subr_pool.c revision 1.271 1 1.271 ad /* $NetBSD: subr_pool.c,v 1.271 2020/06/14 21:34:25 ad Exp $ */
2 1.1 pk
3 1.229 maxv /*
4 1.271 ad * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
5 1.271 ad * 2020 The NetBSD Foundation, Inc.
6 1.1 pk * All rights reserved.
7 1.1 pk *
8 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
9 1.20 thorpej * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 1.204 maxv * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 1.204 maxv * Maxime Villard.
12 1.1 pk *
13 1.1 pk * Redistribution and use in source and binary forms, with or without
14 1.1 pk * modification, are permitted provided that the following conditions
15 1.1 pk * are met:
16 1.1 pk * 1. Redistributions of source code must retain the above copyright
17 1.1 pk * notice, this list of conditions and the following disclaimer.
18 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
19 1.1 pk * notice, this list of conditions and the following disclaimer in the
20 1.1 pk * documentation and/or other materials provided with the distribution.
21 1.1 pk *
22 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
33 1.1 pk */
34 1.64 lukem
35 1.64 lukem #include <sys/cdefs.h>
36 1.271 ad __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.271 2020/06/14 21:34:25 ad Exp $");
37 1.24 scottr
38 1.205 pooka #ifdef _KERNEL_OPT
39 1.141 yamt #include "opt_ddb.h"
40 1.28 thorpej #include "opt_lockdebug.h"
41 1.249 maxv #include "opt_pool.h"
42 1.205 pooka #endif
43 1.1 pk
44 1.1 pk #include <sys/param.h>
45 1.1 pk #include <sys/systm.h>
46 1.203 joerg #include <sys/sysctl.h>
47 1.135 yamt #include <sys/bitops.h>
48 1.1 pk #include <sys/proc.h>
49 1.1 pk #include <sys/errno.h>
50 1.1 pk #include <sys/kernel.h>
51 1.191 para #include <sys/vmem.h>
52 1.1 pk #include <sys/pool.h>
53 1.20 thorpej #include <sys/syslog.h>
54 1.125 ad #include <sys/debug.h>
55 1.271 ad #include <sys/lock.h>
56 1.134 ad #include <sys/lockdebug.h>
57 1.134 ad #include <sys/xcall.h>
58 1.134 ad #include <sys/cpu.h>
59 1.145 ad #include <sys/atomic.h>
60 1.224 maxv #include <sys/asan.h>
61 1.262 maxv #include <sys/msan.h>
62 1.270 maxv #include <sys/fault.h>
63 1.3 pk
64 1.187 uebayasi #include <uvm/uvm_extern.h>
65 1.3 pk
66 1.1 pk /*
67 1.1 pk * Pool resource management utility.
68 1.3 pk *
69 1.88 chs * Memory is allocated in pages which are split into pieces according to
70 1.88 chs * the pool item size. Each page is kept on one of three lists in the
71 1.88 chs * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
72 1.88 chs * for empty, full and partially-full pages respectively. The individual
73 1.88 chs * pool items are on a linked list headed by `ph_itemlist' in each page
74 1.88 chs * header. The memory for building the page list is either taken from
75 1.88 chs * the allocated pages themselves (for small pool items) or taken from
76 1.88 chs * an internal pool of page headers (`phpool').
77 1.1 pk */
78 1.1 pk
79 1.221 para /* List of all pools. Non static as needed by 'vmstat -m' */
80 1.202 abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
81 1.134 ad
82 1.3 pk /* Private pool for page header structures */
83 1.97 yamt #define PHPOOL_MAX 8
84 1.97 yamt static struct pool phpool[PHPOOL_MAX];
85 1.135 yamt #define PHPOOL_FREELIST_NELEM(idx) \
86 1.256 maxv (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
87 1.3 pk
88 1.262 maxv #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
89 1.224 maxv #define POOL_REDZONE
90 1.224 maxv #endif
91 1.224 maxv
92 1.268 maxv #if defined(POOL_QUARANTINE)
93 1.268 maxv #define POOL_NOCACHE
94 1.268 maxv #endif
95 1.268 maxv
96 1.204 maxv #ifdef POOL_REDZONE
97 1.224 maxv # ifdef KASAN
98 1.224 maxv # define POOL_REDZONE_SIZE 8
99 1.224 maxv # else
100 1.224 maxv # define POOL_REDZONE_SIZE 2
101 1.224 maxv # endif
102 1.204 maxv static void pool_redzone_init(struct pool *, size_t);
103 1.204 maxv static void pool_redzone_fill(struct pool *, void *);
104 1.204 maxv static void pool_redzone_check(struct pool *, void *);
105 1.229 maxv static void pool_cache_redzone_check(pool_cache_t, void *);
106 1.204 maxv #else
107 1.229 maxv # define pool_redzone_init(pp, sz) __nothing
108 1.229 maxv # define pool_redzone_fill(pp, ptr) __nothing
109 1.229 maxv # define pool_redzone_check(pp, ptr) __nothing
110 1.229 maxv # define pool_cache_redzone_check(pc, ptr) __nothing
111 1.204 maxv #endif
112 1.204 maxv
113 1.262 maxv #ifdef KMSAN
114 1.262 maxv static inline void pool_get_kmsan(struct pool *, void *);
115 1.262 maxv static inline void pool_put_kmsan(struct pool *, void *);
116 1.262 maxv static inline void pool_cache_get_kmsan(pool_cache_t, void *);
117 1.262 maxv static inline void pool_cache_put_kmsan(pool_cache_t, void *);
118 1.262 maxv #else
119 1.262 maxv #define pool_get_kmsan(pp, ptr) __nothing
120 1.262 maxv #define pool_put_kmsan(pp, ptr) __nothing
121 1.262 maxv #define pool_cache_get_kmsan(pc, ptr) __nothing
122 1.262 maxv #define pool_cache_put_kmsan(pc, ptr) __nothing
123 1.262 maxv #endif
124 1.262 maxv
125 1.249 maxv #ifdef POOL_QUARANTINE
126 1.249 maxv static void pool_quarantine_init(struct pool *);
127 1.249 maxv static void pool_quarantine_flush(struct pool *);
128 1.249 maxv static bool pool_put_quarantine(struct pool *, void *,
129 1.249 maxv struct pool_pagelist *);
130 1.249 maxv #else
131 1.249 maxv #define pool_quarantine_init(a) __nothing
132 1.249 maxv #define pool_quarantine_flush(a) __nothing
133 1.249 maxv #define pool_put_quarantine(a, b, c) false
134 1.268 maxv #endif
135 1.268 maxv
136 1.268 maxv #ifdef POOL_NOCACHE
137 1.268 maxv static bool pool_cache_put_nocache(pool_cache_t, void *);
138 1.268 maxv #else
139 1.268 maxv #define pool_cache_put_nocache(a, b) false
140 1.249 maxv #endif
141 1.249 maxv
142 1.261 christos #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop)
143 1.261 christos #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop)
144 1.261 christos
145 1.261 christos #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
146 1.261 christos #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
147 1.229 maxv
148 1.258 maxv /*
149 1.258 maxv * Pool backend allocators.
