }
2624 1.43 thorpej }
2625 1.43 thorpej
2626 1.43 thorpej /*
2627 1.196 jym * pool_cache_transfer:
2628 1.43 thorpej *
2629 1.134 ad * Transfer objects from the per-CPU cache to the global cache.
2630 1.134 ad * Run within a cross-call thread.
2631 1.43 thorpej */
2632 1.43 thorpej static void
2633 1.196 jym pool_cache_transfer(pool_cache_t pc)
2634 1.43 thorpej {
2635 1.134 ad pool_cache_cpu_t *cc;
2636 1.134 ad pcg_t *prev, *cur, **list;
2637 1.162 ad int s;
2638 1.134 ad
2639 1.162 ad s = splvm();
2640 1.162 ad mutex_enter(&pc->pc_lock);
2641 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2642 1.134 ad cur = cc->cc_current;
2643 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
2644 1.134 ad prev = cc->cc_previous;
2645 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
2646 1.162 ad if (cur != &pcg_dummy) {
2647 1.142 ad if (cur->pcg_avail == cur->pcg_size) {
2648 1.134 ad list = &pc->pc_fullgroups;
2649 1.134 ad pc->pc_nfull++;
2650 1.134 ad } else if (cur->pcg_avail == 0) {
2651 1.134 ad list = &pc->pc_emptygroups;
2652 1.134 ad pc->pc_nempty++;
2653 1.134 ad } else {
2654 1.134 ad list = &pc->pc_partgroups;
2655 1.134 ad pc->pc_npart++;
2656 1.134 ad }
2657 1.134 ad cur->pcg_next = *list;
2658 1.134 ad *list = cur;
2659 1.134 ad }
2660 1.162 ad if (prev != &pcg_dummy) {
2661 1.142 ad if (prev->pcg_avail == prev->pcg_size) {
2662 1.134 ad list = &pc->pc_fullgroups;
2663 1.134 ad pc->pc_nfull++;
2664 1.134 ad } else if (prev->pcg_avail == 0) {
2665 1.134 ad list = &pc->pc_emptygroups;
2666 1.134 ad pc->pc_nempty++;
2667 1.134 ad } else {
2668 1.134 ad list = &pc->pc_partgroups;
2669 1.134 ad pc->pc_npart++;
2670 1.134 ad }
2671 1.134 ad prev->pcg_next = *list;
2672 1.134 ad *list = prev;
2673 1.134 ad }
2674 1.134 ad mutex_exit(&pc->pc_lock);
2675 1.134 ad splx(s);
2676 1.3 pk }
2677 1.66 thorpej
2678 1.66 thorpej /*
2679 1.66 thorpej * Pool backend allocators.
2680 1.66 thorpej *
2681 1.66 thorpej * Each pool has a backend allocator that handles allocation, deallocation,
2682 1.66 thorpej * and any additional draining that might be needed.
2683 1.66 thorpej *
2684 1.66 thorpej * We provide two standard allocators:
2685 1.66 thorpej *
2686 1.66 thorpej * pool_allocator_kmem - the default when no allocator is specified
2687 1.66 thorpej *
2688 1.66 thorpej * pool_allocator_nointr - used for pools that will not be accessed
2689 1.66 thorpej * in interrupt context.
