Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.257
      1  1.257      maxv /*	$NetBSD: subr_pool.c,v 1.257 2019/08/26 10:35:35 maxv Exp $	*/
      2    1.1        pk 
      3  1.229      maxv /*
      4  1.229      maxv  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
      5  1.183        ad  *     The NetBSD Foundation, Inc.
      6    1.1        pk  * All rights reserved.
      7    1.1        pk  *
      8    1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9   1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  1.204      maxv  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  1.204      maxv  * Maxime Villard.
     12    1.1        pk  *
     13    1.1        pk  * Redistribution and use in source and binary forms, with or without
     14    1.1        pk  * modification, are permitted provided that the following conditions
     15    1.1        pk  * are met:
     16    1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17    1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18    1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19    1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20    1.1        pk  *    documentation and/or other materials provided with the distribution.
     21    1.1        pk  *
     22    1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23    1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24    1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25    1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26    1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27    1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28    1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29    1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30    1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31    1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32    1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33    1.1        pk  */
     34   1.64     lukem 
     35   1.64     lukem #include <sys/cdefs.h>
     36  1.257      maxv __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.257 2019/08/26 10:35:35 maxv Exp $");
     37   1.24    scottr 
     38  1.205     pooka #ifdef _KERNEL_OPT
     39  1.141      yamt #include "opt_ddb.h"
     40   1.28   thorpej #include "opt_lockdebug.h"
     41  1.249      maxv #include "opt_pool.h"
     42  1.228      maxv #include "opt_kleak.h"
     43  1.205     pooka #endif
     44    1.1        pk 
     45    1.1        pk #include <sys/param.h>
     46    1.1        pk #include <sys/systm.h>
     47  1.203     joerg #include <sys/sysctl.h>
     48  1.135      yamt #include <sys/bitops.h>
     49    1.1        pk #include <sys/proc.h>
     50    1.1        pk #include <sys/errno.h>
     51    1.1        pk #include <sys/kernel.h>
     52  1.191      para #include <sys/vmem.h>
     53    1.1        pk #include <sys/pool.h>
     54   1.20   thorpej #include <sys/syslog.h>
     55  1.125        ad #include <sys/debug.h>
     56  1.134        ad #include <sys/lockdebug.h>
     57  1.134        ad #include <sys/xcall.h>
     58  1.134        ad #include <sys/cpu.h>
     59  1.145        ad #include <sys/atomic.h>
     60  1.224      maxv #include <sys/asan.h>
     61    1.3        pk 
     62  1.187  uebayasi #include <uvm/uvm_extern.h>
     63    1.3        pk 
     64    1.1        pk /*
     65    1.1        pk  * Pool resource management utility.
     66    1.3        pk  *
     67   1.88       chs  * Memory is allocated in pages which are split into pieces according to
     68   1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     69   1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     70   1.88       chs  * for empty, full and partially-full pages respectively. The individual
     71   1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     72   1.88       chs  * header. The memory for building the page list is either taken from
     73   1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     74   1.88       chs  * an internal pool of page headers (`phpool').
     75    1.1        pk  */
     76    1.1        pk 
     77  1.221      para /* List of all pools. Non static as needed by 'vmstat -m' */
     78  1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     79  1.134        ad 
     80    1.3        pk /* Private pool for page header structures */
     81   1.97      yamt #define	PHPOOL_MAX	8
     82   1.97      yamt static struct pool phpool[PHPOOL_MAX];
     83  1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     84  1.256      maxv 	(((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
     85    1.3        pk 
     86  1.226      maxv #if defined(KASAN)
     87  1.224      maxv #define POOL_REDZONE
     88  1.224      maxv #endif
     89  1.224      maxv 
     90  1.204      maxv #ifdef POOL_REDZONE
     91  1.224      maxv # ifdef KASAN
     92  1.224      maxv #  define POOL_REDZONE_SIZE 8
     93  1.224      maxv # else
     94  1.224      maxv #  define POOL_REDZONE_SIZE 2
     95  1.224      maxv # endif
     96  1.204      maxv static void pool_redzone_init(struct pool *, size_t);
     97  1.204      maxv static void pool_redzone_fill(struct pool *, void *);
     98  1.204      maxv static void pool_redzone_check(struct pool *, void *);
     99  1.229      maxv static void pool_cache_redzone_check(pool_cache_t, void *);
    100  1.204      maxv #else
    101  1.229      maxv # define pool_redzone_init(pp, sz)		__nothing
    102  1.229      maxv # define pool_redzone_fill(pp, ptr)		__nothing
    103  1.229      maxv # define pool_redzone_check(pp, ptr)		__nothing
    104  1.229      maxv # define pool_cache_redzone_check(pc, ptr)	__nothing
    105  1.204      maxv #endif
    106  1.204      maxv 
    107  1.228      maxv #ifdef KLEAK
    108  1.228      maxv static void pool_kleak_fill(struct pool *, void *);
    109  1.228      maxv static void pool_cache_kleak_fill(pool_cache_t, void *);
    110  1.228      maxv #else
    111  1.228      maxv #define pool_kleak_fill(pp, ptr)	__nothing
    112  1.228      maxv #define pool_cache_kleak_fill(pc, ptr)	__nothing
    113  1.228      maxv #endif
    114  1.228      maxv 
    115  1.249      maxv #ifdef POOL_QUARANTINE
    116  1.249      maxv static void pool_quarantine_init(struct pool *);
    117  1.249      maxv static void pool_quarantine_flush(struct pool *);
    118  1.249      maxv static bool pool_put_quarantine(struct pool *, void *,
    119  1.249      maxv     struct pool_pagelist *);
    120  1.249      maxv static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t);
    121  1.249      maxv #else
    122  1.249      maxv #define pool_quarantine_init(a)			__nothing
    123  1.249      maxv #define pool_quarantine_flush(a)		__nothing
    124  1.249      maxv #define pool_put_quarantine(a, b, c)		false
    125  1.249      maxv #define pool_cache_put_quarantine(a, b, c)	false
    126  1.249      maxv #endif
    127  1.249      maxv 
    128  1.229      maxv #define pc_has_ctor(pc) \
    129  1.229      maxv 	(pc->pc_ctor != (int (*)(void *, void *, int))nullop)
    130  1.229      maxv #define pc_has_dtor(pc) \
    131  1.229      maxv 	(pc->pc_dtor != (void (*)(void *, void *))nullop)
    132  1.229      maxv 
    133   1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    134   1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    135   1.98      yamt 
    136   1.98      yamt /* allocator for pool metadata */
    137  1.134        ad struct pool_allocator pool_allocator_meta = {
    138  1.191      para 	.pa_alloc = pool_page_alloc_meta,
    139  1.191      para 	.pa_free = pool_page_free_meta,
    140  1.191      para 	.pa_pagesz = 0
    141   1.98      yamt };
    142   1.98      yamt 
    143  1.208       chs #define POOL_ALLOCATOR_BIG_BASE 13
    144  1.208       chs extern struct pool_allocator pool_allocator_big[];
    145  1.208       chs static int pool_bigidx(size_t);
    146  1.208       chs 
    147    1.3        pk /* # of seconds to retain page after last use */
    148    1.3        pk int pool_inactive_time = 10;
    149    1.3        pk 
    150    1.3        pk /* Next candidate for drainage (see pool_drain()) */
    151  1.236      maxv static struct pool *drainpp;
    152   1.23   thorpej 
    153  1.134        ad /* This lock protects both pool_head and drainpp. */
    154  1.134        ad static kmutex_t pool_head_lock;
    155  1.134        ad static kcondvar_t pool_busy;
    156    1.3        pk 
    157  1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    158  1.178      elad static kmutex_t pool_allocator_lock;
    159  1.178      elad 
    160  1.245      maxv static unsigned int poolid_counter = 0;
    161  1.245      maxv 
    162  1.135      yamt typedef uint32_t pool_item_bitmap_t;
    163  1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    164  1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    165  1.256      maxv #define	BITMAP_MIN_SIZE	(CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
    166   1.99      yamt 
    167    1.3        pk struct pool_item_header {
    168    1.3        pk 	/* Page headers */
    169   1.88       chs 	LIST_ENTRY(pool_item_header)
    170    1.3        pk 				ph_pagelist;	/* pool page list */
    171  1.245      maxv 	union {
    172  1.245      maxv 		/* !PR_PHINPAGE */
    173  1.245      maxv 		struct {
    174  1.245      maxv 			SPLAY_ENTRY(pool_item_header)
    175  1.245      maxv 				phu_node;	/* off-page page headers */
    176  1.245      maxv 		} phu_offpage;
    177  1.245      maxv 		/* PR_PHINPAGE */
    178  1.245      maxv 		struct {
    179  1.245      maxv 			unsigned int phu_poolid;
    180  1.245      maxv 		} phu_onpage;
    181  1.245      maxv 	} ph_u1;
    182  1.128  christos 	void *			ph_page;	/* this page's address */
    183  1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    184  1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    185  1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    186   1.97      yamt 	union {
    187  1.242      maxv 		/* !PR_USEBMAP */
    188   1.97      yamt 		struct {
    189  1.102       chs 			LIST_HEAD(, pool_item)
    190   1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    191   1.97      yamt 		} phu_normal;
    192  1.242      maxv 		/* PR_USEBMAP */
    193   1.97      yamt 		struct {
    194  1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    195   1.97      yamt 		} phu_notouch;
    196  1.245      maxv 	} ph_u2;
    197    1.3        pk };
    198  1.245      maxv #define ph_node		ph_u1.phu_offpage.phu_node
    199  1.245      maxv #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    200  1.245      maxv #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    201  1.245      maxv #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    202    1.3        pk 
    203  1.240      maxv #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    204  1.240      maxv 
    205  1.256      maxv CTASSERT(offsetof(struct pool_item_header, ph_u2) +
    206  1.256      maxv     BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
    207  1.256      maxv 
    208  1.229      maxv #if defined(DIAGNOSTIC) && !defined(KASAN)
    209  1.229      maxv #define POOL_CHECK_MAGIC
    210  1.229      maxv #endif
    211  1.229      maxv 
    212    1.1        pk struct pool_item {
    213  1.229      maxv #ifdef POOL_CHECK_MAGIC
    214   1.82   thorpej 	u_int pi_magic;
    215   1.33       chs #endif
    216  1.134        ad #define	PI_MAGIC 0xdeaddeadU
    217    1.3        pk 	/* Other entries use only this list entry */
    218  1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    219    1.3        pk };
    220    1.3        pk 
    221   1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    222   1.53   thorpej 	((pp)->pr_nitems < (pp)->pr_minitems)
    223  1.253      maxv #define	POOL_OBJ_TO_PAGE(pp, v)						\
    224  1.253      maxv 	(void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
    225   1.53   thorpej 
    226   1.43   thorpej /*
    227   1.43   thorpej  * Pool cache management.
    228   1.43   thorpej  *
    229   1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    230   1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    231   1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    232   1.43   thorpej  * necessary.
    233   1.43   thorpej  *
    234  1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    235  1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    236  1.134        ad  * object from the pool, it calls the object's constructor and places it
    237  1.134        ad  * into a cache group.  When a cache group frees an object back to the
    238  1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    239  1.134        ad  * to persist in constructed form while freed to the cache.
    240  1.134        ad  *
    241  1.134        ad  * The pool references each cache, so that when a pool is drained by the
    242  1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    243  1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    244  1.134        ad  * its entirety.
    245   1.43   thorpej  *
    246   1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    247   1.43   thorpej  * the complexity of cache management for pools which would not benefit
    248   1.43   thorpej  * from it.
    249   1.43   thorpej  */
    250   1.43   thorpej 
    251  1.142        ad static struct pool pcg_normal_pool;
    252  1.142        ad static struct pool pcg_large_pool;
    253  1.134        ad static struct pool cache_pool;
    254  1.134        ad static struct pool cache_cpu_pool;
    255    1.3        pk 
    256  1.145        ad /* List of all caches. */
    257  1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    258  1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    259  1.145        ad 
    260  1.162        ad int pool_cache_disable;		/* global disable for caching */
    261  1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    262  1.145        ad 
    263  1.162        ad static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    264  1.162        ad 				    void *);
    265  1.162        ad static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    266  1.162        ad 				    void **, paddr_t *, int);
    267  1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    268  1.134        ad static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    269  1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    270  1.196       jym static void	pool_cache_transfer(pool_cache_t);
    271    1.3        pk 
    272   1.42   thorpej static int	pool_catchup(struct pool *);
    273  1.128  christos static void	pool_prime_page(struct pool *, void *,
    274   1.55   thorpej 		    struct pool_item_header *);
    275   1.88       chs static void	pool_update_curpage(struct pool *);
    276   1.66   thorpej 
    277  1.113      yamt static int	pool_grow(struct pool *, int);
    278  1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    279  1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    280    1.3        pk 
    281   1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    282  1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    283   1.42   thorpej static void pool_print1(struct pool *, const char *,
    284  1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    285    1.3        pk 
    286   1.88       chs static int pool_chk_page(struct pool *, const char *,
    287   1.88       chs 			 struct pool_item_header *);
    288   1.88       chs 
    289  1.234      maxv /* -------------------------------------------------------------------------- */
    290  1.234      maxv 
    291  1.135      yamt static inline unsigned int
    292  1.234      maxv pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    293   1.97      yamt     const void *v)
    294   1.97      yamt {
    295   1.97      yamt 	const char *cp = v;
    296  1.135      yamt 	unsigned int idx;
    297   1.97      yamt 
    298  1.242      maxv 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    299  1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    300  1.237      maxv 
    301  1.237      maxv 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    302  1.237      maxv 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    303  1.237      maxv 		    pp->pr_itemsperpage);
    304  1.237      maxv 	}
    305  1.237      maxv 
    306   1.97      yamt 	return idx;
    307   1.97      yamt }
    308   1.97      yamt 
    309  1.110     perry static inline void
    310  1.234      maxv pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    311   1.97      yamt     void *obj)
    312   1.97      yamt {
    313  1.234      maxv 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    314  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    315  1.223     kamil 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    316   1.97      yamt 
    317  1.237      maxv 	if (__predict_false((*bitmap & mask) != 0)) {
    318  1.237      maxv 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    319  1.237      maxv 	}
    320  1.237      maxv 
    321  1.135      yamt 	*bitmap |= mask;
    322   1.97      yamt }
    323   1.97      yamt 
    324  1.110     perry static inline void *
    325  1.234      maxv pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    326   1.97      yamt {
    327  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    328  1.135      yamt 	unsigned int idx;
    329  1.135      yamt 	int i;
    330   1.97      yamt 
    331  1.135      yamt 	for (i = 0; ; i++) {
    332  1.135      yamt 		int bit;
    333   1.97      yamt 
    334  1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    335  1.135      yamt 		bit = ffs32(bitmap[i]);
    336  1.135      yamt 		if (bit) {
    337  1.135      yamt 			pool_item_bitmap_t mask;
    338  1.135      yamt 
    339  1.135      yamt 			bit--;
    340  1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    341  1.222     kamil 			mask = 1U << bit;
    342  1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    343  1.135      yamt 			bitmap[i] &= ~mask;
    344  1.135      yamt 			break;
    345  1.135      yamt 		}
    346  1.135      yamt 	}
    347  1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    348  1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    349   1.97      yamt }
    350   1.97      yamt 
    351  1.135      yamt static inline void
    352  1.234      maxv pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    353  1.135      yamt {
    354  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    355  1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    356  1.135      yamt 	int i;
    357  1.135      yamt 
    358  1.135      yamt 	for (i = 0; i < n; i++) {
    359  1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    360  1.135      yamt 	}
    361  1.135      yamt }
    362  1.135      yamt 
    363  1.234      maxv /* -------------------------------------------------------------------------- */
    364  1.234      maxv 
    365  1.234      maxv static inline void
    366  1.234      maxv pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    367  1.234      maxv     void *obj)
    368  1.234      maxv {
    369  1.234      maxv 	struct pool_item *pi = obj;
    370  1.234      maxv 
    371  1.234      maxv #ifdef POOL_CHECK_MAGIC
    372  1.234      maxv 	pi->pi_magic = PI_MAGIC;
    373  1.234      maxv #endif
    374  1.234      maxv 
    375  1.234      maxv 	if (pp->pr_redzone) {
    376  1.234      maxv 		/*
    377  1.234      maxv 		 * Mark the pool_item as valid. The rest is already
    378  1.234      maxv 		 * invalid.
    379  1.234      maxv 		 */
    380  1.248      maxv 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
    381  1.234      maxv 	}
    382  1.234      maxv 
    383  1.234      maxv 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    384  1.234      maxv }
    385  1.234      maxv 
    386  1.234      maxv static inline void *
    387  1.234      maxv pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    388  1.234      maxv {
    389  1.234      maxv 	struct pool_item *pi;
    390  1.234      maxv 	void *v;
    391  1.234      maxv 
    392  1.234      maxv 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    393  1.234      maxv 	if (__predict_false(v == NULL)) {
    394  1.234      maxv 		mutex_exit(&pp->pr_lock);
    395  1.234      maxv 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    396  1.234      maxv 	}
    397  1.234      maxv 	KASSERTMSG((pp->pr_nitems > 0),
    398  1.234      maxv 	    "%s: [%s] nitems %u inconsistent on itemlist",
    399  1.234      maxv 	    __func__, pp->pr_wchan, pp->pr_nitems);
    400  1.234      maxv #ifdef POOL_CHECK_MAGIC
    401  1.234      maxv 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    402  1.234      maxv 	    "%s: [%s] free list modified: "
    403  1.234      maxv 	    "magic=%x; page %p; item addr %p", __func__,
    404  1.234      maxv 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    405  1.234      maxv #endif
    406  1.234      maxv 
    407  1.234      maxv 	/*
    408  1.234      maxv 	 * Remove from item list.
