Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.252
      1  1.252      maxv /*	$NetBSD: subr_pool.c,v 1.252 2019/06/29 11:13:23 maxv Exp $	*/
      2    1.1        pk 
      3  1.229      maxv /*
      4  1.229      maxv  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5  1.183        ad  *     The NetBSD Foundation, Inc.
      6    1.1        pk  * All rights reserved.
      7    1.1        pk  *
      8    1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9   1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  1.204      maxv  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  1.204      maxv  * Maxime Villard.
     12    1.1        pk  *
     13    1.1        pk  * Redistribution and use in source and binary forms, with or without
     14    1.1        pk  * modification, are permitted provided that the following conditions
     15    1.1        pk  * are met:
     16    1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17    1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18    1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19    1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20    1.1        pk  *    documentation and/or other materials provided with the distribution.
     21    1.1        pk  *
     22    1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23    1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24    1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25    1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26    1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27    1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28    1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29    1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30    1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31    1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32    1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33    1.1        pk  */
     34   1.64     lukem 
     35   1.64     lukem #include <sys/cdefs.h>
     36  1.252      maxv __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.252 2019/06/29 11:13:23 maxv Exp $");
     37   1.24    scottr 
     38  1.205     pooka #ifdef _KERNEL_OPT
     39  1.141      yamt #include "opt_ddb.h"
     40   1.28   thorpej #include "opt_lockdebug.h"
     41  1.249      maxv #include "opt_pool.h"
     42  1.228      maxv #include "opt_kleak.h"
     43  1.205     pooka #endif
     44    1.1        pk 
     45    1.1        pk #include <sys/param.h>
     46    1.1        pk #include <sys/systm.h>
     47  1.203     joerg #include <sys/sysctl.h>
     48  1.135      yamt #include <sys/bitops.h>
     49    1.1        pk #include <sys/proc.h>
     50    1.1        pk #include <sys/errno.h>
     51    1.1        pk #include <sys/kernel.h>
     52  1.191      para #include <sys/vmem.h>
     53    1.1        pk #include <sys/pool.h>
     54   1.20   thorpej #include <sys/syslog.h>
     55  1.125        ad #include <sys/debug.h>
     56  1.134        ad #include <sys/lockdebug.h>
     57  1.134        ad #include <sys/xcall.h>
     58  1.134        ad #include <sys/cpu.h>
     59  1.145        ad #include <sys/atomic.h>
     60  1.224      maxv #include <sys/asan.h>
     61    1.3        pk 
     62  1.187  uebayasi #include <uvm/uvm_extern.h>
     63    1.3        pk 
     64    1.1        pk /*
     65    1.1        pk  * Pool resource management utility.
     66    1.3        pk  *
     67   1.88       chs  * Memory is allocated in pages which are split into pieces according to
     68   1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     69   1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     70   1.88       chs  * for empty, full and partially-full pages respectively. The individual
     71   1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     72   1.88       chs  * header. The memory for building the page list is either taken from
     73   1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     74   1.88       chs  * an internal pool of page headers (`phpool').
     75    1.1        pk  */
     76    1.1        pk 
     77  1.221      para /* List of all pools. Non static as needed by 'vmstat -m' */
     78  1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     79  1.134        ad 
     80    1.3        pk /* Private pool for page header structures */
     81   1.97      yamt #define	PHPOOL_MAX	8
     82   1.97      yamt static struct pool phpool[PHPOOL_MAX];
     83  1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     84  1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     85    1.3        pk 
     86  1.226      maxv #if defined(KASAN)
     87  1.224      maxv #define POOL_REDZONE
     88  1.224      maxv #endif
     89  1.224      maxv 
     90  1.204      maxv #ifdef POOL_REDZONE
     91  1.224      maxv # ifdef KASAN
     92  1.224      maxv #  define POOL_REDZONE_SIZE 8
     93  1.224      maxv # else
     94  1.224      maxv #  define POOL_REDZONE_SIZE 2
     95  1.224      maxv # endif
     96  1.204      maxv static void pool_redzone_init(struct pool *, size_t);
     97  1.204      maxv static void pool_redzone_fill(struct pool *, void *);
     98  1.204      maxv static void pool_redzone_check(struct pool *, void *);
     99  1.229      maxv static void pool_cache_redzone_check(pool_cache_t, void *);
    100  1.204      maxv #else
    101  1.229      maxv # define pool_redzone_init(pp, sz)		__nothing
    102  1.229      maxv # define pool_redzone_fill(pp, ptr)		__nothing
    103  1.229      maxv # define pool_redzone_check(pp, ptr)		__nothing
    104  1.229      maxv # define pool_cache_redzone_check(pc, ptr)	__nothing
    105  1.204      maxv #endif
    106  1.204      maxv 
    107  1.228      maxv #ifdef KLEAK
    108  1.228      maxv static void pool_kleak_fill(struct pool *, void *);
    109  1.228      maxv static void pool_cache_kleak_fill(pool_cache_t, void *);
    110  1.228      maxv #else
    111  1.228      maxv #define pool_kleak_fill(pp, ptr)	__nothing
    112  1.228      maxv #define pool_cache_kleak_fill(pc, ptr)	__nothing
    113  1.228      maxv #endif
    114  1.228      maxv 
    115  1.249      maxv #ifdef POOL_QUARANTINE
    116  1.249      maxv static void pool_quarantine_init(struct pool *);
    117  1.249      maxv static void pool_quarantine_flush(struct pool *);
    118  1.249      maxv static bool pool_put_quarantine(struct pool *, void *,
    119  1.249      maxv     struct pool_pagelist *);
    120  1.249      maxv static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t);
    121  1.249      maxv #else
    122  1.249      maxv #define pool_quarantine_init(a)			__nothing
    123  1.249      maxv #define pool_quarantine_flush(a)		__nothing
    124  1.249      maxv #define pool_put_quarantine(a, b, c)		false
    125  1.249      maxv #define pool_cache_put_quarantine(a, b, c)	false
    126  1.249      maxv #endif
    127  1.249      maxv 
    128  1.229      maxv #define pc_has_ctor(pc) \
    129  1.229      maxv 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
    130  1.229      maxv #define pc_has_dtor(pc) \
    131  1.229      maxv 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
    132  1.229      maxv 
    133   1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    134   1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    135   1.98      yamt 
    136   1.98      yamt /* allocator for pool metadata */
    137  1.134        ad struct pool_allocator pool_allocator_meta = {
    138  1.191      para 	.pa_alloc = pool_page_alloc_meta,
    139  1.191      para 	.pa_free = pool_page_free_meta,
    140  1.191      para 	.pa_pagesz = 0
    141   1.98      yamt };
    142   1.98      yamt 
    143  1.208       chs #define POOL_ALLOCATOR_BIG_BASE 13
    144  1.208       chs extern struct pool_allocator pool_allocator_big[];
    145  1.208       chs static int pool_bigidx(size_t);
    146  1.208       chs 
    147    1.3        pk /* # of seconds to retain page after last use */
    148    1.3        pk int pool_inactive_time = 10;
    149    1.3        pk 
    150    1.3        pk /* Next candidate for drainage (see pool_drain()) */
    151  1.236      maxv static struct pool *drainpp;
    152   1.23   thorpej 
    153  1.134        ad /* This lock protects both pool_head and drainpp. */
    154  1.134        ad static kmutex_t pool_head_lock;
    155  1.134        ad static kcondvar_t pool_busy;
    156    1.3        pk 
    157  1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    158  1.178      elad static kmutex_t pool_allocator_lock;
    159  1.178      elad 
    160  1.245      maxv static unsigned int poolid_counter = 0;
    161  1.245      maxv 
    162  1.135      yamt typedef uint32_t pool_item_bitmap_t;
    163  1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    164  1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    165   1.99      yamt 
    166    1.3        pk struct pool_item_header {
    167    1.3        pk 	/* Page headers */
    168   1.88       chs 	LIST_ENTRY(pool_item_header)
    169    1.3        pk 				ph_pagelist;	/* pool page list */
    170  1.245      maxv 	union {
    171  1.245      maxv 		/* !PR_PHINPAGE */
    172  1.245      maxv 		struct {
    173  1.245      maxv 			SPLAY_ENTRY(pool_item_header)
    174  1.245      maxv 				phu_node;	/* off-page page headers */
    175  1.245      maxv 		} phu_offpage;
    176  1.245      maxv 		/* PR_PHINPAGE */
    177  1.245      maxv 		struct {
    178  1.245      maxv 			unsigned int phu_poolid;
    179  1.245      maxv 		} phu_onpage;
    180  1.245      maxv 	} ph_u1;
    181  1.128  christos 	void *			ph_page;	/* this page's address */
    182  1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    183  1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    184  1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    185   1.97      yamt 	union {
    186  1.242      maxv 		/* !PR_USEBMAP */
    187   1.97      yamt 		struct {
    188  1.102       chs 			LIST_HEAD(, pool_item)
    189   1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    190   1.97      yamt 		} phu_normal;
    191  1.242      maxv 		/* PR_USEBMAP */
    192   1.97      yamt 		struct {
    193  1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    194   1.97      yamt 		} phu_notouch;
    195  1.245      maxv 	} ph_u2;
    196    1.3        pk };
    197  1.245      maxv #define ph_node		ph_u1.phu_offpage.phu_node
    198  1.245      maxv #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    199  1.245      maxv #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    200  1.245      maxv #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    201    1.3        pk 
    202  1.240      maxv #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    203  1.240      maxv 
    204  1.229      maxv #if defined(DIAGNOSTIC) && !defined(KASAN)
    205  1.229      maxv #define POOL_CHECK_MAGIC
    206  1.229      maxv #endif
    207  1.229      maxv 
    208    1.1        pk struct pool_item {
    209  1.229      maxv #ifdef POOL_CHECK_MAGIC
    210   1.82   thorpej 	u_int pi_magic;
    211   1.33       chs #endif
    212  1.134        ad #define	PI_MAGIC 0xdeaddeadU
    213    1.3        pk 	/* Other entries use only this list entry */
    214  1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    215    1.3        pk };
    216    1.3        pk 
    217   1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    218   1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    219   1.53   thorpej 
    220   1.43   thorpej /*
    221   1.43   thorpej  * Pool cache management.
    222   1.43   thorpej  *
    223   1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    224   1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    225   1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    226   1.43   thorpej  * necessary.
    227   1.43   thorpej  *
    228  1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    229  1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    230  1.134        ad  * object from the pool, it calls the object's constructor and places it
    231  1.134        ad  * into a cache group.  When a cache group frees an object back to the
    232  1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    233  1.134        ad  * to persist in constructed form while freed to the cache.
    234  1.134        ad  *
    235  1.134        ad  * The pool references each cache, so that when a pool is drained by the
    236  1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    237  1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    238  1.134        ad  * its entirety.
    239   1.43   thorpej  *
    240   1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    241   1.43   thorpej  * the complexity of cache management for pools which would not benefit
    242   1.43   thorpej  * from it.
    243   1.43   thorpej  */
    244   1.43   thorpej 
    245  1.142        ad static struct pool pcg_normal_pool;
    246  1.142        ad static struct pool pcg_large_pool;
    247  1.134        ad static struct pool cache_pool;
    248  1.134        ad static struct pool cache_cpu_pool;
    249    1.3        pk 
    250  1.145        ad /* List of all caches. */
    251  1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    252  1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    253  1.145        ad 
    254  1.162        ad int pool_cache_disable;		/* global disable for caching */
    255  1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    256  1.145        ad 
    257  1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    258  1.162        ad 				    void *);
    259  1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    260  1.162        ad 				    void **, paddr_t *, int);
    261  1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    262  1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    263  1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    264  1.196       jym static void	pool_cache_transfer(pool_cache_t);
    265    1.3        pk 
    266   1.42   thorpej static int	pool_catchup(struct pool *);
    267  1.128  christos static void	pool_prime_page(struct pool *, void *,
    268   1.55   thorpej 		    struct pool_item_header *);
    269   1.88       chs static void	pool_update_curpage(struct pool *);
    270   1.66   thorpej 
    271  1.113      yamt static int	pool_grow(struct pool *, int);
    272  1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    273  1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    274    1.3        pk 
    275   1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    276  1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    277   1.42   thorpej static void pool_print1(struct pool *, const char *,
    278  1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    279    1.3        pk 
    280   1.88       chs static int pool_chk_page(struct pool *, const char *,
    281   1.88       chs 			 struct pool_item_header *);
    282   1.88       chs 
    283  1.234      maxv /* -------------------------------------------------------------------------- */
    284  1.234      maxv 
    285  1.135      yamt static inline unsigned int
    286  1.234      maxv pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    287   1.97      yamt     const void *v)
    288   1.97      yamt {
    289   1.97      yamt 	const char *cp = v;
    290  1.135      yamt 	unsigned int idx;
    291   1.97      yamt 
    292  1.242      maxv 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    293  1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    294  1.237      maxv 
    295  1.237      maxv 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    296  1.237      maxv 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    297  1.237      maxv 		    pp->pr_itemsperpage);
    298  1.237      maxv 	}
    299  1.237      maxv 
    300   1.97      yamt 	return idx;
    301   1.97      yamt }
    302   1.97      yamt 
    303  1.110     perry static inline void
    304  1.234      maxv pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    305   1.97      yamt     void *obj)
    306   1.97      yamt {
    307  1.234      maxv 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    308  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    309  1.223     kamil 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    310   1.97      yamt 
    311  1.237      maxv 	if (__predict_false((*bitmap & mask) != 0)) {
    312  1.237      maxv 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    313  1.237      maxv 	}
    314  1.237      maxv 
    315  1.135      yamt 	*bitmap |= mask;
    316   1.97      yamt }
    317   1.97      yamt 
    318  1.110     perry static inline void *
    319  1.234      maxv pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    320   1.97      yamt {
    321  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    322  1.135      yamt 	unsigned int idx;
    323  1.135      yamt 	int i;
    324   1.97      yamt 
    325  1.135      yamt 	for (i = 0; ; i++) {
    326  1.135      yamt 		int bit;
    327   1.97      yamt 
    328  1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    329  1.135      yamt 		bit = ffs32(bitmap[i]);
    330  1.135      yamt 		if (bit) {
    331  1.135      yamt 			pool_item_bitmap_t mask;
    332  1.135      yamt 
    333  1.135      yamt 			bit--;
    334  1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    335  1.222     kamil 			mask = 1U << bit;
    336  1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    337  1.135      yamt 			bitmap[i] &= ~mask;
    338  1.135      yamt 			break;
    339  1.135      yamt 		}
    340  1.135      yamt 	}
    341  1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    342  1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    343   1.97      yamt }
    344   1.97      yamt 
    345  1.135      yamt static inline void
    346  1.234      maxv pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    347  1.135      yamt {
    348  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    349  1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    350  1.135      yamt 	int i;
    351  1.135      yamt 
    352  1.135      yamt 	for (i = 0; i < n; i++) {
    353  1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    354  1.135      yamt 	}
    355  1.135      yamt }
    356  1.135      yamt 
    357  1.234      maxv /* -------------------------------------------------------------------------- */
    358  1.234      maxv 
    359  1.234      maxv static inline void
    360  1.234      maxv pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    361  1.234      maxv     void *obj)
    362  1.234      maxv {
    363  1.234      maxv 	struct pool_item *pi = obj;
    364  1.234      maxv 
    365  1.234      maxv #ifdef POOL_CHECK_MAGIC
    366  1.234      maxv 	pi->pi_magic = PI_MAGIC;
    367  1.234      maxv #endif
    368  1.234      maxv 
    369  1.234      maxv 	if (pp->pr_redzone) {
    370  1.234      maxv 		/*
    371  1.234      maxv 		 * Mark the pool_item as valid. The rest is already
    372  1.234      maxv 		 * invalid.
    373  1.234      maxv 		 */
    374  1.248      maxv 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
    375  1.234      maxv 	}
    376  1.234      maxv 
    377  1.234      maxv 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    378  1.234      maxv }
    379  1.234      maxv 
    380  1.234      maxv static inline void *
    381  1.234      maxv pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    382  1.234      maxv {
    383  1.234      maxv 	struct pool_item *pi;
    384  1.234      maxv 	void *v;
    385  1.234      maxv 
    386  1.234      maxv 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    387  1.234      maxv 	if (__predict_false(v == NULL)) {
    388  1.234      maxv 		mutex_exit(&pp->pr_lock);
    389  1.234      maxv 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    390  1.234      maxv 	}
    391  1.234      maxv 	KASSERTMSG((pp->pr_nitems > 0),
    392  1.234      maxv 	    "%s: [%s] nitems %u inconsistent on itemlist",
    393  1.234      maxv 	    __func__, pp->pr_wchan, pp->pr_nitems);
    394  1.234      maxv #ifdef POOL_CHECK_MAGIC
    395  1.234      maxv 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    396  1.234      maxv 	    "%s: [%s] free list modified: "
    397  1.234      maxv 	    "magic=%x; page %p; item addr %p", __func__,
    398  1.234      maxv 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    399  1.234      maxv #endif
    400  1.234      maxv 
    401  1.234      maxv 	/*
    402  1.234      maxv 	 * Remove from item list.
