Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.271
      1  1.271        ad /*	$NetBSD: subr_pool.c,v 1.271 2020/06/14 21:34:25 ad Exp $	*/
      2    1.1        pk 
      3  1.229      maxv /*
      4  1.271        ad  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
      5  1.271        ad  *     2020 The NetBSD Foundation, Inc.
      6    1.1        pk  * All rights reserved.
      7    1.1        pk  *
      8    1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9   1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10  1.204      maxv  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11  1.204      maxv  * Maxime Villard.
     12    1.1        pk  *
     13    1.1        pk  * Redistribution and use in source and binary forms, with or without
     14    1.1        pk  * modification, are permitted provided that the following conditions
     15    1.1        pk  * are met:
     16    1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17    1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18    1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19    1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20    1.1        pk  *    documentation and/or other materials provided with the distribution.
     21    1.1        pk  *
     22    1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23    1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24    1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25    1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26    1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27    1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28    1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29    1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30    1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31    1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32    1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33    1.1        pk  */
     34   1.64     lukem 
     35   1.64     lukem #include <sys/cdefs.h>
     36  1.271        ad __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.271 2020/06/14 21:34:25 ad Exp $");
     37   1.24    scottr 
     38  1.205     pooka #ifdef _KERNEL_OPT
     39  1.141      yamt #include "opt_ddb.h"
     40   1.28   thorpej #include "opt_lockdebug.h"
     41  1.249      maxv #include "opt_pool.h"
     42  1.205     pooka #endif
     43    1.1        pk 
     44    1.1        pk #include <sys/param.h>
     45    1.1        pk #include <sys/systm.h>
     46  1.203     joerg #include <sys/sysctl.h>
     47  1.135      yamt #include <sys/bitops.h>
     48    1.1        pk #include <sys/proc.h>
     49    1.1        pk #include <sys/errno.h>
     50    1.1        pk #include <sys/kernel.h>
     51  1.191      para #include <sys/vmem.h>
     52    1.1        pk #include <sys/pool.h>
     53   1.20   thorpej #include <sys/syslog.h>
     54  1.125        ad #include <sys/debug.h>
     55  1.271        ad #include <sys/lock.h>
     56  1.134        ad #include <sys/lockdebug.h>
     57  1.134        ad #include <sys/xcall.h>
     58  1.134        ad #include <sys/cpu.h>
     59  1.145        ad #include <sys/atomic.h>
     60  1.224      maxv #include <sys/asan.h>
     61  1.262      maxv #include <sys/msan.h>
     62  1.270      maxv #include <sys/fault.h>
     63    1.3        pk 
     64  1.187  uebayasi #include <uvm/uvm_extern.h>
     65    1.3        pk 
     66    1.1        pk /*
     67    1.1        pk  * Pool resource management utility.
     68    1.3        pk  *
     69   1.88       chs  * Memory is allocated in pages which are split into pieces according to
     70   1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     71   1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     72   1.88       chs  * for empty, full and partially-full pages respectively. The individual
     73   1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     74   1.88       chs  * header. The memory for building the page list is either taken from
     75   1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     76   1.88       chs  * an internal pool of page headers (`phpool').
     77    1.1        pk  */
     78    1.1        pk 
     79  1.221      para /* List of all pools. Non static as needed by 'vmstat -m' */
     80  1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     81  1.134        ad 
     82    1.3        pk /* Private pool for page header structures */
     83   1.97      yamt #define	PHPOOL_MAX	8
     84   1.97      yamt static struct pool phpool[PHPOOL_MAX];
     85  1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     86  1.256      maxv 	(((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
     87    1.3        pk 
     88  1.262      maxv #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
     89  1.224      maxv #define POOL_REDZONE
     90  1.224      maxv #endif
     91  1.224      maxv 
     92  1.268      maxv #if defined(POOL_QUARANTINE)
     93  1.268      maxv #define POOL_NOCACHE
     94  1.268      maxv #endif
     95  1.268      maxv 
     96  1.204      maxv #ifdef POOL_REDZONE
     97  1.224      maxv # ifdef KASAN
     98  1.224      maxv #  define POOL_REDZONE_SIZE 8
     99  1.224      maxv # else
    100  1.224      maxv #  define POOL_REDZONE_SIZE 2
    101  1.224      maxv # endif
    102  1.204      maxv static void pool_redzone_init(struct pool *, size_t);
    103  1.204      maxv static void pool_redzone_fill(struct pool *, void *);
    104  1.204      maxv static void pool_redzone_check(struct pool *, void *);
    105  1.229      maxv static void pool_cache_redzone_check(pool_cache_t, void *);
    106  1.204      maxv #else
    107  1.229      maxv # define pool_redzone_init(pp, sz)		__nothing
    108  1.229      maxv # define pool_redzone_fill(pp, ptr)		__nothing
    109  1.229      maxv # define pool_redzone_check(pp, ptr)		__nothing
    110  1.229      maxv # define pool_cache_redzone_check(pc, ptr)	__nothing
    111  1.204      maxv #endif
    112  1.204      maxv 
    113  1.262      maxv #ifdef KMSAN
    114  1.262      maxv static inline void pool_get_kmsan(struct pool *, void *);
    115  1.262      maxv static inline void pool_put_kmsan(struct pool *, void *);
    116  1.262      maxv static inline void pool_cache_get_kmsan(pool_cache_t, void *);
    117  1.262      maxv static inline void pool_cache_put_kmsan(pool_cache_t, void *);
    118  1.262      maxv #else
    119  1.262      maxv #define pool_get_kmsan(pp, ptr)		__nothing
    120  1.262      maxv #define pool_put_kmsan(pp, ptr)		__nothing
    121  1.262      maxv #define pool_cache_get_kmsan(pc, ptr)	__nothing
    122  1.262      maxv #define pool_cache_put_kmsan(pc, ptr)	__nothing
    123  1.262      maxv #endif
    124  1.262      maxv 
    125  1.249      maxv #ifdef POOL_QUARANTINE
    126  1.249      maxv static void pool_quarantine_init(struct pool *);
    127  1.249      maxv static void pool_quarantine_flush(struct pool *);
    128  1.249      maxv static bool pool_put_quarantine(struct pool *, void *,
    129  1.249      maxv     struct pool_pagelist *);
    130  1.249      maxv #else
    131  1.249      maxv #define pool_quarantine_init(a)			__nothing
    132  1.249      maxv #define pool_quarantine_flush(a)		__nothing
    133  1.249      maxv #define pool_put_quarantine(a, b, c)		false
    134  1.268      maxv #endif
    135  1.268      maxv 
    136  1.268      maxv #ifdef POOL_NOCACHE
    137  1.268      maxv static bool pool_cache_put_nocache(pool_cache_t, void *);
    138  1.268      maxv #else
    139  1.268      maxv #define pool_cache_put_nocache(a, b)		false
    140  1.249      maxv #endif
    141  1.249      maxv 
    142  1.261  christos #define NO_CTOR	__FPTRCAST(int (*)(void *, void *, int), nullop)
    143  1.261  christos #define NO_DTOR	__FPTRCAST(void (*)(void *, void *), nullop)
    144  1.261  christos 
    145  1.261  christos #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
    146  1.261  christos #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
    147  1.229      maxv 
    148  1.258      maxv /*
    149  1.258      maxv  * Pool backend allocators.
    150  1.258      maxv  *
    151  1.258      maxv  * Each pool has a backend allocator that handles allocation, deallocation,
    152  1.258      maxv  * and any additional draining that might be needed.
    153  1.258      maxv  *
    154  1.258      maxv  * We provide two standard allocators:
    155  1.258      maxv  *
    156  1.258      maxv  *	pool_allocator_kmem - the default when no allocator is specified
    157  1.258      maxv  *
    158  1.258      maxv  *	pool_allocator_nointr - used for pools that will not be accessed
    159  1.258      maxv  *	in interrupt context.
    160  1.258      maxv  */
    161  1.258      maxv void *pool_page_alloc(struct pool *, int);
    162  1.258      maxv void pool_page_free(struct pool *, void *);
    163  1.258      maxv 
    164   1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    165   1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    166   1.98      yamt 
    167  1.258      maxv struct pool_allocator pool_allocator_kmem = {
    168  1.258      maxv 	.pa_alloc = pool_page_alloc,
    169  1.258      maxv 	.pa_free = pool_page_free,
    170  1.258      maxv 	.pa_pagesz = 0
    171  1.258      maxv };
    172  1.258      maxv 
    173  1.258      maxv struct pool_allocator pool_allocator_nointr = {
    174  1.258      maxv 	.pa_alloc = pool_page_alloc,
    175  1.258      maxv 	.pa_free = pool_page_free,
    176  1.258      maxv 	.pa_pagesz = 0
    177  1.258      maxv };
    178  1.258      maxv 
    179  1.134        ad struct pool_allocator pool_allocator_meta = {
    180  1.191      para 	.pa_alloc = pool_page_alloc_meta,
    181  1.191      para 	.pa_free = pool_page_free_meta,
    182  1.191      para 	.pa_pagesz = 0
    183   1.98      yamt };
    184   1.98      yamt 
    185  1.208       chs #define POOL_ALLOCATOR_BIG_BASE 13
    186  1.258      maxv static struct pool_allocator pool_allocator_big[] = {
    187  1.258      maxv 	{
    188  1.258      maxv 		.pa_alloc = pool_page_alloc,
    189  1.258      maxv 		.pa_free = pool_page_free,
    190  1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
    191  1.258      maxv 	},
    192  1.258      maxv 	{
    193  1.258      maxv 		.pa_alloc = pool_page_alloc,
    194  1.258      maxv 		.pa_free = pool_page_free,
    195  1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
    196  1.258      maxv 	},
    197  1.258      maxv 	{
    198  1.258      maxv 		.pa_alloc = pool_page_alloc,
    199  1.258      maxv 		.pa_free = pool_page_free,
    200  1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
    201  1.258      maxv 	},
    202  1.258      maxv 	{
    203  1.258      maxv 		.pa_alloc = pool_page_alloc,
    204  1.258      maxv 		.pa_free = pool_page_free,
    205  1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
    206  1.258      maxv 	},
    207  1.258      maxv 	{
    208  1.258      maxv 		.pa_alloc = pool_page_alloc,
    209  1.258      maxv 		.pa_free = pool_page_free,
    210  1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
    211  1.258      maxv 	},
    212  1.258      maxv 	{
    213  1.258      maxv 		.pa_alloc = pool_page_alloc,
    214  1.258      maxv 		.pa_free = pool_page_free,
    215  1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
    216  1.258      maxv 	},
    217  1.258      maxv 	{
    218  1.258      maxv 		.pa_alloc = pool_page_alloc,
    219  1.258      maxv 		.pa_free = pool_page_free,
    220  1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
    221  1.258      maxv 	},
    222  1.258      maxv 	{
    223  1.258      maxv 		.pa_alloc = pool_page_alloc,
    224  1.258      maxv 		.pa_free = pool_page_free,
    225  1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
    226  1.258      maxv 	}
    227  1.258      maxv };
    228  1.258      maxv 
    229  1.208       chs static int pool_bigidx(size_t);
    230  1.208       chs 
    231    1.3        pk /* # of seconds to retain page after last use */
    232    1.3        pk int pool_inactive_time = 10;
    233    1.3        pk 
    234    1.3        pk /* Next candidate for drainage (see pool_drain()) */
    235  1.236      maxv static struct pool *drainpp;
    236   1.23   thorpej 
    237  1.134        ad /* This lock protects both pool_head and drainpp. */
    238  1.134        ad static kmutex_t pool_head_lock;
    239  1.134        ad static kcondvar_t pool_busy;
    240    1.3        pk 
    241  1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    242  1.178      elad static kmutex_t pool_allocator_lock;
    243  1.178      elad 
    244  1.245      maxv static unsigned int poolid_counter = 0;
    245  1.245      maxv 
    246  1.135      yamt typedef uint32_t pool_item_bitmap_t;
    247  1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    248  1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    249  1.256      maxv #define	BITMAP_MIN_SIZE	(CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
    250   1.99      yamt 
    251    1.3        pk struct pool_item_header {
    252    1.3        pk 	/* Page headers */
    253   1.88       chs 	LIST_ENTRY(pool_item_header)
    254    1.3        pk 				ph_pagelist;	/* pool page list */
    255  1.245      maxv 	union {
    256  1.245      maxv 		/* !PR_PHINPAGE */
    257  1.245      maxv 		struct {
    258  1.245      maxv 			SPLAY_ENTRY(pool_item_header)
    259  1.245      maxv 				phu_node;	/* off-page page headers */
    260  1.245      maxv 		} phu_offpage;
    261  1.245      maxv 		/* PR_PHINPAGE */
    262  1.245      maxv 		struct {
    263  1.245      maxv 			unsigned int phu_poolid;
    264  1.245      maxv 		} phu_onpage;
    265  1.245      maxv 	} ph_u1;
    266  1.128  christos 	void *			ph_page;	/* this page's address */
    267  1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    268  1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    269  1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    270   1.97      yamt 	union {
    271  1.242      maxv 		/* !PR_USEBMAP */
    272   1.97      yamt 		struct {
    273  1.102       chs 			LIST_HEAD(, pool_item)
    274   1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    275   1.97      yamt 		} phu_normal;
    276  1.242      maxv 		/* PR_USEBMAP */
    277   1.97      yamt 		struct {
    278  1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    279   1.97      yamt 		} phu_notouch;
    280  1.245      maxv 	} ph_u2;
    281    1.3        pk };
    282  1.245      maxv #define ph_node		ph_u1.phu_offpage.phu_node
    283  1.245      maxv #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    284  1.245      maxv #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    285  1.245      maxv #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    286    1.3        pk 
    287  1.240      maxv #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    288  1.240      maxv 
    289  1.256      maxv CTASSERT(offsetof(struct pool_item_header, ph_u2) +
    290  1.256      maxv     BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
    291  1.256      maxv 
    292  1.229      maxv #if defined(DIAGNOSTIC) && !defined(KASAN)
    293  1.229      maxv #define POOL_CHECK_MAGIC
    294  1.229      maxv #endif
    295  1.229      maxv 
    296    1.1        pk struct pool_item {
    297  1.229      maxv #ifdef POOL_CHECK_MAGIC
    298   1.82   thorpej 	u_int pi_magic;
    299   1.33       chs #endif
    300  1.134        ad #define	PI_MAGIC 0xdeaddeadU
    301    1.3        pk 	/* Other entries use only this list entry */
    302  1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    303    1.3        pk };
    304    1.3        pk 
    305   1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    306  1.267       chs 	((pp)->pr_nitems < (pp)->pr_minitems ||				\
    307  1.267       chs 	 (pp)->pr_npages < (pp)->pr_minpages)
    308  1.253      maxv #define	POOL_OBJ_TO_PAGE(pp, v)						\
    309  1.253      maxv 	(void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
    310   1.53   thorpej 
    311   1.43   thorpej /*
    312   1.43   thorpej  * Pool cache management.
    313   1.43   thorpej  *
    314   1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    315   1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    316   1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    317   1.43   thorpej  * necessary.
    318   1.43   thorpej  *
    319  1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    320  1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    321  1.134        ad  * object from the pool, it calls the object's constructor and places it
    322  1.134        ad  * into a cache group.  When a cache group frees an object back to the
    323  1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    324  1.134        ad  * to persist in constructed form while freed to the cache.
    325  1.134        ad  *
    326  1.134        ad  * The pool references each cache, so that when a pool is drained by the
    327  1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    328  1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    329  1.134        ad  * its entirety.
    330   1.43   thorpej  *
    331   1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    332   1.43   thorpej  * the complexity of cache management for pools which would not benefit
    333   1.43   thorpej  * from it.
