Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.252.2.1
      1  1.252.2.1    martin /*	$NetBSD: subr_pool.c,v 1.252.2.1 2019/08/18 09:52:12 martin Exp $	*/
      2        1.1        pk 
      3      1.229      maxv /*
      4      1.229      maxv  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5      1.183        ad  *     The NetBSD Foundation, Inc.
      6        1.1        pk  * All rights reserved.
      7        1.1        pk  *
      8        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10      1.204      maxv  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11      1.204      maxv  * Maxime Villard.
     12        1.1        pk  *
     13        1.1        pk  * Redistribution and use in source and binary forms, with or without
     14        1.1        pk  * modification, are permitted provided that the following conditions
     15        1.1        pk  * are met:
     16        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20        1.1        pk  *    documentation and/or other materials provided with the distribution.
     21        1.1        pk  *
     22        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33        1.1        pk  */
     34       1.64     lukem 
     35       1.64     lukem #include <sys/cdefs.h>
     36  1.252.2.1    martin __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.252.2.1 2019/08/18 09:52:12 martin Exp $");
     37       1.24    scottr 
     38      1.205     pooka #ifdef _KERNEL_OPT
     39      1.141      yamt #include "opt_ddb.h"
     40       1.28   thorpej #include "opt_lockdebug.h"
     41      1.249      maxv #include "opt_pool.h"
     42      1.228      maxv #include "opt_kleak.h"
     43      1.205     pooka #endif
     44        1.1        pk 
     45        1.1        pk #include <sys/param.h>
     46        1.1        pk #include <sys/systm.h>
     47      1.203     joerg #include <sys/sysctl.h>
     48      1.135      yamt #include <sys/bitops.h>
     49        1.1        pk #include <sys/proc.h>
     50        1.1        pk #include <sys/errno.h>
     51        1.1        pk #include <sys/kernel.h>
     52      1.191      para #include <sys/vmem.h>
     53        1.1        pk #include <sys/pool.h>
     54       1.20   thorpej #include <sys/syslog.h>
     55      1.125        ad #include <sys/debug.h>
     56      1.134        ad #include <sys/lockdebug.h>
     57      1.134        ad #include <sys/xcall.h>
     58      1.134        ad #include <sys/cpu.h>
     59      1.145        ad #include <sys/atomic.h>
     60      1.224      maxv #include <sys/asan.h>
     61        1.3        pk 
     62      1.187  uebayasi #include <uvm/uvm_extern.h>
     63        1.3        pk 
     64        1.1        pk /*
     65        1.1        pk  * Pool resource management utility.
     66        1.3        pk  *
     67       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     68       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     69       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     70       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     71       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     72       1.88       chs  * header. The memory for building the page list is either taken from
     73       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     74       1.88       chs  * an internal pool of page headers (`phpool').
     75        1.1        pk  */
     76        1.1        pk 
     77      1.221      para /* List of all pools. Non static as needed by 'vmstat -m' */
     78      1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     79      1.134        ad 
     80        1.3        pk /* Private pool for page header structures */
     81       1.97      yamt #define	PHPOOL_MAX	8
     82       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     83      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     84      1.135      yamt 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     85        1.3        pk 
     86      1.226      maxv #if defined(KASAN)
     87      1.224      maxv #define POOL_REDZONE
     88      1.224      maxv #endif
     89      1.224      maxv 
     90      1.204      maxv #ifdef POOL_REDZONE
     91      1.224      maxv # ifdef KASAN
     92      1.224      maxv #  define POOL_REDZONE_SIZE 8
     93      1.224      maxv # else
     94      1.224      maxv #  define POOL_REDZONE_SIZE 2
     95      1.224      maxv # endif
     96      1.204      maxv static void pool_redzone_init(struct pool *, size_t);
     97      1.204      maxv static void pool_redzone_fill(struct pool *, void *);
     98      1.204      maxv static void pool_redzone_check(struct pool *, void *);
     99      1.229      maxv static void pool_cache_redzone_check(pool_cache_t, void *);
    100      1.204      maxv #else
    101      1.229      maxv # define pool_redzone_init(pp, sz)		__nothing
    102      1.229      maxv # define pool_redzone_fill(pp, ptr)		__nothing
    103      1.229      maxv # define pool_redzone_check(pp, ptr)		__nothing
    104      1.229      maxv # define pool_cache_redzone_check(pc, ptr)	__nothing
    105      1.204      maxv #endif
    106      1.204      maxv 
    107      1.228      maxv #ifdef KLEAK
    108      1.228      maxv static void pool_kleak_fill(struct pool *, void *);
    109      1.228      maxv static void pool_cache_kleak_fill(pool_cache_t, void *);
    110      1.228      maxv #else
    111      1.228      maxv #define pool_kleak_fill(pp, ptr)	__nothing
    112      1.228      maxv #define pool_cache_kleak_fill(pc, ptr)	__nothing
    113      1.228      maxv #endif
    114      1.228      maxv 
    115      1.249      maxv #ifdef POOL_QUARANTINE
    116      1.249      maxv static void pool_quarantine_init(struct pool *);
    117      1.249      maxv static void pool_quarantine_flush(struct pool *);
    118      1.249      maxv static bool pool_put_quarantine(struct pool *, void *,
    119      1.249      maxv     struct pool_pagelist *);
    120      1.249      maxv static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t);
    121      1.249      maxv #else
    122      1.249      maxv #define pool_quarantine_init(a)			__nothing
    123      1.249      maxv #define pool_quarantine_flush(a)		__nothing
    124      1.249      maxv #define pool_put_quarantine(a, b, c)		false
    125      1.249      maxv #define pool_cache_put_quarantine(a, b, c)	false
    126      1.249      maxv #endif
    127      1.249      maxv 
    128      1.229      maxv #define pc_has_ctor(pc) \
    129      1.229      maxv 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
    130      1.229      maxv #define pc_has_dtor(pc) \
    131      1.229      maxv 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
    132      1.229      maxv 
    133       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    134       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    135       1.98      yamt 
    136       1.98      yamt /* allocator for pool metadata */
    137      1.134        ad struct pool_allocator pool_allocator_meta = {
    138      1.191      para 	.pa_alloc = pool_page_alloc_meta,
    139      1.191      para 	.pa_free = pool_page_free_meta,
    140      1.191      para 	.pa_pagesz = 0
    141       1.98      yamt };
    142       1.98      yamt 
    143      1.208       chs #define POOL_ALLOCATOR_BIG_BASE 13
    144      1.208       chs extern struct pool_allocator pool_allocator_big[];
    145      1.208       chs static int pool_bigidx(size_t);
    146      1.208       chs 
    147        1.3        pk /* # of seconds to retain page after last use */
    148        1.3        pk int pool_inactive_time = 10;
    149        1.3        pk 
    150        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    151      1.236      maxv static struct pool *drainpp;
    152       1.23   thorpej 
    153      1.134        ad /* This lock protects both pool_head and drainpp. */
    154      1.134        ad static kmutex_t pool_head_lock;
    155      1.134        ad static kcondvar_t pool_busy;
    156        1.3        pk 
    157      1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    158      1.178      elad static kmutex_t pool_allocator_lock;
    159      1.178      elad 
    160      1.245      maxv static unsigned int poolid_counter = 0;
    161      1.245      maxv 
    162      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    163      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    164      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    165       1.99      yamt 
    166        1.3        pk struct pool_item_header {
    167        1.3        pk 	/* Page headers */
    168       1.88       chs 	LIST_ENTRY(pool_item_header)
    169        1.3        pk 				ph_pagelist;	/* pool page list */
    170      1.245      maxv 	union {
    171      1.245      maxv 		/* !PR_PHINPAGE */
    172      1.245      maxv 		struct {
    173      1.245      maxv 			SPLAY_ENTRY(pool_item_header)
    174      1.245      maxv 				phu_node;	/* off-page page headers */
    175      1.245      maxv 		} phu_offpage;
    176      1.245      maxv 		/* PR_PHINPAGE */
    177      1.245      maxv 		struct {
    178      1.245      maxv 			unsigned int phu_poolid;
    179      1.245      maxv 		} phu_onpage;
    180      1.245      maxv 	} ph_u1;
    181      1.128  christos 	void *			ph_page;	/* this page's address */
    182      1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    183      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    184      1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    185       1.97      yamt 	union {
    186      1.242      maxv 		/* !PR_USEBMAP */
    187       1.97      yamt 		struct {
    188      1.102       chs 			LIST_HEAD(, pool_item)
    189       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    190       1.97      yamt 		} phu_normal;
    191      1.242      maxv 		/* PR_USEBMAP */
    192       1.97      yamt 		struct {
    193      1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    194       1.97      yamt 		} phu_notouch;
    195      1.245      maxv 	} ph_u2;
    196        1.3        pk };
    197      1.245      maxv #define ph_node		ph_u1.phu_offpage.phu_node
    198      1.245      maxv #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    199      1.245      maxv #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    200      1.245      maxv #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    201        1.3        pk 
    202      1.240      maxv #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    203      1.240      maxv 
    204      1.229      maxv #if defined(DIAGNOSTIC) && !defined(KASAN)
    205      1.229      maxv #define POOL_CHECK_MAGIC
    206      1.229      maxv #endif
    207      1.229      maxv 
    208        1.1        pk struct pool_item {
    209      1.229      maxv #ifdef POOL_CHECK_MAGIC
    210       1.82   thorpej 	u_int pi_magic;
    211       1.33       chs #endif
    212      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    213        1.3        pk 	/* Other entries use only this list entry */
    214      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    215        1.3        pk };
    216        1.3        pk 
    217       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    218       1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    219  1.252.2.1    martin #define	POOL_OBJ_TO_PAGE(pp, v)						\
    220  1.252.2.1    martin 	(void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
    221       1.53   thorpej 
    222       1.43   thorpej /*
    223       1.43   thorpej  * Pool cache management.
    224       1.43   thorpej  *
    225       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    226       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    227       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    228       1.43   thorpej  * necessary.
    229       1.43   thorpej  *
    230      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    231      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    232      1.134        ad  * object from the pool, it calls the object's constructor and places it
    233      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    234      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    235      1.134        ad  * to persist in constructed form while freed to the cache.
    236      1.134        ad  *
    237      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    238      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    239      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    240      1.134        ad  * its entirety.
    241       1.43   thorpej  *
    242       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    243       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    244       1.43   thorpej  * from it.
    245       1.43   thorpej  */
    246       1.43   thorpej 
    247      1.142        ad static struct pool pcg_normal_pool;
    248      1.142        ad static struct pool pcg_large_pool;
    249      1.134        ad static struct pool cache_pool;
    250      1.134        ad static struct pool cache_cpu_pool;
    251        1.3        pk 
    252      1.145        ad /* List of all caches. */
    253      1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    254      1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    255      1.145        ad 
    256      1.162        ad int pool_cache_disable;		/* global disable for caching */
    257      1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    258      1.145        ad 
    259      1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    260      1.162        ad 				    void *);
    261      1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    262      1.162        ad 				    void **, paddr_t *, int);
    263      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    264      1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    265      1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    266      1.196       jym static void	pool_cache_transfer(pool_cache_t);
    267        1.3        pk 
    268       1.42   thorpej static int	pool_catchup(struct pool *);
    269      1.128  christos static void	pool_prime_page(struct pool *, void *,
    270       1.55   thorpej 		    struct pool_item_header *);
    271       1.88       chs static void	pool_update_curpage(struct pool *);
    272       1.66   thorpej 
    273      1.113      yamt static int	pool_grow(struct pool *, int);
    274      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    275      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    276        1.3        pk 
    277       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    278      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    279       1.42   thorpej static void pool_print1(struct pool *, const char *,
    280      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    281        1.3        pk 
    282       1.88       chs static int pool_chk_page(struct pool *, const char *,
    283       1.88       chs 			 struct pool_item_header *);
    284       1.88       chs 
    285      1.234      maxv /* -------------------------------------------------------------------------- */
    286      1.234      maxv 
    287      1.135      yamt static inline unsigned int
    288      1.234      maxv pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    289       1.97      yamt     const void *v)
    290       1.97      yamt {
    291       1.97      yamt 	const char *cp = v;
    292      1.135      yamt 	unsigned int idx;
    293       1.97      yamt 
    294      1.242      maxv 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    295      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    296      1.237      maxv 
    297      1.237      maxv 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    298      1.237      maxv 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    299      1.237      maxv 		    pp->pr_itemsperpage);
    300      1.237      maxv 	}
    301      1.237      maxv 
    302       1.97      yamt 	return idx;
    303       1.97      yamt }
    304       1.97      yamt 
    305      1.110     perry static inline void
    306      1.234      maxv pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    307       1.97      yamt     void *obj)
    308       1.97      yamt {
    309      1.234      maxv 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    310      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    311      1.223     kamil 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    312       1.97      yamt 
    313      1.237      maxv 	if (__predict_false((*bitmap & mask) != 0)) {
    314      1.237      maxv 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    315      1.237      maxv 	}
    316      1.237      maxv 
    317      1.135      yamt 	*bitmap |= mask;
    318       1.97      yamt }
    319       1.97      yamt 
    320      1.110     perry static inline void *
    321      1.234      maxv pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    322       1.97      yamt {
    323      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    324      1.135      yamt 	unsigned int idx;
    325      1.135      yamt 	int i;
    326       1.97      yamt 
    327      1.135      yamt 	for (i = 0; ; i++) {
    328      1.135      yamt 		int bit;
    329       1.97      yamt 
    330      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    331      1.135      yamt 		bit = ffs32(bitmap[i]);
    332      1.135      yamt 		if (bit) {
    333      1.135      yamt 			pool_item_bitmap_t mask;
    334      1.135      yamt 
    335      1.135      yamt 			bit--;
    336      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    337      1.222     kamil 			mask = 1U << bit;
    338      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    339      1.135      yamt 			bitmap[i] &= ~mask;
    340      1.135      yamt 			break;
    341      1.135      yamt 		}
    342      1.135      yamt 	}
    343      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    344      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    345       1.97      yamt }
    346       1.97      yamt 
    347      1.135      yamt static inline void
    348      1.234      maxv pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    349      1.135      yamt {
    350      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    351      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    352      1.135      yamt 	int i;
    353      1.135      yamt 
    354      1.135      yamt 	for (i = 0; i < n; i++) {
    355      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    356      1.135      yamt 	}
    357      1.135      yamt }
    358      1.135      yamt 
    359      1.234      maxv /* -------------------------------------------------------------------------- */
    360      1.234      maxv 
    361      1.234      maxv static inline void
    362      1.234      maxv pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    363      1.234      maxv     void *obj)
    364      1.234      maxv {
    365      1.234      maxv 	struct pool_item *pi = obj;
    366      1.234      maxv 
    367      1.234      maxv #ifdef POOL_CHECK_MAGIC
    368      1.234      maxv 	pi->pi_magic = PI_MAGIC;
    369      1.234      maxv #endif
    370      1.234      maxv 
    371      1.234      maxv 	if (pp->pr_redzone) {
    372      1.234      maxv 		/*
    373      1.234      maxv 		 * Mark the pool_item as valid. The rest is already
    374      1.234      maxv 		 * invalid.
    375      1.234      maxv 		 */
    376      1.248      maxv 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
    377      1.234      maxv 	}
    378      1.234      maxv 
    379      1.234      maxv 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    380      1.234      maxv }
    381      1.234      maxv 
    382      1.234      maxv static inline void *
    383      1.234      maxv pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    384      1.234      maxv {
    385      1.234      maxv 	struct pool_item *pi;
    386      1.234      maxv 	void *v;
    387      1.234      maxv 
    388      1.234      maxv 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    389      1.234      maxv 	if (__predict_false(v == NULL)) {
    390      1.234      maxv 		mutex_exit(&pp->pr_lock);
    391      1.234      maxv 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    392      1.234      maxv 	}
    393      1.234      maxv 	KASSERTMSG((pp->pr_nitems > 0),
    394      1.234      maxv 	    "%s: [%s] nitems %u inconsistent on itemlist",
    395      1.234      maxv 	    __func__, pp->pr_wchan, pp->pr_nitems);
    396      1.234      maxv #ifdef POOL_CHECK_MAGIC
    397      1.234      maxv 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    398      1.234      maxv 	    "%s: [%s] free list modified: "
    399      1.234      maxv 	    "magic=%x; page %p; item addr %p", __func__,
    400      1.234      maxv 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    401      1.234      maxv #endif
    402      1.234      maxv 
    403      1.234      maxv 	/*
    404      1.234      maxv 	 * Remove from item list.