    403  1.234      maxv 	 */
    404  1.234      maxv 	LIST_REMOVE(pi, pi_list);
    405  1.234      maxv 
    406  1.234      maxv 	return v;
    407  1.234      maxv }
    408  1.234      maxv 
    409  1.234      maxv /* -------------------------------------------------------------------------- */
    410  1.234      maxv 
    411  1.110     perry static inline int
    412   1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    413   1.88       chs {
    414  1.121      yamt 
    415  1.121      yamt 	/*
    416  1.236      maxv 	 * We consider pool_item_header with smaller ph_page bigger. This
    417  1.236      maxv 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    418  1.121      yamt 	 */
    419   1.88       chs 	if (a->ph_page < b->ph_page)
    420  1.236      maxv 		return 1;
    421  1.121      yamt 	else if (a->ph_page > b->ph_page)
    422  1.236      maxv 		return -1;
    423   1.88       chs 	else
    424  1.236      maxv 		return 0;
    425   1.88       chs }
    426   1.88       chs 
    427   1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    428   1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    429   1.88       chs 
    430  1.141      yamt static inline struct pool_item_header *
    431  1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    432  1.141      yamt {
    433  1.141      yamt 	struct pool_item_header *ph, tmp;
    434  1.141      yamt 
    435  1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    436  1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    437  1.141      yamt 	if (ph == NULL) {
    438  1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    439  1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    440  1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    441  1.141      yamt 		}
    442  1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    443  1.141      yamt 	}
    444  1.141      yamt 
    445  1.141      yamt 	return ph;
    446  1.141      yamt }
    447  1.141      yamt 
    448    1.3        pk /*
    449  1.121      yamt  * Return the pool page header based on item address.
    450    1.3        pk  */
    451  1.110     perry static inline struct pool_item_header *
    452  1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    453    1.3        pk {
    454   1.88       chs 	struct pool_item_header *ph, tmp;
    455    1.3        pk 
    456  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    457  1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    458  1.121      yamt 	} else {
    459  1.128  christos 		void *page =
    460  1.128  christos 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    461  1.121      yamt 
    462  1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    463  1.241      maxv 			ph = (struct pool_item_header *)page;
    464  1.235      maxv 			if (__predict_false((void *)ph->ph_page != page)) {
    465  1.237      maxv 				panic("%s: [%s] item %p not part of pool",
    466  1.237      maxv 				    __func__, pp->pr_wchan, v);
    467  1.237      maxv 			}
    468  1.237      maxv 			if (__predict_false((char *)v < (char *)page +
    469  1.237      maxv 			    ph->ph_off)) {
    470  1.237      maxv 				panic("%s: [%s] item %p below item space",
    471  1.237      maxv 				    __func__, pp->pr_wchan, v);
    472  1.235      maxv 			}
    473  1.245      maxv 			if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    474  1.245      maxv 				panic("%s: [%s] item %p poolid %u != %u",
    475  1.245      maxv 				    __func__, pp->pr_wchan, v, ph->ph_poolid,
    476  1.245      maxv 				    pp->pr_poolid);
    477  1.245      maxv 			}
    478  1.121      yamt 		} else {
    479  1.121      yamt 			tmp.ph_page = page;
    480  1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    481  1.121      yamt 		}
    482  1.121      yamt 	}
    483    1.3        pk 
    484  1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    485  1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    486  1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    487   1.88       chs 	return ph;
    488    1.3        pk }
    489    1.3        pk 
    490  1.101   thorpej static void
    491  1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    492  1.101   thorpej {
    493  1.101   thorpej 	struct pool_item_header *ph;
    494  1.101   thorpej 
    495  1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    496  1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    497  1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    498  1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    499  1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    500  1.101   thorpej 	}
    501  1.101   thorpej }
    502  1.101   thorpej 
    503    1.3        pk /*
    504    1.3        pk  * Remove a page from the pool.
    505    1.3        pk  */
    506  1.110     perry static inline void
    507   1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    508   1.61       chs      struct pool_pagelist *pq)
    509    1.3        pk {
    510    1.3        pk 
    511  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    512   1.91      yamt 
    513    1.3        pk 	/*
    514    1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    515    1.3        pk 	 */
    516    1.6   thorpej 	if (ph->ph_nmissing == 0) {
    517  1.207  riastrad 		KASSERT(pp->pr_nidle != 0);
    518  1.207  riastrad 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    519  1.251  christos 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
    520  1.251  christos 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
    521    1.6   thorpej 		pp->pr_nidle--;
    522    1.6   thorpej 	}
    523    1.7   thorpej 
    524   1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    525   1.20   thorpej 
    526    1.7   thorpej 	/*
    527  1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    528    1.7   thorpej 	 */
    529   1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    530  1.245      maxv 	if (pp->pr_roflags & PR_PHINPAGE) {
    531  1.245      maxv 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    532  1.245      maxv 			panic("%s: [%s] ph %p poolid %u != %u",
    533  1.245      maxv 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    534  1.245      maxv 			    pp->pr_poolid);
    535  1.245      maxv 		}
    536  1.245      maxv 	} else {
    537   1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    538  1.245      maxv 	}
    539  1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    540  1.101   thorpej 
    541    1.7   thorpej 	pp->pr_npages--;
    542    1.7   thorpej 	pp->pr_npagefree++;
    543    1.6   thorpej 
    544   1.88       chs 	pool_update_curpage(pp);
    545    1.3        pk }
    546    1.3        pk 
    547    1.3        pk /*
    548   1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    549   1.94    simonb  */
    550   1.94    simonb void
    551  1.117      yamt pool_subsystem_init(void)
    552   1.94    simonb {
    553  1.192     rmind 	size_t size;
    554  1.191      para 	int idx;
    555   1.94    simonb 
    556  1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    557  1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    558  1.134        ad 	cv_init(&pool_busy, "poolbusy");
    559  1.134        ad 
    560  1.191      para 	/*
    561  1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    562  1.191      para 	 * haven't done so yet.
    563  1.191      para 	 */
    564  1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    565  1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    566  1.191      para 		int nelem;
    567  1.191      para 		size_t sz;
    568  1.191      para 
    569  1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    570  1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    571  1.191      para 		    "phpool-%d", nelem);
    572  1.191      para 		sz = sizeof(struct pool_item_header);
    573  1.191      para 		if (nelem) {
    574  1.191      para 			sz = offsetof(struct pool_item_header,
    575  1.191      para 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    576  1.191      para 		}
    577  1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    578  1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    579  1.117      yamt 	}
    580  1.191      para 
    581  1.191      para 	size = sizeof(pcg_t) +
    582  1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    583  1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    584  1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    585  1.191      para 
    586  1.191      para 	size = sizeof(pcg_t) +
    587  1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    588  1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    589  1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    590  1.134        ad 
    591  1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    592  1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    593  1.134        ad 
    594  1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    595  1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    596   1.94    simonb }
    597   1.94    simonb 
    598  1.240      maxv static inline bool
    599  1.240      maxv pool_init_is_phinpage(const struct pool *pp)
    600  1.240      maxv {
    601  1.240      maxv 	size_t pagesize;
    602  1.240      maxv 
    603  1.240      maxv 	if (pp->pr_roflags & PR_PHINPAGE) {
    604  1.240      maxv 		return true;
    605  1.240      maxv 	}
    606  1.240      maxv 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    607  1.240      maxv 		return false;
    608  1.240      maxv 	}
    609  1.240      maxv 
    610  1.240      maxv 	pagesize = pp->pr_alloc->pa_pagesz;
    611  1.240      maxv 
    612  1.240      maxv 	/*
    613  1.240      maxv 	 * Threshold: the item size is below 1/16 of a page size, and below
    614  1.240      maxv 	 * 8 times the page header size. The latter ensures we go off-page
    615  1.240      maxv 	 * if the page header would make us waste a rather big item.
    616  1.240      maxv 	 */
    617  1.240      maxv 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    618  1.240      maxv 		return true;
    619  1.240      maxv 	}
    620  1.240      maxv 
    621  1.240      maxv 	/* Put the header into the page if it doesn't waste any items. */
    622  1.240      maxv 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    623  1.240      maxv 		return true;
    624  1.240      maxv 	}
    625  1.240      maxv 
    626  1.240      maxv 	return false;
    627  1.240      maxv }
    628  1.240      maxv 
    629  1.242      maxv static inline bool
    630  1.242      maxv pool_init_is_usebmap(const struct pool *pp)
    631  1.242      maxv {
    632  1.243      maxv 	size_t bmapsize;
    633  1.243      maxv 
    634  1.242      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
    635  1.242      maxv 		return true;
    636  1.242      maxv 	}
    637  1.242      maxv 
    638  1.243      maxv 	/*
    639  1.243      maxv 	 * If we're on-page, and the page header can already contain a bitmap
    640  1.243      maxv 	 * big enough to cover all the items of the page, go with a bitmap.
    641  1.243      maxv 	 */
    642  1.243      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    643  1.243      maxv 		return false;
    644  1.243      maxv 	}
    645  1.243      maxv 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    646  1.243      maxv 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    647  1.243      maxv 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    648  1.243      maxv 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    649  1.243      maxv 		return true;
    650  1.243      maxv 	}
    651  1.243      maxv 
    652  1.242      maxv 	return false;
    653  1.242      maxv }
    654  1.242      maxv 
    655   1.94    simonb /*
    656    1.3        pk  * Initialize the given pool resource structure.
    657    1.3        pk  *
    658    1.3        pk  * We export this routine to allow other kernel parts to declare
    659  1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    660    1.3        pk  */
    661    1.3        pk void
    662   1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    663  1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    664    1.3        pk {
    665  1.116    simonb 	struct pool *pp1;
    666  1.240      maxv 	size_t prsize;
    667  1.237      maxv 	int itemspace, slack;
    668    1.3        pk 
    669  1.238      maxv 	/* XXX ioff will be removed. */
    670  1.238      maxv 	KASSERT(ioff == 0);
    671  1.238      maxv 
    672  1.116    simonb #ifdef DEBUG
    673  1.198  christos 	if (__predict_true(!cold))
    674  1.198  christos 		mutex_enter(&pool_head_lock);
    675  1.116    simonb 	/*
    676  1.116    simonb 	 * Check that the pool hasn't already been initialised and
    677  1.116    simonb 	 * added to the list of all pools.
    678  1.116    simonb 	 */
    679  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    680  1.116    simonb 		if (pp == pp1)
    681  1.213  christos 			panic("%s: [%s] already initialised", __func__,
    682  1.116    simonb 			    wchan);
    683  1.116    simonb 	}
    684  1.198  christos 	if (__predict_true(!cold))
    685  1.198  christos 		mutex_exit(&pool_head_lock);
    686  1.116    simonb #endif
    687  1.116    simonb 
    688   1.66   thorpej 	if (palloc == NULL)
    689   1.66   thorpej 		palloc = &pool_allocator_kmem;
    690  1.244      maxv 
    691  1.180   mlelstv 	if (!cold)
    692  1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    693  1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    694  1.112     bjh21 		if (palloc->pa_pagesz == 0)
    695   1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    696   1.66   thorpej 
    697   1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    698   1.66   thorpej 
    699  1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    700   1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    701   1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    702    1.4   thorpej 	}
    703  1.180   mlelstv 	if (!cold)
    704  1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    705    1.3        pk 
    706    1.3        pk 	if (align == 0)
    707    1.3        pk 		align = ALIGN(1);
    708   1.14   thorpej 
    709  1.204      maxv 	prsize = size;
    710  1.204      maxv 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    711  1.204      maxv 		prsize = sizeof(struct pool_item);
    712    1.3        pk 
    713  1.204      maxv 	prsize = roundup(prsize, align);
    714  1.207  riastrad 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    715  1.213  christos 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    716  1.213  christos 	    __func__, wchan, prsize, palloc->pa_pagesz);
    717   1.35        pk 
    718    1.3        pk 	/*
    719    1.3        pk 	 * Initialize the pool structure.
    720    1.3        pk 	 */
    721   1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    722   1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    723   1.88       chs 	LIST_INIT(&pp->pr_partpages);
    724  1.134        ad 	pp->pr_cache = NULL;
    725    1.3        pk 	pp->pr_curpage = NULL;
    726    1.3        pk 	pp->pr_npages = 0;
    727    1.3        pk 	pp->pr_minitems = 0;
    728    1.3        pk 	pp->pr_minpages = 0;
    729    1.3        pk 	pp->pr_maxpages = UINT_MAX;
    730   1.20   thorpej 	pp->pr_roflags = flags;
    731   1.20   thorpej 	pp->pr_flags = 0;
    732  1.204      maxv 	pp->pr_size = prsize;
    733  1.233      maxv 	pp->pr_reqsize = size;
    734    1.3        pk 	pp->pr_align = align;
    735    1.3        pk 	pp->pr_wchan = wchan;
    736   1.66   thorpej 	pp->pr_alloc = palloc;
    737  1.245      maxv 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    738   1.20   thorpej 	pp->pr_nitems = 0;
    739   1.20   thorpej 	pp->pr_nout = 0;
    740   1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    741   1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    742   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    743   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    744   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    745   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    746   1.68   thorpej 	pp->pr_drain_hook = NULL;
    747   1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    748  1.125        ad 	pp->pr_freecheck = NULL;
    749  1.204      maxv 	pool_redzone_init(pp, size);
    750  1.249      maxv 	pool_quarantine_init(pp);
    751    1.3        pk 
    752    1.3        pk 	/*
    753  1.240      maxv 	 * Decide whether to put the page header off-page to avoid wasting too
    754  1.240      maxv 	 * large a part of the page or too big an item. Off-page page headers
    755  1.240      maxv 	 * go on a hash table, so we can match a returned item with its header
    756  1.240      maxv 	 * based on the page address.
    757    1.3        pk 	 */
    758  1.240      maxv 	if (pool_init_is_phinpage(pp)) {
    759  1.241      maxv 		/* Use the beginning of the page for the page header */
    760  1.241      maxv 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    761  1.241      maxv 		pp->pr_itemoffset = roundup(PHSIZE, align);
    762  1.239      maxv 		pp->pr_roflags |= PR_PHINPAGE;
    763    1.2        pk 	} else {
    764    1.3        pk 		/* The page header will be taken from our page header pool */
    765  1.237      maxv 		itemspace = palloc->pa_pagesz;
    766  1.241      maxv 		pp->pr_itemoffset = 0;
    767   1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    768    1.2        pk 	}
    769    1.1        pk 
    770  1.243      maxv 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    771  1.243      maxv 	KASSERT(pp->pr_itemsperpage != 0);
    772  1.243      maxv 
    773  1.242      maxv 	/*
    774  1.242      maxv 	 * Decide whether to use a bitmap or a linked list to manage freed
    775  1.242      maxv 	 * items.
    776  1.242      maxv 	 */
    777  1.242      maxv 	if (pool_init_is_usebmap(pp)) {
    778  1.242      maxv 		pp->pr_roflags |= PR_USEBMAP;
    779  1.242      maxv 	}
    780  1.242      maxv 
    781  1.242      maxv 	/*
    782  1.242      maxv 	 * If we're off-page and use a bitmap, choose the appropriate pool to
    783  1.242      maxv 	 * allocate page headers, whose size varies depending on the bitmap. If
    784  1.242      maxv 	 * we're just off-page, take the first pool, no extra size. If we're
    785  1.242      maxv 	 * on-page, nothing to do.
    786  1.242      maxv 	 */
    787  1.242      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE) && (pp->pr_roflags & PR_USEBMAP)) {
    788   1.97      yamt 		int idx;
    789   1.97      yamt 
    790   1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    791   1.97      yamt 		    idx++) {
    792   1.97      yamt 			/* nothing */
    793   1.97      yamt 		}
    794   1.97      yamt 		if (idx >= PHPOOL_MAX) {
    795   1.97      yamt 			/*
    796   1.97      yamt 			 * if you see this panic, consider to tweak
    797   1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    798   1.97      yamt 			 */
    799  1.213  christos 			panic("%s: [%s] too large itemsperpage(%d) for "
    800  1.242      maxv 			    "PR_USEBMAP", __func__,
    801   1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    802   1.97      yamt 		}
    803   1.97      yamt 		pp->pr_phpool = &phpool[idx];
    804  1.242      maxv 	} else if (!(pp->pr_roflags & PR_PHINPAGE)) {
    805   1.97      yamt 		pp->pr_phpool = &phpool[0];
    806  1.242      maxv 	} else {
    807   1.97      yamt 		pp->pr_phpool = NULL;
    808   1.97      yamt 	}
    809    1.3        pk 
    810    1.3        pk 	/*
    811    1.3        pk 	 * Use the slack between the chunks and the page header
    812    1.3        pk 	 * for "cache coloring".