    409  1.234      maxv 	 */
    410  1.234      maxv 	LIST_REMOVE(pi, pi_list);
    411  1.234      maxv 
    412  1.234      maxv 	return v;
    413  1.234      maxv }
    414  1.234      maxv 
    415  1.234      maxv /* -------------------------------------------------------------------------- */
    416  1.234      maxv 
    417  1.253      maxv static inline void
    418  1.253      maxv pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
    419  1.253      maxv     void *object)
    420  1.253      maxv {
    421  1.253      maxv 	if (__predict_false((void *)ph->ph_page != page)) {
    422  1.253      maxv 		panic("%s: [%s] item %p not part of pool", __func__,
    423  1.253      maxv 		    pp->pr_wchan, object);
    424  1.253      maxv 	}
    425  1.253      maxv 	if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
    426  1.253      maxv 		panic("%s: [%s] item %p below item space", __func__,
    427  1.253      maxv 		    pp->pr_wchan, object);
    428  1.253      maxv 	}
    429  1.253      maxv 	if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    430  1.253      maxv 		panic("%s: [%s] item %p poolid %u != %u", __func__,
    431  1.253      maxv 		    pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
    432  1.253      maxv 	}
    433  1.253      maxv }
    434  1.253      maxv 
    435  1.253      maxv static inline void
    436  1.253      maxv pc_phinpage_check(pool_cache_t pc, void *object)
    437  1.253      maxv {
    438  1.253      maxv 	struct pool_item_header *ph;
    439  1.253      maxv 	struct pool *pp;
    440  1.253      maxv 	void *page;
    441  1.253      maxv 
    442  1.253      maxv 	pp = &pc->pc_pool;
    443  1.253      maxv 	page = POOL_OBJ_TO_PAGE(pp, object);
    444  1.253      maxv 	ph = (struct pool_item_header *)page;
    445  1.253      maxv 
    446  1.253      maxv 	pr_phinpage_check(pp, ph, page, object);
    447  1.253      maxv }
    448  1.253      maxv 
    449  1.253      maxv /* -------------------------------------------------------------------------- */
    450  1.253      maxv 
    451  1.110     perry static inline int
    452   1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    453   1.88       chs {
    454  1.121      yamt 
    455  1.121      yamt 	/*
    456  1.236      maxv 	 * We consider pool_item_header with smaller ph_page bigger. This
    457  1.236      maxv 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    458  1.121      yamt 	 */
    459   1.88       chs 	if (a->ph_page < b->ph_page)
    460  1.236      maxv 		return 1;
    461  1.121      yamt 	else if (a->ph_page > b->ph_page)
    462  1.236      maxv 		return -1;
    463   1.88       chs 	else
    464  1.236      maxv 		return 0;
    465   1.88       chs }
    466   1.88       chs 
    467   1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    468   1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    469   1.88       chs 
    470  1.141      yamt static inline struct pool_item_header *
    471  1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    472  1.141      yamt {
    473  1.141      yamt 	struct pool_item_header *ph, tmp;
    474  1.141      yamt 
    475  1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    476  1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    477  1.141      yamt 	if (ph == NULL) {
    478  1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    479  1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    480  1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    481  1.141      yamt 		}
    482  1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    483  1.141      yamt 	}
    484  1.141      yamt 
    485  1.141      yamt 	return ph;
    486  1.141      yamt }
    487  1.141      yamt 
    488    1.3        pk /*
    489  1.121      yamt  * Return the pool page header based on item address.
    490    1.3        pk  */
    491  1.110     perry static inline struct pool_item_header *
    492  1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    493    1.3        pk {
    494   1.88       chs 	struct pool_item_header *ph, tmp;
    495    1.3        pk 
    496  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    497  1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    498  1.121      yamt 	} else {
    499  1.253      maxv 		void *page = POOL_OBJ_TO_PAGE(pp, v);
    500  1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    501  1.241      maxv 			ph = (struct pool_item_header *)page;
    502  1.253      maxv 			pr_phinpage_check(pp, ph, page, v);
    503  1.121      yamt 		} else {
    504  1.121      yamt 			tmp.ph_page = page;
    505  1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    506  1.121      yamt 		}
    507  1.121      yamt 	}
    508    1.3        pk 
    509  1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    510  1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    511  1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    512   1.88       chs 	return ph;
    513    1.3        pk }
    514    1.3        pk 
    515  1.101   thorpej static void
    516  1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    517  1.101   thorpej {
    518  1.101   thorpej 	struct pool_item_header *ph;
    519  1.101   thorpej 
    520  1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    521  1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    522  1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    523  1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    524  1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    525  1.101   thorpej 	}
    526  1.101   thorpej }
    527  1.101   thorpej 
    528    1.3        pk /*
    529    1.3        pk  * Remove a page from the pool.
    530    1.3        pk  */
    531  1.110     perry static inline void
    532   1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    533   1.61       chs      struct pool_pagelist *pq)
    534    1.3        pk {
    535    1.3        pk 
    536  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    537   1.91      yamt 
    538    1.3        pk 	/*
    539    1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    540    1.3        pk 	 */
    541    1.6   thorpej 	if (ph->ph_nmissing == 0) {
    542  1.207  riastrad 		KASSERT(pp->pr_nidle != 0);
    543  1.207  riastrad 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    544  1.251  christos 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
    545  1.251  christos 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
    546    1.6   thorpej 		pp->pr_nidle--;
    547    1.6   thorpej 	}
    548    1.7   thorpej 
    549   1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    550   1.20   thorpej 
    551    1.7   thorpej 	/*
    552  1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    553    1.7   thorpej 	 */
    554   1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    555  1.245      maxv 	if (pp->pr_roflags & PR_PHINPAGE) {
    556  1.245      maxv 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    557  1.245      maxv 			panic("%s: [%s] ph %p poolid %u != %u",
    558  1.245      maxv 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    559  1.245      maxv 			    pp->pr_poolid);
    560  1.245      maxv 		}
    561  1.245      maxv 	} else {
    562   1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    563  1.245      maxv 	}
    564  1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    565  1.101   thorpej 
    566    1.7   thorpej 	pp->pr_npages--;
    567    1.7   thorpej 	pp->pr_npagefree++;
    568    1.6   thorpej 
    569   1.88       chs 	pool_update_curpage(pp);
    570    1.3        pk }
    571    1.3        pk 
    572    1.3        pk /*
    573   1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    574   1.94    simonb  */
    575   1.94    simonb void
    576  1.117      yamt pool_subsystem_init(void)
    577   1.94    simonb {
    578  1.192     rmind 	size_t size;
    579  1.191      para 	int idx;
    580   1.94    simonb 
    581  1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    582  1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    583  1.134        ad 	cv_init(&pool_busy, "poolbusy");
    584  1.134        ad 
    585  1.191      para 	/*
    586  1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    587  1.191      para 	 * haven't done so yet.
    588  1.191      para 	 */
    589  1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    590  1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    591  1.191      para 		int nelem;
    592  1.191      para 		size_t sz;
    593  1.191      para 
    594  1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    595  1.256      maxv 		KASSERT(nelem != 0);
    596  1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    597  1.191      para 		    "phpool-%d", nelem);
    598  1.256      maxv 		sz = offsetof(struct pool_item_header,
    599  1.256      maxv 		    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    600  1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    601  1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    602  1.117      yamt 	}
    603  1.191      para 
    604  1.191      para 	size = sizeof(pcg_t) +
    605  1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    606  1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    607  1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    608  1.191      para 
    609  1.191      para 	size = sizeof(pcg_t) +
    610  1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    611  1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    612  1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    613  1.134        ad 
    614  1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    615  1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    616  1.134        ad 
    617  1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    618  1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    619   1.94    simonb }
    620   1.94    simonb 
    621  1.240      maxv static inline bool
    622  1.240      maxv pool_init_is_phinpage(const struct pool *pp)
    623  1.240      maxv {
    624  1.240      maxv 	size_t pagesize;
    625  1.240      maxv 
    626  1.240      maxv 	if (pp->pr_roflags & PR_PHINPAGE) {
    627  1.240      maxv 		return true;
    628  1.240      maxv 	}
    629  1.240      maxv 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    630  1.240      maxv 		return false;
    631  1.240      maxv 	}
    632  1.240      maxv 
    633  1.240      maxv 	pagesize = pp->pr_alloc->pa_pagesz;
    634  1.240      maxv 
    635  1.240      maxv 	/*
    636  1.240      maxv 	 * Threshold: the item size is below 1/16 of a page size, and below
    637  1.240      maxv 	 * 8 times the page header size. The latter ensures we go off-page
    638  1.240      maxv 	 * if the page header would make us waste a rather big item.
    639  1.240      maxv 	 */
    640  1.240      maxv 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    641  1.240      maxv 		return true;
    642  1.240      maxv 	}
    643  1.240      maxv 
    644  1.240      maxv 	/* Put the header into the page if it doesn't waste any items. */
    645  1.240      maxv 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    646  1.240      maxv 		return true;
    647  1.240      maxv 	}
    648  1.240      maxv 
    649  1.240      maxv 	return false;
    650  1.240      maxv }
    651  1.240      maxv 
    652  1.242      maxv static inline bool
    653  1.242      maxv pool_init_is_usebmap(const struct pool *pp)
    654  1.242      maxv {
    655  1.243      maxv 	size_t bmapsize;
    656  1.243      maxv 
    657  1.242      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
    658  1.242      maxv 		return true;
    659  1.242      maxv 	}
    660  1.242      maxv 
    661  1.243      maxv 	/*
    662  1.256      maxv 	 * If we're off-page, go with a bitmap.
    663  1.256      maxv 	 */
    664  1.256      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    665  1.256      maxv 		return true;
    666  1.256      maxv 	}
    667  1.256      maxv 
    668  1.256      maxv 	/*
    669  1.243      maxv 	 * If we're on-page, and the page header can already contain a bitmap
    670  1.243      maxv 	 * big enough to cover all the items of the page, go with a bitmap.
    671  1.243      maxv 	 */
    672  1.243      maxv 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    673  1.243      maxv 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    674  1.243      maxv 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    675  1.243      maxv 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    676  1.243      maxv 		return true;
    677  1.243      maxv 	}
    678  1.243      maxv 
    679  1.242      maxv 	return false;
    680  1.242      maxv }
    681  1.242      maxv 
    682   1.94    simonb /*
    683    1.3        pk  * Initialize the given pool resource structure.
    684    1.3        pk  *
    685    1.3        pk  * We export this routine to allow other kernel parts to declare
    686  1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    687    1.3        pk  */
    688    1.3        pk void
    689   1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    690  1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    691    1.3        pk {
    692  1.116    simonb 	struct pool *pp1;
    693  1.240      maxv 	size_t prsize;
    694  1.237      maxv 	int itemspace, slack;
    695    1.3        pk 
    696  1.238      maxv 	/* XXX ioff will be removed. */
    697  1.238      maxv 	KASSERT(ioff == 0);
    698  1.238      maxv 
    699  1.116    simonb #ifdef DEBUG
    700  1.198  christos 	if (__predict_true(!cold))
    701  1.198  christos 		mutex_enter(&pool_head_lock);
    702  1.116    simonb 	/*
    703  1.116    simonb 	 * Check that the pool hasn't already been initialised and
    704  1.116    simonb 	 * added to the list of all pools.
    705  1.116    simonb 	 */
    706  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    707  1.116    simonb 		if (pp == pp1)
    708  1.213  christos 			panic("%s: [%s] already initialised", __func__,
    709  1.116    simonb 			    wchan);
    710  1.116    simonb 	}
    711  1.198  christos 	if (__predict_true(!cold))
    712  1.198  christos 		mutex_exit(&pool_head_lock);
    713  1.116    simonb #endif
    714  1.116    simonb 
    715   1.66   thorpej 	if (palloc == NULL)
    716   1.66   thorpej 		palloc = &pool_allocator_kmem;
    717  1.244      maxv 
    718  1.180   mlelstv 	if (!cold)
    719  1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    720  1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    721  1.112     bjh21 		if (palloc->pa_pagesz == 0)
    722   1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    723   1.66   thorpej 
    724   1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    725   1.66   thorpej 
    726  1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    727   1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    728   1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    729    1.4   thorpej 	}
    730  1.180   mlelstv 	if (!cold)
    731  1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    732    1.3        pk 
    733    1.3        pk 	if (align == 0)
    734    1.3        pk 		align = ALIGN(1);
    735   1.14   thorpej 
    736  1.204      maxv 	prsize = size;
    737  1.204      maxv 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    738  1.204      maxv 		prsize = sizeof(struct pool_item);
    739    1.3        pk 
    740  1.204      maxv 	prsize = roundup(prsize, align);
    741  1.207  riastrad 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    742  1.213  christos 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    743  1.213  christos 	    __func__, wchan, prsize, palloc->pa_pagesz);
    744   1.35        pk 
    745    1.3        pk 	/*
    746    1.3        pk 	 * Initialize the pool structure.
    747    1.3        pk 	 */
    748   1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    749   1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    750   1.88       chs 	LIST_INIT(&pp->pr_partpages);
    751  1.134        ad 	pp->pr_cache = NULL;
    752    1.3        pk 	pp->pr_curpage = NULL;
    753    1.3        pk 	pp->pr_npages = 0;
    754    1.3        pk 	pp->pr_minitems = 0;
    755    1.3        pk 	pp->pr_minpages = 0;
    756    1.3        pk 	pp->pr_maxpages = UINT_MAX;
    757   1.20   thorpej 	pp->pr_roflags = flags;
    758   1.20   thorpej 	pp->pr_flags = 0;
    759  1.204      maxv 	pp->pr_size = prsize;
    760  1.233      maxv 	pp->pr_reqsize = size;
    761    1.3        pk 	pp->pr_align = align;
    762    1.3        pk 	pp->pr_wchan = wchan;
    763   1.66   thorpej 	pp->pr_alloc = palloc;
    764  1.245      maxv 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    765   1.20   thorpej 	pp->pr_nitems = 0;
    766   1.20   thorpej 	pp->pr_nout = 0;
    767   1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    768   1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    769   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    770   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    771   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    772   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    773   1.68   thorpej 	pp->pr_drain_hook = NULL;
    774   1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    775  1.125        ad 	pp->pr_freecheck = NULL;
    776  1.255      maxv 	pp->pr_redzone = false;
    777  1.204      maxv 	pool_redzone_init(pp, size);
    778  1.249      maxv 	pool_quarantine_init(pp);
    779    1.3        pk 
    780    1.3        pk 	/*
    781  1.240      maxv 	 * Decide whether to put the page header off-page to avoid wasting too
    782  1.240      maxv 	 * large a part of the page or too big an item. Off-page page headers
    783  1.240      maxv 	 * go on a hash table, so we can match a returned item with its header
    784  1.240      maxv 	 * based on the page address.
    785    1.3        pk 	 */
    786  1.240      maxv 	if (pool_init_is_phinpage(pp)) {
    787  1.241      maxv 		/* Use the beginning of the page for the page header */
    788  1.241      maxv 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    789  1.241      maxv 		pp->pr_itemoffset = roundup(PHSIZE, align);
    790  1.239      maxv 		pp->pr_roflags |= PR_PHINPAGE;
    791    1.2        pk 	} else {
    792    1.3        pk 		/* The page header will be taken from our page header pool */
    793  1.237      maxv 		itemspace = palloc->pa_pagesz;
    794  1.241      maxv 		pp->pr_itemoffset = 0;
    795   1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    796    1.2        pk 	}
    797    1.1        pk 
    798  1.243      maxv 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    799  1.243      maxv 	KASSERT(pp->pr_itemsperpage != 0);
    800  1.243      maxv 
    801  1.242      maxv 	/*
    802  1.242      maxv 	 * Decide whether to use a bitmap or a linked list to manage freed
    803  1.242      maxv 	 * items.
    804  1.242      maxv 	 */
    805  1.242      maxv 	if (pool_init_is_usebmap(pp)) {
    806  1.242      maxv 		pp->pr_roflags |= PR_USEBMAP;
    807  1.242      maxv 	}
    808  1.242      maxv 
    809  1.242      maxv 	/*
    810  1.256      maxv 	 * If we're off-page, then we're using a bitmap; choose the appropriate
    811  1.256      maxv 	 * pool to allocate page headers, whose size varies depending on the
    812  1.256      maxv 	 * bitmap. If we're on-page, nothing to do.
    813  1.242      maxv 	 */
    814  1.256      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    815   1.97      yamt 		int idx;
    816   1.97      yamt 
    817  1.256      maxv 		KASSERT(pp->pr_roflags & PR_USEBMAP);
    818  1.256      maxv 
    819   1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    820   1.97      yamt 		    idx++) {
    821   1.97      yamt 			/* nothing */
    822   1.97      yamt 		}
    823   1.97      yamt 		if (idx >= PHPOOL_MAX) {
    824   1.97      yamt 			/*
    825   1.97      yamt 			 * if you see this panic, consider to tweak
    826   1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    827   1.97      yamt 			 */
    828  1.213  christos 			panic("%s: [%s] too large itemsperpage(%d) for "
    829  1.242      maxv 			    "PR_USEBMAP", __func__,
    830   1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    831   1.97      yamt 		}
    832   1.97      yamt 		pp->pr_phpool = &phpool[idx];
    833  1.242      maxv 	} else {
    834   1.97      yamt 		pp->pr_phpool = NULL;
    835   1.97      yamt 	}
    836    1.3        pk 
    837    1.3        pk 	/*
    838    1.3        pk 	 * Use the slack between the chunks and the page header
    839    1.3        pk 	 * for "cache coloring".