    334   1.43   thorpej  */
    335   1.43   thorpej 
    336  1.142        ad static struct pool pcg_normal_pool;
    337  1.142        ad static struct pool pcg_large_pool;
    338  1.134        ad static struct pool cache_pool;
    339  1.134        ad static struct pool cache_cpu_pool;
    340    1.3        pk 
    341  1.271        ad static pcg_t *volatile pcg_large_cache __cacheline_aligned;
    342  1.271        ad static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
    343  1.271        ad 
    344  1.145        ad /* List of all caches. */
    345  1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    346  1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    347  1.145        ad 
    348  1.162        ad int pool_cache_disable;		/* global disable for caching */
    349  1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    350  1.145        ad 
    351  1.271        ad static bool	pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
    352  1.162        ad 				    void *);
    353  1.271        ad static bool	pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
    354  1.162        ad 				    void **, paddr_t *, int);
    355  1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    356  1.271        ad static int	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    357  1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    358  1.196       jym static void	pool_cache_transfer(pool_cache_t);
    359  1.271        ad static int	pool_pcg_get(pcg_t *volatile *, pcg_t **);
    360  1.271        ad static int	pool_pcg_put(pcg_t *volatile *, pcg_t *);
    361  1.271        ad static pcg_t *	pool_pcg_trunc(pcg_t *volatile *);
    362    1.3        pk 
    363   1.42   thorpej static int	pool_catchup(struct pool *);
    364  1.128  christos static void	pool_prime_page(struct pool *, void *,
    365   1.55   thorpej 		    struct pool_item_header *);
    366   1.88       chs static void	pool_update_curpage(struct pool *);
    367   1.66   thorpej 
    368  1.113      yamt static int	pool_grow(struct pool *, int);
    369  1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    370  1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    371    1.3        pk 
    372   1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    373  1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    374   1.42   thorpej static void pool_print1(struct pool *, const char *,
    375  1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    376    1.3        pk 
    377   1.88       chs static int pool_chk_page(struct pool *, const char *,
    378   1.88       chs 			 struct pool_item_header *);
    379   1.88       chs 
    380  1.234      maxv /* -------------------------------------------------------------------------- */
    381  1.234      maxv 
    382  1.135      yamt static inline unsigned int
    383  1.234      maxv pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    384   1.97      yamt     const void *v)
    385   1.97      yamt {
    386   1.97      yamt 	const char *cp = v;
    387  1.135      yamt 	unsigned int idx;
    388   1.97      yamt 
    389  1.242      maxv 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    390  1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    391  1.237      maxv 
    392  1.237      maxv 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    393  1.237      maxv 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    394  1.237      maxv 		    pp->pr_itemsperpage);
    395  1.237      maxv 	}
    396  1.237      maxv 
    397   1.97      yamt 	return idx;
    398   1.97      yamt }
    399   1.97      yamt 
    400  1.110     perry static inline void
    401  1.234      maxv pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    402   1.97      yamt     void *obj)
    403   1.97      yamt {
    404  1.234      maxv 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    405  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    406  1.223     kamil 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    407   1.97      yamt 
    408  1.237      maxv 	if (__predict_false((*bitmap & mask) != 0)) {
    409  1.237      maxv 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    410  1.237      maxv 	}
    411  1.237      maxv 
    412  1.135      yamt 	*bitmap |= mask;
    413   1.97      yamt }
    414   1.97      yamt 
    415  1.110     perry static inline void *
    416  1.234      maxv pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    417   1.97      yamt {
    418  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    419  1.135      yamt 	unsigned int idx;
    420  1.135      yamt 	int i;
    421   1.97      yamt 
    422  1.135      yamt 	for (i = 0; ; i++) {
    423  1.135      yamt 		int bit;
    424   1.97      yamt 
    425  1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    426  1.135      yamt 		bit = ffs32(bitmap[i]);
    427  1.135      yamt 		if (bit) {
    428  1.135      yamt 			pool_item_bitmap_t mask;
    429  1.135      yamt 
    430  1.135      yamt 			bit--;
    431  1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    432  1.222     kamil 			mask = 1U << bit;
    433  1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    434  1.135      yamt 			bitmap[i] &= ~mask;
    435  1.135      yamt 			break;
    436  1.135      yamt 		}
    437  1.135      yamt 	}
    438  1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    439  1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    440   1.97      yamt }
    441   1.97      yamt 
    442  1.135      yamt static inline void
    443  1.234      maxv pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    444  1.135      yamt {
    445  1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    446  1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    447  1.135      yamt 	int i;
    448  1.135      yamt 
    449  1.135      yamt 	for (i = 0; i < n; i++) {
    450  1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    451  1.135      yamt 	}
    452  1.135      yamt }
    453  1.135      yamt 
    454  1.234      maxv /* -------------------------------------------------------------------------- */
    455  1.234      maxv 
    456  1.234      maxv static inline void
    457  1.234      maxv pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    458  1.234      maxv     void *obj)
    459  1.234      maxv {
    460  1.234      maxv 	struct pool_item *pi = obj;
    461  1.234      maxv 
    462  1.234      maxv #ifdef POOL_CHECK_MAGIC
    463  1.234      maxv 	pi->pi_magic = PI_MAGIC;
    464  1.234      maxv #endif
    465  1.234      maxv 
    466  1.234      maxv 	if (pp->pr_redzone) {
    467  1.234      maxv 		/*
    468  1.234      maxv 		 * Mark the pool_item as valid. The rest is already
    469  1.234      maxv 		 * invalid.
    470  1.234      maxv 		 */
    471  1.248      maxv 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
    472  1.234      maxv 	}
    473  1.234      maxv 
    474  1.234      maxv 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    475  1.234      maxv }
    476  1.234      maxv 
    477  1.234      maxv static inline void *
    478  1.234      maxv pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    479  1.234      maxv {
    480  1.234      maxv 	struct pool_item *pi;
    481  1.234      maxv 	void *v;
    482  1.234      maxv 
    483  1.234      maxv 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    484  1.234      maxv 	if (__predict_false(v == NULL)) {
    485  1.234      maxv 		mutex_exit(&pp->pr_lock);
    486  1.234      maxv 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    487  1.234      maxv 	}
    488  1.234      maxv 	KASSERTMSG((pp->pr_nitems > 0),
    489  1.234      maxv 	    "%s: [%s] nitems %u inconsistent on itemlist",
    490  1.234      maxv 	    __func__, pp->pr_wchan, pp->pr_nitems);
    491  1.234      maxv #ifdef POOL_CHECK_MAGIC
    492  1.234      maxv 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    493  1.234      maxv 	    "%s: [%s] free list modified: "
    494  1.234      maxv 	    "magic=%x; page %p; item addr %p", __func__,
    495  1.234      maxv 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    496  1.234      maxv #endif
    497  1.234      maxv 
    498  1.234      maxv 	/*
    499  1.234      maxv 	 * Remove from item list.
    500  1.234      maxv 	 */
    501  1.234      maxv 	LIST_REMOVE(pi, pi_list);
    502  1.234      maxv 
    503  1.234      maxv 	return v;
    504  1.234      maxv }
    505  1.234      maxv 
    506  1.234      maxv /* -------------------------------------------------------------------------- */
    507  1.234      maxv 
    508  1.253      maxv static inline void
    509  1.253      maxv pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
    510  1.253      maxv     void *object)
    511  1.253      maxv {
    512  1.253      maxv 	if (__predict_false((void *)ph->ph_page != page)) {
    513  1.253      maxv 		panic("%s: [%s] item %p not part of pool", __func__,
    514  1.253      maxv 		    pp->pr_wchan, object);
    515  1.253      maxv 	}
    516  1.253      maxv 	if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
    517  1.253      maxv 		panic("%s: [%s] item %p below item space", __func__,
    518  1.253      maxv 		    pp->pr_wchan, object);
    519  1.253      maxv 	}
    520  1.253      maxv 	if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    521  1.253      maxv 		panic("%s: [%s] item %p poolid %u != %u", __func__,
    522  1.253      maxv 		    pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
    523  1.253      maxv 	}
    524  1.253      maxv }
    525  1.253      maxv 
    526  1.253      maxv static inline void
    527  1.253      maxv pc_phinpage_check(pool_cache_t pc, void *object)
    528  1.253      maxv {
    529  1.253      maxv 	struct pool_item_header *ph;
    530  1.253      maxv 	struct pool *pp;
    531  1.253      maxv 	void *page;
    532  1.253      maxv 
    533  1.253      maxv 	pp = &pc->pc_pool;
    534  1.253      maxv 	page = POOL_OBJ_TO_PAGE(pp, object);
    535  1.253      maxv 	ph = (struct pool_item_header *)page;
    536  1.253      maxv 
    537  1.253      maxv 	pr_phinpage_check(pp, ph, page, object);
    538  1.253      maxv }
    539  1.253      maxv 
    540  1.253      maxv /* -------------------------------------------------------------------------- */
    541  1.253      maxv 
    542  1.110     perry static inline int
    543   1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    544   1.88       chs {
    545  1.121      yamt 
    546  1.121      yamt 	/*
    547  1.236      maxv 	 * We consider pool_item_header with smaller ph_page bigger. This
    548  1.236      maxv 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    549  1.121      yamt 	 */
    550   1.88       chs 	if (a->ph_page < b->ph_page)
    551  1.236      maxv 		return 1;
    552  1.121      yamt 	else if (a->ph_page > b->ph_page)
    553  1.236      maxv 		return -1;
    554   1.88       chs 	else
    555  1.236      maxv 		return 0;
    556   1.88       chs }
    557   1.88       chs 
    558   1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    559   1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    560   1.88       chs 
    561  1.141      yamt static inline struct pool_item_header *
    562  1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    563  1.141      yamt {
    564  1.141      yamt 	struct pool_item_header *ph, tmp;
    565  1.141      yamt 
    566  1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    567  1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    568  1.141      yamt 	if (ph == NULL) {
    569  1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    570  1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    571  1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    572  1.141      yamt 		}
    573  1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    574  1.141      yamt 	}
    575  1.141      yamt 
    576  1.141      yamt 	return ph;
    577  1.141      yamt }
    578  1.141      yamt 
    579    1.3        pk /*
    580  1.121      yamt  * Return the pool page header based on item address.
    581    1.3        pk  */
    582  1.110     perry static inline struct pool_item_header *
    583  1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    584    1.3        pk {
    585   1.88       chs 	struct pool_item_header *ph, tmp;
    586    1.3        pk 
    587  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    588  1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    589  1.121      yamt 	} else {
    590  1.253      maxv 		void *page = POOL_OBJ_TO_PAGE(pp, v);
    591  1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    592  1.241      maxv 			ph = (struct pool_item_header *)page;
    593  1.253      maxv 			pr_phinpage_check(pp, ph, page, v);
    594  1.121      yamt 		} else {
    595  1.121      yamt 			tmp.ph_page = page;
    596  1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    597  1.121      yamt 		}
    598  1.121      yamt 	}
    599    1.3        pk 
    600  1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    601  1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    602  1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    603   1.88       chs 	return ph;
    604    1.3        pk }
    605    1.3        pk 
    606  1.101   thorpej static void
    607  1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    608  1.101   thorpej {
    609  1.101   thorpej 	struct pool_item_header *ph;
    610  1.101   thorpej 
    611  1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    612  1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    613  1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    614  1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    615  1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    616  1.101   thorpej 	}
    617  1.101   thorpej }
    618  1.101   thorpej 
    619    1.3        pk /*
    620    1.3        pk  * Remove a page from the pool.
    621    1.3        pk  */
    622  1.110     perry static inline void
    623   1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    624   1.61       chs      struct pool_pagelist *pq)
    625    1.3        pk {
    626    1.3        pk 
    627  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    628   1.91      yamt 
    629    1.3        pk 	/*
    630    1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    631    1.3        pk 	 */
    632    1.6   thorpej 	if (ph->ph_nmissing == 0) {
    633  1.207  riastrad 		KASSERT(pp->pr_nidle != 0);
    634  1.207  riastrad 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    635  1.251  christos 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
    636  1.251  christos 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
    637    1.6   thorpej 		pp->pr_nidle--;
    638    1.6   thorpej 	}
    639    1.7   thorpej 
    640   1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    641   1.20   thorpej 
    642    1.7   thorpej 	/*
    643  1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    644    1.7   thorpej 	 */
    645   1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    646  1.245      maxv 	if (pp->pr_roflags & PR_PHINPAGE) {
    647  1.245      maxv 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    648  1.245      maxv 			panic("%s: [%s] ph %p poolid %u != %u",
    649  1.245      maxv 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    650  1.245      maxv 			    pp->pr_poolid);
    651  1.245      maxv 		}
    652  1.245      maxv 	} else {
    653   1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    654  1.245      maxv 	}
    655  1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    656  1.101   thorpej 
    657    1.7   thorpej 	pp->pr_npages--;
    658    1.7   thorpej 	pp->pr_npagefree++;
    659    1.6   thorpej 
    660   1.88       chs 	pool_update_curpage(pp);
    661    1.3        pk }
    662    1.3        pk 
    663    1.3        pk /*
    664   1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    665   1.94    simonb  */
    666   1.94    simonb void
    667  1.117      yamt pool_subsystem_init(void)
    668   1.94    simonb {
    669  1.192     rmind 	size_t size;
    670  1.191      para 	int idx;
    671   1.94    simonb 
    672  1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    673  1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    674  1.134        ad 	cv_init(&pool_busy, "poolbusy");
    675  1.134        ad 
    676  1.191      para 	/*
    677  1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    678  1.191      para 	 * haven't done so yet.
    679  1.191      para 	 */
    680  1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    681  1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    682  1.191      para 		int nelem;
    683  1.191      para 		size_t sz;
    684  1.191      para 
    685  1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    686  1.256      maxv 		KASSERT(nelem != 0);
    687  1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    688  1.191      para 		    "phpool-%d", nelem);
    689  1.256      maxv 		sz = offsetof(struct pool_item_header,
    690  1.256      maxv 		    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    691  1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    692  1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    693  1.117      yamt 	}
    694  1.191      para 
    695  1.191      para 	size = sizeof(pcg_t) +
    696  1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    697  1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    698  1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    699  1.191      para 
    700  1.191      para 	size = sizeof(pcg_t) +
    701  1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    702  1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    703  1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    704  1.134        ad 
    705  1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    706  1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    707  1.134        ad 
    708  1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    709  1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    710   1.94    simonb }
    711   1.94    simonb 
    712  1.240      maxv static inline bool
    713  1.240      maxv pool_init_is_phinpage(const struct pool *pp)
    714  1.240      maxv {
    715  1.240      maxv 	size_t pagesize;
    716  1.240      maxv 
    717  1.240      maxv 	if (pp->pr_roflags & PR_PHINPAGE) {
    718  1.240      maxv 		return true;
    719  1.240      maxv 	}
    720  1.240      maxv 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    721  1.240      maxv 		return false;
    722  1.240      maxv 	}
    723  1.240      maxv 
    724  1.240      maxv 	pagesize = pp->pr_alloc->pa_pagesz;
    725  1.240      maxv 
    726  1.240      maxv 	/*
    727  1.240      maxv 	 * Threshold: the item size is below 1/16 of a page size, and below
    728  1.240      maxv 	 * 8 times the page header size. The latter ensures we go off-page
    729  1.240      maxv 	 * if the page header would make us waste a rather big item.
    730  1.240      maxv 	 */
    731  1.240      maxv 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    732  1.240      maxv 		return true;
    733  1.240      maxv 	}
    734  1.240      maxv 
    735  1.240      maxv 	/* Put the header into the page if it doesn't waste any items. */
    736  1.240      maxv 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    737  1.240      maxv 		return true;
    738  1.240      maxv 	}
    739  1.240      maxv 
    740  1.240      maxv 	return false;
    741  1.240      maxv }
    742  1.240      maxv 
    743  1.242      maxv static inline bool
    744  1.242      maxv pool_init_is_usebmap(const struct pool *pp)
    745  1.242      maxv {
    746  1.243      maxv 	size_t bmapsize;
    747  1.243      maxv 
    748  1.242      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
    749  1.242      maxv 		return true;
    750  1.242      maxv 	}
    751  1.242      maxv 
    752  1.243      maxv 	/*
    753  1.256      maxv 	 * If we're off-page, go with a bitmap.
    754  1.256      maxv 	 */
    755  1.256      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    756  1.256      maxv 		return true;
    757  1.256      maxv 	}
    758  1.256      maxv 
    759  1.256      maxv 	/*
    760  1.243      maxv 	 * If we're on-page, and the page header can already contain a bitmap
    761  1.243      maxv 	 * big enough to cover all the items of the page, go with a bitmap.
    762  1.243      maxv 	 */
    763  1.243      maxv 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    764  1.243      maxv 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    765  1.243      maxv 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    766  1.243      maxv 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    767  1.243      maxv 		return true;
    768  1.243      maxv 	}
    769  1.243      maxv 
    770  1.242      maxv 	return false;
    771  1.242      maxv }
    772  1.242      maxv 
    773   1.94    simonb /*
    774    1.3        pk  * Initialize the given pool resource structure.
    775    1.3        pk  *
    776    1.3        pk  * We export this routine to allow other kernel parts to declare
    777  1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    778    1.3        pk  */
    779    1.3        pk void
    780   1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    781  1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    782    1.3        pk {
    783  1.116    simonb 	struct pool *pp1;
    784  1.240      maxv 	size_t prsize;
    785  1.237      maxv 	int itemspace, slack;
    786    1.3        pk 
    787  1.238      maxv 	/* XXX ioff will be removed. */
    788  1.238      maxv 	KASSERT(ioff == 0);
    789  1.238      maxv 
    790  1.116    simonb #ifdef DEBUG
    791  1.198  christos 	if (__predict_true(!cold))
    792  1.198  christos 		mutex_enter(&pool_head_lock);
    793  1.116    simonb 	/*
    794  1.116    simonb 	 * Check that the pool hasn't already been initialised and
    795  1.116    simonb 	 * added to the list of all pools.
    796  1.116    simonb 	 */
    797  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    798  1.116    simonb 		if (pp == pp1)
    799  1.213  christos 			panic("%s: [%s] already initialised", __func__,
    800  1.116    simonb 			    wchan);
    801  1.116    simonb 	}
    802  1.198  christos 	if (__predict_true(!cold))
    803  1.198  christos 		mutex_exit(&pool_head_lock);
    804  1.116    simonb #endif
    805  1.116    simonb 
    806   1.66   thorpej 	if (palloc == NULL)
    807   1.66   thorpej 		palloc = &pool_allocator_kmem;
    808  1.244      maxv 
    809  1.180   mlelstv 	if (!cold)
    810  1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    811  1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    812  1.112     bjh21 		if (palloc->pa_pagesz == 0)
    813   1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    814   1.66   thorpej 
    815   1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    816   1.66   thorpej 
    817  1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    818   1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    819   1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    820    1.4   thorpej 	}
    821  1.180   mlelstv 	if (!cold)
    822  1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    823    1.3        pk 
    824    1.3        pk 	if (align == 0)
    825    1.3        pk 		align = ALIGN(1);
    826   1.14   thorpej 
    827  1.204      maxv 	prsize = size;
    828  1.204      maxv 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    829  1.204      maxv 		prsize = sizeof(struct pool_item);
    830    1.3        pk 
    831  1.204      maxv 	prsize = roundup(prsize, align);
    832  1.207  riastrad 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    833  1.213  christos 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    834  1.213  christos 	    __func__, wchan, prsize, palloc->pa_pagesz);
    835   1.35        pk 
    836    1.3        pk 	/*
    837    1.3        pk 	 * Initialize the pool structure.