    405      1.234      maxv 	 */
    406      1.234      maxv 	LIST_REMOVE(pi, pi_list);
    407      1.234      maxv 
    408      1.234      maxv 	return v;
    409      1.234      maxv }
    410      1.234      maxv 
    411      1.234      maxv /* -------------------------------------------------------------------------- */
    412      1.234      maxv 
    413  1.252.2.1    martin static inline void
    414  1.252.2.1    martin pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
    415  1.252.2.1    martin     void *object)
    416  1.252.2.1    martin {
    417  1.252.2.1    martin 	if (__predict_false((void *)ph->ph_page != page)) {
    418  1.252.2.1    martin 		panic("%s: [%s] item %p not part of pool", __func__,
    419  1.252.2.1    martin 		    pp->pr_wchan, object);
    420  1.252.2.1    martin 	}
    421  1.252.2.1    martin 	if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
    422  1.252.2.1    martin 		panic("%s: [%s] item %p below item space", __func__,
    423  1.252.2.1    martin 		    pp->pr_wchan, object);
    424  1.252.2.1    martin 	}
    425  1.252.2.1    martin 	if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    426  1.252.2.1    martin 		panic("%s: [%s] item %p poolid %u != %u", __func__,
    427  1.252.2.1    martin 		    pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
    428  1.252.2.1    martin 	}
    429  1.252.2.1    martin }
    430  1.252.2.1    martin 
    431  1.252.2.1    martin static inline void
    432  1.252.2.1    martin pc_phinpage_check(pool_cache_t pc, void *object)
    433  1.252.2.1    martin {
    434  1.252.2.1    martin 	struct pool_item_header *ph;
    435  1.252.2.1    martin 	struct pool *pp;
    436  1.252.2.1    martin 	void *page;
    437  1.252.2.1    martin 
    438  1.252.2.1    martin 	pp = &pc->pc_pool;
    439  1.252.2.1    martin 	page = POOL_OBJ_TO_PAGE(pp, object);
    440  1.252.2.1    martin 	ph = (struct pool_item_header *)page;
    441  1.252.2.1    martin 
    442  1.252.2.1    martin 	pr_phinpage_check(pp, ph, page, object);
    443  1.252.2.1    martin }
    444  1.252.2.1    martin 
    445  1.252.2.1    martin /* -------------------------------------------------------------------------- */
    446  1.252.2.1    martin 
    447      1.110     perry static inline int
    448       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    449       1.88       chs {
    450      1.121      yamt 
    451      1.121      yamt 	/*
    452      1.236      maxv 	 * We consider pool_item_header with smaller ph_page bigger. This
    453      1.236      maxv 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    454      1.121      yamt 	 */
    455       1.88       chs 	if (a->ph_page < b->ph_page)
    456      1.236      maxv 		return 1;
    457      1.121      yamt 	else if (a->ph_page > b->ph_page)
    458      1.236      maxv 		return -1;
    459       1.88       chs 	else
    460      1.236      maxv 		return 0;
    461       1.88       chs }
    462       1.88       chs 
    463       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    464       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    465       1.88       chs 
    466      1.141      yamt static inline struct pool_item_header *
    467      1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    468      1.141      yamt {
    469      1.141      yamt 	struct pool_item_header *ph, tmp;
    470      1.141      yamt 
    471      1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    472      1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    473      1.141      yamt 	if (ph == NULL) {
    474      1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    475      1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    476      1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    477      1.141      yamt 		}
    478      1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    479      1.141      yamt 	}
    480      1.141      yamt 
    481      1.141      yamt 	return ph;
    482      1.141      yamt }
    483      1.141      yamt 
    484        1.3        pk /*
    485      1.121      yamt  * Return the pool page header based on item address.
    486        1.3        pk  */
    487      1.110     perry static inline struct pool_item_header *
    488      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    489        1.3        pk {
    490       1.88       chs 	struct pool_item_header *ph, tmp;
    491        1.3        pk 
    492      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    493      1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    494      1.121      yamt 	} else {
    495  1.252.2.1    martin 		void *page = POOL_OBJ_TO_PAGE(pp, v);
    496      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    497      1.241      maxv 			ph = (struct pool_item_header *)page;
    498  1.252.2.1    martin 			pr_phinpage_check(pp, ph, page, v);
    499      1.121      yamt 		} else {
    500      1.121      yamt 			tmp.ph_page = page;
    501      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    502      1.121      yamt 		}
    503      1.121      yamt 	}
    504        1.3        pk 
    505      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    506      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    507      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    508       1.88       chs 	return ph;
    509        1.3        pk }
    510        1.3        pk 
    511      1.101   thorpej static void
    512      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    513      1.101   thorpej {
    514      1.101   thorpej 	struct pool_item_header *ph;
    515      1.101   thorpej 
    516      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    517      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    518      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    519      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    520      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    521      1.101   thorpej 	}
    522      1.101   thorpej }
    523      1.101   thorpej 
    524        1.3        pk /*
    525        1.3        pk  * Remove a page from the pool.
    526        1.3        pk  */
    527      1.110     perry static inline void
    528       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    529       1.61       chs      struct pool_pagelist *pq)
    530        1.3        pk {
    531        1.3        pk 
    532      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    533       1.91      yamt 
    534        1.3        pk 	/*
    535        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    536        1.3        pk 	 */
    537        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    538      1.207  riastrad 		KASSERT(pp->pr_nidle != 0);
    539      1.207  riastrad 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    540      1.251  christos 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
    541      1.251  christos 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
    542        1.6   thorpej 		pp->pr_nidle--;
    543        1.6   thorpej 	}
    544        1.7   thorpej 
    545       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    546       1.20   thorpej 
    547        1.7   thorpej 	/*
    548      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    549        1.7   thorpej 	 */
    550       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    551      1.245      maxv 	if (pp->pr_roflags & PR_PHINPAGE) {
    552      1.245      maxv 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    553      1.245      maxv 			panic("%s: [%s] ph %p poolid %u != %u",
    554      1.245      maxv 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    555      1.245      maxv 			    pp->pr_poolid);
    556      1.245      maxv 		}
    557      1.245      maxv 	} else {
    558       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    559      1.245      maxv 	}
    560      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    561      1.101   thorpej 
    562        1.7   thorpej 	pp->pr_npages--;
    563        1.7   thorpej 	pp->pr_npagefree++;
    564        1.6   thorpej 
    565       1.88       chs 	pool_update_curpage(pp);
    566        1.3        pk }
    567        1.3        pk 
    568        1.3        pk /*
    569       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    570       1.94    simonb  */
    571       1.94    simonb void
    572      1.117      yamt pool_subsystem_init(void)
    573       1.94    simonb {
    574      1.192     rmind 	size_t size;
    575      1.191      para 	int idx;
    576       1.94    simonb 
    577      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    578      1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    579      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    580      1.134        ad 
    581      1.191      para 	/*
    582      1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    583      1.191      para 	 * haven't done so yet.
    584      1.191      para 	 */
    585      1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    586      1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    587      1.191      para 		int nelem;
    588      1.191      para 		size_t sz;
    589      1.191      para 
    590      1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    591      1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    592      1.191      para 		    "phpool-%d", nelem);
    593      1.191      para 		sz = sizeof(struct pool_item_header);
    594      1.191      para 		if (nelem) {
    595      1.191      para 			sz = offsetof(struct pool_item_header,
    596      1.191      para 			    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    597      1.191      para 		}
    598      1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    599      1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    600      1.117      yamt 	}
    601      1.191      para 
    602      1.191      para 	size = sizeof(pcg_t) +
    603      1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    604      1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    605      1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    606      1.191      para 
    607      1.191      para 	size = sizeof(pcg_t) +
    608      1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    609      1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    610      1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    611      1.134        ad 
    612      1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    613      1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    614      1.134        ad 
    615      1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    616      1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    617       1.94    simonb }
    618       1.94    simonb 
    619      1.240      maxv static inline bool
    620      1.240      maxv pool_init_is_phinpage(const struct pool *pp)
    621      1.240      maxv {
    622      1.240      maxv 	size_t pagesize;
    623      1.240      maxv 
    624      1.240      maxv 	if (pp->pr_roflags & PR_PHINPAGE) {
    625      1.240      maxv 		return true;
    626      1.240      maxv 	}
    627      1.240      maxv 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    628      1.240      maxv 		return false;
    629      1.240      maxv 	}
    630      1.240      maxv 
    631      1.240      maxv 	pagesize = pp->pr_alloc->pa_pagesz;
    632      1.240      maxv 
    633      1.240      maxv 	/*
    634      1.240      maxv 	 * Threshold: the item size is below 1/16 of a page size, and below
    635      1.240      maxv 	 * 8 times the page header size. The latter ensures we go off-page
    636      1.240      maxv 	 * if the page header would make us waste a rather big item.
    637      1.240      maxv 	 */
    638      1.240      maxv 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    639      1.240      maxv 		return true;
    640      1.240      maxv 	}
    641      1.240      maxv 
    642      1.240      maxv 	/* Put the header into the page if it doesn't waste any items. */
    643      1.240      maxv 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    644      1.240      maxv 		return true;
    645      1.240      maxv 	}
    646      1.240      maxv 
    647      1.240      maxv 	return false;
    648      1.240      maxv }
    649      1.240      maxv 
    650      1.242      maxv static inline bool
    651      1.242      maxv pool_init_is_usebmap(const struct pool *pp)
    652      1.242      maxv {
    653      1.243      maxv 	size_t bmapsize;
    654      1.243      maxv 
    655      1.242      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
    656      1.242      maxv 		return true;
    657      1.242      maxv 	}
    658      1.242      maxv 
    659      1.243      maxv 	/*
    660      1.243      maxv 	 * If we're on-page, and the page header can already contain a bitmap
    661      1.243      maxv 	 * big enough to cover all the items of the page, go with a bitmap.
    662      1.243      maxv 	 */
    663      1.243      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    664      1.243      maxv 		return false;
    665      1.243      maxv 	}
    666      1.243      maxv 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    667      1.243      maxv 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    668      1.243      maxv 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    669      1.243      maxv 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    670      1.243      maxv 		return true;
    671      1.243      maxv 	}
    672      1.243      maxv 
    673      1.242      maxv 	return false;
    674      1.242      maxv }
    675      1.242      maxv 
    676       1.94    simonb /*
    677        1.3        pk  * Initialize the given pool resource structure.
    678        1.3        pk  *
    679        1.3        pk  * We export this routine to allow other kernel parts to declare
    680      1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    681        1.3        pk  */
    682        1.3        pk void
    683       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    684      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    685        1.3        pk {
    686      1.116    simonb 	struct pool *pp1;
    687      1.240      maxv 	size_t prsize;
    688      1.237      maxv 	int itemspace, slack;
    689        1.3        pk 
    690      1.238      maxv 	/* XXX ioff will be removed. */
    691      1.238      maxv 	KASSERT(ioff == 0);
    692      1.238      maxv 
    693      1.116    simonb #ifdef DEBUG
    694      1.198  christos 	if (__predict_true(!cold))
    695      1.198  christos 		mutex_enter(&pool_head_lock);
    696      1.116    simonb 	/*
    697      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    698      1.116    simonb 	 * added to the list of all pools.
    699      1.116    simonb 	 */
    700      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    701      1.116    simonb 		if (pp == pp1)
    702      1.213  christos 			panic("%s: [%s] already initialised", __func__,
    703      1.116    simonb 			    wchan);
    704      1.116    simonb 	}
    705      1.198  christos 	if (__predict_true(!cold))
    706      1.198  christos 		mutex_exit(&pool_head_lock);
    707      1.116    simonb #endif
    708      1.116    simonb 
    709       1.66   thorpej 	if (palloc == NULL)
    710       1.66   thorpej 		palloc = &pool_allocator_kmem;
    711      1.244      maxv 
    712      1.180   mlelstv 	if (!cold)
    713      1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    714      1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    715      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    716       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    717       1.66   thorpej 
    718       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    719       1.66   thorpej 
    720      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    721       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    722       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    723        1.4   thorpej 	}
    724      1.180   mlelstv 	if (!cold)
    725      1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    726        1.3        pk 
    727        1.3        pk 	if (align == 0)
    728        1.3        pk 		align = ALIGN(1);
    729       1.14   thorpej 
    730      1.204      maxv 	prsize = size;
    731      1.204      maxv 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    732      1.204      maxv 		prsize = sizeof(struct pool_item);
    733        1.3        pk 
    734      1.204      maxv 	prsize = roundup(prsize, align);
    735      1.207  riastrad 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    736      1.213  christos 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    737      1.213  christos 	    __func__, wchan, prsize, palloc->pa_pagesz);
    738       1.35        pk 
    739        1.3        pk 	/*
    740        1.3        pk 	 * Initialize the pool structure.
    741        1.3        pk 	 */
    742       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    743       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    744       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    745      1.134        ad 	pp->pr_cache = NULL;
    746        1.3        pk 	pp->pr_curpage = NULL;
    747        1.3        pk 	pp->pr_npages = 0;
    748        1.3        pk 	pp->pr_minitems = 0;
    749        1.3        pk 	pp->pr_minpages = 0;
    750        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    751       1.20   thorpej 	pp->pr_roflags = flags;
    752       1.20   thorpej 	pp->pr_flags = 0;
    753      1.204      maxv 	pp->pr_size = prsize;
    754      1.233      maxv 	pp->pr_reqsize = size;
    755        1.3        pk 	pp->pr_align = align;
    756        1.3        pk 	pp->pr_wchan = wchan;
    757       1.66   thorpej 	pp->pr_alloc = palloc;
    758      1.245      maxv 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    759       1.20   thorpej 	pp->pr_nitems = 0;
    760       1.20   thorpej 	pp->pr_nout = 0;
    761       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    762       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    763       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    764       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    765       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    766       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    767       1.68   thorpej 	pp->pr_drain_hook = NULL;
    768       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    769      1.125        ad 	pp->pr_freecheck = NULL;
    770  1.252.2.1    martin 	pp->pr_redzone = false;
    771      1.204      maxv 	pool_redzone_init(pp, size);
    772      1.249      maxv 	pool_quarantine_init(pp);
    773        1.3        pk 
    774        1.3        pk 	/*
    775      1.240      maxv 	 * Decide whether to put the page header off-page to avoid wasting too
    776      1.240      maxv 	 * large a part of the page or too big an item. Off-page page headers
    777      1.240      maxv 	 * go on a hash table, so we can match a returned item with its header
    778      1.240      maxv 	 * based on the page address.
    779        1.3        pk 	 */
    780      1.240      maxv 	if (pool_init_is_phinpage(pp)) {
    781      1.241      maxv 		/* Use the beginning of the page for the page header */
    782      1.241      maxv 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    783      1.241      maxv 		pp->pr_itemoffset = roundup(PHSIZE, align);
    784      1.239      maxv 		pp->pr_roflags |= PR_PHINPAGE;
    785        1.2        pk 	} else {
    786        1.3        pk 		/* The page header will be taken from our page header pool */
    787      1.237      maxv 		itemspace = palloc->pa_pagesz;
    788      1.241      maxv 		pp->pr_itemoffset = 0;
    789       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    790        1.2        pk 	}
    791        1.1        pk 
    792      1.243      maxv 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    793      1.243      maxv 	KASSERT(pp->pr_itemsperpage != 0);
    794      1.243      maxv 
    795      1.242      maxv 	/*
    796      1.242      maxv 	 * Decide whether to use a bitmap or a linked list to manage freed
    797      1.242      maxv 	 * items.
    798      1.242      maxv 	 */
    799      1.242      maxv 	if (pool_init_is_usebmap(pp)) {
    800      1.242      maxv 		pp->pr_roflags |= PR_USEBMAP;
    801      1.242      maxv 	}
    802      1.242      maxv 
    803      1.242      maxv 	/*
    804      1.242      maxv 	 * If we're off-page and use a bitmap, choose the appropriate pool to
    805      1.242      maxv 	 * allocate page headers, whose size varies depending on the bitmap. If
    806      1.242      maxv 	 * we're just off-page, take the first pool, no extra size. If we're
    807      1.242      maxv 	 * on-page, nothing to do.
    808      1.242      maxv 	 */
    809      1.242      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE) && (pp->pr_roflags & PR_USEBMAP)) {
    810       1.97      yamt 		int idx;
    811       1.97      yamt 
    812       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    813       1.97      yamt 		    idx++) {
    814       1.97      yamt 			/* nothing */
    815       1.97      yamt 		}
    816       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    817       1.97      yamt 			/*
    818       1.97      yamt 			 * if you see this panic, consider to tweak
    819       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    820       1.97      yamt 			 */
    821      1.213  christos 			panic("%s: [%s] too large itemsperpage(%d) for "
    822      1.242      maxv 			    "PR_USEBMAP", __func__,
    823       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    824       1.97      yamt 		}
    825       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    826      1.242      maxv 	} else if (!(pp->pr_roflags & PR_PHINPAGE)) {
    827       1.97      yamt 		pp->pr_phpool = &phpool[0];
    828      1.242      maxv 	} else {
    829       1.97      yamt 		pp->pr_phpool = NULL;
    830       1.97      yamt 	}
    831        1.3        pk 
    832        1.3        pk 	/*
    833        1.3        pk 	 * Use the slack between the chunks and the page header
    834        1.3        pk 	 * for "cache coloring".