    813    1.3        pk 	 */
    814  1.237      maxv 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    815  1.239      maxv 	pp->pr_maxcolor = rounddown(slack, align);
    816    1.3        pk 	pp->pr_curcolor = 0;
    817    1.3        pk 
    818    1.3        pk 	pp->pr_nget = 0;
    819    1.3        pk 	pp->pr_nfail = 0;
    820    1.3        pk 	pp->pr_nput = 0;
    821    1.3        pk 	pp->pr_npagealloc = 0;
    822    1.3        pk 	pp->pr_npagefree = 0;
    823    1.1        pk 	pp->pr_hiwat = 0;
    824    1.8   thorpej 	pp->pr_nidle = 0;
    825  1.134        ad 	pp->pr_refcnt = 0;
    826    1.3        pk 
    827  1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    828  1.134        ad 	cv_init(&pp->pr_cv, wchan);
    829  1.134        ad 	pp->pr_ipl = ipl;
    830    1.1        pk 
    831  1.145        ad 	/* Insert into the list of all pools. */
    832  1.181   mlelstv 	if (!cold)
    833  1.134        ad 		mutex_enter(&pool_head_lock);
    834  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    835  1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    836  1.145        ad 			break;
    837  1.145        ad 	}
    838  1.145        ad 	if (pp1 == NULL)
    839  1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    840  1.145        ad 	else
    841  1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    842  1.181   mlelstv 	if (!cold)
    843  1.134        ad 		mutex_exit(&pool_head_lock);
    844  1.134        ad 
    845  1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    846  1.181   mlelstv 	if (!cold)
    847  1.134        ad 		mutex_enter(&palloc->pa_lock);
    848  1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    849  1.181   mlelstv 	if (!cold)
    850  1.134        ad 		mutex_exit(&palloc->pa_lock);
    851    1.1        pk }
    852    1.1        pk 
    853    1.1        pk /*
    854    1.1        pk  * De-commision a pool resource.
    855    1.1        pk  */
    856    1.1        pk void
    857   1.42   thorpej pool_destroy(struct pool *pp)
    858    1.1        pk {
    859  1.101   thorpej 	struct pool_pagelist pq;
    860    1.3        pk 	struct pool_item_header *ph;
    861   1.43   thorpej 
    862  1.249      maxv 	pool_quarantine_flush(pp);
    863  1.249      maxv 
    864  1.101   thorpej 	/* Remove from global pool list */
    865  1.134        ad 	mutex_enter(&pool_head_lock);
    866  1.134        ad 	while (pp->pr_refcnt != 0)
    867  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    868  1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    869  1.101   thorpej 	if (drainpp == pp)
    870  1.101   thorpej 		drainpp = NULL;
    871  1.134        ad 	mutex_exit(&pool_head_lock);
    872  1.101   thorpej 
    873  1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    874  1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    875   1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    876  1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    877   1.66   thorpej 
    878  1.178      elad 	mutex_enter(&pool_allocator_lock);
    879  1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    880  1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    881  1.178      elad 	mutex_exit(&pool_allocator_lock);
    882  1.178      elad 
    883  1.134        ad 	mutex_enter(&pp->pr_lock);
    884  1.101   thorpej 
    885  1.134        ad 	KASSERT(pp->pr_cache == NULL);
    886  1.207  riastrad 	KASSERTMSG((pp->pr_nout == 0),
    887  1.251  christos 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
    888  1.251  christos 	    pp->pr_nout);
    889  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    890  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    891  1.101   thorpej 
    892    1.3        pk 	/* Remove all pages */
    893  1.101   thorpej 	LIST_INIT(&pq);
    894   1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    895  1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    896  1.101   thorpej 
    897  1.134        ad 	mutex_exit(&pp->pr_lock);
    898    1.3        pk 
    899  1.101   thorpej 	pr_pagelist_free(pp, &pq);
    900  1.134        ad 	cv_destroy(&pp->pr_cv);
    901  1.134        ad 	mutex_destroy(&pp->pr_lock);
    902    1.1        pk }
    903    1.1        pk 
    904   1.68   thorpej void
    905   1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    906   1.68   thorpej {
    907   1.68   thorpej 
    908   1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    909  1.207  riastrad 	KASSERTMSG((pp->pr_drain_hook == NULL),
    910  1.213  christos 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    911   1.68   thorpej 	pp->pr_drain_hook = fn;
    912   1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    913   1.68   thorpej }
    914   1.68   thorpej 
    915   1.88       chs static struct pool_item_header *
    916  1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    917   1.55   thorpej {
    918   1.55   thorpej 	struct pool_item_header *ph;
    919   1.55   thorpej 
    920   1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    921  1.241      maxv 		ph = storage;
    922  1.134        ad 	else
    923   1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    924   1.55   thorpej 
    925  1.236      maxv 	return ph;
    926   1.55   thorpej }
    927    1.1        pk 
    928    1.1        pk /*
    929  1.134        ad  * Grab an item from the pool.
    930    1.1        pk  */
    931    1.3        pk void *
    932   1.56  sommerfe pool_get(struct pool *pp, int flags)
    933    1.1        pk {
    934    1.3        pk 	struct pool_item_header *ph;
    935   1.55   thorpej 	void *v;
    936    1.1        pk 
    937  1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    938  1.207  riastrad 	KASSERTMSG((pp->pr_itemsperpage != 0),
    939  1.213  christos 	    "%s: [%s] pr_itemsperpage is zero, "
    940  1.213  christos 	    "pool not initialized?", __func__, pp->pr_wchan);
    941  1.207  riastrad 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    942  1.207  riastrad 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    943  1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    944  1.213  christos 	    __func__, pp->pr_wchan);
    945  1.155        ad 	if (flags & PR_WAITOK) {
    946  1.154      yamt 		ASSERT_SLEEPABLE();
    947  1.155        ad 	}
    948    1.1        pk 
    949  1.134        ad 	mutex_enter(&pp->pr_lock);
    950   1.20   thorpej  startover:
    951   1.20   thorpej 	/*
    952   1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    953   1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    954   1.20   thorpej 	 * the pool.
    955   1.20   thorpej 	 */
    956  1.207  riastrad 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    957  1.213  christos 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    958   1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    959   1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    960   1.68   thorpej 			/*
    961   1.68   thorpej 			 * Since the drain hook is going to free things
    962   1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    963   1.68   thorpej 			 * and check the hardlimit condition again.
    964   1.68   thorpej 			 */
    965  1.134        ad 			mutex_exit(&pp->pr_lock);
    966   1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    967  1.134        ad 			mutex_enter(&pp->pr_lock);
    968   1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    969   1.68   thorpej 				goto startover;
    970   1.68   thorpej 		}
    971   1.68   thorpej 
    972   1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    973   1.20   thorpej 			/*
    974   1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
    975   1.20   thorpej 			 * it be?
    976   1.20   thorpej 			 */
    977   1.20   thorpej 			pp->pr_flags |= PR_WANTED;
    978  1.212  christos 			do {
    979  1.212  christos 				cv_wait(&pp->pr_cv, &pp->pr_lock);
    980  1.212  christos 			} while (pp->pr_flags & PR_WANTED);
    981   1.20   thorpej 			goto startover;
    982   1.20   thorpej 		}
    983   1.31   thorpej 
    984   1.31   thorpej 		/*
    985   1.31   thorpej 		 * Log a message that the hard limit has been hit.
    986   1.31   thorpej 		 */
    987   1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
    988   1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
    989   1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
    990   1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    991   1.21   thorpej 
    992   1.21   thorpej 		pp->pr_nfail++;
    993   1.21   thorpej 
    994  1.134        ad 		mutex_exit(&pp->pr_lock);
    995  1.216  christos 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
    996  1.236      maxv 		return NULL;
    997   1.20   thorpej 	}
    998   1.20   thorpej 
    999    1.3        pk 	/*
   1000    1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1001    1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1002    1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1003    1.3        pk 	 * has no items in its bucket.
   1004    1.3        pk 	 */
   1005   1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1006  1.113      yamt 		int error;
   1007  1.113      yamt 
   1008  1.207  riastrad 		KASSERTMSG((pp->pr_nitems == 0),
   1009  1.213  christos 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
   1010  1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
   1011   1.20   thorpej 
   1012   1.21   thorpej 		/*
   1013   1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1014   1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1015   1.21   thorpej 		 * may block.
   1016   1.21   thorpej 		 */
   1017  1.113      yamt 		error = pool_grow(pp, flags);
   1018  1.113      yamt 		if (error != 0) {
   1019   1.21   thorpej 			/*
   1020  1.210   mlelstv 			 * pool_grow aborts when another thread
   1021  1.210   mlelstv 			 * is allocating a new page. Retry if it
   1022  1.210   mlelstv 			 * waited for it.
   1023  1.210   mlelstv 			 */
   1024  1.210   mlelstv 			if (error == ERESTART)
   1025  1.210   mlelstv 				goto startover;
   1026  1.210   mlelstv 
   1027  1.210   mlelstv 			/*
   1028   1.55   thorpej 			 * We were unable to allocate a page or item
   1029   1.55   thorpej 			 * header, but we released the lock during
   1030   1.55   thorpej 			 * allocation, so perhaps items were freed
   1031   1.55   thorpej 			 * back to the pool.  Check for this case.
   1032   1.21   thorpej 			 */
   1033   1.21   thorpej 			if (pp->pr_curpage != NULL)
   1034   1.21   thorpej 				goto startover;
   1035   1.15        pk 
   1036  1.117      yamt 			pp->pr_nfail++;
   1037  1.134        ad 			mutex_exit(&pp->pr_lock);
   1038  1.211  riastrad 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   1039  1.236      maxv 			return NULL;
   1040    1.1        pk 		}
   1041    1.3        pk 
   1042   1.20   thorpej 		/* Start the allocation process over. */
   1043   1.20   thorpej 		goto startover;
   1044    1.3        pk 	}
   1045  1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1046  1.207  riastrad 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1047  1.251  christos 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
   1048  1.234      maxv 		v = pr_item_bitmap_get(pp, ph);
   1049   1.97      yamt 	} else {
   1050  1.234      maxv 		v = pr_item_linkedlist_get(pp, ph);
   1051   1.97      yamt 	}
   1052   1.20   thorpej 	pp->pr_nitems--;
   1053   1.20   thorpej 	pp->pr_nout++;
   1054    1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1055  1.207  riastrad 		KASSERT(pp->pr_nidle > 0);
   1056    1.6   thorpej 		pp->pr_nidle--;
   1057   1.88       chs 
   1058   1.88       chs 		/*
   1059   1.88       chs 		 * This page was previously empty.  Move it to the list of
   1060   1.88       chs 		 * partially-full pages.  This page is already curpage.
   1061   1.88       chs 		 */
   1062   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1063   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1064    1.6   thorpej 	}
   1065    1.3        pk 	ph->ph_nmissing++;
   1066   1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1067  1.242      maxv 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1068  1.207  riastrad 			LIST_EMPTY(&ph->ph_itemlist)),
   1069  1.213  christos 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1070  1.213  christos 			pp->pr_wchan, ph->ph_nmissing);
   1071    1.3        pk 		/*
   1072   1.88       chs 		 * This page is now full.  Move it to the full list
   1073   1.88       chs 		 * and select a new current page.
   1074    1.3        pk 		 */
   1075   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1076   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1077   1.88       chs 		pool_update_curpage(pp);
   1078    1.1        pk 	}
   1079    1.3        pk 
   1080    1.3        pk 	pp->pr_nget++;
   1081   1.20   thorpej 
   1082   1.20   thorpej 	/*
   1083   1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1084   1.20   thorpej 	 * water mark, add more items to the pool.
   1085   1.20   thorpej 	 */
   1086   1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1087   1.20   thorpej 		/*
   1088   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1089   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1090   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1091   1.20   thorpej 		 */
   1092   1.20   thorpej 	}
   1093   1.20   thorpej 
   1094  1.134        ad 	mutex_exit(&pp->pr_lock);
   1095  1.238      maxv 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1096  1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1097  1.204      maxv 	pool_redzone_fill(pp, v);
   1098  1.232  christos 	if (flags & PR_ZERO)
   1099  1.233      maxv 		memset(v, 0, pp->pr_reqsize);
   1100  1.232  christos 	else
   1101  1.232  christos 		pool_kleak_fill(pp, v);
   1102  1.232  christos 	return v;
   1103    1.1        pk }
   1104    1.1        pk 
   1105    1.1        pk /*
   1106   1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1107    1.1        pk  */
   1108   1.43   thorpej static void
   1109  1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1110    1.1        pk {
   1111    1.3        pk 	struct pool_item_header *ph;
   1112    1.3        pk 
   1113  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1114  1.204      maxv 	pool_redzone_check(pp, v);
   1115  1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1116  1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1117   1.61       chs 
   1118  1.207  riastrad 	KASSERTMSG((pp->pr_nout > 0),
   1119  1.213  christos 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1120    1.3        pk 
   1121  1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1122  1.213  christos 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1123    1.3        pk 	}
   1124   1.28   thorpej 
   1125    1.3        pk 	/*
   1126    1.3        pk 	 * Return to item list.
   1127    1.3        pk 	 */
   1128  1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1129  1.234      maxv 		pr_item_bitmap_put(pp, ph, v);
   1130   1.97      yamt 	} else {
   1131  1.234      maxv 		pr_item_linkedlist_put(pp, ph, v);
   1132   1.97      yamt 	}
   1133   1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1134    1.3        pk 	ph->ph_nmissing--;
   1135    1.3        pk 	pp->pr_nput++;
   1136   1.20   thorpej 	pp->pr_nitems++;
   1137   1.20   thorpej 	pp->pr_nout--;
   1138    1.3        pk 
   1139    1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1140    1.3        pk 	if (pp->pr_curpage == NULL)
   1141    1.3        pk 		pp->pr_curpage = ph;
   1142    1.3        pk 
   1143    1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1144    1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1145  1.134        ad 		cv_broadcast(&pp->pr_cv);
   1146    1.3        pk 	}
   1147    1.3        pk 
   1148    1.3        pk 	/*
   1149   1.88       chs 	 * If this page is now empty, do one of two things:
   1150   1.21   thorpej 	 *
   1151   1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1152   1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1153   1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1154   1.90   thorpej 	 *	    CLAIM.
   1155   1.21   thorpej 	 *
   1156   1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1157   1.88       chs 	 *
   1158   1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1159   1.88       chs 	 * page if one is available).
   1160    1.3        pk 	 */
   1161    1.3        pk 	if (ph->ph_nmissing == 0) {
   1162    1.6   thorpej 		pp->pr_nidle++;
   1163   1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1164  1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1165  1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1166    1.3        pk 		} else {
   1167   1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1168   1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1169    1.3        pk 
   1170   1.21   thorpej 			/*
   1171   1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1172   1.21   thorpej 			 * be idle for some period of time before it can
   1173   1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1174   1.21   thorpej 			 * ping-pong'ing for memory.
   1175  1.151      yamt 			 *
   1176  1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1177  1.151      yamt 			 * a problem for our usage.
   1178   1.21   thorpej 			 */
   1179  1.151      yamt 			ph->ph_time = time_uptime;
   1180    1.1        pk 		}
   1181   1.88       chs 		pool_update_curpage(pp);
   1182    1.1        pk 	}
   1183   1.88       chs 
   1184   1.21   thorpej 	/*
   1185   1.88       chs 	 * If the page was previously completely full, move it to the
   1186   1.88       chs 	 * partially-full list and make it the current page.  The next
   1187   1.88       chs 	 * allocation will get the item from this page, instead of
   1188   1.88       chs 	 * further fragmenting the pool.
   1189   1.21   thorpej 	 */
   1190   1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1191   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1192   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1193   1.21   thorpej 		pp->pr_curpage = ph;
   1194   1.21   thorpej 	}
   1195   1.43   thorpej }
   1196   1.43   thorpej 
   1197   1.56  sommerfe void
   1198   1.56  sommerfe pool_put(struct pool *pp, void *v)
   1199   1.56  sommerfe {
   1200  1.101   thorpej 	struct pool_pagelist pq;
   1201  1.101   thorpej 
   1202  1.101   thorpej 	LIST_INIT(&pq);
   1203   1.56  sommerfe 
   1204  1.134        ad 	mutex_enter(&pp->pr_lock);
   1205  1.249      maxv 	if (!pool_put_quarantine(pp, v, &pq)) {
   1206  1.249      maxv 		pool_do_put(pp, v, &pq);
   1207  1.249      maxv 	}
   1208  1.134        ad 	mutex_exit(&pp->pr_lock);
   1209   1.56  sommerfe 
   1210  1.102       chs 	pr_pagelist_free(pp, &pq);
   1211   1.56  sommerfe }
   1212   1.57  sommerfe 
   1213   1.74   thorpej /*
   1214  1.113      yamt  * pool_grow: grow a pool by a page.
   1215  1.113      yamt  *
   1216  1.113      yamt  * => called with pool locked.
   1217  1.113      yamt  * => unlock and relock the pool.
   1218  1.113      yamt  * => return with pool locked.