    838    1.3        pk 	 */
    839   1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    840   1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    841   1.88       chs 	LIST_INIT(&pp->pr_partpages);
    842  1.134        ad 	pp->pr_cache = NULL;
    843    1.3        pk 	pp->pr_curpage = NULL;
    844    1.3        pk 	pp->pr_npages = 0;
    845    1.3        pk 	pp->pr_minitems = 0;
    846    1.3        pk 	pp->pr_minpages = 0;
    847    1.3        pk 	pp->pr_maxpages = UINT_MAX;
    848   1.20   thorpej 	pp->pr_roflags = flags;
    849   1.20   thorpej 	pp->pr_flags = 0;
    850  1.204      maxv 	pp->pr_size = prsize;
    851  1.233      maxv 	pp->pr_reqsize = size;
    852    1.3        pk 	pp->pr_align = align;
    853    1.3        pk 	pp->pr_wchan = wchan;
    854   1.66   thorpej 	pp->pr_alloc = palloc;
    855  1.245      maxv 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    856   1.20   thorpej 	pp->pr_nitems = 0;
    857   1.20   thorpej 	pp->pr_nout = 0;
    858   1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    859   1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    860   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    861   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    862   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    863   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    864   1.68   thorpej 	pp->pr_drain_hook = NULL;
    865   1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    866  1.125        ad 	pp->pr_freecheck = NULL;
    867  1.255      maxv 	pp->pr_redzone = false;
    868  1.204      maxv 	pool_redzone_init(pp, size);
    869  1.249      maxv 	pool_quarantine_init(pp);
    870    1.3        pk 
    871    1.3        pk 	/*
    872  1.240      maxv 	 * Decide whether to put the page header off-page to avoid wasting too
    873  1.240      maxv 	 * large a part of the page or too big an item. Off-page page headers
    874  1.240      maxv 	 * go on a hash table, so we can match a returned item with its header
    875  1.240      maxv 	 * based on the page address.
    876    1.3        pk 	 */
    877  1.240      maxv 	if (pool_init_is_phinpage(pp)) {
    878  1.241      maxv 		/* Use the beginning of the page for the page header */
    879  1.241      maxv 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    880  1.241      maxv 		pp->pr_itemoffset = roundup(PHSIZE, align);
    881  1.239      maxv 		pp->pr_roflags |= PR_PHINPAGE;
    882    1.2        pk 	} else {
    883    1.3        pk 		/* The page header will be taken from our page header pool */
    884  1.237      maxv 		itemspace = palloc->pa_pagesz;
    885  1.241      maxv 		pp->pr_itemoffset = 0;
    886   1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    887    1.2        pk 	}
    888    1.1        pk 
    889  1.243      maxv 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    890  1.243      maxv 	KASSERT(pp->pr_itemsperpage != 0);
    891  1.243      maxv 
    892  1.242      maxv 	/*
    893  1.242      maxv 	 * Decide whether to use a bitmap or a linked list to manage freed
    894  1.242      maxv 	 * items.
    895  1.242      maxv 	 */
    896  1.242      maxv 	if (pool_init_is_usebmap(pp)) {
    897  1.242      maxv 		pp->pr_roflags |= PR_USEBMAP;
    898  1.242      maxv 	}
    899  1.242      maxv 
    900  1.242      maxv 	/*
    901  1.256      maxv 	 * If we're off-page, then we're using a bitmap; choose the appropriate
    902  1.256      maxv 	 * pool to allocate page headers, whose size varies depending on the
    903  1.256      maxv 	 * bitmap. If we're on-page, nothing to do.
    904  1.242      maxv 	 */
    905  1.256      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    906   1.97      yamt 		int idx;
    907   1.97      yamt 
    908  1.256      maxv 		KASSERT(pp->pr_roflags & PR_USEBMAP);
    909  1.256      maxv 
    910   1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    911   1.97      yamt 		    idx++) {
    912   1.97      yamt 			/* nothing */
    913   1.97      yamt 		}
    914   1.97      yamt 		if (idx >= PHPOOL_MAX) {
    915   1.97      yamt 			/*
    916   1.97      yamt 			 * if you see this panic, consider to tweak
    917   1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    918   1.97      yamt 			 */
    919  1.213  christos 			panic("%s: [%s] too large itemsperpage(%d) for "
    920  1.242      maxv 			    "PR_USEBMAP", __func__,
    921   1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    922   1.97      yamt 		}
    923   1.97      yamt 		pp->pr_phpool = &phpool[idx];
    924  1.242      maxv 	} else {
    925   1.97      yamt 		pp->pr_phpool = NULL;
    926   1.97      yamt 	}
    927    1.3        pk 
    928    1.3        pk 	/*
    929    1.3        pk 	 * Use the slack between the chunks and the page header
    930    1.3        pk 	 * for "cache coloring".
    931    1.3        pk 	 */
    932  1.237      maxv 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    933  1.239      maxv 	pp->pr_maxcolor = rounddown(slack, align);
    934    1.3        pk 	pp->pr_curcolor = 0;
    935    1.3        pk 
    936    1.3        pk 	pp->pr_nget = 0;
    937    1.3        pk 	pp->pr_nfail = 0;
    938    1.3        pk 	pp->pr_nput = 0;
    939    1.3        pk 	pp->pr_npagealloc = 0;
    940    1.3        pk 	pp->pr_npagefree = 0;
    941    1.1        pk 	pp->pr_hiwat = 0;
    942    1.8   thorpej 	pp->pr_nidle = 0;
    943  1.134        ad 	pp->pr_refcnt = 0;
    944    1.3        pk 
    945  1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    946  1.134        ad 	cv_init(&pp->pr_cv, wchan);
    947  1.134        ad 	pp->pr_ipl = ipl;
    948    1.1        pk 
    949  1.145        ad 	/* Insert into the list of all pools. */
    950  1.181   mlelstv 	if (!cold)
    951  1.134        ad 		mutex_enter(&pool_head_lock);
    952  1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    953  1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    954  1.145        ad 			break;
    955  1.145        ad 	}
    956  1.145        ad 	if (pp1 == NULL)
    957  1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    958  1.145        ad 	else
    959  1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    960  1.181   mlelstv 	if (!cold)
    961  1.134        ad 		mutex_exit(&pool_head_lock);
    962  1.134        ad 
    963  1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    964  1.181   mlelstv 	if (!cold)
    965  1.134        ad 		mutex_enter(&palloc->pa_lock);
    966  1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    967  1.181   mlelstv 	if (!cold)
    968  1.134        ad 		mutex_exit(&palloc->pa_lock);
    969    1.1        pk }
    970    1.1        pk 
    971    1.1        pk /*
    972    1.1        pk  * De-commision a pool resource.
    973    1.1        pk  */
    974    1.1        pk void
    975   1.42   thorpej pool_destroy(struct pool *pp)
    976    1.1        pk {
    977  1.101   thorpej 	struct pool_pagelist pq;
    978    1.3        pk 	struct pool_item_header *ph;
    979   1.43   thorpej 
    980  1.249      maxv 	pool_quarantine_flush(pp);
    981  1.249      maxv 
    982  1.101   thorpej 	/* Remove from global pool list */
    983  1.134        ad 	mutex_enter(&pool_head_lock);
    984  1.134        ad 	while (pp->pr_refcnt != 0)
    985  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
    986  1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    987  1.101   thorpej 	if (drainpp == pp)
    988  1.101   thorpej 		drainpp = NULL;
    989  1.134        ad 	mutex_exit(&pool_head_lock);
    990  1.101   thorpej 
    991  1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
    992  1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
    993   1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    994  1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
    995   1.66   thorpej 
    996  1.178      elad 	mutex_enter(&pool_allocator_lock);
    997  1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
    998  1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
    999  1.178      elad 	mutex_exit(&pool_allocator_lock);
   1000  1.178      elad 
   1001  1.134        ad 	mutex_enter(&pp->pr_lock);
   1002  1.101   thorpej 
   1003  1.134        ad 	KASSERT(pp->pr_cache == NULL);
   1004  1.207  riastrad 	KASSERTMSG((pp->pr_nout == 0),
   1005  1.251  christos 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
   1006  1.251  christos 	    pp->pr_nout);
   1007  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
   1008  1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
   1009  1.101   thorpej 
   1010    1.3        pk 	/* Remove all pages */
   1011  1.101   thorpej 	LIST_INIT(&pq);
   1012   1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1013  1.101   thorpej 		pr_rmpage(pp, ph, &pq);
   1014  1.101   thorpej 
   1015  1.134        ad 	mutex_exit(&pp->pr_lock);
   1016    1.3        pk 
   1017  1.101   thorpej 	pr_pagelist_free(pp, &pq);
   1018  1.134        ad 	cv_destroy(&pp->pr_cv);
   1019  1.134        ad 	mutex_destroy(&pp->pr_lock);
   1020    1.1        pk }
   1021    1.1        pk 
   1022   1.68   thorpej void
   1023   1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
   1024   1.68   thorpej {
   1025   1.68   thorpej 
   1026   1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
   1027  1.207  riastrad 	KASSERTMSG((pp->pr_drain_hook == NULL),
   1028  1.213  christos 	    "%s: [%s] already set", __func__, pp->pr_wchan);
   1029   1.68   thorpej 	pp->pr_drain_hook = fn;
   1030   1.68   thorpej 	pp->pr_drain_hook_arg = arg;
   1031   1.68   thorpej }
   1032   1.68   thorpej 
   1033   1.88       chs static struct pool_item_header *
   1034  1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
   1035   1.55   thorpej {
   1036   1.55   thorpej 	struct pool_item_header *ph;
   1037   1.55   thorpej 
   1038   1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
   1039  1.241      maxv 		ph = storage;
   1040  1.134        ad 	else
   1041   1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
   1042   1.55   thorpej 
   1043  1.236      maxv 	return ph;
   1044   1.55   thorpej }
   1045    1.1        pk 
   1046    1.1        pk /*
   1047  1.134        ad  * Grab an item from the pool.
   1048    1.1        pk  */
   1049    1.3        pk void *
   1050   1.56  sommerfe pool_get(struct pool *pp, int flags)
   1051    1.1        pk {
   1052    1.3        pk 	struct pool_item_header *ph;
   1053   1.55   thorpej 	void *v;
   1054    1.1        pk 
   1055  1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   1056  1.207  riastrad 	KASSERTMSG((pp->pr_itemsperpage != 0),
   1057  1.213  christos 	    "%s: [%s] pr_itemsperpage is zero, "
   1058  1.213  christos 	    "pool not initialized?", __func__, pp->pr_wchan);
   1059  1.207  riastrad 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
   1060  1.207  riastrad 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
   1061  1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   1062  1.213  christos 	    __func__, pp->pr_wchan);
   1063  1.155        ad 	if (flags & PR_WAITOK) {
   1064  1.154      yamt 		ASSERT_SLEEPABLE();
   1065  1.155        ad 	}
   1066    1.1        pk 
   1067  1.270      maxv 	if (flags & PR_NOWAIT) {
   1068  1.270      maxv 		if (fault_inject())
   1069  1.270      maxv 			return NULL;
   1070  1.270      maxv 	}
   1071  1.270      maxv 
   1072  1.134        ad 	mutex_enter(&pp->pr_lock);
   1073   1.20   thorpej  startover:
   1074   1.20   thorpej 	/*
   1075   1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
   1076   1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
   1077   1.20   thorpej 	 * the pool.
   1078   1.20   thorpej 	 */
   1079  1.207  riastrad 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
   1080  1.213  christos 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
   1081   1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1082   1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
   1083   1.68   thorpej 			/*
   1084   1.68   thorpej 			 * Since the drain hook is going to free things
   1085   1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
   1086   1.68   thorpej 			 * and check the hardlimit condition again.
   1087   1.68   thorpej 			 */
   1088  1.134        ad 			mutex_exit(&pp->pr_lock);
   1089   1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1090  1.134        ad 			mutex_enter(&pp->pr_lock);
   1091   1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
   1092   1.68   thorpej 				goto startover;
   1093   1.68   thorpej 		}
   1094   1.68   thorpej 
   1095   1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1096   1.20   thorpej 			/*
   1097   1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
   1098   1.20   thorpej 			 * it be?
   1099   1.20   thorpej 			 */
   1100   1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1101  1.212  christos 			do {
   1102  1.212  christos 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1103  1.212  christos 			} while (pp->pr_flags & PR_WANTED);
   1104   1.20   thorpej 			goto startover;
   1105   1.20   thorpej 		}
   1106   1.31   thorpej 
   1107   1.31   thorpej 		/*
   1108   1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1109   1.31   thorpej 		 */
   1110   1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1111   1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1112   1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1113   1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1114   1.21   thorpej 
   1115   1.21   thorpej 		pp->pr_nfail++;
   1116   1.21   thorpej 
   1117  1.134        ad 		mutex_exit(&pp->pr_lock);
   1118  1.216  christos 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1119  1.236      maxv 		return NULL;
   1120   1.20   thorpej 	}
   1121   1.20   thorpej 
   1122    1.3        pk 	/*
   1123    1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1124    1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1125    1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1126    1.3        pk 	 * has no items in its bucket.
   1127    1.3        pk 	 */
   1128   1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1129  1.113      yamt 		int error;
   1130  1.113      yamt 
   1131  1.207  riastrad 		KASSERTMSG((pp->pr_nitems == 0),
   1132  1.213  christos 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
   1133  1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
   1134   1.20   thorpej 
   1135   1.21   thorpej 		/*
   1136   1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1137   1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1138   1.21   thorpej 		 * may block.
   1139   1.21   thorpej 		 */
   1140  1.113      yamt 		error = pool_grow(pp, flags);
   1141  1.113      yamt 		if (error != 0) {
   1142   1.21   thorpej 			/*
   1143  1.210   mlelstv 			 * pool_grow aborts when another thread
   1144  1.210   mlelstv 			 * is allocating a new page. Retry if it
   1145  1.210   mlelstv 			 * waited for it.
   1146  1.210   mlelstv 			 */
   1147  1.210   mlelstv 			if (error == ERESTART)
   1148  1.210   mlelstv 				goto startover;
   1149  1.210   mlelstv 
   1150  1.210   mlelstv 			/*
   1151   1.55   thorpej 			 * We were unable to allocate a page or item
   1152   1.55   thorpej 			 * header, but we released the lock during
   1153   1.55   thorpej 			 * allocation, so perhaps items were freed
   1154   1.55   thorpej 			 * back to the pool.  Check for this case.
   1155   1.21   thorpej 			 */
   1156   1.21   thorpej 			if (pp->pr_curpage != NULL)
   1157   1.21   thorpej 				goto startover;
   1158   1.15        pk 
   1159  1.117      yamt 			pp->pr_nfail++;
   1160  1.134        ad 			mutex_exit(&pp->pr_lock);
   1161  1.265       chs 			KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1162  1.236      maxv 			return NULL;
   1163    1.1        pk 		}
   1164    1.3        pk 
   1165   1.20   thorpej 		/* Start the allocation process over. */
   1166   1.20   thorpej 		goto startover;
   1167    1.3        pk 	}
   1168  1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1169  1.207  riastrad 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1170  1.251  christos 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
   1171  1.234      maxv 		v = pr_item_bitmap_get(pp, ph);
   1172   1.97      yamt 	} else {
   1173  1.234      maxv 		v = pr_item_linkedlist_get(pp, ph);
   1174   1.97      yamt 	}
   1175   1.20   thorpej 	pp->pr_nitems--;
   1176   1.20   thorpej 	pp->pr_nout++;
   1177    1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1178  1.207  riastrad 		KASSERT(pp->pr_nidle > 0);
   1179    1.6   thorpej 		pp->pr_nidle--;
   1180   1.88       chs 
   1181   1.88       chs 		/*
   1182   1.88       chs 		 * This page was previously empty.  Move it to the list of
   1183   1.88       chs 		 * partially-full pages.  This page is already curpage.
   1184   1.88       chs 		 */
   1185   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1186   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1187    1.6   thorpej 	}
   1188    1.3        pk 	ph->ph_nmissing++;
   1189   1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1190  1.242      maxv 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1191  1.207  riastrad 			LIST_EMPTY(&ph->ph_itemlist)),
   1192  1.213  christos 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1193  1.213  christos 			pp->pr_wchan, ph->ph_nmissing);
   1194    1.3        pk 		/*
   1195   1.88       chs 		 * This page is now full.  Move it to the full list
   1196   1.88       chs 		 * and select a new current page.
   1197    1.3        pk 		 */
   1198   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1199   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1200   1.88       chs 		pool_update_curpage(pp);
   1201    1.1        pk 	}
   1202    1.3        pk 
   1203    1.3        pk 	pp->pr_nget++;
   1204   1.20   thorpej 
   1205   1.20   thorpej 	/*
   1206   1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1207   1.20   thorpej 	 * water mark, add more items to the pool.
   1208   1.20   thorpej 	 */
   1209   1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1210   1.20   thorpej 		/*
   1211   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1212   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1213   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1214   1.20   thorpej 		 */
   1215   1.20   thorpej 	}
   1216   1.20   thorpej 
   1217  1.134        ad 	mutex_exit(&pp->pr_lock);
   1218  1.238      maxv 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1219  1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1220  1.204      maxv 	pool_redzone_fill(pp, v);
   1221  1.262      maxv 	pool_get_kmsan(pp, v);
   1222  1.232  christos 	if (flags & PR_ZERO)
   1223  1.233      maxv 		memset(v, 0, pp->pr_reqsize);
   1224  1.232  christos 	return v;
   1225    1.1        pk }
   1226    1.1        pk 
   1227    1.1        pk /*
   1228   1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1229    1.1        pk  */
   1230   1.43   thorpej static void
   1231  1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1232    1.1        pk {
   1233    1.3        pk 	struct pool_item_header *ph;
   1234    1.3        pk 
   1235  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1236  1.204      maxv 	pool_redzone_check(pp, v);
   1237  1.262      maxv 	pool_put_kmsan(pp, v);
   1238  1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1239  1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1240   1.61       chs 
   1241  1.207  riastrad 	KASSERTMSG((pp->pr_nout > 0),
   1242  1.213  christos 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1243    1.3        pk 
   1244  1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1245  1.213  christos 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1246    1.3        pk 	}
   1247   1.28   thorpej 
   1248    1.3        pk 	/*
   1249    1.3        pk 	 * Return to item list.
