subr_pool.c revision 1.264.2.2 1 1.264.2.2 ad /* $NetBSD: subr_pool.c,v 1.264.2.2 2020/02/29 20:21:03 ad Exp $ */
2 1.1 pk
3 1.229 maxv /*
4 1.229 maxv * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5 1.183 ad * The NetBSD Foundation, Inc.
6 1.1 pk * All rights reserved.
7 1.1 pk *
8 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
9 1.20 thorpej * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 1.204 maxv * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 1.204 maxv * Maxime Villard.
12 1.1 pk *
13 1.1 pk * Redistribution and use in source and binary forms, with or without
14 1.1 pk * modification, are permitted provided that the following conditions
15 1.1 pk * are met:
16 1.1 pk * 1. Redistributions of source code must retain the above copyright
17 1.1 pk * notice, this list of conditions and the following disclaimer.
18 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
19 1.1 pk * notice, this list of conditions and the following disclaimer in the
20 1.1 pk * documentation and/or other materials provided with the distribution.
21 1.1 pk *
22 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
33 1.1 pk */
34 1.64 lukem
35 1.64 lukem #include <sys/cdefs.h>
36 1.264.2.2 ad __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.264.2.2 2020/02/29 20:21:03 ad Exp $");
37 1.24 scottr
38 1.205 pooka #ifdef _KERNEL_OPT
39 1.141 yamt #include "opt_ddb.h"
40 1.28 thorpej #include "opt_lockdebug.h"
41 1.249 maxv #include "opt_pool.h"
42 1.205 pooka #endif
43 1.1 pk
44 1.1 pk #include <sys/param.h>
45 1.1 pk #include <sys/systm.h>
46 1.203 joerg #include <sys/sysctl.h>
47 1.135 yamt #include <sys/bitops.h>
48 1.1 pk #include <sys/proc.h>
49 1.1 pk #include <sys/errno.h>
50 1.1 pk #include <sys/kernel.h>
51 1.191 para #include <sys/vmem.h>
52 1.1 pk #include <sys/pool.h>
53 1.20 thorpej #include <sys/syslog.h>
54 1.125 ad #include <sys/debug.h>
55 1.134 ad #include <sys/lockdebug.h>
56 1.134 ad #include <sys/xcall.h>
57 1.134 ad #include <sys/cpu.h>
58 1.145 ad #include <sys/atomic.h>
59 1.224 maxv #include <sys/asan.h>
60 1.262 maxv #include <sys/msan.h>
61 1.3 pk
62 1.187 uebayasi #include <uvm/uvm_extern.h>
63 1.3 pk
64 1.1 pk /*
65 1.1 pk * Pool resource management utility.
66 1.3 pk *
67 1.88 chs * Memory is allocated in pages which are split into pieces according to
68 1.88 chs * the pool item size. Each page is kept on one of three lists in the
69 1.88 chs * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
70 1.88 chs * for empty, full and partially-full pages respectively. The individual
71 1.88 chs * pool items are on a linked list headed by `ph_itemlist' in each page
72 1.88 chs * header. The memory for building the page list is either taken from
73 1.88 chs * the allocated pages themselves (for small pool items) or taken from
74 1.88 chs * an internal pool of page headers (`phpool').
75 1.1 pk */
76 1.1 pk
77 1.221 para /* List of all pools. Non static as needed by 'vmstat -m' */
78 1.202 abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
79 1.134 ad
80 1.3 pk /* Private pool for page header structures */
81 1.97 yamt #define PHPOOL_MAX 8
82 1.97 yamt static struct pool phpool[PHPOOL_MAX];
83 1.135 yamt #define PHPOOL_FREELIST_NELEM(idx) \
84 1.256 maxv (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
85 1.3 pk
86 1.262 maxv #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
87 1.224 maxv #define POOL_REDZONE
88 1.224 maxv #endif
89 1.224 maxv
90 1.204 maxv #ifdef POOL_REDZONE
91 1.224 maxv # ifdef KASAN
92 1.224 maxv # define POOL_REDZONE_SIZE 8
93 1.224 maxv # else
94 1.224 maxv # define POOL_REDZONE_SIZE 2
95 1.224 maxv # endif
96 1.204 maxv static void pool_redzone_init(struct pool *, size_t);
97 1.204 maxv static void pool_redzone_fill(struct pool *, void *);
98 1.204 maxv static void pool_redzone_check(struct pool *, void *);
99 1.229 maxv static void pool_cache_redzone_check(pool_cache_t, void *);
100 1.204 maxv #else
101 1.229 maxv # define pool_redzone_init(pp, sz) __nothing
102 1.229 maxv # define pool_redzone_fill(pp, ptr) __nothing
103 1.229 maxv # define pool_redzone_check(pp, ptr) __nothing
104 1.229 maxv # define pool_cache_redzone_check(pc, ptr) __nothing
105 1.204 maxv #endif
106 1.204 maxv
107 1.262 maxv #ifdef KMSAN
108 1.262 maxv static inline void pool_get_kmsan(struct pool *, void *);
109 1.262 maxv static inline void pool_put_kmsan(struct pool *, void *);
110 1.262 maxv static inline void pool_cache_get_kmsan(pool_cache_t, void *);
111 1.262 maxv static inline void pool_cache_put_kmsan(pool_cache_t, void *);
112 1.262 maxv #else
113 1.262 maxv #define pool_get_kmsan(pp, ptr) __nothing
114 1.262 maxv #define pool_put_kmsan(pp, ptr) __nothing
115 1.262 maxv #define pool_cache_get_kmsan(pc, ptr) __nothing
116 1.262 maxv #define pool_cache_put_kmsan(pc, ptr) __nothing
117 1.262 maxv #endif
118 1.262 maxv
119 1.249 maxv #ifdef POOL_QUARANTINE
120 1.249 maxv static void pool_quarantine_init(struct pool *);
121 1.249 maxv static void pool_quarantine_flush(struct pool *);
122 1.249 maxv static bool pool_put_quarantine(struct pool *, void *,
123 1.249 maxv struct pool_pagelist *);
124 1.249 maxv static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t);
125 1.249 maxv #else
126 1.249 maxv #define pool_quarantine_init(a) __nothing
127 1.249 maxv #define pool_quarantine_flush(a) __nothing
128 1.249 maxv #define pool_put_quarantine(a, b, c) false
129 1.249 maxv #define pool_cache_put_quarantine(a, b, c) false
130 1.249 maxv #endif
131 1.249 maxv
132 1.261 christos #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop)
133 1.261 christos #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop)
134 1.261 christos
135 1.261 christos #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
136 1.261 christos #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
137 1.229 maxv
138 1.258 maxv /*
139 1.258 maxv * Pool backend allocators.
140 1.258 maxv *
141 1.258 maxv * Each pool has a backend allocator that handles allocation, deallocation,
142 1.258 maxv * and any additional draining that might be needed.
143 1.258 maxv *
144 1.258 maxv * We provide two standard allocators:
145 1.258 maxv *
146 1.258 maxv * pool_allocator_kmem - the default when no allocator is specified
147 1.258 maxv *
148 1.258 maxv * pool_allocator_nointr - used for pools that will not be accessed
149 1.258 maxv * in interrupt context.
150 1.258 maxv */
151 1.258 maxv void *pool_page_alloc(struct pool *, int);
152 1.258 maxv void pool_page_free(struct pool *, void *);
153 1.258 maxv
154 1.98 yamt static void *pool_page_alloc_meta(struct pool *, int);
155 1.98 yamt static void pool_page_free_meta(struct pool *, void *);
156 1.98 yamt
157 1.258 maxv struct pool_allocator pool_allocator_kmem = {
158 1.258 maxv .pa_alloc = pool_page_alloc,
159 1.258 maxv .pa_free = pool_page_free,
160 1.258 maxv .pa_pagesz = 0
161 1.258 maxv };
162 1.258 maxv
163 1.258 maxv struct pool_allocator pool_allocator_nointr = {
164 1.258 maxv .pa_alloc = pool_page_alloc,
165 1.258 maxv .pa_free = pool_page_free,
166 1.258 maxv .pa_pagesz = 0
167 1.258 maxv };
168 1.258 maxv
169 1.134 ad struct pool_allocator pool_allocator_meta = {
170 1.191 para .pa_alloc = pool_page_alloc_meta,
171 1.191 para .pa_free = pool_page_free_meta,
172 1.191 para .pa_pagesz = 0
173 1.98 yamt };
174 1.98 yamt
175 1.208 chs #define POOL_ALLOCATOR_BIG_BASE 13
176 1.258 maxv static struct pool_allocator pool_allocator_big[] = {
177 1.258 maxv {
178 1.258 maxv .pa_alloc = pool_page_alloc,
179 1.258 maxv .pa_free = pool_page_free,
180 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
181 1.258 maxv },
182 1.258 maxv {
183 1.258 maxv .pa_alloc = pool_page_alloc,
184 1.258 maxv .pa_free = pool_page_free,
185 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
186 1.258 maxv },
187 1.258 maxv {
188 1.258 maxv .pa_alloc = pool_page_alloc,
189 1.258 maxv .pa_free = pool_page_free,
190 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
191 1.258 maxv },
192 1.258 maxv {
193 1.258 maxv .pa_alloc = pool_page_alloc,
194 1.258 maxv .pa_free = pool_page_free,
195 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
196 1.258 maxv },
197 1.258 maxv {
198 1.258 maxv .pa_alloc = pool_page_alloc,
199 1.258 maxv .pa_free = pool_page_free,
200 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
201 1.258 maxv },
202 1.258 maxv {
203 1.258 maxv .pa_alloc = pool_page_alloc,
204 1.258 maxv .pa_free = pool_page_free,
205 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
206 1.258 maxv },
207 1.258 maxv {
208 1.258 maxv .pa_alloc = pool_page_alloc,
209 1.258 maxv .pa_free = pool_page_free,
210 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
211 1.258 maxv },
212 1.258 maxv {
213 1.258 maxv .pa_alloc = pool_page_alloc,
214 1.258 maxv .pa_free = pool_page_free,
215 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
216 1.258 maxv }
217 1.258 maxv };
218 1.258 maxv
219 1.208 chs static int pool_bigidx(size_t);
220 1.208 chs
221 1.3 pk /* # of seconds to retain page after last use */
222 1.3 pk int pool_inactive_time = 10;
223 1.3 pk
224 1.3 pk /* Next candidate for drainage (see pool_drain()) */
225 1.236 maxv static struct pool *drainpp;
226 1.23 thorpej
227 1.134 ad /* This lock protects both pool_head and drainpp. */
228 1.134 ad static kmutex_t pool_head_lock;
229 1.134 ad static kcondvar_t pool_busy;
230 1.3 pk
231 1.178 elad /* This lock protects initialization of a potentially shared pool allocator */
232 1.178 elad static kmutex_t pool_allocator_lock;
233 1.178 elad
234 1.245 maxv static unsigned int poolid_counter = 0;
235 1.245 maxv
236 1.135 yamt typedef uint32_t pool_item_bitmap_t;
237 1.135 yamt #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
238 1.135 yamt #define BITMAP_MASK (BITMAP_SIZE - 1)
239 1.256 maxv #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
240 1.99 yamt
241 1.3 pk struct pool_item_header {
242 1.3 pk /* Page headers */
243 1.88 chs LIST_ENTRY(pool_item_header)
244 1.3 pk ph_pagelist; /* pool page list */
245 1.245 maxv union {
246 1.245 maxv /* !PR_PHINPAGE */
247 1.245 maxv struct {
248 1.245 maxv SPLAY_ENTRY(pool_item_header)
249 1.245 maxv phu_node; /* off-page page headers */
250 1.245 maxv } phu_offpage;
251 1.245 maxv /* PR_PHINPAGE */
252 1.245 maxv struct {
253 1.245 maxv unsigned int phu_poolid;
254 1.245 maxv } phu_onpage;
255 1.245 maxv } ph_u1;
256 1.128 christos void * ph_page; /* this page's address */
257 1.151 yamt uint32_t ph_time; /* last referenced */
258 1.135 yamt uint16_t ph_nmissing; /* # of chunks in use */
259 1.141 yamt uint16_t ph_off; /* start offset in page */
260 1.97 yamt union {
261 1.242 maxv /* !PR_USEBMAP */
262 1.97 yamt struct {
263 1.102 chs LIST_HEAD(, pool_item)
264 1.97 yamt phu_itemlist; /* chunk list for this page */
265 1.97 yamt } phu_normal;
266 1.242 maxv /* PR_USEBMAP */
267 1.97 yamt struct {
268 1.141 yamt pool_item_bitmap_t phu_bitmap[1];
269 1.97 yamt } phu_notouch;
270 1.245 maxv } ph_u2;
271 1.3 pk };
272 1.245 maxv #define ph_node ph_u1.phu_offpage.phu_node
273 1.245 maxv #define ph_poolid ph_u1.phu_onpage.phu_poolid
274 1.245 maxv #define ph_itemlist ph_u2.phu_normal.phu_itemlist
275 1.245 maxv #define ph_bitmap ph_u2.phu_notouch.phu_bitmap
276 1.3 pk
277 1.240 maxv #define PHSIZE ALIGN(sizeof(struct pool_item_header))
278 1.240 maxv
279 1.256 maxv CTASSERT(offsetof(struct pool_item_header, ph_u2) +
280 1.256 maxv BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
281 1.256 maxv
282 1.229 maxv #if defined(DIAGNOSTIC) && !defined(KASAN)
283 1.229 maxv #define POOL_CHECK_MAGIC
284 1.229 maxv #endif
285 1.229 maxv
286 1.1 pk struct pool_item {
287 1.229 maxv #ifdef POOL_CHECK_MAGIC
288 1.82 thorpej u_int pi_magic;
289 1.33 chs #endif
290 1.134 ad #define PI_MAGIC 0xdeaddeadU
291 1.3 pk /* Other entries use only this list entry */
292 1.102 chs LIST_ENTRY(pool_item) pi_list;
293 1.3 pk };
294 1.3 pk
295 1.53 thorpej #define POOL_NEEDS_CATCHUP(pp) \
296 1.53 thorpej ((pp)->pr_nitems < (pp)->pr_minitems)
297 1.253 maxv #define POOL_OBJ_TO_PAGE(pp, v) \
298 1.253 maxv (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
299 1.53 thorpej
300 1.43 thorpej /*
301 1.43 thorpej * Pool cache management.
302 1.43 thorpej *
303 1.43 thorpej * Pool caches provide a way for constructed objects to be cached by the
304 1.43 thorpej * pool subsystem. This can lead to performance improvements by avoiding
305 1.43 thorpej * needless object construction/destruction; it is deferred until absolutely
306 1.43 thorpej * necessary.
307 1.43 thorpej *
308 1.134 ad * Caches are grouped into cache groups. Each cache group references up
309 1.134 ad * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
310 1.134 ad * object from the pool, it calls the object's constructor and places it
311 1.134 ad * into a cache group. When a cache group frees an object back to the
312 1.134 ad * pool, it first calls the object's destructor. This allows the object
313 1.134 ad * to persist in constructed form while freed to the cache.
314 1.134 ad *
315 1.134 ad * The pool references each cache, so that when a pool is drained by the
316 1.134 ad * pagedaemon, it can drain each individual cache as well. Each time a
317 1.134 ad * cache is drained, the most idle cache group is freed to the pool in
318 1.134 ad * its entirety.
319 1.43 thorpej *
320 1.43 thorpej * Pool caches are layed on top of pools. By layering them, we can avoid
321 1.43 thorpej * the complexity of cache management for pools which would not benefit
322 1.43 thorpej * from it.
323 1.43 thorpej */
324 1.43 thorpej
325 1.142 ad static struct pool pcg_normal_pool;
326 1.142 ad static struct pool pcg_large_pool;
327 1.134 ad static struct pool cache_pool;
328 1.134 ad static struct pool cache_cpu_pool;
329 1.3 pk
330 1.145 ad /* List of all caches. */
331 1.145 ad TAILQ_HEAD(,pool_cache) pool_cache_head =
332 1.145 ad TAILQ_HEAD_INITIALIZER(pool_cache_head);
333 1.145 ad
334 1.162 ad int pool_cache_disable; /* global disable for caching */
335 1.169 yamt static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
336 1.145 ad
337 1.162 ad static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
338 1.162 ad void *);
339 1.162 ad static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
340 1.162 ad void **, paddr_t *, int);
341 1.134 ad static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
342 1.134 ad static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
343 1.175 jym static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
344 1.196 jym static void pool_cache_transfer(pool_cache_t);
345 1.3 pk
346 1.42 thorpej static int pool_catchup(struct pool *);
347 1.128 christos static void pool_prime_page(struct pool *, void *,
348 1.55 thorpej struct pool_item_header *);
349 1.88 chs static void pool_update_curpage(struct pool *);
350 1.66 thorpej
351 1.113 yamt static int pool_grow(struct pool *, int);
352 1.117 yamt static void *pool_allocator_alloc(struct pool *, int);
353 1.117 yamt static void pool_allocator_free(struct pool *, void *);
354 1.3 pk
355 1.97 yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
356 1.199 christos void (*)(const char *, ...) __printflike(1, 2));
357 1.42 thorpej static void pool_print1(struct pool *, const char *,
358 1.199 christos void (*)(const char *, ...) __printflike(1, 2));
359 1.3 pk
360 1.88 chs static int pool_chk_page(struct pool *, const char *,
361 1.88 chs struct pool_item_header *);
362 1.88 chs
363 1.234 maxv /* -------------------------------------------------------------------------- */
364 1.234 maxv
365 1.135 yamt static inline unsigned int
366 1.234 maxv pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
367 1.97 yamt const void *v)
368 1.97 yamt {
369 1.97 yamt const char *cp = v;
370 1.135 yamt unsigned int idx;
371 1.97 yamt
372 1.242 maxv KASSERT(pp->pr_roflags & PR_USEBMAP);
373 1.128 christos idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
374 1.237 maxv
375 1.237 maxv if (__predict_false(idx >= pp->pr_itemsperpage)) {
376 1.237 maxv panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
377 1.237 maxv pp->pr_itemsperpage);
378 1.237 maxv }
379 1.237 maxv
380 1.97 yamt return idx;
381 1.97 yamt }
382 1.97 yamt
383 1.110 perry static inline void
384 1.234 maxv pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
385 1.97 yamt void *obj)
386 1.97 yamt {
387 1.234 maxv unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
388 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
389 1.223 kamil pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
390 1.97 yamt
391 1.237 maxv if (__predict_false((*bitmap & mask) != 0)) {
392 1.237 maxv panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
393 1.237 maxv }
394 1.237 maxv
395 1.135 yamt *bitmap |= mask;
396 1.97 yamt }
397 1.97 yamt
398 1.110 perry static inline void *
399 1.234 maxv pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
400 1.97 yamt {
401 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
402 1.135 yamt unsigned int idx;
403 1.135 yamt int i;
404 1.97 yamt
405 1.135 yamt for (i = 0; ; i++) {
406 1.135 yamt int bit;
407 1.97 yamt
408 1.135 yamt KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
409 1.135 yamt bit = ffs32(bitmap[i]);
410 1.135 yamt if (bit) {
411 1.135 yamt pool_item_bitmap_t mask;
412 1.135 yamt
413 1.135 yamt bit--;
414 1.135 yamt idx = (i * BITMAP_SIZE) + bit;
415 1.222 kamil mask = 1U << bit;
416 1.135 yamt KASSERT((bitmap[i] & mask) != 0);
417 1.135 yamt bitmap[i] &= ~mask;
418 1.135 yamt break;
419 1.135 yamt }
420 1.135 yamt }
421 1.135 yamt KASSERT(idx < pp->pr_itemsperpage);
422 1.128 christos return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
423 1.97 yamt }
424 1.97 yamt
425 1.135 yamt static inline void
426 1.234 maxv pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
427 1.135 yamt {
428 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
429 1.135 yamt const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
430 1.135 yamt int i;
431 1.135 yamt
432 1.135 yamt for (i = 0; i < n; i++) {
433 1.135 yamt bitmap[i] = (pool_item_bitmap_t)-1;
434 1.135 yamt }
435 1.135 yamt }
436 1.135 yamt
437 1.234 maxv /* -------------------------------------------------------------------------- */
438 1.234 maxv
439 1.234 maxv static inline void
440 1.234 maxv pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
441 1.234 maxv void *obj)
442 1.234 maxv {
443 1.234 maxv struct pool_item *pi = obj;
444 1.234 maxv
445 1.234 maxv #ifdef POOL_CHECK_MAGIC
446 1.234 maxv pi->pi_magic = PI_MAGIC;
447 1.234 maxv #endif
448 1.234 maxv
449 1.234 maxv if (pp->pr_redzone) {
450 1.234 maxv /*
451 1.234 maxv * Mark the pool_item as valid. The rest is already
452 1.234 maxv * invalid.