   1219  1.113      yamt  */
   1220  1.113      yamt 
   1221  1.113      yamt static int
   1222  1.113      yamt pool_grow(struct pool *pp, int flags)
   1223  1.113      yamt {
   1224  1.236      maxv 	struct pool_item_header *ph;
   1225  1.237      maxv 	char *storage;
   1226  1.236      maxv 
   1227  1.209  riastrad 	/*
   1228  1.209  riastrad 	 * If there's a pool_grow in progress, wait for it to complete
   1229  1.209  riastrad 	 * and try again from the top.
   1230  1.209  riastrad 	 */
   1231  1.209  riastrad 	if (pp->pr_flags & PR_GROWING) {
   1232  1.209  riastrad 		if (flags & PR_WAITOK) {
   1233  1.209  riastrad 			do {
   1234  1.209  riastrad 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1235  1.209  riastrad 			} while (pp->pr_flags & PR_GROWING);
   1236  1.209  riastrad 			return ERESTART;
   1237  1.209  riastrad 		} else {
   1238  1.219       mrg 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1239  1.219       mrg 				/*
   1240  1.219       mrg 				 * This needs an unlock/relock dance so
   1241  1.219       mrg 				 * that the other caller has a chance to
   1242  1.219       mrg 				 * run and actually do the thing.  Note
   1243  1.219       mrg 				 * that this is effectively a busy-wait.
   1244  1.219       mrg 				 */
   1245  1.219       mrg 				mutex_exit(&pp->pr_lock);
   1246  1.219       mrg 				mutex_enter(&pp->pr_lock);
   1247  1.219       mrg 				return ERESTART;
   1248  1.219       mrg 			}
   1249  1.209  riastrad 			return EWOULDBLOCK;
   1250  1.209  riastrad 		}
   1251  1.209  riastrad 	}
   1252  1.209  riastrad 	pp->pr_flags |= PR_GROWING;
   1253  1.220  christos 	if (flags & PR_WAITOK)
   1254  1.220  christos 		mutex_exit(&pp->pr_lock);
   1255  1.220  christos 	else
   1256  1.219       mrg 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1257  1.113      yamt 
   1258  1.237      maxv 	storage = pool_allocator_alloc(pp, flags);
   1259  1.237      maxv 	if (__predict_false(storage == NULL))
   1260  1.216  christos 		goto out;
   1261  1.216  christos 
   1262  1.237      maxv 	ph = pool_alloc_item_header(pp, storage, flags);
   1263  1.216  christos 	if (__predict_false(ph == NULL)) {
   1264  1.237      maxv 		pool_allocator_free(pp, storage);
   1265  1.209  riastrad 		goto out;
   1266  1.113      yamt 	}
   1267  1.113      yamt 
   1268  1.220  christos 	if (flags & PR_WAITOK)
   1269  1.220  christos 		mutex_enter(&pp->pr_lock);
   1270  1.237      maxv 	pool_prime_page(pp, storage, ph);
   1271  1.113      yamt 	pp->pr_npagealloc++;
   1272  1.216  christos 	KASSERT(pp->pr_flags & PR_GROWING);
   1273  1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1274  1.209  riastrad 	/*
   1275  1.209  riastrad 	 * If anyone was waiting for pool_grow, notify them that we
   1276  1.209  riastrad 	 * may have just done it.
   1277  1.209  riastrad 	 */
   1278  1.216  christos 	cv_broadcast(&pp->pr_cv);
   1279  1.216  christos 	return 0;
   1280  1.216  christos out:
   1281  1.220  christos 	if (flags & PR_WAITOK)
   1282  1.220  christos 		mutex_enter(&pp->pr_lock);
   1283  1.209  riastrad 	KASSERT(pp->pr_flags & PR_GROWING);
   1284  1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1285  1.216  christos 	return ENOMEM;
   1286  1.113      yamt }
   1287  1.113      yamt 
   1288  1.113      yamt /*
   1289   1.74   thorpej  * Add N items to the pool.
   1290   1.74   thorpej  */
   1291   1.74   thorpej int
   1292   1.74   thorpej pool_prime(struct pool *pp, int n)
   1293   1.74   thorpej {
   1294   1.75    simonb 	int newpages;
   1295  1.113      yamt 	int error = 0;
   1296   1.74   thorpej 
   1297  1.134        ad 	mutex_enter(&pp->pr_lock);
   1298   1.74   thorpej 
   1299   1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1300   1.74   thorpej 
   1301  1.216  christos 	while (newpages > 0) {
   1302  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1303  1.113      yamt 		if (error) {
   1304  1.214  christos 			if (error == ERESTART)
   1305  1.214  christos 				continue;
   1306   1.74   thorpej 			break;
   1307   1.74   thorpej 		}
   1308   1.74   thorpej 		pp->pr_minpages++;
   1309  1.216  christos 		newpages--;
   1310   1.74   thorpej 	}
   1311   1.74   thorpej 
   1312   1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1313   1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1314   1.74   thorpej 
   1315  1.134        ad 	mutex_exit(&pp->pr_lock);
   1316  1.113      yamt 	return error;
   1317   1.74   thorpej }
   1318   1.55   thorpej 
   1319   1.55   thorpej /*
   1320    1.3        pk  * Add a page worth of items to the pool.
   1321   1.21   thorpej  *
   1322   1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1323    1.3        pk  */
   1324   1.55   thorpej static void
   1325  1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1326    1.3        pk {
   1327  1.236      maxv 	const unsigned int align = pp->pr_align;
   1328    1.3        pk 	struct pool_item *pi;
   1329  1.128  christos 	void *cp = storage;
   1330   1.55   thorpej 	int n;
   1331   1.36        pk 
   1332  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1333  1.207  riastrad 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1334  1.207  riastrad 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1335  1.213  christos 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1336    1.3        pk 
   1337    1.3        pk 	/*
   1338    1.3        pk 	 * Insert page header.
   1339    1.3        pk 	 */
   1340   1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1341  1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1342    1.3        pk 	ph->ph_page = storage;
   1343    1.3        pk 	ph->ph_nmissing = 0;
   1344  1.151      yamt 	ph->ph_time = time_uptime;
   1345  1.245      maxv 	if (pp->pr_roflags & PR_PHINPAGE)
   1346  1.245      maxv 		ph->ph_poolid = pp->pr_poolid;
   1347  1.245      maxv 	else
   1348   1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1349    1.3        pk 
   1350    1.6   thorpej 	pp->pr_nidle++;
   1351    1.6   thorpej 
   1352    1.3        pk 	/*
   1353  1.241      maxv 	 * The item space starts after the on-page header, if any.
   1354  1.241      maxv 	 */
   1355  1.241      maxv 	ph->ph_off = pp->pr_itemoffset;
   1356  1.241      maxv 
   1357  1.241      maxv 	/*
   1358    1.3        pk 	 * Color this page.
   1359    1.3        pk 	 */
   1360  1.241      maxv 	ph->ph_off += pp->pr_curcolor;
   1361  1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1362    1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1363    1.3        pk 		pp->pr_curcolor = 0;
   1364    1.3        pk 
   1365  1.238      maxv 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1366  1.125        ad 
   1367    1.3        pk 	/*
   1368    1.3        pk 	 * Insert remaining chunks on the bucket list.
   1369    1.3        pk 	 */
   1370    1.3        pk 	n = pp->pr_itemsperpage;
   1371   1.20   thorpej 	pp->pr_nitems += n;
   1372    1.3        pk 
   1373  1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1374  1.234      maxv 		pr_item_bitmap_init(pp, ph);
   1375   1.97      yamt 	} else {
   1376   1.97      yamt 		while (n--) {
   1377   1.97      yamt 			pi = (struct pool_item *)cp;
   1378   1.78   thorpej 
   1379  1.238      maxv 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1380    1.3        pk 
   1381   1.97      yamt 			/* Insert on page list */
   1382  1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1383  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1384   1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1385    1.3        pk #endif
   1386  1.128  christos 			cp = (char *)cp + pp->pr_size;
   1387  1.125        ad 
   1388  1.238      maxv 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1389   1.97      yamt 		}
   1390    1.3        pk 	}
   1391    1.3        pk 
   1392    1.3        pk 	/*
   1393    1.3        pk 	 * If the pool was depleted, point at the new page.
   1394    1.3        pk 	 */
   1395    1.3        pk 	if (pp->pr_curpage == NULL)
   1396    1.3        pk 		pp->pr_curpage = ph;
   1397    1.3        pk 
   1398    1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1399    1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1400    1.3        pk }
   1401    1.3        pk 
   1402   1.20   thorpej /*
   1403   1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1404   1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1405   1.20   thorpej  *
   1406   1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1407   1.20   thorpej  *
   1408   1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1409   1.20   thorpej  * with it locked.
   1410   1.20   thorpej  */
   1411   1.20   thorpej static int
   1412   1.42   thorpej pool_catchup(struct pool *pp)
   1413   1.20   thorpej {
   1414   1.20   thorpej 	int error = 0;
   1415   1.20   thorpej 
   1416   1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1417  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1418  1.113      yamt 		if (error) {
   1419  1.214  christos 			if (error == ERESTART)
   1420  1.214  christos 				continue;
   1421   1.20   thorpej 			break;
   1422   1.20   thorpej 		}
   1423   1.20   thorpej 	}
   1424  1.113      yamt 	return error;
   1425   1.20   thorpej }
   1426   1.20   thorpej 
   1427   1.88       chs static void
   1428   1.88       chs pool_update_curpage(struct pool *pp)
   1429   1.88       chs {
   1430   1.88       chs 
   1431   1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1432   1.88       chs 	if (pp->pr_curpage == NULL) {
   1433   1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1434   1.88       chs 	}
   1435  1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1436  1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1437   1.88       chs }
   1438   1.88       chs 
   1439    1.3        pk void
   1440   1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1441    1.3        pk {
   1442   1.15        pk 
   1443  1.134        ad 	mutex_enter(&pp->pr_lock);
   1444   1.21   thorpej 
   1445    1.3        pk 	pp->pr_minitems = n;
   1446   1.15        pk 	pp->pr_minpages = (n == 0)
   1447   1.15        pk 		? 0
   1448   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1449   1.20   thorpej 
   1450   1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1451   1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1452   1.20   thorpej 		/*
   1453   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1454   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1455   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1456   1.20   thorpej 		 */
   1457   1.20   thorpej 	}
   1458   1.21   thorpej 
   1459  1.134        ad 	mutex_exit(&pp->pr_lock);
   1460    1.3        pk }
   1461    1.3        pk 
   1462    1.3        pk void
   1463   1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1464    1.3        pk {
   1465   1.15        pk 
   1466  1.134        ad 	mutex_enter(&pp->pr_lock);
   1467   1.21   thorpej 
   1468   1.15        pk 	pp->pr_maxpages = (n == 0)
   1469   1.15        pk 		? 0
   1470   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1471   1.21   thorpej 
   1472  1.134        ad 	mutex_exit(&pp->pr_lock);
   1473    1.3        pk }
   1474    1.3        pk 
   1475   1.20   thorpej void
   1476   1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1477   1.20   thorpej {
   1478   1.20   thorpej 
   1479  1.134        ad 	mutex_enter(&pp->pr_lock);
   1480   1.20   thorpej 
   1481   1.20   thorpej 	pp->pr_hardlimit = n;
   1482   1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1483   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1484   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1485   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1486   1.20   thorpej 
   1487   1.20   thorpej 	/*
   1488   1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1489   1.21   thorpej 	 * release the lock.
   1490   1.20   thorpej 	 */
   1491   1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1492   1.20   thorpej 		? 0
   1493   1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1494   1.21   thorpej 
   1495  1.134        ad 	mutex_exit(&pp->pr_lock);
   1496   1.20   thorpej }
   1497    1.3        pk 
   1498    1.3        pk /*
   1499    1.3        pk  * Release all complete pages that have not been used recently.
   1500  1.184     rmind  *
   1501  1.197       jym  * Must not be called from interrupt context.
   1502    1.3        pk  */
   1503   1.66   thorpej int
   1504   1.56  sommerfe pool_reclaim(struct pool *pp)
   1505    1.3        pk {
   1506    1.3        pk 	struct pool_item_header *ph, *phnext;
   1507   1.61       chs 	struct pool_pagelist pq;
   1508  1.151      yamt 	uint32_t curtime;
   1509  1.134        ad 	bool klock;
   1510  1.134        ad 	int rv;
   1511    1.3        pk 
   1512  1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1513  1.184     rmind 
   1514   1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1515   1.68   thorpej 		/*
   1516   1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1517   1.68   thorpej 		 */
   1518   1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1519   1.68   thorpej 	}
   1520   1.68   thorpej 
   1521  1.134        ad 	/*
   1522  1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1523  1.157        ad 	 * to block.
   1524  1.134        ad 	 */
   1525  1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1526  1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1527  1.134        ad 		KERNEL_LOCK(1, NULL);
   1528  1.134        ad 		klock = true;
   1529  1.134        ad 	} else
   1530  1.134        ad 		klock = false;
   1531  1.134        ad 
   1532  1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1533  1.134        ad 	if (pp->pr_cache != NULL)
   1534  1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1535  1.134        ad 
   1536  1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1537  1.134        ad 		if (klock) {
   1538  1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1539  1.134        ad 		}
   1540  1.236      maxv 		return 0;
   1541  1.134        ad 	}
   1542   1.68   thorpej 
   1543   1.88       chs 	LIST_INIT(&pq);
   1544   1.43   thorpej 
   1545  1.151      yamt 	curtime = time_uptime;
   1546   1.21   thorpej 
   1547   1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1548   1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1549    1.3        pk 
   1550    1.3        pk 		/* Check our minimum page claim */
   1551    1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1552    1.3        pk 			break;
   1553    1.3        pk 
   1554   1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1555  1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1556   1.88       chs 			continue;
   1557   1.21   thorpej 
   1558   1.88       chs 		/*
   1559   1.88       chs 		 * If freeing this page would put us below
   1560   1.88       chs 		 * the low water mark, stop now.
   1561   1.88       chs 		 */
   1562   1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1563   1.88       chs 		    pp->pr_minitems)
   1564   1.88       chs 			break;
   1565   1.21   thorpej 
   1566   1.88       chs 		pr_rmpage(pp, ph, &pq);
   1567    1.3        pk 	}
   1568    1.3        pk 
   1569  1.134        ad 	mutex_exit(&pp->pr_lock);
   1570  1.134        ad 
   1571  1.134        ad 	if (LIST_EMPTY(&pq))
   1572  1.134        ad 		rv = 0;
   1573  1.134        ad 	else {
   1574  1.134        ad 		pr_pagelist_free(pp, &pq);
   1575  1.134        ad 		rv = 1;
   1576  1.134        ad 	}
   1577  1.134        ad 
   1578  1.134        ad 	if (klock) {
   1579  1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1580  1.134        ad 	}
   1581   1.66   thorpej 
   1582  1.236      maxv 	return rv;
   1583    1.3        pk }
   1584    1.3        pk 
   1585    1.3        pk /*
   1586  1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1587  1.131        ad  *
   1588  1.134        ad  * Note, must never be called from interrupt context.
   1589    1.3        pk  */
   1590  1.197       jym bool
   1591  1.197       jym pool_drain(struct pool **ppp)
   1592    1.3        pk {
   1593  1.197       jym 	bool reclaimed;
   1594    1.3        pk 	struct pool *pp;
   1595  1.134        ad 
   1596  1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1597    1.3        pk 
   1598   1.61       chs 	pp = NULL;
   1599  1.134        ad 
   1600  1.134        ad 	/* Find next pool to drain, and add a reference. */
   1601  1.134        ad 	mutex_enter(&pool_head_lock);
   1602  1.134        ad 	do {
   1603  1.134        ad 		if (drainpp == NULL) {
   1604  1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1605  1.134        ad 		}
   1606  1.134        ad 		if (drainpp != NULL) {
   1607  1.134        ad 			pp = drainpp;
   1608  1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1609  1.134        ad 		}
   1610  1.134        ad 		/*
   1611  1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1612  1.134        ad 		 * one pool in the system being active.
   1613  1.134        ad 		 */
   1614  1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1615  1.134        ad 	pp->pr_refcnt++;
   1616  1.134        ad 	mutex_exit(&pool_head_lock);
   1617  1.134        ad 
   1618  1.134        ad 	/* Drain the cache (if any) and pool.. */
   1619  1.186     pooka 	reclaimed = pool_reclaim(pp);
   1620  1.134        ad 
   1621  1.134        ad 	/* Finally, unlock the pool. */
   1622  1.134        ad 	mutex_enter(&pool_head_lock);
   1623  1.134        ad 	pp->pr_refcnt--;
   1624  1.134        ad 	cv_broadcast(&pool_busy);
   1625  1.134        ad 	mutex_exit(&pool_head_lock);
   1626  1.186     pooka 
   1627  1.197       jym 	if (ppp != NULL)
   1628  1.197       jym 		*ppp = pp;
   1629  1.197       jym 
   1630  1.186     pooka 	return reclaimed;
   1631    1.3        pk }
   1632    1.3        pk 
   1633    1.3        pk /*
   1634  1.217       mrg  * Calculate the total number of pages consumed by pools.