2690 1.66 thorpej */
2691 1.66 thorpej void *pool_page_alloc(struct pool *, int);
2692 1.66 thorpej void pool_page_free(struct pool *, void *);
2693 1.66 thorpej
2694 1.66 thorpej struct pool_allocator pool_allocator_kmem = {
2695 1.191 para .pa_alloc = pool_page_alloc,
2696 1.191 para .pa_free = pool_page_free,
2697 1.191 para .pa_pagesz = 0
2698 1.66 thorpej };
2699 1.66 thorpej
2700 1.66 thorpej struct pool_allocator pool_allocator_nointr = {
2701 1.191 para .pa_alloc = pool_page_alloc,
2702 1.191 para .pa_free = pool_page_free,
2703 1.191 para .pa_pagesz = 0
2704 1.66 thorpej };
2705 1.66 thorpej
2706 1.208 chs struct pool_allocator pool_allocator_big[] = {
2707 1.208 chs {
2708 1.208 chs .pa_alloc = pool_page_alloc,
2709 1.208 chs .pa_free = pool_page_free,
2710 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2711 1.208 chs },
2712 1.208 chs {
2713 1.208 chs .pa_alloc = pool_page_alloc,
2714 1.208 chs .pa_free = pool_page_free,
2715 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2716 1.208 chs },
2717 1.208 chs {
2718 1.208 chs .pa_alloc = pool_page_alloc,
2719 1.208 chs .pa_free = pool_page_free,
2720 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2721 1.208 chs },
2722 1.208 chs {
2723 1.208 chs .pa_alloc = pool_page_alloc,
2724 1.208 chs .pa_free = pool_page_free,
2725 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2726 1.208 chs },
2727 1.208 chs {
2728 1.208 chs .pa_alloc = pool_page_alloc,
2729 1.208 chs .pa_free = pool_page_free,
2730 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2731 1.208 chs },
2732 1.208 chs {
2733 1.208 chs .pa_alloc = pool_page_alloc,
2734 1.208 chs .pa_free = pool_page_free,
2735 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2736 1.208 chs },
2737 1.208 chs {
2738 1.208 chs .pa_alloc = pool_page_alloc,
2739 1.208 chs .pa_free = pool_page_free,
2740 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2741 1.208 chs },
2742 1.208 chs {
2743 1.208 chs .pa_alloc = pool_page_alloc,
2744 1.208 chs .pa_free = pool_page_free,
2745 1.208 chs .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2746 1.208 chs }
2747 1.208 chs };
2748 1.208 chs
2749 1.208 chs static int
2750 1.208 chs pool_bigidx(size_t size)
2751 1.208 chs {
2752 1.208 chs int i;
2753 1.208 chs
2754 1.208 chs for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2755 1.208 chs if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2756 1.208 chs return i;
2757 1.208 chs }
2758 1.208 chs panic("pool item size %zu too large, use a custom allocator", size);
2759 1.208 chs }
2760 1.208 chs
2761 1.117 yamt static void *
2762 1.117 yamt pool_allocator_alloc(struct pool *pp, int flags)
2763 1.66 thorpej {
2764 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
2765 1.66 thorpej void *res;
2766 1.66 thorpej
2767 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2768 1.117 yamt if (res == NULL && (flags & PR_WAITOK) == 0) {
2769 1.66 thorpej /*
2770 1.117 yamt * We only run the drain hook here if PR_NOWAIT.
2771 1.117 yamt * In other cases, the hook will be run in
2772 1.117 yamt * pool_reclaim().
2773 1.66 thorpej */
2774 1.117 yamt if (pp->pr_drain_hook != NULL) {
2775 1.117 yamt (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2776 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2777 1.66 thorpej }
2778 1.117 yamt }
2779 1.117 yamt return res;
2780 1.66 thorpej }
2781 1.66 thorpej
2782 1.117 yamt static void
2783 1.66 thorpej pool_allocator_free(struct pool *pp, void *v)
2784 1.66 thorpej {
2785 1.66 thorpej struct pool_allocator *pa = pp->pr_alloc;
2786 1.66 thorpej
2787 1.229 maxv if (pp->pr_redzone) {