453 1.234 maxv */
454 1.248 maxv kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
455 1.234 maxv }
456 1.234 maxv
457 1.234 maxv LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
458 1.234 maxv }
459 1.234 maxv
460 1.234 maxv static inline void *
461 1.234 maxv pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
462 1.234 maxv {
463 1.234 maxv struct pool_item *pi;
464 1.234 maxv void *v;
465 1.234 maxv
466 1.234 maxv v = pi = LIST_FIRST(&ph->ph_itemlist);
467 1.234 maxv if (__predict_false(v == NULL)) {
468 1.234 maxv mutex_exit(&pp->pr_lock);
469 1.234 maxv panic("%s: [%s] page empty", __func__, pp->pr_wchan);
470 1.234 maxv }
471 1.234 maxv KASSERTMSG((pp->pr_nitems > 0),
472 1.234 maxv "%s: [%s] nitems %u inconsistent on itemlist",
473 1.234 maxv __func__, pp->pr_wchan, pp->pr_nitems);
474 1.234 maxv #ifdef POOL_CHECK_MAGIC
475 1.234 maxv KASSERTMSG((pi->pi_magic == PI_MAGIC),
476 1.234 maxv "%s: [%s] free list modified: "
477 1.234 maxv "magic=%x; page %p; item addr %p", __func__,
478 1.234 maxv pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
479 1.234 maxv #endif
480 1.234 maxv
481 1.234 maxv /*
482 1.234 maxv * Remove from item list.
483 1.234 maxv */
484 1.234 maxv LIST_REMOVE(pi, pi_list);
485 1.234 maxv
486 1.234 maxv return v;
487 1.234 maxv }
488 1.234 maxv
489 1.234 maxv /* -------------------------------------------------------------------------- */
490 1.234 maxv
491 1.253 maxv static inline void
492 1.253 maxv pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
493 1.253 maxv void *object)
494 1.253 maxv {
495 1.253 maxv if (__predict_false((void *)ph->ph_page != page)) {
496 1.253 maxv panic("%s: [%s] item %p not part of pool", __func__,
497 1.253 maxv pp->pr_wchan, object);
498 1.253 maxv }
499 1.253 maxv if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
500 1.253 maxv panic("%s: [%s] item %p below item space", __func__,
501 1.253 maxv pp->pr_wchan, object);
502 1.253 maxv }
503 1.253 maxv if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
504 1.253 maxv panic("%s: [%s] item %p poolid %u != %u", __func__,
505 1.253 maxv pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
506 1.253 maxv }
507 1.253 maxv }
508 1.253 maxv
509 1.253 maxv static inline void
510 1.253 maxv pc_phinpage_check(pool_cache_t pc, void *object)
511 1.253 maxv {
512 1.253 maxv struct pool_item_header *ph;
513 1.253 maxv struct pool *pp;
514 1.253 maxv void *page;
515 1.253 maxv
516 1.253 maxv pp = &pc->pc_pool;
517 1.253 maxv page = POOL_OBJ_TO_PAGE(pp, object);
518 1.253 maxv ph = (struct pool_item_header *)page;
519 1.253 maxv
520 1.253 maxv pr_phinpage_check(pp, ph, page, object);
521 1.253 maxv }
522 1.253 maxv
523 1.253 maxv /* -------------------------------------------------------------------------- */
524 1.253 maxv
525 1.110 perry static inline int
526 1.88 chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
527 1.88 chs {
528 1.121 yamt
529 1.121 yamt /*
530 1.236 maxv * We consider pool_item_header with smaller ph_page bigger. This
531 1.236 maxv * unnatural ordering is for the benefit of pr_find_pagehead.
532 1.121 yamt */
533 1.88 chs if (a->ph_page < b->ph_page)
534 1.236 maxv return 1;
535 1.121 yamt else if (a->ph_page > b->ph_page)
536 1.236 maxv return -1;
537 1.88 chs else
538 1.236 maxv return 0;
539 1.88 chs }
540 1.88 chs
541 1.88 chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
542 1.88 chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
543 1.88 chs
544 1.141 yamt static inline struct pool_item_header *
545 1.141 yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
546 1.141 yamt {
547 1.141 yamt struct pool_item_header *ph, tmp;
548 1.141 yamt
549 1.141 yamt tmp.ph_page = (void *)(uintptr_t)v;
550 1.141 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
551 1.141 yamt if (ph == NULL) {
552 1.141 yamt ph = SPLAY_ROOT(&pp->pr_phtree);
553 1.141 yamt if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
554 1.141 yamt ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
555 1.141 yamt }
556 1.141 yamt KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
557 1.141 yamt }
558 1.141 yamt
559 1.141 yamt return ph;
560 1.141 yamt }
561 1.141 yamt
562 1.3 pk /*
563 1.121 yamt * Return the pool page header based on item address.
564 1.3 pk */
565 1.110 perry static inline struct pool_item_header *
566 1.121 yamt pr_find_pagehead(struct pool *pp, void *v)
567 1.3 pk {
568 1.88 chs struct pool_item_header *ph, tmp;
569 1.3 pk
570 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
571 1.141 yamt ph = pr_find_pagehead_noalign(pp, v);
572 1.121 yamt } else {
573 1.253 maxv void *page = POOL_OBJ_TO_PAGE(pp, v);
574 1.121 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
575 1.241 maxv ph = (struct pool_item_header *)page;
576 1.253 maxv pr_phinpage_check(pp, ph, page, v);
577 1.121 yamt } else {
578 1.121 yamt tmp.ph_page = page;
579 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
580 1.121 yamt }
581 1.121 yamt }
582 1.3 pk
583 1.121 yamt KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
584 1.128 christos ((char *)ph->ph_page <= (char *)v &&
585 1.128 christos (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
586 1.88 chs return ph;
587 1.3 pk }
588 1.3 pk
589 1.101 thorpej static void
590 1.101 thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
591 1.101 thorpej {
592 1.101 thorpej struct pool_item_header *ph;
593 1.101 thorpej
594 1.101 thorpej while ((ph = LIST_FIRST(pq)) != NULL) {
595 1.101 thorpej LIST_REMOVE(ph, ph_pagelist);
596 1.101 thorpej pool_allocator_free(pp, ph->ph_page);
597 1.134 ad if ((pp->pr_roflags & PR_PHINPAGE) == 0)
598 1.101 thorpej pool_put(pp->pr_phpool, ph);
599 1.101 thorpej }
600 1.101 thorpej }
601 1.101 thorpej
602 1.3 pk /*
603 1.3 pk * Remove a page from the pool.
604 1.3 pk */
605 1.110 perry static inline void
606 1.61 chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
607 1.61 chs struct pool_pagelist *pq)
608 1.3 pk {
609 1.3 pk
610 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
611 1.91 yamt
612 1.3 pk /*
613 1.7 thorpej * If the page was idle, decrement the idle page count.
614 1.3 pk */
615 1.6 thorpej if (ph->ph_nmissing == 0) {
616 1.207 riastrad KASSERT(pp->pr_nidle != 0);
617 1.207 riastrad KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
618 1.251 christos "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
619 1.251 christos pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
620 1.6 thorpej pp->pr_nidle--;
621 1.6 thorpej }
622 1.7 thorpej
623 1.20 thorpej pp->pr_nitems -= pp->pr_itemsperpage;
624 1.20 thorpej
625 1.7 thorpej /*
626 1.101 thorpej * Unlink the page from the pool and queue it for release.
627 1.7 thorpej */
628 1.88 chs LIST_REMOVE(ph, ph_pagelist);
629 1.245 maxv if (pp->pr_roflags & PR_PHINPAGE) {
630 1.245 maxv if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
631 1.245 maxv panic("%s: [%s] ph %p poolid %u != %u",
632 1.245 maxv __func__, pp->pr_wchan, ph, ph->ph_poolid,
633 1.245 maxv pp->pr_poolid);
634 1.245 maxv }
635 1.245 maxv } else {
636 1.91 yamt SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
637 1.245 maxv }
638 1.101 thorpej LIST_INSERT_HEAD(pq, ph, ph_pagelist);
639 1.101 thorpej
640 1.7 thorpej pp->pr_npages--;
641 1.7 thorpej pp->pr_npagefree++;
642 1.6 thorpej
643 1.88 chs pool_update_curpage(pp);
644 1.3 pk }
645 1.3 pk
646 1.3 pk /*
647 1.94 simonb * Initialize all the pools listed in the "pools" link set.
648 1.94 simonb */
649 1.94 simonb void
650 1.117 yamt pool_subsystem_init(void)
651 1.94 simonb {
652 1.192 rmind size_t size;
653 1.191 para int idx;
654 1.94 simonb
655 1.134 ad mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
656 1.179 mlelstv mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
657 1.134 ad cv_init(&pool_busy, "poolbusy");
658 1.134 ad
659 1.191 para /*
660 1.191 para * Initialize private page header pool and cache magazine pool if we
661 1.191 para * haven't done so yet.
662 1.191 para */
663 1.191 para for (idx = 0; idx < PHPOOL_MAX; idx++) {
664 1.191 para static char phpool_names[PHPOOL_MAX][6+1+6+1];
665 1.191 para int nelem;
666 1.191 para size_t sz;
667 1.191 para
668 1.191 para nelem = PHPOOL_FREELIST_NELEM(idx);
669 1.256 maxv KASSERT(nelem != 0);
670 1.191 para snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
671 1.191 para "phpool-%d", nelem);
672 1.256 maxv sz = offsetof(struct pool_item_header,
673 1.256 maxv ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
674 1.191 para pool_init(&phpool[idx], sz, 0, 0, 0,
675 1.191 para phpool_names[idx], &pool_allocator_meta, IPL_VM);
676 1.117 yamt }
677 1.191 para
678 1.191 para size = sizeof(pcg_t) +
679 1.191 para (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
680 1.191 para pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
681 1.191 para "pcgnormal", &pool_allocator_meta, IPL_VM);
682 1.191 para
683 1.191 para size = sizeof(pcg_t) +
684 1.191 para (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
685 1.191 para pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
686 1.191 para "pcglarge", &pool_allocator_meta, IPL_VM);
687 1.134 ad
688 1.156 ad pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
689 1.191 para 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
690 1.134 ad
691 1.156 ad pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
692 1.191 para 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
693 1.94 simonb }
694 1.94 simonb
695 1.240 maxv static inline bool
696 1.240 maxv pool_init_is_phinpage(const struct pool *pp)
697 1.240 maxv {
698 1.240 maxv size_t pagesize;
699 1.240 maxv
700 1.240 maxv if (pp->pr_roflags & PR_PHINPAGE) {
701 1.240 maxv return true;
702 1.240 maxv }
703 1.240 maxv if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
704 1.240 maxv return false;
705 1.240 maxv }
706 1.240 maxv
707 1.240 maxv pagesize = pp->pr_alloc->pa_pagesz;
708 1.240 maxv
709 1.240 maxv /*
710 1.240 maxv * Threshold: the item size is below 1/16 of a page size, and below
711 1.240 maxv * 8 times the page header size. The latter ensures we go off-page
712 1.240 maxv * if the page header would make us waste a rather big item.
713 1.240 maxv */
714 1.240 maxv if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
715 1.240 maxv return true;
716 1.240 maxv }
717 1.240 maxv
718 1.240 maxv /* Put the header into the page if it doesn't waste any items. */
719 1.240 maxv if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
720 1.240 maxv return true;
721 1.240 maxv }
722 1.240 maxv
723 1.240 maxv return false;
724 1.240 maxv }
725 1.240 maxv
726 1.242 maxv static inline bool
727 1.242 maxv pool_init_is_usebmap(const struct pool *pp)
728 1.242 maxv {
729 1.243 maxv size_t bmapsize;
730 1.243 maxv
731 1.242 maxv if (pp->pr_roflags & PR_NOTOUCH) {
732 1.242 maxv return true;
733 1.242 maxv }
734 1.242 maxv
735 1.243 maxv /*
736 1.256 maxv * If we're off-page, go with a bitmap.
737 1.256 maxv */
738 1.256 maxv if (!(pp->pr_roflags & PR_PHINPAGE)) {
739 1.256 maxv return true;
740 1.256 maxv }
741 1.256 maxv
742 1.256 maxv /*
743 1.243 maxv * If we're on-page, and the page header can already contain a bitmap
744 1.243 maxv * big enough to cover all the items of the page, go with a bitmap.
745 1.243 maxv */
746 1.243 maxv bmapsize = roundup(PHSIZE, pp->pr_align) -
747 1.243 maxv offsetof(struct pool_item_header, ph_bitmap[0]);
748 1.243 maxv KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
749 1.243 maxv if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
750 1.243 maxv return true;
751 1.243 maxv }
752 1.243 maxv
753 1.242 maxv return false;
754 1.242 maxv }
755 1.242 maxv
756 1.94 simonb /*
757 1.3 pk * Initialize the given pool resource structure.
758 1.3 pk *
759 1.3 pk * We export this routine to allow other kernel parts to declare
760 1.195 rmind * static pools that must be initialized before kmem(9) is available.
761 1.3 pk */
762 1.3 pk void
763 1.42 thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
764 1.129 ad const char *wchan, struct pool_allocator *palloc, int ipl)
765 1.3 pk {
766 1.116 simonb struct pool *pp1;
767 1.240 maxv size_t prsize;
768 1.237 maxv int itemspace, slack;
769 1.3 pk
770 1.238 maxv /* XXX ioff will be removed. */
771 1.238 maxv KASSERT(ioff == 0);
772 1.238 maxv
773 1.116 simonb #ifdef DEBUG
774 1.198 christos if (__predict_true(!cold))
775 1.198 christos mutex_enter(&pool_head_lock);
776 1.116 simonb /*
777 1.116 simonb * Check that the pool hasn't already been initialised and
778 1.116 simonb * added to the list of all pools.
779 1.116 simonb */
780 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
781 1.116 simonb if (pp == pp1)
782 1.213 christos panic("%s: [%s] already initialised", __func__,
783 1.116 simonb wchan);
784 1.116 simonb }
785 1.198 christos if (__predict_true(!cold))
786 1.198 christos mutex_exit(&pool_head_lock);
787 1.116 simonb #endif
788 1.116 simonb
789 1.66 thorpej if (palloc == NULL)
790 1.66 thorpej palloc = &pool_allocator_kmem;
791 1.244 maxv
792 1.180 mlelstv if (!cold)
793 1.180 mlelstv mutex_enter(&pool_allocator_lock);
794 1.178 elad if (palloc->pa_refcnt++ == 0) {
795 1.112 bjh21 if (palloc->pa_pagesz == 0)
796 1.66 thorpej palloc->pa_pagesz = PAGE_SIZE;
797 1.66 thorpej
798 1.66 thorpej TAILQ_INIT(&palloc->pa_list);
799 1.66 thorpej
800 1.134 ad mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
801 1.66 thorpej palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
802 1.66 thorpej palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
803 1.4 thorpej }
804 1.180 mlelstv if (!cold)
805 1.180 mlelstv mutex_exit(&pool_allocator_lock);
806 1.3 pk
807 1.3 pk if (align == 0)
808 1.3 pk align = ALIGN(1);
809 1.14 thorpej
810 1.204 maxv prsize = size;
811 1.204 maxv if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
812 1.204 maxv prsize = sizeof(struct pool_item);
813 1.3 pk
814 1.204 maxv prsize = roundup(prsize, align);
815 1.207 riastrad KASSERTMSG((prsize <= palloc->pa_pagesz),
816 1.213 christos "%s: [%s] pool item size (%zu) larger than page size (%u)",
817 1.213 christos __func__, wchan, prsize, palloc->pa_pagesz);
818 1.35 pk
819 1.3 pk /*
820 1.3 pk * Initialize the pool structure.
821 1.3 pk */
822 1.88 chs LIST_INIT(&pp->pr_emptypages);
823 1.88 chs LIST_INIT(&pp->pr_fullpages);
824 1.88 chs LIST_INIT(&pp->pr_partpages);
825 1.134 ad pp->pr_cache = NULL;
826 1.3 pk pp->pr_curpage = NULL;
827 1.3 pk pp->pr_npages = 0;
828 1.3 pk pp->pr_minitems = 0;
829 1.3 pk pp->pr_minpages = 0;
830 1.3 pk pp->pr_maxpages = UINT_MAX;
831 1.20 thorpej pp->pr_roflags = flags;
832 1.20 thorpej pp->pr_flags = 0;
833 1.204 maxv pp->pr_size = prsize;
834 1.233 maxv pp->pr_reqsize = size;
835 1.3 pk pp->pr_align = align;
836 1.3 pk pp->pr_wchan = wchan;
837 1.66 thorpej pp->pr_alloc = palloc;
838 1.245 maxv pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
839 1.20 thorpej pp->pr_nitems = 0;
840 1.20 thorpej pp->pr_nout = 0;
841 1.20 thorpej pp->pr_hardlimit = UINT_MAX;
842 1.20 thorpej pp->pr_hardlimit_warning = NULL;
843 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = 0;
844 1.31 thorpej pp->pr_hardlimit_ratecap.tv_usec = 0;
845 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
846 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
847 1.68 thorpej pp->pr_drain_hook = NULL;
848 1.68 thorpej pp->pr_drain_hook_arg = NULL;
849 1.125 ad pp->pr_freecheck = NULL;
850 1.255 maxv pp->pr_redzone = false;
851 1.204 maxv pool_redzone_init(pp, size);
852 1.249 maxv pool_quarantine_init(pp);
853 1.3 pk
854 1.3 pk /*
855 1.240 maxv * Decide whether to put the page header off-page to avoid wasting too
856 1.240 maxv * large a part of the page or too big an item. Off-page page headers
857 1.240 maxv * go on a hash table, so we can match a returned item with its header
858 1.240 maxv * based on the page address.