    840    1.3        pk 	 */
    841  1.237      maxv 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    842  1.239      maxv 	pp->pr_maxcolor = rounddown(slack, align);
    843    1.3        pk 	pp->pr_curcolor = 0;
    844    1.3        pk 
    845    1.3        pk 	pp->pr_nget = 0;
    846    1.3        pk 	pp->pr_nfail = 0;
    847    1.3        pk 	pp->pr_nput = 0;
    848    1.3        pk 	pp->pr_npagealloc = 0;
    849    1.3        pk 	pp->pr_npagefree = 0;
    850    1.1        pk 	pp->pr_hiwat = 0;
    851    1.8   thorpej 	pp->pr_nidle = 0;
    852  1.134        ad 	pp->pr_refcnt = 0;
    853    1.3        pk 
    854  1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    855  1.134        ad 	cv_init(&pp->pr_cv, wchan);
    856  1.134        ad 	pp->pr_ipl = ipl;
    857    1.1        pk 
    858  1.145        ad 	/* Insert into the list of all pools. */
    859  1.181   mlelstv 	if (!cold)
    860  1.134        ad 		mutex_enter(&pool_head_lock);
    861  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    862  1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    863  1.145        ad 			break;
    864  1.145        ad 	}
    865  1.145        ad 	if (pp1 == NULL)
    866  1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    867  1.145        ad 	else
    868  1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    869  1.181   mlelstv 	if (!cold)
    870  1.134        ad 		mutex_exit(&pool_head_lock);
    871  1.134        ad 
    872  1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    873  1.181   mlelstv 	if (!cold)
    874  1.134        ad 		mutex_enter(&palloc->pa_lock);
    875  1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    876  1.181   mlelstv 	if (!cold)
    877  1.134        ad 		mutex_exit(&palloc->pa_lock);
    878    1.1        pk }
    879    1.1        pk 
    880    1.1        pk /*
    881    1.1        pk  * De-commision a pool resource.
    882    1.1        pk  */
    883    1.1        pk void
    884   1.42   thorpej pool_destroy(struct pool *pp)
    885    1.1        pk {
    886  1.101   thorpej 	struct pool_pagelist pq;
    887    1.3        pk 	struct pool_item_header *ph;
    888   1.43   thorpej 
    889  1.249      maxv 	pool_quarantine_flush(pp);
    890  1.249      maxv 
    891  1.101   thorpej 	/* Remove from global pool list */
    892  1.134        ad 	mutex_enter(&pool_head_lock);
    893  1.134        ad 	while (pp->pr_refcnt != 0)
    894  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    895  1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    896  1.101   thorpej 	if (drainpp == pp)
    897  1.101   thorpej 		drainpp = NULL;
    898  1.134        ad 	mutex_exit(&pool_head_lock);
    899  1.101   thorpej 
    900  1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    901  1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    902   1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    903  1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    904   1.66   thorpej 
    905  1.178      elad 	mutex_enter(&pool_allocator_lock);
    906  1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    907  1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    908  1.178      elad 	mutex_exit(&pool_allocator_lock);
    909  1.178      elad 
    910  1.134        ad 	mutex_enter(&pp->pr_lock);
    911  1.101   thorpej 
    912  1.134        ad 	KASSERT(pp->pr_cache == NULL);
    913  1.207  riastrad 	KASSERTMSG((pp->pr_nout == 0),
    914  1.251  christos 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
    915  1.251  christos 	    pp->pr_nout);
    916  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    917  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    918  1.101   thorpej 
    919    1.3        pk 	/* Remove all pages */
    920  1.101   thorpej 	LIST_INIT(&pq);
    921   1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    922  1.101   thorpej 		pr_rmpage(pp, ph, &pq);
    923  1.101   thorpej 
    924  1.134        ad 	mutex_exit(&pp->pr_lock);
    925    1.3        pk 
    926  1.101   thorpej 	pr_pagelist_free(pp, &pq);
    927  1.134        ad 	cv_destroy(&pp->pr_cv);
    928  1.134        ad 	mutex_destroy(&pp->pr_lock);
    929    1.1        pk }
    930    1.1        pk 
    931   1.68   thorpej void
    932   1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    933   1.68   thorpej {
    934   1.68   thorpej 
    935   1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
    936  1.207  riastrad 	KASSERTMSG((pp->pr_drain_hook == NULL),
    937  1.213  christos 	    "%s: [%s] already set", __func__, pp->pr_wchan);
    938   1.68   thorpej 	pp->pr_drain_hook = fn;
    939   1.68   thorpej 	pp->pr_drain_hook_arg = arg;
    940   1.68   thorpej }
    941   1.68   thorpej 
    942   1.88       chs static struct pool_item_header *
    943  1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    944   1.55   thorpej {
    945   1.55   thorpej 	struct pool_item_header *ph;
    946   1.55   thorpej 
    947   1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    948  1.241      maxv 		ph = storage;
    949  1.134        ad 	else
    950   1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
    951   1.55   thorpej 
    952  1.236      maxv 	return ph;
    953   1.55   thorpej }
    954    1.1        pk 
    955    1.1        pk /*
    956  1.134        ad  * Grab an item from the pool.
    957    1.1        pk  */
    958    1.3        pk void *
    959   1.56  sommerfe pool_get(struct pool *pp, int flags)
    960    1.1        pk {
    961    1.3        pk 	struct pool_item_header *ph;
    962   1.55   thorpej 	void *v;
    963    1.1        pk 
    964  1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
    965  1.207  riastrad 	KASSERTMSG((pp->pr_itemsperpage != 0),
    966  1.213  christos 	    "%s: [%s] pr_itemsperpage is zero, "
    967  1.213  christos 	    "pool not initialized?", __func__, pp->pr_wchan);
    968  1.207  riastrad 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
    969  1.207  riastrad 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
    970  1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
    971  1.213  christos 	    __func__, pp->pr_wchan);
    972  1.155        ad 	if (flags & PR_WAITOK) {
    973  1.154      yamt 		ASSERT_SLEEPABLE();
    974  1.155        ad 	}
    975    1.1        pk 
    976  1.134        ad 	mutex_enter(&pp->pr_lock);
    977   1.20   thorpej  startover:
    978   1.20   thorpej 	/*
    979   1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
    980   1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
    981   1.20   thorpej 	 * the pool.
    982   1.20   thorpej 	 */
    983  1.207  riastrad 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
    984  1.213  christos 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
    985   1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    986   1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
    987   1.68   thorpej 			/*
    988   1.68   thorpej 			 * Since the drain hook is going to free things
    989   1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
    990   1.68   thorpej 			 * and check the hardlimit condition again.
    991   1.68   thorpej 			 */
    992  1.134        ad 			mutex_exit(&pp->pr_lock);
    993   1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    994  1.134        ad 			mutex_enter(&pp->pr_lock);
    995   1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
    996   1.68   thorpej 				goto startover;
    997   1.68   thorpej 		}
    998   1.68   thorpej 
    999   1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1000   1.20   thorpej 			/*
   1001   1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
   1002   1.20   thorpej 			 * it be?
   1003   1.20   thorpej 			 */
   1004   1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1005  1.212  christos 			do {
   1006  1.212  christos 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1007  1.212  christos 			} while (pp->pr_flags & PR_WANTED);
   1008   1.20   thorpej 			goto startover;
   1009   1.20   thorpej 		}
   1010   1.31   thorpej 
   1011   1.31   thorpej 		/*
   1012   1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1013   1.31   thorpej 		 */
   1014   1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1015   1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1016   1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1017   1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1018   1.21   thorpej 
   1019   1.21   thorpej 		pp->pr_nfail++;
   1020   1.21   thorpej 
   1021  1.134        ad 		mutex_exit(&pp->pr_lock);
   1022  1.216  christos 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1023  1.236      maxv 		return NULL;
   1024   1.20   thorpej 	}
   1025   1.20   thorpej 
   1026    1.3        pk 	/*
   1027    1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1028    1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1029    1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1030    1.3        pk 	 * has no items in its bucket.
   1031    1.3        pk 	 */
   1032   1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1033  1.113      yamt 		int error;
   1034  1.113      yamt 
   1035  1.207  riastrad 		KASSERTMSG((pp->pr_nitems == 0),
   1036  1.213  christos 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
   1037  1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
   1038   1.20   thorpej 
   1039   1.21   thorpej 		/*
   1040   1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1041   1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1042   1.21   thorpej 		 * may block.
   1043   1.21   thorpej 		 */
   1044  1.113      yamt 		error = pool_grow(pp, flags);
   1045  1.113      yamt 		if (error != 0) {
   1046   1.21   thorpej 			/*
   1047  1.210   mlelstv 			 * pool_grow aborts when another thread
   1048  1.210   mlelstv 			 * is allocating a new page. Retry if it
   1049  1.210   mlelstv 			 * waited for it.
   1050  1.210   mlelstv 			 */
   1051  1.210   mlelstv 			if (error == ERESTART)
   1052  1.210   mlelstv 				goto startover;
   1053  1.210   mlelstv 
   1054  1.210   mlelstv 			/*
   1055   1.55   thorpej 			 * We were unable to allocate a page or item
   1056   1.55   thorpej 			 * header, but we released the lock during
   1057   1.55   thorpej 			 * allocation, so perhaps items were freed
   1058   1.55   thorpej 			 * back to the pool.  Check for this case.
   1059   1.21   thorpej 			 */
   1060   1.21   thorpej 			if (pp->pr_curpage != NULL)
   1061   1.21   thorpej 				goto startover;
   1062   1.15        pk 
   1063  1.117      yamt 			pp->pr_nfail++;
   1064  1.134        ad 			mutex_exit(&pp->pr_lock);
   1065  1.211  riastrad 			KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   1066  1.236      maxv 			return NULL;
   1067    1.1        pk 		}
   1068    1.3        pk 
   1069   1.20   thorpej 		/* Start the allocation process over. */
   1070   1.20   thorpej 		goto startover;
   1071    1.3        pk 	}
   1072  1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1073  1.207  riastrad 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1074  1.251  christos 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
   1075  1.234      maxv 		v = pr_item_bitmap_get(pp, ph);
   1076   1.97      yamt 	} else {
   1077  1.234      maxv 		v = pr_item_linkedlist_get(pp, ph);
   1078   1.97      yamt 	}
   1079   1.20   thorpej 	pp->pr_nitems--;
   1080   1.20   thorpej 	pp->pr_nout++;
   1081    1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1082  1.207  riastrad 		KASSERT(pp->pr_nidle > 0);
   1083    1.6   thorpej 		pp->pr_nidle--;
   1084   1.88       chs 
   1085   1.88       chs 		/*
   1086   1.88       chs 		 * This page was previously empty.  Move it to the list of
   1087   1.88       chs 		 * partially-full pages.  This page is already curpage.
   1088   1.88       chs 		 */
   1089   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1090   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1091    1.6   thorpej 	}
   1092    1.3        pk 	ph->ph_nmissing++;
   1093   1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1094  1.242      maxv 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1095  1.207  riastrad 			LIST_EMPTY(&ph->ph_itemlist)),
   1096  1.213  christos 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1097  1.213  christos 			pp->pr_wchan, ph->ph_nmissing);
   1098    1.3        pk 		/*
   1099   1.88       chs 		 * This page is now full.  Move it to the full list
   1100   1.88       chs 		 * and select a new current page.
   1101    1.3        pk 		 */
   1102   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1103   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1104   1.88       chs 		pool_update_curpage(pp);
   1105    1.1        pk 	}
   1106    1.3        pk 
   1107    1.3        pk 	pp->pr_nget++;
   1108   1.20   thorpej 
   1109   1.20   thorpej 	/*
   1110   1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1111   1.20   thorpej 	 * water mark, add more items to the pool.
   1112   1.20   thorpej 	 */
   1113   1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1114   1.20   thorpej 		/*
   1115   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1116   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1117   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1118   1.20   thorpej 		 */
   1119   1.20   thorpej 	}
   1120   1.20   thorpej 
   1121  1.134        ad 	mutex_exit(&pp->pr_lock);
   1122  1.238      maxv 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1123  1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1124  1.204      maxv 	pool_redzone_fill(pp, v);
   1125  1.232  christos 	if (flags & PR_ZERO)
   1126  1.233      maxv 		memset(v, 0, pp->pr_reqsize);
   1127  1.232  christos 	else
   1128  1.232  christos 		pool_kleak_fill(pp, v);
   1129  1.232  christos 	return v;
   1130    1.1        pk }
   1131    1.1        pk 
   1132    1.1        pk /*
   1133   1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1134    1.1        pk  */
   1135   1.43   thorpej static void
   1136  1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1137    1.1        pk {
   1138    1.3        pk 	struct pool_item_header *ph;
   1139    1.3        pk 
   1140  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1141  1.204      maxv 	pool_redzone_check(pp, v);
   1142  1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1143  1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1144   1.61       chs 
   1145  1.207  riastrad 	KASSERTMSG((pp->pr_nout > 0),
   1146  1.213  christos 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1147    1.3        pk 
   1148  1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1149  1.213  christos 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1150    1.3        pk 	}
   1151   1.28   thorpej 
   1152    1.3        pk 	/*
   1153    1.3        pk 	 * Return to item list.
   1154    1.3        pk 	 */
   1155  1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1156  1.234      maxv 		pr_item_bitmap_put(pp, ph, v);
   1157   1.97      yamt 	} else {
   1158  1.234      maxv 		pr_item_linkedlist_put(pp, ph, v);
   1159   1.97      yamt 	}
   1160   1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1161    1.3        pk 	ph->ph_nmissing--;
   1162    1.3        pk 	pp->pr_nput++;
   1163   1.20   thorpej 	pp->pr_nitems++;
   1164   1.20   thorpej 	pp->pr_nout--;
   1165    1.3        pk 
   1166    1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1167    1.3        pk 	if (pp->pr_curpage == NULL)
   1168    1.3        pk 		pp->pr_curpage = ph;
   1169    1.3        pk 
   1170    1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1171    1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1172  1.134        ad 		cv_broadcast(&pp->pr_cv);
   1173    1.3        pk 	}
   1174    1.3        pk 
   1175    1.3        pk 	/*
   1176   1.88       chs 	 * If this page is now empty, do one of two things:
   1177   1.21   thorpej 	 *
   1178   1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1179   1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1180   1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1181   1.90   thorpej 	 *	    CLAIM.
   1182   1.21   thorpej 	 *
   1183   1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1184   1.88       chs 	 *
   1185   1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1186   1.88       chs 	 * page if one is available).
   1187    1.3        pk 	 */
   1188    1.3        pk 	if (ph->ph_nmissing == 0) {
   1189    1.6   thorpej 		pp->pr_nidle++;
   1190   1.90   thorpej 		if (pp->pr_npages > pp->pr_minpages &&
   1191  1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1192  1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1193    1.3        pk 		} else {
   1194   1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1195   1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1196    1.3        pk 
   1197   1.21   thorpej 			/*
   1198   1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1199   1.21   thorpej 			 * be idle for some period of time before it can
   1200   1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1201   1.21   thorpej 			 * ping-pong'ing for memory.
   1202  1.151      yamt 			 *
   1203  1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1204  1.151      yamt 			 * a problem for our usage.
   1205   1.21   thorpej 			 */
   1206  1.151      yamt 			ph->ph_time = time_uptime;
   1207    1.1        pk 		}
   1208   1.88       chs 		pool_update_curpage(pp);
   1209    1.1        pk 	}
   1210   1.88       chs 
   1211   1.21   thorpej 	/*
   1212   1.88       chs 	 * If the page was previously completely full, move it to the
   1213   1.88       chs 	 * partially-full list and make it the current page.  The next
   1214   1.88       chs 	 * allocation will get the item from this page, instead of
   1215   1.88       chs 	 * further fragmenting the pool.
   1216   1.21   thorpej 	 */
   1217   1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1218   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1219   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1220   1.21   thorpej 		pp->pr_curpage = ph;
   1221   1.21   thorpej 	}
   1222   1.43   thorpej }
   1223   1.43   thorpej 
   1224   1.56  sommerfe void
   1225   1.56  sommerfe pool_put(struct pool *pp, void *v)
   1226   1.56  sommerfe {
   1227  1.101   thorpej 	struct pool_pagelist pq;
   1228  1.101   thorpej 
   1229  1.101   thorpej 	LIST_INIT(&pq);
   1230   1.56  sommerfe 
   1231  1.134        ad 	mutex_enter(&pp->pr_lock);
   1232  1.249      maxv 	if (!pool_put_quarantine(pp, v, &pq)) {
   1233  1.249      maxv 		pool_do_put(pp, v, &pq);
   1234  1.249      maxv 	}
   1235  1.134        ad 	mutex_exit(&pp->pr_lock);
   1236   1.56  sommerfe 
   1237  1.102       chs 	pr_pagelist_free(pp, &pq);
   1238   1.56  sommerfe }
   1239   1.57  sommerfe 
   1240   1.74   thorpej /*
   1241  1.113      yamt  * pool_grow: grow a pool by a page.
   1242  1.113      yamt  *
   1243  1.113      yamt  * => called with pool locked.
   1244  1.113      yamt  * => unlock and relock the pool.
   1245  1.113      yamt  * => return with pool locked.