   1635  1.217       mrg  */
   1636  1.217       mrg int
   1637  1.217       mrg pool_totalpages(void)
   1638  1.217       mrg {
   1639  1.250     skrll 
   1640  1.250     skrll 	mutex_enter(&pool_head_lock);
   1641  1.250     skrll 	int pages = pool_totalpages_locked();
   1642  1.250     skrll 	mutex_exit(&pool_head_lock);
   1643  1.250     skrll 
   1644  1.250     skrll 	return pages;
   1645  1.250     skrll }
   1646  1.250     skrll 
   1647  1.250     skrll int
   1648  1.250     skrll pool_totalpages_locked(void)
   1649  1.250     skrll {
   1650  1.217       mrg 	struct pool *pp;
   1651  1.218       mrg 	uint64_t total = 0;
   1652  1.217       mrg 
   1653  1.218       mrg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1654  1.218       mrg 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1655  1.218       mrg 
   1656  1.218       mrg 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1657  1.218       mrg 			bytes -= (pp->pr_nout * pp->pr_size);
   1658  1.218       mrg 		total += bytes;
   1659  1.218       mrg 	}
   1660  1.217       mrg 
   1661  1.218       mrg 	return atop(total);
   1662  1.217       mrg }
   1663  1.217       mrg 
   1664  1.217       mrg /*
   1665    1.3        pk  * Diagnostic helpers.
   1666    1.3        pk  */
   1667   1.21   thorpej 
   1668   1.25   thorpej void
   1669  1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1670  1.108      yamt {
   1671  1.108      yamt 	struct pool *pp;
   1672  1.108      yamt 
   1673  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1674  1.108      yamt 		pool_printit(pp, modif, pr);
   1675  1.108      yamt 	}
   1676  1.108      yamt }
   1677  1.108      yamt 
   1678  1.108      yamt void
   1679   1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1680   1.25   thorpej {
   1681   1.25   thorpej 
   1682   1.25   thorpej 	if (pp == NULL) {
   1683   1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1684   1.25   thorpej 		return;
   1685   1.25   thorpej 	}
   1686   1.25   thorpej 
   1687   1.25   thorpej 	pool_print1(pp, modif, pr);
   1688   1.25   thorpej }
   1689   1.25   thorpej 
   1690   1.21   thorpej static void
   1691  1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1692   1.97      yamt     void (*pr)(const char *, ...))
   1693   1.88       chs {
   1694   1.88       chs 	struct pool_item_header *ph;
   1695   1.88       chs 
   1696   1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1697  1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1698  1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1699  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1700  1.229      maxv 		struct pool_item *pi;
   1701  1.242      maxv 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1702  1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1703   1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1704   1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1705   1.97      yamt 					    pi, pi->pi_magic);
   1706   1.97      yamt 				}
   1707   1.88       chs 			}
   1708   1.88       chs 		}
   1709   1.88       chs #endif
   1710   1.88       chs 	}
   1711   1.88       chs }
   1712   1.88       chs 
   1713   1.88       chs static void
   1714   1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1715    1.3        pk {
   1716   1.25   thorpej 	struct pool_item_header *ph;
   1717  1.134        ad 	pool_cache_t pc;
   1718  1.134        ad 	pcg_t *pcg;
   1719  1.134        ad 	pool_cache_cpu_t *cc;
   1720  1.134        ad 	uint64_t cpuhit, cpumiss;
   1721   1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1722   1.25   thorpej 	char c;
   1723   1.25   thorpej 
   1724   1.25   thorpej 	while ((c = *modif++) != '\0') {
   1725   1.25   thorpej 		if (c == 'l')
   1726   1.25   thorpej 			print_log = 1;
   1727   1.25   thorpej 		if (c == 'p')
   1728   1.25   thorpej 			print_pagelist = 1;
   1729   1.44   thorpej 		if (c == 'c')
   1730   1.44   thorpej 			print_cache = 1;
   1731   1.25   thorpej 	}
   1732   1.25   thorpej 
   1733  1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1734  1.134        ad 		(*pr)("POOL CACHE");
   1735  1.134        ad 	} else {
   1736  1.134        ad 		(*pr)("POOL");
   1737  1.134        ad 	}
   1738  1.134        ad 
   1739  1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1740   1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1741   1.25   thorpej 	    pp->pr_roflags);
   1742   1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1743   1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1744   1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1745   1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1746   1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1747   1.25   thorpej 
   1748  1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1749   1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1750   1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1751   1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1752   1.25   thorpej 
   1753   1.25   thorpej 	if (print_pagelist == 0)
   1754   1.25   thorpej 		goto skip_pagelist;
   1755   1.25   thorpej 
   1756   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1757   1.88       chs 		(*pr)("\n\tempty page list:\n");
   1758   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1759   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1760   1.88       chs 		(*pr)("\n\tfull page list:\n");
   1761   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1762   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1763   1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1764   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1765   1.88       chs 
   1766   1.25   thorpej 	if (pp->pr_curpage == NULL)
   1767   1.25   thorpej 		(*pr)("\tno current page\n");
   1768   1.25   thorpej 	else
   1769   1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1770   1.25   thorpej 
   1771   1.25   thorpej  skip_pagelist:
   1772   1.25   thorpej 	if (print_log == 0)
   1773   1.25   thorpej 		goto skip_log;
   1774   1.25   thorpej 
   1775   1.25   thorpej 	(*pr)("\n");
   1776    1.3        pk 
   1777   1.25   thorpej  skip_log:
   1778   1.44   thorpej 
   1779  1.102       chs #define PR_GROUPLIST(pcg)						\
   1780  1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1781  1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1782  1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1783  1.102       chs 		    POOL_PADDR_INVALID) {				\
   1784  1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1785  1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1786  1.102       chs 			    (unsigned long long)			\
   1787  1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1788  1.102       chs 		} else {						\
   1789  1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1790  1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1791  1.102       chs 		}							\
   1792  1.102       chs 	}
   1793  1.102       chs 
   1794  1.134        ad 	if (pc != NULL) {
   1795  1.134        ad 		cpuhit = 0;
   1796  1.134        ad 		cpumiss = 0;
   1797  1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1798  1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1799  1.134        ad 				continue;
   1800  1.134        ad 			cpuhit += cc->cc_hits;
   1801  1.134        ad 			cpumiss += cc->cc_misses;
   1802  1.134        ad 		}
   1803  1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1804  1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1805  1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1806  1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1807  1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1808  1.134        ad 		    pc->pc_contended);
   1809  1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1810  1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1811  1.134        ad 		if (print_cache) {
   1812  1.134        ad 			(*pr)("\tfull cache groups:\n");
   1813  1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1814  1.134        ad 			    pcg = pcg->pcg_next) {
   1815  1.134        ad 				PR_GROUPLIST(pcg);
   1816  1.134        ad 			}
   1817  1.134        ad 			(*pr)("\tempty cache groups:\n");
   1818  1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1819  1.134        ad 			    pcg = pcg->pcg_next) {
   1820  1.134        ad 				PR_GROUPLIST(pcg);
   1821  1.134        ad 			}
   1822  1.103       chs 		}
   1823   1.44   thorpej 	}
   1824  1.102       chs #undef PR_GROUPLIST
   1825   1.88       chs }
   1826   1.88       chs 
   1827   1.88       chs static int
   1828   1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1829   1.88       chs {
   1830   1.88       chs 	struct pool_item *pi;
   1831  1.128  christos 	void *page;
   1832   1.88       chs 	int n;
   1833   1.88       chs 
   1834  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1835  1.128  christos 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1836  1.121      yamt 		if (page != ph->ph_page &&
   1837  1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1838  1.121      yamt 			if (label != NULL)
   1839  1.121      yamt 				printf("%s: ", label);
   1840  1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1841  1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1842  1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1843  1.121      yamt 				ph, page);
   1844  1.121      yamt 			return 1;
   1845  1.121      yamt 		}
   1846   1.88       chs 	}
   1847    1.3        pk 
   1848  1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1849   1.97      yamt 		return 0;
   1850   1.97      yamt 
   1851  1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1852   1.88       chs 	     pi != NULL;
   1853  1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1854   1.88       chs 
   1855  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1856   1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1857   1.88       chs 			if (label != NULL)
   1858   1.88       chs 				printf("%s: ", label);
   1859   1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1860  1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1861   1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1862  1.121      yamt 				n, pi);
   1863   1.88       chs 			panic("pool");
   1864   1.88       chs 		}
   1865   1.88       chs #endif
   1866  1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1867  1.121      yamt 			continue;
   1868  1.121      yamt 		}
   1869  1.128  christos 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1870   1.88       chs 		if (page == ph->ph_page)
   1871   1.88       chs 			continue;
   1872   1.88       chs 
   1873   1.88       chs 		if (label != NULL)
   1874   1.88       chs 			printf("%s: ", label);
   1875   1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1876   1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1877   1.88       chs 			pp->pr_wchan, ph->ph_page,
   1878   1.88       chs 			n, pi, page);
   1879   1.88       chs 		return 1;
   1880   1.88       chs 	}
   1881   1.88       chs 	return 0;
   1882    1.3        pk }
   1883    1.3        pk 
   1884   1.88       chs 
   1885    1.3        pk int
   1886   1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1887    1.3        pk {
   1888    1.3        pk 	struct pool_item_header *ph;
   1889    1.3        pk 	int r = 0;
   1890    1.3        pk 
   1891  1.134        ad 	mutex_enter(&pp->pr_lock);
   1892   1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1893   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1894   1.88       chs 		if (r) {
   1895   1.88       chs 			goto out;
   1896   1.88       chs 		}
   1897   1.88       chs 	}
   1898   1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1899   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1900   1.88       chs 		if (r) {
   1901    1.3        pk 			goto out;
   1902    1.3        pk 		}
   1903   1.88       chs 	}
   1904   1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1905   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1906   1.88       chs 		if (r) {
   1907    1.3        pk 			goto out;
   1908    1.3        pk 		}
   1909    1.3        pk 	}
   1910   1.88       chs 
   1911    1.3        pk out:
   1912  1.134        ad 	mutex_exit(&pp->pr_lock);
   1913  1.236      maxv 	return r;
   1914   1.43   thorpej }
   1915   1.43   thorpej 
   1916   1.43   thorpej /*
   1917   1.43   thorpej  * pool_cache_init:
   1918   1.43   thorpej  *
   1919   1.43   thorpej  *	Initialize a pool cache.
   1920  1.134        ad  */
   1921  1.134        ad pool_cache_t
   1922  1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1923  1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   1924  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1925  1.134        ad {
   1926  1.134        ad 	pool_cache_t pc;
   1927  1.134        ad 
   1928  1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   1929  1.134        ad 	if (pc == NULL)
   1930  1.134        ad 		return NULL;
   1931  1.134        ad 
   1932  1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1933  1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   1934  1.134        ad 
   1935  1.134        ad 	return pc;
   1936  1.134        ad }
   1937  1.134        ad 
   1938  1.134        ad /*
   1939  1.134        ad  * pool_cache_bootstrap:
   1940   1.43   thorpej  *
   1941  1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   1942  1.134        ad  *	provides initial storage.
   1943   1.43   thorpej  */
   1944   1.43   thorpej void
   1945  1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1946  1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   1947  1.134        ad     struct pool_allocator *palloc, int ipl,
   1948  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1949   1.43   thorpej     void *arg)
   1950   1.43   thorpej {
   1951  1.134        ad 	CPU_INFO_ITERATOR cii;
   1952  1.145        ad 	pool_cache_t pc1;
   1953  1.134        ad 	struct cpu_info *ci;
   1954  1.134        ad 	struct pool *pp;
   1955  1.134        ad 
   1956  1.134        ad 	pp = &pc->pc_pool;
   1957  1.208       chs 	if (palloc == NULL && ipl == IPL_NONE) {
   1958  1.208       chs 		if (size > PAGE_SIZE) {
   1959  1.208       chs 			int bigidx = pool_bigidx(size);
   1960  1.208       chs 
   1961  1.208       chs 			palloc = &pool_allocator_big[bigidx];
   1962  1.252      maxv 			flags |= PR_NOALIGN;
   1963  1.208       chs 		} else
   1964  1.208       chs 			palloc = &pool_allocator_nointr;
   1965  1.208       chs 	}
   1966  1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1967  1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1968   1.43   thorpej 
   1969  1.134        ad 	if (ctor == NULL) {
   1970  1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   1971  1.134        ad 	}
   1972  1.134        ad 	if (dtor == NULL) {
   1973  1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   1974  1.134        ad 	}
   1975   1.43   thorpej 
   1976  1.134        ad 	pc->pc_emptygroups = NULL;
   1977  1.134        ad 	pc->pc_fullgroups = NULL;
   1978  1.134        ad 	pc->pc_partgroups = NULL;
   1979   1.43   thorpej 	pc->pc_ctor = ctor;
   1980   1.43   thorpej 	pc->pc_dtor = dtor;
   1981   1.43   thorpej 	pc->pc_arg  = arg;
   1982  1.134        ad 	pc->pc_hits  = 0;
   1983   1.48   thorpej 	pc->pc_misses = 0;
   1984  1.134        ad 	pc->pc_nempty = 0;
   1985  1.134        ad 	pc->pc_npart = 0;
   1986  1.134        ad 	pc->pc_nfull = 0;
   1987  1.134        ad 	pc->pc_contended = 0;
   1988  1.134        ad 	pc->pc_refcnt = 0;
   1989  1.136      yamt 	pc->pc_freecheck = NULL;
   1990  1.134        ad 
   1991  1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   1992  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   1993  1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   1994  1.142        ad 	} else {
   1995  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   1996  1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   1997  1.142        ad 	}
   1998  1.142        ad 
   1999  1.134        ad 	/* Allocate per-CPU caches. */
   2000  1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2001  1.134        ad 	pc->pc_ncpu = 0;
   2002  1.139        ad 	if (ncpu < 2) {
   2003  1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2004  1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2005  1.137        ad 	} else {
   2006  1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2007  1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2008  1.137        ad 		}
   2009  1.134        ad 	}
   2010  1.145        ad 
   2011  1.145        ad 	/* Add to list of all pools. */
   2012  1.145        ad 	if (__predict_true(!cold))
   2013  1.134        ad 		mutex_enter(&pool_head_lock);
   2014  1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2015  1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2016  1.145        ad 			break;
   2017  1.145        ad 	}
   2018  1.145        ad 	if (pc1 == NULL)
   2019  1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2020  1.145        ad 	else
   2021  1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2022  1.145        ad 	if (__predict_true(!cold))
   2023  1.134        ad 		mutex_exit(&pool_head_lock);
   2024  1.145        ad 
   2025  1.145        ad 	membar_sync();
   2026  1.145        ad 	pp->pr_cache = pc;
   2027   1.43   thorpej }
   2028   1.43   thorpej 
   2029   1.43   thorpej /*
   2030   1.43   thorpej  * pool_cache_destroy:
   2031   1.43   thorpej  *
   2032   1.43   thorpej  *	Destroy a pool cache.
   2033   1.43   thorpej  */
   2034   1.43   thorpej void
   2035  1.134        ad pool_cache_destroy(pool_cache_t pc)
   2036   1.43   thorpej {
   2037  1.191      para 
   2038  1.191      para 	pool_cache_bootstrap_destroy(pc);
   2039  1.191      para 	pool_put(&cache_pool, pc);
   2040  1.191      para }
   2041  1.191      para 
   2042  1.191      para /*
   2043  1.191      para  * pool_cache_bootstrap_destroy:
   2044  1.191      para  *
   2045  1.191      para  *	Destroy a pool cache.