150 1.258 maxv *
151 1.258 maxv * Each pool has a backend allocator that handles allocation, deallocation,
152 1.258 maxv * and any additional draining that might be needed.
153 1.258 maxv *
154 1.258 maxv * We provide two standard allocators:
155 1.258 maxv *
156 1.258 maxv * pool_allocator_kmem - the default when no allocator is specified
157 1.258 maxv *
158 1.258 maxv * pool_allocator_nointr - used for pools that will not be accessed
159 1.258 maxv * in interrupt context.
160 1.258 maxv */
161 1.258 maxv void *pool_page_alloc(struct pool *, int);
162 1.258 maxv void pool_page_free(struct pool *, void *);
163 1.258 maxv
164 1.98 yamt static void *pool_page_alloc_meta(struct pool *, int);
165 1.98 yamt static void pool_page_free_meta(struct pool *, void *);
166 1.98 yamt
167 1.258 maxv struct pool_allocator pool_allocator_kmem = {
168 1.258 maxv .pa_alloc = pool_page_alloc,
169 1.258 maxv .pa_free = pool_page_free,
170 1.258 maxv .pa_pagesz = 0
171 1.258 maxv };
172 1.258 maxv
173 1.258 maxv struct pool_allocator pool_allocator_nointr = {
174 1.258 maxv .pa_alloc = pool_page_alloc,
175 1.258 maxv .pa_free = pool_page_free,
176 1.258 maxv .pa_pagesz = 0
177 1.258 maxv };
178 1.258 maxv
179 1.134 ad struct pool_allocator pool_allocator_meta = {
180 1.191 para .pa_alloc = pool_page_alloc_meta,
181 1.191 para .pa_free = pool_page_free_meta,
182 1.191 para .pa_pagesz = 0
183 1.98 yamt };
184 1.98 yamt
185 1.208 chs #define POOL_ALLOCATOR_BIG_BASE 13
186 1.258 maxv static struct pool_allocator pool_allocator_big[] = {
187 1.258 maxv {
188 1.258 maxv .pa_alloc = pool_page_alloc,
189 1.258 maxv .pa_free = pool_page_free,
190 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
191 1.258 maxv },
192 1.258 maxv {
193 1.258 maxv .pa_alloc = pool_page_alloc,
194 1.258 maxv .pa_free = pool_page_free,
195 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
196 1.258 maxv },
197 1.258 maxv {
198 1.258 maxv .pa_alloc = pool_page_alloc,
199 1.258 maxv .pa_free = pool_page_free,
200 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
201 1.258 maxv },
202 1.258 maxv {
203 1.258 maxv .pa_alloc = pool_page_alloc,
204 1.258 maxv .pa_free = pool_page_free,
205 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
206 1.258 maxv },
207 1.258 maxv {
208 1.258 maxv .pa_alloc = pool_page_alloc,
209 1.258 maxv .pa_free = pool_page_free,
210 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
211 1.258 maxv },
212 1.258 maxv {
213 1.258 maxv .pa_alloc = pool_page_alloc,
214 1.258 maxv .pa_free = pool_page_free,
215 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
216 1.258 maxv },
217 1.258 maxv {
218 1.258 maxv .pa_alloc = pool_page_alloc,
219 1.258 maxv .pa_free = pool_page_free,
220 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
221 1.258 maxv },
222 1.258 maxv {
223 1.258 maxv .pa_alloc = pool_page_alloc,
224 1.258 maxv .pa_free = pool_page_free,
225 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
226 1.258 maxv }
227 1.258 maxv };
228 1.258 maxv
229 1.208 chs static int pool_bigidx(size_t);
230 1.208 chs
231 1.3 pk /* # of seconds to retain page after last use */
232 1.3 pk int pool_inactive_time = 10;
233 1.3 pk
234 1.3 pk /* Next candidate for drainage (see pool_drain()) */
235 1.236 maxv static struct pool *drainpp;
236 1.23 thorpej
237 1.134 ad /* This lock protects both pool_head and drainpp. */
238 1.134 ad static kmutex_t pool_head_lock;
239 1.134 ad static kcondvar_t pool_busy;
240 1.3 pk
241 1.178 elad /* This lock protects initialization of a potentially shared pool allocator */
242 1.178 elad static kmutex_t pool_allocator_lock;
243 1.178 elad
244 1.245 maxv static unsigned int poolid_counter = 0;
245 1.245 maxv
246 1.135 yamt typedef uint32_t pool_item_bitmap_t;
247 1.135 yamt #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
248 1.135 yamt #define BITMAP_MASK (BITMAP_SIZE - 1)
249 1.256 maxv #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
250 1.99 yamt
251 1.3 pk struct pool_item_header {
252 1.3 pk /* Page headers */
253 1.88 chs LIST_ENTRY(pool_item_header)
254 1.3 pk ph_pagelist; /* pool page list */
255 1.245 maxv union {
256 1.245 maxv /* !PR_PHINPAGE */
257 1.245 maxv struct {
258 1.245 maxv SPLAY_ENTRY(pool_item_header)
259 1.245 maxv phu_node; /* off-page page headers */
260 1.245 maxv } phu_offpage;
261 1.245 maxv /* PR_PHINPAGE */
262 1.245 maxv struct {
263 1.245 maxv unsigned int phu_poolid;
264 1.245 maxv } phu_onpage;
265 1.245 maxv } ph_u1;
266 1.128 christos void * ph_page; /* this page's address */
267 1.151 yamt uint32_t ph_time; /* last referenced */
268 1.135 yamt uint16_t ph_nmissing; /* # of chunks in use */
269 1.141 yamt uint16_t ph_off; /* start offset in page */
270 1.97 yamt union {
271 1.242 maxv /* !PR_USEBMAP */
272 1.97 yamt struct {
273 1.102 chs LIST_HEAD(, pool_item)
274 1.97 yamt phu_itemlist; /* chunk list for this page */
275 1.97 yamt } phu_normal;
276 1.242 maxv /* PR_USEBMAP */
277 1.97 yamt struct {
278 1.141 yamt pool_item_bitmap_t phu_bitmap[1];
279 1.97 yamt } phu_notouch;
280 1.245 maxv } ph_u2;
281 1.3 pk };
282 1.245 maxv #define ph_node ph_u1.phu_offpage.phu_node
283 1.245 maxv #define ph_poolid ph_u1.phu_onpage.phu_poolid
284 1.245 maxv #define ph_itemlist ph_u2.phu_normal.phu_itemlist
285 1.245 maxv #define ph_bitmap ph_u2.phu_notouch.phu_bitmap
286 1.3 pk
287 1.240 maxv #define PHSIZE ALIGN(sizeof(struct pool_item_header))
288 1.240 maxv
289 1.256 maxv CTASSERT(offsetof(struct pool_item_header, ph_u2) +
290 1.256 maxv BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
291 1.256 maxv
292 1.229 maxv #if defined(DIAGNOSTIC) && !defined(KASAN)
293 1.229 maxv #define POOL_CHECK_MAGIC
294 1.229 maxv #endif
295 1.229 maxv
296 1.1 pk struct pool_item {
297 1.229 maxv #ifdef POOL_CHECK_MAGIC
298 1.82 thorpej u_int pi_magic;
299 1.33 chs #endif
300 1.134 ad #define PI_MAGIC 0xdeaddeadU
301 1.3 pk /* Other entries use only this list entry */
302 1.102 chs LIST_ENTRY(pool_item) pi_list;
303 1.3 pk };
304 1.3 pk
305 1.53 thorpej #define POOL_NEEDS_CATCHUP(pp) \
306 1.267 chs ((pp)->pr_nitems < (pp)->pr_minitems || \
307 1.267 chs (pp)->pr_npages < (pp)->pr_minpages)
308 1.253 maxv #define POOL_OBJ_TO_PAGE(pp, v) \
309 1.253 maxv (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
310 1.53 thorpej
311 1.43 thorpej /*
312 1.43 thorpej * Pool cache management.