   1250    1.3        pk 	 */
   1251  1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1252  1.234      maxv 		pr_item_bitmap_put(pp, ph, v);
   1253   1.97      yamt 	} else {
   1254  1.234      maxv 		pr_item_linkedlist_put(pp, ph, v);
   1255   1.97      yamt 	}
   1256   1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1257    1.3        pk 	ph->ph_nmissing--;
   1258    1.3        pk 	pp->pr_nput++;
   1259   1.20   thorpej 	pp->pr_nitems++;
   1260   1.20   thorpej 	pp->pr_nout--;
   1261    1.3        pk 
   1262    1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1263    1.3        pk 	if (pp->pr_curpage == NULL)
   1264    1.3        pk 		pp->pr_curpage = ph;
   1265    1.3        pk 
   1266    1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1267    1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1268  1.134        ad 		cv_broadcast(&pp->pr_cv);
   1269    1.3        pk 	}
   1270    1.3        pk 
   1271    1.3        pk 	/*
   1272   1.88       chs 	 * If this page is now empty, do one of two things:
   1273   1.21   thorpej 	 *
   1274   1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1275   1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1276   1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1277   1.90   thorpej 	 *	    CLAIM.
   1278   1.21   thorpej 	 *
   1279   1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1280   1.88       chs 	 *
   1281   1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1282   1.88       chs 	 * page if one is available).
   1283    1.3        pk 	 */
   1284    1.3        pk 	if (ph->ph_nmissing == 0) {
   1285    1.6   thorpej 		pp->pr_nidle++;
   1286  1.267       chs 		if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
   1287  1.267       chs 		    pp->pr_npages > pp->pr_minpages &&
   1288  1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1289  1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1290    1.3        pk 		} else {
   1291   1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1292   1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1293    1.3        pk 
   1294   1.21   thorpej 			/*
   1295   1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1296   1.21   thorpej 			 * be idle for some period of time before it can
   1297   1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1298   1.21   thorpej 			 * ping-pong'ing for memory.
   1299  1.151      yamt 			 *
   1300  1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1301  1.151      yamt 			 * a problem for our usage.
   1302   1.21   thorpej 			 */
   1303  1.151      yamt 			ph->ph_time = time_uptime;
   1304    1.1        pk 		}
   1305   1.88       chs 		pool_update_curpage(pp);
   1306    1.1        pk 	}
   1307   1.88       chs 
   1308   1.21   thorpej 	/*
   1309   1.88       chs 	 * If the page was previously completely full, move it to the
   1310   1.88       chs 	 * partially-full list and make it the current page.  The next
   1311   1.88       chs 	 * allocation will get the item from this page, instead of
   1312   1.88       chs 	 * further fragmenting the pool.
   1313   1.21   thorpej 	 */
   1314   1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1315   1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1316   1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1317   1.21   thorpej 		pp->pr_curpage = ph;
   1318   1.21   thorpej 	}
   1319   1.43   thorpej }
   1320   1.43   thorpej 
   1321   1.56  sommerfe void
   1322   1.56  sommerfe pool_put(struct pool *pp, void *v)
   1323   1.56  sommerfe {
   1324  1.101   thorpej 	struct pool_pagelist pq;
   1325  1.101   thorpej 
   1326  1.101   thorpej 	LIST_INIT(&pq);
   1327   1.56  sommerfe 
   1328  1.134        ad 	mutex_enter(&pp->pr_lock);
   1329  1.249      maxv 	if (!pool_put_quarantine(pp, v, &pq)) {
   1330  1.249      maxv 		pool_do_put(pp, v, &pq);
   1331  1.249      maxv 	}
   1332  1.134        ad 	mutex_exit(&pp->pr_lock);
   1333   1.56  sommerfe 
   1334  1.102       chs 	pr_pagelist_free(pp, &pq);
   1335   1.56  sommerfe }
   1336   1.57  sommerfe 
   1337   1.74   thorpej /*
   1338  1.113      yamt  * pool_grow: grow a pool by a page.
   1339  1.113      yamt  *
   1340  1.113      yamt  * => called with pool locked.
   1341  1.113      yamt  * => unlock and relock the pool.
   1342  1.113      yamt  * => return with pool locked.
   1343  1.113      yamt  */
   1344  1.113      yamt 
   1345  1.113      yamt static int
   1346  1.113      yamt pool_grow(struct pool *pp, int flags)
   1347  1.113      yamt {
   1348  1.236      maxv 	struct pool_item_header *ph;
   1349  1.237      maxv 	char *storage;
   1350  1.236      maxv 
   1351  1.209  riastrad 	/*
   1352  1.209  riastrad 	 * If there's a pool_grow in progress, wait for it to complete
   1353  1.209  riastrad 	 * and try again from the top.
   1354  1.209  riastrad 	 */
   1355  1.209  riastrad 	if (pp->pr_flags & PR_GROWING) {
   1356  1.209  riastrad 		if (flags & PR_WAITOK) {
   1357  1.209  riastrad 			do {
   1358  1.209  riastrad 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1359  1.209  riastrad 			} while (pp->pr_flags & PR_GROWING);
   1360  1.209  riastrad 			return ERESTART;
   1361  1.209  riastrad 		} else {
   1362  1.219       mrg 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1363  1.219       mrg 				/*
   1364  1.219       mrg 				 * This needs an unlock/relock dance so
   1365  1.219       mrg 				 * that the other caller has a chance to
   1366  1.219       mrg 				 * run and actually do the thing.  Note
   1367  1.219       mrg 				 * that this is effectively a busy-wait.
   1368  1.219       mrg 				 */
   1369  1.219       mrg 				mutex_exit(&pp->pr_lock);
   1370  1.219       mrg 				mutex_enter(&pp->pr_lock);
   1371  1.219       mrg 				return ERESTART;
   1372  1.219       mrg 			}
   1373  1.209  riastrad 			return EWOULDBLOCK;
   1374  1.209  riastrad 		}
   1375  1.209  riastrad 	}
   1376  1.209  riastrad 	pp->pr_flags |= PR_GROWING;
   1377  1.220  christos 	if (flags & PR_WAITOK)
   1378  1.220  christos 		mutex_exit(&pp->pr_lock);
   1379  1.220  christos 	else
   1380  1.219       mrg 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1381  1.113      yamt 
   1382  1.237      maxv 	storage = pool_allocator_alloc(pp, flags);
   1383  1.237      maxv 	if (__predict_false(storage == NULL))
   1384  1.216  christos 		goto out;
   1385  1.216  christos 
   1386  1.237      maxv 	ph = pool_alloc_item_header(pp, storage, flags);
   1387  1.216  christos 	if (__predict_false(ph == NULL)) {
   1388  1.237      maxv 		pool_allocator_free(pp, storage);
   1389  1.209  riastrad 		goto out;
   1390  1.113      yamt 	}
   1391  1.113      yamt 
   1392  1.220  christos 	if (flags & PR_WAITOK)
   1393  1.220  christos 		mutex_enter(&pp->pr_lock);
   1394  1.237      maxv 	pool_prime_page(pp, storage, ph);
   1395  1.113      yamt 	pp->pr_npagealloc++;
   1396  1.216  christos 	KASSERT(pp->pr_flags & PR_GROWING);
   1397  1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1398  1.209  riastrad 	/*
   1399  1.209  riastrad 	 * If anyone was waiting for pool_grow, notify them that we
   1400  1.209  riastrad 	 * may have just done it.
   1401  1.209  riastrad 	 */
   1402  1.216  christos 	cv_broadcast(&pp->pr_cv);
   1403  1.216  christos 	return 0;
   1404  1.216  christos out:
   1405  1.220  christos 	if (flags & PR_WAITOK)
   1406  1.220  christos 		mutex_enter(&pp->pr_lock);
   1407  1.209  riastrad 	KASSERT(pp->pr_flags & PR_GROWING);
   1408  1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1409  1.216  christos 	return ENOMEM;
   1410  1.113      yamt }
   1411  1.113      yamt 
   1412  1.267       chs void
   1413   1.74   thorpej pool_prime(struct pool *pp, int n)
   1414   1.74   thorpej {
   1415   1.74   thorpej 
   1416  1.134        ad 	mutex_enter(&pp->pr_lock);
   1417  1.267       chs 	pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1418  1.267       chs 	if (pp->pr_maxpages <= pp->pr_minpages)
   1419   1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1420  1.267       chs 	while (pp->pr_npages < pp->pr_minpages)
   1421  1.267       chs 		(void) pool_grow(pp, PR_WAITOK);
   1422  1.134        ad 	mutex_exit(&pp->pr_lock);
   1423   1.74   thorpej }
   1424   1.55   thorpej 
   1425   1.55   thorpej /*
   1426    1.3        pk  * Add a page worth of items to the pool.
   1427   1.21   thorpej  *
   1428   1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1429    1.3        pk  */
   1430   1.55   thorpej static void
   1431  1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1432    1.3        pk {
   1433  1.236      maxv 	const unsigned int align = pp->pr_align;
   1434    1.3        pk 	struct pool_item *pi;
   1435  1.128  christos 	void *cp = storage;
   1436   1.55   thorpej 	int n;
   1437   1.36        pk 
   1438  1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1439  1.207  riastrad 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1440  1.207  riastrad 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1441  1.213  christos 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1442    1.3        pk 
   1443    1.3        pk 	/*
   1444    1.3        pk 	 * Insert page header.
   1445    1.3        pk 	 */
   1446   1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1447  1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1448    1.3        pk 	ph->ph_page = storage;
   1449    1.3        pk 	ph->ph_nmissing = 0;
   1450  1.151      yamt 	ph->ph_time = time_uptime;
   1451  1.245      maxv 	if (pp->pr_roflags & PR_PHINPAGE)
   1452  1.245      maxv 		ph->ph_poolid = pp->pr_poolid;
   1453  1.245      maxv 	else
   1454   1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1455    1.3        pk 
   1456    1.6   thorpej 	pp->pr_nidle++;
   1457    1.6   thorpej 
   1458    1.3        pk 	/*
   1459  1.241      maxv 	 * The item space starts after the on-page header, if any.
   1460  1.241      maxv 	 */
   1461  1.241      maxv 	ph->ph_off = pp->pr_itemoffset;
   1462  1.241      maxv 
   1463  1.241      maxv 	/*
   1464    1.3        pk 	 * Color this page.
   1465    1.3        pk 	 */
   1466  1.241      maxv 	ph->ph_off += pp->pr_curcolor;
   1467  1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1468    1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1469    1.3        pk 		pp->pr_curcolor = 0;
   1470    1.3        pk 
   1471  1.238      maxv 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1472  1.125        ad 
   1473    1.3        pk 	/*
   1474    1.3        pk 	 * Insert remaining chunks on the bucket list.
   1475    1.3        pk 	 */
   1476    1.3        pk 	n = pp->pr_itemsperpage;
   1477   1.20   thorpej 	pp->pr_nitems += n;
   1478    1.3        pk 
   1479  1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1480  1.234      maxv 		pr_item_bitmap_init(pp, ph);
   1481   1.97      yamt 	} else {
   1482   1.97      yamt 		while (n--) {
   1483   1.97      yamt 			pi = (struct pool_item *)cp;
   1484   1.78   thorpej 
   1485  1.238      maxv 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1486    1.3        pk 
   1487   1.97      yamt 			/* Insert on page list */
   1488  1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1489  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1490   1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1491    1.3        pk #endif
   1492  1.128  christos 			cp = (char *)cp + pp->pr_size;
   1493  1.125        ad 
   1494  1.238      maxv 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1495   1.97      yamt 		}
   1496    1.3        pk 	}
   1497    1.3        pk 
   1498    1.3        pk 	/*
   1499    1.3        pk 	 * If the pool was depleted, point at the new page.
   1500    1.3        pk 	 */
   1501    1.3        pk 	if (pp->pr_curpage == NULL)
   1502    1.3        pk 		pp->pr_curpage = ph;
   1503    1.3        pk 
   1504    1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1505    1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1506    1.3        pk }
   1507    1.3        pk 
   1508   1.20   thorpej /*
   1509   1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1510   1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1511   1.20   thorpej  *
   1512   1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1513   1.20   thorpej  *
   1514   1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1515   1.20   thorpej  * with it locked.
   1516   1.20   thorpej  */
   1517   1.20   thorpej static int
   1518   1.42   thorpej pool_catchup(struct pool *pp)
   1519   1.20   thorpej {
   1520   1.20   thorpej 	int error = 0;
   1521   1.20   thorpej 
   1522   1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1523  1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1524  1.113      yamt 		if (error) {
   1525  1.214  christos 			if (error == ERESTART)
   1526  1.214  christos 				continue;
   1527   1.20   thorpej 			break;
   1528   1.20   thorpej 		}
   1529   1.20   thorpej 	}
   1530  1.113      yamt 	return error;
   1531   1.20   thorpej }
   1532   1.20   thorpej 
   1533   1.88       chs static void
   1534   1.88       chs pool_update_curpage(struct pool *pp)
   1535   1.88       chs {
   1536   1.88       chs 
   1537   1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1538   1.88       chs 	if (pp->pr_curpage == NULL) {
   1539   1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1540   1.88       chs 	}
   1541  1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1542  1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1543   1.88       chs }
   1544   1.88       chs 
   1545    1.3        pk void
   1546   1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1547    1.3        pk {
   1548   1.15        pk 
   1549  1.134        ad 	mutex_enter(&pp->pr_lock);
   1550    1.3        pk 	pp->pr_minitems = n;
   1551   1.20   thorpej 
   1552   1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1553   1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1554   1.20   thorpej 		/*
   1555   1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1556   1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1557   1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1558   1.20   thorpej 		 */
   1559   1.20   thorpej 	}
   1560   1.21   thorpej 
   1561  1.134        ad 	mutex_exit(&pp->pr_lock);
   1562    1.3        pk }
   1563    1.3        pk 
   1564    1.3        pk void
   1565   1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1566    1.3        pk {
   1567   1.15        pk 
   1568  1.134        ad 	mutex_enter(&pp->pr_lock);
   1569   1.21   thorpej 
   1570  1.267       chs 	pp->pr_maxitems = n;
   1571   1.21   thorpej 
   1572  1.134        ad 	mutex_exit(&pp->pr_lock);
   1573    1.3        pk }
   1574    1.3        pk 
   1575   1.20   thorpej void
   1576   1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1577   1.20   thorpej {
   1578   1.20   thorpej 
   1579  1.134        ad 	mutex_enter(&pp->pr_lock);
   1580   1.20   thorpej 
   1581   1.20   thorpej 	pp->pr_hardlimit = n;
   1582   1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1583   1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1584   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1585   1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1586   1.20   thorpej 
   1587  1.267       chs 	pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1588   1.21   thorpej 
   1589  1.134        ad 	mutex_exit(&pp->pr_lock);
   1590   1.20   thorpej }
   1591    1.3        pk 
   1592    1.3        pk /*
   1593    1.3        pk  * Release all complete pages that have not been used recently.
   1594  1.184     rmind  *
   1595  1.197       jym  * Must not be called from interrupt context.
   1596    1.3        pk  */
   1597   1.66   thorpej int
   1598   1.56  sommerfe pool_reclaim(struct pool *pp)
   1599    1.3        pk {
   1600    1.3        pk 	struct pool_item_header *ph, *phnext;
   1601   1.61       chs 	struct pool_pagelist pq;
   1602  1.151      yamt 	uint32_t curtime;
   1603  1.134        ad 	bool klock;
   1604  1.134        ad 	int rv;
   1605    1.3        pk 
   1606  1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1607  1.184     rmind 
   1608   1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1609   1.68   thorpej 		/*
   1610   1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1611   1.68   thorpej 		 */
   1612   1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1613   1.68   thorpej 	}
   1614   1.68   thorpej 
   1615  1.134        ad 	/*
   1616  1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1617  1.157        ad 	 * to block.
   1618  1.134        ad 	 */
   1619  1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1620  1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1621  1.134        ad 		KERNEL_LOCK(1, NULL);
   1622  1.134        ad 		klock = true;
   1623  1.134        ad 	} else
   1624  1.134        ad 		klock = false;
   1625  1.134        ad 
   1626  1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1627  1.134        ad 	if (pp->pr_cache != NULL)
   1628  1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1629  1.134        ad 
   1630  1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1631  1.134        ad 		if (klock) {
   1632  1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1633  1.134        ad 		}
   1634  1.236      maxv 		return 0;
   1635  1.134        ad 	}
   1636   1.68   thorpej 
   1637   1.88       chs 	LIST_INIT(&pq);
   1638   1.43   thorpej 
   1639  1.151      yamt 	curtime = time_uptime;
   1640   1.21   thorpej 
   1641   1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1642   1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1643    1.3        pk 
   1644    1.3        pk 		/* Check our minimum page claim */
   1645    1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1646    1.3        pk 			break;
   1647    1.3        pk 
   1648   1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1649  1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1650   1.88       chs 			continue;
   1651   1.21   thorpej 
   1652   1.88       chs 		/*
   1653  1.267       chs 		 * If freeing this page would put us below the minimum free items
   1654  1.267       chs 		 * or the minimum pages, stop now.
   1655   1.88       chs 		 */
   1656  1.267       chs 		if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
   1657  1.267       chs 		    pp->pr_npages - 1 < pp->pr_minpages)
   1658   1.88       chs 			break;
   1659   1.21   thorpej 
   1660   1.88       chs 		pr_rmpage(pp, ph, &pq);
   1661    1.3        pk 	}
   1662    1.3        pk 
   1663  1.134        ad 	mutex_exit(&pp->pr_lock);
   1664  1.134        ad 
   1665  1.134        ad 	if (LIST_EMPTY(&pq))
   1666  1.134        ad 		rv = 0;
   1667  1.134        ad 	else {
   1668  1.134        ad 		pr_pagelist_free(pp, &pq);
   1669  1.134        ad 		rv = 1;
   1670  1.134        ad 	}
   1671  1.134        ad 
   1672  1.134        ad 	if (klock) {
   1673  1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1674  1.134        ad 	}
   1675   1.66   thorpej 
   1676  1.236      maxv 	return rv;
   1677    1.3        pk }
   1678    1.3        pk 
   1679    1.3        pk /*
   1680  1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1681  1.131        ad  *
   1682  1.134        ad  * Note, must never be called from interrupt context.