    835        1.3        pk 	 */
    836      1.237      maxv 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    837      1.239      maxv 	pp->pr_maxcolor = rounddown(slack, align);
    838        1.3        pk 	pp->pr_curcolor = 0;
    839        1.3        pk 
    840        1.3        pk 	pp->pr_nget = 0;
    841        1.3        pk 	pp->pr_nfail = 0;
    842        1.3        pk 	pp->pr_nput = 0;
    843        1.3        pk 	pp->pr_npagealloc = 0;
    844        1.3        pk 	pp->pr_npagefree = 0;
    845        1.1        pk 	pp->pr_hiwat = 0;
    846        1.8   thorpej 	pp->pr_nidle = 0;
    847      1.134        ad 	pp->pr_refcnt = 0;
    848        1.3        pk 
    849      1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    850      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    851      1.134        ad 	pp->pr_ipl = ipl;
    852        1.1        pk 
    853      1.145        ad 	/* Insert into the list of all pools. */
    854      1.181   mlelstv 	if (!cold)
    855      1.134        ad 		mutex_enter(&pool_head_lock);
    856      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    857      1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    858      1.145        ad 			break;
    859      1.145        ad 	}
    860      1.145        ad 	if (pp1 == NULL)
    861      1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    862      1.145        ad 	else
    863      1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    864      1.181   mlelstv 	if (!cold)
    865      1.134        ad 		mutex_exit(&pool_head_lock);
    866      1.134        ad 
    867      1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    868      1.181   mlelstv 	if (!cold)
    869      1.134        ad 		mutex_enter(&palloc->pa_lock);
    870      1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    871      1.181   mlelstv 	if (!cold)
    872      1.134        ad 		mutex_exit(&palloc->pa_lock);
    873        1.1        pk }
    874        1.1        pk 
    875        1.1        pk /*
    876        1.1        pk  * De-commision a pool resource.
    877        1.1        pk  */
    878        1.1        pk void
    879       1.42   thorpej pool_destroy(struct pool *pp)
    880        1.1        pk {
    881      1.101   thorpej 	struct pool_pagelist pq;
    882        1.3        pk 	struct pool_item_header *ph;
    883       1.43   thorpej 
    884      1.249      maxv 	pool_quarantine_flush(pp);
    885      1.249      maxv 
    886      1.101   thorpej 	/* Remove from global pool list */
    887      1.134        ad 	mutex_enter(&pool_head_lock);
    888      1.134        ad 	while (pp->pr_refcnt != 0)
    889      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    890      1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    891      1.101   thorpej 	if (drainpp == pp)
    892      1.101   thorpej 		drainpp = NULL;
    893      1.134        ad 	mutex_exit(&pool_head_lock);
    894      1.101   thorpej 
    895      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    896      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    897       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    898      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    899       1.66   thorpej 
    900      1.178      elad 	mutex_enter(&pool_allocator_lock);
    901      1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    902      1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    903      1.178      elad 	mutex_exit(&pool_allocator_lock);
    904      1.178      elad 
    905      1.134        ad 	mutex_enter(&pp->pr_lock);
    906      1.101   thorpej 
    907      1.134        ad 	KASSERT(pp->pr_cache == NULL);
    908      1.207  riastrad 	KASSERTMSG((pp->pr_nout == 0),
    909      1.251  christos 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
    910      1.251  christos 	    pp->pr_nout);
    911      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    912      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    913      1.101   thorpej 
    914        1.3        pk 	/* Remove all pages */
    915      1.101   thorpej 	LIST_INIT(&pq);
    916       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    917      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    918      1.101   thorpej 
    919      1.134        ad 	mutex_exit(&pp->pr_lock);
    920        1.3        pk 
    921      1.101   thorpej 	pr_pagelist_free(pp, &pq);
    922      1.134        ad 	cv_destroy(&pp->pr_cv);
    923      1.134        ad 	mutex_destroy(&pp->pr_lock);
    924        1.1        pk }
    925        1.1        pk 
    926       1.68   thorpej void
    927       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    928       1.68   thorpej {
    929       1.68   thorpej 
    930       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    931      1.207  riastrad 	KASSERTMSG((pp->pr_drain_hook == NULL),
    932      1.213  christos 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    933       1.68   thorpej 	pp->pr_drain_hook = fn;
    934       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    935       1.68   thorpej }
    936       1.68   thorpej 
    937       1.88       chs static struct pool_item_header *
    938      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    939       1.55   thorpej {
    940       1.55   thorpej 	struct pool_item_header *ph;
    941       1.55   thorpej 
    942       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    943      1.241      maxv 		ph = storage;
    944      1.134        ad 	else
    945       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    946       1.55   thorpej 
    947      1.236      maxv 	return ph;
    948       1.55   thorpej }
    949        1.1        pk 
    950        1.1        pk /*
    951      1.134        ad  * Grab an item from the pool.
    952        1.1        pk  */
    953        1.3        pk void *
    954       1.56  sommerfe pool_get(struct pool *pp, int flags)
    955        1.1        pk {
    956        1.3        pk 	struct pool_item_header *ph;
    957       1.55   thorpej 	void *v;
    958        1.1        pk 
    959      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    960      1.207  riastrad 	KASSERTMSG((pp->pr_itemsperpage != 0),
    961      1.213  christos 	    "%s: [%s] pr_itemsperpage is zero, "
    962      1.213  christos 	    "pool not initialized?", __func__, pp->pr_wchan);
    963      1.207  riastrad 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    964      1.207  riastrad 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    965      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    966      1.213  christos 	    __func__, pp->pr_wchan);
    967      1.155        ad 	if (flags & PR_WAITOK) {
    968      1.154      yamt 		ASSERT_SLEEPABLE();
    969      1.155        ad 	}
    970        1.1        pk 
    971      1.134        ad 	mutex_enter(&pp->pr_lock);
    972       1.20   thorpej  startover:
    973       1.20   thorpej 	/*
    974       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    975       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    976       1.20   thorpej 	 * the pool.
    977       1.20   thorpej 	 */
    978      1.207  riastrad 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    979      1.213  christos 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    980       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    981       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    982       1.68   thorpej 			/*
    983       1.68   thorpej 			 * Since the drain hook is going to free things
    984       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    985       1.68   thorpej 			 * and check the hardlimit condition again.
    986       1.68   thorpej 			 */
    987      1.134        ad 			mutex_exit(&pp->pr_lock);
    988       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    989      1.134        ad 			mutex_enter(&pp->pr_lock);
    990       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    991       1.68   thorpej 				goto startover;
    992       1.68   thorpej 		}
    993       1.68   thorpej 
    994       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    995       1.20   thorpej 			/*
    996       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
    997       1.20   thorpej 			 * it be?
    998       1.20   thorpej 			 */
    999       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1000      1.212  christos 			do {
   1001      1.212  christos 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1002      1.212  christos 			} while (pp->pr_flags & PR_WANTED);
   1003       1.20   thorpej 			goto startover;
   1004       1.20   thorpej 		}
   1005       1.31   thorpej 
   1006       1.31   thorpej 		/*
   1007       1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1008       1.31   thorpej 		 */
   1009       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1010       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1011       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1012       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1013       1.21   thorpej 
   1014       1.21   thorpej 		pp->pr_nfail++;
   1015       1.21   thorpej 
   1016      1.134        ad 		mutex_exit(&pp->pr_lock);
   1017      1.216  christos 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1018      1.236      maxv 		return NULL;
   1019       1.20   thorpej 	}
   1020       1.20   thorpej 
   1021        1.3        pk 	/*
   1022        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1023        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1024        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1025        1.3        pk 	 * has no items in its bucket.
   1026        1.3        pk 	 */
   1027       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1028      1.113      yamt 		int error;
   1029      1.113      yamt 
   1030      1.207  riastrad 		KASSERTMSG((pp->pr_nitems == 0),
   1031      1.213  christos 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
   1032      1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
   1033       1.20   thorpej 
   1034       1.21   thorpej 		/*
   1035       1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1036       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1037       1.21   thorpej 		 * may block.
   1038       1.21   thorpej 		 */
   1039      1.113      yamt 		error = pool_grow(pp, flags);
   1040      1.113      yamt 		if (error != 0) {
   1041       1.21   thorpej 			/*
   1042      1.210   mlelstv 			 * pool_grow aborts when another thread
   1043      1.210   mlelstv 			 * is allocating a new page. Retry if it
   1044      1.210   mlelstv 			 * waited for it.
   1045      1.210   mlelstv 			 */
   1046      1.210   mlelstv 			if (error == ERESTART)
   1047      1.210   mlelstv 				goto startover;
   1048      1.210   mlelstv 
   1049      1.210   mlelstv 			/*
   1050       1.55   thorpej 			 * We were unable to allocate a page or item
   1051       1.55   thorpej 			 * header, but we released the lock during
   1052       1.55   thorpej 			 * allocation, so perhaps items were freed
   1053       1.55   thorpej 			 * back to the pool.  Check for this case.
   1054       1.21   thorpej 			 */
   1055       1.21   thorpej 			if (pp->pr_curpage != NULL)
   1056       1.21   thorpej 				goto startover;
   1057       1.15        pk 
   1058      1.117      yamt 			pp->pr_nfail++;
   1059      1.134        ad 			mutex_exit(&pp->pr_lock);
   1060      1.211  riastrad 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   1061      1.236      maxv 			return NULL;
   1062        1.1        pk 		}
   1063        1.3        pk 
   1064       1.20   thorpej 		/* Start the allocation process over. */
   1065       1.20   thorpej 		goto startover;
   1066        1.3        pk 	}
   1067      1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1068      1.207  riastrad 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1069      1.251  christos 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
   1070      1.234      maxv 		v = pr_item_bitmap_get(pp, ph);
   1071       1.97      yamt 	} else {
   1072      1.234      maxv 		v = pr_item_linkedlist_get(pp, ph);
   1073       1.97      yamt 	}
   1074       1.20   thorpej 	pp->pr_nitems--;
   1075       1.20   thorpej 	pp->pr_nout++;
   1076        1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1077      1.207  riastrad 		KASSERT(pp->pr_nidle > 0);
   1078        1.6   thorpej 		pp->pr_nidle--;
   1079       1.88       chs 
   1080       1.88       chs 		/*
   1081       1.88       chs 		 * This page was previously empty.  Move it to the list of
   1082       1.88       chs 		 * partially-full pages.  This page is already curpage.
   1083       1.88       chs 		 */
   1084       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1085       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1086        1.6   thorpej 	}
   1087        1.3        pk 	ph->ph_nmissing++;
   1088       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1089      1.242      maxv 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1090      1.207  riastrad 			LIST_EMPTY(&ph->ph_itemlist)),
   1091      1.213  christos 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1092      1.213  christos 			pp->pr_wchan, ph->ph_nmissing);
   1093        1.3        pk 		/*
   1094       1.88       chs 		 * This page is now full.  Move it to the full list
   1095       1.88       chs 		 * and select a new current page.
   1096        1.3        pk 		 */
   1097       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1098       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1099       1.88       chs 		pool_update_curpage(pp);
   1100        1.1        pk 	}
   1101        1.3        pk 
   1102        1.3        pk 	pp->pr_nget++;
   1103       1.20   thorpej 
   1104       1.20   thorpej 	/*
   1105       1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1106       1.20   thorpej 	 * water mark, add more items to the pool.
   1107       1.20   thorpej 	 */
   1108       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1109       1.20   thorpej 		/*
   1110       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1111       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1112       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1113       1.20   thorpej 		 */
   1114       1.20   thorpej 	}
   1115       1.20   thorpej 
   1116      1.134        ad 	mutex_exit(&pp->pr_lock);
   1117      1.238      maxv 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1118      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1119      1.204      maxv 	pool_redzone_fill(pp, v);
   1120      1.232  christos 	if (flags & PR_ZERO)
   1121      1.233      maxv 		memset(v, 0, pp->pr_reqsize);
   1122      1.232  christos 	else
   1123      1.232  christos 		pool_kleak_fill(pp, v);
   1124      1.232  christos 	return v;
   1125        1.1        pk }
   1126        1.1        pk 
   1127        1.1        pk /*
   1128       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1129        1.1        pk  */
   1130       1.43   thorpej static void
   1131      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1132        1.1        pk {
   1133        1.3        pk 	struct pool_item_header *ph;
   1134        1.3        pk 
   1135      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1136      1.204      maxv 	pool_redzone_check(pp, v);
   1137      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1138      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1139       1.61       chs 
   1140      1.207  riastrad 	KASSERTMSG((pp->pr_nout > 0),
   1141      1.213  christos 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1142        1.3        pk 
   1143      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1144      1.213  christos 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1145        1.3        pk 	}
   1146       1.28   thorpej 
   1147        1.3        pk 	/*
   1148        1.3        pk 	 * Return to item list.
   1149        1.3        pk 	 */
   1150      1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1151      1.234      maxv 		pr_item_bitmap_put(pp, ph, v);
   1152       1.97      yamt 	} else {
   1153      1.234      maxv 		pr_item_linkedlist_put(pp, ph, v);
   1154       1.97      yamt 	}
   1155       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1156        1.3        pk 	ph->ph_nmissing--;
   1157        1.3        pk 	pp->pr_nput++;
   1158       1.20   thorpej 	pp->pr_nitems++;
   1159       1.20   thorpej 	pp->pr_nout--;
   1160        1.3        pk 
   1161        1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1162        1.3        pk 	if (pp->pr_curpage == NULL)
   1163        1.3        pk 		pp->pr_curpage = ph;
   1164        1.3        pk 
   1165        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1166        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1167      1.134        ad 		cv_broadcast(&pp->pr_cv);
   1168        1.3        pk 	}
   1169        1.3        pk 
   1170        1.3        pk 	/*
   1171       1.88       chs 	 * If this page is now empty, do one of two things:
   1172       1.21   thorpej 	 *
   1173       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1174       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1175       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1176       1.90   thorpej 	 *	    CLAIM.
   1177       1.21   thorpej 	 *
   1178       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1179       1.88       chs 	 *
   1180       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1181       1.88       chs 	 * page if one is available).
   1182        1.3        pk 	 */
   1183        1.3        pk 	if (ph->ph_nmissing == 0) {
   1184        1.6   thorpej 		pp->pr_nidle++;
   1185       1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1186      1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1187      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1188        1.3        pk 		} else {
   1189       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1190       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1191        1.3        pk 
   1192       1.21   thorpej 			/*
   1193       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1194       1.21   thorpej 			 * be idle for some period of time before it can
   1195       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1196       1.21   thorpej 			 * ping-pong'ing for memory.
   1197      1.151      yamt 			 *
   1198      1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1199      1.151      yamt 			 * a problem for our usage.
   1200       1.21   thorpej 			 */
   1201      1.151      yamt 			ph->ph_time = time_uptime;
   1202        1.1        pk 		}
   1203       1.88       chs 		pool_update_curpage(pp);
   1204        1.1        pk 	}
   1205       1.88       chs 
   1206       1.21   thorpej 	/*
   1207       1.88       chs 	 * If the page was previously completely full, move it to the
   1208       1.88       chs 	 * partially-full list and make it the current page.  The next
   1209       1.88       chs 	 * allocation will get the item from this page, instead of
   1210       1.88       chs 	 * further fragmenting the pool.
   1211       1.21   thorpej 	 */
   1212       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1213       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1214       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1215       1.21   thorpej 		pp->pr_curpage = ph;
   1216       1.21   thorpej 	}
   1217       1.43   thorpej }
   1218       1.43   thorpej 
   1219       1.56  sommerfe void
   1220       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1221       1.56  sommerfe {
   1222      1.101   thorpej 	struct pool_pagelist pq;
   1223      1.101   thorpej 
   1224      1.101   thorpej 	LIST_INIT(&pq);
   1225       1.56  sommerfe 
   1226      1.134        ad 	mutex_enter(&pp->pr_lock);
   1227      1.249      maxv 	if (!pool_put_quarantine(pp, v, &pq)) {
   1228      1.249      maxv 		pool_do_put(pp, v, &pq);
   1229      1.249      maxv 	}
   1230      1.134        ad 	mutex_exit(&pp->pr_lock);
   1231       1.56  sommerfe 
   1232      1.102       chs 	pr_pagelist_free(pp, &pq);
   1233       1.56  sommerfe }
   1234       1.57  sommerfe 
   1235       1.74   thorpej /*
   1236      1.113      yamt  * pool_grow: grow a pool by a page.
   1237      1.113      yamt  *
   1238      1.113      yamt  * => called with pool locked.
   1239      1.113      yamt  * => unlock and relock the pool.
   1240      1.113      yamt  * => return with pool locked.