313 1.43 thorpej *
314 1.43 thorpej * Pool caches provide a way for constructed objects to be cached by the
315 1.43 thorpej * pool subsystem. This can lead to performance improvements by avoiding
316 1.43 thorpej * needless object construction/destruction; it is deferred until absolutely
317 1.43 thorpej * necessary.
318 1.43 thorpej *
319 1.134 ad * Caches are grouped into cache groups. Each cache group references up
320 1.134 ad * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
321 1.134 ad * object from the pool, it calls the object's constructor and places it
322 1.134 ad * into a cache group. When a cache group frees an object back to the
323 1.134 ad * pool, it first calls the object's destructor. This allows the object
324 1.134 ad * to persist in constructed form while freed to the cache.
325 1.134 ad *
326 1.134 ad * The pool references each cache, so that when a pool is drained by the
327 1.134 ad * pagedaemon, it can drain each individual cache as well. Each time a
328 1.134 ad * cache is drained, the most idle cache group is freed to the pool in
329 1.134 ad * its entirety.
330 1.43 thorpej *
331 1.43 thorpej * Pool caches are layed on top of pools. By layering them, we can avoid
332 1.43 thorpej * the complexity of cache management for pools which would not benefit
333 1.43 thorpej * from it.
334 1.43 thorpej */
335 1.43 thorpej
336 1.142 ad static struct pool pcg_normal_pool;
337 1.142 ad static struct pool pcg_large_pool;
338 1.134 ad static struct pool cache_pool;
339 1.134 ad static struct pool cache_cpu_pool;
340 1.3 pk
341 1.271 ad static pcg_t *volatile pcg_large_cache __cacheline_aligned;
342 1.271 ad static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
343 1.271 ad
344 1.145 ad /* List of all caches. */
345 1.145 ad TAILQ_HEAD(,pool_cache) pool_cache_head =
346 1.145 ad TAILQ_HEAD_INITIALIZER(pool_cache_head);
347 1.145 ad
348 1.162 ad int pool_cache_disable; /* global disable for caching */
349 1.169 yamt static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
350 1.145 ad
351 1.271 ad static bool pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
352 1.162 ad void *);
353 1.271 ad static bool pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
354 1.162 ad void **, paddr_t *, int);
355 1.134 ad static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
356 1.271 ad static int pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
357 1.175 jym static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
358 1.196 jym static void pool_cache_transfer(pool_cache_t);
359 1.271 ad static int pool_pcg_get(pcg_t *volatile *, pcg_t **);
360 1.271 ad static int pool_pcg_put(pcg_t *volatile *, pcg_t *);
361 1.271 ad static pcg_t * pool_pcg_trunc(pcg_t *volatile *);
362 1.3 pk
363 1.42 thorpej static int pool_catchup(struct pool *);
364 1.128 christos static void pool_prime_page(struct pool *, void *,
365 1.55 thorpej struct pool_item_header *);
366 1.88 chs static void pool_update_curpage(struct pool *);
367 1.66 thorpej
368 1.113 yamt static int pool_grow(struct pool *, int);
369 1.117 yamt static void *pool_allocator_alloc(struct pool *, int);
370 1.117 yamt static void pool_allocator_free(struct pool *, void *);
371 1.3 pk
372 1.97 yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
373 1.199 christos void (*)(const char *, ...) __printflike(1, 2));
374 1.42 thorpej static void pool_print1(struct pool *, const char *,
375 1.199 christos void (*)(const char *, ...) __printflike(1, 2));
376 1.3 pk
377 1.88 chs static int pool_chk_page(struct pool *, const char *,
378 1.88 chs struct pool_item_header *);
379 1.88 chs
380 1.234 maxv /* -------------------------------------------------------------------------- */
381 1.234 maxv
382 1.135 yamt static inline unsigned int
383 1.234 maxv pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
384 1.97 yamt const void *v)
385 1.97 yamt {
386 1.97 yamt const char *cp = v;
387 1.135 yamt unsigned int idx;
388 1.97 yamt
389 1.242 maxv KASSERT(pp->pr_roflags & PR_USEBMAP);
390 1.128 christos idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
391 1.237 maxv
392 1.237 maxv if (__predict_false(idx >= pp->pr_itemsperpage)) {
393 1.237 maxv panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
394 1.237 maxv pp->pr_itemsperpage);
395 1.237 maxv }
396 1.237 maxv
397 1.97 yamt return idx;
398 1.97 yamt }
399 1.97 yamt
400 1.110 perry static inline void
401 1.234 maxv pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
402 1.97 yamt void *obj)
403 1.97 yamt {
404 1.234 maxv unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
405 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
406 1.223 kamil pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
407 1.97 yamt
408 1.237 maxv if (__predict_false((*bitmap & mask) != 0)) {
409 1.237 maxv panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
410 1.237 maxv }
411 1.237 maxv
412 1.135 yamt *bitmap |= mask;
413 1.97 yamt }
414 1.97 yamt
415 1.110 perry static inline void *
416 1.234 maxv pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
417 1.97 yamt {
418 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
419 1.135 yamt unsigned int idx;
420 1.135 yamt int i;
421 1.97 yamt
422 1.135 yamt for (i = 0; ; i++) {
423 1.135 yamt int bit;
424 1.97 yamt
425 1.135 yamt KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
426 1.135 yamt bit = ffs32(bitmap[i]);
427 1.135 yamt if (bit) {
428 1.135 yamt pool_item_bitmap_t mask;
429 1.135 yamt
430 1.135 yamt bit--;
431 1.135 yamt idx = (i * BITMAP_SIZE) + bit;
432 1.222 kamil mask = 1U << bit;
433 1.135 yamt KASSERT((bitmap[i] & mask) != 0);
434 1.135 yamt bitmap[i] &= ~mask;
435 1.135 yamt break;
436 1.135 yamt }
437 1.135 yamt }
438 1.135 yamt KASSERT(idx < pp->pr_itemsperpage);
439 1.128 christos return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
440 1.97 yamt }
441 1.97 yamt
442 1.135 yamt static inline void
443 1.234 maxv pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
444 1.135 yamt {
445 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
446 1.135 yamt const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
447 1.135 yamt int i;
448 1.135 yamt
449 1.135 yamt for (i = 0; i < n; i++) {
450 1.135 yamt bitmap[i] = (pool_item_bitmap_t)-1;
451 1.135 yamt }
452 1.135 yamt }
453 1.135 yamt
454 1.234 maxv /* -------------------------------------------------------------------------- */
455 1.234 maxv
456 1.234 maxv static inline void
457 1.234 maxv pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
458 1.234 maxv void *obj)
459 1.234 maxv {
460 1.234 maxv struct pool_item *pi = obj;
461 1.234 maxv
462 1.234 maxv #ifdef POOL_CHECK_MAGIC
463 1.234 maxv pi->pi_magic = PI_MAGIC;
464 1.234 maxv #endif
465 1.234 maxv
466 1.234 maxv if (pp->pr_redzone) {
467 1.234 maxv /*
468 1.234 maxv * Mark the pool_item as valid. The rest is already
469 1.234 maxv * invalid.