   1683    1.3        pk  */
   1684  1.197       jym bool
   1685  1.197       jym pool_drain(struct pool **ppp)
   1686    1.3        pk {
   1687  1.197       jym 	bool reclaimed;
   1688    1.3        pk 	struct pool *pp;
   1689  1.134        ad 
   1690  1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1691    1.3        pk 
   1692   1.61       chs 	pp = NULL;
   1693  1.134        ad 
   1694  1.134        ad 	/* Find next pool to drain, and add a reference. */
   1695  1.134        ad 	mutex_enter(&pool_head_lock);
   1696  1.134        ad 	do {
   1697  1.134        ad 		if (drainpp == NULL) {
   1698  1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1699  1.134        ad 		}
   1700  1.134        ad 		if (drainpp != NULL) {
   1701  1.134        ad 			pp = drainpp;
   1702  1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1703  1.134        ad 		}
   1704  1.134        ad 		/*
   1705  1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1706  1.134        ad 		 * one pool in the system being active.
   1707  1.134        ad 		 */
   1708  1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1709  1.134        ad 	pp->pr_refcnt++;
   1710  1.134        ad 	mutex_exit(&pool_head_lock);
   1711  1.134        ad 
   1712  1.134        ad 	/* Drain the cache (if any) and pool.. */
   1713  1.186     pooka 	reclaimed = pool_reclaim(pp);
   1714  1.134        ad 
   1715  1.134        ad 	/* Finally, unlock the pool. */
   1716  1.134        ad 	mutex_enter(&pool_head_lock);
   1717  1.134        ad 	pp->pr_refcnt--;
   1718  1.134        ad 	cv_broadcast(&pool_busy);
   1719  1.134        ad 	mutex_exit(&pool_head_lock);
   1720  1.186     pooka 
   1721  1.197       jym 	if (ppp != NULL)
   1722  1.197       jym 		*ppp = pp;
   1723  1.197       jym 
   1724  1.186     pooka 	return reclaimed;
   1725    1.3        pk }
   1726    1.3        pk 
   1727    1.3        pk /*
   1728  1.217       mrg  * Calculate the total number of pages consumed by pools.
   1729  1.217       mrg  */
   1730  1.217       mrg int
   1731  1.217       mrg pool_totalpages(void)
   1732  1.217       mrg {
   1733  1.250     skrll 
   1734  1.250     skrll 	mutex_enter(&pool_head_lock);
   1735  1.250     skrll 	int pages = pool_totalpages_locked();
   1736  1.250     skrll 	mutex_exit(&pool_head_lock);
   1737  1.250     skrll 
   1738  1.250     skrll 	return pages;
   1739  1.250     skrll }
   1740  1.250     skrll 
   1741  1.250     skrll int
   1742  1.250     skrll pool_totalpages_locked(void)
   1743  1.250     skrll {
   1744  1.217       mrg 	struct pool *pp;
   1745  1.218       mrg 	uint64_t total = 0;
   1746  1.217       mrg 
   1747  1.218       mrg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1748  1.218       mrg 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1749  1.218       mrg 
   1750  1.218       mrg 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1751  1.218       mrg 			bytes -= (pp->pr_nout * pp->pr_size);
   1752  1.218       mrg 		total += bytes;
   1753  1.218       mrg 	}
   1754  1.217       mrg 
   1755  1.218       mrg 	return atop(total);
   1756  1.217       mrg }
   1757  1.217       mrg 
   1758  1.217       mrg /*
   1759    1.3        pk  * Diagnostic helpers.
   1760    1.3        pk  */
   1761   1.21   thorpej 
   1762   1.25   thorpej void
   1763  1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1764  1.108      yamt {
   1765  1.108      yamt 	struct pool *pp;
   1766  1.108      yamt 
   1767  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1768  1.108      yamt 		pool_printit(pp, modif, pr);
   1769  1.108      yamt 	}
   1770  1.108      yamt }
   1771  1.108      yamt 
   1772  1.108      yamt void
   1773   1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1774   1.25   thorpej {
   1775   1.25   thorpej 
   1776   1.25   thorpej 	if (pp == NULL) {
   1777   1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1778   1.25   thorpej 		return;
   1779   1.25   thorpej 	}
   1780   1.25   thorpej 
   1781   1.25   thorpej 	pool_print1(pp, modif, pr);
   1782   1.25   thorpej }
   1783   1.25   thorpej 
   1784   1.21   thorpej static void
   1785  1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1786   1.97      yamt     void (*pr)(const char *, ...))
   1787   1.88       chs {
   1788   1.88       chs 	struct pool_item_header *ph;
   1789   1.88       chs 
   1790   1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1791  1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1792  1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1793  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1794  1.229      maxv 		struct pool_item *pi;
   1795  1.242      maxv 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1796  1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1797   1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1798   1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1799   1.97      yamt 					    pi, pi->pi_magic);
   1800   1.97      yamt 				}
   1801   1.88       chs 			}
   1802   1.88       chs 		}
   1803   1.88       chs #endif
   1804   1.88       chs 	}
   1805   1.88       chs }
   1806   1.88       chs 
   1807   1.88       chs static void
   1808   1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1809    1.3        pk {
   1810   1.25   thorpej 	struct pool_item_header *ph;
   1811  1.134        ad 	pool_cache_t pc;
   1812  1.134        ad 	pcg_t *pcg;
   1813  1.134        ad 	pool_cache_cpu_t *cc;
   1814  1.271        ad 	uint64_t cpuhit, cpumiss, pchit, pcmiss;
   1815  1.271        ad 	uint32_t nfull;
   1816   1.44   thorpej 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1817   1.25   thorpej 	char c;
   1818   1.25   thorpej 
   1819   1.25   thorpej 	while ((c = *modif++) != '\0') {
   1820   1.25   thorpej 		if (c == 'l')
   1821   1.25   thorpej 			print_log = 1;
   1822   1.25   thorpej 		if (c == 'p')
   1823   1.25   thorpej 			print_pagelist = 1;
   1824   1.44   thorpej 		if (c == 'c')
   1825   1.44   thorpej 			print_cache = 1;
   1826   1.25   thorpej 	}
   1827   1.25   thorpej 
   1828  1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1829  1.134        ad 		(*pr)("POOL CACHE");
   1830  1.134        ad 	} else {
   1831  1.134        ad 		(*pr)("POOL");
   1832  1.134        ad 	}
   1833  1.134        ad 
   1834  1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1835   1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1836   1.25   thorpej 	    pp->pr_roflags);
   1837   1.66   thorpej 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1838   1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1839   1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1840   1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1841   1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1842   1.25   thorpej 
   1843  1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1844   1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1845   1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1846   1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1847   1.25   thorpej 
   1848   1.25   thorpej 	if (print_pagelist == 0)
   1849   1.25   thorpej 		goto skip_pagelist;
   1850   1.25   thorpej 
   1851   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1852   1.88       chs 		(*pr)("\n\tempty page list:\n");
   1853   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1854   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1855   1.88       chs 		(*pr)("\n\tfull page list:\n");
   1856   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1857   1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1858   1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1859   1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1860   1.88       chs 
   1861   1.25   thorpej 	if (pp->pr_curpage == NULL)
   1862   1.25   thorpej 		(*pr)("\tno current page\n");
   1863   1.25   thorpej 	else
   1864   1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1865   1.25   thorpej 
   1866   1.25   thorpej  skip_pagelist:
   1867   1.25   thorpej 	if (print_log == 0)
   1868   1.25   thorpej 		goto skip_log;
   1869   1.25   thorpej 
   1870   1.25   thorpej 	(*pr)("\n");
   1871    1.3        pk 
   1872   1.25   thorpej  skip_log:
   1873   1.44   thorpej 
   1874  1.102       chs #define PR_GROUPLIST(pcg)						\
   1875  1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1876  1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1877  1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1878  1.102       chs 		    POOL_PADDR_INVALID) {				\
   1879  1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1880  1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1881  1.102       chs 			    (unsigned long long)			\
   1882  1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1883  1.102       chs 		} else {						\
   1884  1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1885  1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1886  1.102       chs 		}							\
   1887  1.102       chs 	}
   1888  1.102       chs 
   1889  1.134        ad 	if (pc != NULL) {
   1890  1.134        ad 		cpuhit = 0;
   1891  1.134        ad 		cpumiss = 0;
   1892  1.271        ad 		pcmiss = 0;
   1893  1.271        ad 		nfull = 0;
   1894  1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1895  1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1896  1.134        ad 				continue;
   1897  1.134        ad 			cpuhit += cc->cc_hits;
   1898  1.134        ad 			cpumiss += cc->cc_misses;
   1899  1.271        ad 			pcmiss += cc->cc_pcmisses;
   1900  1.271        ad 			nfull += cc->cc_nfull;
   1901  1.134        ad 		}
   1902  1.271        ad 		pchit = cpumiss - pcmiss;
   1903  1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1904  1.271        ad 		(*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
   1905  1.271        ad 		(*pr)("\tcache layer full groups %u\n", nfull);
   1906  1.134        ad 		if (print_cache) {
   1907  1.134        ad 			(*pr)("\tfull cache groups:\n");
   1908  1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1909  1.134        ad 			    pcg = pcg->pcg_next) {
   1910  1.134        ad 				PR_GROUPLIST(pcg);
   1911  1.134        ad 			}
   1912  1.103       chs 		}
   1913   1.44   thorpej 	}
   1914  1.102       chs #undef PR_GROUPLIST
   1915   1.88       chs }
   1916   1.88       chs 
   1917   1.88       chs static int
   1918   1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1919   1.88       chs {
   1920   1.88       chs 	struct pool_item *pi;
   1921  1.128  christos 	void *page;
   1922   1.88       chs 	int n;
   1923   1.88       chs 
   1924  1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1925  1.253      maxv 		page = POOL_OBJ_TO_PAGE(pp, ph);
   1926  1.121      yamt 		if (page != ph->ph_page &&
   1927  1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1928  1.121      yamt 			if (label != NULL)
   1929  1.121      yamt 				printf("%s: ", label);
   1930  1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1931  1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1932  1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1933  1.121      yamt 				ph, page);
   1934  1.121      yamt 			return 1;
   1935  1.121      yamt 		}
   1936   1.88       chs 	}
   1937    1.3        pk 
   1938  1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1939   1.97      yamt 		return 0;
   1940   1.97      yamt 
   1941  1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1942   1.88       chs 	     pi != NULL;
   1943  1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1944   1.88       chs 
   1945  1.229      maxv #ifdef POOL_CHECK_MAGIC
   1946   1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1947   1.88       chs 			if (label != NULL)
   1948   1.88       chs 				printf("%s: ", label);
   1949   1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1950  1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1951   1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1952  1.121      yamt 				n, pi);
   1953   1.88       chs 			panic("pool");
   1954   1.88       chs 		}
   1955   1.88       chs #endif
   1956  1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1957  1.121      yamt 			continue;
   1958  1.121      yamt 		}
   1959  1.253      maxv 		page = POOL_OBJ_TO_PAGE(pp, pi);
   1960   1.88       chs 		if (page == ph->ph_page)
   1961   1.88       chs 			continue;
   1962   1.88       chs 
   1963   1.88       chs 		if (label != NULL)
   1964   1.88       chs 			printf("%s: ", label);
   1965   1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   1966   1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1967   1.88       chs 			pp->pr_wchan, ph->ph_page,
   1968   1.88       chs 			n, pi, page);
   1969   1.88       chs 		return 1;
   1970   1.88       chs 	}
   1971   1.88       chs 	return 0;
   1972    1.3        pk }
   1973    1.3        pk 
   1974   1.88       chs 
   1975    1.3        pk int
   1976   1.42   thorpej pool_chk(struct pool *pp, const char *label)
   1977    1.3        pk {
   1978    1.3        pk 	struct pool_item_header *ph;
   1979    1.3        pk 	int r = 0;
   1980    1.3        pk 
   1981  1.134        ad 	mutex_enter(&pp->pr_lock);
   1982   1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1983   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1984   1.88       chs 		if (r) {
   1985   1.88       chs 			goto out;
   1986   1.88       chs 		}
   1987   1.88       chs 	}
   1988   1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1989   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1990   1.88       chs 		if (r) {
   1991    1.3        pk 			goto out;
   1992    1.3        pk 		}
   1993   1.88       chs 	}
   1994   1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1995   1.88       chs 		r = pool_chk_page(pp, label, ph);
   1996   1.88       chs 		if (r) {
   1997    1.3        pk 			goto out;
   1998    1.3        pk 		}
   1999    1.3        pk 	}
   2000   1.88       chs 
   2001    1.3        pk out:
   2002  1.134        ad 	mutex_exit(&pp->pr_lock);
   2003  1.236      maxv 	return r;
   2004   1.43   thorpej }
   2005   1.43   thorpej 
   2006   1.43   thorpej /*
   2007   1.43   thorpej  * pool_cache_init:
   2008   1.43   thorpej  *
   2009   1.43   thorpej  *	Initialize a pool cache.
   2010  1.134        ad  */
   2011  1.134        ad pool_cache_t
   2012  1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2013  1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   2014  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2015  1.134        ad {
   2016  1.134        ad 	pool_cache_t pc;
   2017  1.134        ad 
   2018  1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   2019  1.134        ad 	if (pc == NULL)
   2020  1.134        ad 		return NULL;
   2021  1.134        ad 
   2022  1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2023  1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   2024  1.134        ad 
   2025  1.134        ad 	return pc;
   2026  1.134        ad }
   2027  1.134        ad 
   2028  1.134        ad /*
   2029  1.134        ad  * pool_cache_bootstrap:
   2030   1.43   thorpej  *
   2031  1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   2032  1.134        ad  *	provides initial storage.
   2033   1.43   thorpej  */
   2034   1.43   thorpej void
   2035  1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2036  1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   2037  1.134        ad     struct pool_allocator *palloc, int ipl,
   2038  1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2039   1.43   thorpej     void *arg)
   2040   1.43   thorpej {
   2041  1.134        ad 	CPU_INFO_ITERATOR cii;
   2042  1.145        ad 	pool_cache_t pc1;
   2043  1.134        ad 	struct cpu_info *ci;
   2044  1.134        ad 	struct pool *pp;
   2045  1.134        ad 
   2046  1.134        ad 	pp = &pc->pc_pool;
   2047  1.208       chs 	if (palloc == NULL && ipl == IPL_NONE) {
   2048  1.208       chs 		if (size > PAGE_SIZE) {
   2049  1.208       chs 			int bigidx = pool_bigidx(size);
   2050  1.208       chs 
   2051  1.208       chs 			palloc = &pool_allocator_big[bigidx];
   2052  1.252      maxv 			flags |= PR_NOALIGN;
   2053  1.208       chs 		} else
   2054  1.208       chs 			palloc = &pool_allocator_nointr;
   2055  1.208       chs 	}
   2056  1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2057   1.43   thorpej 
   2058  1.134        ad 	if (ctor == NULL) {
   2059  1.261  christos 		ctor = NO_CTOR;
   2060  1.134        ad 	}
   2061  1.134        ad 	if (dtor == NULL) {
   2062  1.261  christos 		dtor = NO_DTOR;
   2063  1.134        ad 	}
   2064   1.43   thorpej 
   2065  1.134        ad 	pc->pc_fullgroups = NULL;
   2066  1.134        ad 	pc->pc_partgroups = NULL;
   2067   1.43   thorpej 	pc->pc_ctor = ctor;
   2068   1.43   thorpej 	pc->pc_dtor = dtor;
   2069   1.43   thorpej 	pc->pc_arg  = arg;
   2070  1.134        ad 	pc->pc_refcnt = 0;
   2071  1.136      yamt 	pc->pc_freecheck = NULL;
   2072  1.134        ad 
   2073  1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   2074  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2075  1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   2076  1.271        ad 		pc->pc_pcgcache = &pcg_large_cache;
   2077  1.142        ad 	} else {
   2078  1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2079  1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   2080  1.271        ad 		pc->pc_pcgcache = &pcg_normal_cache;
   2081  1.142        ad 	}
   2082  1.142        ad 
   2083  1.134        ad 	/* Allocate per-CPU caches. */
   2084  1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2085  1.134        ad 	pc->pc_ncpu = 0;
   2086  1.139        ad 	if (ncpu < 2) {
   2087  1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2088  1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2089  1.137        ad 	} else {
   2090  1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2091  1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2092  1.137        ad 		}
   2093  1.134        ad 	}
   2094  1.145        ad 
   2095  1.145        ad 	/* Add to list of all pools. */
   2096  1.145        ad 	if (__predict_true(!cold))
   2097  1.134        ad 		mutex_enter(&pool_head_lock);
   2098  1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2099  1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2100  1.145        ad 			break;
   2101  1.145        ad 	}
   2102  1.145        ad 	if (pc1 == NULL)
   2103  1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2104  1.145        ad 	else
   2105  1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2106  1.145        ad 	if (__predict_true(!cold))
   2107  1.134        ad 		mutex_exit(&pool_head_lock);
   2108  1.145        ad 
   2109  1.145        ad 	membar_sync();
   2110  1.145        ad 	pp->pr_cache = pc;
   2111   1.43   thorpej }
   2112   1.43   thorpej 
   2113   1.43   thorpej /*
   2114   1.43   thorpej  * pool_cache_destroy:
   2115   1.43   thorpej  *
   2116   1.43   thorpej  *	Destroy a pool cache.
   2117   1.43   thorpej  */
   2118   1.43   thorpej void
   2119  1.134        ad pool_cache_destroy(pool_cache_t pc)
   2120   1.43   thorpej {
   2121  1.191      para 
   2122  1.191      para 	pool_cache_bootstrap_destroy(pc);
   2123  1.191      para 	pool_put(&cache_pool, pc);
   2124  1.191      para }
   2125  1.191      para 
   2126  1.191      para /*
   2127  1.191      para  * pool_cache_bootstrap_destroy:
   2128  1.191      para  *
   2129  1.191      para  *	Destroy a pool cache.