   2046  1.191      para  */
   2047  1.191      para void
   2048  1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   2049  1.191      para {
   2050  1.134        ad 	struct pool *pp = &pc->pc_pool;
   2051  1.175       jym 	u_int i;
   2052  1.134        ad 
   2053  1.134        ad 	/* Remove it from the global list. */
   2054  1.134        ad 	mutex_enter(&pool_head_lock);
   2055  1.134        ad 	while (pc->pc_refcnt != 0)
   2056  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2057  1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2058  1.134        ad 	mutex_exit(&pool_head_lock);
   2059   1.43   thorpej 
   2060   1.43   thorpej 	/* First, invalidate the entire cache. */
   2061   1.43   thorpej 	pool_cache_invalidate(pc);
   2062   1.43   thorpej 
   2063  1.134        ad 	/* Disassociate it from the pool. */
   2064  1.134        ad 	mutex_enter(&pp->pr_lock);
   2065  1.134        ad 	pp->pr_cache = NULL;
   2066  1.134        ad 	mutex_exit(&pp->pr_lock);
   2067  1.134        ad 
   2068  1.134        ad 	/* Destroy per-CPU data */
   2069  1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2070  1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   2071  1.134        ad 
   2072  1.134        ad 	/* Finally, destroy it. */
   2073  1.134        ad 	mutex_destroy(&pc->pc_lock);
   2074  1.134        ad 	pool_destroy(pp);
   2075  1.134        ad }
   2076  1.134        ad 
   2077  1.134        ad /*
   2078  1.134        ad  * pool_cache_cpu_init1:
   2079  1.134        ad  *
   2080  1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2081  1.134        ad  */
   2082  1.134        ad static void
   2083  1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2084  1.134        ad {
   2085  1.134        ad 	pool_cache_cpu_t *cc;
   2086  1.137        ad 	int index;
   2087  1.134        ad 
   2088  1.137        ad 	index = ci->ci_index;
   2089  1.137        ad 
   2090  1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   2091  1.134        ad 
   2092  1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2093  1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2094  1.134        ad 		return;
   2095  1.134        ad 	}
   2096  1.134        ad 
   2097  1.134        ad 	/*
   2098  1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2099  1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2100  1.134        ad 	 */
   2101  1.134        ad 	if (pc->pc_ncpu == 0) {
   2102  1.134        ad 		cc = &pc->pc_cpu0;
   2103  1.134        ad 		pc->pc_ncpu = 1;
   2104  1.134        ad 	} else {
   2105  1.134        ad 		mutex_enter(&pc->pc_lock);
   2106  1.134        ad 		pc->pc_ncpu++;
   2107  1.134        ad 		mutex_exit(&pc->pc_lock);
   2108  1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2109  1.134        ad 	}
   2110  1.134        ad 
   2111  1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2112  1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2113  1.134        ad 	cc->cc_cache = pc;
   2114  1.137        ad 	cc->cc_cpuindex = index;
   2115  1.134        ad 	cc->cc_hits = 0;
   2116  1.134        ad 	cc->cc_misses = 0;
   2117  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2118  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2119  1.134        ad 
   2120  1.137        ad 	pc->pc_cpus[index] = cc;
   2121   1.43   thorpej }
   2122   1.43   thorpej 
   2123  1.134        ad /*
   2124  1.134        ad  * pool_cache_cpu_init:
   2125  1.134        ad  *
   2126  1.134        ad  *	Called whenever a new CPU is attached.
   2127  1.134        ad  */
   2128  1.134        ad void
   2129  1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2130   1.43   thorpej {
   2131  1.134        ad 	pool_cache_t pc;
   2132  1.134        ad 
   2133  1.134        ad 	mutex_enter(&pool_head_lock);
   2134  1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2135  1.134        ad 		pc->pc_refcnt++;
   2136  1.134        ad 		mutex_exit(&pool_head_lock);
   2137   1.43   thorpej 
   2138  1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2139   1.43   thorpej 
   2140  1.134        ad 		mutex_enter(&pool_head_lock);
   2141  1.134        ad 		pc->pc_refcnt--;
   2142  1.134        ad 		cv_broadcast(&pool_busy);
   2143  1.134        ad 	}
   2144  1.134        ad 	mutex_exit(&pool_head_lock);
   2145   1.43   thorpej }
   2146   1.43   thorpej 
   2147  1.134        ad /*
   2148  1.134        ad  * pool_cache_reclaim:
   2149  1.134        ad  *
   2150  1.134        ad  *	Reclaim memory from a pool cache.
   2151  1.134        ad  */
   2152  1.134        ad bool
   2153  1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2154   1.43   thorpej {
   2155   1.43   thorpej 
   2156  1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2157  1.134        ad }
   2158   1.43   thorpej 
   2159  1.136      yamt static void
   2160  1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2161  1.136      yamt {
   2162  1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2163  1.136      yamt 	pool_put(&pc->pc_pool, object);
   2164  1.136      yamt }
   2165  1.136      yamt 
   2166  1.134        ad /*
   2167  1.134        ad  * pool_cache_destruct_object:
   2168  1.134        ad  *
   2169  1.134        ad  *	Force destruction of an object and its release back into
   2170  1.134        ad  *	the pool.
   2171  1.134        ad  */
   2172  1.134        ad void
   2173  1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2174  1.134        ad {
   2175  1.134        ad 
   2176  1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2177  1.136      yamt 
   2178  1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2179   1.43   thorpej }
   2180   1.43   thorpej 
   2181  1.134        ad /*
   2182  1.134        ad  * pool_cache_invalidate_groups:
   2183  1.134        ad  *
   2184  1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2185  1.134        ad  */
   2186  1.102       chs static void
   2187  1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2188  1.102       chs {
   2189  1.134        ad 	void *object;
   2190  1.134        ad 	pcg_t *next;
   2191  1.134        ad 	int i;
   2192  1.134        ad 
   2193  1.134        ad 	for (; pcg != NULL; pcg = next) {
   2194  1.134        ad 		next = pcg->pcg_next;
   2195  1.134        ad 
   2196  1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2197  1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2198  1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2199  1.134        ad 		}
   2200  1.102       chs 
   2201  1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2202  1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2203  1.142        ad 		} else {
   2204  1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2205  1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2206  1.142        ad 		}
   2207  1.102       chs 	}
   2208  1.102       chs }
   2209  1.102       chs 
   2210   1.43   thorpej /*
   2211  1.134        ad  * pool_cache_invalidate:
   2212   1.43   thorpej  *
   2213  1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2214  1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2215  1.176   thorpej  *
   2216  1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2217  1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2218  1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2219  1.196       jym  *
   2220  1.196       jym  *	Invalidation is a costly process and should not be called from
   2221  1.196       jym  *	interrupt context.
   2222   1.43   thorpej  */
   2223  1.134        ad void
   2224  1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2225  1.134        ad {
   2226  1.196       jym 	uint64_t where;
   2227  1.134        ad 	pcg_t *full, *empty, *part;
   2228  1.196       jym 
   2229  1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2230  1.176   thorpej 
   2231  1.177       jym 	if (ncpu < 2 || !mp_online) {
   2232  1.176   thorpej 		/*
   2233  1.176   thorpej 		 * We might be called early enough in the boot process
   2234  1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2235  1.196       jym 		 * In this case, transfer the content of the local CPU's
   2236  1.196       jym 		 * cache back into global cache as only this CPU is currently
   2237  1.196       jym 		 * running.
   2238  1.176   thorpej 		 */
   2239  1.196       jym 		pool_cache_transfer(pc);
   2240  1.176   thorpej 	} else {
   2241  1.176   thorpej 		/*
   2242  1.196       jym 		 * Signal all CPUs that they must transfer their local
   2243  1.196       jym 		 * cache back to the global pool then wait for the xcall to
   2244  1.196       jym 		 * complete.
   2245  1.176   thorpej 		 */
   2246  1.196       jym 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2247  1.196       jym 		    pc, NULL);
   2248  1.176   thorpej 		xc_wait(where);
   2249  1.176   thorpej 	}
   2250  1.196       jym 
   2251  1.196       jym 	/* Empty pool caches, then invalidate objects */
   2252  1.134        ad 	mutex_enter(&pc->pc_lock);
   2253  1.134        ad 	full = pc->pc_fullgroups;
   2254  1.134        ad 	empty = pc->pc_emptygroups;
   2255  1.134        ad 	part = pc->pc_partgroups;
   2256  1.134        ad 	pc->pc_fullgroups = NULL;
   2257  1.134        ad 	pc->pc_emptygroups = NULL;
   2258  1.134        ad 	pc->pc_partgroups = NULL;
   2259  1.134        ad 	pc->pc_nfull = 0;
   2260  1.134        ad 	pc->pc_nempty = 0;
   2261  1.134        ad 	pc->pc_npart = 0;
   2262  1.134        ad 	mutex_exit(&pc->pc_lock);
   2263  1.134        ad 
   2264  1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2265  1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2266  1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2267  1.134        ad }
   2268  1.134        ad 
   2269  1.175       jym /*
   2270  1.175       jym  * pool_cache_invalidate_cpu:
   2271  1.175       jym  *
   2272  1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2273  1.175       jym  *	identified by its associated index.
   2274  1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2275  1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2276  1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2277  1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2278  1.175       jym  *	may result in an undefined behaviour.
   2279  1.175       jym  */
   2280  1.175       jym static void
   2281  1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2282  1.175       jym {
   2283  1.175       jym 	pool_cache_cpu_t *cc;
   2284  1.175       jym 	pcg_t *pcg;
   2285  1.175       jym 
   2286  1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2287  1.175       jym 		return;
   2288  1.175       jym 
   2289  1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2290  1.175       jym 		pcg->pcg_next = NULL;
   2291  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2292  1.175       jym 	}
   2293  1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2294  1.175       jym 		pcg->pcg_next = NULL;
   2295  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2296  1.175       jym 	}
   2297  1.175       jym 	if (cc != &pc->pc_cpu0)
   2298  1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2299  1.175       jym 
   2300  1.175       jym }
   2301  1.175       jym 
   2302  1.134        ad void
   2303  1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2304  1.134        ad {
   2305  1.134        ad 
   2306  1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2307  1.134        ad }
   2308  1.134        ad 
   2309  1.134        ad void
   2310  1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2311  1.134        ad {
   2312  1.134        ad 
   2313  1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2314  1.134        ad }
   2315  1.134        ad 
   2316  1.134        ad void
   2317  1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2318  1.134        ad {
   2319  1.134        ad 
   2320  1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2321  1.134        ad }
   2322  1.134        ad 
   2323  1.134        ad void
   2324  1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2325  1.134        ad {
   2326  1.134        ad 
   2327  1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2328  1.134        ad }
   2329  1.134        ad 
   2330  1.162        ad static bool __noinline
   2331  1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2332  1.134        ad 		    paddr_t *pap, int flags)
   2333   1.43   thorpej {
   2334  1.134        ad 	pcg_t *pcg, *cur;
   2335  1.134        ad 	uint64_t ncsw;
   2336  1.134        ad 	pool_cache_t pc;
   2337   1.43   thorpej 	void *object;
   2338   1.58   thorpej 
   2339  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2340  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2341  1.168      yamt 
   2342  1.134        ad 	pc = cc->cc_cache;
   2343  1.134        ad 	cc->cc_misses++;
   2344   1.43   thorpej 
   2345  1.134        ad 	/*
   2346  1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2347  1.134        ad 	 * from the cache.
   2348  1.134        ad 	 */
   2349  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2350  1.134        ad 		ncsw = curlwp->l_ncsw;
   2351  1.134        ad 		mutex_enter(&pc->pc_lock);
   2352  1.134        ad 		pc->pc_contended++;
   2353   1.43   thorpej 
   2354  1.134        ad 		/*
   2355  1.134        ad 		 * If we context switched while locking, then
   2356  1.134        ad 		 * our view of the per-CPU data is invalid:
   2357  1.134        ad 		 * retry.
   2358  1.134        ad 		 */
   2359  1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2360  1.134        ad 			mutex_exit(&pc->pc_lock);
   2361  1.162        ad 			return true;
   2362   1.43   thorpej 		}
   2363  1.102       chs 	}
   2364   1.43   thorpej 
   2365  1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2366   1.43   thorpej 		/*
   2367  1.134        ad 		 * If there's a full group, release our empty
   2368  1.134        ad 		 * group back to the cache.  Install the full
   2369  1.134        ad 		 * group as cc_current and return.
   2370   1.43   thorpej 		 */
   2371  1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2372  1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2373  1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2374  1.134        ad 			pc->pc_emptygroups = cur;
   2375  1.134        ad 			pc->pc_nempty++;
   2376   1.87   thorpej 		}
   2377  1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2378  1.134        ad 		cc->cc_current = pcg;
   2379  1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2380  1.134        ad 		pc->pc_hits++;
   2381  1.134        ad 		pc->pc_nfull--;
   2382  1.134        ad 		mutex_exit(&pc->pc_lock);
   2383  1.162        ad 		return true;
   2384  1.134        ad 	}
   2385  1.134        ad 
   2386  1.134        ad 	/*
   2387  1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2388  1.134        ad 	 * path: fetch a new object from the pool and construct
   2389  1.134        ad 	 * it.
   2390  1.134        ad 	 */
   2391  1.134        ad 	pc->pc_misses++;
   2392  1.134        ad 	mutex_exit(&pc->pc_lock);
   2393  1.162        ad 	splx(s);
   2394  1.134        ad 
   2395  1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2396  1.134        ad 	*objectp = object;
   2397  1.211  riastrad 	if (__predict_false(object == NULL)) {
   2398  1.211  riastrad 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2399  1.162        ad 		return false;
   2400  1.211  riastrad 	}
   2401  1.125        ad 
   2402  1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2403  1.134        ad 		pool_put(&pc->pc_pool, object);
   2404  1.134        ad 		*objectp = NULL;
   2405  1.162        ad 		return false;
   2406   1.43   thorpej 	}
   2407   1.43   thorpej 
   2408  1.238      maxv 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2409   1.43   thorpej 
   2410  1.134        ad 	if (pap != NULL) {
   2411  1.134        ad #ifdef POOL_VTOPHYS
   2412  1.134        ad 		*pap = POOL_VTOPHYS(object);
   2413  1.134        ad #else
   2414  1.134        ad 		*pap = POOL_PADDR_INVALID;
   2415  1.134        ad #endif
   2416  1.102       chs 	}
   2417   1.43   thorpej 
   2418  1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2419  1.228      maxv 	pool_cache_kleak_fill(pc, object);
   2420  1.162        ad 	return false;
   2421   1.43   thorpej }
   2422   1.43   thorpej 
   2423   1.43   thorpej /*
   2424  1.134        ad  * pool_cache_get{,_paddr}:
   2425   1.43   thorpej  *
   2426  1.134        ad  *	Get an object from a pool cache (optionally returning
   2427  1.134        ad  *	the physical address of the object).
   2428   1.43   thorpej  */
   2429  1.134        ad void *
   2430  1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2431   1.43   thorpej {
   2432  1.134        ad 	pool_cache_cpu_t *cc;
   2433  1.134        ad 	pcg_t *pcg;
   2434  1.134        ad 	void *object;
   2435   1.60   thorpej 	int s;
   2436   1.43   thorpej 
   2437  1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2438  1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2439  1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2440  1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2441  1.213  christos 	    __func__, pc->pc_pool.pr_wchan);
   2442  1.184     rmind 
   2443  1.155        ad 	if (flags & PR_WAITOK) {
   2444  1.154      yamt 		ASSERT_SLEEPABLE();
   2445  1.155        ad 	}
   2446  1.125        ad 
   2447  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2448  1.162        ad 	s = splvm();
   2449  1.165      yamt 	while (/* CONSTCOND */ true) {
   2450  1.134        ad 		/* Try and allocate an object from the current group. */
   2451  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2452  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2453  1.134        ad 	 	pcg = cc->cc_current;
   2454  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2455  1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2456  1.162        ad 			if (__predict_false(pap != NULL))
   2457  1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2458  1.148      yamt #if defined(DIAGNOSTIC)
   2459  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2460  1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2461  1.134        ad 			KASSERT(object != NULL);
   2462  1.163        ad #endif
   2463  1.134        ad 			cc->cc_hits++;
   2464  1.162        ad 			splx(s);
   2465  1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2466  1.204      maxv 			pool_redzone_fill(&pc->pc_pool, object);
   2467  1.228      maxv 			pool_cache_kleak_fill(pc, object);
   2468  1.134        ad 			return object;
   2469   1.43   thorpej 		}
   2470   1.43   thorpej 
   2471   1.43   thorpej 		/*
   2472  1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2473  1.134        ad 		 * it with the current group and allocate from there.
   2474   1.43   thorpej 		 */
   2475  1.134        ad 		pcg = cc->cc_previous;
   2476  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2477  1.134        ad 			cc->cc_previous = cc->cc_current;
   2478  1.134        ad 			cc->cc_current = pcg;
   2479  1.134        ad 			continue;
   2480   1.43   thorpej 		}
   2481   1.43   thorpej 
   2482  1.134        ad 		/*
   2483  1.134        ad 		 * Can't allocate from either group: try the slow path.
   2484  1.134        ad 		 * If get_slow() allocated an object for us, or if
   2485  1.162        ad 		 * no more objects are available, it will return false.
   2486  1.134        ad 		 * Otherwise, we need to retry.
   2487  1.134        ad 		 */
   2488  1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2489  1.165      yamt 			break;
   2490  1.165      yamt 	}
   2491   1.43   thorpej 
   2492  1.211  riastrad 	/*
   2493  1.211  riastrad 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2494  1.211  riastrad 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2495  1.211  riastrad 	 * constructor fails.
   2496  1.211  riastrad 	 */
   2497  1.134        ad 	return object;
   2498   1.51   thorpej }
   2499   1.51   thorpej 
   2500  1.162        ad static bool __noinline
   2501  1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2502   1.51   thorpej {
   2503  1.200     pooka 	struct lwp *l = curlwp;
   2504  1.163        ad 	pcg_t *pcg, *cur;
   2505  1.134        ad 	uint64_t ncsw;
   2506  1.134        ad 	pool_cache_t pc;
   2507   1.51   thorpej 
   2508  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2509  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2510  1.168      yamt 
   2511  1.134        ad 	pc = cc->cc_cache;
   2512  1.171        ad 	pcg = NULL;
   2513  1.134        ad 	cc->cc_misses++;
   2514  1.200     pooka 	ncsw = l->l_ncsw;
   2515   1.43   thorpej 
   2516  1.171        ad 	/*
   2517  1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2518  1.171        ad 	 * while still unlocked.