470 1.234 maxv */
471 1.248 maxv kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
472 1.234 maxv }
473 1.234 maxv
474 1.234 maxv LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
475 1.234 maxv }
476 1.234 maxv
477 1.234 maxv static inline void *
478 1.234 maxv pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
479 1.234 maxv {
480 1.234 maxv struct pool_item *pi;
481 1.234 maxv void *v;
482 1.234 maxv
483 1.234 maxv v = pi = LIST_FIRST(&ph->ph_itemlist);
484 1.234 maxv if (__predict_false(v == NULL)) {
485 1.234 maxv mutex_exit(&pp->pr_lock);
486 1.234 maxv panic("%s: [%s] page empty", __func__, pp->pr_wchan);
487 1.234 maxv }
488 1.234 maxv KASSERTMSG((pp->pr_nitems > 0),
489 1.234 maxv "%s: [%s] nitems %u inconsistent on itemlist",
490 1.234 maxv __func__, pp->pr_wchan, pp->pr_nitems);
491 1.234 maxv #ifdef POOL_CHECK_MAGIC
492 1.234 maxv KASSERTMSG((pi->pi_magic == PI_MAGIC),
493 1.234 maxv "%s: [%s] free list modified: "
494 1.234 maxv "magic=%x; page %p; item addr %p", __func__,
495 1.234 maxv pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
496 1.234 maxv #endif
497 1.234 maxv
498 1.234 maxv /*
499 1.234 maxv * Remove from item list.
500 1.234 maxv */
501 1.234 maxv LIST_REMOVE(pi, pi_list);
502 1.234 maxv
503 1.234 maxv return v;
504 1.234 maxv }
505 1.234 maxv
506 1.234 maxv /* -------------------------------------------------------------------------- */
507 1.234 maxv
508 1.253 maxv static inline void
509 1.253 maxv pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
510 1.253 maxv void *object)
511 1.253 maxv {
512 1.253 maxv if (__predict_false((void *)ph->ph_page != page)) {
513 1.253 maxv panic("%s: [%s] item %p not part of pool", __func__,
514 1.253 maxv pp->pr_wchan, object);
515 1.253 maxv }
516 1.253 maxv if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
517 1.253 maxv panic("%s: [%s] item %p below item space", __func__,
518 1.253 maxv pp->pr_wchan, object);
519 1.253 maxv }
520 1.253 maxv if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
521 1.253 maxv panic("%s: [%s] item %p poolid %u != %u", __func__,
522 1.253 maxv pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
523 1.253 maxv }
524 1.253 maxv }
525 1.253 maxv
526 1.253 maxv static inline void
527 1.253 maxv pc_phinpage_check(pool_cache_t pc, void *object)
528 1.253 maxv {
529 1.253 maxv struct pool_item_header *ph;
530 1.253 maxv struct pool *pp;
531 1.253 maxv void *page;
532 1.253 maxv
533 1.253 maxv pp = &pc->pc_pool;
534 1.253 maxv page = POOL_OBJ_TO_PAGE(pp, object);
535 1.253 maxv ph = (struct pool_item_header *)page;
536 1.253 maxv
537 1.253 maxv pr_phinpage_check(pp, ph, page, object);
538 1.253 maxv }
539 1.253 maxv
540 1.253 maxv /* -------------------------------------------------------------------------- */
541 1.253 maxv
542 1.110 perry static inline int
543 1.88 chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
544 1.88 chs {
545 1.121 yamt
546 1.121 yamt /*
547 1.236 maxv * We consider pool_item_header with smaller ph_page bigger. This
548 1.236 maxv * unnatural ordering is for the benefit of pr_find_pagehead.
549 1.121 yamt */
550 1.88 chs if (a->ph_page < b->ph_page)
551 1.236 maxv return 1;
552 1.121 yamt else if (a->ph_page > b->ph_page)
553 1.236 maxv return -1;
554 1.88 chs else
555 1.236 maxv return 0;
556 1.88 chs }
557 1.88 chs
558 1.88 chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
559 1.88 chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
560 1.88 chs
561 1.141 yamt static inline struct pool_item_header *
562 1.141 yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
563 1.141 yamt {
564 1.141 yamt struct pool_item_header *ph, tmp;
565 1.141 yamt
566 1.141 yamt tmp.ph_page = (void *)(uintptr_t)v;
567 1.141 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
568 1.141 yamt if (ph == NULL) {
569 1.141 yamt ph = SPLAY_ROOT(&pp->pr_phtree);
570 1.141 yamt if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
571 1.141 yamt ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
572 1.141 yamt }
573 1.141 yamt KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
574 1.141 yamt }
575 1.141 yamt
576 1.141 yamt return ph;
577 1.141 yamt }
578 1.141 yamt
579 1.3 pk /*
580 1.121 yamt * Return the pool page header based on item address.
581 1.3 pk */
582 1.110 perry static inline struct pool_item_header *
583 1.121 yamt pr_find_pagehead(struct pool *pp, void *v)
584 1.3 pk {
585 1.88 chs struct pool_item_header *ph, tmp;
586 1.3 pk
587 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
588 1.141 yamt ph = pr_find_pagehead_noalign(pp, v);
589 1.121 yamt } else {
590 1.253 maxv void *page = POOL_OBJ_TO_PAGE(pp, v);
591 1.121 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
592 1.241 maxv ph = (struct pool_item_header *)page;
593 1.253 maxv pr_phinpage_check(pp, ph, page, v);
594 1.121 yamt } else {
595 1.121 yamt tmp.ph_page = page;
596 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
597 1.121 yamt }
598 1.121 yamt }
599 1.3 pk
600 1.121 yamt KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
601 1.128 christos ((char *)ph->ph_page <= (char *)v &&
602 1.128 christos (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
603 1.88 chs return ph;
604 1.3 pk }
605 1.3 pk
606 1.101 thorpej static void
607 1.101 thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
608 1.101 thorpej {
609 1.101 thorpej struct pool_item_header *ph;
610 1.101 thorpej
611 1.101 thorpej while ((ph = LIST_FIRST(pq)) != NULL) {
612 1.101 thorpej LIST_REMOVE(ph, ph_pagelist);
613 1.101 thorpej pool_allocator_free(pp, ph->ph_page);
614 1.134 ad if ((pp->pr_roflags & PR_PHINPAGE) == 0)
615 1.101 thorpej pool_put(pp->pr_phpool, ph);
616 1.101 thorpej }
617 1.101 thorpej }
618 1.101 thorpej
619 1.3 pk /*
620 1.3 pk * Remove a page from the pool.