2788 1.248 maxv kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2789 1.229 maxv }
2790 1.66 thorpej (*pa->pa_free)(pp, v);
2791 1.66 thorpej }
2792 1.66 thorpej
2793 1.66 thorpej void *
2794 1.124 yamt pool_page_alloc(struct pool *pp, int flags)
2795 1.66 thorpej {
2796 1.192 rmind const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2797 1.191 para vmem_addr_t va;
2798 1.192 rmind int ret;
2799 1.191 para
2800 1.192 rmind ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2801 1.192 rmind vflags | VM_INSTANTFIT, &va);
2802 1.66 thorpej
2803 1.192 rmind return ret ? NULL : (void *)va;
2804 1.66 thorpej }
2805 1.66 thorpej
2806 1.66 thorpej void
2807 1.124 yamt pool_page_free(struct pool *pp, void *v)
2808 1.66 thorpej {
2809 1.66 thorpej
2810 1.191 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2811 1.98 yamt }
2812 1.98 yamt
2813 1.98 yamt static void *
2814 1.124 yamt pool_page_alloc_meta(struct pool *pp, int flags)
2815 1.98 yamt {
2816 1.192 rmind const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2817 1.192 rmind vmem_addr_t va;
2818 1.192 rmind int ret;
2819 1.191 para
2820 1.192 rmind ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2821 1.192 rmind vflags | VM_INSTANTFIT, &va);
2822 1.98 yamt
2823 1.192 rmind return ret ? NULL : (void *)va;
2824 1.98 yamt }
2825 1.98 yamt
2826 1.98 yamt static void
2827 1.124 yamt pool_page_free_meta(struct pool *pp, void *v)
2828 1.98 yamt {
2829 1.98 yamt
2830 1.192 rmind vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2831 1.66 thorpej }
2832 1.66 thorpej
2833 1.228 maxv #ifdef KLEAK
2834 1.228 maxv static void
2835 1.228 maxv pool_kleak_fill(struct pool *pp, void *p)
2836 1.228 maxv {
2837 1.228 maxv if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
2838 1.228 maxv return;
2839 1.228 maxv }
2840 1.228 maxv kleak_fill_area(p, pp->pr_size);
2841 1.228 maxv }
2842 1.228 maxv
2843 1.228 maxv static void
2844 1.228 maxv pool_cache_kleak_fill(pool_cache_t pc, void *p)
2845 1.228 maxv {
2846 1.229 maxv if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2847 1.228 maxv return;
2848 1.228 maxv }
2849 1.228 maxv pool_kleak_fill(&pc->pc_pool, p);
2850 1.228 maxv }
2851 1.228 maxv #endif
2852 1.228 maxv
2853 1.204 maxv #ifdef POOL_REDZONE
2854 1.204 maxv #if defined(_LP64)
2855 1.204 maxv # define PRIME 0x9e37fffffffc0000UL
2856 1.204 maxv #else /* defined(_LP64) */
2857 1.204 maxv # define PRIME 0x9e3779b1
2858 1.204 maxv #endif /* defined(_LP64) */
2859 1.204 maxv #define STATIC_BYTE 0xFE
2860 1.204 maxv CTASSERT(POOL_REDZONE_SIZE > 1);
2861 1.204 maxv
2862 1.224 maxv #ifndef KASAN
2863 1.204 maxv static inline uint8_t
2864 1.204 maxv pool_pattern_generate(const void *p)
2865 1.204 maxv {
2866 1.204 maxv return (uint8_t)(((uintptr_t)p) * PRIME
2867 1.204 maxv >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2868 1.204 maxv }
2869 1.224 maxv #endif
2870 1.204 maxv
2871 1.204 maxv static void
2872 1.204 maxv pool_redzone_init(struct pool *pp, size_t requested_size)
2873 1.204 maxv {
2874 1.227 maxv size_t redzsz;
2875 1.204 maxv size_t nsz;
2876 1.204 maxv
2877 1.227 maxv #ifdef KASAN
2878 1.227 maxv redzsz = requested_size;
2879 1.227 maxv kasan_add_redzone(&redzsz);
2880 1.227 maxv redzsz -= requested_size;
2881 1.227 maxv #else
2882 1.227 maxv redzsz = POOL_REDZONE_SIZE;
2883 1.227 maxv #endif
2884 1.227 maxv
2885 1.204 maxv if (pp->pr_roflags & PR_NOTOUCH) {
2886 1.204 maxv pp->pr_redzone = false;
2887 1.204 maxv return;
2888 1.204 maxv }
2889 1.204 maxv
2890 1.204 maxv /*
2891 1.204 maxv * We may have extended the requested size earlier; check if
2892 1.204 maxv * there's naturally space in the padding for a red zone.