   1241      1.113      yamt  */
   1242      1.113      yamt 
   1243      1.113      yamt static int
   1244      1.113      yamt pool_grow(struct pool *pp, int flags)
   1245      1.113      yamt {
   1246      1.236      maxv 	struct pool_item_header *ph;
   1247      1.237      maxv 	char *storage;
   1248      1.236      maxv 
   1249      1.209  riastrad 	/*
   1250      1.209  riastrad 	 * If there's a pool_grow in progress, wait for it to complete
   1251      1.209  riastrad 	 * and try again from the top.
   1252      1.209  riastrad 	 */
   1253      1.209  riastrad 	if (pp->pr_flags & PR_GROWING) {
   1254      1.209  riastrad 		if (flags & PR_WAITOK) {
   1255      1.209  riastrad 			do {
   1256      1.209  riastrad 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1257      1.209  riastrad 			} while (pp->pr_flags & PR_GROWING);
   1258      1.209  riastrad 			return ERESTART;
   1259      1.209  riastrad 		} else {
   1260      1.219       mrg 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1261      1.219       mrg 				/*
   1262      1.219       mrg 				 * This needs an unlock/relock dance so
   1263      1.219       mrg 				 * that the other caller has a chance to
   1264      1.219       mrg 				 * run and actually do the thing.  Note
   1265      1.219       mrg 				 * that this is effectively a busy-wait.
   1266      1.219       mrg 				 */
   1267      1.219       mrg 				mutex_exit(&pp->pr_lock);
   1268      1.219       mrg 				mutex_enter(&pp->pr_lock);
   1269      1.219       mrg 				return ERESTART;
   1270      1.219       mrg 			}
   1271      1.209  riastrad 			return EWOULDBLOCK;
   1272      1.209  riastrad 		}
   1273      1.209  riastrad 	}
   1274      1.209  riastrad 	pp->pr_flags |= PR_GROWING;
   1275      1.220  christos 	if (flags & PR_WAITOK)
   1276      1.220  christos 		mutex_exit(&pp->pr_lock);
   1277      1.220  christos 	else
   1278      1.219       mrg 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1279      1.113      yamt 
   1280      1.237      maxv 	storage = pool_allocator_alloc(pp, flags);
   1281      1.237      maxv 	if (__predict_false(storage == NULL))
   1282      1.216  christos 		goto out;
   1283      1.216  christos 
   1284      1.237      maxv 	ph = pool_alloc_item_header(pp, storage, flags);
   1285      1.216  christos 	if (__predict_false(ph == NULL)) {
   1286      1.237      maxv 		pool_allocator_free(pp, storage);
   1287      1.209  riastrad 		goto out;
   1288      1.113      yamt 	}
   1289      1.113      yamt 
   1290      1.220  christos 	if (flags & PR_WAITOK)
   1291      1.220  christos 		mutex_enter(&pp->pr_lock);
   1292      1.237      maxv 	pool_prime_page(pp, storage, ph);
   1293      1.113      yamt 	pp->pr_npagealloc++;
   1294      1.216  christos 	KASSERT(pp->pr_flags & PR_GROWING);
   1295      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1296      1.209  riastrad 	/*
   1297      1.209  riastrad 	 * If anyone was waiting for pool_grow, notify them that we
   1298      1.209  riastrad 	 * may have just done it.
   1299      1.209  riastrad 	 */
   1300      1.216  christos 	cv_broadcast(&pp->pr_cv);
   1301      1.216  christos 	return 0;
   1302      1.216  christos out:
   1303      1.220  christos 	if (flags & PR_WAITOK)
   1304      1.220  christos 		mutex_enter(&pp->pr_lock);
   1305      1.209  riastrad 	KASSERT(pp->pr_flags & PR_GROWING);
   1306      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1307      1.216  christos 	return ENOMEM;
   1308      1.113      yamt }
   1309      1.113      yamt 
   1310      1.113      yamt /*
   1311       1.74   thorpej  * Add N items to the pool.
   1312       1.74   thorpej  */
   1313       1.74   thorpej int
   1314       1.74   thorpej pool_prime(struct pool *pp, int n)
   1315       1.74   thorpej {
   1316       1.75    simonb 	int newpages;
   1317      1.113      yamt 	int error = 0;
   1318       1.74   thorpej 
   1319      1.134        ad 	mutex_enter(&pp->pr_lock);
   1320       1.74   thorpej 
   1321       1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1322       1.74   thorpej 
   1323      1.216  christos 	while (newpages > 0) {
   1324      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1325      1.113      yamt 		if (error) {
   1326      1.214  christos 			if (error == ERESTART)
   1327      1.214  christos 				continue;
   1328       1.74   thorpej 			break;
   1329       1.74   thorpej 		}
   1330       1.74   thorpej 		pp->pr_minpages++;
   1331      1.216  christos 		newpages--;
   1332       1.74   thorpej 	}
   1333       1.74   thorpej 
   1334       1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1335       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1336       1.74   thorpej 
   1337      1.134        ad 	mutex_exit(&pp->pr_lock);
   1338      1.113      yamt 	return error;
   1339       1.74   thorpej }
   1340       1.55   thorpej 
   1341       1.55   thorpej /*
   1342        1.3        pk  * Add a page worth of items to the pool.
   1343       1.21   thorpej  *
   1344       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1345        1.3        pk  */
   1346       1.55   thorpej static void
   1347      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1348        1.3        pk {
   1349      1.236      maxv 	const unsigned int align = pp->pr_align;
   1350        1.3        pk 	struct pool_item *pi;
   1351      1.128  christos 	void *cp = storage;
   1352       1.55   thorpej 	int n;
   1353       1.36        pk 
   1354      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1355      1.207  riastrad 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1356      1.207  riastrad 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1357      1.213  christos 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1358        1.3        pk 
   1359        1.3        pk 	/*
   1360        1.3        pk 	 * Insert page header.
   1361        1.3        pk 	 */
   1362       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1363      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1364        1.3        pk 	ph->ph_page = storage;
   1365        1.3        pk 	ph->ph_nmissing = 0;
   1366      1.151      yamt 	ph->ph_time = time_uptime;
   1367      1.245      maxv 	if (pp->pr_roflags & PR_PHINPAGE)
   1368      1.245      maxv 		ph->ph_poolid = pp->pr_poolid;
   1369      1.245      maxv 	else
   1370       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1371        1.3        pk 
   1372        1.6   thorpej 	pp->pr_nidle++;
   1373        1.6   thorpej 
   1374        1.3        pk 	/*
   1375      1.241      maxv 	 * The item space starts after the on-page header, if any.
   1376      1.241      maxv 	 */
   1377      1.241      maxv 	ph->ph_off = pp->pr_itemoffset;
   1378      1.241      maxv 
   1379      1.241      maxv 	/*
   1380        1.3        pk 	 * Color this page.
   1381        1.3        pk 	 */
   1382      1.241      maxv 	ph->ph_off += pp->pr_curcolor;
   1383      1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1384        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1385        1.3        pk 		pp->pr_curcolor = 0;
   1386        1.3        pk 
   1387      1.238      maxv 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1388      1.125        ad 
   1389        1.3        pk 	/*
   1390        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1391        1.3        pk 	 */
   1392        1.3        pk 	n = pp->pr_itemsperpage;
   1393       1.20   thorpej 	pp->pr_nitems += n;
   1394        1.3        pk 
   1395      1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1396      1.234      maxv 		pr_item_bitmap_init(pp, ph);
   1397       1.97      yamt 	} else {
   1398       1.97      yamt 		while (n--) {
   1399       1.97      yamt 			pi = (struct pool_item *)cp;
   1400       1.78   thorpej 
   1401      1.238      maxv 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1402        1.3        pk 
   1403       1.97      yamt 			/* Insert on page list */
   1404      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1405      1.229      maxv #ifdef POOL_CHECK_MAGIC
   1406       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1407        1.3        pk #endif
   1408      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1409      1.125        ad 
   1410      1.238      maxv 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1411       1.97      yamt 		}
   1412        1.3        pk 	}
   1413        1.3        pk 
   1414        1.3        pk 	/*
   1415        1.3        pk 	 * If the pool was depleted, point at the new page.
   1416        1.3        pk 	 */
   1417        1.3        pk 	if (pp->pr_curpage == NULL)
   1418        1.3        pk 		pp->pr_curpage = ph;
   1419        1.3        pk 
   1420        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1421        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1422        1.3        pk }
   1423        1.3        pk 
   1424       1.20   thorpej /*
   1425       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1426       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1427       1.20   thorpej  *
   1428       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1429       1.20   thorpej  *
   1430       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1431       1.20   thorpej  * with it locked.
   1432       1.20   thorpej  */
   1433       1.20   thorpej static int
   1434       1.42   thorpej pool_catchup(struct pool *pp)
   1435       1.20   thorpej {
   1436       1.20   thorpej 	int error = 0;
   1437       1.20   thorpej 
   1438       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1439      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1440      1.113      yamt 		if (error) {
   1441      1.214  christos 			if (error == ERESTART)
   1442      1.214  christos 				continue;
   1443       1.20   thorpej 			break;
   1444       1.20   thorpej 		}
   1445       1.20   thorpej 	}
   1446      1.113      yamt 	return error;
   1447       1.20   thorpej }
   1448       1.20   thorpej 
   1449       1.88       chs static void
   1450       1.88       chs pool_update_curpage(struct pool *pp)
   1451       1.88       chs {
   1452       1.88       chs 
   1453       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1454       1.88       chs 	if (pp->pr_curpage == NULL) {
   1455       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1456       1.88       chs 	}
   1457      1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1458      1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1459       1.88       chs }
   1460       1.88       chs 
   1461        1.3        pk void
   1462       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1463        1.3        pk {
   1464       1.15        pk 
   1465      1.134        ad 	mutex_enter(&pp->pr_lock);
   1466       1.21   thorpej 
   1467        1.3        pk 	pp->pr_minitems = n;
   1468       1.15        pk 	pp->pr_minpages = (n == 0)
   1469       1.15        pk 		? 0
   1470       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1471       1.20   thorpej 
   1472       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1473       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1474       1.20   thorpej 		/*
   1475       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1476       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1477       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1478       1.20   thorpej 		 */
   1479       1.20   thorpej 	}
   1480       1.21   thorpej 
   1481      1.134        ad 	mutex_exit(&pp->pr_lock);
   1482        1.3        pk }
   1483        1.3        pk 
   1484        1.3        pk void
   1485       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1486        1.3        pk {
   1487       1.15        pk 
   1488      1.134        ad 	mutex_enter(&pp->pr_lock);
   1489       1.21   thorpej 
   1490       1.15        pk 	pp->pr_maxpages = (n == 0)
   1491       1.15        pk 		? 0
   1492       1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1493       1.21   thorpej 
   1494      1.134        ad 	mutex_exit(&pp->pr_lock);
   1495        1.3        pk }
   1496        1.3        pk 
   1497       1.20   thorpej void
   1498       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1499       1.20   thorpej {
   1500       1.20   thorpej 
   1501      1.134        ad 	mutex_enter(&pp->pr_lock);
   1502       1.20   thorpej 
   1503       1.20   thorpej 	pp->pr_hardlimit = n;
   1504       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1505       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1506       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1507       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1508       1.20   thorpej 
   1509       1.20   thorpej 	/*
   1510       1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1511       1.21   thorpej 	 * release the lock.
   1512       1.20   thorpej 	 */
   1513       1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1514       1.20   thorpej 		? 0
   1515       1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1516       1.21   thorpej 
   1517      1.134        ad 	mutex_exit(&pp->pr_lock);
   1518       1.20   thorpej }
   1519        1.3        pk 
   1520        1.3        pk /*
   1521        1.3        pk  * Release all complete pages that have not been used recently.
   1522      1.184     rmind  *
   1523      1.197       jym  * Must not be called from interrupt context.
   1524        1.3        pk  */
   1525       1.66   thorpej int
   1526       1.56  sommerfe pool_reclaim(struct pool *pp)
   1527        1.3        pk {
   1528        1.3        pk 	struct pool_item_header *ph, *phnext;
   1529       1.61       chs 	struct pool_pagelist pq;
   1530      1.151      yamt 	uint32_t curtime;
   1531      1.134        ad 	bool klock;
   1532      1.134        ad 	int rv;
   1533        1.3        pk 
   1534      1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1535      1.184     rmind 
   1536       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1537       1.68   thorpej 		/*
   1538       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1539       1.68   thorpej 		 */
   1540       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1541       1.68   thorpej 	}
   1542       1.68   thorpej 
   1543      1.134        ad 	/*
   1544      1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1545      1.157        ad 	 * to block.
   1546      1.134        ad 	 */
   1547      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1548      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1549      1.134        ad 		KERNEL_LOCK(1, NULL);
   1550      1.134        ad 		klock = true;
   1551      1.134        ad 	} else
   1552      1.134        ad 		klock = false;
   1553      1.134        ad 
   1554      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1555      1.134        ad 	if (pp->pr_cache != NULL)
   1556      1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1557      1.134        ad 
   1558      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1559      1.134        ad 		if (klock) {
   1560      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1561      1.134        ad 		}
   1562      1.236      maxv 		return 0;
   1563      1.134        ad 	}
   1564       1.68   thorpej 
   1565       1.88       chs 	LIST_INIT(&pq);
   1566       1.43   thorpej 
   1567      1.151      yamt 	curtime = time_uptime;
   1568       1.21   thorpej 
   1569       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1570       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1571        1.3        pk 
   1572        1.3        pk 		/* Check our minimum page claim */
   1573        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1574        1.3        pk 			break;
   1575        1.3        pk 
   1576       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1577      1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1578       1.88       chs 			continue;
   1579       1.21   thorpej 
   1580       1.88       chs 		/*
   1581       1.88       chs 		 * If freeing this page would put us below
   1582       1.88       chs 		 * the low water mark, stop now.
   1583       1.88       chs 		 */
   1584       1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1585       1.88       chs 		    pp->pr_minitems)
   1586       1.88       chs 			break;
   1587       1.21   thorpej 
   1588       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1589        1.3        pk 	}
   1590        1.3        pk 
   1591      1.134        ad 	mutex_exit(&pp->pr_lock);
   1592      1.134        ad 
   1593      1.134        ad 	if (LIST_EMPTY(&pq))
   1594      1.134        ad 		rv = 0;
   1595      1.134        ad 	else {
   1596      1.134        ad 		pr_pagelist_free(pp, &pq);
   1597      1.134        ad 		rv = 1;
   1598      1.134        ad 	}
   1599      1.134        ad 
   1600      1.134        ad 	if (klock) {
   1601      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1602      1.134        ad 	}
   1603       1.66   thorpej 
   1604      1.236      maxv 	return rv;
   1605        1.3        pk }
   1606        1.3        pk 
   1607        1.3        pk /*
   1608      1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1609      1.131        ad  *
   1610      1.134        ad  * Note, must never be called from interrupt context.
   1611        1.3        pk  */
   1612      1.197       jym bool
   1613      1.197       jym pool_drain(struct pool **ppp)
   1614        1.3        pk {
   1615      1.197       jym 	bool reclaimed;
   1616        1.3        pk 	struct pool *pp;
   1617      1.134        ad 
   1618      1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1619        1.3        pk 
   1620       1.61       chs 	pp = NULL;
   1621      1.134        ad 
   1622      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1623      1.134        ad 	mutex_enter(&pool_head_lock);
   1624      1.134        ad 	do {
   1625      1.134        ad 		if (drainpp == NULL) {
   1626      1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1627      1.134        ad 		}
   1628      1.134        ad 		if (drainpp != NULL) {
   1629      1.134        ad 			pp = drainpp;
   1630      1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1631      1.134        ad 		}
   1632      1.134        ad 		/*
   1633      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1634      1.134        ad 		 * one pool in the system being active.
   1635      1.134        ad 		 */
   1636      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1637      1.134        ad 	pp->pr_refcnt++;
   1638      1.134        ad 	mutex_exit(&pool_head_lock);
   1639      1.134        ad 
   1640      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1641      1.186     pooka 	reclaimed = pool_reclaim(pp);
   1642      1.134        ad 
   1643      1.134        ad 	/* Finally, unlock the pool. */
   1644      1.134        ad 	mutex_enter(&pool_head_lock);
   1645      1.134        ad 	pp->pr_refcnt--;
   1646      1.134        ad 	cv_broadcast(&pool_busy);
   1647      1.134        ad 	mutex_exit(&pool_head_lock);
   1648      1.186     pooka 
   1649      1.197       jym 	if (ppp != NULL)
   1650      1.197       jym 		*ppp = pp;
   1651      1.197       jym 
   1652      1.186     pooka 	return reclaimed;
   1653        1.3        pk }
   1654        1.3        pk 
   1655        1.3        pk /*
   1656      1.217       mrg  * Calculate the total number of pages consumed by pools.