859 1.3 pk */
860 1.240 maxv if (pool_init_is_phinpage(pp)) {
861 1.241 maxv /* Use the beginning of the page for the page header */
862 1.241 maxv itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
863 1.241 maxv pp->pr_itemoffset = roundup(PHSIZE, align);
864 1.239 maxv pp->pr_roflags |= PR_PHINPAGE;
865 1.2 pk } else {
866 1.3 pk /* The page header will be taken from our page header pool */
867 1.237 maxv itemspace = palloc->pa_pagesz;
868 1.241 maxv pp->pr_itemoffset = 0;
869 1.88 chs SPLAY_INIT(&pp->pr_phtree);
870 1.2 pk }
871 1.1 pk
872 1.243 maxv pp->pr_itemsperpage = itemspace / pp->pr_size;
873 1.243 maxv KASSERT(pp->pr_itemsperpage != 0);
874 1.243 maxv
875 1.242 maxv /*
876 1.242 maxv * Decide whether to use a bitmap or a linked list to manage freed
877 1.242 maxv * items.
878 1.242 maxv */
879 1.242 maxv if (pool_init_is_usebmap(pp)) {
880 1.242 maxv pp->pr_roflags |= PR_USEBMAP;
881 1.242 maxv }
882 1.242 maxv
883 1.242 maxv /*
884 1.256 maxv * If we're off-page, then we're using a bitmap; choose the appropriate
885 1.256 maxv * pool to allocate page headers, whose size varies depending on the
886 1.256 maxv * bitmap. If we're on-page, nothing to do.
887 1.242 maxv */
888 1.256 maxv if (!(pp->pr_roflags & PR_PHINPAGE)) {
889 1.97 yamt int idx;
890 1.97 yamt
891 1.256 maxv KASSERT(pp->pr_roflags & PR_USEBMAP);
892 1.256 maxv
893 1.97 yamt for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
894 1.97 yamt idx++) {
895 1.97 yamt /* nothing */
896 1.97 yamt }
897 1.97 yamt if (idx >= PHPOOL_MAX) {
898 1.97 yamt /*
899 1.97 yamt * if you see this panic, consider to tweak
900 1.97 yamt * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
901 1.97 yamt */
902 1.213 christos panic("%s: [%s] too large itemsperpage(%d) for "
903 1.242 maxv "PR_USEBMAP", __func__,
904 1.97 yamt pp->pr_wchan, pp->pr_itemsperpage);
905 1.97 yamt }
906 1.97 yamt pp->pr_phpool = &phpool[idx];
907 1.242 maxv } else {
908 1.97 yamt pp->pr_phpool = NULL;
909 1.97 yamt }
910 1.3 pk
911 1.3 pk /*
912 1.3 pk * Use the slack between the chunks and the page header
913 1.3 pk * for "cache coloring".
914 1.3 pk */
915 1.237 maxv slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
916 1.239 maxv pp->pr_maxcolor = rounddown(slack, align);
917 1.3 pk pp->pr_curcolor = 0;
918 1.3 pk
919 1.3 pk pp->pr_nget = 0;
920 1.3 pk pp->pr_nfail = 0;
921 1.3 pk pp->pr_nput = 0;
922 1.3 pk pp->pr_npagealloc = 0;
923 1.3 pk pp->pr_npagefree = 0;
924 1.1 pk pp->pr_hiwat = 0;
925 1.8 thorpej pp->pr_nidle = 0;
926 1.134 ad pp->pr_refcnt = 0;
927 1.3 pk
928 1.157 ad mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
929 1.134 ad cv_init(&pp->pr_cv, wchan);
930 1.134 ad pp->pr_ipl = ipl;
931 1.1 pk
932 1.145 ad /* Insert into the list of all pools. */
933 1.181 mlelstv if (!cold)
934 1.134 ad mutex_enter(&pool_head_lock);
935 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
936 1.145 ad if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
937 1.145 ad break;
938 1.145 ad }
939 1.145 ad if (pp1 == NULL)
940 1.145 ad TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
941 1.145 ad else
942 1.145 ad TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
943 1.181 mlelstv if (!cold)
944 1.134 ad mutex_exit(&pool_head_lock);
945 1.134 ad
946 1.167 skrll /* Insert this into the list of pools using this allocator. */
947 1.181 mlelstv if (!cold)
948 1.134 ad mutex_enter(&palloc->pa_lock);
949 1.145 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
950 1.181 mlelstv if (!cold)
951 1.134 ad mutex_exit(&palloc->pa_lock);
952 1.1 pk }
953 1.1 pk
954 1.1 pk /*
955 1.1 pk * De-commision a pool resource.
956 1.1 pk */
957 1.1 pk void
958 1.42 thorpej pool_destroy(struct pool *pp)
959 1.1 pk {
960 1.101 thorpej struct pool_pagelist pq;
961 1.3 pk struct pool_item_header *ph;
962 1.43 thorpej
963 1.249 maxv pool_quarantine_flush(pp);
964 1.249 maxv
965 1.101 thorpej /* Remove from global pool list */
966 1.134 ad mutex_enter(&pool_head_lock);
967 1.134 ad while (pp->pr_refcnt != 0)
968 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
969 1.145 ad TAILQ_REMOVE(&pool_head, pp, pr_poollist);
970 1.101 thorpej if (drainpp == pp)
971 1.101 thorpej drainpp = NULL;
972 1.134 ad mutex_exit(&pool_head_lock);
973 1.101 thorpej
974 1.101 thorpej /* Remove this pool from its allocator's list of pools. */
975 1.134 ad mutex_enter(&pp->pr_alloc->pa_lock);
976 1.66 thorpej TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
977 1.134 ad mutex_exit(&pp->pr_alloc->pa_lock);
978 1.66 thorpej
979 1.178 elad mutex_enter(&pool_allocator_lock);
980 1.178 elad if (--pp->pr_alloc->pa_refcnt == 0)
981 1.178 elad mutex_destroy(&pp->pr_alloc->pa_lock);
982 1.178 elad mutex_exit(&pool_allocator_lock);
983 1.178 elad
984 1.134 ad mutex_enter(&pp->pr_lock);
985 1.101 thorpej
986 1.134 ad KASSERT(pp->pr_cache == NULL);
987 1.207 riastrad KASSERTMSG((pp->pr_nout == 0),
988 1.251 christos "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
989 1.251 christos pp->pr_nout);
990 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_fullpages));
991 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_partpages));
992 1.101 thorpej
993 1.3 pk /* Remove all pages */
994 1.101 thorpej LIST_INIT(&pq);
995 1.88 chs while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
996 1.101 thorpej pr_rmpage(pp, ph, &pq);
997 1.101 thorpej
998 1.134 ad mutex_exit(&pp->pr_lock);
999 1.3 pk
1000 1.101 thorpej pr_pagelist_free(pp, &pq);
1001 1.134 ad cv_destroy(&pp->pr_cv);
1002 1.134 ad mutex_destroy(&pp->pr_lock);
1003 1.1 pk }
1004 1.1 pk
1005 1.68 thorpej void
1006 1.68 thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1007 1.68 thorpej {
1008 1.68 thorpej
1009 1.68 thorpej /* XXX no locking -- must be used just after pool_init() */
1010 1.207 riastrad KASSERTMSG((pp->pr_drain_hook == NULL),
1011 1.213 christos "%s: [%s] already set", __func__, pp->pr_wchan);
1012 1.68 thorpej pp->pr_drain_hook = fn;
1013 1.68 thorpej pp->pr_drain_hook_arg = arg;
1014 1.68 thorpej }
1015 1.68 thorpej
1016 1.88 chs static struct pool_item_header *
1017 1.128 christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1018 1.55 thorpej {
1019 1.55 thorpej struct pool_item_header *ph;
1020 1.55 thorpej
1021 1.55 thorpej if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1022 1.241 maxv ph = storage;
1023 1.134 ad else
1024 1.97 yamt ph = pool_get(pp->pr_phpool, flags);
1025 1.55 thorpej
1026 1.236 maxv return ph;
1027 1.55 thorpej }
1028 1.1 pk
1029 1.1 pk /*
1030 1.134 ad * Grab an item from the pool.
1031 1.1 pk */
1032 1.3 pk void *
1033 1.56 sommerfe pool_get(struct pool *pp, int flags)
1034 1.1 pk {
1035 1.3 pk struct pool_item_header *ph;
1036 1.55 thorpej void *v;
1037 1.1 pk
1038 1.215 christos KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1039 1.207 riastrad KASSERTMSG((pp->pr_itemsperpage != 0),
1040 1.213 christos "%s: [%s] pr_itemsperpage is zero, "
1041 1.213 christos "pool not initialized?", __func__, pp->pr_wchan);
1042 1.207 riastrad KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1043 1.207 riastrad || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1044 1.213 christos "%s: [%s] is IPL_NONE, but called from interrupt context",
1045 1.213 christos __func__, pp->pr_wchan);
1046 1.155 ad if (flags & PR_WAITOK) {
1047 1.154 yamt ASSERT_SLEEPABLE();
1048 1.155 ad }
1049 1.1 pk
1050 1.134 ad mutex_enter(&pp->pr_lock);
1051 1.20 thorpej startover:
1052 1.20 thorpej /*
1053 1.20 thorpej * Check to see if we've reached the hard limit. If we have,
1054 1.20 thorpej * and we can wait, then wait until an item has been returned to
1055 1.20 thorpej * the pool.
1056 1.20 thorpej */
1057 1.207 riastrad KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1058 1.213 christos "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1059 1.34 thorpej if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1060 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1061 1.68 thorpej /*
1062 1.68 thorpej * Since the drain hook is going to free things
1063 1.68 thorpej * back to the pool, unlock, call the hook, re-lock,
1064 1.68 thorpej * and check the hardlimit condition again.
1065 1.68 thorpej */
1066 1.134 ad mutex_exit(&pp->pr_lock);
1067 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1068 1.134 ad mutex_enter(&pp->pr_lock);
1069 1.68 thorpej if (pp->pr_nout < pp->pr_hardlimit)
1070 1.68 thorpej goto startover;
1071 1.68 thorpej }
1072 1.68 thorpej
1073 1.29 sommerfe if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1074 1.20 thorpej /*
1075 1.20 thorpej * XXX: A warning isn't logged in this case. Should
1076 1.20 thorpej * it be?
1077 1.20 thorpej */
1078 1.20 thorpej pp->pr_flags |= PR_WANTED;
1079 1.212 christos do {
1080 1.212 christos cv_wait(&pp->pr_cv, &pp->pr_lock);
1081 1.212 christos } while (pp->pr_flags & PR_WANTED);
1082 1.20 thorpej goto startover;
1083 1.20 thorpej }
1084 1.31 thorpej
1085 1.31 thorpej /*
1086 1.31 thorpej * Log a message that the hard limit has been hit.
1087 1.31 thorpej */
1088 1.31 thorpej if (pp->pr_hardlimit_warning != NULL &&
1089 1.31 thorpej ratecheck(&pp->pr_hardlimit_warning_last,
1090 1.31 thorpej &pp->pr_hardlimit_ratecap))
1091 1.31 thorpej log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1092 1.21 thorpej
1093 1.21 thorpej pp->pr_nfail++;
1094 1.21 thorpej
1095 1.134 ad mutex_exit(&pp->pr_lock);
1096 1.216 christos KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1097 1.236 maxv return NULL;
1098 1.20 thorpej }
1099 1.20 thorpej
1100 1.3 pk /*
1101 1.3 pk * The convention we use is that if `curpage' is not NULL, then
1102 1.3 pk * it points at a non-empty bucket. In particular, `curpage'
1103 1.3 pk * never points at a page header which has PR_PHINPAGE set and
1104 1.3 pk * has no items in its bucket.
1105 1.3 pk */
1106 1.20 thorpej if ((ph = pp->pr_curpage) == NULL) {
1107 1.113 yamt int error;
1108 1.113 yamt
1109 1.207 riastrad KASSERTMSG((pp->pr_nitems == 0),
1110 1.213 christos "%s: [%s] curpage NULL, inconsistent nitems %u",
1111 1.213 christos __func__, pp->pr_wchan, pp->pr_nitems);
1112 1.20 thorpej
1113 1.21 thorpej /*
1114 1.21 thorpej * Call the back-end page allocator for more memory.
1115 1.21 thorpej * Release the pool lock, as the back-end page allocator
1116 1.21 thorpej * may block.
1117 1.21 thorpej */
1118 1.113 yamt error = pool_grow(pp, flags);
1119 1.113 yamt if (error != 0) {
1120 1.21 thorpej /*
1121 1.210 mlelstv * pool_grow aborts when another thread
1122 1.210 mlelstv * is allocating a new page. Retry if it
1123 1.210 mlelstv * waited for it.
1124 1.210 mlelstv */
1125 1.210 mlelstv if (error == ERESTART)
1126 1.210 mlelstv goto startover;
1127 1.210 mlelstv
1128 1.210 mlelstv /*
1129 1.55 thorpej * We were unable to allocate a page or item
1130 1.55 thorpej * header, but we released the lock during
1131 1.55 thorpej * allocation, so perhaps items were freed
1132 1.55 thorpej * back to the pool. Check for this case.
1133 1.21 thorpej */
1134 1.21 thorpej if (pp->pr_curpage != NULL)
1135 1.21 thorpej goto startover;
1136 1.15 pk
1137 1.117 yamt pp->pr_nfail++;
1138 1.134 ad mutex_exit(&pp->pr_lock);
1139 1.264.2.1 ad KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1140 1.236 maxv return NULL;
1141 1.1 pk }
1142 1.3 pk
1143 1.20 thorpej /* Start the allocation process over. */
1144 1.20 thorpej goto startover;
1145 1.3 pk }
1146 1.242 maxv if (pp->pr_roflags & PR_USEBMAP) {
1147 1.207 riastrad KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1148 1.251 christos "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1149 1.234 maxv v = pr_item_bitmap_get(pp, ph);
1150 1.97 yamt } else {
1151 1.234 maxv v = pr_item_linkedlist_get(pp, ph);
1152 1.97 yamt }
1153 1.20 thorpej pp->pr_nitems--;
1154 1.20 thorpej pp->pr_nout++;
1155 1.6 thorpej if (ph->ph_nmissing == 0) {
1156 1.207 riastrad KASSERT(pp->pr_nidle > 0);
1157 1.6 thorpej pp->pr_nidle--;
1158 1.88 chs
1159 1.88 chs /*
1160 1.88 chs * This page was previously empty. Move it to the list of
1161 1.88 chs * partially-full pages. This page is already curpage.
1162 1.88 chs */
1163 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1164 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1165 1.6 thorpej }
1166 1.3 pk ph->ph_nmissing++;
1167 1.97 yamt if (ph->ph_nmissing == pp->pr_itemsperpage) {
1168 1.242 maxv KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1169 1.207 riastrad LIST_EMPTY(&ph->ph_itemlist)),
1170 1.213 christos "%s: [%s] nmissing (%u) inconsistent", __func__,
1171 1.213 christos pp->pr_wchan, ph->ph_nmissing);
1172 1.3 pk /*
1173 1.88 chs * This page is now full. Move it to the full list
1174 1.88 chs * and select a new current page.
1175 1.3 pk */
1176 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1177 1.88 chs LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1178 1.88 chs pool_update_curpage(pp);
1179 1.1 pk }
1180 1.3 pk
1181 1.3 pk pp->pr_nget++;
1182 1.20 thorpej
1183 1.20 thorpej /*
1184 1.20 thorpej * If we have a low water mark and we are now below that low
1185 1.20 thorpej * water mark, add more items to the pool.
1186 1.20 thorpej */
1187 1.53 thorpej if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1188 1.20 thorpej /*
1189 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1190 1.20 thorpej * to try again in a second or so? The latter could break
1191 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1192 1.20 thorpej */
1193 1.20 thorpej }
1194 1.20 thorpej
1195 1.134 ad mutex_exit(&pp->pr_lock);
1196 1.238 maxv KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1197 1.125 ad FREECHECK_OUT(&pp->pr_freecheck, v);
1198 1.204 maxv pool_redzone_fill(pp, v);
1199 1.262 maxv pool_get_kmsan(pp, v);
1200 1.232 christos if (flags & PR_ZERO)
1201 1.233 maxv memset(v, 0, pp->pr_reqsize);
1202 1.232 christos return v;
1203 1.1 pk }
1204 1.1 pk
1205 1.1 pk /*
1206 1.43 thorpej * Internal version of pool_put(). Pool is already locked/entered.
1207 1.1 pk */
1208 1.43 thorpej static void
1209 1.101 thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1210 1.1 pk {
1211 1.3 pk struct pool_item_header *ph;
1212 1.3 pk
1213 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1214 1.204 maxv pool_redzone_check(pp, v);
1215 1.262 maxv pool_put_kmsan(pp, v);
1216 1.125 ad FREECHECK_IN(&pp->pr_freecheck, v);
1217 1.134 ad LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1218 1.61 chs
1219 1.207 riastrad KASSERTMSG((pp->pr_nout > 0),
1220 1.213 christos "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1221 1.3 pk
1222 1.121 yamt if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1223 1.213 christos panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1224 1.3 pk }
1225 1.28 thorpej
1226 1.3 pk /*
1227 1.3 pk * Return to item list.
1228 1.3 pk */
1229 1.242 maxv if (pp->pr_roflags & PR_USEBMAP) {
1230 1.234 maxv pr_item_bitmap_put(pp, ph, v);
1231 1.97 yamt } else {
1232 1.234 maxv pr_item_linkedlist_put(pp, ph, v);
1233 1.97 yamt }
1234 1.79 thorpej KDASSERT(ph->ph_nmissing != 0);
1235 1.3 pk ph->ph_nmissing--;
1236 1.3 pk pp->pr_nput++;
1237 1.20 thorpej pp->pr_nitems++;
1238 1.20 thorpej pp->pr_nout--;
1239 1.3 pk
1240 1.3 pk /* Cancel "pool empty" condition if it exists */
1241 1.3 pk if (pp->pr_curpage == NULL)
1242 1.3 pk pp->pr_curpage = ph;
1243 1.3 pk
1244 1.3 pk if (pp->pr_flags & PR_WANTED) {
1245 1.3 pk pp->pr_flags &= ~PR_WANTED;
1246 1.134 ad cv_broadcast(&pp->pr_cv);
1247 1.3 pk }
1248 1.3 pk
1249 1.3 pk /*
1250 1.88 chs * If this page is now empty, do one of two things:
1251 1.21 thorpej *
1252 1.88 chs * (1) If we have more pages than the page high water mark,
1253 1.96 thorpej * free the page back to the system. ONLY CONSIDER
1254 1.90 thorpej * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1255 1.90 thorpej * CLAIM.