   2130  1.191      para  */
   2131  1.191      para void
   2132  1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   2133  1.191      para {
   2134  1.134        ad 	struct pool *pp = &pc->pc_pool;
   2135  1.175       jym 	u_int i;
   2136  1.134        ad 
   2137  1.134        ad 	/* Remove it from the global list. */
   2138  1.134        ad 	mutex_enter(&pool_head_lock);
   2139  1.134        ad 	while (pc->pc_refcnt != 0)
   2140  1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2141  1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2142  1.134        ad 	mutex_exit(&pool_head_lock);
   2143   1.43   thorpej 
   2144   1.43   thorpej 	/* First, invalidate the entire cache. */
   2145   1.43   thorpej 	pool_cache_invalidate(pc);
   2146   1.43   thorpej 
   2147  1.134        ad 	/* Disassociate it from the pool. */
   2148  1.134        ad 	mutex_enter(&pp->pr_lock);
   2149  1.134        ad 	pp->pr_cache = NULL;
   2150  1.134        ad 	mutex_exit(&pp->pr_lock);
   2151  1.134        ad 
   2152  1.134        ad 	/* Destroy per-CPU data */
   2153  1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2154  1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   2155  1.134        ad 
   2156  1.134        ad 	/* Finally, destroy it. */
   2157  1.134        ad 	pool_destroy(pp);
   2158  1.134        ad }
   2159  1.134        ad 
   2160  1.134        ad /*
   2161  1.134        ad  * pool_cache_cpu_init1:
   2162  1.134        ad  *
   2163  1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2164  1.134        ad  */
   2165  1.134        ad static void
   2166  1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2167  1.134        ad {
   2168  1.134        ad 	pool_cache_cpu_t *cc;
   2169  1.137        ad 	int index;
   2170  1.134        ad 
   2171  1.137        ad 	index = ci->ci_index;
   2172  1.137        ad 
   2173  1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   2174  1.134        ad 
   2175  1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2176  1.134        ad 		return;
   2177  1.134        ad 	}
   2178  1.134        ad 
   2179  1.134        ad 	/*
   2180  1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2181  1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2182  1.134        ad 	 */
   2183  1.134        ad 	if (pc->pc_ncpu == 0) {
   2184  1.134        ad 		cc = &pc->pc_cpu0;
   2185  1.134        ad 		pc->pc_ncpu = 1;
   2186  1.134        ad 	} else {
   2187  1.134        ad 		pc->pc_ncpu++;
   2188  1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2189  1.134        ad 	}
   2190  1.134        ad 
   2191  1.271        ad 	cc->cc_current = __UNCONST(&pcg_dummy);
   2192  1.271        ad 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2193  1.271        ad 	cc->cc_pcgcache = pc->pc_pcgcache;
   2194  1.134        ad 	cc->cc_hits = 0;
   2195  1.134        ad 	cc->cc_misses = 0;
   2196  1.271        ad 	cc->cc_pcmisses = 0;
   2197  1.271        ad 	cc->cc_contended = 0;
   2198  1.271        ad 	cc->cc_nfull = 0;
   2199  1.271        ad 	cc->cc_npart = 0;
   2200  1.134        ad 
   2201  1.137        ad 	pc->pc_cpus[index] = cc;
   2202   1.43   thorpej }
   2203   1.43   thorpej 
   2204  1.134        ad /*
   2205  1.134        ad  * pool_cache_cpu_init:
   2206  1.134        ad  *
   2207  1.134        ad  *	Called whenever a new CPU is attached.
   2208  1.134        ad  */
   2209  1.134        ad void
   2210  1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2211   1.43   thorpej {
   2212  1.134        ad 	pool_cache_t pc;
   2213  1.134        ad 
   2214  1.134        ad 	mutex_enter(&pool_head_lock);
   2215  1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2216  1.134        ad 		pc->pc_refcnt++;
   2217  1.134        ad 		mutex_exit(&pool_head_lock);
   2218   1.43   thorpej 
   2219  1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2220   1.43   thorpej 
   2221  1.134        ad 		mutex_enter(&pool_head_lock);
   2222  1.134        ad 		pc->pc_refcnt--;
   2223  1.134        ad 		cv_broadcast(&pool_busy);
   2224  1.134        ad 	}
   2225  1.134        ad 	mutex_exit(&pool_head_lock);
   2226   1.43   thorpej }
   2227   1.43   thorpej 
   2228  1.134        ad /*
   2229  1.134        ad  * pool_cache_reclaim:
   2230  1.134        ad  *
   2231  1.134        ad  *	Reclaim memory from a pool cache.
   2232  1.134        ad  */
   2233  1.134        ad bool
   2234  1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2235   1.43   thorpej {
   2236   1.43   thorpej 
   2237  1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2238  1.134        ad }
   2239   1.43   thorpej 
   2240  1.136      yamt static void
   2241  1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2242  1.136      yamt {
   2243  1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2244  1.136      yamt 	pool_put(&pc->pc_pool, object);
   2245  1.136      yamt }
   2246  1.136      yamt 
   2247  1.134        ad /*
   2248  1.134        ad  * pool_cache_destruct_object:
   2249  1.134        ad  *
   2250  1.134        ad  *	Force destruction of an object and its release back into
   2251  1.134        ad  *	the pool.
   2252  1.134        ad  */
   2253  1.134        ad void
   2254  1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2255  1.134        ad {
   2256  1.134        ad 
   2257  1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2258  1.136      yamt 
   2259  1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2260   1.43   thorpej }
   2261   1.43   thorpej 
   2262  1.134        ad /*
   2263  1.134        ad  * pool_cache_invalidate_groups:
   2264  1.134        ad  *
   2265  1.271        ad  *	Invalidate a chain of groups and destruct all objects.  Return the
   2266  1.271        ad  *	number of groups that were invalidated.
   2267  1.134        ad  */
   2268  1.271        ad static int
   2269  1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2270  1.102       chs {
   2271  1.134        ad 	void *object;
   2272  1.134        ad 	pcg_t *next;
   2273  1.271        ad 	int i, n;
   2274  1.134        ad 
   2275  1.271        ad 	for (n = 0; pcg != NULL; pcg = next, n++) {
   2276  1.134        ad 		next = pcg->pcg_next;
   2277  1.134        ad 
   2278  1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2279  1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2280  1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2281  1.134        ad 		}
   2282  1.102       chs 
   2283  1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2284  1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2285  1.142        ad 		} else {
   2286  1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2287  1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2288  1.142        ad 		}
   2289  1.102       chs 	}
   2290  1.271        ad 	return n;
   2291  1.102       chs }
   2292  1.102       chs 
   2293   1.43   thorpej /*
   2294  1.134        ad  * pool_cache_invalidate:
   2295   1.43   thorpej  *
   2296  1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2297  1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2298  1.176   thorpej  *
   2299  1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2300  1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2301  1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2302  1.196       jym  *
   2303  1.196       jym  *	Invalidation is a costly process and should not be called from
   2304  1.196       jym  *	interrupt context.
   2305   1.43   thorpej  */
   2306  1.134        ad void
   2307  1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2308  1.134        ad {
   2309  1.196       jym 	uint64_t where;
   2310  1.271        ad 	pcg_t *pcg;
   2311  1.271        ad 	int n, s;
   2312  1.196       jym 
   2313  1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2314  1.176   thorpej 
   2315  1.177       jym 	if (ncpu < 2 || !mp_online) {
   2316  1.176   thorpej 		/*
   2317  1.176   thorpej 		 * We might be called early enough in the boot process
   2318  1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2319  1.196       jym 		 * In this case, transfer the content of the local CPU's
   2320  1.196       jym 		 * cache back into global cache as only this CPU is currently
   2321  1.196       jym 		 * running.
   2322  1.176   thorpej 		 */
   2323  1.196       jym 		pool_cache_transfer(pc);
   2324  1.176   thorpej 	} else {
   2325  1.176   thorpej 		/*
   2326  1.196       jym 		 * Signal all CPUs that they must transfer their local
   2327  1.196       jym 		 * cache back to the global pool then wait for the xcall to
   2328  1.196       jym 		 * complete.
   2329  1.176   thorpej 		 */
   2330  1.261  christos 		where = xc_broadcast(0,
   2331  1.261  christos 		    __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
   2332  1.176   thorpej 		xc_wait(where);
   2333  1.176   thorpej 	}
   2334  1.196       jym 
   2335  1.271        ad 	/* Now dequeue and invalidate everything. */
   2336  1.271        ad 	pcg = pool_pcg_trunc(&pcg_normal_cache);
   2337  1.271        ad 	(void)pool_cache_invalidate_groups(pc, pcg);
   2338  1.271        ad 
   2339  1.271        ad 	pcg = pool_pcg_trunc(&pcg_large_cache);
   2340  1.271        ad 	(void)pool_cache_invalidate_groups(pc, pcg);
   2341  1.271        ad 
   2342  1.271        ad 	pcg = pool_pcg_trunc(&pc->pc_fullgroups);
   2343  1.271        ad 	n = pool_cache_invalidate_groups(pc, pcg);
   2344  1.271        ad 	s = splvm();
   2345  1.271        ad 	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
   2346  1.271        ad 	splx(s);
   2347  1.271        ad 
   2348  1.271        ad 	pcg = pool_pcg_trunc(&pc->pc_partgroups);
   2349  1.271        ad 	n = pool_cache_invalidate_groups(pc, pcg);
   2350  1.271        ad 	s = splvm();
   2351  1.271        ad 	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
   2352  1.271        ad 	splx(s);
   2353  1.134        ad }
   2354  1.134        ad 
   2355  1.175       jym /*
   2356  1.175       jym  * pool_cache_invalidate_cpu:
   2357  1.175       jym  *
   2358  1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2359  1.175       jym  *	identified by its associated index.
   2360  1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2361  1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2362  1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2363  1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2364  1.175       jym  *	may result in an undefined behaviour.
   2365  1.175       jym  */
   2366  1.175       jym static void
   2367  1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2368  1.175       jym {
   2369  1.175       jym 	pool_cache_cpu_t *cc;
   2370  1.175       jym 	pcg_t *pcg;
   2371  1.175       jym 
   2372  1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2373  1.175       jym 		return;
   2374  1.175       jym 
   2375  1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2376  1.175       jym 		pcg->pcg_next = NULL;
   2377  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2378  1.175       jym 	}
   2379  1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2380  1.175       jym 		pcg->pcg_next = NULL;
   2381  1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2382  1.175       jym 	}
   2383  1.175       jym 	if (cc != &pc->pc_cpu0)
   2384  1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2385  1.175       jym 
   2386  1.175       jym }
   2387  1.175       jym 
   2388  1.134        ad void
   2389  1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2390  1.134        ad {
   2391  1.134        ad 
   2392  1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2393  1.134        ad }
   2394  1.134        ad 
   2395  1.134        ad void
   2396  1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2397  1.134        ad {
   2398  1.134        ad 
   2399  1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2400  1.134        ad }
   2401  1.134        ad 
   2402  1.134        ad void
   2403  1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2404  1.134        ad {
   2405  1.134        ad 
   2406  1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2407  1.134        ad }
   2408  1.134        ad 
   2409  1.134        ad void
   2410  1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2411  1.134        ad {
   2412  1.134        ad 
   2413  1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2414  1.134        ad }
   2415  1.134        ad 
   2416  1.267       chs void
   2417  1.267       chs pool_cache_prime(pool_cache_t pc, int n)
   2418  1.267       chs {
   2419  1.267       chs 
   2420  1.267       chs 	pool_prime(&pc->pc_pool, n);
   2421  1.267       chs }
   2422  1.267       chs 
   2423  1.271        ad /*
   2424  1.271        ad  * pool_pcg_get:
   2425  1.271        ad  *
   2426  1.271        ad  *	Get a cache group from the specified list.  Return true if
   2427  1.271        ad  *	contention was encountered.  Must be called at IPL_VM because
   2428  1.271        ad  *	of spin wait vs. kernel_lock.
   2429  1.271        ad  */
   2430  1.271        ad static int
   2431  1.271        ad pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
   2432  1.271        ad {
   2433  1.271        ad 	int count = SPINLOCK_BACKOFF_MIN;
   2434  1.271        ad 	pcg_t *o, *n;
   2435  1.271        ad 
   2436  1.271        ad 	for (o = atomic_load_relaxed(head);; o = n) {
   2437  1.271        ad 		if (__predict_false(o == &pcg_dummy)) {
   2438  1.271        ad 			/* Wait for concurrent get to complete. */
   2439  1.271        ad 			SPINLOCK_BACKOFF(count);
   2440  1.271        ad 			n = atomic_load_relaxed(head);
   2441  1.271        ad 			continue;
   2442  1.271        ad 		}
   2443  1.271        ad 		if (__predict_false(o == NULL)) {
   2444  1.271        ad 			break;
   2445  1.271        ad 		}
   2446  1.271        ad 		/* Lock out concurrent get/put. */
   2447  1.271        ad 		n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
   2448  1.271        ad 		if (o == n) {
   2449  1.271        ad 			/* Fetch pointer to next item and then unlock. */
   2450  1.271        ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
   2451  1.271        ad 			membar_datadep_consumer(); /* alpha */
   2452  1.271        ad #endif
   2453  1.271        ad 			n = atomic_load_relaxed(&o->pcg_next);
   2454  1.271        ad 			atomic_store_release(head, n);
   2455  1.271        ad 			break;
   2456  1.271        ad 		}
   2457  1.271        ad 	}
   2458  1.271        ad 	*pcgp = o;
   2459  1.271        ad 	return count != SPINLOCK_BACKOFF_MIN;
   2460  1.271        ad }
   2461  1.271        ad 
   2462  1.271        ad /*
   2463  1.271        ad  * pool_pcg_trunc:
   2464  1.271        ad  *
   2465  1.271        ad  *	Chop out entire list of pool cache groups.
   2466  1.271        ad  */
   2467  1.271        ad static pcg_t *
   2468  1.271        ad pool_pcg_trunc(pcg_t *volatile *head)
   2469  1.271        ad {
   2470  1.271        ad 	int count = SPINLOCK_BACKOFF_MIN, s;
   2471  1.271        ad 	pcg_t *o, *n;
   2472  1.271        ad 
   2473  1.271        ad 	s = splvm();
   2474  1.271        ad 	for (o = atomic_load_relaxed(head);; o = n) {
   2475  1.271        ad 		if (__predict_false(o == &pcg_dummy)) {
   2476  1.271        ad 			/* Wait for concurrent get to complete. */
   2477  1.271        ad 			SPINLOCK_BACKOFF(count);
   2478  1.271        ad 			n = atomic_load_relaxed(head);
   2479  1.271        ad 			continue;
   2480  1.271        ad 		}
   2481  1.271        ad 		n = atomic_cas_ptr(head, o, NULL);
   2482  1.271        ad 		if (o == n) {
   2483  1.271        ad 			splx(s);
   2484  1.271        ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
   2485  1.271        ad 			membar_datadep_consumer(); /* alpha */
   2486  1.271        ad #endif
   2487  1.271        ad 			return o;
   2488  1.271        ad 		}
   2489  1.271        ad 	}
   2490  1.271        ad }
   2491  1.271        ad 
   2492  1.271        ad /*
   2493  1.271        ad  * pool_pcg_put:
   2494  1.271        ad  *
   2495  1.271        ad  *	Put a pool cache group to the specified list.  Return true if
   2496  1.271        ad  *	contention was encountered.  Must be called at IPL_VM because of
   2497  1.271        ad  *	spin wait vs. kernel_lock.
   2498  1.271        ad  */
   2499  1.271        ad static int
   2500  1.271        ad pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
   2501  1.271        ad {
   2502  1.271        ad 	int count = SPINLOCK_BACKOFF_MIN;
   2503  1.271        ad 	pcg_t *o, *n;
   2504  1.271        ad 
   2505  1.271        ad 	for (o = atomic_load_relaxed(head);; o = n) {
   2506  1.271        ad 		if (__predict_false(o == &pcg_dummy)) {
   2507  1.271        ad 			/* Wait for concurrent get to complete. */
   2508  1.271        ad 			SPINLOCK_BACKOFF(count);
   2509  1.271        ad 			n = atomic_load_relaxed(head);
   2510  1.271        ad 			continue;
   2511  1.271        ad 		}
   2512  1.271        ad 		pcg->pcg_next = o;
   2513  1.271        ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
   2514  1.271        ad 		membar_exit();
   2515  1.271        ad #endif
   2516  1.271        ad 		n = atomic_cas_ptr(head, o, pcg);
   2517  1.271        ad 		if (o == n) {
   2518  1.271        ad 			return count != SPINLOCK_BACKOFF_MIN;
   2519  1.271        ad 		}
   2520  1.271        ad 	}
   2521  1.271        ad }
   2522  1.271        ad 
   2523  1.162        ad static bool __noinline
   2524  1.271        ad pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
   2525  1.271        ad     void **objectp, paddr_t *pap, int flags)
   2526   1.43   thorpej {
   2527  1.134        ad 	pcg_t *pcg, *cur;
   2528   1.43   thorpej 	void *object;
   2529   1.58   thorpej 
   2530  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2531  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2532  1.168      yamt 
   2533  1.134        ad 	cc->cc_misses++;
   2534   1.43   thorpej 
   2535  1.134        ad 	/*
   2536  1.271        ad 	 * If there's a full group, release our empty group back to the
   2537  1.271        ad 	 * cache.  Install the full group as cc_current and return.
   2538  1.134        ad 	 */
   2539  1.271        ad 	cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
   2540  1.271        ad 	if (__predict_true(pcg != NULL)) {
   2541  1.271        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2542  1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2543  1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2544  1.271        ad 			(void)pool_pcg_put(cc->cc_pcgcache, cur);
   2545   1.87   thorpej 		}
   2546  1.271        ad 		cc->cc_nfull--;
   2547  1.134        ad 		cc->cc_current = pcg;
   2548  1.162        ad 		return true;
   2549  1.134        ad 	}
   2550  1.134        ad 
   2551  1.134        ad 	/*
   2552  1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2553  1.134        ad 	 * path: fetch a new object from the pool and construct
   2554  1.134        ad 	 * it.