   1657      1.217       mrg  */
   1658      1.217       mrg int
   1659      1.217       mrg pool_totalpages(void)
   1660      1.217       mrg {
   1661      1.250     skrll 
   1662      1.250     skrll 	mutex_enter(&pool_head_lock);
   1663      1.250     skrll 	int pages = pool_totalpages_locked();
   1664      1.250     skrll 	mutex_exit(&pool_head_lock);
   1665      1.250     skrll 
   1666      1.250     skrll 	return pages;
   1667      1.250     skrll }
   1668      1.250     skrll 
   1669      1.250     skrll int
   1670      1.250     skrll pool_totalpages_locked(void)
   1671      1.250     skrll {
   1672      1.217       mrg 	struct pool *pp;
   1673      1.218       mrg 	uint64_t total = 0;
   1674      1.217       mrg 
   1675      1.218       mrg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1676      1.218       mrg 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1677      1.218       mrg 
   1678      1.218       mrg 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1679      1.218       mrg 			bytes -= (pp->pr_nout * pp->pr_size);
   1680      1.218       mrg 		total += bytes;
   1681      1.218       mrg 	}
   1682      1.217       mrg 
   1683      1.218       mrg 	return atop(total);
   1684      1.217       mrg }
   1685      1.217       mrg 
   1686      1.217       mrg /*
   1687        1.3        pk  * Diagnostic helpers.
   1688        1.3        pk  */
   1689       1.21   thorpej 
   1690       1.25   thorpej void
   1691      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1692      1.108      yamt {
   1693      1.108      yamt 	struct pool *pp;
   1694      1.108      yamt 
   1695      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1696      1.108      yamt 		pool_printit(pp, modif, pr);
   1697      1.108      yamt 	}
   1698      1.108      yamt }
   1699      1.108      yamt 
   1700      1.108      yamt void
   1701       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1702       1.25   thorpej {
   1703       1.25   thorpej 
   1704       1.25   thorpej 	if (pp == NULL) {
   1705       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1706       1.25   thorpej 		return;
   1707       1.25   thorpej 	}
   1708       1.25   thorpej 
   1709       1.25   thorpej 	pool_print1(pp, modif, pr);
   1710       1.25   thorpej }
   1711       1.25   thorpej 
   1712       1.21   thorpej static void
   1713      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1714       1.97      yamt     void (*pr)(const char *, ...))
   1715       1.88       chs {
   1716       1.88       chs 	struct pool_item_header *ph;
   1717       1.88       chs 
   1718       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1719      1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1720      1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1721      1.229      maxv #ifdef POOL_CHECK_MAGIC
   1722      1.229      maxv 		struct pool_item *pi;
   1723      1.242      maxv 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1724      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1725       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1726       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1727       1.97      yamt 					    pi, pi->pi_magic);
   1728       1.97      yamt 				}
   1729       1.88       chs 			}
   1730       1.88       chs 		}
   1731       1.88       chs #endif
   1732       1.88       chs 	}
   1733       1.88       chs }
   1734       1.88       chs 
   1735       1.88       chs static void
   1736       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1737        1.3        pk {
   1738       1.25   thorpej 	struct pool_item_header *ph;
   1739      1.134        ad 	pool_cache_t pc;
   1740      1.134        ad 	pcg_t *pcg;
   1741      1.134        ad 	pool_cache_cpu_t *cc;
   1742      1.134        ad 	uint64_t cpuhit, cpumiss;
   1743       1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1744       1.25   thorpej 	char c;
   1745       1.25   thorpej 
   1746       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1747       1.25   thorpej 		if (c == 'l')
   1748       1.25   thorpej 			print_log = 1;
   1749       1.25   thorpej 		if (c == 'p')
   1750       1.25   thorpej 			print_pagelist = 1;
   1751       1.44   thorpej 		if (c == 'c')
   1752       1.44   thorpej 			print_cache = 1;
   1753       1.25   thorpej 	}
   1754       1.25   thorpej 
   1755      1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1756      1.134        ad 		(*pr)("POOL CACHE");
   1757      1.134        ad 	} else {
   1758      1.134        ad 		(*pr)("POOL");
   1759      1.134        ad 	}
   1760      1.134        ad 
   1761      1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1762       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1763       1.25   thorpej 	    pp->pr_roflags);
   1764       1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1765       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1766       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1767       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1768       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1769       1.25   thorpej 
   1770      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1771       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1772       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1773       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1774       1.25   thorpej 
   1775       1.25   thorpej 	if (print_pagelist == 0)
   1776       1.25   thorpej 		goto skip_pagelist;
   1777       1.25   thorpej 
   1778       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1779       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1780       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1781       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1782       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1783       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1784       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1785       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1786       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1787       1.88       chs 
   1788       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1789       1.25   thorpej 		(*pr)("\tno current page\n");
   1790       1.25   thorpej 	else
   1791       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1792       1.25   thorpej 
   1793       1.25   thorpej  skip_pagelist:
   1794       1.25   thorpej 	if (print_log == 0)
   1795       1.25   thorpej 		goto skip_log;
   1796       1.25   thorpej 
   1797       1.25   thorpej 	(*pr)("\n");
   1798        1.3        pk 
   1799       1.25   thorpej  skip_log:
   1800       1.44   thorpej 
   1801      1.102       chs #define PR_GROUPLIST(pcg)						\
   1802      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1803      1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1804      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1805      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1806      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1807      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1808      1.102       chs 			    (unsigned long long)			\
   1809      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1810      1.102       chs 		} else {						\
   1811      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1812      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1813      1.102       chs 		}							\
   1814      1.102       chs 	}
   1815      1.102       chs 
   1816      1.134        ad 	if (pc != NULL) {
   1817      1.134        ad 		cpuhit = 0;
   1818      1.134        ad 		cpumiss = 0;
   1819      1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1820      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1821      1.134        ad 				continue;
   1822      1.134        ad 			cpuhit += cc->cc_hits;
   1823      1.134        ad 			cpumiss += cc->cc_misses;
   1824      1.134        ad 		}
   1825      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1826      1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1827      1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1828      1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1829      1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1830      1.134        ad 		    pc->pc_contended);
   1831      1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1832      1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1833      1.134        ad 		if (print_cache) {
   1834      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1835      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1836      1.134        ad 			    pcg = pcg->pcg_next) {
   1837      1.134        ad 				PR_GROUPLIST(pcg);
   1838      1.134        ad 			}
   1839      1.134        ad 			(*pr)("\tempty cache groups:\n");
   1840      1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1841      1.134        ad 			    pcg = pcg->pcg_next) {
   1842      1.134        ad 				PR_GROUPLIST(pcg);
   1843      1.134        ad 			}
   1844      1.103       chs 		}
   1845       1.44   thorpej 	}
   1846      1.102       chs #undef PR_GROUPLIST
   1847       1.88       chs }
   1848       1.88       chs 
   1849       1.88       chs static int
   1850       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1851       1.88       chs {
   1852       1.88       chs 	struct pool_item *pi;
   1853      1.128  christos 	void *page;
   1854       1.88       chs 	int n;
   1855       1.88       chs 
   1856      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1857  1.252.2.1    martin 		page = POOL_OBJ_TO_PAGE(pp, ph);
   1858      1.121      yamt 		if (page != ph->ph_page &&
   1859      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1860      1.121      yamt 			if (label != NULL)
   1861      1.121      yamt 				printf("%s: ", label);
   1862      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1863      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1864      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1865      1.121      yamt 				ph, page);
   1866      1.121      yamt 			return 1;
   1867      1.121      yamt 		}
   1868       1.88       chs 	}
   1869        1.3        pk 
   1870      1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1871       1.97      yamt 		return 0;
   1872       1.97      yamt 
   1873      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1874       1.88       chs 	     pi != NULL;
   1875      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1876       1.88       chs 
   1877      1.229      maxv #ifdef POOL_CHECK_MAGIC
   1878       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1879       1.88       chs 			if (label != NULL)
   1880       1.88       chs 				printf("%s: ", label);
   1881       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1882      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1883       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1884      1.121      yamt 				n, pi);
   1885       1.88       chs 			panic("pool");
   1886       1.88       chs 		}
   1887       1.88       chs #endif
   1888      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1889      1.121      yamt 			continue;
   1890      1.121      yamt 		}
   1891  1.252.2.1    martin 		page = POOL_OBJ_TO_PAGE(pp, pi);
   1892       1.88       chs 		if (page == ph->ph_page)
   1893       1.88       chs 			continue;
   1894       1.88       chs 
   1895       1.88       chs 		if (label != NULL)
   1896       1.88       chs 			printf("%s: ", label);
   1897       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1898       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1899       1.88       chs 			pp->pr_wchan, ph->ph_page,
   1900       1.88       chs 			n, pi, page);
   1901       1.88       chs 		return 1;
   1902       1.88       chs 	}
   1903       1.88       chs 	return 0;
   1904        1.3        pk }
   1905        1.3        pk 
   1906       1.88       chs 
   1907        1.3        pk int
   1908       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1909        1.3        pk {
   1910        1.3        pk 	struct pool_item_header *ph;
   1911        1.3        pk 	int r = 0;
   1912        1.3        pk 
   1913      1.134        ad 	mutex_enter(&pp->pr_lock);
   1914       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1915       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1916       1.88       chs 		if (r) {
   1917       1.88       chs 			goto out;
   1918       1.88       chs 		}
   1919       1.88       chs 	}
   1920       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1921       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1922       1.88       chs 		if (r) {
   1923        1.3        pk 			goto out;
   1924        1.3        pk 		}
   1925       1.88       chs 	}
   1926       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1927       1.88       chs 		r = pool_chk_page(pp, label, ph);
   1928       1.88       chs 		if (r) {
   1929        1.3        pk 			goto out;
   1930        1.3        pk 		}
   1931        1.3        pk 	}
   1932       1.88       chs 
   1933        1.3        pk out:
   1934      1.134        ad 	mutex_exit(&pp->pr_lock);
   1935      1.236      maxv 	return r;
   1936       1.43   thorpej }
   1937       1.43   thorpej 
   1938       1.43   thorpej /*
   1939       1.43   thorpej  * pool_cache_init:
   1940       1.43   thorpej  *
   1941       1.43   thorpej  *	Initialize a pool cache.
   1942      1.134        ad  */
   1943      1.134        ad pool_cache_t
   1944      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1945      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   1946      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1947      1.134        ad {
   1948      1.134        ad 	pool_cache_t pc;
   1949      1.134        ad 
   1950      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   1951      1.134        ad 	if (pc == NULL)
   1952      1.134        ad 		return NULL;
   1953      1.134        ad 
   1954      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1955      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   1956      1.134        ad 
   1957      1.134        ad 	return pc;
   1958      1.134        ad }
   1959      1.134        ad 
   1960      1.134        ad /*
   1961      1.134        ad  * pool_cache_bootstrap:
   1962       1.43   thorpej  *
   1963      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   1964      1.134        ad  *	provides initial storage.
   1965       1.43   thorpej  */
   1966       1.43   thorpej void
   1967      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1968      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   1969      1.134        ad     struct pool_allocator *palloc, int ipl,
   1970      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1971       1.43   thorpej     void *arg)
   1972       1.43   thorpej {
   1973      1.134        ad 	CPU_INFO_ITERATOR cii;
   1974      1.145        ad 	pool_cache_t pc1;
   1975      1.134        ad 	struct cpu_info *ci;
   1976      1.134        ad 	struct pool *pp;
   1977      1.134        ad 
   1978      1.134        ad 	pp = &pc->pc_pool;
   1979      1.208       chs 	if (palloc == NULL && ipl == IPL_NONE) {
   1980      1.208       chs 		if (size > PAGE_SIZE) {
   1981      1.208       chs 			int bigidx = pool_bigidx(size);
   1982      1.208       chs 
   1983      1.208       chs 			palloc = &pool_allocator_big[bigidx];
   1984      1.252      maxv 			flags |= PR_NOALIGN;
   1985      1.208       chs 		} else
   1986      1.208       chs 			palloc = &pool_allocator_nointr;
   1987      1.208       chs 	}
   1988      1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1989      1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1990       1.43   thorpej 
   1991      1.134        ad 	if (ctor == NULL) {
   1992      1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   1993      1.134        ad 	}
   1994      1.134        ad 	if (dtor == NULL) {
   1995      1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   1996      1.134        ad 	}
   1997       1.43   thorpej 
   1998      1.134        ad 	pc->pc_emptygroups = NULL;
   1999      1.134        ad 	pc->pc_fullgroups = NULL;
   2000      1.134        ad 	pc->pc_partgroups = NULL;
   2001       1.43   thorpej 	pc->pc_ctor = ctor;
   2002       1.43   thorpej 	pc->pc_dtor = dtor;
   2003       1.43   thorpej 	pc->pc_arg  = arg;
   2004      1.134        ad 	pc->pc_hits  = 0;
   2005       1.48   thorpej 	pc->pc_misses = 0;
   2006      1.134        ad 	pc->pc_nempty = 0;
   2007      1.134        ad 	pc->pc_npart = 0;
   2008      1.134        ad 	pc->pc_nfull = 0;
   2009      1.134        ad 	pc->pc_contended = 0;
   2010      1.134        ad 	pc->pc_refcnt = 0;
   2011      1.136      yamt 	pc->pc_freecheck = NULL;
   2012      1.134        ad 
   2013      1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   2014      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2015      1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   2016      1.142        ad 	} else {
   2017      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2018      1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   2019      1.142        ad 	}
   2020      1.142        ad 
   2021      1.134        ad 	/* Allocate per-CPU caches. */
   2022      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2023      1.134        ad 	pc->pc_ncpu = 0;
   2024      1.139        ad 	if (ncpu < 2) {
   2025      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2026      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2027      1.137        ad 	} else {
   2028      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2029      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2030      1.137        ad 		}
   2031      1.134        ad 	}
   2032      1.145        ad 
   2033      1.145        ad 	/* Add to list of all pools. */
   2034      1.145        ad 	if (__predict_true(!cold))
   2035      1.134        ad 		mutex_enter(&pool_head_lock);
   2036      1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2037      1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2038      1.145        ad 			break;
   2039      1.145        ad 	}
   2040      1.145        ad 	if (pc1 == NULL)
   2041      1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2042      1.145        ad 	else
   2043      1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2044      1.145        ad 	if (__predict_true(!cold))
   2045      1.134        ad 		mutex_exit(&pool_head_lock);
   2046      1.145        ad 
   2047      1.145        ad 	membar_sync();
   2048      1.145        ad 	pp->pr_cache = pc;
   2049       1.43   thorpej }
   2050       1.43   thorpej 
   2051       1.43   thorpej /*
   2052       1.43   thorpej  * pool_cache_destroy:
   2053       1.43   thorpej  *
   2054       1.43   thorpej  *	Destroy a pool cache.
   2055       1.43   thorpej  */
   2056       1.43   thorpej void
   2057      1.134        ad pool_cache_destroy(pool_cache_t pc)
   2058       1.43   thorpej {
   2059      1.191      para 
   2060      1.191      para 	pool_cache_bootstrap_destroy(pc);
   2061      1.191      para 	pool_put(&cache_pool, pc);
   2062      1.191      para }
   2063      1.191      para 
   2064      1.191      para /*
   2065      1.191      para  * pool_cache_bootstrap_destroy:
   2066      1.191      para  *
   2067      1.191      para  *	Destroy a pool cache.
   2068      1.191      para  */
   2069      1.191      para void
   2070      1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   2071      1.191      para {
   2072      1.134        ad 	struct pool *pp = &pc->pc_pool;
   2073      1.175       jym 	u_int i;
   2074      1.134        ad 
   2075      1.134        ad 	/* Remove it from the global list. */
   2076      1.134        ad 	mutex_enter(&pool_head_lock);
   2077      1.134        ad 	while (pc->pc_refcnt != 0)
   2078      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2079      1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2080      1.134        ad 	mutex_exit(&pool_head_lock);
   2081       1.43   thorpej 
   2082       1.43   thorpej 	/* First, invalidate the entire cache. */
   2083       1.43   thorpej 	pool_cache_invalidate(pc);
   2084       1.43   thorpej 
   2085      1.134        ad 	/* Disassociate it from the pool. */
   2086      1.134        ad 	mutex_enter(&pp->pr_lock);
   2087      1.134        ad 	pp->pr_cache = NULL;
   2088      1.134        ad 	mutex_exit(&pp->pr_lock);
   2089      1.134        ad 
   2090      1.134        ad 	/* Destroy per-CPU data */
   2091      1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2092      1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   2093      1.134        ad 
   2094      1.134        ad 	/* Finally, destroy it. */
   2095      1.134        ad 	mutex_destroy(&pc->pc_lock);
   2096      1.134        ad 	pool_destroy(pp);
   2097      1.134        ad }
   2098      1.134        ad 
   2099      1.134        ad /*
   2100      1.134        ad  * pool_cache_cpu_init1:
   2101      1.134        ad  *
   2102      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2103      1.134        ad  */
   2104      1.134        ad static void
   2105      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2106      1.134        ad {
   2107      1.134        ad 	pool_cache_cpu_t *cc;
   2108      1.137        ad 	int index;
   2109      1.134        ad 
   2110      1.137        ad 	index = ci->ci_index;
   2111      1.137        ad 
   2112      1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   2113      1.134        ad 
   2114      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2115      1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2116      1.134        ad 		return;
   2117      1.134        ad 	}
   2118      1.134        ad 
   2119      1.134        ad 	/*
   2120      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2121      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2122      1.134        ad 	 */
   2123      1.134        ad 	if (pc->pc_ncpu == 0) {
   2124      1.134        ad 		cc = &pc->pc_cpu0;
   2125      1.134        ad 		pc->pc_ncpu = 1;
   2126      1.134        ad 	} else {
   2127      1.134        ad 		mutex_enter(&pc->pc_lock);
   2128      1.134        ad 		pc->pc_ncpu++;
   2129      1.134        ad 		mutex_exit(&pc->pc_lock);
   2130      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2131      1.134        ad 	}
   2132      1.134        ad 
   2133      1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2134      1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2135      1.134        ad 	cc->cc_cache = pc;
   2136      1.137        ad 	cc->cc_cpuindex = index;
   2137      1.134        ad 	cc->cc_hits = 0;
   2138      1.134        ad 	cc->cc_misses = 0;
   2139      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2140      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2141      1.134        ad 
   2142      1.137        ad 	pc->pc_cpus[index] = cc;
   2143       1.43   thorpej }
   2144       1.43   thorpej 
   2145      1.134        ad /*
   2146      1.134        ad  * pool_cache_cpu_init:
   2147      1.134        ad  *
   2148      1.134        ad  *	Called whenever a new CPU is attached.