1256 1.21 thorpej *
1257 1.88 chs * (2) Otherwise, move the page to the empty page list.
1258 1.88 chs *
1259 1.88 chs * Either way, select a new current page (so we use a partially-full
1260 1.88 chs * page if one is available).
1261 1.3 pk */
1262 1.3 pk if (ph->ph_nmissing == 0) {
1263 1.6 thorpej pp->pr_nidle++;
1264 1.90 thorpej if (pp->pr_npages > pp->pr_minpages &&
1265 1.152 yamt pp->pr_npages > pp->pr_maxpages) {
1266 1.101 thorpej pr_rmpage(pp, ph, pq);
1267 1.3 pk } else {
1268 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1269 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1270 1.3 pk
1271 1.21 thorpej /*
1272 1.21 thorpej * Update the timestamp on the page. A page must
1273 1.21 thorpej * be idle for some period of time before it can
1274 1.21 thorpej * be reclaimed by the pagedaemon. This minimizes
1275 1.21 thorpej * ping-pong'ing for memory.
1276 1.151 yamt *
1277 1.151 yamt * note for 64-bit time_t: truncating to 32-bit is not
1278 1.151 yamt * a problem for our usage.
1279 1.21 thorpej */
1280 1.151 yamt ph->ph_time = time_uptime;
1281 1.1 pk }
1282 1.88 chs pool_update_curpage(pp);
1283 1.1 pk }
1284 1.88 chs
1285 1.21 thorpej /*
1286 1.88 chs * If the page was previously completely full, move it to the
1287 1.88 chs * partially-full list and make it the current page. The next
1288 1.88 chs * allocation will get the item from this page, instead of
1289 1.88 chs * further fragmenting the pool.
1290 1.21 thorpej */
1291 1.21 thorpej else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1292 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1293 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1294 1.21 thorpej pp->pr_curpage = ph;
1295 1.21 thorpej }
1296 1.43 thorpej }
1297 1.43 thorpej
1298 1.56 sommerfe void
1299 1.56 sommerfe pool_put(struct pool *pp, void *v)
1300 1.56 sommerfe {
1301 1.101 thorpej struct pool_pagelist pq;
1302 1.101 thorpej
1303 1.101 thorpej LIST_INIT(&pq);
1304 1.56 sommerfe
1305 1.134 ad mutex_enter(&pp->pr_lock);
1306 1.249 maxv if (!pool_put_quarantine(pp, v, &pq)) {
1307 1.249 maxv pool_do_put(pp, v, &pq);
1308 1.249 maxv }
1309 1.134 ad mutex_exit(&pp->pr_lock);
1310 1.56 sommerfe
1311 1.102 chs pr_pagelist_free(pp, &pq);
1312 1.56 sommerfe }
1313 1.57 sommerfe
1314 1.74 thorpej /*
1315 1.113 yamt * pool_grow: grow a pool by a page.
1316 1.113 yamt *
1317 1.113 yamt * => called with pool locked.
1318 1.113 yamt * => unlock and relock the pool.
1319 1.113 yamt * => return with pool locked.
1320 1.113 yamt */
1321 1.113 yamt
1322 1.113 yamt static int
1323 1.113 yamt pool_grow(struct pool *pp, int flags)
1324 1.113 yamt {
1325 1.236 maxv struct pool_item_header *ph;
1326 1.237 maxv char *storage;
1327 1.236 maxv
1328 1.209 riastrad /*
1329 1.209 riastrad * If there's a pool_grow in progress, wait for it to complete
1330 1.209 riastrad * and try again from the top.
1331 1.209 riastrad */
1332 1.209 riastrad if (pp->pr_flags & PR_GROWING) {
1333 1.209 riastrad if (flags & PR_WAITOK) {
1334 1.209 riastrad do {
1335 1.209 riastrad cv_wait(&pp->pr_cv, &pp->pr_lock);
1336 1.209 riastrad } while (pp->pr_flags & PR_GROWING);
1337 1.209 riastrad return ERESTART;
1338 1.209 riastrad } else {
1339 1.219 mrg if (pp->pr_flags & PR_GROWINGNOWAIT) {
1340 1.219 mrg /*
1341 1.219 mrg * This needs an unlock/relock dance so
1342 1.219 mrg * that the other caller has a chance to
1343 1.219 mrg * run and actually do the thing. Note
1344 1.219 mrg * that this is effectively a busy-wait.
1345 1.219 mrg */
1346 1.219 mrg mutex_exit(&pp->pr_lock);
1347 1.219 mrg mutex_enter(&pp->pr_lock);
1348 1.219 mrg return ERESTART;
1349 1.219 mrg }
1350 1.209 riastrad return EWOULDBLOCK;
1351 1.209 riastrad }
1352 1.209 riastrad }
1353 1.209 riastrad pp->pr_flags |= PR_GROWING;
1354 1.220 christos if (flags & PR_WAITOK)
1355 1.220 christos mutex_exit(&pp->pr_lock);
1356 1.220 christos else
1357 1.219 mrg pp->pr_flags |= PR_GROWINGNOWAIT;
1358 1.113 yamt
1359 1.237 maxv storage = pool_allocator_alloc(pp, flags);
1360 1.237 maxv if (__predict_false(storage == NULL))
1361 1.216 christos goto out;
1362 1.216 christos
1363 1.237 maxv ph = pool_alloc_item_header(pp, storage, flags);
1364 1.216 christos if (__predict_false(ph == NULL)) {
1365 1.237 maxv pool_allocator_free(pp, storage);
1366 1.209 riastrad goto out;
1367 1.113 yamt }
1368 1.113 yamt
1369 1.220 christos if (flags & PR_WAITOK)
1370 1.220 christos mutex_enter(&pp->pr_lock);
1371 1.237 maxv pool_prime_page(pp, storage, ph);
1372 1.113 yamt pp->pr_npagealloc++;
1373 1.216 christos KASSERT(pp->pr_flags & PR_GROWING);
1374 1.219 mrg pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1375 1.209 riastrad /*
1376 1.209 riastrad * If anyone was waiting for pool_grow, notify them that we
1377 1.209 riastrad * may have just done it.
1378 1.209 riastrad */
1379 1.216 christos cv_broadcast(&pp->pr_cv);
1380 1.216 christos return 0;
1381 1.216 christos out:
1382 1.220 christos if (flags & PR_WAITOK)
1383 1.220 christos mutex_enter(&pp->pr_lock);
1384 1.209 riastrad KASSERT(pp->pr_flags & PR_GROWING);
1385 1.219 mrg pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1386 1.216 christos return ENOMEM;
1387 1.113 yamt }
1388 1.113 yamt
1389 1.113 yamt /*
1390 1.74 thorpej * Add N items to the pool.
1391 1.74 thorpej */
1392 1.74 thorpej int
1393 1.74 thorpej pool_prime(struct pool *pp, int n)
1394 1.74 thorpej {
1395 1.75 simonb int newpages;
1396 1.113 yamt int error = 0;
1397 1.74 thorpej
1398 1.134 ad mutex_enter(&pp->pr_lock);
1399 1.74 thorpej
1400 1.74 thorpej newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1401 1.74 thorpej
1402 1.216 christos while (newpages > 0) {
1403 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1404 1.113 yamt if (error) {
1405 1.214 christos if (error == ERESTART)
1406 1.214 christos continue;
1407 1.74 thorpej break;
1408 1.74 thorpej }
1409 1.74 thorpej pp->pr_minpages++;
1410 1.216 christos newpages--;
1411 1.74 thorpej }
1412 1.74 thorpej
1413 1.74 thorpej if (pp->pr_minpages >= pp->pr_maxpages)
1414 1.74 thorpej pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1415 1.74 thorpej
1416 1.134 ad mutex_exit(&pp->pr_lock);
1417 1.113 yamt return error;
1418 1.74 thorpej }
1419 1.55 thorpej
1420 1.55 thorpej /*
1421 1.3 pk * Add a page worth of items to the pool.
1422 1.21 thorpej *
1423 1.21 thorpej * Note, we must be called with the pool descriptor LOCKED.
1424 1.3 pk */
1425 1.55 thorpej static void
1426 1.128 christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1427 1.3 pk {
1428 1.236 maxv const unsigned int align = pp->pr_align;
1429 1.3 pk struct pool_item *pi;
1430 1.128 christos void *cp = storage;
1431 1.55 thorpej int n;
1432 1.36 pk
1433 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1434 1.207 riastrad KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1435 1.207 riastrad (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1436 1.213 christos "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1437 1.3 pk
1438 1.3 pk /*
1439 1.3 pk * Insert page header.
1440 1.3 pk */
1441 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1442 1.102 chs LIST_INIT(&ph->ph_itemlist);
1443 1.3 pk ph->ph_page = storage;
1444 1.3 pk ph->ph_nmissing = 0;
1445 1.151 yamt ph->ph_time = time_uptime;
1446 1.245 maxv if (pp->pr_roflags & PR_PHINPAGE)
1447 1.245 maxv ph->ph_poolid = pp->pr_poolid;
1448 1.245 maxv else
1449 1.88 chs SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1450 1.3 pk
1451 1.6 thorpej pp->pr_nidle++;
1452 1.6 thorpej
1453 1.3 pk /*
1454 1.241 maxv * The item space starts after the on-page header, if any.
1455 1.241 maxv */
1456 1.241 maxv ph->ph_off = pp->pr_itemoffset;
1457 1.241 maxv
1458 1.241 maxv /*
1459 1.3 pk * Color this page.
1460 1.3 pk */
1461 1.241 maxv ph->ph_off += pp->pr_curcolor;
1462 1.141 yamt cp = (char *)cp + ph->ph_off;
1463 1.3 pk if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1464 1.3 pk pp->pr_curcolor = 0;
1465 1.3 pk
1466 1.238 maxv KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1467 1.125 ad
1468 1.3 pk /*
1469 1.3 pk * Insert remaining chunks on the bucket list.
1470 1.3 pk */
1471 1.3 pk n = pp->pr_itemsperpage;
1472 1.20 thorpej pp->pr_nitems += n;
1473 1.3 pk
1474 1.242 maxv if (pp->pr_roflags & PR_USEBMAP) {
1475 1.234 maxv pr_item_bitmap_init(pp, ph);
1476 1.97 yamt } else {
1477 1.97 yamt while (n--) {
1478 1.97 yamt pi = (struct pool_item *)cp;
1479 1.78 thorpej
1480 1.238 maxv KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1481 1.3 pk
1482 1.97 yamt /* Insert on page list */
1483 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1484 1.229 maxv #ifdef POOL_CHECK_MAGIC
1485 1.97 yamt pi->pi_magic = PI_MAGIC;
1486 1.3 pk #endif
1487 1.128 christos cp = (char *)cp + pp->pr_size;
1488 1.125 ad
1489 1.238 maxv KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1490 1.97 yamt }
1491 1.3 pk }
1492 1.3 pk
1493 1.3 pk /*
1494 1.3 pk * If the pool was depleted, point at the new page.
1495 1.3 pk */
1496 1.3 pk if (pp->pr_curpage == NULL)
1497 1.3 pk pp->pr_curpage = ph;
1498 1.3 pk
1499 1.3 pk if (++pp->pr_npages > pp->pr_hiwat)
1500 1.3 pk pp->pr_hiwat = pp->pr_npages;
1501 1.3 pk }
1502 1.3 pk
1503 1.20 thorpej /*
1504 1.52 thorpej * Used by pool_get() when nitems drops below the low water mark. This
1505 1.88 chs * is used to catch up pr_nitems with the low water mark.
1506 1.20 thorpej *
1507 1.21 thorpej * Note 1, we never wait for memory here, we let the caller decide what to do.
1508 1.20 thorpej *
1509 1.73 thorpej * Note 2, we must be called with the pool already locked, and we return
1510 1.20 thorpej * with it locked.
1511 1.20 thorpej */
1512 1.20 thorpej static int
1513 1.42 thorpej pool_catchup(struct pool *pp)
1514 1.20 thorpej {
1515 1.20 thorpej int error = 0;
1516 1.20 thorpej
1517 1.54 thorpej while (POOL_NEEDS_CATCHUP(pp)) {
1518 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1519 1.113 yamt if (error) {
1520 1.214 christos if (error == ERESTART)
1521 1.214 christos continue;
1522 1.20 thorpej break;
1523 1.20 thorpej }
1524 1.20 thorpej }
1525 1.113 yamt return error;
1526 1.20 thorpej }
1527 1.20 thorpej
1528 1.88 chs static void
1529 1.88 chs pool_update_curpage(struct pool *pp)
1530 1.88 chs {
1531 1.88 chs
1532 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1533 1.88 chs if (pp->pr_curpage == NULL) {
1534 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1535 1.88 chs }
1536 1.168 yamt KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1537 1.168 yamt (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1538 1.88 chs }
1539 1.88 chs
1540 1.3 pk void
1541 1.42 thorpej pool_setlowat(struct pool *pp, int n)
1542 1.3 pk {
1543 1.15 pk
1544 1.134 ad mutex_enter(&pp->pr_lock);
1545 1.21 thorpej
1546 1.3 pk pp->pr_minitems = n;
1547 1.15 pk pp->pr_minpages = (n == 0)
1548 1.15 pk ? 0
1549 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1550 1.20 thorpej
1551 1.20 thorpej /* Make sure we're caught up with the newly-set low water mark. */
1552 1.75 simonb if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1553 1.20 thorpej /*
1554 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1555 1.20 thorpej * to try again in a second or so? The latter could break
1556 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1557 1.20 thorpej */
1558 1.20 thorpej }
1559 1.21 thorpej
1560 1.134 ad mutex_exit(&pp->pr_lock);
1561 1.3 pk }
1562 1.3 pk
1563 1.3 pk void
1564 1.42 thorpej pool_sethiwat(struct pool *pp, int n)
1565 1.3 pk {
1566 1.15 pk
1567 1.134 ad mutex_enter(&pp->pr_lock);
1568 1.21 thorpej
1569 1.15 pk pp->pr_maxpages = (n == 0)
1570 1.15 pk ? 0
1571 1.18 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1572 1.21 thorpej
1573 1.134 ad mutex_exit(&pp->pr_lock);
1574 1.3 pk }
1575 1.3 pk
1576 1.20 thorpej void
1577 1.42 thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1578 1.20 thorpej {
1579 1.20 thorpej
1580 1.134 ad mutex_enter(&pp->pr_lock);
1581 1.20 thorpej
1582 1.20 thorpej pp->pr_hardlimit = n;
1583 1.20 thorpej pp->pr_hardlimit_warning = warnmess;
1584 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1585 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
1586 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
1587 1.20 thorpej
1588 1.20 thorpej /*
1589 1.21 thorpej * In-line version of pool_sethiwat(), because we don't want to
1590 1.21 thorpej * release the lock.
1591 1.20 thorpej */
1592 1.20 thorpej pp->pr_maxpages = (n == 0)
1593 1.20 thorpej ? 0
1594 1.20 thorpej : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1595 1.21 thorpej
1596 1.134 ad mutex_exit(&pp->pr_lock);
1597 1.20 thorpej }
1598 1.3 pk
1599 1.3 pk /*
1600 1.3 pk * Release all complete pages that have not been used recently.
1601 1.184 rmind *
1602 1.197 jym * Must not be called from interrupt context.
1603 1.3 pk */
1604 1.66 thorpej int
1605 1.56 sommerfe pool_reclaim(struct pool *pp)
1606 1.3 pk {
1607 1.3 pk struct pool_item_header *ph, *phnext;
1608 1.61 chs struct pool_pagelist pq;
1609 1.151 yamt uint32_t curtime;
1610 1.134 ad bool klock;
1611 1.134 ad int rv;
1612 1.3 pk
1613 1.197 jym KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1614 1.184 rmind
1615 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1616 1.68 thorpej /*
1617 1.68 thorpej * The drain hook must be called with the pool unlocked.
1618 1.68 thorpej */
1619 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1620 1.68 thorpej }
1621 1.68 thorpej
1622 1.134 ad /*
1623 1.157 ad * XXXSMP Because we do not want to cause non-MPSAFE code
1624 1.157 ad * to block.
1625 1.134 ad */
1626 1.134 ad if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1627 1.134 ad pp->pr_ipl == IPL_SOFTSERIAL) {
1628 1.134 ad KERNEL_LOCK(1, NULL);
1629 1.134 ad klock = true;
1630 1.134 ad } else
1631 1.134 ad klock = false;
1632 1.134 ad
1633 1.134 ad /* Reclaim items from the pool's cache (if any). */
1634 1.134 ad if (pp->pr_cache != NULL)
1635 1.134 ad pool_cache_invalidate(pp->pr_cache);
1636 1.134 ad
1637 1.134 ad if (mutex_tryenter(&pp->pr_lock) == 0) {
1638 1.134 ad if (klock) {
1639 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1640 1.134 ad }
1641 1.236 maxv return 0;
1642 1.134 ad }
1643 1.68 thorpej
1644 1.88 chs LIST_INIT(&pq);
1645 1.43 thorpej
1646 1.151 yamt curtime = time_uptime;
1647 1.21 thorpej
1648 1.88 chs for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1649 1.88 chs phnext = LIST_NEXT(ph, ph_pagelist);
1650 1.3 pk
1651 1.3 pk /* Check our minimum page claim */
1652 1.3 pk if (pp->pr_npages <= pp->pr_minpages)
1653 1.3 pk break;
1654 1.3 pk
1655 1.88 chs KASSERT(ph->ph_nmissing == 0);
1656 1.191 para if (curtime - ph->ph_time < pool_inactive_time)
1657 1.88 chs continue;
1658 1.21 thorpej
1659 1.88 chs /*
1660 1.88 chs * If freeing this page would put us below
1661 1.88 chs * the low water mark, stop now.
1662 1.88 chs */
1663 1.88 chs if ((pp->pr_nitems - pp->pr_itemsperpage) <
1664 1.88 chs pp->pr_minitems)
1665 1.88 chs break;
1666 1.21 thorpej
1667 1.88 chs pr_rmpage(pp, ph, &pq);
1668 1.3 pk }
1669 1.3 pk
1670 1.134 ad mutex_exit(&pp->pr_lock);
1671 1.134 ad
1672 1.134 ad if (LIST_EMPTY(&pq))
1673 1.134 ad rv = 0;
1674 1.134 ad else {
1675 1.134 ad pr_pagelist_free(pp, &pq);
1676 1.134 ad rv = 1;
1677 1.134 ad }
1678 1.134 ad
1679 1.134 ad if (klock) {
1680 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1681 1.134 ad }
1682 1.66 thorpej
1683 1.236 maxv return rv;
1684 1.3 pk }
1685 1.3 pk
1686 1.3 pk /*
1687 1.197 jym * Drain pools, one at a time. The drained pool is returned within ppp.