621 1.3 pk */
622 1.110 perry static inline void
623 1.61 chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
624 1.61 chs struct pool_pagelist *pq)
625 1.3 pk {
626 1.3 pk
627 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
628 1.91 yamt
629 1.3 pk /*
630 1.7 thorpej * If the page was idle, decrement the idle page count.
631 1.3 pk */
632 1.6 thorpej if (ph->ph_nmissing == 0) {
633 1.207 riastrad KASSERT(pp->pr_nidle != 0);
634 1.207 riastrad KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
635 1.251 christos "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
636 1.251 christos pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
637 1.6 thorpej pp->pr_nidle--;
638 1.6 thorpej }
639 1.7 thorpej
640 1.20 thorpej pp->pr_nitems -= pp->pr_itemsperpage;
641 1.20 thorpej
642 1.7 thorpej /*
643 1.101 thorpej * Unlink the page from the pool and queue it for release.
644 1.7 thorpej */
645 1.88 chs LIST_REMOVE(ph, ph_pagelist);
646 1.245 maxv if (pp->pr_roflags & PR_PHINPAGE) {
647 1.245 maxv if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
648 1.245 maxv panic("%s: [%s] ph %p poolid %u != %u",
649 1.245 maxv __func__, pp->pr_wchan, ph, ph->ph_poolid,
650 1.245 maxv pp->pr_poolid);
651 1.245 maxv }
652 1.245 maxv } else {
653 1.91 yamt SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
654 1.245 maxv }
655 1.101 thorpej LIST_INSERT_HEAD(pq, ph, ph_pagelist);
656 1.101 thorpej
657 1.7 thorpej pp->pr_npages--;
658 1.7 thorpej pp->pr_npagefree++;
659 1.6 thorpej
660 1.88 chs pool_update_curpage(pp);
661 1.3 pk }
662 1.3 pk
663 1.3 pk /*
664 1.94 simonb * Initialize all the pools listed in the "pools" link set.
665 1.94 simonb */
666 1.94 simonb void
667 1.117 yamt pool_subsystem_init(void)
668 1.94 simonb {
669 1.192 rmind size_t size;
670 1.191 para int idx;
671 1.94 simonb
672 1.134 ad mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
673 1.179 mlelstv mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
674 1.134 ad cv_init(&pool_busy, "poolbusy");
675 1.134 ad
676 1.191 para /*
677 1.191 para * Initialize private page header pool and cache magazine pool if we
678 1.191 para * haven't done so yet.
679 1.191 para */
680 1.191 para for (idx = 0; idx < PHPOOL_MAX; idx++) {
681 1.191 para static char phpool_names[PHPOOL_MAX][6+1+6+1];
682 1.191 para int nelem;
683 1.191 para size_t sz;
684 1.191 para
685 1.191 para nelem = PHPOOL_FREELIST_NELEM(idx);
686 1.256 maxv KASSERT(nelem != 0);
687 1.191 para snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
688 1.191 para "phpool-%d", nelem);
689 1.256 maxv sz = offsetof(struct pool_item_header,
690 1.256 maxv ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
691 1.191 para pool_init(&phpool[idx], sz, 0, 0, 0,
692 1.191 para phpool_names[idx], &pool_allocator_meta, IPL_VM);
693 1.117 yamt }
694 1.191 para
695 1.191 para size = sizeof(pcg_t) +
696 1.191 para (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
697 1.191 para pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
698 1.191 para "pcgnormal", &pool_allocator_meta, IPL_VM);
699 1.191 para
700 1.191 para size = sizeof(pcg_t) +
701 1.191 para (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
702 1.191 para pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
703 1.191 para "pcglarge", &pool_allocator_meta, IPL_VM);
704 1.134 ad
705 1.156 ad pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
706 1.191 para 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
707 1.134 ad
708 1.156 ad pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
709 1.191 para 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
710 1.94 simonb }
711 1.94 simonb
712 1.240 maxv static inline bool
713 1.240 maxv pool_init_is_phinpage(const struct pool *pp)
714 1.240 maxv {
715 1.240 maxv size_t pagesize;
716 1.240 maxv
717 1.240 maxv if (pp->pr_roflags & PR_PHINPAGE) {
718 1.240 maxv return true;
719 1.240 maxv }
720 1.240 maxv if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
721 1.240 maxv return false;
722 1.240 maxv }
723 1.240 maxv
724 1.240 maxv pagesize = pp->pr_alloc->pa_pagesz;
725 1.240 maxv
726 1.240 maxv /*
727 1.240 maxv * Threshold: the item size is below 1/16 of a page size, and below
728 1.240 maxv * 8 times the page header size. The latter ensures we go off-page
729 1.240 maxv * if the page header would make us waste a rather big item.
730 1.240 maxv */
731 1.240 maxv if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
732 1.240 maxv return true;
733 1.240 maxv }
734 1.240 maxv
735 1.240 maxv /* Put the header into the page if it doesn't waste any items. */
736 1.240 maxv if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
737 1.240 maxv return true;
738 1.240 maxv }
739 1.240 maxv
740 1.240 maxv return false;
741 1.240 maxv }
742 1.240 maxv
743 1.242 maxv static inline bool
744 1.242 maxv pool_init_is_usebmap(const struct pool *pp)
745 1.242 maxv {
746 1.243 maxv size_t bmapsize;
747 1.243 maxv
748 1.242 maxv if (pp->pr_roflags & PR_NOTOUCH) {
749 1.242 maxv return true;
750 1.242 maxv }
751 1.242 maxv
752 1.243 maxv /*
753 1.256 maxv * If we're off-page, go with a bitmap.
754 1.256 maxv */
755 1.256 maxv if (!(pp->pr_roflags & PR_PHINPAGE)) {
756 1.256 maxv return true;
757 1.256 maxv }
758 1.256 maxv
759 1.256 maxv /*
760 1.243 maxv * If we're on-page, and the page header can already contain a bitmap
761 1.243 maxv * big enough to cover all the items of the page, go with a bitmap.
762 1.243 maxv */
763 1.243 maxv bmapsize = roundup(PHSIZE, pp->pr_align) -
764 1.243 maxv offsetof(struct pool_item_header, ph_bitmap[0]);
765 1.243 maxv KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
766 1.243 maxv if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
767 1.243 maxv return true;
768 1.243 maxv }
769 1.243 maxv
770 1.242 maxv return false;
771 1.242 maxv }
772 1.242 maxv
773 1.94 simonb /*
774 1.3 pk * Initialize the given pool resource structure.
775 1.3 pk *
776 1.3 pk * We export this routine to allow other kernel parts to declare
777 1.195 rmind * static pools that must be initialized before kmem(9) is available.
778 1.3 pk */
779 1.3 pk void
780 1.42 thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
781 1.129 ad const char *wchan, struct pool_allocator *palloc, int ipl)
782 1.3 pk {
783 1.116 simonb struct pool *pp1;
784 1.240 maxv size_t prsize;
785 1.237 maxv int itemspace, slack;
786 1.3 pk
787 1.238 maxv /* XXX ioff will be removed. */
788 1.238 maxv KASSERT(ioff == 0);
789 1.238 maxv
790 1.116 simonb #ifdef DEBUG
791 1.198 christos if (__predict_true(!cold))
792 1.198 christos mutex_enter(&pool_head_lock);
793 1.116 simonb /*
794 1.116 simonb * Check that the pool hasn't already been initialised and
795 1.116 simonb * added to the list of all pools.