   2519  1.171        ad 	 */
   2520  1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2521  1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2522  1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2523  1.171        ad 		}
   2524  1.200     pooka 		/*
   2525  1.200     pooka 		 * If pool_get() blocked, then our view of
   2526  1.200     pooka 		 * the per-CPU data is invalid: retry.
   2527  1.200     pooka 		 */
   2528  1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2529  1.200     pooka 			if (pcg != NULL) {
   2530  1.200     pooka 				pool_put(pc->pc_pcgpool, pcg);
   2531  1.200     pooka 			}
   2532  1.200     pooka 			return true;
   2533  1.200     pooka 		}
   2534  1.171        ad 		if (__predict_true(pcg != NULL)) {
   2535  1.171        ad 			pcg->pcg_avail = 0;
   2536  1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2537  1.171        ad 		}
   2538  1.171        ad 	}
   2539  1.171        ad 
   2540  1.162        ad 	/* Lock the cache. */
   2541  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2542  1.134        ad 		mutex_enter(&pc->pc_lock);
   2543  1.134        ad 		pc->pc_contended++;
   2544  1.162        ad 
   2545  1.163        ad 		/*
   2546  1.163        ad 		 * If we context switched while locking, then our view of
   2547  1.163        ad 		 * the per-CPU data is invalid: retry.
   2548  1.163        ad 		 */
   2549  1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2550  1.163        ad 			mutex_exit(&pc->pc_lock);
   2551  1.171        ad 			if (pcg != NULL) {
   2552  1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2553  1.171        ad 			}
   2554  1.163        ad 			return true;
   2555  1.163        ad 		}
   2556  1.162        ad 	}
   2557  1.102       chs 
   2558  1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2559  1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2560  1.171        ad 		pcg = pc->pc_emptygroups;
   2561  1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2562  1.163        ad 		pc->pc_nempty--;
   2563  1.134        ad 	}
   2564  1.130        ad 
   2565  1.162        ad 	/*
   2566  1.162        ad 	 * If there's a empty group, release our full group back
   2567  1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2568  1.162        ad 	 * and return.
   2569  1.162        ad 	 */
   2570  1.163        ad 	if (pcg != NULL) {
   2571  1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2572  1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2573  1.146        ad 			cc->cc_previous = pcg;
   2574  1.146        ad 		} else {
   2575  1.162        ad 			cur = cc->cc_current;
   2576  1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2577  1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2578  1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2579  1.146        ad 				pc->pc_fullgroups = cur;
   2580  1.146        ad 				pc->pc_nfull++;
   2581  1.146        ad 			}
   2582  1.146        ad 			cc->cc_current = pcg;
   2583  1.146        ad 		}
   2584  1.163        ad 		pc->pc_hits++;
   2585  1.134        ad 		mutex_exit(&pc->pc_lock);
   2586  1.162        ad 		return true;
   2587  1.102       chs 	}
   2588  1.105  christos 
   2589  1.134        ad 	/*
   2590  1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2591  1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2592  1.162        ad 	 * the object here and now.
   2593  1.134        ad 	 */
   2594  1.134        ad 	pc->pc_misses++;
   2595  1.134        ad 	mutex_exit(&pc->pc_lock);
   2596  1.162        ad 	splx(s);
   2597  1.162        ad 	pool_cache_destruct_object(pc, object);
   2598  1.105  christos 
   2599  1.162        ad 	return false;
   2600  1.236      maxv }
   2601  1.102       chs 
   2602   1.43   thorpej /*
   2603  1.134        ad  * pool_cache_put{,_paddr}:
   2604   1.43   thorpej  *
   2605  1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2606  1.134        ad  *	physical address of the object).
   2607   1.43   thorpej  */
   2608  1.101   thorpej void
   2609  1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2610   1.43   thorpej {
   2611  1.134        ad 	pool_cache_cpu_t *cc;
   2612  1.134        ad 	pcg_t *pcg;
   2613  1.134        ad 	int s;
   2614  1.101   thorpej 
   2615  1.172      yamt 	KASSERT(object != NULL);
   2616  1.229      maxv 	pool_cache_redzone_check(pc, object);
   2617  1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2618  1.101   thorpej 
   2619  1.249      maxv 	if (pool_cache_put_quarantine(pc, object, pa)) {
   2620  1.249      maxv 		return;
   2621  1.249      maxv 	}
   2622  1.249      maxv 
   2623  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2624  1.162        ad 	s = splvm();
   2625  1.165      yamt 	while (/* CONSTCOND */ true) {
   2626  1.134        ad 		/* If the current group isn't full, release it there. */
   2627  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2628  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2629  1.134        ad 	 	pcg = cc->cc_current;
   2630  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2631  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2632  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2633  1.134        ad 			pcg->pcg_avail++;
   2634  1.134        ad 			cc->cc_hits++;
   2635  1.162        ad 			splx(s);
   2636  1.134        ad 			return;
   2637  1.134        ad 		}
   2638   1.43   thorpej 
   2639  1.134        ad 		/*
   2640  1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2641  1.134        ad 		 * it with the current group and try again.
   2642  1.134        ad 		 */
   2643  1.134        ad 		pcg = cc->cc_previous;
   2644  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2645  1.134        ad 			cc->cc_previous = cc->cc_current;
   2646  1.134        ad 			cc->cc_current = pcg;
   2647  1.134        ad 			continue;
   2648  1.134        ad 		}
   2649   1.43   thorpej 
   2650  1.134        ad 		/*
   2651  1.236      maxv 		 * Can't free to either group: try the slow path.
   2652  1.134        ad 		 * If put_slow() releases the object for us, it
   2653  1.162        ad 		 * will return false.  Otherwise we need to retry.
   2654  1.134        ad 		 */
   2655  1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2656  1.165      yamt 			break;
   2657  1.165      yamt 	}
   2658   1.43   thorpej }
   2659   1.43   thorpej 
   2660   1.43   thorpej /*
   2661  1.196       jym  * pool_cache_transfer:
   2662   1.43   thorpej  *
   2663  1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2664  1.134        ad  *	Run within a cross-call thread.
   2665   1.43   thorpej  */
   2666   1.43   thorpej static void
   2667  1.196       jym pool_cache_transfer(pool_cache_t pc)
   2668   1.43   thorpej {
   2669  1.134        ad 	pool_cache_cpu_t *cc;
   2670  1.134        ad 	pcg_t *prev, *cur, **list;
   2671  1.162        ad 	int s;
   2672  1.134        ad 
   2673  1.162        ad 	s = splvm();
   2674  1.162        ad 	mutex_enter(&pc->pc_lock);
   2675  1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2676  1.134        ad 	cur = cc->cc_current;
   2677  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2678  1.134        ad 	prev = cc->cc_previous;
   2679  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2680  1.162        ad 	if (cur != &pcg_dummy) {
   2681  1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2682  1.134        ad 			list = &pc->pc_fullgroups;
   2683  1.134        ad 			pc->pc_nfull++;
   2684  1.134        ad 		} else if (cur->pcg_avail == 0) {
   2685  1.134        ad 			list = &pc->pc_emptygroups;
   2686  1.134        ad 			pc->pc_nempty++;
   2687  1.134        ad 		} else {
   2688  1.134        ad 			list = &pc->pc_partgroups;
   2689  1.134        ad 			pc->pc_npart++;
   2690  1.134        ad 		}
   2691  1.134        ad 		cur->pcg_next = *list;
   2692  1.134        ad 		*list = cur;
   2693  1.134        ad 	}
   2694  1.162        ad 	if (prev != &pcg_dummy) {
   2695  1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2696  1.134        ad 			list = &pc->pc_fullgroups;
   2697  1.134        ad 			pc->pc_nfull++;
   2698  1.134        ad 		} else if (prev->pcg_avail == 0) {
   2699  1.134        ad 			list = &pc->pc_emptygroups;
   2700  1.134        ad 			pc->pc_nempty++;
   2701  1.134        ad 		} else {
   2702  1.134        ad 			list = &pc->pc_partgroups;
   2703  1.134        ad 			pc->pc_npart++;
   2704  1.134        ad 		}
   2705  1.134        ad 		prev->pcg_next = *list;
   2706  1.134        ad 		*list = prev;
   2707  1.134        ad 	}
   2708  1.134        ad 	mutex_exit(&pc->pc_lock);
   2709  1.134        ad 	splx(s);
   2710    1.3        pk }
   2711   1.66   thorpej 
   2712   1.66   thorpej /*
   2713   1.66   thorpej  * Pool backend allocators.
   2714   1.66   thorpej  *
   2715   1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2716   1.66   thorpej  * and any additional draining that might be needed.
   2717   1.66   thorpej  *
   2718   1.66   thorpej  * We provide two standard allocators:
   2719   1.66   thorpej  *
   2720   1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2721   1.66   thorpej  *
   2722   1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2723   1.66   thorpej  *	in interrupt context.
   2724   1.66   thorpej  */
   2725   1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2726   1.66   thorpej void	pool_page_free(struct pool *, void *);
   2727   1.66   thorpej 
   2728   1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2729  1.191      para 	.pa_alloc = pool_page_alloc,
   2730  1.191      para 	.pa_free = pool_page_free,
   2731  1.191      para 	.pa_pagesz = 0
   2732   1.66   thorpej };
   2733   1.66   thorpej 
   2734   1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2735  1.191      para 	.pa_alloc = pool_page_alloc,
   2736  1.191      para 	.pa_free = pool_page_free,
   2737  1.191      para 	.pa_pagesz = 0
   2738   1.66   thorpej };
   2739   1.66   thorpej 
   2740  1.208       chs struct pool_allocator pool_allocator_big[] = {
   2741  1.208       chs 	{
   2742  1.208       chs 		.pa_alloc = pool_page_alloc,
   2743  1.208       chs 		.pa_free = pool_page_free,
   2744  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2745  1.208       chs 	},
   2746  1.208       chs 	{
   2747  1.208       chs 		.pa_alloc = pool_page_alloc,
   2748  1.208       chs 		.pa_free = pool_page_free,
   2749  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2750  1.208       chs 	},
   2751  1.208       chs 	{
   2752  1.208       chs 		.pa_alloc = pool_page_alloc,
   2753  1.208       chs 		.pa_free = pool_page_free,
   2754  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2755  1.208       chs 	},
   2756  1.208       chs 	{
   2757  1.208       chs 		.pa_alloc = pool_page_alloc,
   2758  1.208       chs 		.pa_free = pool_page_free,
   2759  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2760  1.208       chs 	},
   2761  1.208       chs 	{
   2762  1.208       chs 		.pa_alloc = pool_page_alloc,
   2763  1.208       chs 		.pa_free = pool_page_free,
   2764  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2765  1.208       chs 	},
   2766  1.208       chs 	{
   2767  1.208       chs 		.pa_alloc = pool_page_alloc,
   2768  1.208       chs 		.pa_free = pool_page_free,
   2769  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2770  1.208       chs 	},
   2771  1.208       chs 	{
   2772  1.208       chs 		.pa_alloc = pool_page_alloc,
   2773  1.208       chs 		.pa_free = pool_page_free,
   2774  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2775  1.208       chs 	},
   2776  1.208       chs 	{
   2777  1.208       chs 		.pa_alloc = pool_page_alloc,
   2778  1.208       chs 		.pa_free = pool_page_free,
   2779  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2780  1.208       chs 	}
   2781  1.208       chs };
   2782  1.208       chs 
   2783  1.208       chs static int
   2784  1.208       chs pool_bigidx(size_t size)
   2785  1.208       chs {
   2786  1.208       chs 	int i;
   2787  1.208       chs 
   2788  1.208       chs 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2789  1.208       chs 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2790  1.208       chs 			return i;
   2791  1.208       chs 	}
   2792  1.208       chs 	panic("pool item size %zu too large, use a custom allocator", size);
   2793  1.208       chs }
   2794  1.208       chs 
   2795  1.117      yamt static void *
   2796  1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2797   1.66   thorpej {
   2798  1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2799   1.66   thorpej 	void *res;
   2800   1.66   thorpej 
   2801  1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2802  1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2803   1.66   thorpej 		/*
   2804  1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2805  1.117      yamt 		 * In other cases, the hook will be run in
   2806  1.117      yamt 		 * pool_reclaim().
   2807   1.66   thorpej 		 */
   2808  1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2809  1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2810  1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2811   1.66   thorpej 		}
   2812  1.117      yamt 	}
   2813  1.117      yamt 	return res;
   2814   1.66   thorpej }
   2815   1.66   thorpej 
   2816  1.117      yamt static void
   2817   1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2818   1.66   thorpej {
   2819   1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2820   1.66   thorpej 
   2821  1.229      maxv 	if (pp->pr_redzone) {
   2822  1.248      maxv 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
   2823  1.229      maxv 	}
   2824   1.66   thorpej 	(*pa->pa_free)(pp, v);
   2825   1.66   thorpej }
   2826   1.66   thorpej 
   2827   1.66   thorpej void *
   2828  1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2829   1.66   thorpej {
   2830  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2831  1.191      para 	vmem_addr_t va;
   2832  1.192     rmind 	int ret;
   2833  1.191      para 
   2834  1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2835  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2836   1.66   thorpej 
   2837  1.192     rmind 	return ret ? NULL : (void *)va;
   2838   1.66   thorpej }
   2839   1.66   thorpej 
   2840   1.66   thorpej void
   2841  1.124      yamt pool_page_free(struct pool *pp, void *v)
   2842   1.66   thorpej {
   2843   1.66   thorpej 
   2844  1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2845   1.98      yamt }
   2846   1.98      yamt 
   2847   1.98      yamt static void *
   2848  1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2849   1.98      yamt {
   2850  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2851  1.192     rmind 	vmem_addr_t va;
   2852  1.192     rmind 	int ret;
   2853  1.191      para 
   2854  1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2855  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2856   1.98      yamt 
   2857  1.192     rmind 	return ret ? NULL : (void *)va;
   2858   1.98      yamt }
   2859   1.98      yamt 
   2860   1.98      yamt static void
   2861  1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2862   1.98      yamt {
   2863   1.98      yamt 
   2864  1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2865   1.66   thorpej }
   2866   1.66   thorpej 
   2867  1.228      maxv #ifdef KLEAK
   2868  1.228      maxv static void
   2869  1.228      maxv pool_kleak_fill(struct pool *pp, void *p)
   2870  1.228      maxv {
   2871  1.228      maxv 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
   2872  1.228      maxv 		return;
   2873  1.228      maxv 	}
   2874  1.228      maxv 	kleak_fill_area(p, pp->pr_size);
   2875  1.228      maxv }
   2876  1.228      maxv 
   2877  1.228      maxv static void
   2878  1.228      maxv pool_cache_kleak_fill(pool_cache_t pc, void *p)
   2879  1.228      maxv {
   2880  1.229      maxv 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2881  1.228      maxv 		return;
   2882  1.228      maxv 	}
   2883  1.228      maxv 	pool_kleak_fill(&pc->pc_pool, p);
   2884  1.228      maxv }
   2885  1.228      maxv #endif
   2886  1.228      maxv 
   2887  1.249      maxv #ifdef POOL_QUARANTINE
   2888  1.249      maxv static void
   2889  1.249      maxv pool_quarantine_init(struct pool *pp)
   2890  1.249      maxv {
   2891  1.249      maxv 	pp->pr_quar.rotor = 0;
   2892  1.249      maxv 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
   2893  1.249      maxv }
   2894  1.249      maxv 
   2895  1.249      maxv static void
   2896  1.249      maxv pool_quarantine_flush(struct pool *pp)
   2897  1.249      maxv {
   2898  1.249      maxv 	pool_quar_t *quar = &pp->pr_quar;
   2899  1.249      maxv 	struct pool_pagelist pq;
   2900  1.249      maxv 	size_t i;
   2901  1.249      maxv 
   2902  1.249      maxv 	LIST_INIT(&pq);
   2903  1.249      maxv 
   2904  1.249      maxv 	mutex_enter(&pp->pr_lock);
   2905  1.249      maxv 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
   2906  1.249      maxv 		if (quar->list[i] == 0)
   2907  1.249      maxv 			continue;
   2908  1.249      maxv 		pool_do_put(pp, (void *)quar->list[i], &pq);
   2909  1.249      maxv 	}
   2910  1.249      maxv 	mutex_exit(&pp->pr_lock);
   2911  1.249      maxv 
   2912  1.249      maxv 	pr_pagelist_free(pp, &pq);
   2913  1.249      maxv }
   2914  1.249      maxv 
   2915  1.249      maxv static bool
   2916  1.249      maxv pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
   2917  1.249      maxv {
   2918  1.249      maxv 	pool_quar_t *quar = &pp->pr_quar;
   2919  1.249      maxv 	uintptr_t old;
   2920  1.249      maxv 
   2921  1.249      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   2922  1.249      maxv 		return false;
   2923  1.249      maxv 	}
   2924  1.249      maxv 
   2925  1.249      maxv 	pool_redzone_check(pp, v);
   2926  1.249      maxv 
   2927  1.249      maxv 	old = quar->list[quar->rotor];
   2928  1.249      maxv 	quar->list[quar->rotor] = (uintptr_t)v;
   2929  1.249      maxv 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
   2930  1.249      maxv 	if (old != 0) {
   2931  1.249      maxv 		pool_do_put(pp, (void *)old, pq);
   2932  1.249      maxv 	}
   2933  1.249      maxv 
   2934  1.249      maxv 	return true;
   2935  1.249      maxv }
   2936  1.249      maxv 
   2937  1.249      maxv static bool
   2938  1.249      maxv pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa)
   2939  1.249      maxv {
   2940  1.249      maxv 	pool_cache_destruct_object(pc, p);
   2941  1.249      maxv 	return true;
   2942  1.249      maxv }
   2943  1.249      maxv #endif
   2944  1.249      maxv 
   2945  1.204      maxv #ifdef POOL_REDZONE
   2946  1.204      maxv #if defined(_LP64)
   2947  1.204      maxv # define PRIME 0x9e37fffffffc0000UL
   2948  1.204      maxv #else /* defined(_LP64) */
   2949  1.204      maxv # define PRIME 0x9e3779b1
   2950  1.204      maxv #endif /* defined(_LP64) */
   2951  1.204      maxv #define STATIC_BYTE	0xFE
   2952  1.204      maxv CTASSERT(POOL_REDZONE_SIZE > 1);
   2953  1.204      maxv 
   2954  1.224      maxv #ifndef KASAN
   2955  1.204      maxv static inline uint8_t
   2956  1.204      maxv pool_pattern_generate(const void *p)
   2957  1.204      maxv {
   2958  1.204      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
   2959  1.204      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2960  1.204      maxv }
   2961  1.224      maxv #endif
   2962  1.204      maxv 
   2963  1.204      maxv static void
   2964  1.204      maxv pool_redzone_init(struct pool *pp, size_t requested_size)
   2965  1.204      maxv {
   2966  1.227      maxv 	size_t redzsz;
   2967  1.204      maxv 	size_t nsz;
   2968  1.204      maxv 
   2969  1.227      maxv #ifdef KASAN
   2970  1.227      maxv 	redzsz = requested_size;
   2971  1.227      maxv 	kasan_add_redzone(&redzsz);
   2972  1.227      maxv 	redzsz -= requested_size;
   2973  1.227      maxv #else
   2974  1.227      maxv 	redzsz = POOL_REDZONE_SIZE;
   2975  1.227      maxv #endif
   2976  1.227      maxv 
   2977  1.204      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   2978  1.204      maxv 		pp->pr_redzone = false;
   2979  1.204      maxv 		return;
   2980  1.204      maxv 	}
   2981  1.204      maxv 
   2982  1.204      maxv 	/*
   2983  1.204      maxv 	 * We may have extended the requested size earlier; check if
   2984  1.204      maxv 	 * there's naturally space in the padding for a red zone.