1688 1.131 ad *
1689 1.134 ad * Note, must never be called from interrupt context.
1690 1.3 pk */
1691 1.197 jym bool
1692 1.197 jym pool_drain(struct pool **ppp)
1693 1.3 pk {
1694 1.197 jym bool reclaimed;
1695 1.3 pk struct pool *pp;
1696 1.134 ad
1697 1.145 ad KASSERT(!TAILQ_EMPTY(&pool_head));
1698 1.3 pk
1699 1.61 chs pp = NULL;
1700 1.134 ad
1701 1.134 ad /* Find next pool to drain, and add a reference. */
1702 1.134 ad mutex_enter(&pool_head_lock);
1703 1.134 ad do {
1704 1.134 ad if (drainpp == NULL) {
1705 1.145 ad drainpp = TAILQ_FIRST(&pool_head);
1706 1.134 ad }
1707 1.134 ad if (drainpp != NULL) {
1708 1.134 ad pp = drainpp;
1709 1.145 ad drainpp = TAILQ_NEXT(pp, pr_poollist);
1710 1.134 ad }
1711 1.134 ad /*
1712 1.134 ad * Skip completely idle pools. We depend on at least
1713 1.134 ad * one pool in the system being active.
1714 1.134 ad */
1715 1.134 ad } while (pp == NULL || pp->pr_npages == 0);
1716 1.134 ad pp->pr_refcnt++;
1717 1.134 ad mutex_exit(&pool_head_lock);
1718 1.134 ad
1719 1.134 ad /* Drain the cache (if any) and pool.. */
1720 1.186 pooka reclaimed = pool_reclaim(pp);
1721 1.134 ad
1722 1.134 ad /* Finally, unlock the pool. */
1723 1.134 ad mutex_enter(&pool_head_lock);
1724 1.134 ad pp->pr_refcnt--;
1725 1.134 ad cv_broadcast(&pool_busy);
1726 1.134 ad mutex_exit(&pool_head_lock);
1727 1.186 pooka
1728 1.197 jym if (ppp != NULL)
1729 1.197 jym *ppp = pp;
1730 1.197 jym
1731 1.186 pooka return reclaimed;
1732 1.3 pk }
1733 1.3 pk
1734 1.3 pk /*
1735 1.217 mrg * Calculate the total number of pages consumed by pools.
1736 1.217 mrg */
1737 1.217 mrg int
1738 1.217 mrg pool_totalpages(void)
1739 1.217 mrg {
1740 1.250 skrll
1741 1.250 skrll mutex_enter(&pool_head_lock);
1742 1.250 skrll int pages = pool_totalpages_locked();
1743 1.250 skrll mutex_exit(&pool_head_lock);
1744 1.250 skrll
1745 1.250 skrll return pages;
1746 1.250 skrll }
1747 1.250 skrll
1748 1.250 skrll int
1749 1.250 skrll pool_totalpages_locked(void)
1750 1.250 skrll {
1751 1.217 mrg struct pool *pp;
1752 1.218 mrg uint64_t total = 0;
1753 1.217 mrg
1754 1.218 mrg TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1755 1.218 mrg uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1756 1.218 mrg
1757 1.218 mrg if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1758 1.218 mrg bytes -= (pp->pr_nout * pp->pr_size);
1759 1.218 mrg total += bytes;
1760 1.218 mrg }
1761 1.217 mrg
1762 1.218 mrg return atop(total);
1763 1.217 mrg }
1764 1.217 mrg
1765 1.217 mrg /*
1766 1.3 pk * Diagnostic helpers.
1767 1.3 pk */
1768 1.21 thorpej
1769 1.25 thorpej void
1770 1.108 yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
1771 1.108 yamt {
1772 1.108 yamt struct pool *pp;
1773 1.108 yamt
1774 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1775 1.108 yamt pool_printit(pp, modif, pr);
1776 1.108 yamt }
1777 1.108 yamt }
1778 1.108 yamt
1779 1.108 yamt void
1780 1.42 thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1781 1.25 thorpej {
1782 1.25 thorpej
1783 1.25 thorpej if (pp == NULL) {
1784 1.25 thorpej (*pr)("Must specify a pool to print.\n");
1785 1.25 thorpej return;
1786 1.25 thorpej }
1787 1.25 thorpej
1788 1.25 thorpej pool_print1(pp, modif, pr);
1789 1.25 thorpej }
1790 1.25 thorpej
1791 1.21 thorpej static void
1792 1.124 yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1793 1.97 yamt void (*pr)(const char *, ...))
1794 1.88 chs {
1795 1.88 chs struct pool_item_header *ph;
1796 1.88 chs
1797 1.88 chs LIST_FOREACH(ph, pl, ph_pagelist) {
1798 1.151 yamt (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1799 1.151 yamt ph->ph_page, ph->ph_nmissing, ph->ph_time);
1800 1.229 maxv #ifdef POOL_CHECK_MAGIC
1801 1.229 maxv struct pool_item *pi;
1802 1.242 maxv if (!(pp->pr_roflags & PR_USEBMAP)) {
1803 1.102 chs LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1804 1.97 yamt if (pi->pi_magic != PI_MAGIC) {
1805 1.97 yamt (*pr)("\t\t\titem %p, magic 0x%x\n",
1806 1.97 yamt pi, pi->pi_magic);
1807 1.97 yamt }
1808 1.88 chs }
1809 1.88 chs }
1810 1.88 chs #endif
1811 1.88 chs }
1812 1.88 chs }
1813 1.88 chs
1814 1.88 chs static void
1815 1.42 thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1816 1.3 pk {
1817 1.25 thorpej struct pool_item_header *ph;
1818 1.134 ad pool_cache_t pc;
1819 1.134 ad pcg_t *pcg;
1820 1.134 ad pool_cache_cpu_t *cc;
1821 1.134 ad uint64_t cpuhit, cpumiss;
1822 1.44 thorpej int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1823 1.25 thorpej char c;
1824 1.25 thorpej
1825 1.25 thorpej while ((c = *modif++) != '\0') {
1826 1.25 thorpej if (c == 'l')
1827 1.25 thorpej print_log = 1;
1828 1.25 thorpej if (c == 'p')
1829 1.25 thorpej print_pagelist = 1;
1830 1.44 thorpej if (c == 'c')
1831 1.44 thorpej print_cache = 1;
1832 1.25 thorpej }
1833 1.25 thorpej
1834 1.134 ad if ((pc = pp->pr_cache) != NULL) {
1835 1.134 ad (*pr)("POOL CACHE");
1836 1.134 ad } else {
1837 1.134 ad (*pr)("POOL");
1838 1.134 ad }
1839 1.134 ad
1840 1.134 ad (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1841 1.25 thorpej pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1842 1.25 thorpej pp->pr_roflags);
1843 1.66 thorpej (*pr)("\talloc %p\n", pp->pr_alloc);
1844 1.25 thorpej (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1845 1.25 thorpej pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1846 1.25 thorpej (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1847 1.25 thorpej pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1848 1.25 thorpej
1849 1.134 ad (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1850 1.25 thorpej pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1851 1.25 thorpej (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1852 1.25 thorpej pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1853 1.25 thorpej
1854 1.25 thorpej if (print_pagelist == 0)
1855 1.25 thorpej goto skip_pagelist;
1856 1.25 thorpej
1857 1.88 chs if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1858 1.88 chs (*pr)("\n\tempty page list:\n");
1859 1.97 yamt pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1860 1.88 chs if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1861 1.88 chs (*pr)("\n\tfull page list:\n");
1862 1.97 yamt pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1863 1.88 chs if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1864 1.88 chs (*pr)("\n\tpartial-page list:\n");
1865 1.97 yamt pool_print_pagelist(pp, &pp->pr_partpages, pr);
1866 1.88 chs
1867 1.25 thorpej if (pp->pr_curpage == NULL)
1868 1.25 thorpej (*pr)("\tno current page\n");
1869 1.25 thorpej else
1870 1.25 thorpej (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1871 1.25 thorpej
1872 1.25 thorpej skip_pagelist:
1873 1.25 thorpej if (print_log == 0)
1874 1.25 thorpej goto skip_log;
1875 1.25 thorpej
1876 1.25 thorpej (*pr)("\n");
1877 1.3 pk
1878 1.25 thorpej skip_log:
1879 1.44 thorpej
1880 1.102 chs #define PR_GROUPLIST(pcg) \
1881 1.102 chs (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1882 1.142 ad for (i = 0; i < pcg->pcg_size; i++) { \
1883 1.102 chs if (pcg->pcg_objects[i].pcgo_pa != \
1884 1.102 chs POOL_PADDR_INVALID) { \
1885 1.102 chs (*pr)("\t\t\t%p, 0x%llx\n", \
1886 1.102 chs pcg->pcg_objects[i].pcgo_va, \
1887 1.102 chs (unsigned long long) \
1888 1.102 chs pcg->pcg_objects[i].pcgo_pa); \
1889 1.102 chs } else { \
1890 1.102 chs (*pr)("\t\t\t%p\n", \
1891 1.102 chs pcg->pcg_objects[i].pcgo_va); \
1892 1.102 chs } \
1893 1.102 chs }
1894 1.102 chs
1895 1.134 ad if (pc != NULL) {
1896 1.134 ad cpuhit = 0;
1897 1.134 ad cpumiss = 0;
1898 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1899 1.134 ad if ((cc = pc->pc_cpus[i]) == NULL)
1900 1.134 ad continue;
1901 1.134 ad cpuhit += cc->cc_hits;
1902 1.134 ad cpumiss += cc->cc_misses;
1903 1.134 ad }
1904 1.134 ad (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1905 1.134 ad (*pr)("\tcache layer hits %llu misses %llu\n",
1906 1.134 ad pc->pc_hits, pc->pc_misses);
1907 1.134 ad (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1908 1.134 ad pc->pc_hits + pc->pc_misses - pc->pc_contended,
1909 1.134 ad pc->pc_contended);
1910 1.134 ad (*pr)("\tcache layer empty groups %u full groups %u\n",
1911 1.134 ad pc->pc_nempty, pc->pc_nfull);
1912 1.134 ad if (print_cache) {
1913 1.134 ad (*pr)("\tfull cache groups:\n");
1914 1.134 ad for (pcg = pc->pc_fullgroups; pcg != NULL;
1915 1.134 ad pcg = pcg->pcg_next) {
1916 1.134 ad PR_GROUPLIST(pcg);
1917 1.134 ad }
1918 1.134 ad (*pr)("\tempty cache groups:\n");
1919 1.134 ad for (pcg = pc->pc_emptygroups; pcg != NULL;
1920 1.134 ad pcg = pcg->pcg_next) {
1921 1.134 ad PR_GROUPLIST(pcg);
1922 1.134 ad }
1923 1.103 chs }
1924 1.44 thorpej }
1925 1.102 chs #undef PR_GROUPLIST
1926 1.88 chs }
1927 1.88 chs
1928 1.88 chs static int
1929 1.88 chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1930 1.88 chs {
1931 1.88 chs struct pool_item *pi;
1932 1.128 christos void *page;
1933 1.88 chs int n;
1934 1.88 chs
1935 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1936 1.253 maxv page = POOL_OBJ_TO_PAGE(pp, ph);
1937 1.121 yamt if (page != ph->ph_page &&
1938 1.121 yamt (pp->pr_roflags & PR_PHINPAGE) != 0) {
1939 1.121 yamt if (label != NULL)
1940 1.121 yamt printf("%s: ", label);
1941 1.121 yamt printf("pool(%p:%s): page inconsistency: page %p;"
1942 1.121 yamt " at page head addr %p (p %p)\n", pp,
1943 1.121 yamt pp->pr_wchan, ph->ph_page,
1944 1.121 yamt ph, page);
1945 1.121 yamt return 1;
1946 1.121 yamt }
1947 1.88 chs }
1948 1.3 pk
1949 1.242 maxv if ((pp->pr_roflags & PR_USEBMAP) != 0)
1950 1.97 yamt return 0;
1951 1.97 yamt
1952 1.102 chs for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1953 1.88 chs pi != NULL;
1954 1.102 chs pi = LIST_NEXT(pi,pi_list), n++) {
1955 1.88 chs
1956 1.229 maxv #ifdef POOL_CHECK_MAGIC
1957 1.88 chs if (pi->pi_magic != PI_MAGIC) {
1958 1.88 chs if (label != NULL)
1959 1.88 chs printf("%s: ", label);
1960 1.88 chs printf("pool(%s): free list modified: magic=%x;"
1961 1.121 yamt " page %p; item ordinal %d; addr %p\n",
1962 1.88 chs pp->pr_wchan, pi->pi_magic, ph->ph_page,
1963 1.121 yamt n, pi);
1964 1.88 chs panic("pool");
1965 1.88 chs }
1966 1.88 chs #endif
1967 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1968 1.121 yamt continue;
1969 1.121 yamt }
1970 1.253 maxv page = POOL_OBJ_TO_PAGE(pp, pi);
1971 1.88 chs if (page == ph->ph_page)
1972 1.88 chs continue;
1973 1.88 chs
1974 1.88 chs if (label != NULL)
1975 1.88 chs printf("%s: ", label);
1976 1.88 chs printf("pool(%p:%s): page inconsistency: page %p;"
1977 1.88 chs " item ordinal %d; addr %p (p %p)\n", pp,
1978 1.88 chs pp->pr_wchan, ph->ph_page,
1979 1.88 chs n, pi, page);
1980 1.88 chs return 1;
1981 1.88 chs }
1982 1.88 chs return 0;
1983 1.3 pk }
1984 1.3 pk
1985 1.88 chs
1986 1.3 pk int
1987 1.42 thorpej pool_chk(struct pool *pp, const char *label)
1988 1.3 pk {
1989 1.3 pk struct pool_item_header *ph;
1990 1.3 pk int r = 0;
1991 1.3 pk
1992 1.134 ad mutex_enter(&pp->pr_lock);
1993 1.88 chs LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1994 1.88 chs r = pool_chk_page(pp, label, ph);
1995 1.88 chs if (r) {
1996 1.88 chs goto out;
1997 1.88 chs }
1998 1.88 chs }
1999 1.88 chs LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2000 1.88 chs r = pool_chk_page(pp, label, ph);
2001 1.88 chs if (r) {
2002 1.3 pk goto out;
2003 1.3 pk }
2004 1.88 chs }
2005 1.88 chs LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2006 1.88 chs r = pool_chk_page(pp, label, ph);
2007 1.88 chs if (r) {
2008 1.3 pk goto out;
2009 1.3 pk }
2010 1.3 pk }
2011 1.88 chs
2012 1.3 pk out:
2013 1.134 ad mutex_exit(&pp->pr_lock);
2014 1.236 maxv return r;
2015 1.43 thorpej }
2016 1.43 thorpej
2017 1.43 thorpej /*
2018 1.43 thorpej * pool_cache_init:
2019 1.43 thorpej *
2020 1.43 thorpej * Initialize a pool cache.
2021 1.134 ad */
2022 1.134 ad pool_cache_t
2023 1.134 ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2024 1.134 ad const char *wchan, struct pool_allocator *palloc, int ipl,
2025 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2026 1.134 ad {
2027 1.134 ad pool_cache_t pc;
2028 1.134 ad
2029 1.134 ad pc = pool_get(&cache_pool, PR_WAITOK);
2030 1.134 ad if (pc == NULL)
2031 1.134 ad return NULL;
2032 1.134 ad
2033 1.134 ad pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2034 1.134 ad palloc, ipl, ctor, dtor, arg);
2035 1.134 ad
2036 1.134 ad return pc;
2037 1.134 ad }
2038 1.134 ad
2039 1.134 ad /*
2040 1.134 ad * pool_cache_bootstrap:
2041 1.43 thorpej *
2042 1.134 ad * Kernel-private version of pool_cache_init(). The caller
2043 1.134 ad * provides initial storage.
2044 1.43 thorpej */
2045 1.43 thorpej void
2046 1.134 ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2047 1.134 ad u_int align_offset, u_int flags, const char *wchan,
2048 1.134 ad struct pool_allocator *palloc, int ipl,
2049 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2050 1.43 thorpej void *arg)
2051 1.43 thorpej {
2052 1.134 ad CPU_INFO_ITERATOR cii;
2053 1.145 ad pool_cache_t pc1;
2054 1.134 ad struct cpu_info *ci;
2055 1.134 ad struct pool *pp;
2056 1.134 ad
2057 1.134 ad pp = &pc->pc_pool;
2058 1.208 chs if (palloc == NULL && ipl == IPL_NONE) {
2059 1.208 chs if (size > PAGE_SIZE) {
2060 1.208 chs int bigidx = pool_bigidx(size);
2061 1.208 chs
2062 1.208 chs palloc = &pool_allocator_big[bigidx];
2063 1.252 maxv flags |= PR_NOALIGN;
2064 1.208 chs } else
2065 1.208 chs palloc = &pool_allocator_nointr;
2066 1.208 chs }
2067 1.134 ad pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2068 1.157 ad mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2069 1.43 thorpej
2070 1.134 ad if (ctor == NULL) {
2071 1.261 christos ctor = NO_CTOR;
2072 1.134 ad }
2073 1.134 ad if (dtor == NULL) {
2074 1.261 christos dtor = NO_DTOR;
2075 1.134 ad }
2076 1.43 thorpej
2077 1.134 ad pc->pc_emptygroups = NULL;
2078 1.134 ad pc->pc_fullgroups = NULL;
2079 1.134 ad pc->pc_partgroups = NULL;
2080 1.43 thorpej pc->pc_ctor = ctor;
2081 1.43 thorpej pc->pc_dtor = dtor;
2082 1.43 thorpej pc->pc_arg = arg;
2083 1.134 ad pc->pc_hits = 0;
2084 1.48 thorpej pc->pc_misses = 0;
2085 1.134 ad pc->pc_nempty = 0;
2086 1.134 ad pc->pc_npart = 0;
2087 1.134 ad pc->pc_nfull = 0;
2088 1.134 ad pc->pc_contended = 0;
2089 1.134 ad pc->pc_refcnt = 0;
2090 1.136 yamt pc->pc_freecheck = NULL;
2091 1.134 ad
2092 1.142 ad if ((flags & PR_LARGECACHE) != 0) {
2093 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2094 1.163 ad pc->pc_pcgpool = &pcg_large_pool;
2095 1.142 ad } else {
2096 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2097 1.163 ad pc->pc_pcgpool = &pcg_normal_pool;
2098 1.142 ad }
2099 1.142 ad
2100 1.134 ad /* Allocate per-CPU caches. */
2101 1.134 ad memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2102 1.134 ad pc->pc_ncpu = 0;
2103 1.139 ad if (ncpu < 2) {
2104 1.137 ad /* XXX For sparc: boot CPU is not attached yet. */
2105 1.137 ad pool_cache_cpu_init1(curcpu(), pc);
2106 1.137 ad } else {
2107 1.137 ad for (CPU_INFO_FOREACH(cii, ci)) {
2108 1.137 ad pool_cache_cpu_init1(ci, pc);
2109 1.137 ad }
2110 1.134 ad }
2111 1.145 ad
2112 1.145 ad /* Add to list of all pools. */
2113 1.145 ad if (__predict_true(!cold))
2114 1.134 ad mutex_enter(&pool_head_lock);
2115 1.145 ad TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2116 1.145 ad if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2117 1.145 ad break;
2118 1.145 ad }
2119 1.145 ad if (pc1 == NULL)
2120 1.145 ad TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2121 1.145 ad else
2122 1.145 ad TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2123 1.145 ad if (__predict_true(!cold))
2124 1.134 ad mutex_exit(&pool_head_lock);
2125 1.145 ad
2126 1.145 ad membar_sync();
2127 1.145 ad pp->pr_cache = pc;
2128 1.43 thorpej }
2129 1.43 thorpej
2130 1.43 thorpej /*
2131 1.43 thorpej * pool_cache_destroy:
2132 1.43 thorpej *
2133 1.43 thorpej * Destroy a pool cache.