   2555  1.134        ad 	 */
   2556  1.271        ad 	cc->cc_pcmisses++;
   2557  1.162        ad 	splx(s);
   2558  1.134        ad 
   2559  1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2560  1.134        ad 	*objectp = object;
   2561  1.211  riastrad 	if (__predict_false(object == NULL)) {
   2562  1.265       chs 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   2563  1.162        ad 		return false;
   2564  1.211  riastrad 	}
   2565  1.125        ad 
   2566  1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2567  1.134        ad 		pool_put(&pc->pc_pool, object);
   2568  1.134        ad 		*objectp = NULL;
   2569  1.162        ad 		return false;
   2570   1.43   thorpej 	}
   2571   1.43   thorpej 
   2572  1.238      maxv 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2573   1.43   thorpej 
   2574  1.134        ad 	if (pap != NULL) {
   2575  1.134        ad #ifdef POOL_VTOPHYS
   2576  1.134        ad 		*pap = POOL_VTOPHYS(object);
   2577  1.134        ad #else
   2578  1.134        ad 		*pap = POOL_PADDR_INVALID;
   2579  1.134        ad #endif
   2580  1.102       chs 	}
   2581   1.43   thorpej 
   2582  1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2583  1.162        ad 	return false;
   2584   1.43   thorpej }
   2585   1.43   thorpej 
   2586   1.43   thorpej /*
   2587  1.134        ad  * pool_cache_get{,_paddr}:
   2588   1.43   thorpej  *
   2589  1.134        ad  *	Get an object from a pool cache (optionally returning
   2590  1.134        ad  *	the physical address of the object).
   2591   1.43   thorpej  */
   2592  1.134        ad void *
   2593  1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2594   1.43   thorpej {
   2595  1.134        ad 	pool_cache_cpu_t *cc;
   2596  1.134        ad 	pcg_t *pcg;
   2597  1.134        ad 	void *object;
   2598   1.60   thorpej 	int s;
   2599   1.43   thorpej 
   2600  1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2601  1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2602  1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2603  1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2604  1.213  christos 	    __func__, pc->pc_pool.pr_wchan);
   2605  1.184     rmind 
   2606  1.155        ad 	if (flags & PR_WAITOK) {
   2607  1.154      yamt 		ASSERT_SLEEPABLE();
   2608  1.155        ad 	}
   2609  1.125        ad 
   2610  1.270      maxv 	if (flags & PR_NOWAIT) {
   2611  1.270      maxv 		if (fault_inject())
   2612  1.270      maxv 			return NULL;
   2613  1.270      maxv 	}
   2614  1.270      maxv 
   2615  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2616  1.162        ad 	s = splvm();
   2617  1.165      yamt 	while (/* CONSTCOND */ true) {
   2618  1.134        ad 		/* Try and allocate an object from the current group. */
   2619  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2620  1.134        ad 	 	pcg = cc->cc_current;
   2621  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2622  1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2623  1.162        ad 			if (__predict_false(pap != NULL))
   2624  1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2625  1.148      yamt #if defined(DIAGNOSTIC)
   2626  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2627  1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2628  1.134        ad 			KASSERT(object != NULL);
   2629  1.163        ad #endif
   2630  1.134        ad 			cc->cc_hits++;
   2631  1.162        ad 			splx(s);
   2632  1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2633  1.204      maxv 			pool_redzone_fill(&pc->pc_pool, object);
   2634  1.262      maxv 			pool_cache_get_kmsan(pc, object);
   2635  1.134        ad 			return object;
   2636   1.43   thorpej 		}
   2637   1.43   thorpej 
   2638   1.43   thorpej 		/*
   2639  1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2640  1.134        ad 		 * it with the current group and allocate from there.
   2641   1.43   thorpej 		 */
   2642  1.134        ad 		pcg = cc->cc_previous;
   2643  1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2644  1.134        ad 			cc->cc_previous = cc->cc_current;
   2645  1.134        ad 			cc->cc_current = pcg;
   2646  1.134        ad 			continue;
   2647   1.43   thorpej 		}
   2648   1.43   thorpej 
   2649  1.134        ad 		/*
   2650  1.134        ad 		 * Can't allocate from either group: try the slow path.
   2651  1.134        ad 		 * If get_slow() allocated an object for us, or if
   2652  1.162        ad 		 * no more objects are available, it will return false.
   2653  1.134        ad 		 * Otherwise, we need to retry.
   2654  1.134        ad 		 */
   2655  1.271        ad 		if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
   2656  1.269      maxv 			if (object != NULL) {
   2657  1.269      maxv 				kmsan_orig(object, pc->pc_pool.pr_size,
   2658  1.269      maxv 				    KMSAN_TYPE_POOL, __RET_ADDR);
   2659  1.269      maxv 			}
   2660  1.165      yamt 			break;
   2661  1.269      maxv 		}
   2662  1.165      yamt 	}
   2663   1.43   thorpej 
   2664  1.211  riastrad 	/*
   2665  1.211  riastrad 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2666  1.211  riastrad 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2667  1.211  riastrad 	 * constructor fails.
   2668  1.211  riastrad 	 */
   2669  1.134        ad 	return object;
   2670   1.51   thorpej }
   2671   1.51   thorpej 
   2672  1.162        ad static bool __noinline
   2673  1.271        ad pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
   2674   1.51   thorpej {
   2675  1.163        ad 	pcg_t *pcg, *cur;
   2676   1.51   thorpej 
   2677  1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2678  1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2679  1.168      yamt 
   2680  1.134        ad 	cc->cc_misses++;
   2681   1.43   thorpej 
   2682  1.171        ad 	/*
   2683  1.271        ad 	 * Try to get an empty group from the cache.  If there are no empty
   2684  1.271        ad 	 * groups in the cache then allocate one.
   2685  1.171        ad 	 */
   2686  1.271        ad 	(void)pool_pcg_get(cc->cc_pcgcache, &pcg);
   2687  1.271        ad 	if (__predict_false(pcg == NULL)) {
   2688  1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2689  1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2690  1.171        ad 		}
   2691  1.171        ad 		if (__predict_true(pcg != NULL)) {
   2692  1.171        ad 			pcg->pcg_avail = 0;
   2693  1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2694  1.171        ad 		}
   2695  1.171        ad 	}
   2696  1.171        ad 
   2697  1.162        ad 	/*
   2698  1.271        ad 	 * If there's a empty group, release our full group back to the
   2699  1.271        ad 	 * cache.  Install the empty group to the local CPU and return.
   2700  1.162        ad 	 */
   2701  1.163        ad 	if (pcg != NULL) {
   2702  1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2703  1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2704  1.146        ad 			cc->cc_previous = pcg;
   2705  1.146        ad 		} else {
   2706  1.162        ad 			cur = cc->cc_current;
   2707  1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2708  1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2709  1.271        ad 				cc->cc_contended +=
   2710  1.271        ad 				    pool_pcg_put(&pc->pc_fullgroups, cur);
   2711  1.271        ad 				cc->cc_nfull++;
   2712  1.146        ad 			}
   2713  1.146        ad 			cc->cc_current = pcg;
   2714  1.146        ad 		}
   2715  1.162        ad 		return true;
   2716  1.102       chs 	}
   2717  1.105  christos 
   2718  1.134        ad 	/*
   2719  1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2720  1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2721  1.162        ad 	 * the object here and now.
   2722  1.134        ad 	 */
   2723  1.271        ad 	cc->cc_pcmisses++;
   2724  1.162        ad 	splx(s);
   2725  1.162        ad 	pool_cache_destruct_object(pc, object);
   2726  1.105  christos 
   2727  1.162        ad 	return false;
   2728  1.236      maxv }
   2729  1.102       chs 
   2730   1.43   thorpej /*
   2731  1.134        ad  * pool_cache_put{,_paddr}:
   2732   1.43   thorpej  *
   2733  1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2734  1.134        ad  *	physical address of the object).
   2735   1.43   thorpej  */
   2736  1.101   thorpej void
   2737  1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2738   1.43   thorpej {
   2739  1.134        ad 	pool_cache_cpu_t *cc;
   2740  1.134        ad 	pcg_t *pcg;
   2741  1.134        ad 	int s;
   2742  1.101   thorpej 
   2743  1.172      yamt 	KASSERT(object != NULL);
   2744  1.262      maxv 	pool_cache_put_kmsan(pc, object);
   2745  1.229      maxv 	pool_cache_redzone_check(pc, object);
   2746  1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2747  1.101   thorpej 
   2748  1.253      maxv 	if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
   2749  1.253      maxv 		pc_phinpage_check(pc, object);
   2750  1.253      maxv 	}
   2751  1.253      maxv 
   2752  1.268      maxv 	if (pool_cache_put_nocache(pc, object)) {
   2753  1.249      maxv 		return;
   2754  1.249      maxv 	}
   2755  1.249      maxv 
   2756  1.162        ad 	/* Lock out interrupts and disable preemption. */
   2757  1.162        ad 	s = splvm();
   2758  1.165      yamt 	while (/* CONSTCOND */ true) {
   2759  1.134        ad 		/* If the current group isn't full, release it there. */
   2760  1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2761  1.134        ad 	 	pcg = cc->cc_current;
   2762  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2763  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2764  1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2765  1.134        ad 			pcg->pcg_avail++;
   2766  1.134        ad 			cc->cc_hits++;
   2767  1.162        ad 			splx(s);
   2768  1.134        ad 			return;
   2769  1.134        ad 		}
   2770   1.43   thorpej 
   2771  1.134        ad 		/*
   2772  1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2773  1.134        ad 		 * it with the current group and try again.
   2774  1.134        ad 		 */
   2775  1.134        ad 		pcg = cc->cc_previous;
   2776  1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2777  1.134        ad 			cc->cc_previous = cc->cc_current;
   2778  1.134        ad 			cc->cc_current = pcg;
   2779  1.134        ad 			continue;
   2780  1.134        ad 		}
   2781   1.43   thorpej 
   2782  1.134        ad 		/*
   2783  1.236      maxv 		 * Can't free to either group: try the slow path.
   2784  1.134        ad 		 * If put_slow() releases the object for us, it
   2785  1.162        ad 		 * will return false.  Otherwise we need to retry.
   2786  1.134        ad 		 */
   2787  1.271        ad 		if (!pool_cache_put_slow(pc, cc, s, object))
   2788  1.165      yamt 			break;
   2789  1.165      yamt 	}
   2790   1.43   thorpej }
   2791   1.43   thorpej 
   2792   1.43   thorpej /*
   2793  1.196       jym  * pool_cache_transfer:
   2794   1.43   thorpej  *
   2795  1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2796  1.134        ad  *	Run within a cross-call thread.
   2797   1.43   thorpej  */
   2798   1.43   thorpej static void
   2799  1.196       jym pool_cache_transfer(pool_cache_t pc)
   2800   1.43   thorpej {
   2801  1.134        ad 	pool_cache_cpu_t *cc;
   2802  1.271        ad 	pcg_t *prev, *cur;
   2803  1.162        ad 	int s;
   2804  1.134        ad 
   2805  1.162        ad 	s = splvm();
   2806  1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2807  1.134        ad 	cur = cc->cc_current;
   2808  1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2809  1.134        ad 	prev = cc->cc_previous;
   2810  1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2811  1.162        ad 	if (cur != &pcg_dummy) {
   2812  1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2813  1.271        ad 			(void)pool_pcg_put(&pc->pc_fullgroups, cur);
   2814  1.271        ad 			cc->cc_nfull++;
   2815  1.134        ad 		} else if (cur->pcg_avail == 0) {
   2816  1.271        ad 			(void)pool_pcg_put(pc->pc_pcgcache, cur);
   2817  1.134        ad 		} else {
   2818  1.271        ad 			(void)pool_pcg_put(&pc->pc_partgroups, cur);
   2819  1.271        ad 			cc->cc_npart++;
   2820  1.134        ad 		}
   2821  1.134        ad 	}
   2822  1.162        ad 	if (prev != &pcg_dummy) {
   2823  1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2824  1.271        ad 			(void)pool_pcg_put(&pc->pc_fullgroups, prev);
   2825  1.271        ad 			cc->cc_nfull++;
   2826  1.134        ad 		} else if (prev->pcg_avail == 0) {
   2827  1.271        ad 			(void)pool_pcg_put(pc->pc_pcgcache, prev);
   2828  1.134        ad 		} else {
   2829  1.271        ad 			(void)pool_pcg_put(&pc->pc_partgroups, prev);
   2830  1.271        ad 			cc->cc_npart++;
   2831  1.134        ad 		}
   2832  1.134        ad 	}
   2833  1.134        ad 	splx(s);
   2834    1.3        pk }
   2835   1.66   thorpej 
   2836  1.208       chs static int
   2837  1.208       chs pool_bigidx(size_t size)
   2838  1.208       chs {
   2839  1.208       chs 	int i;
   2840  1.208       chs 
   2841  1.208       chs 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2842  1.208       chs 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2843  1.208       chs 			return i;
   2844  1.208       chs 	}
   2845  1.208       chs 	panic("pool item size %zu too large, use a custom allocator", size);
   2846  1.208       chs }
   2847  1.208       chs 
   2848  1.117      yamt static void *
   2849  1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2850   1.66   thorpej {
   2851  1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2852   1.66   thorpej 	void *res;
   2853   1.66   thorpej 
   2854  1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2855  1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2856   1.66   thorpej 		/*
   2857  1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2858  1.117      yamt 		 * In other cases, the hook will be run in
   2859  1.117      yamt 		 * pool_reclaim().
   2860   1.66   thorpej 		 */
   2861  1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2862  1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2863  1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2864   1.66   thorpej 		}
   2865  1.117      yamt 	}
   2866  1.117      yamt 	return res;
   2867   1.66   thorpej }
   2868   1.66   thorpej 
   2869  1.117      yamt static void
   2870   1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2871   1.66   thorpej {
   2872   1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2873   1.66   thorpej 
   2874  1.229      maxv 	if (pp->pr_redzone) {
   2875  1.248      maxv 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
   2876  1.229      maxv 	}
   2877   1.66   thorpej 	(*pa->pa_free)(pp, v);
   2878   1.66   thorpej }
   2879   1.66   thorpej 
   2880   1.66   thorpej void *
   2881  1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2882   1.66   thorpej {
   2883  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2884  1.191      para 	vmem_addr_t va;
   2885  1.192     rmind 	int ret;
   2886  1.191      para 
   2887  1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2888  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2889   1.66   thorpej 
   2890  1.192     rmind 	return ret ? NULL : (void *)va;
   2891   1.66   thorpej }
   2892   1.66   thorpej 
   2893   1.66   thorpej void
   2894  1.124      yamt pool_page_free(struct pool *pp, void *v)
   2895   1.66   thorpej {
   2896   1.66   thorpej 
   2897  1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2898   1.98      yamt }
   2899   1.98      yamt 
   2900   1.98      yamt static void *
   2901  1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2902   1.98      yamt {
   2903  1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2904  1.192     rmind 	vmem_addr_t va;
   2905  1.192     rmind 	int ret;
   2906  1.191      para 
   2907  1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2908  1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2909   1.98      yamt 
   2910  1.192     rmind 	return ret ? NULL : (void *)va;
   2911   1.98      yamt }
   2912   1.98      yamt 
   2913   1.98      yamt static void
   2914  1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2915   1.98      yamt {
   2916   1.98      yamt 
   2917  1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2918   1.66   thorpej }
   2919   1.66   thorpej 
   2920  1.262      maxv #ifdef KMSAN
   2921  1.262      maxv static inline void
   2922  1.262      maxv pool_get_kmsan(struct pool *pp, void *p)
   2923  1.262      maxv {
   2924  1.262      maxv 	kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
   2925  1.262      maxv 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
   2926  1.262      maxv }
   2927  1.262      maxv 
   2928  1.262      maxv static inline void
   2929  1.262      maxv pool_put_kmsan(struct pool *pp, void *p)
   2930  1.262      maxv {
   2931  1.262      maxv 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
   2932  1.262      maxv }
   2933  1.262      maxv 
   2934  1.262      maxv static inline void
   2935  1.262      maxv pool_cache_get_kmsan(pool_cache_t pc, void *p)
   2936  1.262      maxv {
   2937  1.262      maxv 	if (__predict_false(pc_has_ctor(pc))) {
   2938  1.262      maxv 		return;
   2939  1.262      maxv 	}
   2940  1.262      maxv 	pool_get_kmsan(&pc->pc_pool, p);
   2941  1.262      maxv }
   2942  1.262      maxv 
   2943  1.262      maxv static inline void
   2944  1.262      maxv pool_cache_put_kmsan(pool_cache_t pc, void *p)
   2945  1.262      maxv {
   2946  1.262      maxv 	pool_put_kmsan(&pc->pc_pool, p);
   2947  1.262      maxv }
   2948  1.262      maxv #endif
   2949  1.262      maxv 
   2950  1.249      maxv #ifdef POOL_QUARANTINE
   2951  1.249      maxv static void
   2952  1.249      maxv pool_quarantine_init(struct pool *pp)
   2953  1.249      maxv {
   2954  1.249      maxv 	pp->pr_quar.rotor = 0;
   2955  1.249      maxv 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
   2956  1.249      maxv }
   2957  1.249      maxv 
   2958  1.249      maxv static void
   2959  1.249      maxv pool_quarantine_flush(struct pool *pp)
   2960  1.249      maxv {
   2961  1.249      maxv 	pool_quar_t *quar = &pp->pr_quar;
   2962  1.249      maxv 	struct pool_pagelist pq;
   2963  1.249      maxv 	size_t i;
   2964  1.249      maxv 
   2965  1.249      maxv 	LIST_INIT(&pq);
   2966  1.249      maxv 
   2967  1.249      maxv 	mutex_enter(&pp->pr_lock);
   2968  1.249      maxv 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
   2969  1.249      maxv 		if (quar->list[i] == 0)
   2970  1.249      maxv 			continue;
   2971  1.249      maxv 		pool_do_put(pp, (void *)quar->list[i], &pq);
   2972  1.249      maxv 	}
   2973  1.249      maxv 	mutex_exit(&pp->pr_lock);
   2974  1.249      maxv 
   2975  1.249      maxv 	pr_pagelist_free(pp, &pq);
   2976  1.249      maxv }
   2977  1.249      maxv 
   2978  1.249      maxv static bool
   2979  1.249      maxv pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
   2980  1.249      maxv {
   2981  1.249      maxv 	pool_quar_t *quar = &pp->pr_quar;
   2982  1.249      maxv 	uintptr_t old;
   2983  1.249      maxv 
   2984  1.249      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   2985  1.249      maxv 		return false;
   2986  1.249      maxv 	}
   2987  1.249      maxv 
   2988  1.249      maxv 	pool_redzone_check(pp, v);
   2989  1.249      maxv 
   2990  1.249      maxv 	old = quar->list[quar->rotor];
   2991  1.249      maxv 	quar->list[quar->rotor] = (uintptr_t)v;
   2992  1.249      maxv 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
   2993  1.249      maxv 	if (old != 0) {
   2994  1.249      maxv 		pool_do_put(pp, (void *)old, pq);
   2995  1.249      maxv 	}
   2996  1.249      maxv 
   2997  1.249      maxv 	return true;
   2998  1.249      maxv }
   2999  1.268      maxv #endif
   3000  1.249      maxv 
   3001  1.268      maxv #ifdef POOL_NOCACHE
   3002  1.249      maxv static bool
   3003  1.268      maxv pool_cache_put_nocache(pool_cache_t pc, void *p)
   3004  1.249      maxv {
   3005  1.249      maxv 	pool_cache_destruct_object(pc, p);
   3006  1.249      maxv 	return true;
   3007  1.249      maxv }
   3008  1.249      maxv #endif
   3009  1.249      maxv 
   3010  1.204      maxv #ifdef POOL_REDZONE
   3011  1.204      maxv #if defined(_LP64)
   3012  1.204      maxv # define PRIME 0x9e37fffffffc0000UL
   3013  1.204      maxv #else /* defined(_LP64) */
   3014  1.204      maxv # define PRIME 0x9e3779b1
   3015  1.204      maxv #endif /* defined(_LP64) */
   3016  1.204      maxv #define STATIC_BYTE	0xFE
   3017  1.204      maxv CTASSERT(POOL_REDZONE_SIZE > 1);
   3018  1.204      maxv 
   3019  1.224      maxv #ifndef KASAN
   3020  1.204      maxv static inline uint8_t
   3021  1.204      maxv pool_pattern_generate(const void *p)
   3022  1.204      maxv {
   3023  1.204      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
   3024  1.204      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   3025  1.204      maxv }
   3026  1.224      maxv #endif
   3027  1.204      maxv 
   3028  1.204      maxv static void
   3029  1.204      maxv pool_redzone_init(struct pool *pp, size_t requested_size)
   3030  1.204      maxv {
   3031  1.227      maxv 	size_t redzsz;
   3032  1.204      maxv 	size_t nsz;
   3033  1.204      maxv 
   3034  1.227      maxv #ifdef KASAN
   3035  1.227      maxv 	redzsz = requested_size;
   3036  1.227      maxv 	kasan_add_redzone(&redzsz);
   3037  1.227      maxv 	redzsz -= requested_size;
   3038  1.227      maxv #else
   3039  1.227      maxv 	redzsz = POOL_REDZONE_SIZE;
   3040  1.227      maxv #endif
   3041  1.227      maxv 
   3042  1.204      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   3043  1.204      maxv 		pp->pr_redzone = false;
   3044  1.204      maxv 		return;
   3045  1.204      maxv 	}
   3046  1.204      maxv 
   3047  1.204      maxv 	/*
   3048  1.204      maxv 	 * We may have extended the requested size earlier; check if
   3049  1.204      maxv 	 * there's naturally space in the padding for a red zone.