   1246  1.113      yamt  */
   1247  1.113      yamt 
   1248  1.113      yamt static int
   1249  1.113      yamt pool_grow(struct pool *pp, int flags)
   1250  1.113      yamt {
   1251  1.236      maxv 	struct pool_item_header *ph;
   1252  1.237      maxv 	char *storage;
   1253  1.236      maxv 
   1254  1.209  riastrad 	/*
   1255  1.209  riastrad 	 * If there's a pool_grow in progress, wait for it to complete
   1256  1.209  riastrad 	 * and try again from the top.
   1257  1.209  riastrad 	 */
   1258  1.209  riastrad 	if (pp->pr_flags & PR_GROWING) {
   1259  1.209  riastrad 		if (flags & PR_WAITOK) {
   1260  1.209  riastrad 			do {
   1261  1.209  riastrad 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1262  1.209  riastrad 			} while (pp->pr_flags & PR_GROWING);
   1263  1.209  riastrad 			return ERESTART;
   1264  1.209  riastrad 		} else {
   1265  1.219       mrg 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1266  1.219       mrg 				/*
   1267  1.219       mrg 				 * This needs an unlock/relock dance so
   1268  1.219       mrg 				 * that the other caller has a chance to
   1269  1.219       mrg 				 * run and actually do the thing.  Note
   1270  1.219       mrg 				 * that this is effectively a busy-wait.
   1271  1.219       mrg 				 */
   1272  1.219       mrg 				mutex_exit(&pp->pr_lock);
   1273  1.219       mrg 				mutex_enter(&pp->pr_lock);
   1274  1.219       mrg 				return ERESTART;
   1275  1.219       mrg 			}
   1276  1.209  riastrad 			return EWOULDBLOCK;
   1277  1.209  riastrad 		}
   1278  1.209  riastrad 	}
   1279  1.209  riastrad 	pp->pr_flags |= PR_GROWING;
   1280  1.220  christos 	if (flags & PR_WAITOK)
   1281  1.220  christos 		mutex_exit(&pp->pr_lock);
   1282  1.220  christos 	else
   1283  1.219       mrg 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1284  1.113      yamt 
   1285  1.237      maxv 	storage = pool_allocator_alloc(pp, flags);
   1286  1.237      maxv 	if (__predict_false(storage == NULL))
   1287  1.216  christos 		goto out;
   1288  1.216  christos 
   1289  1.237      maxv 	ph = pool_alloc_item_header(pp, storage, flags);
   1290  1.216  christos 	if (__predict_false(ph == NULL)) {
   1291  1.237      maxv 		pool_allocator_free(pp, storage);
   1292  1.209  riastrad 		goto out;
   1293  1.113      yamt 	}
   1294  1.113      yamt 
   1295  1.220  christos 	if (flags & PR_WAITOK)
   1296  1.220  christos 		mutex_enter(&pp->pr_lock);
   1297  1.237      maxv 	pool_prime_page(pp, storage, ph);
   1298  1.113      yamt 	pp->pr_npagealloc++;
   1299  1.216  christos 	KASSERT(pp->pr_flags & PR_GROWING);
   1300  1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1301  1.209  riastrad 	/*
   1302  1.209  riastrad 	 * If anyone was waiting for pool_grow, notify them that we
   1303  1.209  riastrad 	 * may have just done it.
   1304  1.209  riastrad 	 */
   1305  1.216  christos 	cv_broadcast(&pp->pr_cv);
   1306  1.216  christos 	return 0;
   1307  1.216  christos out:
   1308  1.220  christos 	if (flags & PR_WAITOK)
   1309  1.220  christos 		mutex_enter(&pp->pr_lock);
   1310  1.209  riastrad 	KASSERT(pp->pr_flags & PR_GROWING);
   1311  1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1312  1.216  christos 	return ENOMEM;
   1313  1.113      yamt }
   1314  1.113      yamt 
   1315  1.113      yamt /*
   1316   1.74   thorpej  * Add N items to the pool.
   1317   1.74   thorpej  */
   1318   1.74   thorpej int
   1319   1.74   thorpej pool_prime(struct pool *pp, int n)
   1320   1.74   thorpej {
   1321   1.75    simonb 	int newpages;
   1322  1.113      yamt 	int error = 0;
   1323   1.74   thorpej 
   1324  1.134        ad 	mutex_enter(&pp->pr_lock);
   1325   1.74   thorpej 
   1326   1.74   thorpej 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1327   1.74   thorpej 
   1328  1.216  christos 	while (newpages > 0) {
   1329  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1330  1.113      yamt 		if (error) {
   1331  1.214  christos 			if (error == ERESTART)
   1332  1.214  christos 				continue;
   1333   1.74   thorpej 			break;
   1334   1.74   thorpej 		}
   1335   1.74   thorpej 		pp->pr_minpages++;
   1336  1.216  christos 		newpages--;
   1337   1.74   thorpej 	}
   1338   1.74   thorpej 
   1339   1.74   thorpej 	if (pp->pr_minpages >= pp->pr_maxpages)
   1340   1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1341   1.74   thorpej 
   1342  1.134        ad 	mutex_exit(&pp->pr_lock);
   1343  1.113      yamt 	return error;
   1344   1.74   thorpej }
   1345   1.55   thorpej 
   1346   1.55   thorpej /*
   1347    1.3        pk  * Add a page worth of items to the pool.
   1348   1.21   thorpej  *
   1349   1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1350    1.3        pk  */
   1351   1.55   thorpej static void
   1352  1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1353    1.3        pk {
   1354  1.236      maxv 	const unsigned int align = pp->pr_align;
   1355    1.3        pk 	struct pool_item *pi;
   1356  1.128  christos 	void *cp = storage;
   1357   1.55   thorpej 	int n;
   1358   1.36        pk 
   1359  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1360  1.207  riastrad 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1361  1.207  riastrad 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1362  1.213  christos 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1363    1.3        pk 
   1364    1.3        pk 	/*
   1365    1.3        pk 	 * Insert page header.
   1366    1.3        pk 	 */
   1367   1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1368  1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1369    1.3        pk 	ph->ph_page = storage;
   1370    1.3        pk 	ph->ph_nmissing = 0;
   1371  1.151      yamt 	ph->ph_time = time_uptime;
   1372  1.245      maxv 	if (pp->pr_roflags & PR_PHINPAGE)
   1373  1.245      maxv 		ph->ph_poolid = pp->pr_poolid;
   1374  1.245      maxv 	else
   1375   1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1376    1.3        pk 
   1377    1.6   thorpej 	pp->pr_nidle++;
   1378    1.6   thorpej 
   1379    1.3        pk 	/*
   1380  1.241      maxv 	 * The item space starts after the on-page header, if any.
   1381  1.241      maxv 	 */
   1382  1.241      maxv 	ph->ph_off = pp->pr_itemoffset;
   1383  1.241      maxv 
   1384  1.241      maxv 	/*
   1385    1.3        pk 	 * Color this page.
   1386    1.3        pk 	 */
   1387  1.241      maxv 	ph->ph_off += pp->pr_curcolor;
   1388  1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1389    1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1390    1.3        pk 		pp->pr_curcolor = 0;
   1391    1.3        pk 
   1392  1.238      maxv 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1393  1.125        ad 
   1394    1.3        pk 	/*
   1395    1.3        pk 	 * Insert remaining chunks on the bucket list.
   1396    1.3        pk 	 */
   1397    1.3        pk 	n = pp->pr_itemsperpage;
   1398   1.20   thorpej 	pp->pr_nitems += n;
   1399    1.3        pk 
   1400  1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1401  1.234      maxv 		pr_item_bitmap_init(pp, ph);
   1402   1.97      yamt 	} else {
   1403   1.97      yamt 		while (n--) {
   1404   1.97      yamt 			pi = (struct pool_item *)cp;
   1405   1.78   thorpej 
   1406  1.238      maxv 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1407    1.3        pk 
   1408   1.97      yamt 			/* Insert on page list */
   1409  1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1410  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1411   1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1412    1.3        pk #endif
   1413  1.128  christos 			cp = (char *)cp + pp->pr_size;
   1414  1.125        ad 
   1415  1.238      maxv 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1416   1.97      yamt 		}
   1417    1.3        pk 	}
   1418    1.3        pk 
   1419    1.3        pk 	/*
   1420    1.3        pk 	 * If the pool was depleted, point at the new page.
   1421    1.3        pk 	 */
   1422    1.3        pk 	if (pp->pr_curpage == NULL)
   1423    1.3        pk 		pp->pr_curpage = ph;
   1424    1.3        pk 
   1425    1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1426    1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1427    1.3        pk }
   1428    1.3        pk 
   1429   1.20   thorpej /*
   1430   1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1431   1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1432   1.20   thorpej  *
   1433   1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1434   1.20   thorpej  *
   1435   1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1436   1.20   thorpej  * with it locked.
   1437   1.20   thorpej  */
   1438   1.20   thorpej static int
   1439   1.42   thorpej pool_catchup(struct pool *pp)
   1440   1.20   thorpej {
   1441   1.20   thorpej 	int error = 0;
   1442   1.20   thorpej 
   1443   1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1444  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1445  1.113      yamt 		if (error) {
   1446  1.214  christos 			if (error == ERESTART)
   1447  1.214  christos 				continue;
   1448   1.20   thorpej 			break;
   1449   1.20   thorpej 		}
   1450   1.20   thorpej 	}
   1451  1.113      yamt 	return error;
   1452   1.20   thorpej }
   1453   1.20   thorpej 
   1454   1.88       chs static void
   1455   1.88       chs pool_update_curpage(struct pool *pp)
   1456   1.88       chs {
   1457   1.88       chs 
   1458   1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1459   1.88       chs 	if (pp->pr_curpage == NULL) {
   1460   1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1461   1.88       chs 	}
   1462  1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1463  1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1464   1.88       chs }
   1465   1.88       chs 
   1466    1.3        pk void
   1467   1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1468    1.3        pk {
   1469   1.15        pk 
   1470  1.134        ad 	mutex_enter(&pp->pr_lock);
   1471   1.21   thorpej 
   1472    1.3        pk 	pp->pr_minitems = n;
   1473   1.15        pk 	pp->pr_minpages = (n == 0)
   1474   1.15        pk 		? 0
   1475   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1476   1.20   thorpej 
   1477   1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1478   1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1479   1.20   thorpej 		/*
   1480   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1481   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1482   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1483   1.20   thorpej 		 */
   1484   1.20   thorpej 	}
   1485   1.21   thorpej 
   1486  1.134        ad 	mutex_exit(&pp->pr_lock);
   1487    1.3        pk }
   1488    1.3        pk 
   1489    1.3        pk void
   1490   1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1491    1.3        pk {
   1492   1.15        pk 
   1493  1.134        ad 	mutex_enter(&pp->pr_lock);
   1494   1.21   thorpej 
   1495   1.15        pk 	pp->pr_maxpages = (n == 0)
   1496   1.15        pk 		? 0
   1497   1.18   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1498   1.21   thorpej 
   1499  1.134        ad 	mutex_exit(&pp->pr_lock);
   1500    1.3        pk }
   1501    1.3        pk 
   1502   1.20   thorpej void
   1503   1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1504   1.20   thorpej {
   1505   1.20   thorpej 
   1506  1.134        ad 	mutex_enter(&pp->pr_lock);
   1507   1.20   thorpej 
   1508   1.20   thorpej 	pp->pr_hardlimit = n;
   1509   1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1510   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1511   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1512   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1513   1.20   thorpej 
   1514   1.20   thorpej 	/*
   1515   1.21   thorpej 	 * In-line version of pool_sethiwat(), because we don't want to
   1516   1.21   thorpej 	 * release the lock.
   1517   1.20   thorpej 	 */
   1518   1.20   thorpej 	pp->pr_maxpages = (n == 0)
   1519   1.20   thorpej 		? 0
   1520   1.20   thorpej 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1521   1.21   thorpej 
   1522  1.134        ad 	mutex_exit(&pp->pr_lock);
   1523   1.20   thorpej }
   1524    1.3        pk 
   1525    1.3        pk /*
   1526    1.3        pk  * Release all complete pages that have not been used recently.
   1527  1.184     rmind  *
   1528  1.197       jym  * Must not be called from interrupt context.
   1529    1.3        pk  */
   1530   1.66   thorpej int
   1531   1.56  sommerfe pool_reclaim(struct pool *pp)
   1532    1.3        pk {
   1533    1.3        pk 	struct pool_item_header *ph, *phnext;
   1534   1.61       chs 	struct pool_pagelist pq;
   1535  1.151      yamt 	uint32_t curtime;
   1536  1.134        ad 	bool klock;
   1537  1.134        ad 	int rv;
   1538    1.3        pk 
   1539  1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1540  1.184     rmind 
   1541   1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1542   1.68   thorpej 		/*
   1543   1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1544   1.68   thorpej 		 */
   1545   1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1546   1.68   thorpej 	}
   1547   1.68   thorpej 
   1548  1.134        ad 	/*
   1549  1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1550  1.157        ad 	 * to block.
   1551  1.134        ad 	 */
   1552  1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1553  1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1554  1.134        ad 		KERNEL_LOCK(1, NULL);
   1555  1.134        ad 		klock = true;
   1556  1.134        ad 	} else
   1557  1.134        ad 		klock = false;
   1558  1.134        ad 
   1559  1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1560  1.134        ad 	if (pp->pr_cache != NULL)
   1561  1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1562  1.134        ad 
   1563  1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1564  1.134        ad 		if (klock) {
   1565  1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1566  1.134        ad 		}
   1567  1.236      maxv 		return 0;
   1568  1.134        ad 	}
   1569   1.68   thorpej 
   1570   1.88       chs 	LIST_INIT(&pq);
   1571   1.43   thorpej 
   1572  1.151      yamt 	curtime = time_uptime;
   1573   1.21   thorpej 
   1574   1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1575   1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1576    1.3        pk 
   1577    1.3        pk 		/* Check our minimum page claim */
   1578    1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1579    1.3        pk 			break;
   1580    1.3        pk 
   1581   1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1582  1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1583   1.88       chs 			continue;
   1584   1.21   thorpej 
   1585   1.88       chs 		/*
   1586   1.88       chs 		 * If freeing this page would put us below
   1587   1.88       chs 		 * the low water mark, stop now.
   1588   1.88       chs 		 */
   1589   1.88       chs 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1590   1.88       chs 		    pp->pr_minitems)
   1591   1.88       chs 			break;
   1592   1.21   thorpej 
   1593   1.88       chs 		pr_rmpage(pp, ph, &pq);
   1594    1.3        pk 	}
   1595    1.3        pk 
   1596  1.134        ad 	mutex_exit(&pp->pr_lock);
   1597  1.134        ad 
   1598  1.134        ad 	if (LIST_EMPTY(&pq))
   1599  1.134        ad 		rv = 0;
   1600  1.134        ad 	else {
   1601  1.134        ad 		pr_pagelist_free(pp, &pq);
   1602  1.134        ad 		rv = 1;
   1603  1.134        ad 	}
   1604  1.134        ad 
   1605  1.134        ad 	if (klock) {
   1606  1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1607  1.134        ad 	}
   1608   1.66   thorpej 
   1609  1.236      maxv 	return rv;
   1610    1.3        pk }
   1611    1.3        pk 
   1612    1.3        pk /*
   1613  1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1614  1.131        ad  *
   1615  1.134        ad  * Note, must never be called from interrupt context.
   1616    1.3        pk  */
   1617  1.197       jym bool
   1618  1.197       jym pool_drain(struct pool **ppp)
   1619    1.3        pk {
   1620  1.197       jym 	bool reclaimed;
   1621    1.3        pk 	struct pool *pp;
   1622  1.134        ad 
   1623  1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1624    1.3        pk 
   1625   1.61       chs 	pp = NULL;
   1626  1.134        ad 
   1627  1.134        ad 	/* Find next pool to drain, and add a reference. */
   1628  1.134        ad 	mutex_enter(&pool_head_lock);
   1629  1.134        ad 	do {
   1630  1.134        ad 		if (drainpp == NULL) {
   1631  1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1632  1.134        ad 		}
   1633  1.134        ad 		if (drainpp != NULL) {
   1634  1.134        ad 			pp = drainpp;
   1635  1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1636  1.134        ad 		}
   1637  1.134        ad 		/*
   1638  1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1639  1.134        ad 		 * one pool in the system being active.
   1640  1.134        ad 		 */
   1641  1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1642  1.134        ad 	pp->pr_refcnt++;
   1643  1.134        ad 	mutex_exit(&pool_head_lock);
   1644  1.134        ad 
   1645  1.134        ad 	/* Drain the cache (if any) and pool.. */
   1646  1.186     pooka 	reclaimed = pool_reclaim(pp);
   1647  1.134        ad 
   1648  1.134        ad 	/* Finally, unlock the pool. */
   1649  1.134        ad 	mutex_enter(&pool_head_lock);
   1650  1.134        ad 	pp->pr_refcnt--;
   1651  1.134        ad 	cv_broadcast(&pool_busy);
   1652  1.134        ad 	mutex_exit(&pool_head_lock);
   1653  1.186     pooka 
   1654  1.197       jym 	if (ppp != NULL)
   1655  1.197       jym 		*ppp = pp;
   1656  1.197       jym 
   1657  1.186     pooka 	return reclaimed;
   1658    1.3        pk }
   1659    1.3        pk 
   1660    1.3        pk /*
   1661  1.217       mrg  * Calculate the total number of pages consumed by pools.