2134 1.43 thorpej */
2135 1.43 thorpej void
2136 1.134 ad pool_cache_destroy(pool_cache_t pc)
2137 1.43 thorpej {
2138 1.191 para
2139 1.191 para pool_cache_bootstrap_destroy(pc);
2140 1.191 para pool_put(&cache_pool, pc);
2141 1.191 para }
2142 1.191 para
2143 1.191 para /*
2144 1.191 para * pool_cache_bootstrap_destroy:
2145 1.191 para *
2146 1.191 para * Destroy a pool cache.
2147 1.191 para */
2148 1.191 para void
2149 1.191 para pool_cache_bootstrap_destroy(pool_cache_t pc)
2150 1.191 para {
2151 1.134 ad struct pool *pp = &pc->pc_pool;
2152 1.175 jym u_int i;
2153 1.134 ad
2154 1.134 ad /* Remove it from the global list. */
2155 1.134 ad mutex_enter(&pool_head_lock);
2156 1.134 ad while (pc->pc_refcnt != 0)
2157 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
2158 1.145 ad TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2159 1.134 ad mutex_exit(&pool_head_lock);
2160 1.43 thorpej
2161 1.43 thorpej /* First, invalidate the entire cache. */
2162 1.43 thorpej pool_cache_invalidate(pc);
2163 1.43 thorpej
2164 1.134 ad /* Disassociate it from the pool. */
2165 1.134 ad mutex_enter(&pp->pr_lock);
2166 1.134 ad pp->pr_cache = NULL;
2167 1.134 ad mutex_exit(&pp->pr_lock);
2168 1.134 ad
2169 1.134 ad /* Destroy per-CPU data */
2170 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2171 1.175 jym pool_cache_invalidate_cpu(pc, i);
2172 1.134 ad
2173 1.134 ad /* Finally, destroy it. */
2174 1.134 ad mutex_destroy(&pc->pc_lock);
2175 1.134 ad pool_destroy(pp);
2176 1.134 ad }
2177 1.134 ad
2178 1.134 ad /*
2179 1.134 ad * pool_cache_cpu_init1:
2180 1.134 ad *
2181 1.134 ad * Called for each pool_cache whenever a new CPU is attached.
2182 1.134 ad */
2183 1.134 ad static void
2184 1.134 ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2185 1.134 ad {
2186 1.134 ad pool_cache_cpu_t *cc;
2187 1.137 ad int index;
2188 1.134 ad
2189 1.137 ad index = ci->ci_index;
2190 1.137 ad
2191 1.183 ad KASSERT(index < __arraycount(pc->pc_cpus));
2192 1.134 ad
2193 1.137 ad if ((cc = pc->pc_cpus[index]) != NULL) {
2194 1.137 ad KASSERT(cc->cc_cpuindex == index);
2195 1.134 ad return;
2196 1.134 ad }
2197 1.134 ad
2198 1.134 ad /*
2199 1.134 ad * The first CPU is 'free'. This needs to be the case for
2200 1.134 ad * bootstrap - we may not be able to allocate yet.
2201 1.134 ad */
2202 1.134 ad if (pc->pc_ncpu == 0) {
2203 1.134 ad cc = &pc->pc_cpu0;
2204 1.134 ad pc->pc_ncpu = 1;
2205 1.134 ad } else {
2206 1.134 ad mutex_enter(&pc->pc_lock);
2207 1.134 ad pc->pc_ncpu++;
2208 1.134 ad mutex_exit(&pc->pc_lock);
2209 1.134 ad cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2210 1.134 ad }
2211 1.134 ad
2212 1.134 ad cc->cc_ipl = pc->pc_pool.pr_ipl;
2213 1.134 ad cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2214 1.134 ad cc->cc_cache = pc;
2215 1.137 ad cc->cc_cpuindex = index;
2216 1.134 ad cc->cc_hits = 0;
2217 1.134 ad cc->cc_misses = 0;
2218 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
2219 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
2220 1.134 ad
2221 1.137 ad pc->pc_cpus[index] = cc;
2222 1.43 thorpej }
2223 1.43 thorpej
2224 1.134 ad /*
2225 1.134 ad * pool_cache_cpu_init:
2226 1.134 ad *
2227 1.134 ad * Called whenever a new CPU is attached.
2228 1.134 ad */
2229 1.134 ad void
2230 1.134 ad pool_cache_cpu_init(struct cpu_info *ci)
2231 1.43 thorpej {
2232 1.134 ad pool_cache_t pc;
2233 1.134 ad
2234 1.134 ad mutex_enter(&pool_head_lock);
2235 1.145 ad TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2236 1.134 ad pc->pc_refcnt++;
2237 1.134 ad mutex_exit(&pool_head_lock);
2238 1.43 thorpej
2239 1.134 ad pool_cache_cpu_init1(ci, pc);
2240 1.43 thorpej
2241 1.134 ad mutex_enter(&pool_head_lock);
2242 1.134 ad pc->pc_refcnt--;
2243 1.134 ad cv_broadcast(&pool_busy);
2244 1.134 ad }
2245 1.134 ad mutex_exit(&pool_head_lock);
2246 1.43 thorpej }
2247 1.43 thorpej
2248 1.134 ad /*
2249 1.134 ad * pool_cache_reclaim:
2250 1.134 ad *
2251 1.134 ad * Reclaim memory from a pool cache.
2252 1.134 ad */
2253 1.134 ad bool
2254 1.134 ad pool_cache_reclaim(pool_cache_t pc)
2255 1.43 thorpej {
2256 1.43 thorpej
2257 1.134 ad return pool_reclaim(&pc->pc_pool);
2258 1.134 ad }
2259 1.43 thorpej
2260 1.136 yamt static void
2261 1.136 yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
2262 1.136 yamt {
2263 1.136 yamt (*pc->pc_dtor)(pc->pc_arg, object);
2264 1.136 yamt pool_put(&pc->pc_pool, object);
2265 1.136 yamt }
2266 1.136 yamt
2267 1.134 ad /*
2268 1.134 ad * pool_cache_destruct_object:
2269 1.134 ad *
2270 1.134 ad * Force destruction of an object and its release back into
2271 1.134 ad * the pool.
2272 1.134 ad */
2273 1.134 ad void
2274 1.134 ad pool_cache_destruct_object(pool_cache_t pc, void *object)
2275 1.134 ad {
2276 1.134 ad
2277 1.136 yamt FREECHECK_IN(&pc->pc_freecheck, object);
2278 1.136 yamt
2279 1.136 yamt pool_cache_destruct_object1(pc, object);
2280 1.43 thorpej }
2281 1.43 thorpej
2282 1.134 ad /*
2283 1.134 ad * pool_cache_invalidate_groups:
2284 1.134 ad *
2285 1.134 ad * Invalidate a chain of groups and destruct all objects.
2286 1.134 ad */
2287 1.102 chs static void
2288 1.134 ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2289 1.102 chs {
2290 1.134 ad void *object;
2291 1.134 ad pcg_t *next;
2292 1.134 ad int i;
2293 1.134 ad
2294 1.134 ad for (; pcg != NULL; pcg = next) {
2295 1.134 ad next = pcg->pcg_next;
2296 1.134 ad
2297 1.134 ad for (i = 0; i < pcg->pcg_avail; i++) {
2298 1.134 ad object = pcg->pcg_objects[i].pcgo_va;
2299 1.136 yamt pool_cache_destruct_object1(pc, object);
2300 1.134 ad }
2301 1.102 chs
2302 1.142 ad if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2303 1.142 ad pool_put(&pcg_large_pool, pcg);
2304 1.142 ad } else {
2305 1.142 ad KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2306 1.142 ad pool_put(&pcg_normal_pool, pcg);
2307 1.142 ad }
2308 1.102 chs }
2309 1.102 chs }
2310 1.102 chs
2311 1.43 thorpej /*
2312 1.134 ad * pool_cache_invalidate:
2313 1.43 thorpej *
2314 1.134 ad * Invalidate a pool cache (destruct and release all of the
2315 1.134 ad * cached objects). Does not reclaim objects from the pool.
2316 1.176 thorpej *
2317 1.176 thorpej * Note: For pool caches that provide constructed objects, there
2318 1.176 thorpej * is an assumption that another level of synchronization is occurring
2319 1.176 thorpej * between the input to the constructor and the cache invalidation.
2320 1.196 jym *
2321 1.196 jym * Invalidation is a costly process and should not be called from
2322 1.196 jym * interrupt context.
2323 1.43 thorpej */
2324 1.134 ad void
2325 1.134 ad pool_cache_invalidate(pool_cache_t pc)
2326 1.134 ad {
2327 1.196 jym uint64_t where;
2328 1.134 ad pcg_t *full, *empty, *part;
2329 1.196 jym
2330 1.196 jym KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2331 1.176 thorpej
2332 1.177 jym if (ncpu < 2 || !mp_online) {
2333 1.176 thorpej /*
2334 1.176 thorpej * We might be called early enough in the boot process
2335 1.176 thorpej * for the CPU data structures to not be fully initialized.
2336 1.196 jym * In this case, transfer the content of the local CPU's
2337 1.196 jym * cache back into global cache as only this CPU is currently
2338 1.196 jym * running.
2339 1.176 thorpej */
2340 1.196 jym pool_cache_transfer(pc);
2341 1.176 thorpej } else {
2342 1.176 thorpej /*
2343 1.196 jym * Signal all CPUs that they must transfer their local
2344 1.196 jym * cache back to the global pool then wait for the xcall to
2345 1.196 jym * complete.
2346 1.176 thorpej */
2347 1.261 christos where = xc_broadcast(0,
2348 1.261 christos __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2349 1.176 thorpej xc_wait(where);
2350 1.176 thorpej }
2351 1.196 jym
2352 1.196 jym /* Empty pool caches, then invalidate objects */
2353 1.134 ad mutex_enter(&pc->pc_lock);
2354 1.134 ad full = pc->pc_fullgroups;
2355 1.134 ad empty = pc->pc_emptygroups;
2356 1.134 ad part = pc->pc_partgroups;
2357 1.134 ad pc->pc_fullgroups = NULL;
2358 1.134 ad pc->pc_emptygroups = NULL;
2359 1.134 ad pc->pc_partgroups = NULL;
2360 1.134 ad pc->pc_nfull = 0;
2361 1.134 ad pc->pc_nempty = 0;
2362 1.134 ad pc->pc_npart = 0;
2363 1.134 ad mutex_exit(&pc->pc_lock);
2364 1.134 ad
2365 1.134 ad pool_cache_invalidate_groups(pc, full);
2366 1.134 ad pool_cache_invalidate_groups(pc, empty);
2367 1.134 ad pool_cache_invalidate_groups(pc, part);
2368 1.134 ad }
2369 1.134 ad
2370 1.175 jym /*
2371 1.175 jym * pool_cache_invalidate_cpu:
2372 1.175 jym *
2373 1.175 jym * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2374 1.175 jym * identified by its associated index.
2375 1.175 jym * It is caller's responsibility to ensure that no operation is
2376 1.175 jym * taking place on this pool cache while doing this invalidation.
2377 1.175 jym * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2378 1.175 jym * pool cached objects from a CPU different from the one currently running
2379 1.175 jym * may result in an undefined behaviour.
2380 1.175 jym */
2381 1.175 jym static void
2382 1.175 jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2383 1.175 jym {
2384 1.175 jym pool_cache_cpu_t *cc;
2385 1.175 jym pcg_t *pcg;
2386 1.175 jym
2387 1.175 jym if ((cc = pc->pc_cpus[index]) == NULL)
2388 1.175 jym return;
2389 1.175 jym
2390 1.175 jym if ((pcg = cc->cc_current) != &pcg_dummy) {
2391 1.175 jym pcg->pcg_next = NULL;
2392 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2393 1.175 jym }
2394 1.175 jym if ((pcg = cc->cc_previous) != &pcg_dummy) {
2395 1.175 jym pcg->pcg_next = NULL;
2396 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2397 1.175 jym }
2398 1.175 jym if (cc != &pc->pc_cpu0)
2399 1.175 jym pool_put(&cache_cpu_pool, cc);
2400 1.175 jym
2401 1.175 jym }
2402 1.175 jym
2403 1.134 ad void
2404 1.134 ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2405 1.134 ad {
2406 1.134 ad
2407 1.134 ad pool_set_drain_hook(&pc->pc_pool, fn, arg);
2408 1.134 ad }
2409 1.134 ad
2410 1.134 ad void
2411 1.134 ad pool_cache_setlowat(pool_cache_t pc, int n)
2412 1.134 ad {
2413 1.134 ad
2414 1.134 ad pool_setlowat(&pc->pc_pool, n);
2415 1.134 ad }
2416 1.134 ad
2417 1.134 ad void
2418 1.134 ad pool_cache_sethiwat(pool_cache_t pc, int n)
2419 1.134 ad {
2420 1.134 ad
2421 1.134 ad pool_sethiwat(&pc->pc_pool, n);
2422 1.134 ad }
2423 1.134 ad
2424 1.134 ad void
2425 1.134 ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2426 1.134 ad {
2427 1.134 ad
2428 1.134 ad pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2429 1.134 ad }
2430 1.134 ad
2431 1.162 ad static bool __noinline
2432 1.162 ad pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2433 1.134 ad paddr_t *pap, int flags)
2434 1.43 thorpej {
2435 1.134 ad pcg_t *pcg, *cur;
2436 1.134 ad uint64_t ncsw;
2437 1.134 ad pool_cache_t pc;
2438 1.43 thorpej void *object;
2439 1.58 thorpej
2440 1.168 yamt KASSERT(cc->cc_current->pcg_avail == 0);
2441 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == 0);
2442 1.168 yamt
2443 1.134 ad pc = cc->cc_cache;
2444 1.134 ad cc->cc_misses++;
2445 1.43 thorpej
2446 1.134 ad /*
2447 1.134 ad * Nothing was available locally. Try and grab a group
2448 1.134 ad * from the cache.
2449 1.134 ad */
2450 1.162 ad if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2451 1.134 ad ncsw = curlwp->l_ncsw;
2452 1.263 riastrad __insn_barrier();
2453 1.134 ad mutex_enter(&pc->pc_lock);
2454 1.134 ad pc->pc_contended++;
2455 1.43 thorpej
2456 1.134 ad /*
2457 1.134 ad * If we context switched while locking, then
2458 1.134 ad * our view of the per-CPU data is invalid:
2459 1.134 ad * retry.
2460 1.134 ad */
2461 1.263 riastrad __insn_barrier();
2462 1.134 ad if (curlwp->l_ncsw != ncsw) {
2463 1.134 ad mutex_exit(&pc->pc_lock);
2464 1.162 ad return true;
2465 1.43 thorpej }
2466 1.102 chs }
2467 1.43 thorpej
2468 1.162 ad if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2469 1.43 thorpej /*
2470 1.134 ad * If there's a full group, release our empty
2471 1.134 ad * group back to the cache. Install the full
2472 1.134 ad * group as cc_current and return.
2473 1.43 thorpej */
2474 1.162 ad if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2475 1.134 ad KASSERT(cur->pcg_avail == 0);
2476 1.134 ad cur->pcg_next = pc->pc_emptygroups;
2477 1.134 ad pc->pc_emptygroups = cur;
2478 1.134 ad pc->pc_nempty++;
2479 1.87 thorpej }
2480 1.142 ad KASSERT(pcg->pcg_avail == pcg->pcg_size);
2481 1.134 ad cc->cc_current = pcg;
2482 1.134 ad pc->pc_fullgroups = pcg->pcg_next;
2483 1.134 ad pc->pc_hits++;
2484 1.134 ad pc->pc_nfull--;
2485 1.134 ad mutex_exit(&pc->pc_lock);
2486 1.162 ad return true;
2487 1.134 ad }
2488 1.134 ad
2489 1.134 ad /*
2490 1.134 ad * Nothing available locally or in cache. Take the slow
2491 1.134 ad * path: fetch a new object from the pool and construct
2492 1.134 ad * it.
2493 1.134 ad */
2494 1.134 ad pc->pc_misses++;
2495 1.134 ad mutex_exit(&pc->pc_lock);
2496 1.162 ad splx(s);
2497 1.134 ad
2498 1.134 ad object = pool_get(&pc->pc_pool, flags);
2499 1.134 ad *objectp = object;
2500 1.211 riastrad if (__predict_false(object == NULL)) {
2501 1.264.2.1 ad KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2502 1.162 ad return false;
2503 1.211 riastrad }
2504 1.125 ad
2505 1.162 ad if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2506 1.134 ad pool_put(&pc->pc_pool, object);
2507 1.134 ad *objectp = NULL;
2508 1.162 ad return false;
2509 1.43 thorpej }
2510 1.43 thorpej
2511 1.238 maxv KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2512 1.43 thorpej
2513 1.134 ad if (pap != NULL) {
2514 1.134 ad #ifdef POOL_VTOPHYS
2515 1.134 ad *pap = POOL_VTOPHYS(object);
2516 1.134 ad #else
2517 1.134 ad *pap = POOL_PADDR_INVALID;
2518 1.134 ad #endif
2519 1.102 chs }
2520 1.43 thorpej
2521 1.125 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2522 1.162 ad return false;
2523 1.43 thorpej }
2524 1.43 thorpej
2525 1.43 thorpej /*
2526 1.134 ad * pool_cache_get{,_paddr}:
2527 1.43 thorpej *
2528 1.134 ad * Get an object from a pool cache (optionally returning
2529 1.134 ad * the physical address of the object).