   3050  1.204      maxv 	 */
   3051  1.227      maxv 	if (pp->pr_size - requested_size >= redzsz) {
   3052  1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3053  1.204      maxv 		pp->pr_redzone = true;
   3054  1.204      maxv 		return;
   3055  1.204      maxv 	}
   3056  1.204      maxv 
   3057  1.204      maxv 	/*
   3058  1.204      maxv 	 * No space in the natural padding; check if we can extend a
   3059  1.204      maxv 	 * bit the size of the pool.
   3060  1.204      maxv 	 */
   3061  1.227      maxv 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   3062  1.204      maxv 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   3063  1.204      maxv 		/* Ok, we can */
   3064  1.204      maxv 		pp->pr_size = nsz;
   3065  1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3066  1.204      maxv 		pp->pr_redzone = true;
   3067  1.204      maxv 	} else {
   3068  1.204      maxv 		/* No space for a red zone... snif :'( */
   3069  1.204      maxv 		pp->pr_redzone = false;
   3070  1.204      maxv 		printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
   3071  1.204      maxv 	}
   3072  1.204      maxv }
   3073  1.204      maxv 
   3074  1.204      maxv static void
   3075  1.204      maxv pool_redzone_fill(struct pool *pp, void *p)
   3076  1.204      maxv {
   3077  1.224      maxv 	if (!pp->pr_redzone)
   3078  1.224      maxv 		return;
   3079  1.224      maxv #ifdef KASAN
   3080  1.248      maxv 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
   3081  1.248      maxv 	    KASAN_POOL_REDZONE);
   3082  1.224      maxv #else
   3083  1.204      maxv 	uint8_t *cp, pat;
   3084  1.204      maxv 	const uint8_t *ep;
   3085  1.204      maxv 
   3086  1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3087  1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3088  1.204      maxv 
   3089  1.204      maxv 	/*
   3090  1.204      maxv 	 * We really don't want the first byte of the red zone to be '\0';
   3091  1.204      maxv 	 * an off-by-one in a string may not be properly detected.
   3092  1.204      maxv 	 */
   3093  1.204      maxv 	pat = pool_pattern_generate(cp);
   3094  1.204      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   3095  1.204      maxv 	cp++;
   3096  1.204      maxv 
   3097  1.204      maxv 	while (cp < ep) {
   3098  1.204      maxv 		*cp = pool_pattern_generate(cp);
   3099  1.204      maxv 		cp++;
   3100  1.204      maxv 	}
   3101  1.224      maxv #endif
   3102  1.204      maxv }
   3103  1.204      maxv 
   3104  1.204      maxv static void
   3105  1.204      maxv pool_redzone_check(struct pool *pp, void *p)
   3106  1.204      maxv {
   3107  1.224      maxv 	if (!pp->pr_redzone)
   3108  1.224      maxv 		return;
   3109  1.224      maxv #ifdef KASAN
   3110  1.248      maxv 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
   3111  1.224      maxv #else
   3112  1.204      maxv 	uint8_t *cp, pat, expected;
   3113  1.204      maxv 	const uint8_t *ep;
   3114  1.204      maxv 
   3115  1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3116  1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3117  1.204      maxv 
   3118  1.204      maxv 	pat = pool_pattern_generate(cp);
   3119  1.204      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   3120  1.264      maxv 	if (__predict_false(*cp != expected)) {
   3121  1.264      maxv 		panic("%s: [%s] 0x%02x != 0x%02x", __func__,
   3122  1.264      maxv 		    pp->pr_wchan, *cp, expected);
   3123  1.204      maxv 	}
   3124  1.204      maxv 	cp++;
   3125  1.204      maxv 
   3126  1.204      maxv 	while (cp < ep) {
   3127  1.204      maxv 		expected = pool_pattern_generate(cp);
   3128  1.225      maxv 		if (__predict_false(*cp != expected)) {
   3129  1.264      maxv 			panic("%s: [%s] 0x%02x != 0x%02x", __func__,
   3130  1.264      maxv 			    pp->pr_wchan, *cp, expected);
   3131  1.204      maxv 		}
   3132  1.204      maxv 		cp++;
   3133  1.204      maxv 	}
   3134  1.224      maxv #endif
   3135  1.204      maxv }
   3136  1.204      maxv 
   3137  1.229      maxv static void
   3138  1.229      maxv pool_cache_redzone_check(pool_cache_t pc, void *p)
   3139  1.229      maxv {
   3140  1.229      maxv #ifdef KASAN
   3141  1.257      maxv 	/* If there is a ctor/dtor, leave the data as valid. */
   3142  1.257      maxv 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   3143  1.229      maxv 		return;
   3144  1.229      maxv 	}
   3145  1.229      maxv #endif
   3146  1.229      maxv 	pool_redzone_check(&pc->pc_pool, p);
   3147  1.229      maxv }
   3148  1.229      maxv 
   3149  1.204      maxv #endif /* POOL_REDZONE */
   3150  1.204      maxv 
   3151  1.141      yamt #if defined(DDB)
   3152  1.141      yamt static bool
   3153  1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3154  1.141      yamt {
   3155  1.141      yamt 
   3156  1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   3157  1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3158  1.141      yamt }
   3159  1.141      yamt 
   3160  1.143      yamt static bool
   3161  1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3162  1.143      yamt {
   3163  1.143      yamt 
   3164  1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3165  1.143      yamt }
   3166  1.143      yamt 
   3167  1.143      yamt static bool
   3168  1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3169  1.143      yamt {
   3170  1.143      yamt 	int i;
   3171  1.143      yamt 
   3172  1.143      yamt 	if (pcg == NULL) {
   3173  1.143      yamt 		return false;
   3174  1.143      yamt 	}
   3175  1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   3176  1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3177  1.143      yamt 			return true;
   3178  1.143      yamt 		}
   3179  1.143      yamt 	}
   3180  1.143      yamt 	return false;
   3181  1.143      yamt }
   3182  1.143      yamt 
   3183  1.143      yamt static bool
   3184  1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3185  1.143      yamt {
   3186  1.143      yamt 
   3187  1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3188  1.234      maxv 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3189  1.143      yamt 		pool_item_bitmap_t *bitmap =
   3190  1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3191  1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3192  1.143      yamt 
   3193  1.143      yamt 		return (*bitmap & mask) == 0;
   3194  1.143      yamt 	} else {
   3195  1.143      yamt 		struct pool_item *pi;
   3196  1.143      yamt 
   3197  1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3198  1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   3199  1.143      yamt 				return false;
   3200  1.143      yamt 			}
   3201  1.143      yamt 		}
   3202  1.143      yamt 		return true;
   3203  1.143      yamt 	}
   3204  1.143      yamt }
   3205  1.143      yamt 
   3206  1.141      yamt void
   3207  1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3208  1.141      yamt {
   3209  1.141      yamt 	struct pool *pp;
   3210  1.141      yamt 
   3211  1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3212  1.141      yamt 		struct pool_item_header *ph;
   3213  1.141      yamt 		uintptr_t item;
   3214  1.143      yamt 		bool allocated = true;
   3215  1.143      yamt 		bool incache = false;
   3216  1.143      yamt 		bool incpucache = false;
   3217  1.143      yamt 		char cpucachestr[32];
   3218  1.141      yamt 
   3219  1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3220  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3221  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3222  1.141      yamt 					goto found;
   3223  1.141      yamt 				}
   3224  1.141      yamt 			}
   3225  1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3226  1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3227  1.143      yamt 					allocated =
   3228  1.143      yamt 					    pool_allocated(pp, ph, addr);
   3229  1.143      yamt 					goto found;
   3230  1.143      yamt 				}
   3231  1.143      yamt 			}
   3232  1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3233  1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   3234  1.143      yamt 					allocated = false;
   3235  1.141      yamt 					goto found;
   3236  1.141      yamt 				}
   3237  1.141      yamt 			}
   3238  1.141      yamt 			continue;
   3239  1.141      yamt 		} else {
   3240  1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3241  1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3242  1.141      yamt 				continue;
   3243  1.141      yamt 			}
   3244  1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3245  1.141      yamt 		}
   3246  1.141      yamt found:
   3247  1.143      yamt 		if (allocated && pp->pr_cache) {
   3248  1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   3249  1.143      yamt 			struct pool_cache_group *pcg;
   3250  1.143      yamt 			int i;
   3251  1.143      yamt 
   3252  1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3253  1.143      yamt 			    pcg = pcg->pcg_next) {
   3254  1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3255  1.143      yamt 					incache = true;
   3256  1.143      yamt 					goto print;
   3257  1.143      yamt 				}
   3258  1.143      yamt 			}
   3259  1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3260  1.143      yamt 				pool_cache_cpu_t *cc;
   3261  1.143      yamt 
   3262  1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3263  1.143      yamt 					continue;
   3264  1.143      yamt 				}
   3265  1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3266  1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3267  1.143      yamt 					struct cpu_info *ci =
   3268  1.170        ad 					    cpu_lookup(i);
   3269  1.143      yamt 
   3270  1.143      yamt 					incpucache = true;
   3271  1.143      yamt 					snprintf(cpucachestr,
   3272  1.143      yamt 					    sizeof(cpucachestr),
   3273  1.143      yamt 					    "cached by CPU %u",
   3274  1.153    martin 					    ci->ci_index);
   3275  1.143      yamt 					goto print;
   3276  1.143      yamt 				}
   3277  1.143      yamt 			}
   3278  1.143      yamt 		}
   3279  1.143      yamt print:
   3280  1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3281  1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3282  1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3283  1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3284  1.143      yamt 		    pp->pr_wchan,
   3285  1.143      yamt 		    incpucache ? cpucachestr :
   3286  1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3287  1.141      yamt 	}
   3288  1.141      yamt }
   3289  1.141      yamt #endif /* defined(DDB) */
   3290  1.203     joerg 
   3291  1.203     joerg static int
   3292  1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   3293  1.203     joerg {
   3294  1.203     joerg 	struct pool_sysctl data;
   3295  1.203     joerg 	struct pool *pp;
   3296  1.203     joerg 	struct pool_cache *pc;
   3297  1.203     joerg 	pool_cache_cpu_t *cc;
   3298  1.203     joerg 	int error;
   3299  1.203     joerg 	size_t i, written;
   3300  1.203     joerg 
   3301  1.203     joerg 	if (oldp == NULL) {
   3302  1.203     joerg 		*oldlenp = 0;
   3303  1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3304  1.203     joerg 			*oldlenp += sizeof(data);
   3305  1.203     joerg 		return 0;
   3306  1.203     joerg 	}
   3307  1.203     joerg 
   3308  1.203     joerg 	memset(&data, 0, sizeof(data));
   3309  1.203     joerg 	error = 0;
   3310  1.203     joerg 	written = 0;
   3311  1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3312  1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   3313  1.203     joerg 			break;
   3314  1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3315  1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3316  1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3317  1.203     joerg #define COPY(field) data.field = pp->field
   3318  1.203     joerg 		COPY(pr_size);
   3319  1.203     joerg 
   3320  1.203     joerg 		COPY(pr_itemsperpage);
   3321  1.203     joerg 		COPY(pr_nitems);
   3322  1.203     joerg 		COPY(pr_nout);
   3323  1.203     joerg 		COPY(pr_hardlimit);
   3324  1.203     joerg 		COPY(pr_npages);
   3325  1.203     joerg 		COPY(pr_minpages);
   3326  1.203     joerg 		COPY(pr_maxpages);
   3327  1.203     joerg 
   3328  1.203     joerg 		COPY(pr_nget);
   3329  1.203     joerg 		COPY(pr_nfail);
   3330  1.203     joerg 		COPY(pr_nput);
   3331  1.203     joerg 		COPY(pr_npagealloc);
   3332  1.203     joerg 		COPY(pr_npagefree);
   3333  1.203     joerg 		COPY(pr_hiwat);
   3334  1.203     joerg 		COPY(pr_nidle);
   3335  1.203     joerg #undef COPY
   3336  1.203     joerg 
   3337  1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   3338  1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   3339  1.271        ad 		data.pr_cache_nmiss_global = 0;
   3340  1.271        ad 		data.pr_cache_nempty = 0;
   3341  1.271        ad 		data.pr_cache_ncontended = 0;
   3342  1.271        ad 		data.pr_cache_npartial = 0;
   3343  1.203     joerg 		if (pp->pr_cache) {
   3344  1.271        ad 			uint32_t nfull = 0;
   3345  1.203     joerg 			pc = pp->pr_cache;
   3346  1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3347  1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3348  1.203     joerg 				cc = pc->pc_cpus[i];
   3349  1.203     joerg 				if (cc == NULL)
   3350  1.203     joerg 					continue;
   3351  1.271        ad 				data.pr_cache_ncontended += cc->cc_contended;
   3352  1.206  knakahar 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3353  1.206  knakahar 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3354  1.271        ad 				data.pr_cache_nmiss_global += cc->cc_pcmisses;
   3355  1.271        ad 				nfull += cc->cc_nfull; /* 32-bit rollover! */
   3356  1.271        ad 				data.pr_cache_npartial = cc->cc_npart;
   3357  1.203     joerg 			}
   3358  1.271        ad 			data.pr_cache_nfull = nfull;
   3359  1.203     joerg 		} else {
   3360  1.203     joerg 			data.pr_cache_meta_size = 0;
   3361  1.203     joerg 			data.pr_cache_nfull = 0;
   3362  1.203     joerg 		}
   3363  1.271        ad 		data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
   3364  1.271        ad 		    data.pr_cache_nmiss_global;
   3365  1.203     joerg 
   3366  1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3367  1.203     joerg 		if (error)
   3368  1.203     joerg 			break;
   3369  1.203     joerg 		written += sizeof(data);
   3370  1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   3371  1.203     joerg 	}
   3372  1.203     joerg 
   3373  1.203     joerg 	*oldlenp = written;
   3374  1.203     joerg 	return error;
   3375  1.203     joerg }
   3376  1.203     joerg 
   3377  1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3378  1.203     joerg {
   3379  1.203     joerg 	const struct sysctlnode *rnode = NULL;
   3380  1.203     joerg 
   3381  1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   3382  1.203     joerg 		       CTLFLAG_PERMANENT,
   3383  1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   3384  1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   3385  1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   3386  1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3387  1.203     joerg }
   3388