796 1.116 simonb */
797 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
798 1.116 simonb if (pp == pp1)
799 1.213 christos panic("%s: [%s] already initialised", __func__,
800 1.116 simonb wchan);
801 1.116 simonb }
802 1.198 christos if (__predict_true(!cold))
803 1.198 christos mutex_exit(&pool_head_lock);
804 1.116 simonb #endif
805 1.116 simonb
806 1.66 thorpej if (palloc == NULL)
807 1.66 thorpej palloc = &pool_allocator_kmem;
808 1.244 maxv
809 1.180 mlelstv if (!cold)
810 1.180 mlelstv mutex_enter(&pool_allocator_lock);
811 1.178 elad if (palloc->pa_refcnt++ == 0) {
812 1.112 bjh21 if (palloc->pa_pagesz == 0)
813 1.66 thorpej palloc->pa_pagesz = PAGE_SIZE;
814 1.66 thorpej
815 1.66 thorpej TAILQ_INIT(&palloc->pa_list);
816 1.66 thorpej
817 1.134 ad mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
818 1.66 thorpej palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
819 1.66 thorpej palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
820 1.4 thorpej }
821 1.180 mlelstv if (!cold)
822 1.180 mlelstv mutex_exit(&pool_allocator_lock);
823 1.3 pk
824 1.3 pk if (align == 0)
825 1.3 pk align = ALIGN(1);
826 1.14 thorpej
827 1.204 maxv prsize = size;
828 1.204 maxv if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
829 1.204 maxv prsize = sizeof(struct pool_item);
830 1.3 pk
831 1.204 maxv prsize = roundup(prsize, align);
832 1.207 riastrad KASSERTMSG((prsize <= palloc->pa_pagesz),
833 1.213 christos "%s: [%s] pool item size (%zu) larger than page size (%u)",
834 1.213 christos __func__, wchan, prsize, palloc->pa_pagesz);
835 1.35 pk
836 1.3 pk /*
837 1.3 pk * Initialize the pool structure.
838 1.3 pk */
839 1.88 chs LIST_INIT(&pp->pr_emptypages);
840 1.88 chs LIST_INIT(&pp->pr_fullpages);
841 1.88 chs LIST_INIT(&pp->pr_partpages);
842 1.134 ad pp->pr_cache = NULL;
843 1.3 pk pp->pr_curpage = NULL;
844 1.3 pk pp->pr_npages = 0;
845 1.3 pk pp->pr_minitems = 0;
846 1.3 pk pp->pr_minpages = 0;
847 1.3 pk pp->pr_maxpages = UINT_MAX;
848 1.20 thorpej pp->pr_roflags = flags;
849 1.20 thorpej pp->pr_flags = 0;
850 1.204 maxv pp->pr_size = prsize;
851 1.233 maxv pp->pr_reqsize = size;
852 1.3 pk pp->pr_align = align;
853 1.3 pk pp->pr_wchan = wchan;
854 1.66 thorpej pp->pr_alloc = palloc;
855 1.245 maxv pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
856 1.20 thorpej pp->pr_nitems = 0;
857 1.20 thorpej pp->pr_nout = 0;
858 1.20 thorpej pp->pr_hardlimit = UINT_MAX;
859 1.20 thorpej pp->pr_hardlimit_warning = NULL;
860 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = 0;
861 1.31 thorpej pp->pr_hardlimit_ratecap.tv_usec = 0;
862 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
863 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
864 1.68 thorpej pp->pr_drain_hook = NULL;
865 1.68 thorpej pp->pr_drain_hook_arg = NULL;
866 1.125 ad pp->pr_freecheck = NULL;
867 1.255 maxv pp->pr_redzone = false;
868 1.204 maxv pool_redzone_init(pp, size);
869 1.249 maxv pool_quarantine_init(pp);
870 1.3 pk
871 1.3 pk /*
872 1.240 maxv * Decide whether to put the page header off-page to avoid wasting too
873 1.240 maxv * large a part of the page or too big an item. Off-page page headers
874 1.240 maxv * go on a hash table, so we can match a returned item with its header
875 1.240 maxv * based on the page address.
876 1.3 pk */
877 1.240 maxv if (pool_init_is_phinpage(pp)) {
878 1.241 maxv /* Use the beginning of the page for the page header */
879 1.241 maxv itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
880 1.241 maxv pp->pr_itemoffset = roundup(PHSIZE, align);
881 1.239 maxv pp->pr_roflags |= PR_PHINPAGE;
882 1.2 pk } else {
883 1.3 pk /* The page header will be taken from our page header pool */
884 1.237 maxv itemspace = palloc->pa_pagesz;
885 1.241 maxv pp->pr_itemoffset = 0;
886 1.88 chs SPLAY_INIT(&pp->pr_phtree);
887 1.2 pk }
888 1.1 pk
889 1.243 maxv pp->pr_itemsperpage = itemspace / pp->pr_size;
890 1.243 maxv KASSERT(pp->pr_itemsperpage != 0);
891 1.243 maxv
892 1.242 maxv /*
893 1.242 maxv * Decide whether to use a bitmap or a linked list to manage freed
894 1.242 maxv * items.
895 1.242 maxv */
896 1.242 maxv if (pool_init_is_usebmap(pp)) {
897 1.242 maxv pp->pr_roflags |= PR_USEBMAP;
898 1.242 maxv }
899 1.242 maxv
900 1.242 maxv /*
901 1.256 maxv * If we're off-page, then we're using a bitmap; choose the appropriate
902 1.256 maxv * pool to allocate page headers, whose size varies depending on the
903 1.256 maxv * bitmap. If we're on-page, nothing to do.
904 1.242 maxv */
905 1.256 maxv if (!(pp->pr_roflags & PR_PHINPAGE)) {
906 1.97 yamt int idx;
907 1.97 yamt
908 1.256 maxv KASSERT(pp->pr_roflags & PR_USEBMAP);
909 1.256 maxv
910 1.97 yamt for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
911 1.97 yamt idx++) {
912 1.97 yamt /* nothing */
913 1.97 yamt }
914 1.97 yamt if (idx >= PHPOOL_MAX) {
915 1.97 yamt /*
916 1.97 yamt * if you see this panic, consider to tweak
917 1.97 yamt * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
918 1.97 yamt */
919 1.213 christos panic("%s: [%s] too large itemsperpage(%d) for "
920 1.242 maxv "PR_USEBMAP", __func__,
921 1.97 yamt pp->pr_wchan, pp->pr_itemsperpage);
922 1.97 yamt }
923 1.97 yamt pp->pr_phpool = &phpool[idx];
924 1.242 maxv } else {
925 1.97 yamt pp->pr_phpool = NULL;
926 1.97 yamt }
927 1.3 pk
928 1.3 pk /*
929 1.3 pk * Use the slack between the chunks and the page header
930 1.3 pk * for "cache coloring".