2530 1.43 thorpej */
2531 1.134 ad void *
2532 1.134 ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2533 1.43 thorpej {
2534 1.134 ad pool_cache_cpu_t *cc;
2535 1.134 ad pcg_t *pcg;
2536 1.134 ad void *object;
2537 1.60 thorpej int s;
2538 1.43 thorpej
2539 1.215 christos KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2540 1.184 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2541 1.185 rmind (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2542 1.213 christos "%s: [%s] is IPL_NONE, but called from interrupt context",
2543 1.213 christos __func__, pc->pc_pool.pr_wchan);
2544 1.184 rmind
2545 1.155 ad if (flags & PR_WAITOK) {
2546 1.154 yamt ASSERT_SLEEPABLE();
2547 1.155 ad }
2548 1.125 ad
2549 1.162 ad /* Lock out interrupts and disable preemption. */
2550 1.162 ad s = splvm();
2551 1.165 yamt while (/* CONSTCOND */ true) {
2552 1.134 ad /* Try and allocate an object from the current group. */
2553 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2554 1.162 ad KASSERT(cc->cc_cache == pc);
2555 1.134 ad pcg = cc->cc_current;
2556 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2557 1.134 ad object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2558 1.162 ad if (__predict_false(pap != NULL))
2559 1.134 ad *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2560 1.148 yamt #if defined(DIAGNOSTIC)
2561 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2562 1.163 ad KASSERT(pcg->pcg_avail < pcg->pcg_size);
2563 1.134 ad KASSERT(object != NULL);
2564 1.163 ad #endif
2565 1.134 ad cc->cc_hits++;
2566 1.162 ad splx(s);
2567 1.134 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2568 1.204 maxv pool_redzone_fill(&pc->pc_pool, object);
2569 1.262 maxv pool_cache_get_kmsan(pc, object);
2570 1.134 ad return object;
2571 1.43 thorpej }
2572 1.43 thorpej
2573 1.43 thorpej /*
2574 1.134 ad * That failed. If the previous group isn't empty, swap
2575 1.134 ad * it with the current group and allocate from there.
2576 1.43 thorpej */
2577 1.134 ad pcg = cc->cc_previous;
2578 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2579 1.134 ad cc->cc_previous = cc->cc_current;
2580 1.134 ad cc->cc_current = pcg;
2581 1.134 ad continue;
2582 1.43 thorpej }
2583 1.43 thorpej
2584 1.134 ad /*
2585 1.134 ad * Can't allocate from either group: try the slow path.
2586 1.134 ad * If get_slow() allocated an object for us, or if
2587 1.162 ad * no more objects are available, it will return false.
2588 1.134 ad * Otherwise, we need to retry.
2589 1.134 ad */
2590 1.165 yamt if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2591 1.165 yamt break;
2592 1.165 yamt }
2593 1.43 thorpej
2594 1.211 riastrad /*
2595 1.211 riastrad * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2596 1.211 riastrad * pool_cache_get can fail even in the PR_WAITOK case, if the
2597 1.211 riastrad * constructor fails.
2598 1.211 riastrad */
2599 1.134 ad return object;
2600 1.51 thorpej }
2601 1.51 thorpej
2602 1.162 ad static bool __noinline
2603 1.162 ad pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2604 1.51 thorpej {
2605 1.200 pooka struct lwp *l = curlwp;
2606 1.163 ad pcg_t *pcg, *cur;
2607 1.134 ad uint64_t ncsw;
2608 1.134 ad pool_cache_t pc;
2609 1.51 thorpej
2610 1.168 yamt KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2611 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2612 1.168 yamt
2613 1.134 ad pc = cc->cc_cache;
2614 1.171 ad pcg = NULL;
2615 1.134 ad cc->cc_misses++;
2616 1.200 pooka ncsw = l->l_ncsw;
2617 1.263 riastrad __insn_barrier();
2618 1.43 thorpej
2619 1.171 ad /*
2620 1.171 ad * If there are no empty groups in the cache then allocate one
2621 1.171 ad * while still unlocked.
2622 1.171 ad */
2623 1.171 ad if (__predict_false(pc->pc_emptygroups == NULL)) {
2624 1.171 ad if (__predict_true(!pool_cache_disable)) {
2625 1.171 ad pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2626 1.171 ad }
2627 1.200 pooka /*
2628 1.200 pooka * If pool_get() blocked, then our view of
2629 1.200 pooka * the per-CPU data is invalid: retry.
2630 1.200 pooka */
2631 1.263 riastrad __insn_barrier();
2632 1.200 pooka if (__predict_false(l->l_ncsw != ncsw)) {
2633 1.200 pooka if (pcg != NULL) {
2634 1.200 pooka pool_put(pc->pc_pcgpool, pcg);
2635 1.200 pooka }
2636 1.200 pooka return true;
2637 1.200 pooka }
2638 1.171 ad if (__predict_true(pcg != NULL)) {
2639 1.171 ad pcg->pcg_avail = 0;
2640 1.171 ad pcg->pcg_size = pc->pc_pcgsize;
2641 1.171 ad }
2642 1.171 ad }
2643 1.171 ad
2644 1.162 ad /* Lock the cache. */
2645 1.162 ad if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2646 1.134 ad mutex_enter(&pc->pc_lock);
2647 1.134 ad pc->pc_contended++;
2648 1.162 ad
2649 1.163 ad /*
2650 1.163 ad * If we context switched while locking, then our view of
2651 1.163 ad * the per-CPU data is invalid: retry.
2652 1.163 ad */
2653 1.263 riastrad __insn_barrier();
2654 1.200 pooka if (__predict_false(l->l_ncsw != ncsw)) {
2655 1.163 ad mutex_exit(&pc->pc_lock);
2656 1.171 ad if (pcg != NULL) {
2657 1.171 ad pool_put(pc->pc_pcgpool, pcg);
2658 1.171 ad }
2659 1.163 ad return true;
2660 1.163 ad }
2661 1.162 ad }
2662 1.102 chs
2663 1.163 ad /* If there are no empty groups in the cache then allocate one. */
2664 1.171 ad if (pcg == NULL && pc->pc_emptygroups != NULL) {
2665 1.171 ad pcg = pc->pc_emptygroups;
2666 1.163 ad pc->pc_emptygroups = pcg->pcg_next;
2667 1.163 ad pc->pc_nempty--;
2668 1.134 ad }
2669 1.130 ad
2670 1.162 ad /*
2671 1.162 ad * If there's a empty group, release our full group back
2672 1.162 ad * to the cache. Install the empty group to the local CPU
2673 1.162 ad * and return.
2674 1.162 ad */
2675 1.163 ad if (pcg != NULL) {
2676 1.134 ad KASSERT(pcg->pcg_avail == 0);
2677 1.162 ad if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2678 1.146 ad cc->cc_previous = pcg;
2679 1.146 ad } else {
2680 1.162 ad cur = cc->cc_current;
2681 1.162 ad if (__predict_true(cur != &pcg_dummy)) {
2682 1.163 ad KASSERT(cur->pcg_avail == cur->pcg_size);
2683 1.146 ad cur->pcg_next = pc->pc_fullgroups;
2684 1.146 ad pc->pc_fullgroups = cur;
2685 1.146 ad pc->pc_nfull++;
2686 1.146 ad }
2687 1.146 ad cc->cc_current = pcg;
2688 1.146 ad }
2689 1.163 ad pc->pc_hits++;
2690 1.134 ad mutex_exit(&pc->pc_lock);
2691 1.162 ad return true;
2692 1.102 chs }
2693 1.105 christos
2694 1.134 ad /*
2695 1.162 ad * Nothing available locally or in cache, and we didn't
2696 1.162 ad * allocate an empty group. Take the slow path and destroy
2697 1.162 ad * the object here and now.
2698 1.134 ad */
2699 1.134 ad pc->pc_misses++;
2700 1.134 ad mutex_exit(&pc->pc_lock);
2701 1.162 ad splx(s);
2702 1.162 ad pool_cache_destruct_object(pc, object);
2703 1.105 christos
2704 1.162 ad return false;
2705 1.236 maxv }
2706 1.102 chs
2707 1.43 thorpej /*
2708 1.134 ad * pool_cache_put{,_paddr}:
2709 1.43 thorpej *
2710 1.134 ad * Put an object back to the pool cache (optionally caching the
2711 1.134 ad * physical address of the object).
2712 1.43 thorpej */
2713 1.101 thorpej void
2714 1.134 ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2715 1.43 thorpej {
2716 1.134 ad pool_cache_cpu_t *cc;
2717 1.134 ad pcg_t *pcg;
2718 1.134 ad int s;
2719 1.101 thorpej
2720 1.172 yamt KASSERT(object != NULL);
2721 1.262 maxv pool_cache_put_kmsan(pc, object);
2722 1.229 maxv pool_cache_redzone_check(pc, object);
2723 1.134 ad FREECHECK_IN(&pc->pc_freecheck, object);
2724 1.101 thorpej
2725 1.253 maxv if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2726 1.253 maxv pc_phinpage_check(pc, object);
2727 1.253 maxv }
2728 1.253 maxv
2729 1.249 maxv if (pool_cache_put_quarantine(pc, object, pa)) {
2730 1.249 maxv return;
2731 1.249 maxv }
2732 1.249 maxv
2733 1.162 ad /* Lock out interrupts and disable preemption. */
2734 1.162 ad s = splvm();
2735 1.165 yamt while (/* CONSTCOND */ true) {
2736 1.134 ad /* If the current group isn't full, release it there. */
2737 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2738 1.162 ad KASSERT(cc->cc_cache == pc);
2739 1.134 ad pcg = cc->cc_current;
2740 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2741 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2742 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2743 1.134 ad pcg->pcg_avail++;
2744 1.134 ad cc->cc_hits++;
2745 1.162 ad splx(s);
2746 1.134 ad return;
2747 1.134 ad }
2748 1.43 thorpej
2749 1.134 ad /*
2750 1.162 ad * That failed. If the previous group isn't full, swap
2751 1.134 ad * it with the current group and try again.
2752 1.134 ad */
2753 1.134 ad pcg = cc->cc_previous;
2754 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2755 1.134 ad cc->cc_previous = cc->cc_current;
2756 1.134 ad cc->cc_current = pcg;
2757 1.134 ad continue;
2758 1.134 ad }
2759 1.43 thorpej
2760 1.134 ad /*
2761 1.236 maxv * Can't free to either group: try the slow path.
2762 1.134 ad * If put_slow() releases the object for us, it
2763 1.162 ad * will return false. Otherwise we need to retry.
2764 1.134 ad */
2765 1.165 yamt if (!pool_cache_put_slow(cc, s, object))
2766 1.165 yamt break;
2767 1.165 yamt }
2768 1.43 thorpej }
2769 1.43 thorpej
2770 1.43 thorpej /*
2771 1.196 jym * pool_cache_transfer:
2772 1.43 thorpej *
2773 1.134 ad * Transfer objects from the per-CPU cache to the global cache.
2774 1.134 ad * Run within a cross-call thread.
2775 1.43 thorpej */
2776 1.43 thorpej static void
2777 1.196 jym pool_cache_transfer(pool_cache_t pc)
2778 1.43 thorpej {
2779 1.134 ad pool_cache_cpu_t *cc;
2780 1.134 ad pcg_t *prev, *cur, **list;
2781 1.162 ad int s;
2782 1.134 ad
2783 1.162 ad s = splvm();
2784 1.162 ad mutex_enter(&pc->pc_lock);
2785 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2786 1.134 ad cur = cc->cc_current;
2787 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
2788 1.134 ad prev = cc->cc_previous;
2789 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
2790 1.162 ad if (cur != &pcg_dummy) {
2791 1.142 ad if (cur->pcg_avail == cur->pcg_size) {
2792 1.134 ad list = &pc->pc_fullgroups;
2793 1.134 ad pc->pc_nfull++;
2794 1.134 ad } else if (cur->pcg_avail == 0) {
2795 1.134 ad list = &pc->pc_emptygroups;
2796 1.134 ad pc->pc_nempty++;
2797 1.134 ad } else {
2798 1.134 ad list = &pc->pc_partgroups;
2799 1.134 ad pc->pc_npart++;
2800 1.134 ad }
2801 1.134 ad cur->pcg_next = *list;
2802 1.134 ad *list = cur;
2803 1.134 ad }
2804 1.162 ad if (prev != &pcg_dummy) {
2805 1.142 ad if (prev->pcg_avail == prev->pcg_size) {
2806 1.134 ad list = &pc->pc_fullgroups;
2807 1.134 ad pc->pc_nfull++;
2808 1.134 ad } else if (prev->pcg_avail == 0) {
2809 1.134 ad list = &pc->pc_emptygroups;
2810 1.134 ad pc->pc_nempty++;
2811 1.134 ad } else {
2812 1.134 ad list = &pc->pc_partgroups;
2813 1.134 ad pc->pc_npart++;
2814 1.134 ad }
2815 1.134 ad prev->pcg_next = *list;
2816 1.134 ad *list = prev;
2817 1.134 ad }
2818 1.134 ad mutex_exit(&pc->pc_lock);
2819 1.134 ad splx(s);
2820 1.3 pk }
2821 1.66 thorpej
2822 1.208 chs static int
2823 1.208 chs pool_bigidx(size_t size)
2824 1.208 chs {
2825 1.208 chs int i;
2826 1.208 chs
2827 1.208 chs for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2828 1.208 chs if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2829 1.208 chs return i;
2830 1.208 chs }
2831 1.208 chs panic("pool item size %zu too large, use a custom allocator", size);
2832 1.208 chs }
2833 1.208 chs
2834 1.117 yamt static void *
2835 1.117 yamt pool_allocator_alloc(struct pool *pp, int flags)
2836 1.66 thorpej {
2837 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
2838 1.66 thorpej void *res;
2839 1.66 thorpej
2840 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2841 1.117 yamt if (res == NULL && (flags & PR_WAITOK) == 0) {
2842 1.66 thorpej /*
2843 1.117 yamt * We only run the drain hook here if PR_NOWAIT.
2844 1.117 yamt * In other cases, the hook will be run in
2845 1.117 yamt * pool_reclaim().
2846 1.66 thorpej */
2847 1.117 yamt if (pp->pr_drain_hook != NULL) {
2848 1.117 yamt (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2849 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2850 1.66 thorpej }
2851 1.117 yamt }
2852 1.117 yamt return res;
2853 1.66 thorpej }
2854 1.66 thorpej
2855 1.117 yamt static void
2856 1.66 thorpej pool_allocator_free(struct pool *pp, void *v)
2857 1.66 thorpej {
2858 1.66 thorpej struct pool_allocator *pa = pp->pr_alloc;
2859 1.66 thorpej
2860 1.229 maxv if (pp->pr_redzone) {
2861 1.248 maxv kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2862 1.229 maxv }
2863 1.66 thorpej (*pa->pa_free)(pp, v);
2864 1.66 thorpej }
2865 1.66 thorpej
2866 1.66 thorpej void *
2867 1.124 yamt pool_page_alloc(struct pool *pp, int flags)
2868 1.66 thorpej {
2869 1.192 rmind const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2870 1.191 para vmem_addr_t va;
2871 1.192 rmind int ret;
2872 1.191 para
2873 1.192 rmind ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2874 1.192 rmind vflags | VM_INSTANTFIT, &va);
2875 1.66 thorpej
2876 1.192 rmind return ret ? NULL : (void *)va;
2877 1.66 thorpej }
2878 1.66 thorpej
2879 1.66 thorpej void
2880 1.124 yamt pool_page_free(struct pool *pp, void *v)
2881 1.66 thorpej {
2882 1.66 thorpej
2883 1.191 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2884 1.98 yamt }
2885 1.98 yamt
2886 1.98 yamt static void *
2887 1.124 yamt pool_page_alloc_meta(struct pool *pp, int flags)
2888 1.98 yamt {
2889 1.192 rmind const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2890 1.192 rmind vmem_addr_t va;
2891 1.192 rmind int ret;
2892 1.191 para
2893 1.192 rmind ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2894 1.192 rmind vflags | VM_INSTANTFIT, &va);
2895 1.98 yamt
2896 1.192 rmind return ret ? NULL : (void *)va;
2897 1.98 yamt }
2898 1.98 yamt
2899 1.98 yamt static void
2900 1.124 yamt pool_page_free_meta(struct pool *pp, void *v)
2901 1.98 yamt {
2902 1.98 yamt
2903 1.192 rmind vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2904 1.66 thorpej }
2905 1.66 thorpej
2906 1.262 maxv #ifdef KMSAN
2907 1.262 maxv static inline void
2908 1.262 maxv pool_get_kmsan(struct pool *pp, void *p)
2909 1.262 maxv {
2910 1.262 maxv kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
2911 1.262 maxv kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
2912 1.262 maxv }
2913 1.262 maxv
2914 1.262 maxv static inline void
2915 1.262 maxv pool_put_kmsan(struct pool *pp, void *p)
2916 1.262 maxv {
2917 1.262 maxv kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
2918 1.262 maxv }
2919 1.262 maxv
2920 1.262 maxv static inline void
2921 1.262 maxv pool_cache_get_kmsan(pool_cache_t pc, void *p)
2922 1.262 maxv {
2923 1.262 maxv if (__predict_false(pc_has_ctor(pc))) {
2924 1.262 maxv return;
2925 1.262 maxv }
2926 1.262 maxv pool_get_kmsan(&pc->pc_pool, p);
2927 1.262 maxv }
2928 1.262 maxv
2929 1.262 maxv static inline void
2930 1.262 maxv pool_cache_put_kmsan(pool_cache_t pc, void *p)
2931 1.262 maxv {
2932 1.262 maxv pool_put_kmsan(&pc->pc_pool, p);
2933 1.262 maxv }
2934 1.262 maxv #endif
2935 1.262 maxv
2936 1.249 maxv #ifdef POOL_QUARANTINE
2937 1.249 maxv static void
2938 1.249 maxv pool_quarantine_init(struct pool *pp)
2939 1.249 maxv {
2940 1.249 maxv pp->pr_quar.rotor = 0;
2941 1.249 maxv memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
2942 1.249 maxv }
2943 1.249 maxv
2944 1.249 maxv static void
2945 1.249 maxv pool_quarantine_flush(struct pool *pp)
2946 1.249 maxv {
2947 1.249 maxv pool_quar_t *quar = &pp->pr_quar;
2948 1.249 maxv struct pool_pagelist pq;
2949 1.249 maxv size_t i;
2950 1.249 maxv
2951 1.249 maxv LIST_INIT(&pq);
2952 1.249 maxv
2953 1.249 maxv mutex_enter(&pp->pr_lock);
2954 1.249 maxv for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
2955 1.249 maxv if (quar->list[i] == 0)
2956 1.249 maxv continue;
2957 1.249 maxv pool_do_put(pp, (void *)quar->list[i], &pq);
2958 1.249 maxv }
2959 1.249 maxv mutex_exit(&pp->pr_lock);
2960 1.249 maxv
2961 1.249 maxv pr_pagelist_free(pp, &pq);
2962 1.249 maxv }
2963 1.249 maxv
2964 1.249 maxv static bool
2965 1.249 maxv pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
2966 1.249 maxv {
2967 1.249 maxv pool_quar_t *quar = &pp->pr_quar;
2968 1.249 maxv uintptr_t old;
2969 1.249 maxv
2970 1.249 maxv if (pp->pr_roflags & PR_NOTOUCH) {
2971 1.249 maxv return false;
2972 1.249 maxv }
2973 1.249 maxv
2974 1.249 maxv pool_redzone_check(pp, v);
2975 1.249 maxv
2976 1.249 maxv old = quar->list[quar->rotor];
2977 1.249 maxv quar->list[quar->rotor] = (uintptr_t)v;
2978 1.249 maxv quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
2979 1.249 maxv if (old != 0) {
2980 1.249 maxv pool_do_put(pp, (void *)old, pq);
2981 1.249 maxv }
2982 1.249 maxv
2983 1.249 maxv return true;
2984 1.249 maxv }
2985 1.249 maxv
2986 1.249 maxv static bool
2987 1.249 maxv pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa)
2988 1.249 maxv {
2989 1.249 maxv pool_cache_destruct_object(pc, p);
2990 1.249 maxv return true;
2991 1.249 maxv }
2992 1.249 maxv #endif
2993 1.249 maxv
2994 1.204 maxv #ifdef POOL_REDZONE
2995 1.204 maxv #if defined(_LP64)
2996 1.204 maxv # define PRIME 0x9e37fffffffc0000UL
2997 1.204 maxv #else /* defined(_LP64) */
2998 1.204 maxv # define PRIME 0x9e3779b1
2999 1.204 maxv #endif /* defined(_LP64) */
3000 1.204 maxv #define STATIC_BYTE 0xFE
3001 1.204 maxv CTASSERT(POOL_REDZONE_SIZE > 1);
3002 1.204 maxv
3003 1.224 maxv #ifndef KASAN
3004 1.204 maxv static inline uint8_t
3005 1.204 maxv pool_pattern_generate(const void *p)
3006 1.204 maxv {
3007 1.204 maxv return (uint8_t)(((uintptr_t)p) * PRIME
3008 1.204 maxv >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
3009 1.204 maxv }
3010 1.224 maxv #endif
3011 1.204 maxv
3012 1.204 maxv static void
3013 1.204 maxv pool_redzone_init(struct pool *pp, size_t requested_size)
3014 1.204 maxv {
3015 1.227 maxv size_t redzsz;
3016 1.204 maxv size_t nsz;
3017 1.204 maxv
3018 1.227 maxv #ifdef KASAN
3019 1.227 maxv redzsz = requested_size;
3020 1.227 maxv kasan_add_redzone(&redzsz);
3021 1.227 maxv redzsz -= requested_size;
3022 1.227 maxv #else
3023 1.227 maxv redzsz = POOL_REDZONE_SIZE;
3024 1.227 maxv #endif
3025 1.227 maxv
3026 1.204 maxv if (pp->pr_roflags & PR_NOTOUCH) {
3027 1.204 maxv pp->pr_redzone = false;
3028 1.204 maxv return;
3029 1.204 maxv }
3030 1.204 maxv
3031 1.204 maxv /*
3032 1.204 maxv * We may have extended the requested size earlier; check if
3033 1.204 maxv * there's naturally space in the padding for a red zone.