   2149      1.134        ad  */
   2150      1.134        ad void
   2151      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2152       1.43   thorpej {
   2153      1.134        ad 	pool_cache_t pc;
   2154      1.134        ad 
   2155      1.134        ad 	mutex_enter(&pool_head_lock);
   2156      1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2157      1.134        ad 		pc->pc_refcnt++;
   2158      1.134        ad 		mutex_exit(&pool_head_lock);
   2159       1.43   thorpej 
   2160      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2161       1.43   thorpej 
   2162      1.134        ad 		mutex_enter(&pool_head_lock);
   2163      1.134        ad 		pc->pc_refcnt--;
   2164      1.134        ad 		cv_broadcast(&pool_busy);
   2165      1.134        ad 	}
   2166      1.134        ad 	mutex_exit(&pool_head_lock);
   2167       1.43   thorpej }
   2168       1.43   thorpej 
   2169      1.134        ad /*
   2170      1.134        ad  * pool_cache_reclaim:
   2171      1.134        ad  *
   2172      1.134        ad  *	Reclaim memory from a pool cache.
   2173      1.134        ad  */
   2174      1.134        ad bool
   2175      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2176       1.43   thorpej {
   2177       1.43   thorpej 
   2178      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2179      1.134        ad }
   2180       1.43   thorpej 
   2181      1.136      yamt static void
   2182      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2183      1.136      yamt {
   2184      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2185      1.136      yamt 	pool_put(&pc->pc_pool, object);
   2186      1.136      yamt }
   2187      1.136      yamt 
   2188      1.134        ad /*
   2189      1.134        ad  * pool_cache_destruct_object:
   2190      1.134        ad  *
   2191      1.134        ad  *	Force destruction of an object and its release back into
   2192      1.134        ad  *	the pool.
   2193      1.134        ad  */
   2194      1.134        ad void
   2195      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2196      1.134        ad {
   2197      1.134        ad 
   2198      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2199      1.136      yamt 
   2200      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2201       1.43   thorpej }
   2202       1.43   thorpej 
   2203      1.134        ad /*
   2204      1.134        ad  * pool_cache_invalidate_groups:
   2205      1.134        ad  *
   2206      1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2207      1.134        ad  */
   2208      1.102       chs static void
   2209      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2210      1.102       chs {
   2211      1.134        ad 	void *object;
   2212      1.134        ad 	pcg_t *next;
   2213      1.134        ad 	int i;
   2214      1.134        ad 
   2215      1.134        ad 	for (; pcg != NULL; pcg = next) {
   2216      1.134        ad 		next = pcg->pcg_next;
   2217      1.134        ad 
   2218      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2219      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2220      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2221      1.134        ad 		}
   2222      1.102       chs 
   2223      1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2224      1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2225      1.142        ad 		} else {
   2226      1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2227      1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2228      1.142        ad 		}
   2229      1.102       chs 	}
   2230      1.102       chs }
   2231      1.102       chs 
   2232       1.43   thorpej /*
   2233      1.134        ad  * pool_cache_invalidate:
   2234       1.43   thorpej  *
   2235      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2236      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2237      1.176   thorpej  *
   2238      1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2239      1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2240      1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2241      1.196       jym  *
   2242      1.196       jym  *	Invalidation is a costly process and should not be called from
   2243      1.196       jym  *	interrupt context.
   2244       1.43   thorpej  */
   2245      1.134        ad void
   2246      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2247      1.134        ad {
   2248      1.196       jym 	uint64_t where;
   2249      1.134        ad 	pcg_t *full, *empty, *part;
   2250      1.196       jym 
   2251      1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2252      1.176   thorpej 
   2253      1.177       jym 	if (ncpu < 2 || !mp_online) {
   2254      1.176   thorpej 		/*
   2255      1.176   thorpej 		 * We might be called early enough in the boot process
   2256      1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2257      1.196       jym 		 * In this case, transfer the content of the local CPU's
   2258      1.196       jym 		 * cache back into global cache as only this CPU is currently
   2259      1.196       jym 		 * running.
   2260      1.176   thorpej 		 */
   2261      1.196       jym 		pool_cache_transfer(pc);
   2262      1.176   thorpej 	} else {
   2263      1.176   thorpej 		/*
   2264      1.196       jym 		 * Signal all CPUs that they must transfer their local
   2265      1.196       jym 		 * cache back to the global pool then wait for the xcall to
   2266      1.196       jym 		 * complete.
   2267      1.176   thorpej 		 */
   2268      1.196       jym 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2269      1.196       jym 		    pc, NULL);
   2270      1.176   thorpej 		xc_wait(where);
   2271      1.176   thorpej 	}
   2272      1.196       jym 
   2273      1.196       jym 	/* Empty pool caches, then invalidate objects */
   2274      1.134        ad 	mutex_enter(&pc->pc_lock);
   2275      1.134        ad 	full = pc->pc_fullgroups;
   2276      1.134        ad 	empty = pc->pc_emptygroups;
   2277      1.134        ad 	part = pc->pc_partgroups;
   2278      1.134        ad 	pc->pc_fullgroups = NULL;
   2279      1.134        ad 	pc->pc_emptygroups = NULL;
   2280      1.134        ad 	pc->pc_partgroups = NULL;
   2281      1.134        ad 	pc->pc_nfull = 0;
   2282      1.134        ad 	pc->pc_nempty = 0;
   2283      1.134        ad 	pc->pc_npart = 0;
   2284      1.134        ad 	mutex_exit(&pc->pc_lock);
   2285      1.134        ad 
   2286      1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2287      1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2288      1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2289      1.134        ad }
   2290      1.134        ad 
   2291      1.175       jym /*
   2292      1.175       jym  * pool_cache_invalidate_cpu:
   2293      1.175       jym  *
   2294      1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2295      1.175       jym  *	identified by its associated index.
   2296      1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2297      1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2298      1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2299      1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2300      1.175       jym  *	may result in an undefined behaviour.
   2301      1.175       jym  */
   2302      1.175       jym static void
   2303      1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2304      1.175       jym {
   2305      1.175       jym 	pool_cache_cpu_t *cc;
   2306      1.175       jym 	pcg_t *pcg;
   2307      1.175       jym 
   2308      1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2309      1.175       jym 		return;
   2310      1.175       jym 
   2311      1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2312      1.175       jym 		pcg->pcg_next = NULL;
   2313      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2314      1.175       jym 	}
   2315      1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2316      1.175       jym 		pcg->pcg_next = NULL;
   2317      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2318      1.175       jym 	}
   2319      1.175       jym 	if (cc != &pc->pc_cpu0)
   2320      1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2321      1.175       jym 
   2322      1.175       jym }
   2323      1.175       jym 
   2324      1.134        ad void
   2325      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2326      1.134        ad {
   2327      1.134        ad 
   2328      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2329      1.134        ad }
   2330      1.134        ad 
   2331      1.134        ad void
   2332      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2333      1.134        ad {
   2334      1.134        ad 
   2335      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2336      1.134        ad }
   2337      1.134        ad 
   2338      1.134        ad void
   2339      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2340      1.134        ad {
   2341      1.134        ad 
   2342      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2343      1.134        ad }
   2344      1.134        ad 
   2345      1.134        ad void
   2346      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2347      1.134        ad {
   2348      1.134        ad 
   2349      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2350      1.134        ad }
   2351      1.134        ad 
   2352      1.162        ad static bool __noinline
   2353      1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2354      1.134        ad 		    paddr_t *pap, int flags)
   2355       1.43   thorpej {
   2356      1.134        ad 	pcg_t *pcg, *cur;
   2357      1.134        ad 	uint64_t ncsw;
   2358      1.134        ad 	pool_cache_t pc;
   2359       1.43   thorpej 	void *object;
   2360       1.58   thorpej 
   2361      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2362      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2363      1.168      yamt 
   2364      1.134        ad 	pc = cc->cc_cache;
   2365      1.134        ad 	cc->cc_misses++;
   2366       1.43   thorpej 
   2367      1.134        ad 	/*
   2368      1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2369      1.134        ad 	 * from the cache.
   2370      1.134        ad 	 */
   2371      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2372      1.134        ad 		ncsw = curlwp->l_ncsw;
   2373      1.134        ad 		mutex_enter(&pc->pc_lock);
   2374      1.134        ad 		pc->pc_contended++;
   2375       1.43   thorpej 
   2376      1.134        ad 		/*
   2377      1.134        ad 		 * If we context switched while locking, then
   2378      1.134        ad 		 * our view of the per-CPU data is invalid:
   2379      1.134        ad 		 * retry.
   2380      1.134        ad 		 */
   2381      1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2382      1.134        ad 			mutex_exit(&pc->pc_lock);
   2383      1.162        ad 			return true;
   2384       1.43   thorpej 		}
   2385      1.102       chs 	}
   2386       1.43   thorpej 
   2387      1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2388       1.43   thorpej 		/*
   2389      1.134        ad 		 * If there's a full group, release our empty
   2390      1.134        ad 		 * group back to the cache.  Install the full
   2391      1.134        ad 		 * group as cc_current and return.
   2392       1.43   thorpej 		 */
   2393      1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2394      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2395      1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2396      1.134        ad 			pc->pc_emptygroups = cur;
   2397      1.134        ad 			pc->pc_nempty++;
   2398       1.87   thorpej 		}
   2399      1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2400      1.134        ad 		cc->cc_current = pcg;
   2401      1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2402      1.134        ad 		pc->pc_hits++;
   2403      1.134        ad 		pc->pc_nfull--;
   2404      1.134        ad 		mutex_exit(&pc->pc_lock);
   2405      1.162        ad 		return true;
   2406      1.134        ad 	}
   2407      1.134        ad 
   2408      1.134        ad 	/*
   2409      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2410      1.134        ad 	 * path: fetch a new object from the pool and construct
   2411      1.134        ad 	 * it.
   2412      1.134        ad 	 */
   2413      1.134        ad 	pc->pc_misses++;
   2414      1.134        ad 	mutex_exit(&pc->pc_lock);
   2415      1.162        ad 	splx(s);
   2416      1.134        ad 
   2417      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2418      1.134        ad 	*objectp = object;
   2419      1.211  riastrad 	if (__predict_false(object == NULL)) {
   2420      1.211  riastrad 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2421      1.162        ad 		return false;
   2422      1.211  riastrad 	}
   2423      1.125        ad 
   2424      1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2425      1.134        ad 		pool_put(&pc->pc_pool, object);
   2426      1.134        ad 		*objectp = NULL;
   2427      1.162        ad 		return false;
   2428       1.43   thorpej 	}
   2429       1.43   thorpej 
   2430      1.238      maxv 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2431       1.43   thorpej 
   2432      1.134        ad 	if (pap != NULL) {
   2433      1.134        ad #ifdef POOL_VTOPHYS
   2434      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2435      1.134        ad #else
   2436      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2437      1.134        ad #endif
   2438      1.102       chs 	}
   2439       1.43   thorpej 
   2440      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2441      1.228      maxv 	pool_cache_kleak_fill(pc, object);
   2442      1.162        ad 	return false;
   2443       1.43   thorpej }
   2444       1.43   thorpej 
   2445       1.43   thorpej /*
   2446      1.134        ad  * pool_cache_get{,_paddr}:
   2447       1.43   thorpej  *
   2448      1.134        ad  *	Get an object from a pool cache (optionally returning
   2449      1.134        ad  *	the physical address of the object).
   2450       1.43   thorpej  */
   2451      1.134        ad void *
   2452      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2453       1.43   thorpej {
   2454      1.134        ad 	pool_cache_cpu_t *cc;
   2455      1.134        ad 	pcg_t *pcg;
   2456      1.134        ad 	void *object;
   2457       1.60   thorpej 	int s;
   2458       1.43   thorpej 
   2459      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2460      1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2461      1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2462      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2463      1.213  christos 	    __func__, pc->pc_pool.pr_wchan);
   2464      1.184     rmind 
   2465      1.155        ad 	if (flags & PR_WAITOK) {
   2466      1.154      yamt 		ASSERT_SLEEPABLE();
   2467      1.155        ad 	}
   2468      1.125        ad 
   2469      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2470      1.162        ad 	s = splvm();
   2471      1.165      yamt 	while (/* CONSTCOND */ true) {
   2472      1.134        ad 		/* Try and allocate an object from the current group. */
   2473      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2474      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2475      1.134        ad 	 	pcg = cc->cc_current;
   2476      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2477      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2478      1.162        ad 			if (__predict_false(pap != NULL))
   2479      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2480      1.148      yamt #if defined(DIAGNOSTIC)
   2481      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2482      1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2483      1.134        ad 			KASSERT(object != NULL);
   2484      1.163        ad #endif
   2485      1.134        ad 			cc->cc_hits++;
   2486      1.162        ad 			splx(s);
   2487      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2488      1.204      maxv 			pool_redzone_fill(&pc->pc_pool, object);
   2489      1.228      maxv 			pool_cache_kleak_fill(pc, object);
   2490      1.134        ad 			return object;
   2491       1.43   thorpej 		}
   2492       1.43   thorpej 
   2493       1.43   thorpej 		/*
   2494      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2495      1.134        ad 		 * it with the current group and allocate from there.
   2496       1.43   thorpej 		 */
   2497      1.134        ad 		pcg = cc->cc_previous;
   2498      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2499      1.134        ad 			cc->cc_previous = cc->cc_current;
   2500      1.134        ad 			cc->cc_current = pcg;
   2501      1.134        ad 			continue;
   2502       1.43   thorpej 		}
   2503       1.43   thorpej 
   2504      1.134        ad 		/*
   2505      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2506      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2507      1.162        ad 		 * no more objects are available, it will return false.
   2508      1.134        ad 		 * Otherwise, we need to retry.
   2509      1.134        ad 		 */
   2510      1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2511      1.165      yamt 			break;
   2512      1.165      yamt 	}
   2513       1.43   thorpej 
   2514      1.211  riastrad 	/*
   2515      1.211  riastrad 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2516      1.211  riastrad 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2517      1.211  riastrad 	 * constructor fails.
   2518      1.211  riastrad 	 */
   2519      1.134        ad 	return object;
   2520       1.51   thorpej }
   2521       1.51   thorpej 
   2522      1.162        ad static bool __noinline
   2523      1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2524       1.51   thorpej {
   2525      1.200     pooka 	struct lwp *l = curlwp;
   2526      1.163        ad 	pcg_t *pcg, *cur;
   2527      1.134        ad 	uint64_t ncsw;
   2528      1.134        ad 	pool_cache_t pc;
   2529       1.51   thorpej 
   2530      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2531      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2532      1.168      yamt 
   2533      1.134        ad 	pc = cc->cc_cache;
   2534      1.171        ad 	pcg = NULL;
   2535      1.134        ad 	cc->cc_misses++;
   2536      1.200     pooka 	ncsw = l->l_ncsw;
   2537       1.43   thorpej 
   2538      1.171        ad 	/*
   2539      1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2540      1.171        ad 	 * while still unlocked.
   2541      1.171        ad 	 */
   2542      1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2543      1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2544      1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2545      1.171        ad 		}
   2546      1.200     pooka 		/*
   2547      1.200     pooka 		 * If pool_get() blocked, then our view of
   2548      1.200     pooka 		 * the per-CPU data is invalid: retry.