2893 1.204 maxv */
2894 1.227 maxv if (pp->pr_size - requested_size >= redzsz) {
2895 1.229 maxv pp->pr_reqsize_with_redzone = requested_size + redzsz;
2896 1.204 maxv pp->pr_redzone = true;
2897 1.204 maxv return;
2898 1.204 maxv }
2899 1.204 maxv
2900 1.204 maxv /*
2901 1.204 maxv * No space in the natural padding; check if we can extend a
2902 1.204 maxv * bit the size of the pool.
2903 1.204 maxv */
2904 1.227 maxv nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
2905 1.204 maxv if (nsz <= pp->pr_alloc->pa_pagesz) {
2906 1.204 maxv /* Ok, we can */
2907 1.204 maxv pp->pr_size = nsz;
2908 1.229 maxv pp->pr_reqsize_with_redzone = requested_size + redzsz;
2909 1.204 maxv pp->pr_redzone = true;
2910 1.204 maxv } else {
2911 1.204 maxv /* No space for a red zone... snif :'( */
2912 1.204 maxv pp->pr_redzone = false;
2913 1.204 maxv printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
2914 1.204 maxv }
2915 1.204 maxv }
2916 1.204 maxv
2917 1.204 maxv static void
2918 1.204 maxv pool_redzone_fill(struct pool *pp, void *p)
2919 1.204 maxv {
2920 1.224 maxv if (!pp->pr_redzone)
2921 1.224 maxv return;
2922 1.224 maxv #ifdef KASAN
2923 1.248 maxv kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
2924 1.248 maxv KASAN_POOL_REDZONE);
2925 1.224 maxv #else
2926 1.204 maxv uint8_t *cp, pat;
2927 1.204 maxv const uint8_t *ep;
2928 1.204 maxv
2929 1.204 maxv cp = (uint8_t *)p + pp->pr_reqsize;
2930 1.204 maxv ep = cp + POOL_REDZONE_SIZE;
2931 1.204 maxv
2932 1.204 maxv /*
2933 1.204 maxv * We really don't want the first byte of the red zone to be '\0';
2934 1.204 maxv * an off-by-one in a string may not be properly detected.
2935 1.204 maxv */
2936 1.204 maxv pat = pool_pattern_generate(cp);
2937 1.204 maxv *cp = (pat == '\0') ? STATIC_BYTE: pat;
2938 1.204 maxv cp++;
2939 1.204 maxv
2940 1.204 maxv while (cp < ep) {
2941 1.204 maxv *cp = pool_pattern_generate(cp);
2942 1.204 maxv cp++;
2943 1.204 maxv }
2944 1.224 maxv #endif
2945 1.204 maxv }
2946 1.204 maxv
2947 1.204 maxv static void
2948 1.204 maxv pool_redzone_check(struct pool *pp, void *p)
2949 1.204 maxv {
2950 1.224 maxv if (!pp->pr_redzone)
2951 1.224 maxv return;
2952 1.224 maxv #ifdef KASAN
2953 1.248 maxv kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
2954 1.224 maxv #else
2955 1.204 maxv uint8_t *cp, pat, expected;
2956 1.204 maxv const uint8_t *ep;
2957 1.204 maxv
2958 1.204 maxv cp = (uint8_t *)p + pp->pr_reqsize;
2959 1.204 maxv ep = cp + POOL_REDZONE_SIZE;
2960 1.204 maxv
2961 1.204 maxv pat = pool_pattern_generate(cp);
2962 1.204 maxv expected = (pat == '\0') ? STATIC_BYTE: pat;
2963 1.225 maxv if (__predict_false(expected != *cp)) {
2964 1.225 maxv printf("%s: %p: 0x%02x != 0x%02x\n",
2965 1.204 maxv __func__, cp, *cp, expected);
2966 1.204 maxv }
2967 1.204 maxv cp++;
2968 1.204 maxv
2969 1.204 maxv while (cp < ep) {
2970 1.204 maxv expected = pool_pattern_generate(cp);
2971 1.225 maxv if (__predict_false(*cp != expected)) {
2972 1.225 maxv printf("%s: %p: 0x%02x != 0x%02x\n",
2973 1.204 maxv __func__, cp, *cp, expected);
2974 1.204 maxv }
2975 1.204 maxv cp++;
2976 1.204 maxv }