   1662  1.217       mrg  */
   1663  1.217       mrg int
   1664  1.217       mrg pool_totalpages(void)
   1665  1.217       mrg {
   1666  1.250     skrll 
   1667  1.250     skrll 	mutex_enter(&pool_head_lock);
   1668  1.250     skrll 	int pages = pool_totalpages_locked();
   1669  1.250     skrll 	mutex_exit(&pool_head_lock);
   1670  1.250     skrll 
   1671  1.250     skrll 	return pages;
   1672  1.250     skrll }
   1673  1.250     skrll 
   1674  1.250     skrll int
   1675  1.250     skrll pool_totalpages_locked(void)
   1676  1.250     skrll {
   1677  1.217       mrg 	struct pool *pp;
   1678  1.218       mrg 	uint64_t total = 0;
   1679  1.217       mrg 
   1680  1.218       mrg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1681  1.218       mrg 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1682  1.218       mrg 
   1683  1.218       mrg 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1684  1.218       mrg 			bytes -= (pp->pr_nout * pp->pr_size);
   1685  1.218       mrg 		total += bytes;
   1686  1.218       mrg 	}
   1687  1.217       mrg 
   1688  1.218       mrg 	return atop(total);
   1689  1.217       mrg }
   1690  1.217       mrg 
   1691  1.217       mrg /*
   1692    1.3        pk  * Diagnostic helpers.
   1693    1.3        pk  */
   1694   1.21   thorpej 
   1695   1.25   thorpej void
   1696  1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1697  1.108      yamt {
   1698  1.108      yamt 	struct pool *pp;
   1699  1.108      yamt 
   1700  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1701  1.108      yamt 		pool_printit(pp, modif, pr);
   1702  1.108      yamt 	}
   1703  1.108      yamt }
   1704  1.108      yamt 
   1705  1.108      yamt void
   1706   1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1707   1.25   thorpej {
   1708   1.25   thorpej 
   1709   1.25   thorpej 	if (pp == NULL) {
   1710   1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1711   1.25   thorpej 		return;
   1712   1.25   thorpej 	}
   1713   1.25   thorpej 
   1714   1.25   thorpej 	pool_print1(pp, modif, pr);
   1715   1.25   thorpej }
   1716   1.25   thorpej 
   1717   1.21   thorpej static void
   1718  1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1719   1.97      yamt     void (*pr)(const char *, ...))
   1720   1.88       chs {
   1721   1.88       chs 	struct pool_item_header *ph;
   1722   1.88       chs 
   1723   1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1724  1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1725  1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1726  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1727  1.229      maxv 		struct pool_item *pi;
   1728  1.242      maxv 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1729  1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1730   1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1731   1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1732   1.97      yamt 					    pi, pi->pi_magic);
   1733   1.97      yamt 				}
   1734   1.88       chs 			}
   1735   1.88       chs 		}
   1736   1.88       chs #endif
   1737   1.88       chs 	}
   1738   1.88       chs }
   1739   1.88       chs 
   1740   1.88       chs static void
   1741   1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1742    1.3        pk {
   1743   1.25   thorpej 	struct pool_item_header *ph;
   1744  1.134        ad 	pool_cache_t pc;
   1745  1.134        ad 	pcg_t *pcg;
   1746  1.134        ad 	pool_cache_cpu_t *cc;
   1747  1.134        ad 	uint64_t cpuhit, cpumiss;
   1748   1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1749   1.25   thorpej 	char c;
   1750   1.25   thorpej 
   1751   1.25   thorpej 	while ((c = *modif++) != '\0') {
   1752   1.25   thorpej 		if (c == 'l')
   1753   1.25   thorpej 			print_log = 1;
   1754   1.25   thorpej 		if (c == 'p')
   1755   1.25   thorpej 			print_pagelist = 1;
   1756   1.44   thorpej 		if (c == 'c')
   1757   1.44   thorpej 			print_cache = 1;
   1758   1.25   thorpej 	}
   1759   1.25   thorpej 
   1760  1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1761  1.134        ad 		(*pr)("POOL CACHE");
   1762  1.134        ad 	} else {
   1763  1.134        ad 		(*pr)("POOL");
   1764  1.134        ad 	}
   1765  1.134        ad 
   1766  1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1767   1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1768   1.25   thorpej 	    pp->pr_roflags);
   1769   1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1770   1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1771   1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1772   1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1773   1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1774   1.25   thorpej 
   1775  1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1776   1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1777   1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1778   1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1779   1.25   thorpej 
   1780   1.25   thorpej 	if (print_pagelist == 0)
   1781   1.25   thorpej 		goto skip_pagelist;
   1782   1.25   thorpej 
   1783   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1784   1.88       chs 		(*pr)("\n\tempty page list:\n");
   1785   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1786   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1787   1.88       chs 		(*pr)("\n\tfull page list:\n");
   1788   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1789   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1790   1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1791   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1792   1.88       chs 
   1793   1.25   thorpej 	if (pp->pr_curpage == NULL)
   1794   1.25   thorpej 		(*pr)("\tno current page\n");
   1795   1.25   thorpej 	else
   1796   1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1797   1.25   thorpej 
   1798   1.25   thorpej  skip_pagelist:
   1799   1.25   thorpej 	if (print_log == 0)
   1800   1.25   thorpej 		goto skip_log;
   1801   1.25   thorpej 
   1802   1.25   thorpej 	(*pr)("\n");
   1803    1.3        pk 
   1804   1.25   thorpej  skip_log:
   1805   1.44   thorpej 
   1806  1.102       chs #define PR_GROUPLIST(pcg)						\
   1807  1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1808  1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1809  1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1810  1.102       chs 		    POOL_PADDR_INVALID) {				\
   1811  1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1812  1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1813  1.102       chs 			    (unsigned long long)			\
   1814  1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1815  1.102       chs 		} else {						\
   1816  1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1817  1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1818  1.102       chs 		}							\
   1819  1.102       chs 	}
   1820  1.102       chs 
   1821  1.134        ad 	if (pc != NULL) {
   1822  1.134        ad 		cpuhit = 0;
   1823  1.134        ad 		cpumiss = 0;
   1824  1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1825  1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1826  1.134        ad 				continue;
   1827  1.134        ad 			cpuhit += cc->cc_hits;
   1828  1.134        ad 			cpumiss += cc->cc_misses;
   1829  1.134        ad 		}
   1830  1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1831  1.134        ad 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1832  1.134        ad 		    pc->pc_hits, pc->pc_misses);
   1833  1.134        ad 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1834  1.134        ad 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1835  1.134        ad 		    pc->pc_contended);
   1836  1.134        ad 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1837  1.134        ad 		    pc->pc_nempty, pc->pc_nfull);
   1838  1.134        ad 		if (print_cache) {
   1839  1.134        ad 			(*pr)("\tfull cache groups:\n");
   1840  1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1841  1.134        ad 			    pcg = pcg->pcg_next) {
   1842  1.134        ad 				PR_GROUPLIST(pcg);
   1843  1.134        ad 			}
   1844  1.134        ad 			(*pr)("\tempty cache groups:\n");
   1845  1.134        ad 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1846  1.134        ad 			    pcg = pcg->pcg_next) {
   1847  1.134        ad 				PR_GROUPLIST(pcg);
   1848  1.134        ad 			}
   1849  1.103       chs 		}
   1850   1.44   thorpej 	}
   1851  1.102       chs #undef PR_GROUPLIST
   1852   1.88       chs }
   1853   1.88       chs 
   1854   1.88       chs static int
   1855   1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1856   1.88       chs {
   1857   1.88       chs 	struct pool_item *pi;
   1858  1.128  christos 	void *page;
   1859   1.88       chs 	int n;
   1860   1.88       chs 
   1861  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1862  1.253      maxv 		page = POOL_OBJ_TO_PAGE(pp, ph);
   1863  1.121      yamt 		if (page != ph->ph_page &&
   1864  1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1865  1.121      yamt 			if (label != NULL)
   1866  1.121      yamt 				printf("%s: ", label);
   1867  1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1868  1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1869  1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1870  1.121      yamt 				ph, page);
   1871  1.121      yamt 			return 1;
   1872  1.121      yamt 		}
   1873   1.88       chs 	}
   1874    1.3        pk 
   1875  1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1876   1.97      yamt 		return 0;
   1877   1.97      yamt 
   1878  1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1879   1.88       chs 	     pi != NULL;
   1880  1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1881   1.88       chs 
   1882  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1883   1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1884   1.88       chs 			if (label != NULL)
   1885   1.88       chs 				printf("%s: ", label);
   1886   1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1887  1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1888   1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1889  1.121      yamt 				n, pi);
   1890   1.88       chs 			panic("pool");
   1891   1.88       chs 		}
   1892   1.88       chs #endif
   1893  1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1894  1.121      yamt 			continue;
   1895  1.121      yamt 		}
   1896  1.253      maxv 		page = POOL_OBJ_TO_PAGE(pp, pi);
   1897   1.88       chs 		if (page == ph->ph_page)
   1898   1.88       chs 			continue;
   1899   1.88       chs 
   1900   1.88       chs 		if (label != NULL)
   1901   1.88       chs 			printf("%s: ", label);
   1902   1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1903   1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1904   1.88       chs 			pp->pr_wchan, ph->ph_page,
   1905   1.88       chs 			n, pi, page);
   1906   1.88       chs 		return 1;
   1907   1.88       chs 	}
   1908   1.88       chs 	return 0;
   1909    1.3        pk }
   1910    1.3        pk 
   1911   1.88       chs 
   1912    1.3        pk int
   1913   1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1914    1.3        pk {
   1915    1.3        pk 	struct pool_item_header *ph;
   1916    1.3        pk 	int r = 0;
   1917    1.3        pk 
   1918  1.134        ad 	mutex_enter(&pp->pr_lock);
   1919   1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1920   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1921   1.88       chs 		if (r) {
   1922   1.88       chs 			goto out;
   1923   1.88       chs 		}
   1924   1.88       chs 	}
   1925   1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1926   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1927   1.88       chs 		if (r) {
   1928    1.3        pk 			goto out;
   1929    1.3        pk 		}
   1930   1.88       chs 	}
   1931   1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1932   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1933   1.88       chs 		if (r) {
   1934    1.3        pk 			goto out;
   1935    1.3        pk 		}
   1936    1.3        pk 	}
   1937   1.88       chs 
   1938    1.3        pk out:
   1939  1.134        ad 	mutex_exit(&pp->pr_lock);
   1940  1.236      maxv 	return r;
   1941   1.43   thorpej }
   1942   1.43   thorpej 
   1943   1.43   thorpej /*
   1944   1.43   thorpej  * pool_cache_init:
   1945   1.43   thorpej  *
   1946   1.43   thorpej  *	Initialize a pool cache.
   1947  1.134        ad  */
   1948  1.134        ad pool_cache_t
   1949  1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   1950  1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   1951  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   1952  1.134        ad {
   1953  1.134        ad 	pool_cache_t pc;
   1954  1.134        ad 
   1955  1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   1956  1.134        ad 	if (pc == NULL)
   1957  1.134        ad 		return NULL;
   1958  1.134        ad 
   1959  1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   1960  1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   1961  1.134        ad 
   1962  1.134        ad 	return pc;
   1963  1.134        ad }
   1964  1.134        ad 
   1965  1.134        ad /*
   1966  1.134        ad  * pool_cache_bootstrap:
   1967   1.43   thorpej  *
   1968  1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   1969  1.134        ad  *	provides initial storage.
   1970   1.43   thorpej  */
   1971   1.43   thorpej void
   1972  1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   1973  1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   1974  1.134        ad     struct pool_allocator *palloc, int ipl,
   1975  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   1976   1.43   thorpej     void *arg)
   1977   1.43   thorpej {
   1978  1.134        ad 	CPU_INFO_ITERATOR cii;
   1979  1.145        ad 	pool_cache_t pc1;
   1980  1.134        ad 	struct cpu_info *ci;
   1981  1.134        ad 	struct pool *pp;
   1982  1.134        ad 
   1983  1.134        ad 	pp = &pc->pc_pool;
   1984  1.208       chs 	if (palloc == NULL && ipl == IPL_NONE) {
   1985  1.208       chs 		if (size > PAGE_SIZE) {
   1986  1.208       chs 			int bigidx = pool_bigidx(size);
   1987  1.208       chs 
   1988  1.208       chs 			palloc = &pool_allocator_big[bigidx];
   1989  1.252      maxv 			flags |= PR_NOALIGN;
   1990  1.208       chs 		} else
   1991  1.208       chs 			palloc = &pool_allocator_nointr;
   1992  1.208       chs 	}
   1993  1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   1994  1.157        ad 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   1995   1.43   thorpej 
   1996  1.134        ad 	if (ctor == NULL) {
   1997  1.134        ad 		ctor = (int (*)(void *, void *, int))nullop;
   1998  1.134        ad 	}
   1999  1.134        ad 	if (dtor == NULL) {
   2000  1.134        ad 		dtor = (void (*)(void *, void *))nullop;
   2001  1.134        ad 	}
   2002   1.43   thorpej 
   2003  1.134        ad 	pc->pc_emptygroups = NULL;
   2004  1.134        ad 	pc->pc_fullgroups = NULL;
   2005  1.134        ad 	pc->pc_partgroups = NULL;
   2006   1.43   thorpej 	pc->pc_ctor = ctor;
   2007   1.43   thorpej 	pc->pc_dtor = dtor;
   2008   1.43   thorpej 	pc->pc_arg  = arg;
   2009  1.134        ad 	pc->pc_hits  = 0;
   2010   1.48   thorpej 	pc->pc_misses = 0;
   2011  1.134        ad 	pc->pc_nempty = 0;
   2012  1.134        ad 	pc->pc_npart = 0;
   2013  1.134        ad 	pc->pc_nfull = 0;
   2014  1.134        ad 	pc->pc_contended = 0;
   2015  1.134        ad 	pc->pc_refcnt = 0;
   2016  1.136      yamt 	pc->pc_freecheck = NULL;
   2017  1.134        ad 
   2018  1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   2019  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2020  1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   2021  1.142        ad 	} else {
   2022  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2023  1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   2024  1.142        ad 	}
   2025  1.142        ad 
   2026  1.134        ad 	/* Allocate per-CPU caches. */
   2027  1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2028  1.134        ad 	pc->pc_ncpu = 0;
   2029  1.139        ad 	if (ncpu < 2) {
   2030  1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2031  1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2032  1.137        ad 	} else {
   2033  1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2034  1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2035  1.137        ad 		}
   2036  1.134        ad 	}
   2037  1.145        ad 
   2038  1.145        ad 	/* Add to list of all pools. */
   2039  1.145        ad 	if (__predict_true(!cold))
   2040  1.134        ad 		mutex_enter(&pool_head_lock);
   2041  1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2042  1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2043  1.145        ad 			break;
   2044  1.145        ad 	}
   2045  1.145        ad 	if (pc1 == NULL)
   2046  1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2047  1.145        ad 	else
   2048  1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2049  1.145        ad 	if (__predict_true(!cold))
   2050  1.134        ad 		mutex_exit(&pool_head_lock);
   2051  1.145        ad 
   2052  1.145        ad 	membar_sync();
   2053  1.145        ad 	pp->pr_cache = pc;
   2054   1.43   thorpej }
   2055   1.43   thorpej 
   2056   1.43   thorpej /*
   2057   1.43   thorpej  * pool_cache_destroy:
   2058   1.43   thorpej  *
   2059   1.43   thorpej  *	Destroy a pool cache.
   2060   1.43   thorpej  */
   2061   1.43   thorpej void
   2062  1.134        ad pool_cache_destroy(pool_cache_t pc)
   2063   1.43   thorpej {
   2064  1.191      para 
   2065  1.191      para 	pool_cache_bootstrap_destroy(pc);
   2066  1.191      para 	pool_put(&cache_pool, pc);
   2067  1.191      para }
   2068  1.191      para 
   2069  1.191      para /*
   2070  1.191      para  * pool_cache_bootstrap_destroy:
   2071  1.191      para  *
   2072  1.191      para  *	Destroy a pool cache.
   2073  1.191      para  */
   2074  1.191      para void
   2075  1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   2076  1.191      para {
   2077  1.134        ad 	struct pool *pp = &pc->pc_pool;
   2078  1.175       jym 	u_int i;
   2079  1.134        ad 
   2080  1.134        ad 	/* Remove it from the global list. */
   2081  1.134        ad 	mutex_enter(&pool_head_lock);
   2082  1.134        ad 	while (pc->pc_refcnt != 0)
   2083  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2084  1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2085  1.134        ad 	mutex_exit(&pool_head_lock);
   2086   1.43   thorpej 
   2087   1.43   thorpej 	/* First, invalidate the entire cache. */
   2088   1.43   thorpej 	pool_cache_invalidate(pc);
   2089   1.43   thorpej 
   2090  1.134        ad 	/* Disassociate it from the pool. */
   2091  1.134        ad 	mutex_enter(&pp->pr_lock);
   2092  1.134        ad 	pp->pr_cache = NULL;
   2093  1.134        ad 	mutex_exit(&pp->pr_lock);
   2094  1.134        ad 
   2095  1.134        ad 	/* Destroy per-CPU data */
   2096  1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2097  1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   2098  1.134        ad 
   2099  1.134        ad 	/* Finally, destroy it. */
   2100  1.134        ad 	mutex_destroy(&pc->pc_lock);
   2101  1.134        ad 	pool_destroy(pp);
   2102  1.134        ad }
   2103  1.134        ad 
   2104  1.134        ad /*
   2105  1.134        ad  * pool_cache_cpu_init1:
   2106  1.134        ad  *
   2107  1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2108  1.134        ad  */
   2109  1.134        ad static void
   2110  1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2111  1.134        ad {
   2112  1.134        ad 	pool_cache_cpu_t *cc;
   2113  1.137        ad 	int index;
   2114  1.134        ad 
   2115  1.137        ad 	index = ci->ci_index;
   2116  1.137        ad 
   2117  1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   2118  1.134        ad 
   2119  1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2120  1.137        ad 		KASSERT(cc->cc_cpuindex == index);
   2121  1.134        ad 		return;
   2122  1.134        ad 	}
   2123  1.134        ad 
   2124  1.134        ad 	/*
   2125  1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2126  1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2127  1.134        ad 	 */
   2128  1.134        ad 	if (pc->pc_ncpu == 0) {
   2129  1.134        ad 		cc = &pc->pc_cpu0;
   2130  1.134        ad 		pc->pc_ncpu = 1;
   2131  1.134        ad 	} else {
   2132  1.134        ad 		mutex_enter(&pc->pc_lock);
   2133  1.134        ad 		pc->pc_ncpu++;
   2134  1.134        ad 		mutex_exit(&pc->pc_lock);
   2135  1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2136  1.134        ad 	}
   2137  1.134        ad 
   2138  1.134        ad 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2139  1.134        ad 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2140  1.134        ad 	cc->cc_cache = pc;
   2141  1.137        ad 	cc->cc_cpuindex = index;
   2142  1.134        ad 	cc->cc_hits = 0;
   2143  1.134        ad 	cc->cc_misses = 0;
   2144  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2145  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2146  1.134        ad 
   2147  1.137        ad 	pc->pc_cpus[index] = cc;
   2148   1.43   thorpej }
   2149   1.43   thorpej 
   2150  1.134        ad /*
   2151  1.134        ad  * pool_cache_cpu_init:
   2152  1.134        ad  *
   2153  1.134        ad  *	Called whenever a new CPU is attached.