   2549      1.200     pooka 		 */
   2550      1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2551      1.200     pooka 			if (pcg != NULL) {
   2552      1.200     pooka 				pool_put(pc->pc_pcgpool, pcg);
   2553      1.200     pooka 			}
   2554      1.200     pooka 			return true;
   2555      1.200     pooka 		}
   2556      1.171        ad 		if (__predict_true(pcg != NULL)) {
   2557      1.171        ad 			pcg->pcg_avail = 0;
   2558      1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2559      1.171        ad 		}
   2560      1.171        ad 	}
   2561      1.171        ad 
   2562      1.162        ad 	/* Lock the cache. */
   2563      1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2564      1.134        ad 		mutex_enter(&pc->pc_lock);
   2565      1.134        ad 		pc->pc_contended++;
   2566      1.162        ad 
   2567      1.163        ad 		/*
   2568      1.163        ad 		 * If we context switched while locking, then our view of
   2569      1.163        ad 		 * the per-CPU data is invalid: retry.
   2570      1.163        ad 		 */
   2571      1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2572      1.163        ad 			mutex_exit(&pc->pc_lock);
   2573      1.171        ad 			if (pcg != NULL) {
   2574      1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2575      1.171        ad 			}
   2576      1.163        ad 			return true;
   2577      1.163        ad 		}
   2578      1.162        ad 	}
   2579      1.102       chs 
   2580      1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2581      1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2582      1.171        ad 		pcg = pc->pc_emptygroups;
   2583      1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2584      1.163        ad 		pc->pc_nempty--;
   2585      1.134        ad 	}
   2586      1.130        ad 
   2587      1.162        ad 	/*
   2588      1.162        ad 	 * If there's a empty group, release our full group back
   2589      1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2590      1.162        ad 	 * and return.
   2591      1.162        ad 	 */
   2592      1.163        ad 	if (pcg != NULL) {
   2593      1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2594      1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2595      1.146        ad 			cc->cc_previous = pcg;
   2596      1.146        ad 		} else {
   2597      1.162        ad 			cur = cc->cc_current;
   2598      1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2599      1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2600      1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2601      1.146        ad 				pc->pc_fullgroups = cur;
   2602      1.146        ad 				pc->pc_nfull++;
   2603      1.146        ad 			}
   2604      1.146        ad 			cc->cc_current = pcg;
   2605      1.146        ad 		}
   2606      1.163        ad 		pc->pc_hits++;
   2607      1.134        ad 		mutex_exit(&pc->pc_lock);
   2608      1.162        ad 		return true;
   2609      1.102       chs 	}
   2610      1.105  christos 
   2611      1.134        ad 	/*
   2612      1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2613      1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2614      1.162        ad 	 * the object here and now.
   2615      1.134        ad 	 */
   2616      1.134        ad 	pc->pc_misses++;
   2617      1.134        ad 	mutex_exit(&pc->pc_lock);
   2618      1.162        ad 	splx(s);
   2619      1.162        ad 	pool_cache_destruct_object(pc, object);
   2620      1.105  christos 
   2621      1.162        ad 	return false;
   2622      1.236      maxv }
   2623      1.102       chs 
   2624       1.43   thorpej /*
   2625      1.134        ad  * pool_cache_put{,_paddr}:
   2626       1.43   thorpej  *
   2627      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2628      1.134        ad  *	physical address of the object).
   2629       1.43   thorpej  */
   2630      1.101   thorpej void
   2631      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2632       1.43   thorpej {
   2633      1.134        ad 	pool_cache_cpu_t *cc;
   2634      1.134        ad 	pcg_t *pcg;
   2635      1.134        ad 	int s;
   2636      1.101   thorpej 
   2637      1.172      yamt 	KASSERT(object != NULL);
   2638      1.229      maxv 	pool_cache_redzone_check(pc, object);
   2639      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2640      1.101   thorpej 
   2641  1.252.2.1    martin 	if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
   2642  1.252.2.1    martin 		pc_phinpage_check(pc, object);
   2643  1.252.2.1    martin 	}
   2644  1.252.2.1    martin 
   2645      1.249      maxv 	if (pool_cache_put_quarantine(pc, object, pa)) {
   2646      1.249      maxv 		return;
   2647      1.249      maxv 	}
   2648      1.249      maxv 
   2649      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2650      1.162        ad 	s = splvm();
   2651      1.165      yamt 	while (/* CONSTCOND */ true) {
   2652      1.134        ad 		/* If the current group isn't full, release it there. */
   2653      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2654      1.162        ad 		KASSERT(cc->cc_cache == pc);
   2655      1.134        ad 	 	pcg = cc->cc_current;
   2656      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2657      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2658      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2659      1.134        ad 			pcg->pcg_avail++;
   2660      1.134        ad 			cc->cc_hits++;
   2661      1.162        ad 			splx(s);
   2662      1.134        ad 			return;
   2663      1.134        ad 		}
   2664       1.43   thorpej 
   2665      1.134        ad 		/*
   2666      1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2667      1.134        ad 		 * it with the current group and try again.
   2668      1.134        ad 		 */
   2669      1.134        ad 		pcg = cc->cc_previous;
   2670      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2671      1.134        ad 			cc->cc_previous = cc->cc_current;
   2672      1.134        ad 			cc->cc_current = pcg;
   2673      1.134        ad 			continue;
   2674      1.134        ad 		}
   2675       1.43   thorpej 
   2676      1.134        ad 		/*
   2677      1.236      maxv 		 * Can't free to either group: try the slow path.
   2678      1.134        ad 		 * If put_slow() releases the object for us, it
   2679      1.162        ad 		 * will return false.  Otherwise we need to retry.
   2680      1.134        ad 		 */
   2681      1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2682      1.165      yamt 			break;
   2683      1.165      yamt 	}
   2684       1.43   thorpej }
   2685       1.43   thorpej 
   2686       1.43   thorpej /*
   2687      1.196       jym  * pool_cache_transfer:
   2688       1.43   thorpej  *
   2689      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2690      1.134        ad  *	Run within a cross-call thread.
   2691       1.43   thorpej  */
   2692       1.43   thorpej static void
   2693      1.196       jym pool_cache_transfer(pool_cache_t pc)
   2694       1.43   thorpej {
   2695      1.134        ad 	pool_cache_cpu_t *cc;
   2696      1.134        ad 	pcg_t *prev, *cur, **list;
   2697      1.162        ad 	int s;
   2698      1.134        ad 
   2699      1.162        ad 	s = splvm();
   2700      1.162        ad 	mutex_enter(&pc->pc_lock);
   2701      1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2702      1.134        ad 	cur = cc->cc_current;
   2703      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2704      1.134        ad 	prev = cc->cc_previous;
   2705      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2706      1.162        ad 	if (cur != &pcg_dummy) {
   2707      1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2708      1.134        ad 			list = &pc->pc_fullgroups;
   2709      1.134        ad 			pc->pc_nfull++;
   2710      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2711      1.134        ad 			list = &pc->pc_emptygroups;
   2712      1.134        ad 			pc->pc_nempty++;
   2713      1.134        ad 		} else {
   2714      1.134        ad 			list = &pc->pc_partgroups;
   2715      1.134        ad 			pc->pc_npart++;
   2716      1.134        ad 		}
   2717      1.134        ad 		cur->pcg_next = *list;
   2718      1.134        ad 		*list = cur;
   2719      1.134        ad 	}
   2720      1.162        ad 	if (prev != &pcg_dummy) {
   2721      1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2722      1.134        ad 			list = &pc->pc_fullgroups;
   2723      1.134        ad 			pc->pc_nfull++;
   2724      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2725      1.134        ad 			list = &pc->pc_emptygroups;
   2726      1.134        ad 			pc->pc_nempty++;
   2727      1.134        ad 		} else {
   2728      1.134        ad 			list = &pc->pc_partgroups;
   2729      1.134        ad 			pc->pc_npart++;
   2730      1.134        ad 		}
   2731      1.134        ad 		prev->pcg_next = *list;
   2732      1.134        ad 		*list = prev;
   2733      1.134        ad 	}
   2734      1.134        ad 	mutex_exit(&pc->pc_lock);
   2735      1.134        ad 	splx(s);
   2736        1.3        pk }
   2737       1.66   thorpej 
   2738       1.66   thorpej /*
   2739       1.66   thorpej  * Pool backend allocators.
   2740       1.66   thorpej  *
   2741       1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2742       1.66   thorpej  * and any additional draining that might be needed.
   2743       1.66   thorpej  *
   2744       1.66   thorpej  * We provide two standard allocators:
   2745       1.66   thorpej  *
   2746       1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2747       1.66   thorpej  *
   2748       1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2749       1.66   thorpej  *	in interrupt context.
   2750       1.66   thorpej  */
   2751       1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2752       1.66   thorpej void	pool_page_free(struct pool *, void *);
   2753       1.66   thorpej 
   2754       1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2755      1.191      para 	.pa_alloc = pool_page_alloc,
   2756      1.191      para 	.pa_free = pool_page_free,
   2757      1.191      para 	.pa_pagesz = 0
   2758       1.66   thorpej };
   2759       1.66   thorpej 
   2760       1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2761      1.191      para 	.pa_alloc = pool_page_alloc,
   2762      1.191      para 	.pa_free = pool_page_free,
   2763      1.191      para 	.pa_pagesz = 0
   2764       1.66   thorpej };
   2765       1.66   thorpej 
   2766      1.208       chs struct pool_allocator pool_allocator_big[] = {
   2767      1.208       chs 	{
   2768      1.208       chs 		.pa_alloc = pool_page_alloc,
   2769      1.208       chs 		.pa_free = pool_page_free,
   2770      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2771      1.208       chs 	},
   2772      1.208       chs 	{
   2773      1.208       chs 		.pa_alloc = pool_page_alloc,
   2774      1.208       chs 		.pa_free = pool_page_free,
   2775      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2776      1.208       chs 	},
   2777      1.208       chs 	{
   2778      1.208       chs 		.pa_alloc = pool_page_alloc,
   2779      1.208       chs 		.pa_free = pool_page_free,
   2780      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2781      1.208       chs 	},
   2782      1.208       chs 	{
   2783      1.208       chs 		.pa_alloc = pool_page_alloc,
   2784      1.208       chs 		.pa_free = pool_page_free,
   2785      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2786      1.208       chs 	},
   2787      1.208       chs 	{
   2788      1.208       chs 		.pa_alloc = pool_page_alloc,
   2789      1.208       chs 		.pa_free = pool_page_free,
   2790      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2791      1.208       chs 	},
   2792      1.208       chs 	{
   2793      1.208       chs 		.pa_alloc = pool_page_alloc,
   2794      1.208       chs 		.pa_free = pool_page_free,
   2795      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2796      1.208       chs 	},
   2797      1.208       chs 	{
   2798      1.208       chs 		.pa_alloc = pool_page_alloc,
   2799      1.208       chs 		.pa_free = pool_page_free,
   2800      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2801      1.208       chs 	},
   2802      1.208       chs 	{
   2803      1.208       chs 		.pa_alloc = pool_page_alloc,
   2804      1.208       chs 		.pa_free = pool_page_free,
   2805      1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2806      1.208       chs 	}
   2807      1.208       chs };
   2808      1.208       chs 
   2809      1.208       chs static int
   2810      1.208       chs pool_bigidx(size_t size)
   2811      1.208       chs {
   2812      1.208       chs 	int i;
   2813      1.208       chs 
   2814      1.208       chs 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2815      1.208       chs 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2816      1.208       chs 			return i;
   2817      1.208       chs 	}
   2818      1.208       chs 	panic("pool item size %zu too large, use a custom allocator", size);
   2819      1.208       chs }
   2820      1.208       chs 
   2821      1.117      yamt static void *
   2822      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2823       1.66   thorpej {
   2824      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2825       1.66   thorpej 	void *res;
   2826       1.66   thorpej 
   2827      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2828      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2829       1.66   thorpej 		/*
   2830      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2831      1.117      yamt 		 * In other cases, the hook will be run in
   2832      1.117      yamt 		 * pool_reclaim().
   2833       1.66   thorpej 		 */
   2834      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2835      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2836      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2837       1.66   thorpej 		}
   2838      1.117      yamt 	}
   2839      1.117      yamt 	return res;
   2840       1.66   thorpej }
   2841       1.66   thorpej 
   2842      1.117      yamt static void
   2843       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2844       1.66   thorpej {
   2845       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2846       1.66   thorpej 
   2847      1.229      maxv 	if (pp->pr_redzone) {
   2848      1.248      maxv 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
   2849      1.229      maxv 	}
   2850       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2851       1.66   thorpej }
   2852       1.66   thorpej 
   2853       1.66   thorpej void *
   2854      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2855       1.66   thorpej {
   2856      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2857      1.191      para 	vmem_addr_t va;
   2858      1.192     rmind 	int ret;
   2859      1.191      para 
   2860      1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2861      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2862       1.66   thorpej 
   2863      1.192     rmind 	return ret ? NULL : (void *)va;
   2864       1.66   thorpej }
   2865       1.66   thorpej 
   2866       1.66   thorpej void
   2867      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2868       1.66   thorpej {
   2869       1.66   thorpej 
   2870      1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2871       1.98      yamt }
   2872       1.98      yamt 
   2873       1.98      yamt static void *
   2874      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2875       1.98      yamt {
   2876      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2877      1.192     rmind 	vmem_addr_t va;
   2878      1.192     rmind 	int ret;
   2879      1.191      para 
   2880      1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2881      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2882       1.98      yamt 
   2883      1.192     rmind 	return ret ? NULL : (void *)va;
   2884       1.98      yamt }
   2885       1.98      yamt 
   2886       1.98      yamt static void
   2887      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2888       1.98      yamt {
   2889       1.98      yamt 
   2890      1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2891       1.66   thorpej }
   2892       1.66   thorpej 
   2893      1.228      maxv #ifdef KLEAK
   2894      1.228      maxv static void
   2895      1.228      maxv pool_kleak_fill(struct pool *pp, void *p)
   2896      1.228      maxv {
   2897      1.228      maxv 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
   2898      1.228      maxv 		return;
   2899      1.228      maxv 	}
   2900      1.228      maxv 	kleak_fill_area(p, pp->pr_size);
   2901      1.228      maxv }
   2902      1.228      maxv 
   2903      1.228      maxv static void
   2904      1.228      maxv pool_cache_kleak_fill(pool_cache_t pc, void *p)
   2905      1.228      maxv {
   2906      1.229      maxv 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2907      1.228      maxv 		return;
   2908      1.228      maxv 	}
   2909      1.228      maxv 	pool_kleak_fill(&pc->pc_pool, p);
   2910      1.228      maxv }
   2911      1.228      maxv #endif
   2912      1.228      maxv 
   2913      1.249      maxv #ifdef POOL_QUARANTINE
   2914      1.249      maxv static void
   2915      1.249      maxv pool_quarantine_init(struct pool *pp)
   2916      1.249      maxv {
   2917      1.249      maxv 	pp->pr_quar.rotor = 0;
   2918      1.249      maxv 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
   2919      1.249      maxv }
   2920      1.249      maxv 
   2921      1.249      maxv static void
   2922      1.249      maxv pool_quarantine_flush(struct pool *pp)
   2923      1.249      maxv {
   2924      1.249      maxv 	pool_quar_t *quar = &pp->pr_quar;
   2925      1.249      maxv 	struct pool_pagelist pq;
   2926      1.249      maxv 	size_t i;
   2927      1.249      maxv 
   2928      1.249      maxv 	LIST_INIT(&pq);
   2929      1.249      maxv 
   2930      1.249      maxv 	mutex_enter(&pp->pr_lock);
   2931      1.249      maxv 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
   2932      1.249      maxv 		if (quar->list[i] == 0)
   2933      1.249      maxv 			continue;
   2934      1.249      maxv 		pool_do_put(pp, (void *)quar->list[i], &pq);
   2935      1.249      maxv 	}
   2936      1.249      maxv 	mutex_exit(&pp->pr_lock);
   2937      1.249      maxv 
   2938      1.249      maxv 	pr_pagelist_free(pp, &pq);
   2939      1.249      maxv }
   2940      1.249      maxv 
   2941      1.249      maxv static bool
   2942      1.249      maxv pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
   2943      1.249      maxv {
   2944      1.249      maxv 	pool_quar_t *quar = &pp->pr_quar;
   2945      1.249      maxv 	uintptr_t old;
   2946      1.249      maxv 
   2947      1.249      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   2948      1.249      maxv 		return false;
   2949      1.249      maxv 	}
   2950      1.249      maxv 
   2951      1.249      maxv 	pool_redzone_check(pp, v);
   2952      1.249      maxv 
   2953      1.249      maxv 	old = quar->list[quar->rotor];
   2954      1.249      maxv 	quar->list[quar->rotor] = (uintptr_t)v;
   2955      1.249      maxv 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
   2956      1.249      maxv 	if (old != 0) {
   2957      1.249      maxv 		pool_do_put(pp, (void *)old, pq);
   2958      1.249      maxv 	}
   2959      1.249      maxv 
   2960      1.249      maxv 	return true;
   2961      1.249      maxv }
   2962      1.249      maxv 
   2963      1.249      maxv static bool
   2964      1.249      maxv pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa)
   2965      1.249      maxv {
   2966      1.249      maxv 	pool_cache_destruct_object(pc, p);
   2967      1.249      maxv 	return true;
   2968      1.249      maxv }
   2969      1.249      maxv #endif
   2970      1.249      maxv 
   2971      1.204      maxv #ifdef POOL_REDZONE
   2972      1.204      maxv #if defined(_LP64)
   2973      1.204      maxv # define PRIME 0x9e37fffffffc0000UL
   2974      1.204      maxv #else /* defined(_LP64) */
   2975      1.204      maxv # define PRIME 0x9e3779b1
   2976      1.204      maxv #endif /* defined(_LP64) */
   2977      1.204      maxv #define STATIC_BYTE	0xFE
   2978      1.204      maxv CTASSERT(POOL_REDZONE_SIZE > 1);
   2979      1.204      maxv 
   2980      1.224      maxv #ifndef KASAN
   2981      1.204      maxv static inline uint8_t
   2982      1.204      maxv pool_pattern_generate(const void *p)
   2983      1.204      maxv {
   2984      1.204      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
   2985      1.204      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2986      1.204      maxv }
   2987      1.224      maxv #endif
   2988      1.204      maxv 
   2989      1.204      maxv static void
   2990      1.204      maxv pool_redzone_init(struct pool *pp, size_t requested_size)
   2991      1.204      maxv {
   2992      1.227      maxv 	size_t redzsz;
   2993      1.204      maxv 	size_t nsz;
   2994      1.204      maxv 
   2995      1.227      maxv #ifdef KASAN
   2996      1.227      maxv 	redzsz = requested_size;
   2997      1.227      maxv 	kasan_add_redzone(&redzsz);
   2998      1.227      maxv 	redzsz -= requested_size;
   2999      1.227      maxv #else
   3000      1.227      maxv 	redzsz = POOL_REDZONE_SIZE;
   3001      1.227      maxv #endif
   3002      1.227      maxv 
   3003      1.204      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   3004      1.204      maxv 		pp->pr_redzone = false;
   3005      1.204      maxv 		return;
   3006      1.204      maxv 	}
   3007      1.204      maxv 
   3008      1.204      maxv 	/*
   3009      1.204      maxv 	 * We may have extended the requested size earlier; check if
   3010      1.204      maxv 	 * there's naturally space in the padding for a red zone.