2977 1.224 maxv #endif
2978 1.204 maxv }
2979 1.204 maxv
2980 1.229 maxv static void
2981 1.229 maxv pool_cache_redzone_check(pool_cache_t pc, void *p)
2982 1.229 maxv {
2983 1.229 maxv #ifdef KASAN
2984 1.229 maxv /* If there is a ctor/dtor, leave the data as valid. */
2985 1.229 maxv if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2986 1.229 maxv return;
2987 1.229 maxv }
2988 1.229 maxv #endif
2989 1.229 maxv pool_redzone_check(&pc->pc_pool, p);
2990 1.229 maxv }
2991 1.229 maxv
2992 1.204 maxv #endif /* POOL_REDZONE */
2993 1.204 maxv
2994 1.141 yamt #if defined(DDB)
2995 1.141 yamt static bool
2996 1.141 yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2997 1.141 yamt {
2998 1.141 yamt
2999 1.141 yamt return (uintptr_t)ph->ph_page <= addr &&
3000 1.141 yamt addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3001 1.141 yamt }
3002 1.141 yamt
3003 1.143 yamt static bool
3004 1.143 yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3005 1.143 yamt {
3006 1.143 yamt
3007 1.143 yamt return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3008 1.143 yamt }
3009 1.143 yamt
3010 1.143 yamt static bool
3011 1.143 yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3012 1.143 yamt {
3013 1.143 yamt int i;
3014 1.143 yamt
3015 1.143 yamt if (pcg == NULL) {
3016 1.143 yamt return false;
3017 1.143 yamt }
3018 1.144 yamt for (i = 0; i < pcg->pcg_avail; i++) {
3019 1.143 yamt if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3020 1.143 yamt return true;
3021 1.143 yamt }
3022 1.143 yamt }
3023 1.143 yamt return false;
3024 1.143 yamt }
3025 1.143 yamt
3026 1.143 yamt static bool
3027 1.143 yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3028 1.143 yamt {
3029 1.143 yamt
3030 1.242 maxv if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3031 1.234 maxv unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3032 1.143 yamt pool_item_bitmap_t *bitmap =
3033 1.143 yamt ph->ph_bitmap + (idx / BITMAP_SIZE);
3034 1.143 yamt pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3035 1.143 yamt
3036 1.143 yamt return (*bitmap & mask) == 0;
3037 1.143 yamt } else {
3038 1.143 yamt struct pool_item *pi;
3039 1.143 yamt
3040 1.143 yamt LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3041 1.143 yamt if (pool_in_item(pp, pi, addr)) {
3042 1.143 yamt return false;
3043 1.143 yamt }
3044 1.143 yamt }
3045 1.143 yamt return true;
3046 1.143 yamt }
3047 1.143 yamt }
3048 1.143 yamt
3049 1.141 yamt void
3050 1.141 yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3051 1.141 yamt {
3052 1.141 yamt struct pool *pp;
3053 1.141 yamt
3054 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3055 1.141 yamt struct pool_item_header *ph;
3056 1.141 yamt uintptr_t item;
3057 1.143 yamt bool allocated = true;
3058 1.143 yamt bool incache = false;
3059 1.143 yamt bool incpucache = false;
3060 1.143 yamt char cpucachestr[32];
3061 1.141 yamt
3062 1.141 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3063 1.141 yamt LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3064 1.141 yamt if (pool_in_page(pp, ph, addr)) {
3065 1.141 yamt goto found;