931 1.3 pk */
932 1.237 maxv slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
933 1.239 maxv pp->pr_maxcolor = rounddown(slack, align);
934 1.3 pk pp->pr_curcolor = 0;
935 1.3 pk
936 1.3 pk pp->pr_nget = 0;
937 1.3 pk pp->pr_nfail = 0;
938 1.3 pk pp->pr_nput = 0;
939 1.3 pk pp->pr_npagealloc = 0;
940 1.3 pk pp->pr_npagefree = 0;
941 1.1 pk pp->pr_hiwat = 0;
942 1.8 thorpej pp->pr_nidle = 0;
943 1.134 ad pp->pr_refcnt = 0;
944 1.3 pk
945 1.157 ad mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
946 1.134 ad cv_init(&pp->pr_cv, wchan);
947 1.134 ad pp->pr_ipl = ipl;
948 1.1 pk
949 1.145 ad /* Insert into the list of all pools. */
950 1.181 mlelstv if (!cold)
951 1.134 ad mutex_enter(&pool_head_lock);
952 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
953 1.145 ad if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
954 1.145 ad break;
955 1.145 ad }
956 1.145 ad if (pp1 == NULL)
957 1.145 ad TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
958 1.145 ad else
959 1.145 ad TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
960 1.181 mlelstv if (!cold)
961 1.134 ad mutex_exit(&pool_head_lock);
962 1.134 ad
963 1.167 skrll /* Insert this into the list of pools using this allocator. */
964 1.181 mlelstv if (!cold)
965 1.134 ad mutex_enter(&palloc->pa_lock);
966 1.145 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
967 1.181 mlelstv if (!cold)
968 1.134 ad mutex_exit(&palloc->pa_lock);
969 1.1 pk }
970 1.1 pk
971 1.1 pk /*
972 1.1 pk * De-commision a pool resource.
973 1.1 pk */
974 1.1 pk void
975 1.42 thorpej pool_destroy(struct pool *pp)
976 1.1 pk {
977 1.101 thorpej struct pool_pagelist pq;
978 1.3 pk struct pool_item_header *ph;
979 1.43 thorpej
980 1.249 maxv pool_quarantine_flush(pp);
981 1.249 maxv
982 1.101 thorpej /* Remove from global pool list */
983 1.134 ad mutex_enter(&pool_head_lock);
984 1.134 ad while (pp->pr_refcnt != 0)
985 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
986 1.145 ad TAILQ_REMOVE(&pool_head, pp, pr_poollist);
987 1.101 thorpej if (drainpp == pp)
988 1.101 thorpej drainpp = NULL;
989 1.134 ad mutex_exit(&pool_head_lock);
990 1.101 thorpej
991 1.101 thorpej /* Remove this pool from its allocator's list of pools. */
992 1.134 ad mutex_enter(&pp->pr_alloc->pa_lock);
993 1.66 thorpej TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
994 1.134 ad mutex_exit(&pp->pr_alloc->pa_lock);
995 1.66 thorpej
996 1.178 elad mutex_enter(&pool_allocator_lock);
997 1.178 elad if (--pp->pr_alloc->pa_refcnt == 0)
998 1.178 elad mutex_destroy(&pp->pr_alloc->pa_lock);
999 1.178 elad mutex_exit(&pool_allocator_lock);
1000 1.178 elad
1001 1.134 ad mutex_enter(&pp->pr_lock);
1002 1.101 thorpej
1003 1.134 ad KASSERT(pp->pr_cache == NULL);
1004 1.207 riastrad KASSERTMSG((pp->pr_nout == 0),
1005 1.251 christos "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
1006 1.251 christos pp->pr_nout);
1007 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_fullpages));
1008 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_partpages));
1009 1.101 thorpej
1010 1.3 pk /* Remove all pages */
1011 1.101 thorpej LIST_INIT(&pq);
1012 1.88 chs while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1013 1.101 thorpej pr_rmpage(pp, ph, &pq);
1014 1.101 thorpej
1015 1.134 ad mutex_exit(&pp->pr_lock);
1016 1.3 pk
1017 1.101 thorpej pr_pagelist_free(pp, &pq);
1018 1.134 ad cv_destroy(&pp->pr_cv);
1019 1.134 ad mutex_destroy(&pp->pr_lock);
1020 1.1 pk }
1021 1.1 pk
1022 1.68 thorpej void
1023 1.68 thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1024 1.68 thorpej {
1025 1.68 thorpej
1026 1.68 thorpej /* XXX no locking -- must be used just after pool_init() */
1027 1.207 riastrad KASSERTMSG((pp->pr_drain_hook == NULL),
1028 1.213 christos "%s: [%s] already set", __func__, pp->pr_wchan);
1029 1.68 thorpej pp->pr_drain_hook = fn;
1030 1.68 thorpej pp->pr_drain_hook_arg = arg;
1031 1.68 thorpej }
1032 1.68 thorpej
1033 1.88 chs static struct pool_item_header *
1034 1.128 christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1035 1.55 thorpej {
1036 1.55 thorpej struct pool_item_header *ph;
1037 1.55 thorpej
1038 1.55 thorpej if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1039 1.241 maxv ph = storage;
1040 1.134 ad else
1041 1.97 yamt ph = pool_get(pp->pr_phpool, flags);
1042 1.55 thorpej
1043 1.236 maxv return ph;
1044 1.55 thorpej }
1045 1.1 pk
1046 1.1 pk /*
1047 1.134 ad * Grab an item from the pool.
1048 1.1 pk */
1049 1.3 pk void *
1050 1.56 sommerfe pool_get(struct pool *pp, int flags)
1051 1.1 pk {
1052 1.3 pk struct pool_item_header *ph;
1053 1.55 thorpej void *v;
1054 1.1 pk
1055 1.215 christos KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1056 1.207 riastrad KASSERTMSG((pp->pr_itemsperpage != 0),
1057 1.213 christos "%s: [%s] pr_itemsperpage is zero, "
1058 1.213 christos "pool not initialized?", __func__, pp->pr_wchan);
1059 1.207 riastrad KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1060 1.207 riastrad || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1061 1.213 christos "%s: [%s] is IPL_NONE, but called from interrupt context",
1062 1.213 christos __func__, pp->pr_wchan);
1063 1.155 ad if (flags & PR_WAITOK) {
1064 1.154 yamt ASSERT_SLEEPABLE();
1065 1.155 ad }
1066 1.1 pk
1067 1.270 maxv if (flags & PR_NOWAIT) {
1068 1.270 maxv if (fault_inject())
1069 1.270 maxv return NULL;
1070 1.270 maxv }
1071 1.270 maxv
1072 1.134 ad mutex_enter(&pp->pr_lock);
1073 1.20 thorpej startover:
1074 1.20 thorpej /*
1075 1.20 thorpej * Check to see if we've reached the hard limit. If we have,
1076 1.20 thorpej * and we can wait, then wait until an item has been returned to
1077 1.20 thorpej * the pool.
1078 1.20 thorpej */
1079 1.207 riastrad KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1080 1.213 christos "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1081 1.34 thorpej if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1082 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1083 1.68 thorpej /*
1084 1.68 thorpej * Since the drain hook is going to free things
1085 1.68 thorpej * back to the pool, unlock, call the hook, re-lock,
1086 1.68 thorpej * and check the hardlimit condition again.