   2154  1.134        ad  */
   2155  1.134        ad void
   2156  1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2157   1.43   thorpej {
   2158  1.134        ad 	pool_cache_t pc;
   2159  1.134        ad 
   2160  1.134        ad 	mutex_enter(&pool_head_lock);
   2161  1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2162  1.134        ad 		pc->pc_refcnt++;
   2163  1.134        ad 		mutex_exit(&pool_head_lock);
   2164   1.43   thorpej 
   2165  1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2166   1.43   thorpej 
   2167  1.134        ad 		mutex_enter(&pool_head_lock);
   2168  1.134        ad 		pc->pc_refcnt--;
   2169  1.134        ad 		cv_broadcast(&pool_busy);
   2170  1.134        ad 	}
   2171  1.134        ad 	mutex_exit(&pool_head_lock);
   2172   1.43   thorpej }
   2173   1.43   thorpej 
   2174  1.134        ad /*
   2175  1.134        ad  * pool_cache_reclaim:
   2176  1.134        ad  *
   2177  1.134        ad  *	Reclaim memory from a pool cache.
   2178  1.134        ad  */
   2179  1.134        ad bool
   2180  1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2181   1.43   thorpej {
   2182   1.43   thorpej 
   2183  1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2184  1.134        ad }
   2185   1.43   thorpej 
   2186  1.136      yamt static void
   2187  1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2188  1.136      yamt {
   2189  1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2190  1.136      yamt 	pool_put(&pc->pc_pool, object);
   2191  1.136      yamt }
   2192  1.136      yamt 
   2193  1.134        ad /*
   2194  1.134        ad  * pool_cache_destruct_object:
   2195  1.134        ad  *
   2196  1.134        ad  *	Force destruction of an object and its release back into
   2197  1.134        ad  *	the pool.
   2198  1.134        ad  */
   2199  1.134        ad void
   2200  1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2201  1.134        ad {
   2202  1.134        ad 
   2203  1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2204  1.136      yamt 
   2205  1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2206   1.43   thorpej }
   2207   1.43   thorpej 
   2208  1.134        ad /*
   2209  1.134        ad  * pool_cache_invalidate_groups:
   2210  1.134        ad  *
   2211  1.134        ad  *	Invalidate a chain of groups and destruct all objects.
   2212  1.134        ad  */
   2213  1.102       chs static void
   2214  1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2215  1.102       chs {
   2216  1.134        ad 	void *object;
   2217  1.134        ad 	pcg_t *next;
   2218  1.134        ad 	int i;
   2219  1.134        ad 
   2220  1.134        ad 	for (; pcg != NULL; pcg = next) {
   2221  1.134        ad 		next = pcg->pcg_next;
   2222  1.134        ad 
   2223  1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2224  1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2225  1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2226  1.134        ad 		}
   2227  1.102       chs 
   2228  1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2229  1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2230  1.142        ad 		} else {
   2231  1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2232  1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2233  1.142        ad 		}
   2234  1.102       chs 	}
   2235  1.102       chs }
   2236  1.102       chs 
   2237   1.43   thorpej /*
   2238  1.134        ad  * pool_cache_invalidate:
   2239   1.43   thorpej  *
   2240  1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2241  1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2242  1.176   thorpej  *
   2243  1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2244  1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2245  1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2246  1.196       jym  *
   2247  1.196       jym  *	Invalidation is a costly process and should not be called from
   2248  1.196       jym  *	interrupt context.
   2249   1.43   thorpej  */
   2250  1.134        ad void
   2251  1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2252  1.134        ad {
   2253  1.196       jym 	uint64_t where;
   2254  1.134        ad 	pcg_t *full, *empty, *part;
   2255  1.196       jym 
   2256  1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2257  1.176   thorpej 
   2258  1.177       jym 	if (ncpu < 2 || !mp_online) {
   2259  1.176   thorpej 		/*
   2260  1.176   thorpej 		 * We might be called early enough in the boot process
   2261  1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2262  1.196       jym 		 * In this case, transfer the content of the local CPU's
   2263  1.196       jym 		 * cache back into global cache as only this CPU is currently
   2264  1.196       jym 		 * running.
   2265  1.176   thorpej 		 */
   2266  1.196       jym 		pool_cache_transfer(pc);
   2267  1.176   thorpej 	} else {
   2268  1.176   thorpej 		/*
   2269  1.196       jym 		 * Signal all CPUs that they must transfer their local
   2270  1.196       jym 		 * cache back to the global pool then wait for the xcall to
   2271  1.196       jym 		 * complete.
   2272  1.176   thorpej 		 */
   2273  1.196       jym 		where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
   2274  1.196       jym 		    pc, NULL);
   2275  1.176   thorpej 		xc_wait(where);
   2276  1.176   thorpej 	}
   2277  1.196       jym 
   2278  1.196       jym 	/* Empty pool caches, then invalidate objects */
   2279  1.134        ad 	mutex_enter(&pc->pc_lock);
   2280  1.134        ad 	full = pc->pc_fullgroups;
   2281  1.134        ad 	empty = pc->pc_emptygroups;
   2282  1.134        ad 	part = pc->pc_partgroups;
   2283  1.134        ad 	pc->pc_fullgroups = NULL;
   2284  1.134        ad 	pc->pc_emptygroups = NULL;
   2285  1.134        ad 	pc->pc_partgroups = NULL;
   2286  1.134        ad 	pc->pc_nfull = 0;
   2287  1.134        ad 	pc->pc_nempty = 0;
   2288  1.134        ad 	pc->pc_npart = 0;
   2289  1.134        ad 	mutex_exit(&pc->pc_lock);
   2290  1.134        ad 
   2291  1.134        ad 	pool_cache_invalidate_groups(pc, full);
   2292  1.134        ad 	pool_cache_invalidate_groups(pc, empty);
   2293  1.134        ad 	pool_cache_invalidate_groups(pc, part);
   2294  1.134        ad }
   2295  1.134        ad 
   2296  1.175       jym /*
   2297  1.175       jym  * pool_cache_invalidate_cpu:
   2298  1.175       jym  *
   2299  1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2300  1.175       jym  *	identified by its associated index.
   2301  1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2302  1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2303  1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2304  1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2305  1.175       jym  *	may result in an undefined behaviour.
   2306  1.175       jym  */
   2307  1.175       jym static void
   2308  1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2309  1.175       jym {
   2310  1.175       jym 	pool_cache_cpu_t *cc;
   2311  1.175       jym 	pcg_t *pcg;
   2312  1.175       jym 
   2313  1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2314  1.175       jym 		return;
   2315  1.175       jym 
   2316  1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2317  1.175       jym 		pcg->pcg_next = NULL;
   2318  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2319  1.175       jym 	}
   2320  1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2321  1.175       jym 		pcg->pcg_next = NULL;
   2322  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2323  1.175       jym 	}
   2324  1.175       jym 	if (cc != &pc->pc_cpu0)
   2325  1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2326  1.175       jym 
   2327  1.175       jym }
   2328  1.175       jym 
   2329  1.134        ad void
   2330  1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2331  1.134        ad {
   2332  1.134        ad 
   2333  1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2334  1.134        ad }
   2335  1.134        ad 
   2336  1.134        ad void
   2337  1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2338  1.134        ad {
   2339  1.134        ad 
   2340  1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2341  1.134        ad }
   2342  1.134        ad 
   2343  1.134        ad void
   2344  1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2345  1.134        ad {
   2346  1.134        ad 
   2347  1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2348  1.134        ad }
   2349  1.134        ad 
   2350  1.134        ad void
   2351  1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2352  1.134        ad {
   2353  1.134        ad 
   2354  1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2355  1.134        ad }
   2356  1.134        ad 
   2357  1.162        ad static bool __noinline
   2358  1.162        ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2359  1.134        ad 		    paddr_t *pap, int flags)
   2360   1.43   thorpej {
   2361  1.134        ad 	pcg_t *pcg, *cur;
   2362  1.134        ad 	uint64_t ncsw;
   2363  1.134        ad 	pool_cache_t pc;
   2364   1.43   thorpej 	void *object;
   2365   1.58   thorpej 
   2366  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2367  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2368  1.168      yamt 
   2369  1.134        ad 	pc = cc->cc_cache;
   2370  1.134        ad 	cc->cc_misses++;
   2371   1.43   thorpej 
   2372  1.134        ad 	/*
   2373  1.134        ad 	 * Nothing was available locally.  Try and grab a group
   2374  1.134        ad 	 * from the cache.
   2375  1.134        ad 	 */
   2376  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2377  1.134        ad 		ncsw = curlwp->l_ncsw;
   2378  1.134        ad 		mutex_enter(&pc->pc_lock);
   2379  1.134        ad 		pc->pc_contended++;
   2380   1.43   thorpej 
   2381  1.134        ad 		/*
   2382  1.134        ad 		 * If we context switched while locking, then
   2383  1.134        ad 		 * our view of the per-CPU data is invalid:
   2384  1.134        ad 		 * retry.
   2385  1.134        ad 		 */
   2386  1.134        ad 		if (curlwp->l_ncsw != ncsw) {
   2387  1.134        ad 			mutex_exit(&pc->pc_lock);
   2388  1.162        ad 			return true;
   2389   1.43   thorpej 		}
   2390  1.102       chs 	}
   2391   1.43   thorpej 
   2392  1.162        ad 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2393   1.43   thorpej 		/*
   2394  1.134        ad 		 * If there's a full group, release our empty
   2395  1.134        ad 		 * group back to the cache.  Install the full
   2396  1.134        ad 		 * group as cc_current and return.
   2397   1.43   thorpej 		 */
   2398  1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2399  1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2400  1.134        ad 			cur->pcg_next = pc->pc_emptygroups;
   2401  1.134        ad 			pc->pc_emptygroups = cur;
   2402  1.134        ad 			pc->pc_nempty++;
   2403   1.87   thorpej 		}
   2404  1.142        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2405  1.134        ad 		cc->cc_current = pcg;
   2406  1.134        ad 		pc->pc_fullgroups = pcg->pcg_next;
   2407  1.134        ad 		pc->pc_hits++;
   2408  1.134        ad 		pc->pc_nfull--;
   2409  1.134        ad 		mutex_exit(&pc->pc_lock);
   2410  1.162        ad 		return true;
   2411  1.134        ad 	}
   2412  1.134        ad 
   2413  1.134        ad 	/*
   2414  1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2415  1.134        ad 	 * path: fetch a new object from the pool and construct
   2416  1.134        ad 	 * it.
   2417  1.134        ad 	 */
   2418  1.134        ad 	pc->pc_misses++;
   2419  1.134        ad 	mutex_exit(&pc->pc_lock);
   2420  1.162        ad 	splx(s);
   2421  1.134        ad 
   2422  1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2423  1.134        ad 	*objectp = object;
   2424  1.211  riastrad 	if (__predict_false(object == NULL)) {
   2425  1.211  riastrad 		KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
   2426  1.162        ad 		return false;
   2427  1.211  riastrad 	}
   2428  1.125        ad 
   2429  1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2430  1.134        ad 		pool_put(&pc->pc_pool, object);
   2431  1.134        ad 		*objectp = NULL;
   2432  1.162        ad 		return false;
   2433   1.43   thorpej 	}
   2434   1.43   thorpej 
   2435  1.238      maxv 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2436   1.43   thorpej 
   2437  1.134        ad 	if (pap != NULL) {
   2438  1.134        ad #ifdef POOL_VTOPHYS
   2439  1.134        ad 		*pap = POOL_VTOPHYS(object);
   2440  1.134        ad #else
   2441  1.134        ad 		*pap = POOL_PADDR_INVALID;
   2442  1.134        ad #endif
   2443  1.102       chs 	}
   2444   1.43   thorpej 
   2445  1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2446  1.228      maxv 	pool_cache_kleak_fill(pc, object);
   2447  1.162        ad 	return false;
   2448   1.43   thorpej }
   2449   1.43   thorpej 
   2450   1.43   thorpej /*
   2451  1.134        ad  * pool_cache_get{,_paddr}:
   2452   1.43   thorpej  *
   2453  1.134        ad  *	Get an object from a pool cache (optionally returning
   2454  1.134        ad  *	the physical address of the object).
   2455   1.43   thorpej  */
   2456  1.134        ad void *
   2457  1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2458   1.43   thorpej {
   2459  1.134        ad 	pool_cache_cpu_t *cc;
   2460  1.134        ad 	pcg_t *pcg;
   2461  1.134        ad 	void *object;
   2462   1.60   thorpej 	int s;
   2463   1.43   thorpej 
   2464  1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2465  1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2466  1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2467  1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2468  1.213  christos 	    __func__, pc->pc_pool.pr_wchan);
   2469  1.184     rmind 
   2470  1.155        ad 	if (flags & PR_WAITOK) {
   2471  1.154      yamt 		ASSERT_SLEEPABLE();
   2472  1.155        ad 	}
   2473  1.125        ad 
   2474  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2475  1.162        ad 	s = splvm();
   2476  1.165      yamt 	while (/* CONSTCOND */ true) {
   2477  1.134        ad 		/* Try and allocate an object from the current group. */
   2478  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2479  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2480  1.134        ad 	 	pcg = cc->cc_current;
   2481  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2482  1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2483  1.162        ad 			if (__predict_false(pap != NULL))
   2484  1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2485  1.148      yamt #if defined(DIAGNOSTIC)
   2486  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2487  1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2488  1.134        ad 			KASSERT(object != NULL);
   2489  1.163        ad #endif
   2490  1.134        ad 			cc->cc_hits++;
   2491  1.162        ad 			splx(s);
   2492  1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2493  1.204      maxv 			pool_redzone_fill(&pc->pc_pool, object);
   2494  1.228      maxv 			pool_cache_kleak_fill(pc, object);
   2495  1.134        ad 			return object;
   2496   1.43   thorpej 		}
   2497   1.43   thorpej 
   2498   1.43   thorpej 		/*
   2499  1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2500  1.134        ad 		 * it with the current group and allocate from there.
   2501   1.43   thorpej 		 */
   2502  1.134        ad 		pcg = cc->cc_previous;
   2503  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2504  1.134        ad 			cc->cc_previous = cc->cc_current;
   2505  1.134        ad 			cc->cc_current = pcg;
   2506  1.134        ad 			continue;
   2507   1.43   thorpej 		}
   2508   1.43   thorpej 
   2509  1.134        ad 		/*
   2510  1.134        ad 		 * Can't allocate from either group: try the slow path.
   2511  1.134        ad 		 * If get_slow() allocated an object for us, or if
   2512  1.162        ad 		 * no more objects are available, it will return false.
   2513  1.134        ad 		 * Otherwise, we need to retry.
   2514  1.134        ad 		 */
   2515  1.165      yamt 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2516  1.165      yamt 			break;
   2517  1.165      yamt 	}
   2518   1.43   thorpej 
   2519  1.211  riastrad 	/*
   2520  1.211  riastrad 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2521  1.211  riastrad 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2522  1.211  riastrad 	 * constructor fails.
   2523  1.211  riastrad 	 */
   2524  1.134        ad 	return object;
   2525   1.51   thorpej }
   2526   1.51   thorpej 
   2527  1.162        ad static bool __noinline
   2528  1.162        ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2529   1.51   thorpej {
   2530  1.200     pooka 	struct lwp *l = curlwp;
   2531  1.163        ad 	pcg_t *pcg, *cur;
   2532  1.134        ad 	uint64_t ncsw;
   2533  1.134        ad 	pool_cache_t pc;
   2534   1.51   thorpej 
   2535  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2536  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2537  1.168      yamt 
   2538  1.134        ad 	pc = cc->cc_cache;
   2539  1.171        ad 	pcg = NULL;
   2540  1.134        ad 	cc->cc_misses++;
   2541  1.200     pooka 	ncsw = l->l_ncsw;
   2542   1.43   thorpej 
   2543  1.171        ad 	/*
   2544  1.171        ad 	 * If there are no empty groups in the cache then allocate one
   2545  1.171        ad 	 * while still unlocked.