3066 1.141 yamt }
3067 1.141 yamt }
3068 1.141 yamt LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3069 1.141 yamt if (pool_in_page(pp, ph, addr)) {
3070 1.143 yamt allocated =
3071 1.143 yamt pool_allocated(pp, ph, addr);
3072 1.143 yamt goto found;
3073 1.143 yamt }
3074 1.143 yamt }
3075 1.143 yamt LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3076 1.143 yamt if (pool_in_page(pp, ph, addr)) {
3077 1.143 yamt allocated = false;
3078 1.141 yamt goto found;
3079 1.141 yamt }
3080 1.141 yamt }
3081 1.141 yamt continue;
3082 1.141 yamt } else {
3083 1.141 yamt ph = pr_find_pagehead_noalign(pp, (void *)addr);
3084 1.141 yamt if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3085 1.141 yamt continue;
3086 1.141 yamt }
3087 1.143 yamt allocated = pool_allocated(pp, ph, addr);
3088 1.141 yamt }
3089 1.141 yamt found:
3090 1.143 yamt if (allocated && pp->pr_cache) {
3091 1.143 yamt pool_cache_t pc = pp->pr_cache;
3092 1.143 yamt struct pool_cache_group *pcg;
3093 1.143 yamt int i;
3094 1.143 yamt
3095 1.143 yamt for (pcg = pc->pc_fullgroups; pcg != NULL;
3096 1.143 yamt pcg = pcg->pcg_next) {
3097 1.143 yamt if (pool_in_cg(pp, pcg, addr)) {
3098 1.143 yamt incache = true;
3099 1.143 yamt goto print;
3100 1.143 yamt }
3101 1.143 yamt }
3102 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3103 1.143 yamt pool_cache_cpu_t *cc;
3104 1.143 yamt
3105 1.143 yamt if ((cc = pc->pc_cpus[i]) == NULL) {
3106 1.143 yamt continue;
3107 1.143 yamt }
3108 1.143 yamt if (pool_in_cg(pp, cc->cc_current, addr) ||
3109 1.143 yamt pool_in_cg(pp, cc->cc_previous, addr)) {
3110 1.143 yamt struct cpu_info *ci =
3111 1.170 ad cpu_lookup(i);
3112 1.143 yamt
3113 1.143 yamt incpucache = true;
3114 1.143 yamt snprintf(cpucachestr,
3115 1.143 yamt sizeof(cpucachestr),
3116 1.143 yamt "cached by CPU %u",
3117 1.153 martin ci->ci_index);
3118 1.143 yamt goto print;
3119 1.143 yamt }
3120 1.143 yamt }
3121 1.143 yamt }
3122 1.143 yamt print:
3123 1.141 yamt item = (uintptr_t)ph->ph_page + ph->ph_off;
3124 1.141 yamt item = item + rounddown(addr - item, pp->pr_size);
3125 1.143 yamt (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3126 1.141 yamt (void *)addr, item, (size_t)(addr - item),
3127 1.143 yamt pp->pr_wchan,
3128 1.143 yamt incpucache ? cpucachestr :
3129 1.143 yamt incache ? "cached" : allocated ? "allocated" : "free");
3130 1.141 yamt }
3131 1.141 yamt }
3132 1.141 yamt #endif /* defined(DDB) */
3133 1.203 joerg
3134 1.203 joerg static int
3135 1.203 joerg pool_sysctl(SYSCTLFN_ARGS)
3136 1.203 joerg {
3137 1.203 joerg struct pool_sysctl data;
3138 1.203 joerg struct pool *pp;
3139 1.203 joerg struct pool_cache *pc;
3140 1.203 joerg pool_cache_cpu_t *cc;
3141 1.203 joerg int error;
3142 1.203 joerg size_t i, written;
3143 1.203 joerg
3144 1.203 joerg if (oldp == NULL) {
3145 1.203 joerg *oldlenp = 0;
3146 1.203 joerg TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3147 1.203 joerg *oldlenp += sizeof(data);
3148 1.203 joerg return 0;
3149 1.203 joerg }
3150 1.203 joerg
3151 1.203 joerg memset(&data, 0, sizeof(data));
3152 1.203 joerg error = 0;