   3011      1.204      maxv 	 */
   3012      1.227      maxv 	if (pp->pr_size - requested_size >= redzsz) {
   3013      1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3014      1.204      maxv 		pp->pr_redzone = true;
   3015      1.204      maxv 		return;
   3016      1.204      maxv 	}
   3017      1.204      maxv 
   3018      1.204      maxv 	/*
   3019      1.204      maxv 	 * No space in the natural padding; check if we can extend a
   3020      1.204      maxv 	 * bit the size of the pool.
   3021      1.204      maxv 	 */
   3022      1.227      maxv 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   3023      1.204      maxv 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   3024      1.204      maxv 		/* Ok, we can */
   3025      1.204      maxv 		pp->pr_size = nsz;
   3026      1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3027      1.204      maxv 		pp->pr_redzone = true;
   3028      1.204      maxv 	} else {
   3029      1.204      maxv 		/* No space for a red zone... snif :'( */
   3030      1.204      maxv 		pp->pr_redzone = false;
   3031      1.204      maxv 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   3032      1.204      maxv 	}
   3033      1.204      maxv }
   3034      1.204      maxv 
   3035      1.204      maxv static void
   3036      1.204      maxv pool_redzone_fill(struct pool *pp, void *p)
   3037      1.204      maxv {
   3038      1.224      maxv 	if (!pp->pr_redzone)
   3039      1.224      maxv 		return;
   3040      1.224      maxv #ifdef KASAN
   3041      1.248      maxv 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
   3042      1.248      maxv 	    KASAN_POOL_REDZONE);
   3043      1.224      maxv #else
   3044      1.204      maxv 	uint8_t *cp, pat;
   3045      1.204      maxv 	const uint8_t *ep;
   3046      1.204      maxv 
   3047      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3048      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3049      1.204      maxv 
   3050      1.204      maxv 	/*
   3051      1.204      maxv 	 * We really don't want the first byte of the red zone to be '\0';
   3052      1.204      maxv 	 * an off-by-one in a string may not be properly detected.
   3053      1.204      maxv 	 */
   3054      1.204      maxv 	pat = pool_pattern_generate(cp);
   3055      1.204      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   3056      1.204      maxv 	cp++;
   3057      1.204      maxv 
   3058      1.204      maxv 	while (cp < ep) {
   3059      1.204      maxv 		*cp = pool_pattern_generate(cp);
   3060      1.204      maxv 		cp++;
   3061      1.204      maxv 	}
   3062      1.224      maxv #endif
   3063      1.204      maxv }
   3064      1.204      maxv 
   3065      1.204      maxv static void
   3066      1.204      maxv pool_redzone_check(struct pool *pp, void *p)
   3067      1.204      maxv {
   3068      1.224      maxv 	if (!pp->pr_redzone)
   3069      1.224      maxv 		return;
   3070      1.224      maxv #ifdef KASAN
   3071      1.248      maxv 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
   3072      1.224      maxv #else
   3073      1.204      maxv 	uint8_t *cp, pat, expected;
   3074      1.204      maxv 	const uint8_t *ep;
   3075      1.204      maxv 
   3076      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3077      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3078      1.204      maxv 
   3079      1.204      maxv 	pat = pool_pattern_generate(cp);
   3080      1.204      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   3081      1.225      maxv 	if (__predict_false(expected != *cp)) {
   3082      1.225      maxv 		printf("%s: %p: 0x%02x != 0x%02x\n",
   3083      1.204      maxv 		   __func__, cp, *cp, expected);
   3084      1.204      maxv 	}
   3085      1.204      maxv 	cp++;
   3086      1.204      maxv 
   3087      1.204      maxv 	while (cp < ep) {
   3088      1.204      maxv 		expected = pool_pattern_generate(cp);
   3089      1.225      maxv 		if (__predict_false(*cp != expected)) {
   3090      1.225      maxv 			printf("%s: %p: 0x%02x != 0x%02x\n",
   3091      1.204      maxv 			   __func__, cp, *cp, expected);
   3092      1.204      maxv 		}
   3093      1.204      maxv 		cp++;
   3094      1.204      maxv 	}
   3095      1.224      maxv #endif
   3096      1.204      maxv }
   3097      1.204      maxv 
   3098      1.229      maxv static void
   3099      1.229      maxv pool_cache_redzone_check(pool_cache_t pc, void *p)
   3100      1.229      maxv {
   3101      1.229      maxv #ifdef KASAN
   3102  1.252.2.1    martin 	/* If there is a ctor+dtor, leave the data as valid. */
   3103  1.252.2.1    martin 	if (__predict_false(pc_has_ctor(pc) && pc_has_dtor(pc))) {
   3104      1.229      maxv 		return;
   3105      1.229      maxv 	}
   3106      1.229      maxv #endif
   3107      1.229      maxv 	pool_redzone_check(&pc->pc_pool, p);
   3108      1.229      maxv }
   3109      1.229      maxv 
   3110      1.204      maxv #endif /* POOL_REDZONE */
   3111      1.204      maxv 
   3112      1.141      yamt #if defined(DDB)
   3113      1.141      yamt static bool
   3114      1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3115      1.141      yamt {
   3116      1.141      yamt 
   3117      1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   3118      1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3119      1.141      yamt }
   3120      1.141      yamt 
   3121      1.143      yamt static bool
   3122      1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3123      1.143      yamt {
   3124      1.143      yamt 
   3125      1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3126      1.143      yamt }
   3127      1.143      yamt 
   3128      1.143      yamt static bool
   3129      1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3130      1.143      yamt {
   3131      1.143      yamt 	int i;
   3132      1.143      yamt 
   3133      1.143      yamt 	if (pcg == NULL) {
   3134      1.143      yamt 		return false;
   3135      1.143      yamt 	}
   3136      1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   3137      1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3138      1.143      yamt 			return true;
   3139      1.143      yamt 		}
   3140      1.143      yamt 	}
   3141      1.143      yamt 	return false;
   3142      1.143      yamt }
   3143      1.143      yamt 
   3144      1.143      yamt static bool
   3145      1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3146      1.143      yamt {
   3147      1.143      yamt 
   3148      1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3149      1.234      maxv 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3150      1.143      yamt 		pool_item_bitmap_t *bitmap =
   3151      1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3152      1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3153      1.143      yamt 
   3154      1.143      yamt 		return (*bitmap & mask) == 0;
   3155      1.143      yamt 	} else {
   3156      1.143      yamt 		struct pool_item *pi;
   3157      1.143      yamt 
   3158      1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3159      1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   3160      1.143      yamt 				return false;
   3161      1.143      yamt 			}
   3162      1.143      yamt 		}
   3163      1.143      yamt 		return true;
   3164      1.143      yamt 	}
   3165      1.143      yamt }
   3166      1.143      yamt 
   3167      1.141      yamt void
   3168      1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3169      1.141      yamt {
   3170      1.141      yamt 	struct pool *pp;
   3171      1.141      yamt 
   3172      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3173      1.141      yamt 		struct pool_item_header *ph;
   3174      1.141      yamt 		uintptr_t item;
   3175      1.143      yamt 		bool allocated = true;
   3176      1.143      yamt 		bool incache = false;
   3177      1.143      yamt 		bool incpucache = false;
   3178      1.143      yamt 		char cpucachestr[32];
   3179      1.141      yamt 
   3180      1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3181      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3182      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3183      1.141      yamt 					goto found;
   3184      1.141      yamt 				}
   3185      1.141      yamt 			}
   3186      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3187      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3188      1.143      yamt 					allocated =
   3189      1.143      yamt 					    pool_allocated(pp, ph, addr);
   3190      1.143      yamt 					goto found;
   3191      1.143      yamt 				}
   3192      1.143      yamt 			}
   3193      1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3194      1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   3195      1.143      yamt 					allocated = false;
   3196      1.141      yamt 					goto found;
   3197      1.141      yamt 				}
   3198      1.141      yamt 			}
   3199      1.141      yamt 			continue;
   3200      1.141      yamt 		} else {
   3201      1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3202      1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3203      1.141      yamt 				continue;
   3204      1.141      yamt 			}
   3205      1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3206      1.141      yamt 		}
   3207      1.141      yamt found:
   3208      1.143      yamt 		if (allocated && pp->pr_cache) {
   3209      1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   3210      1.143      yamt 			struct pool_cache_group *pcg;
   3211      1.143      yamt 			int i;
   3212      1.143      yamt 
   3213      1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3214      1.143      yamt 			    pcg = pcg->pcg_next) {
   3215      1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3216      1.143      yamt 					incache = true;
   3217      1.143      yamt 					goto print;
   3218      1.143      yamt 				}
   3219      1.143      yamt 			}
   3220      1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3221      1.143      yamt 				pool_cache_cpu_t *cc;
   3222      1.143      yamt 
   3223      1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3224      1.143      yamt 					continue;
   3225      1.143      yamt 				}
   3226      1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3227      1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3228      1.143      yamt 					struct cpu_info *ci =
   3229      1.170        ad 					    cpu_lookup(i);
   3230      1.143      yamt 
   3231      1.143      yamt 					incpucache = true;
   3232      1.143      yamt 					snprintf(cpucachestr,
   3233      1.143      yamt 					    sizeof(cpucachestr),
   3234      1.143      yamt 					    "cached by CPU %u",
   3235      1.153    martin 					    ci->ci_index);
   3236      1.143      yamt 					goto print;
   3237      1.143      yamt 				}
   3238      1.143      yamt 			}
   3239      1.143      yamt 		}
   3240      1.143      yamt print:
   3241      1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3242      1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3243      1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3244      1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3245      1.143      yamt 		    pp->pr_wchan,
   3246      1.143      yamt 		    incpucache ? cpucachestr :
   3247      1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3248      1.141      yamt 	}
   3249      1.141      yamt }
   3250      1.141      yamt #endif /* defined(DDB) */
   3251      1.203     joerg 
   3252      1.203     joerg static int
   3253      1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   3254      1.203     joerg {
   3255      1.203     joerg 	struct pool_sysctl data;
   3256      1.203     joerg 	struct pool *pp;
   3257      1.203     joerg 	struct pool_cache *pc;
   3258      1.203     joerg 	pool_cache_cpu_t *cc;
   3259      1.203     joerg 	int error;
   3260      1.203     joerg 	size_t i, written;
   3261      1.203     joerg 
   3262      1.203     joerg 	if (oldp == NULL) {
   3263      1.203     joerg 		*oldlenp = 0;
   3264      1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3265      1.203     joerg 			*oldlenp += sizeof(data);
   3266      1.203     joerg 		return 0;
   3267      1.203     joerg 	}
   3268      1.203     joerg 
   3269      1.203     joerg 	memset(&data, 0, sizeof(data));
   3270      1.203     joerg 	error = 0;
   3271      1.203     joerg 	written = 0;
   3272      1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3273      1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   3274      1.203     joerg 			break;
   3275      1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3276      1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3277      1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3278      1.203     joerg #define COPY(field) data.field = pp->field
   3279      1.203     joerg 		COPY(pr_size);
   3280      1.203     joerg 
   3281      1.203     joerg 		COPY(pr_itemsperpage);
   3282      1.203     joerg 		COPY(pr_nitems);
   3283      1.203     joerg 		COPY(pr_nout);
   3284      1.203     joerg 		COPY(pr_hardlimit);
   3285      1.203     joerg 		COPY(pr_npages);
   3286      1.203     joerg 		COPY(pr_minpages);
   3287      1.203     joerg 		COPY(pr_maxpages);
   3288      1.203     joerg 
   3289      1.203     joerg 		COPY(pr_nget);
   3290      1.203     joerg 		COPY(pr_nfail);
   3291      1.203     joerg 		COPY(pr_nput);
   3292      1.203     joerg 		COPY(pr_npagealloc);
   3293      1.203     joerg 		COPY(pr_npagefree);
   3294      1.203     joerg 		COPY(pr_hiwat);
   3295      1.203     joerg 		COPY(pr_nidle);
   3296      1.203     joerg #undef COPY
   3297      1.203     joerg 
   3298      1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   3299      1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   3300      1.203     joerg 		if (pp->pr_cache) {
   3301      1.203     joerg 			pc = pp->pr_cache;
   3302      1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3303      1.203     joerg 			data.pr_cache_nfull = pc->pc_nfull;
   3304      1.203     joerg 			data.pr_cache_npartial = pc->pc_npart;
   3305      1.203     joerg 			data.pr_cache_nempty = pc->pc_nempty;
   3306      1.203     joerg 			data.pr_cache_ncontended = pc->pc_contended;
   3307      1.203     joerg 			data.pr_cache_nmiss_global = pc->pc_misses;
   3308      1.203     joerg 			data.pr_cache_nhit_global = pc->pc_hits;
   3309      1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3310      1.203     joerg 				cc = pc->pc_cpus[i];
   3311      1.203     joerg 				if (cc == NULL)
   3312      1.203     joerg 					continue;
   3313      1.206  knakahar 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3314      1.206  knakahar 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3315      1.203     joerg 			}
   3316      1.203     joerg 		} else {
   3317      1.203     joerg 			data.pr_cache_meta_size = 0;
   3318      1.203     joerg 			data.pr_cache_nfull = 0;
   3319      1.203     joerg 			data.pr_cache_npartial = 0;
   3320      1.203     joerg 			data.pr_cache_nempty = 0;
   3321      1.203     joerg 			data.pr_cache_ncontended = 0;
   3322      1.203     joerg 			data.pr_cache_nmiss_global = 0;
   3323      1.203     joerg 			data.pr_cache_nhit_global = 0;
   3324      1.203     joerg 		}
   3325      1.203     joerg 
   3326      1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3327      1.203     joerg 		if (error)
   3328      1.203     joerg 			break;
   3329      1.203     joerg 		written += sizeof(data);
   3330      1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   3331      1.203     joerg 	}
   3332      1.203     joerg 
   3333      1.203     joerg 	*oldlenp = written;
   3334      1.203     joerg 	return error;
   3335      1.203     joerg }
   3336      1.203     joerg 
   3337      1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3338      1.203     joerg {
   3339      1.203     joerg 	const struct sysctlnode *rnode = NULL;
   3340      1.203     joerg 
   3341      1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   3342      1.203     joerg 		       CTLFLAG_PERMANENT,
   3343      1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   3344      1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   3345      1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   3346      1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3347      1.203     joerg }
   3348