3034 1.204 maxv */
3035 1.227 maxv if (pp->pr_size - requested_size >= redzsz) {
3036 1.229 maxv pp->pr_reqsize_with_redzone = requested_size + redzsz;
3037 1.204 maxv pp->pr_redzone = true;
3038 1.204 maxv return;
3039 1.204 maxv }
3040 1.204 maxv
3041 1.204 maxv /*
3042 1.204 maxv * No space in the natural padding; check if we can extend a
3043 1.204 maxv * bit the size of the pool.
3044 1.204 maxv */
3045 1.227 maxv nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3046 1.204 maxv if (nsz <= pp->pr_alloc->pa_pagesz) {
3047 1.204 maxv /* Ok, we can */
3048 1.204 maxv pp->pr_size = nsz;
3049 1.229 maxv pp->pr_reqsize_with_redzone = requested_size + redzsz;
3050 1.204 maxv pp->pr_redzone = true;
3051 1.204 maxv } else {
3052 1.204 maxv /* No space for a red zone... snif :'( */
3053 1.204 maxv pp->pr_redzone = false;
3054 1.204 maxv printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
3055 1.204 maxv }
3056 1.204 maxv }
3057 1.204 maxv
3058 1.204 maxv static void
3059 1.204 maxv pool_redzone_fill(struct pool *pp, void *p)
3060 1.204 maxv {
3061 1.224 maxv if (!pp->pr_redzone)
3062 1.224 maxv return;
3063 1.224 maxv #ifdef KASAN
3064 1.248 maxv kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3065 1.248 maxv KASAN_POOL_REDZONE);
3066 1.224 maxv #else
3067 1.204 maxv uint8_t *cp, pat;
3068 1.204 maxv const uint8_t *ep;
3069 1.204 maxv
3070 1.204 maxv cp = (uint8_t *)p + pp->pr_reqsize;
3071 1.204 maxv ep = cp + POOL_REDZONE_SIZE;
3072 1.204 maxv
3073 1.204 maxv /*
3074 1.204 maxv * We really don't want the first byte of the red zone to be '\0';
3075 1.204 maxv * an off-by-one in a string may not be properly detected.
3076 1.204 maxv */
3077 1.204 maxv pat = pool_pattern_generate(cp);
3078 1.204 maxv *cp = (pat == '\0') ? STATIC_BYTE: pat;
3079 1.204 maxv cp++;
3080 1.204 maxv
3081 1.204 maxv while (cp < ep) {
3082 1.204 maxv *cp = pool_pattern_generate(cp);
3083 1.204 maxv cp++;
3084 1.204 maxv }
3085 1.224 maxv #endif
3086 1.204 maxv }
3087 1.204 maxv
3088 1.204 maxv static void
3089 1.204 maxv pool_redzone_check(struct pool *pp, void *p)
3090 1.204 maxv {
3091 1.224 maxv if (!pp->pr_redzone)
3092 1.224 maxv return;
3093 1.224 maxv #ifdef KASAN
3094 1.248 maxv kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3095 1.224 maxv #else
3096 1.204 maxv uint8_t *cp, pat, expected;
3097 1.204 maxv const uint8_t *ep;
3098 1.204 maxv
3099 1.204 maxv cp = (uint8_t *)p + pp->pr_reqsize;
3100 1.204 maxv ep = cp + POOL_REDZONE_SIZE;
3101 1.204 maxv
3102 1.204 maxv pat = pool_pattern_generate(cp);
3103 1.204 maxv expected = (pat == '\0') ? STATIC_BYTE: pat;
3104 1.264 maxv if (__predict_false(*cp != expected)) {
3105 1.264 maxv panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3106 1.264 maxv pp->pr_wchan, *cp, expected);
3107 1.204 maxv }
3108 1.204 maxv cp++;
3109 1.204 maxv
3110 1.204 maxv while (cp < ep) {
3111 1.204 maxv expected = pool_pattern_generate(cp);
3112 1.225 maxv if (__predict_false(*cp != expected)) {
3113 1.264 maxv panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3114 1.264 maxv pp->pr_wchan, *cp, expected);
3115 1.204 maxv }
3116 1.204 maxv cp++;
3117 1.204 maxv }
3118 1.224 maxv #endif
3119 1.204 maxv }
3120 1.204 maxv
3121 1.229 maxv static void
3122 1.229 maxv pool_cache_redzone_check(pool_cache_t pc, void *p)
3123 1.229 maxv {
3124 1.229 maxv #ifdef KASAN
3125 1.257 maxv /* If there is a ctor/dtor, leave the data as valid. */
3126 1.257 maxv if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
3127 1.229 maxv return;
3128 1.229 maxv }
3129 1.229 maxv #endif
3130 1.229 maxv pool_redzone_check(&pc->pc_pool, p);
3131 1.229 maxv }
3132 1.229 maxv
3133 1.204 maxv #endif /* POOL_REDZONE */
3134 1.204 maxv
3135 1.141 yamt #if defined(DDB)
3136 1.141 yamt static bool
3137 1.141 yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3138 1.141 yamt {
3139 1.141 yamt
3140 1.141 yamt return (uintptr_t)ph->ph_page <= addr &&
3141 1.141 yamt addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3142 1.141 yamt }
3143 1.141 yamt
3144 1.143 yamt static bool
3145 1.143 yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3146 1.143 yamt {
3147 1.143 yamt
3148 1.143 yamt return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3149 1.143 yamt }
3150 1.143 yamt
3151 1.143 yamt static bool
3152 1.143 yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3153 1.143 yamt {
3154 1.143 yamt int i;
3155 1.143 yamt
3156 1.143 yamt if (pcg == NULL) {
3157 1.143 yamt return false;
3158 1.143 yamt }
3159 1.144 yamt for (i = 0; i < pcg->pcg_avail; i++) {
3160 1.143 yamt if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3161 1.143 yamt return true;
3162 1.143 yamt }
3163 1.143 yamt }
3164 1.143 yamt return false;
3165 1.143 yamt }
3166 1.143 yamt
3167 1.143 yamt static bool
3168 1.143 yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3169 1.143 yamt {
3170 1.143 yamt
3171 1.242 maxv if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3172 1.234 maxv unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3173 1.143 yamt pool_item_bitmap_t *bitmap =
3174 1.143 yamt ph->ph_bitmap + (idx / BITMAP_SIZE);
3175 1.143 yamt pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3176 1.143 yamt
3177 1.143 yamt return (*bitmap & mask) == 0;
3178 1.143 yamt } else {
3179 1.143 yamt struct pool_item *pi;
3180 1.143 yamt
3181 1.143 yamt LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3182 1.143 yamt if (pool_in_item(pp, pi, addr)) {
3183 1.143 yamt return false;
3184 1.143 yamt }
3185 1.143 yamt }
3186 1.143 yamt return true;
3187 1.143 yamt }
3188 1.143 yamt }
3189 1.143 yamt
3190 1.141 yamt void
3191 1.141 yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3192 1.141 yamt {
3193 1.141 yamt struct pool *pp;
3194 1.141 yamt
3195 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3196 1.141 yamt struct pool_item_header *ph;
3197 1.141 yamt uintptr_t item;
3198 1.143 yamt bool allocated = true;
3199 1.143 yamt bool incache = false;
3200 1.143 yamt bool incpucache = false;
3201 1.143 yamt char cpucachestr[32];
3202 1.141 yamt
3203 1.141 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3204 1.141 yamt LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3205 1.141 yamt if (pool_in_page(pp, ph, addr)) {
3206 1.141 yamt goto found;
3207 1.141 yamt }
3208 1.141 yamt }
3209 1.141 yamt LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3210 1.141 yamt if (pool_in_page(pp, ph, addr)) {
3211 1.143 yamt allocated =
3212 1.143 yamt pool_allocated(pp, ph, addr);
3213 1.143 yamt goto found;
3214 1.143 yamt }
3215 1.143 yamt }
3216 1.143 yamt LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3217 1.143 yamt if (pool_in_page(pp, ph, addr)) {
3218 1.143 yamt allocated = false;
3219 1.141 yamt goto found;
3220 1.141 yamt }
3221 1.141 yamt }
3222 1.141 yamt continue;
3223 1.141 yamt } else {
3224 1.141 yamt ph = pr_find_pagehead_noalign(pp, (void *)addr);
3225 1.141 yamt if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3226 1.141 yamt continue;
3227 1.141 yamt }
3228 1.143 yamt allocated = pool_allocated(pp, ph, addr);
3229 1.141 yamt }
3230 1.141 yamt found:
3231 1.143 yamt if (allocated && pp->pr_cache) {
3232 1.143 yamt pool_cache_t pc = pp->pr_cache;
3233 1.143 yamt struct pool_cache_group *pcg;
3234 1.143 yamt int i;
3235 1.143 yamt
3236 1.143 yamt for (pcg = pc->pc_fullgroups; pcg != NULL;
3237 1.143 yamt pcg = pcg->pcg_next) {
3238 1.143 yamt if (pool_in_cg(pp, pcg, addr)) {
3239 1.143 yamt incache = true;
3240 1.143 yamt goto print;
3241 1.143 yamt }
3242 1.143 yamt }
3243 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3244 1.143 yamt pool_cache_cpu_t *cc;
3245 1.143 yamt
3246 1.143 yamt if ((cc = pc->pc_cpus[i]) == NULL) {
3247 1.143 yamt continue;
3248 1.143 yamt }
3249 1.143 yamt if (pool_in_cg(pp, cc->cc_current, addr) ||
3250 1.143 yamt pool_in_cg(pp, cc->cc_previous, addr)) {
3251 1.143 yamt struct cpu_info *ci =
3252 1.170 ad cpu_lookup(i);
3253 1.143 yamt
3254 1.143 yamt incpucache = true;
3255 1.143 yamt snprintf(cpucachestr,
3256 1.143 yamt sizeof(cpucachestr),
3257 1.143 yamt "cached by CPU %u",
3258 1.153 martin ci->ci_index);
3259 1.143 yamt goto print;
3260 1.143 yamt }
3261 1.143 yamt }
3262 1.143 yamt }
3263 1.143 yamt print:
3264 1.141 yamt item = (uintptr_t)ph->ph_page + ph->ph_off;
3265 1.141 yamt item = item + rounddown(addr - item, pp->pr_size);
3266 1.143 yamt (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3267 1.141 yamt (void *)addr, item, (size_t)(addr - item),
3268 1.143 yamt pp->pr_wchan,
3269 1.143 yamt incpucache ? cpucachestr :
3270 1.143 yamt incache ? "cached" : allocated ? "allocated" : "free");
3271 1.141 yamt }
3272 1.141 yamt }
3273 1.141 yamt #endif /* defined(DDB) */
3274 1.203 joerg
3275 1.203 joerg static int
3276 1.203 joerg pool_sysctl(SYSCTLFN_ARGS)
3277 1.203 joerg {
3278 1.203 joerg struct pool_sysctl data;
3279 1.203 joerg struct pool *pp;
3280 1.203 joerg struct pool_cache *pc;
3281 1.203 joerg pool_cache_cpu_t *cc;
3282 1.203 joerg int error;
3283 1.203 joerg size_t i, written;
3284 1.203 joerg
3285 1.203 joerg if (oldp == NULL) {
3286 1.203 joerg *oldlenp = 0;
3287 1.203 joerg TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3288 1.203 joerg *oldlenp += sizeof(data);
3289 1.203 joerg return 0;
3290 1.203 joerg }
3291 1.203 joerg
3292 1.203 joerg memset(&data, 0, sizeof(data));
3293 1.203 joerg error = 0;
3294 1.203 joerg written = 0;
3295 1.203 joerg TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3296 1.203 joerg if (written + sizeof(data) > *oldlenp)
3297 1.203 joerg break;
3298 1.203 joerg strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3299 1.203 joerg data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3300 1.203 joerg data.pr_flags = pp->pr_roflags | pp->pr_flags;
3301 1.203 joerg #define COPY(field) data.field = pp->field
3302 1.203 joerg COPY(pr_size);
3303 1.203 joerg
3304 1.203 joerg COPY(pr_itemsperpage);
3305 1.203 joerg COPY(pr_nitems);
3306 1.203 joerg COPY(pr_nout);
3307 1.203 joerg COPY(pr_hardlimit);
3308 1.203 joerg COPY(pr_npages);
3309 1.203 joerg COPY(pr_minpages);
3310 1.203 joerg COPY(pr_maxpages);
3311 1.203 joerg
3312 1.203 joerg COPY(pr_nget);
3313 1.203 joerg COPY(pr_nfail);
3314 1.203 joerg COPY(pr_nput);
3315 1.203 joerg COPY(pr_npagealloc);
3316 1.203 joerg COPY(pr_npagefree);
3317 1.203 joerg COPY(pr_hiwat);
3318 1.203 joerg COPY(pr_nidle);
3319 1.203 joerg #undef COPY
3320 1.203 joerg
3321 1.203 joerg data.pr_cache_nmiss_pcpu = 0;
3322 1.203 joerg data.pr_cache_nhit_pcpu = 0;
3323 1.203 joerg if (pp->pr_cache) {
3324 1.203 joerg pc = pp->pr_cache;
3325 1.203 joerg data.pr_cache_meta_size = pc->pc_pcgsize;
3326 1.203 joerg data.pr_cache_nfull = pc->pc_nfull;
3327 1.203 joerg data.pr_cache_npartial = pc->pc_npart;
3328 1.203 joerg data.pr_cache_nempty = pc->pc_nempty;
3329 1.203 joerg data.pr_cache_ncontended = pc->pc_contended;
3330 1.203 joerg data.pr_cache_nmiss_global = pc->pc_misses;
3331 1.203 joerg data.pr_cache_nhit_global = pc->pc_hits;
3332 1.203 joerg for (i = 0; i < pc->pc_ncpu; ++i) {
3333 1.203 joerg cc = pc->pc_cpus[i];
3334 1.203 joerg if (cc == NULL)
3335 1.203 joerg continue;
3336 1.206 knakahar data.pr_cache_nmiss_pcpu += cc->cc_misses;
3337 1.206 knakahar data.pr_cache_nhit_pcpu += cc->cc_hits;
3338 1.203 joerg }
3339 1.203 joerg } else {
3340 1.203 joerg data.pr_cache_meta_size = 0;
3341 1.203 joerg data.pr_cache_nfull = 0;
3342 1.203 joerg data.pr_cache_npartial = 0;
3343 1.203 joerg data.pr_cache_nempty = 0;
3344 1.203 joerg data.pr_cache_ncontended = 0;
3345 1.203 joerg data.pr_cache_nmiss_global = 0;
3346 1.203 joerg data.pr_cache_nhit_global = 0;
3347 1.203 joerg }
3348 1.203 joerg
3349 1.203 joerg error = sysctl_copyout(l, &data, oldp, sizeof(data));
3350 1.203 joerg if (error)
3351 1.203 joerg break;
3352 1.203 joerg written += sizeof(data);
3353 1.203 joerg oldp = (char *)oldp + sizeof(data);
3354 1.203 joerg }
3355 1.203 joerg
3356 1.203 joerg *oldlenp = written;
3357 1.203 joerg return error;
3358 1.203 joerg }
3359 1.203 joerg
3360 1.203 joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3361 1.203 joerg {
3362 1.203 joerg const struct sysctlnode *rnode = NULL;
3363 1.203 joerg
3364 1.203 joerg sysctl_createv(clog, 0, NULL, &rnode,
3365 1.203 joerg CTLFLAG_PERMANENT,
3366 1.203 joerg CTLTYPE_STRUCT, "pool",
3367 1.203 joerg SYSCTL_DESCR("Get pool statistics"),
3368 1.203 joerg pool_sysctl, 0, NULL, 0,
3369 1.203 joerg CTL_KERN, CTL_CREATE, CTL_EOL);
3370 1.203 joerg }
3371