3153 1.203 joerg written = 0;
3154 1.203 joerg TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3155 1.203 joerg if (written + sizeof(data) > *oldlenp)
3156 1.203 joerg break;
3157 1.203 joerg strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3158 1.203 joerg data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3159 1.203 joerg data.pr_flags = pp->pr_roflags | pp->pr_flags;
3160 1.203 joerg #define COPY(field) data.field = pp->field
3161 1.203 joerg COPY(pr_size);
3162 1.203 joerg
3163 1.203 joerg COPY(pr_itemsperpage);
3164 1.203 joerg COPY(pr_nitems);
3165 1.203 joerg COPY(pr_nout);
3166 1.203 joerg COPY(pr_hardlimit);
3167 1.203 joerg COPY(pr_npages);
3168 1.203 joerg COPY(pr_minpages);
3169 1.203 joerg COPY(pr_maxpages);
3170 1.203 joerg
3171 1.203 joerg COPY(pr_nget);
3172 1.203 joerg COPY(pr_nfail);
3173 1.203 joerg COPY(pr_nput);
3174 1.203 joerg COPY(pr_npagealloc);
3175 1.203 joerg COPY(pr_npagefree);
3176 1.203 joerg COPY(pr_hiwat);
3177 1.203 joerg COPY(pr_nidle);
3178 1.203 joerg #undef COPY
3179 1.203 joerg
3180 1.203 joerg data.pr_cache_nmiss_pcpu = 0;
3181 1.203 joerg data.pr_cache_nhit_pcpu = 0;
3182 1.203 joerg if (pp->pr_cache) {
3183 1.203 joerg pc = pp->pr_cache;
3184 1.203 joerg data.pr_cache_meta_size = pc->pc_pcgsize;
3185 1.203 joerg data.pr_cache_nfull = pc->pc_nfull;
3186 1.203 joerg data.pr_cache_npartial = pc->pc_npart;
3187 1.203 joerg data.pr_cache_nempty = pc->pc_nempty;
3188 1.203 joerg data.pr_cache_ncontended = pc->pc_contended;
3189 1.203 joerg data.pr_cache_nmiss_global = pc->pc_misses;
3190 1.203 joerg data.pr_cache_nhit_global = pc->pc_hits;
3191 1.203 joerg for (i = 0; i < pc->pc_ncpu; ++i) {
3192 1.203 joerg cc = pc->pc_cpus[i];
3193 1.203 joerg if (cc == NULL)
3194 1.203 joerg continue;
3195 1.206 knakahar data.pr_cache_nmiss_pcpu += cc->cc_misses;
3196 1.206 knakahar data.pr_cache_nhit_pcpu += cc->cc_hits;
3197 1.203 joerg }
3198 1.203 joerg } else {
3199 1.203 joerg data.pr_cache_meta_size = 0;
3200 1.203 joerg data.pr_cache_nfull = 0;
3201 1.203 joerg data.pr_cache_npartial = 0;
3202 1.203 joerg data.pr_cache_nempty = 0;
3203 1.203 joerg data.pr_cache_ncontended = 0;
3204 1.203 joerg data.pr_cache_nmiss_global = 0;
3205 1.203 joerg data.pr_cache_nhit_global = 0;
3206 1.203 joerg }
3207 1.203 joerg
3208 1.203 joerg error = sysctl_copyout(l, &data, oldp, sizeof(data));
3209 1.203 joerg if (error)
3210 1.203 joerg break;
3211 1.203 joerg written += sizeof(data);
3212 1.203 joerg oldp = (char *)oldp + sizeof(data);
3213 1.203 joerg }
3214 1.203 joerg
3215 1.203 joerg *oldlenp = written;
3216 1.203 joerg return error;
3217 1.203 joerg }
3218 1.203 joerg
3219 1.203 joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3220 1.203 joerg {
3221 1.203 joerg const struct sysctlnode *rnode = NULL;
3222 1.203 joerg
3223 1.203 joerg sysctl_createv(clog, 0, NULL, &rnode,
3224 1.203 joerg CTLFLAG_PERMANENT,
3225 1.203 joerg CTLTYPE_STRUCT, "pool",
3226 1.203 joerg SYSCTL_DESCR("Get pool statistics"),
3227 1.203 joerg pool_sysctl, 0, NULL, 0,
3228 1.203 joerg CTL_KERN, CTL_CREATE, CTL_EOL);
3229 1.203 joerg }
3230