   2985  1.204      maxv 	 */
   2986  1.227      maxv 	if (pp->pr_size - requested_size >= redzsz) {
   2987  1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   2988  1.204      maxv 		pp->pr_redzone = true;
   2989  1.204      maxv 		return;
   2990  1.204      maxv 	}
   2991  1.204      maxv 
   2992  1.204      maxv 	/*
   2993  1.204      maxv 	 * No space in the natural padding; check if we can extend a
   2994  1.204      maxv 	 * bit the size of the pool.
   2995  1.204      maxv 	 */
   2996  1.227      maxv 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   2997  1.204      maxv 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   2998  1.204      maxv 		/* Ok, we can */
   2999  1.204      maxv 		pp->pr_size = nsz;
   3000  1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3001  1.204      maxv 		pp->pr_redzone = true;
   3002  1.204      maxv 	} else {
   3003  1.204      maxv 		/* No space for a red zone... snif :'( */
   3004  1.204      maxv 		pp->pr_redzone = false;
   3005  1.204      maxv 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   3006  1.204      maxv 	}
   3007  1.204      maxv }
   3008  1.204      maxv 
   3009  1.204      maxv static void
   3010  1.204      maxv pool_redzone_fill(struct pool *pp, void *p)
   3011  1.204      maxv {
   3012  1.224      maxv 	if (!pp->pr_redzone)
   3013  1.224      maxv 		return;
   3014  1.224      maxv #ifdef KASAN
   3015  1.248      maxv 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
   3016  1.248      maxv 	    KASAN_POOL_REDZONE);
   3017  1.224      maxv #else
   3018  1.204      maxv 	uint8_t *cp, pat;
   3019  1.204      maxv 	const uint8_t *ep;
   3020  1.204      maxv 
   3021  1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3022  1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3023  1.204      maxv 
   3024  1.204      maxv 	/*
   3025  1.204      maxv 	 * We really don't want the first byte of the red zone to be '\0';
   3026  1.204      maxv 	 * an off-by-one in a string may not be properly detected.
   3027  1.204      maxv 	 */
   3028  1.204      maxv 	pat = pool_pattern_generate(cp);
   3029  1.204      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   3030  1.204      maxv 	cp++;
   3031  1.204      maxv 
   3032  1.204      maxv 	while (cp < ep) {
   3033  1.204      maxv 		*cp = pool_pattern_generate(cp);
   3034  1.204      maxv 		cp++;
   3035  1.204      maxv 	}
   3036  1.224      maxv #endif
   3037  1.204      maxv }
   3038  1.204      maxv 
   3039  1.204      maxv static void
   3040  1.204      maxv pool_redzone_check(struct pool *pp, void *p)
   3041  1.204      maxv {
   3042  1.224      maxv 	if (!pp->pr_redzone)
   3043  1.224      maxv 		return;
   3044  1.224      maxv #ifdef KASAN
   3045  1.248      maxv 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
   3046  1.224      maxv #else
   3047  1.204      maxv 	uint8_t *cp, pat, expected;
   3048  1.204      maxv 	const uint8_t *ep;
   3049  1.204      maxv 
   3050  1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3051  1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3052  1.204      maxv 
   3053  1.204      maxv 	pat = pool_pattern_generate(cp);
   3054  1.204      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   3055  1.225      maxv 	if (__predict_false(expected != *cp)) {
   3056  1.225      maxv 		printf("%s: %p: 0x%02x != 0x%02x\n",
   3057  1.204      maxv 		   __func__, cp, *cp, expected);
   3058  1.204      maxv 	}
   3059  1.204      maxv 	cp++;
   3060  1.204      maxv 
   3061  1.204      maxv 	while (cp < ep) {
   3062  1.204      maxv 		expected = pool_pattern_generate(cp);
   3063  1.225      maxv 		if (__predict_false(*cp != expected)) {
   3064  1.225      maxv 			printf("%s: %p: 0x%02x != 0x%02x\n",
   3065  1.204      maxv 			   __func__, cp, *cp, expected);
   3066  1.204      maxv 		}
   3067  1.204      maxv 		cp++;
   3068  1.204      maxv 	}
   3069  1.224      maxv #endif
   3070  1.204      maxv }
   3071  1.204      maxv 
   3072  1.229      maxv static void
   3073  1.229      maxv pool_cache_redzone_check(pool_cache_t pc, void *p)
   3074  1.229      maxv {
   3075  1.229      maxv #ifdef KASAN
   3076  1.229      maxv 	/* If there is a ctor/dtor, leave the data as valid. */
   3077  1.229      maxv 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   3078  1.229      maxv 		return;
   3079  1.229      maxv 	}
   3080  1.229      maxv #endif
   3081  1.229      maxv 	pool_redzone_check(&pc->pc_pool, p);
   3082  1.229      maxv }
   3083  1.229      maxv 
   3084  1.204      maxv #endif /* POOL_REDZONE */
   3085  1.204      maxv 
   3086  1.141      yamt #if defined(DDB)
   3087  1.141      yamt static bool
   3088  1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3089  1.141      yamt {
   3090  1.141      yamt 
   3091  1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   3092  1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3093  1.141      yamt }
   3094  1.141      yamt 
   3095  1.143      yamt static bool
   3096  1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3097  1.143      yamt {
   3098  1.143      yamt 
   3099  1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3100  1.143      yamt }
   3101  1.143      yamt 
   3102  1.143      yamt static bool
   3103  1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3104  1.143      yamt {
   3105  1.143      yamt 	int i;
   3106  1.143      yamt 
   3107  1.143      yamt 	if (pcg == NULL) {
   3108  1.143      yamt 		return false;
   3109  1.143      yamt 	}
   3110  1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   3111  1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3112  1.143      yamt 			return true;
   3113  1.143      yamt 		}
   3114  1.143      yamt 	}
   3115  1.143      yamt 	return false;
   3116  1.143      yamt }
   3117  1.143      yamt 
   3118  1.143      yamt static bool
   3119  1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3120  1.143      yamt {
   3121  1.143      yamt 
   3122  1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3123  1.234      maxv 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3124  1.143      yamt 		pool_item_bitmap_t *bitmap =
   3125  1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3126  1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3127  1.143      yamt 
   3128  1.143      yamt 		return (*bitmap & mask) == 0;
   3129  1.143      yamt 	} else {
   3130  1.143      yamt 		struct pool_item *pi;
   3131  1.143      yamt 
   3132  1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3133  1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   3134  1.143      yamt 				return false;
   3135  1.143      yamt 			}
   3136  1.143      yamt 		}
   3137  1.143      yamt 		return true;
   3138  1.143      yamt 	}
   3139  1.143      yamt }
   3140  1.143      yamt 
   3141  1.141      yamt void
   3142  1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3143  1.141      yamt {
   3144  1.141      yamt 	struct pool *pp;
   3145  1.141      yamt 
   3146  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3147  1.141      yamt 		struct pool_item_header *ph;
   3148  1.141      yamt 		uintptr_t item;
   3149  1.143      yamt 		bool allocated = true;
   3150  1.143      yamt 		bool incache = false;
   3151  1.143      yamt 		bool incpucache = false;
   3152  1.143      yamt 		char cpucachestr[32];
   3153  1.141      yamt 
   3154  1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3155  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3156  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3157  1.141      yamt 					goto found;
   3158  1.141      yamt 				}
   3159  1.141      yamt 			}
   3160  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3161  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3162  1.143      yamt 					allocated =
   3163  1.143      yamt 					    pool_allocated(pp, ph, addr);
   3164  1.143      yamt 					goto found;
   3165  1.143      yamt 				}
   3166  1.143      yamt 			}
   3167  1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3168  1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   3169  1.143      yamt 					allocated = false;
   3170  1.141      yamt 					goto found;
   3171  1.141      yamt 				}
   3172  1.141      yamt 			}
   3173  1.141      yamt 			continue;
   3174  1.141      yamt 		} else {
   3175  1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3176  1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3177  1.141      yamt 				continue;
   3178  1.141      yamt 			}
   3179  1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3180  1.141      yamt 		}
   3181  1.141      yamt found:
   3182  1.143      yamt 		if (allocated && pp->pr_cache) {
   3183  1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   3184  1.143      yamt 			struct pool_cache_group *pcg;
   3185  1.143      yamt 			int i;
   3186  1.143      yamt 
   3187  1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3188  1.143      yamt 			    pcg = pcg->pcg_next) {
   3189  1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3190  1.143      yamt 					incache = true;
   3191  1.143      yamt 					goto print;
   3192  1.143      yamt 				}
   3193  1.143      yamt 			}
   3194  1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3195  1.143      yamt 				pool_cache_cpu_t *cc;
   3196  1.143      yamt 
   3197  1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3198  1.143      yamt 					continue;
   3199  1.143      yamt 				}
   3200  1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3201  1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3202  1.143      yamt 					struct cpu_info *ci =
   3203  1.170        ad 					    cpu_lookup(i);
   3204  1.143      yamt 
   3205  1.143      yamt 					incpucache = true;
   3206  1.143      yamt 					snprintf(cpucachestr,
   3207  1.143      yamt 					    sizeof(cpucachestr),
   3208  1.143      yamt 					    "cached by CPU %u",
   3209  1.153    martin 					    ci->ci_index);
   3210  1.143      yamt 					goto print;
   3211  1.143      yamt 				}
   3212  1.143      yamt 			}
   3213  1.143      yamt 		}
   3214  1.143      yamt print:
   3215  1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3216  1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3217  1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3218  1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3219  1.143      yamt 		    pp->pr_wchan,
   3220  1.143      yamt 		    incpucache ? cpucachestr :
   3221  1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3222  1.141      yamt 	}
   3223  1.141      yamt }
   3224  1.141      yamt #endif /* defined(DDB) */
   3225  1.203     joerg 
   3226  1.203     joerg static int
   3227  1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   3228  1.203     joerg {
   3229  1.203     joerg 	struct pool_sysctl data;
   3230  1.203     joerg 	struct pool *pp;
   3231  1.203     joerg 	struct pool_cache *pc;
   3232  1.203     joerg 	pool_cache_cpu_t *cc;
   3233  1.203     joerg 	int error;
   3234  1.203     joerg 	size_t i, written;
   3235  1.203     joerg 
   3236  1.203     joerg 	if (oldp == NULL) {
   3237  1.203     joerg 		*oldlenp = 0;
   3238  1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3239  1.203     joerg 			*oldlenp += sizeof(data);
   3240  1.203     joerg 		return 0;
   3241  1.203     joerg 	}
   3242  1.203     joerg 
   3243  1.203     joerg 	memset(&data, 0, sizeof(data));
   3244  1.203     joerg 	error = 0;
   3245  1.203     joerg 	written = 0;
   3246  1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3247  1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   3248  1.203     joerg 			break;
   3249  1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3250  1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3251  1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3252  1.203     joerg #define COPY(field) data.field = pp->field
   3253  1.203     joerg 		COPY(pr_size);
   3254  1.203     joerg 
   3255  1.203     joerg 		COPY(pr_itemsperpage);
   3256  1.203     joerg 		COPY(pr_nitems);
   3257  1.203     joerg 		COPY(pr_nout);
   3258  1.203     joerg 		COPY(pr_hardlimit);
   3259  1.203     joerg 		COPY(pr_npages);
   3260  1.203     joerg 		COPY(pr_minpages);
   3261  1.203     joerg 		COPY(pr_maxpages);
   3262  1.203     joerg 
   3263  1.203     joerg 		COPY(pr_nget);
   3264  1.203     joerg 		COPY(pr_nfail);
   3265  1.203     joerg 		COPY(pr_nput);
   3266  1.203     joerg 		COPY(pr_npagealloc);
   3267  1.203     joerg 		COPY(pr_npagefree);
   3268  1.203     joerg 		COPY(pr_hiwat);
   3269  1.203     joerg 		COPY(pr_nidle);
   3270  1.203     joerg #undef COPY
   3271  1.203     joerg 
   3272  1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   3273  1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   3274  1.203     joerg 		if (pp->pr_cache) {
   3275  1.203     joerg 			pc = pp->pr_cache;
   3276  1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3277  1.203     joerg 			data.pr_cache_nfull = pc->pc_nfull;
   3278  1.203     joerg 			data.pr_cache_npartial = pc->pc_npart;
   3279  1.203     joerg 			data.pr_cache_nempty = pc->pc_nempty;
   3280  1.203     joerg 			data.pr_cache_ncontended = pc->pc_contended;
   3281  1.203     joerg 			data.pr_cache_nmiss_global = pc->pc_misses;
   3282  1.203     joerg 			data.pr_cache_nhit_global = pc->pc_hits;
   3283  1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3284  1.203     joerg 				cc = pc->pc_cpus[i];
   3285  1.203     joerg 				if (cc == NULL)
   3286  1.203     joerg 					continue;
   3287  1.206  knakahar 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3288  1.206  knakahar 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3289  1.203     joerg 			}
   3290  1.203     joerg 		} else {
   3291  1.203     joerg 			data.pr_cache_meta_size = 0;
   3292  1.203     joerg 			data.pr_cache_nfull = 0;
   3293  1.203     joerg 			data.pr_cache_npartial = 0;
   3294  1.203     joerg 			data.pr_cache_nempty = 0;
   3295  1.203     joerg 			data.pr_cache_ncontended = 0;
   3296  1.203     joerg 			data.pr_cache_nmiss_global = 0;
   3297  1.203     joerg 			data.pr_cache_nhit_global = 0;
   3298  1.203     joerg 		}
   3299  1.203     joerg 
   3300  1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3301  1.203     joerg 		if (error)
   3302  1.203     joerg 			break;
   3303  1.203     joerg 		written += sizeof(data);
   3304  1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   3305  1.203     joerg 	}
   3306  1.203     joerg 
   3307  1.203     joerg 	*oldlenp = written;
   3308  1.203     joerg 	return error;
   3309  1.203     joerg }
   3310  1.203     joerg 
   3311  1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3312  1.203     joerg {
   3313  1.203     joerg 	const struct sysctlnode *rnode = NULL;
   3314  1.203     joerg 
   3315  1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   3316  1.203     joerg 		       CTLFLAG_PERMANENT,
   3317  1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   3318  1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   3319  1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   3320  1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3321  1.203     joerg }
   3322