   2546  1.171        ad 	 */
   2547  1.171        ad 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2548  1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2549  1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2550  1.171        ad 		}
   2551  1.200     pooka 		/*
   2552  1.200     pooka 		 * If pool_get() blocked, then our view of
   2553  1.200     pooka 		 * the per-CPU data is invalid: retry.
   2554  1.200     pooka 		 */
   2555  1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2556  1.200     pooka 			if (pcg != NULL) {
   2557  1.200     pooka 				pool_put(pc->pc_pcgpool, pcg);
   2558  1.200     pooka 			}
   2559  1.200     pooka 			return true;
   2560  1.200     pooka 		}
   2561  1.171        ad 		if (__predict_true(pcg != NULL)) {
   2562  1.171        ad 			pcg->pcg_avail = 0;
   2563  1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2564  1.171        ad 		}
   2565  1.171        ad 	}
   2566  1.171        ad 
   2567  1.162        ad 	/* Lock the cache. */
   2568  1.162        ad 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2569  1.134        ad 		mutex_enter(&pc->pc_lock);
   2570  1.134        ad 		pc->pc_contended++;
   2571  1.162        ad 
   2572  1.163        ad 		/*
   2573  1.163        ad 		 * If we context switched while locking, then our view of
   2574  1.163        ad 		 * the per-CPU data is invalid: retry.
   2575  1.163        ad 		 */
   2576  1.200     pooka 		if (__predict_false(l->l_ncsw != ncsw)) {
   2577  1.163        ad 			mutex_exit(&pc->pc_lock);
   2578  1.171        ad 			if (pcg != NULL) {
   2579  1.171        ad 				pool_put(pc->pc_pcgpool, pcg);
   2580  1.171        ad 			}
   2581  1.163        ad 			return true;
   2582  1.163        ad 		}
   2583  1.162        ad 	}
   2584  1.102       chs 
   2585  1.163        ad 	/* If there are no empty groups in the cache then allocate one. */
   2586  1.171        ad 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2587  1.171        ad 		pcg = pc->pc_emptygroups;
   2588  1.163        ad 		pc->pc_emptygroups = pcg->pcg_next;
   2589  1.163        ad 		pc->pc_nempty--;
   2590  1.134        ad 	}
   2591  1.130        ad 
   2592  1.162        ad 	/*
   2593  1.162        ad 	 * If there's a empty group, release our full group back
   2594  1.162        ad 	 * to the cache.  Install the empty group to the local CPU
   2595  1.162        ad 	 * and return.
   2596  1.162        ad 	 */
   2597  1.163        ad 	if (pcg != NULL) {
   2598  1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2599  1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2600  1.146        ad 			cc->cc_previous = pcg;
   2601  1.146        ad 		} else {
   2602  1.162        ad 			cur = cc->cc_current;
   2603  1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2604  1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2605  1.146        ad 				cur->pcg_next = pc->pc_fullgroups;
   2606  1.146        ad 				pc->pc_fullgroups = cur;
   2607  1.146        ad 				pc->pc_nfull++;
   2608  1.146        ad 			}
   2609  1.146        ad 			cc->cc_current = pcg;
   2610  1.146        ad 		}
   2611  1.163        ad 		pc->pc_hits++;
   2612  1.134        ad 		mutex_exit(&pc->pc_lock);
   2613  1.162        ad 		return true;
   2614  1.102       chs 	}
   2615  1.105  christos 
   2616  1.134        ad 	/*
   2617  1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2618  1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2619  1.162        ad 	 * the object here and now.
   2620  1.134        ad 	 */
   2621  1.134        ad 	pc->pc_misses++;
   2622  1.134        ad 	mutex_exit(&pc->pc_lock);
   2623  1.162        ad 	splx(s);
   2624  1.162        ad 	pool_cache_destruct_object(pc, object);
   2625  1.105  christos 
   2626  1.162        ad 	return false;
   2627  1.236      maxv }
   2628  1.102       chs 
   2629   1.43   thorpej /*
   2630  1.134        ad  * pool_cache_put{,_paddr}:
   2631   1.43   thorpej  *
   2632  1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2633  1.134        ad  *	physical address of the object).
   2634   1.43   thorpej  */
   2635  1.101   thorpej void
   2636  1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2637   1.43   thorpej {
   2638  1.134        ad 	pool_cache_cpu_t *cc;
   2639  1.134        ad 	pcg_t *pcg;
   2640  1.134        ad 	int s;
   2641  1.101   thorpej 
   2642  1.172      yamt 	KASSERT(object != NULL);
   2643  1.229      maxv 	pool_cache_redzone_check(pc, object);
   2644  1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2645  1.101   thorpej 
   2646  1.253      maxv 	if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
   2647  1.253      maxv 		pc_phinpage_check(pc, object);
   2648  1.253      maxv 	}
   2649  1.253      maxv 
   2650  1.249      maxv 	if (pool_cache_put_quarantine(pc, object, pa)) {
   2651  1.249      maxv 		return;
   2652  1.249      maxv 	}
   2653  1.249      maxv 
   2654  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2655  1.162        ad 	s = splvm();
   2656  1.165      yamt 	while (/* CONSTCOND */ true) {
   2657  1.134        ad 		/* If the current group isn't full, release it there. */
   2658  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2659  1.162        ad 		KASSERT(cc->cc_cache == pc);
   2660  1.134        ad 	 	pcg = cc->cc_current;
   2661  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2662  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2663  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2664  1.134        ad 			pcg->pcg_avail++;
   2665  1.134        ad 			cc->cc_hits++;
   2666  1.162        ad 			splx(s);
   2667  1.134        ad 			return;
   2668  1.134        ad 		}
   2669   1.43   thorpej 
   2670  1.134        ad 		/*
   2671  1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2672  1.134        ad 		 * it with the current group and try again.
   2673  1.134        ad 		 */
   2674  1.134        ad 		pcg = cc->cc_previous;
   2675  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2676  1.134        ad 			cc->cc_previous = cc->cc_current;
   2677  1.134        ad 			cc->cc_current = pcg;
   2678  1.134        ad 			continue;
   2679  1.134        ad 		}
   2680   1.43   thorpej 
   2681  1.134        ad 		/*
   2682  1.236      maxv 		 * Can't free to either group: try the slow path.
   2683  1.134        ad 		 * If put_slow() releases the object for us, it
   2684  1.162        ad 		 * will return false.  Otherwise we need to retry.
   2685  1.134        ad 		 */
   2686  1.165      yamt 		if (!pool_cache_put_slow(cc, s, object))
   2687  1.165      yamt 			break;
   2688  1.165      yamt 	}
   2689   1.43   thorpej }
   2690   1.43   thorpej 
   2691   1.43   thorpej /*
   2692  1.196       jym  * pool_cache_transfer:
   2693   1.43   thorpej  *
   2694  1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2695  1.134        ad  *	Run within a cross-call thread.
   2696   1.43   thorpej  */
   2697   1.43   thorpej static void
   2698  1.196       jym pool_cache_transfer(pool_cache_t pc)
   2699   1.43   thorpej {
   2700  1.134        ad 	pool_cache_cpu_t *cc;
   2701  1.134        ad 	pcg_t *prev, *cur, **list;
   2702  1.162        ad 	int s;
   2703  1.134        ad 
   2704  1.162        ad 	s = splvm();
   2705  1.162        ad 	mutex_enter(&pc->pc_lock);
   2706  1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2707  1.134        ad 	cur = cc->cc_current;
   2708  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2709  1.134        ad 	prev = cc->cc_previous;
   2710  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2711  1.162        ad 	if (cur != &pcg_dummy) {
   2712  1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2713  1.134        ad 			list = &pc->pc_fullgroups;
   2714  1.134        ad 			pc->pc_nfull++;
   2715  1.134        ad 		} else if (cur->pcg_avail == 0) {
   2716  1.134        ad 			list = &pc->pc_emptygroups;
   2717  1.134        ad 			pc->pc_nempty++;
   2718  1.134        ad 		} else {
   2719  1.134        ad 			list = &pc->pc_partgroups;
   2720  1.134        ad 			pc->pc_npart++;
   2721  1.134        ad 		}
   2722  1.134        ad 		cur->pcg_next = *list;
   2723  1.134        ad 		*list = cur;
   2724  1.134        ad 	}
   2725  1.162        ad 	if (prev != &pcg_dummy) {
   2726  1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2727  1.134        ad 			list = &pc->pc_fullgroups;
   2728  1.134        ad 			pc->pc_nfull++;
   2729  1.134        ad 		} else if (prev->pcg_avail == 0) {
   2730  1.134        ad 			list = &pc->pc_emptygroups;
   2731  1.134        ad 			pc->pc_nempty++;
   2732  1.134        ad 		} else {
   2733  1.134        ad 			list = &pc->pc_partgroups;
   2734  1.134        ad 			pc->pc_npart++;
   2735  1.134        ad 		}
   2736  1.134        ad 		prev->pcg_next = *list;
   2737  1.134        ad 		*list = prev;
   2738  1.134        ad 	}
   2739  1.134        ad 	mutex_exit(&pc->pc_lock);
   2740  1.134        ad 	splx(s);
   2741    1.3        pk }
   2742   1.66   thorpej 
   2743   1.66   thorpej /*
   2744   1.66   thorpej  * Pool backend allocators.
   2745   1.66   thorpej  *
   2746   1.66   thorpej  * Each pool has a backend allocator that handles allocation, deallocation,
   2747   1.66   thorpej  * and any additional draining that might be needed.
   2748   1.66   thorpej  *
   2749   1.66   thorpej  * We provide two standard allocators:
   2750   1.66   thorpej  *
   2751   1.66   thorpej  *	pool_allocator_kmem - the default when no allocator is specified
   2752   1.66   thorpej  *
   2753   1.66   thorpej  *	pool_allocator_nointr - used for pools that will not be accessed
   2754   1.66   thorpej  *	in interrupt context.
   2755   1.66   thorpej  */
   2756   1.66   thorpej void	*pool_page_alloc(struct pool *, int);
   2757   1.66   thorpej void	pool_page_free(struct pool *, void *);
   2758   1.66   thorpej 
   2759   1.66   thorpej struct pool_allocator pool_allocator_kmem = {
   2760  1.191      para 	.pa_alloc = pool_page_alloc,
   2761  1.191      para 	.pa_free = pool_page_free,
   2762  1.191      para 	.pa_pagesz = 0
   2763   1.66   thorpej };
   2764   1.66   thorpej 
   2765   1.66   thorpej struct pool_allocator pool_allocator_nointr = {
   2766  1.191      para 	.pa_alloc = pool_page_alloc,
   2767  1.191      para 	.pa_free = pool_page_free,
   2768  1.191      para 	.pa_pagesz = 0
   2769   1.66   thorpej };
   2770   1.66   thorpej 
   2771  1.208       chs struct pool_allocator pool_allocator_big[] = {
   2772  1.208       chs 	{
   2773  1.208       chs 		.pa_alloc = pool_page_alloc,
   2774  1.208       chs 		.pa_free = pool_page_free,
   2775  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
   2776  1.208       chs 	},
   2777  1.208       chs 	{
   2778  1.208       chs 		.pa_alloc = pool_page_alloc,
   2779  1.208       chs 		.pa_free = pool_page_free,
   2780  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
   2781  1.208       chs 	},
   2782  1.208       chs 	{
   2783  1.208       chs 		.pa_alloc = pool_page_alloc,
   2784  1.208       chs 		.pa_free = pool_page_free,
   2785  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
   2786  1.208       chs 	},
   2787  1.208       chs 	{
   2788  1.208       chs 		.pa_alloc = pool_page_alloc,
   2789  1.208       chs 		.pa_free = pool_page_free,
   2790  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
   2791  1.208       chs 	},
   2792  1.208       chs 	{
   2793  1.208       chs 		.pa_alloc = pool_page_alloc,
   2794  1.208       chs 		.pa_free = pool_page_free,
   2795  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
   2796  1.208       chs 	},
   2797  1.208       chs 	{
   2798  1.208       chs 		.pa_alloc = pool_page_alloc,
   2799  1.208       chs 		.pa_free = pool_page_free,
   2800  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
   2801  1.208       chs 	},
   2802  1.208       chs 	{
   2803  1.208       chs 		.pa_alloc = pool_page_alloc,
   2804  1.208       chs 		.pa_free = pool_page_free,
   2805  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
   2806  1.208       chs 	},
   2807  1.208       chs 	{
   2808  1.208       chs 		.pa_alloc = pool_page_alloc,
   2809  1.208       chs 		.pa_free = pool_page_free,
   2810  1.208       chs 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
   2811  1.208       chs 	}
   2812  1.208       chs };
   2813  1.208       chs 
   2814  1.208       chs static int
   2815  1.208       chs pool_bigidx(size_t size)
   2816  1.208       chs {
   2817  1.208       chs 	int i;
   2818  1.208       chs 
   2819  1.208       chs 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2820  1.208       chs 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2821  1.208       chs 			return i;
   2822  1.208       chs 	}
   2823  1.208       chs 	panic("pool item size %zu too large, use a custom allocator", size);
   2824  1.208       chs }
   2825  1.208       chs 
   2826  1.117      yamt static void *
   2827  1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2828   1.66   thorpej {
   2829  1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2830   1.66   thorpej 	void *res;
   2831   1.66   thorpej 
   2832  1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2833  1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2834   1.66   thorpej 		/*
   2835  1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2836  1.117      yamt 		 * In other cases, the hook will be run in
   2837  1.117      yamt 		 * pool_reclaim().
   2838   1.66   thorpej 		 */
   2839  1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2840  1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2841  1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2842   1.66   thorpej 		}
   2843  1.117      yamt 	}
   2844  1.117      yamt 	return res;
   2845   1.66   thorpej }
   2846   1.66   thorpej 
   2847  1.117      yamt static void
   2848   1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2849   1.66   thorpej {
   2850   1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2851   1.66   thorpej 
   2852  1.229      maxv 	if (pp->pr_redzone) {
   2853  1.248      maxv 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
   2854  1.229      maxv 	}
   2855   1.66   thorpej 	(*pa->pa_free)(pp, v);
   2856   1.66   thorpej }
   2857   1.66   thorpej 
   2858   1.66   thorpej void *
   2859  1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2860   1.66   thorpej {
   2861  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2862  1.191      para 	vmem_addr_t va;
   2863  1.192     rmind 	int ret;
   2864  1.191      para 
   2865  1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2866  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2867   1.66   thorpej 
   2868  1.192     rmind 	return ret ? NULL : (void *)va;
   2869   1.66   thorpej }
   2870   1.66   thorpej 
   2871   1.66   thorpej void
   2872  1.124      yamt pool_page_free(struct pool *pp, void *v)
   2873   1.66   thorpej {
   2874   1.66   thorpej 
   2875  1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2876   1.98      yamt }
   2877   1.98      yamt 
   2878   1.98      yamt static void *
   2879  1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2880   1.98      yamt {
   2881  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2882  1.192     rmind 	vmem_addr_t va;
   2883  1.192     rmind 	int ret;
   2884  1.191      para 
   2885  1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2886  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2887   1.98      yamt 
   2888  1.192     rmind 	return ret ? NULL : (void *)va;
   2889   1.98      yamt }
   2890   1.98      yamt 
   2891   1.98      yamt static void
   2892  1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2893   1.98      yamt {
   2894   1.98      yamt 
   2895  1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2896   1.66   thorpej }
   2897   1.66   thorpej 
   2898  1.228      maxv #ifdef KLEAK
   2899  1.228      maxv static void
   2900  1.228      maxv pool_kleak_fill(struct pool *pp, void *p)
   2901  1.228      maxv {
   2902  1.228      maxv 	if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
   2903  1.228      maxv 		return;
   2904  1.228      maxv 	}
   2905  1.228      maxv 	kleak_fill_area(p, pp->pr_size);
   2906  1.228      maxv }
   2907  1.228      maxv 
   2908  1.228      maxv static void
   2909  1.228      maxv pool_cache_kleak_fill(pool_cache_t pc, void *p)
   2910  1.228      maxv {
   2911  1.229      maxv 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   2912  1.228      maxv 		return;
   2913  1.228      maxv 	}
   2914  1.228      maxv 	pool_kleak_fill(&pc->pc_pool, p);
   2915  1.228      maxv }
   2916  1.228      maxv #endif
   2917  1.228      maxv 
   2918  1.249      maxv #ifdef POOL_QUARANTINE
   2919  1.249      maxv static void
   2920  1.249      maxv pool_quarantine_init(struct pool *pp)
   2921  1.249      maxv {
   2922  1.249      maxv 	pp->pr_quar.rotor = 0;
   2923  1.249      maxv 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
   2924  1.249      maxv }
   2925  1.249      maxv 
   2926  1.249      maxv static void
   2927  1.249      maxv pool_quarantine_flush(struct pool *pp)
   2928  1.249      maxv {
   2929  1.249      maxv 	pool_quar_t *quar = &pp->pr_quar;
   2930  1.249      maxv 	struct pool_pagelist pq;
   2931  1.249      maxv 	size_t i;
   2932  1.249      maxv 
   2933  1.249      maxv 	LIST_INIT(&pq);
   2934  1.249      maxv 
   2935  1.249      maxv 	mutex_enter(&pp->pr_lock);
   2936  1.249      maxv 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
   2937  1.249      maxv 		if (quar->list[i] == 0)
   2938  1.249      maxv 			continue;
   2939  1.249      maxv 		pool_do_put(pp, (void *)quar->list[i], &pq);
   2940  1.249      maxv 	}
   2941  1.249      maxv 	mutex_exit(&pp->pr_lock);
   2942  1.249      maxv 
   2943  1.249      maxv 	pr_pagelist_free(pp, &pq);
   2944  1.249      maxv }
   2945  1.249      maxv 
   2946  1.249      maxv static bool
   2947  1.249      maxv pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
   2948  1.249      maxv {
   2949  1.249      maxv 	pool_quar_t *quar = &pp->pr_quar;
   2950  1.249      maxv 	uintptr_t old;
   2951  1.249      maxv 
   2952  1.249      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   2953  1.249      maxv 		return false;
   2954  1.249      maxv 	}
   2955  1.249      maxv 
   2956  1.249      maxv 	pool_redzone_check(pp, v);
   2957  1.249      maxv 
   2958  1.249      maxv 	old = quar->list[quar->rotor];
   2959  1.249      maxv 	quar->list[quar->rotor] = (uintptr_t)v;
   2960  1.249      maxv 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
   2961  1.249      maxv 	if (old != 0) {
   2962  1.249      maxv 		pool_do_put(pp, (void *)old, pq);
   2963  1.249      maxv 	}
   2964  1.249      maxv 
   2965  1.249      maxv 	return true;
   2966  1.249      maxv }
   2967  1.249      maxv 
   2968  1.249      maxv static bool
   2969  1.249      maxv pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa)
   2970  1.249      maxv {
   2971  1.249      maxv 	pool_cache_destruct_object(pc, p);
   2972  1.249      maxv 	return true;
   2973  1.249      maxv }
   2974  1.249      maxv #endif
   2975  1.249      maxv 
   2976  1.204      maxv #ifdef POOL_REDZONE
   2977  1.204      maxv #if defined(_LP64)
   2978  1.204      maxv # define PRIME 0x9e37fffffffc0000UL
   2979  1.204      maxv #else /* defined(_LP64) */
   2980  1.204      maxv # define PRIME 0x9e3779b1
   2981  1.204      maxv #endif /* defined(_LP64) */
   2982  1.204      maxv #define STATIC_BYTE	0xFE
   2983  1.204      maxv CTASSERT(POOL_REDZONE_SIZE > 1);
   2984  1.204      maxv 
   2985  1.224      maxv #ifndef KASAN
   2986  1.204      maxv static inline uint8_t
   2987  1.204      maxv pool_pattern_generate(const void *p)
   2988  1.204      maxv {
   2989  1.204      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
   2990  1.204      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   2991  1.204      maxv }
   2992  1.224      maxv #endif
   2993  1.204      maxv 
   2994  1.204      maxv static void
   2995  1.204      maxv pool_redzone_init(struct pool *pp, size_t requested_size)
   2996  1.204      maxv {
   2997  1.227      maxv 	size_t redzsz;
   2998  1.204      maxv 	size_t nsz;
   2999  1.204      maxv 
   3000  1.227      maxv #ifdef KASAN
   3001  1.227      maxv 	redzsz = requested_size;
   3002  1.227      maxv 	kasan_add_redzone(&redzsz);
   3003  1.227      maxv 	redzsz -= requested_size;
   3004  1.227      maxv #else
   3005  1.227      maxv 	redzsz = POOL_REDZONE_SIZE;
   3006  1.227      maxv #endif
   3007  1.227      maxv 
   3008  1.204      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   3009  1.204      maxv 		pp->pr_redzone = false;
   3010  1.204      maxv 		return;
   3011  1.204      maxv 	}
   3012  1.204      maxv 
   3013  1.204      maxv 	/*
   3014  1.204      maxv 	 * We may have extended the requested size earlier; check if
   3015  1.204      maxv 	 * there's naturally space in the padding for a red zone.
   3016  1.204      maxv 	 */
   3017  1.227      maxv 	if (pp->pr_size - requested_size >= redzsz) {
   3018  1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3019  1.204      maxv 		pp->pr_redzone = true;
   3020  1.204      maxv 		return;
   3021  1.204      maxv 	}
   3022  1.204      maxv 
   3023  1.204      maxv 	/*
   3024  1.204      maxv 	 * No space in the natural padding; check if we can extend a
   3025  1.204      maxv 	 * bit the size of the pool.
   3026  1.204      maxv 	 */
   3027  1.227      maxv 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   3028  1.204      maxv 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   3029  1.204      maxv 		/* Ok, we can */
   3030  1.204      maxv 		pp->pr_size = nsz;
   3031  1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3032  1.204      maxv 		pp->pr_redzone = true;
   3033  1.204      maxv 	} else {
   3034  1.204      maxv 		/* No space for a red zone... snif :'( */
   3035  1.204      maxv 		pp->pr_redzone = false;
   3036  1.204      maxv 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   3037  1.204      maxv 	}
   3038  1.204      maxv }
   3039  1.204      maxv 
   3040  1.204      maxv static void
   3041  1.204      maxv pool_redzone_fill(struct pool *pp, void *p)
   3042  1.204      maxv {
   3043  1.224      maxv 	if (!pp->pr_redzone)
   3044  1.224      maxv 		return;
   3045  1.224      maxv #ifdef KASAN
   3046  1.248      maxv 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
   3047  1.248      maxv 	    KASAN_POOL_REDZONE);
   3048  1.224      maxv #else
   3049  1.204      maxv 	uint8_t *cp, pat;
   3050  1.204      maxv 	const uint8_t *ep;
   3051  1.204      maxv 
   3052  1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3053  1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3054  1.204      maxv 
   3055  1.204      maxv 	/*
   3056  1.204      maxv 	 * We really don't want the first byte of the red zone to be '\0';
   3057  1.204      maxv 	 * an off-by-one in a string may not be properly detected.
   3058  1.204      maxv 	 */
   3059  1.204      maxv 	pat = pool_pattern_generate(cp);
   3060  1.204      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   3061  1.204      maxv 	cp++;
   3062  1.204      maxv 
   3063  1.204      maxv 	while (cp < ep) {
   3064  1.204      maxv 		*cp = pool_pattern_generate(cp);
   3065  1.204      maxv 		cp++;
   3066  1.204      maxv 	}
   3067  1.224      maxv #endif
   3068  1.204      maxv }
   3069  1.204      maxv 
   3070  1.204      maxv static void
   3071  1.204      maxv pool_redzone_check(struct pool *pp, void *p)
   3072  1.204      maxv {
   3073  1.224      maxv 	if (!pp->pr_redzone)
   3074  1.224      maxv 		return;
   3075  1.224      maxv #ifdef KASAN
   3076  1.248      maxv 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
   3077  1.224      maxv #else
   3078  1.204      maxv 	uint8_t *cp, pat, expected;
   3079  1.204      maxv 	const uint8_t *ep;
   3080  1.204      maxv 
   3081  1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3082  1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3083  1.204      maxv 
   3084  1.204      maxv 	pat = pool_pattern_generate(cp);
   3085  1.204      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   3086  1.225      maxv 	if (__predict_false(expected != *cp)) {
   3087  1.225      maxv 		printf("%s: %p: 0x%02x != 0x%02x\n",
   3088  1.204      maxv 		   __func__, cp, *cp, expected);
   3089  1.204      maxv 	}
   3090  1.204      maxv 	cp++;
   3091  1.204      maxv 
   3092  1.204      maxv 	while (cp < ep) {
   3093  1.204      maxv 		expected = pool_pattern_generate(cp);
   3094  1.225      maxv 		if (__predict_false(*cp != expected)) {
   3095  1.225      maxv 			printf("%s: %p: 0x%02x != 0x%02x\n",
   3096  1.204      maxv 			   __func__, cp, *cp, expected);
   3097  1.204      maxv 		}
   3098  1.204      maxv 		cp++;
   3099  1.204      maxv 	}
   3100  1.224      maxv #endif
   3101  1.204      maxv }
   3102  1.204      maxv 
   3103  1.229      maxv static void
   3104  1.229      maxv pool_cache_redzone_check(pool_cache_t pc, void *p)
   3105  1.229      maxv {
   3106  1.229      maxv #ifdef KASAN
   3107  1.257      maxv 	/* If there is a ctor/dtor, leave the data as valid. */
   3108  1.257      maxv 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   3109  1.229      maxv 		return;
   3110  1.229      maxv 	}
   3111  1.229      maxv #endif
   3112  1.229      maxv 	pool_redzone_check(&pc->pc_pool, p);
   3113  1.229      maxv }
   3114  1.229      maxv 
   3115  1.204      maxv #endif /* POOL_REDZONE */
   3116  1.204      maxv 
   3117  1.141      yamt #if defined(DDB)
   3118  1.141      yamt static bool
   3119  1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3120  1.141      yamt {
   3121  1.141      yamt 
   3122  1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   3123  1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3124  1.141      yamt }
   3125  1.141      yamt 
   3126  1.143      yamt static bool
   3127  1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3128  1.143      yamt {
   3129  1.143      yamt 
   3130  1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3131  1.143      yamt }
   3132  1.143      yamt 
   3133  1.143      yamt static bool
   3134  1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3135  1.143      yamt {
   3136  1.143      yamt 	int i;
   3137  1.143      yamt 
   3138  1.143      yamt 	if (pcg == NULL) {
   3139  1.143      yamt 		return false;
   3140  1.143      yamt 	}
   3141  1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   3142  1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3143  1.143      yamt 			return true;
   3144  1.143      yamt 		}
   3145  1.143      yamt 	}
   3146  1.143      yamt 	return false;
   3147  1.143      yamt }
   3148  1.143      yamt 
   3149  1.143      yamt static bool
   3150  1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3151  1.143      yamt {
   3152  1.143      yamt 
   3153  1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3154  1.234      maxv 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3155  1.143      yamt 		pool_item_bitmap_t *bitmap =
   3156  1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3157  1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3158  1.143      yamt 
   3159  1.143      yamt 		return (*bitmap & mask) == 0;
   3160  1.143      yamt 	} else {
   3161  1.143      yamt 		struct pool_item *pi;
   3162  1.143      yamt 
   3163  1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3164  1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   3165  1.143      yamt 				return false;
   3166  1.143      yamt 			}
   3167  1.143      yamt 		}
   3168  1.143      yamt 		return true;
   3169  1.143      yamt 	}
   3170  1.143      yamt }
   3171  1.143      yamt 
   3172  1.141      yamt void
   3173  1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3174  1.141      yamt {
   3175  1.141      yamt 	struct pool *pp;
   3176  1.141      yamt 
   3177  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3178  1.141      yamt 		struct pool_item_header *ph;
   3179  1.141      yamt 		uintptr_t item;
   3180  1.143      yamt 		bool allocated = true;
   3181  1.143      yamt 		bool incache = false;
   3182  1.143      yamt 		bool incpucache = false;
   3183  1.143      yamt 		char cpucachestr[32];
   3184  1.141      yamt 
   3185  1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3186  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3187  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3188  1.141      yamt 					goto found;
   3189  1.141      yamt 				}
   3190  1.141      yamt 			}
   3191  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3192  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3193  1.143      yamt 					allocated =
   3194  1.143      yamt 					    pool_allocated(pp, ph, addr);
   3195  1.143      yamt 					goto found;
   3196  1.143      yamt 				}
   3197  1.143      yamt 			}
   3198  1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3199  1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   3200  1.143      yamt 					allocated = false;
   3201  1.141      yamt 					goto found;
   3202  1.141      yamt 				}
   3203  1.141      yamt 			}
   3204  1.141      yamt 			continue;
   3205  1.141      yamt 		} else {
   3206  1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3207  1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3208  1.141      yamt 				continue;
   3209  1.141      yamt 			}
   3210  1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3211  1.141      yamt 		}
   3212  1.141      yamt found:
   3213  1.143      yamt 		if (allocated && pp->pr_cache) {
   3214  1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   3215  1.143      yamt 			struct pool_cache_group *pcg;
   3216  1.143      yamt 			int i;
   3217  1.143      yamt 
   3218  1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3219  1.143      yamt 			    pcg = pcg->pcg_next) {
   3220  1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3221  1.143      yamt 					incache = true;
   3222  1.143      yamt 					goto print;
   3223  1.143      yamt 				}
   3224  1.143      yamt 			}
   3225  1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3226  1.143      yamt 				pool_cache_cpu_t *cc;
   3227  1.143      yamt 
   3228  1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3229  1.143      yamt 					continue;
   3230  1.143      yamt 				}
   3231  1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3232  1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3233  1.143      yamt 					struct cpu_info *ci =
   3234  1.170        ad 					    cpu_lookup(i);
   3235  1.143      yamt 
   3236  1.143      yamt 					incpucache = true;
   3237  1.143      yamt 					snprintf(cpucachestr,
   3238  1.143      yamt 					    sizeof(cpucachestr),
   3239  1.143      yamt 					    "cached by CPU %u",
   3240  1.153    martin 					    ci->ci_index);
   3241  1.143      yamt 					goto print;
   3242  1.143      yamt 				}
   3243  1.143      yamt 			}
   3244  1.143      yamt 		}
   3245  1.143      yamt print:
   3246  1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3247  1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3248  1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3249  1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3250  1.143      yamt 		    pp->pr_wchan,
   3251  1.143      yamt 		    incpucache ? cpucachestr :
   3252  1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3253  1.141      yamt 	}
   3254  1.141      yamt }
   3255  1.141      yamt #endif /* defined(DDB) */
   3256  1.203     joerg 
   3257  1.203     joerg static int
   3258  1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   3259  1.203     joerg {
   3260  1.203     joerg 	struct pool_sysctl data;
   3261  1.203     joerg 	struct pool *pp;
   3262  1.203     joerg 	struct pool_cache *pc;
   3263  1.203     joerg 	pool_cache_cpu_t *cc;
   3264  1.203     joerg 	int error;
   3265  1.203     joerg 	size_t i, written;
   3266  1.203     joerg 
   3267  1.203     joerg 	if (oldp == NULL) {
   3268  1.203     joerg 		*oldlenp = 0;
   3269  1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3270  1.203     joerg 			*oldlenp += sizeof(data);
   3271  1.203     joerg 		return 0;
   3272  1.203     joerg 	}
   3273  1.203     joerg 
   3274  1.203     joerg 	memset(&data, 0, sizeof(data));
   3275  1.203     joerg 	error = 0;
   3276  1.203     joerg 	written = 0;
   3277  1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3278  1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   3279  1.203     joerg 			break;
   3280  1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3281  1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3282  1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3283  1.203     joerg #define COPY(field) data.field = pp->field
   3284  1.203     joerg 		COPY(pr_size);
   3285  1.203     joerg 
   3286  1.203     joerg 		COPY(pr_itemsperpage);
   3287  1.203     joerg 		COPY(pr_nitems);
   3288  1.203     joerg 		COPY(pr_nout);
   3289  1.203     joerg 		COPY(pr_hardlimit);
   3290  1.203     joerg 		COPY(pr_npages);
   3291  1.203     joerg 		COPY(pr_minpages);
   3292  1.203     joerg 		COPY(pr_maxpages);
   3293  1.203     joerg 
   3294  1.203     joerg 		COPY(pr_nget);
   3295  1.203     joerg 		COPY(pr_nfail);
   3296  1.203     joerg 		COPY(pr_nput);
   3297  1.203     joerg 		COPY(pr_npagealloc);
   3298  1.203     joerg 		COPY(pr_npagefree);
   3299  1.203     joerg 		COPY(pr_hiwat);
   3300  1.203     joerg 		COPY(pr_nidle);
   3301  1.203     joerg #undef COPY
   3302  1.203     joerg 
   3303  1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   3304  1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   3305  1.203     joerg 		if (pp->pr_cache) {
   3306  1.203     joerg 			pc = pp->pr_cache;
   3307  1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3308  1.203     joerg 			data.pr_cache_nfull = pc->pc_nfull;
   3309  1.203     joerg 			data.pr_cache_npartial = pc->pc_npart;
   3310  1.203     joerg 			data.pr_cache_nempty = pc->pc_nempty;
   3311  1.203     joerg 			data.pr_cache_ncontended = pc->pc_contended;
   3312  1.203     joerg 			data.pr_cache_nmiss_global = pc->pc_misses;
   3313  1.203     joerg 			data.pr_cache_nhit_global = pc->pc_hits;
   3314  1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3315  1.203     joerg 				cc = pc->pc_cpus[i];
   3316  1.203     joerg 				if (cc == NULL)
   3317  1.203     joerg 					continue;
   3318  1.206  knakahar 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3319  1.206  knakahar 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3320  1.203     joerg 			}
   3321  1.203     joerg 		} else {
   3322  1.203     joerg 			data.pr_cache_meta_size = 0;
   3323  1.203     joerg 			data.pr_cache_nfull = 0;
   3324  1.203     joerg 			data.pr_cache_npartial = 0;
   3325  1.203     joerg 			data.pr_cache_nempty = 0;
   3326  1.203     joerg 			data.pr_cache_ncontended = 0;
   3327  1.203     joerg 			data.pr_cache_nmiss_global = 0;
   3328  1.203     joerg 			data.pr_cache_nhit_global = 0;
   3329  1.203     joerg 		}
   3330  1.203     joerg 
   3331  1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3332  1.203     joerg 		if (error)
   3333  1.203     joerg 			break;
   3334  1.203     joerg 		written += sizeof(data);
   3335  1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   3336  1.203     joerg 	}
   3337  1.203     joerg 
   3338  1.203     joerg 	*oldlenp = written;
   3339  1.203     joerg 	return error;
   3340  1.203     joerg }
   3341  1.203     joerg 
   3342  1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3343  1.203     joerg {
   3344  1.203     joerg 	const struct sysctlnode *rnode = NULL;
   3345  1.203     joerg 
   3346  1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   3347  1.203     joerg 		       CTLFLAG_PERMANENT,
   3348  1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   3349  1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   3350  1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   3351  1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3352  1.203     joerg }
   3353