1087 1.68 thorpej */
1088 1.134 ad mutex_exit(&pp->pr_lock);
1089 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1090 1.134 ad mutex_enter(&pp->pr_lock);
1091 1.68 thorpej if (pp->pr_nout < pp->pr_hardlimit)
1092 1.68 thorpej goto startover;
1093 1.68 thorpej }
1094 1.68 thorpej
1095 1.29 sommerfe if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1096 1.20 thorpej /*
1097 1.20 thorpej * XXX: A warning isn't logged in this case. Should
1098 1.20 thorpej * it be?
1099 1.20 thorpej */
1100 1.20 thorpej pp->pr_flags |= PR_WANTED;
1101 1.212 christos do {
1102 1.212 christos cv_wait(&pp->pr_cv, &pp->pr_lock);
1103 1.212 christos } while (pp->pr_flags & PR_WANTED);
1104 1.20 thorpej goto startover;
1105 1.20 thorpej }
1106 1.31 thorpej
1107 1.31 thorpej /*
1108 1.31 thorpej * Log a message that the hard limit has been hit.
1109 1.31 thorpej */
1110 1.31 thorpej if (pp->pr_hardlimit_warning != NULL &&
1111 1.31 thorpej ratecheck(&pp->pr_hardlimit_warning_last,
1112 1.31 thorpej &pp->pr_hardlimit_ratecap))
1113 1.31 thorpej log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1114 1.21 thorpej
1115 1.21 thorpej pp->pr_nfail++;
1116 1.21 thorpej
1117 1.134 ad mutex_exit(&pp->pr_lock);
1118 1.216 christos KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1119 1.236 maxv return NULL;
1120 1.20 thorpej }
1121 1.20 thorpej
1122 1.3 pk /*
1123 1.3 pk * The convention we use is that if `curpage' is not NULL, then
1124 1.3 pk * it points at a non-empty bucket. In particular, `curpage'
1125 1.3 pk * never points at a page header which has PR_PHINPAGE set and
1126 1.3 pk * has no items in its bucket.
1127 1.3 pk */
1128 1.20 thorpej if ((ph = pp->pr_curpage) == NULL) {
1129 1.113 yamt int error;
1130 1.113 yamt
1131 1.207 riastrad KASSERTMSG((pp->pr_nitems == 0),
1132 1.213 christos "%s: [%s] curpage NULL, inconsistent nitems %u",
1133 1.213 christos __func__, pp->pr_wchan, pp->pr_nitems);
1134 1.20 thorpej
1135 1.21 thorpej /*
1136 1.21 thorpej * Call the back-end page allocator for more memory.
1137 1.21 thorpej * Release the pool lock, as the back-end page allocator
1138 1.21 thorpej * may block.
1139 1.21 thorpej */
1140 1.113 yamt error = pool_grow(pp, flags);
1141 1.113 yamt if (error != 0) {
1142 1.21 thorpej /*
1143 1.210 mlelstv * pool_grow aborts when another thread
1144 1.210 mlelstv * is allocating a new page. Retry if it
1145 1.210 mlelstv * waited for it.
1146 1.210 mlelstv */
1147 1.210 mlelstv if (error == ERESTART)
1148 1.210 mlelstv goto startover;
1149 1.210 mlelstv
1150 1.210 mlelstv /*
1151 1.55 thorpej * We were unable to allocate a page or item
1152 1.55 thorpej * header, but we released the lock during
1153 1.55 thorpej * allocation, so perhaps items were freed
1154 1.55 thorpej * back to the pool. Check for this case.
1155 1.21 thorpej */
1156 1.21 thorpej if (pp->pr_curpage != NULL)
1157 1.21 thorpej goto startover;
1158 1.15 pk
1159 1.117 yamt pp->pr_nfail++;
1160 1.134 ad mutex_exit(&pp->pr_lock);
1161 1.265 chs KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1162 1.236 maxv return NULL;
1163 1.1 pk }
1164 1.3 pk
1165 1.20 thorpej /* Start the allocation process over. */
1166 1.20 thorpej goto startover;
1167 1.3 pk }
1168 1.242 maxv if (pp->pr_roflags & PR_USEBMAP) {
1169 1.207 riastrad KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1170 1.251 christos "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1171 1.234 maxv v = pr_item_bitmap_get(pp, ph);
1172 1.97 yamt } else {
1173 1.234 maxv v = pr_item_linkedlist_get(pp, ph);
1174 1.97 yamt }
1175 1.20 thorpej pp->pr_nitems--;
1176 1.20 thorpej pp->pr_nout++;
1177 1.6 thorpej if (ph->ph_nmissing == 0) {
1178 1.207 riastrad KASSERT(pp->pr_nidle > 0);
1179 1.6 thorpej pp->pr_nidle--;
1180 1.88 chs
1181 1.88 chs /*
1182 1.88 chs * This page was previously empty. Move it to the list of
1183 1.88 chs * partially-full pages. This page is already curpage.
1184 1.88 chs */
1185 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1186 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1187 1.6 thorpej }
1188 1.3 pk ph->ph_nmissing++;
1189 1.97 yamt if (ph->ph_nmissing == pp->pr_itemsperpage) {
1190 1.242 maxv KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1191 1.207 riastrad LIST_EMPTY(&ph->ph_itemlist)),
1192 1.213 christos "%s: [%s] nmissing (%u) inconsistent", __func__,
1193 1.213 christos pp->pr_wchan, ph->ph_nmissing);
1194 1.3 pk /*
1195 1.88 chs * This page is now full. Move it to the full list
1196 1.88 chs * and select a new current page.
1197 1.3 pk */
1198 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1199 1.88 chs LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1200 1.88 chs pool_update_curpage(pp);
1201 1.1 pk }
1202 1.3 pk
1203 1.3 pk pp->pr_nget++;
1204 1.20 thorpej
1205 1.20 thorpej /*
1206 1.20 thorpej * If we have a low water mark and we are now below that low
1207 1.20 thorpej * water mark, add more items to the pool.
1208 1.20 thorpej */
1209 1.53 thorpej if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1210 1.20 thorpej /*
1211 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1212 1.20 thorpej * to try again in a second or so? The latter could break
1213 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1214 1.20 thorpej */
1215 1.20 thorpej }
1216 1.20 thorpej
1217 1.134 ad mutex_exit(&pp->pr_lock);
1218 1.238 maxv KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1219 1.125 ad FREECHECK_OUT(&pp->pr_freecheck, v);
1220 1.204 maxv pool_redzone_fill(pp, v);
1221 1.262 maxv pool_get_kmsan(pp, v);
1222 1.232 christos if (flags & PR_ZERO)
1223 1.233 maxv memset(v, 0, pp->pr_reqsize);
1224 1.232 christos return v;
1225 1.1 pk }
1226 1.1 pk
1227 1.1 pk /*
1228 1.43 thorpej * Internal version of pool_put(). Pool is already locked/entered.
1229 1.1 pk */
1230 1.43 thorpej static void
1231 1.101 thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1232 1.1 pk {
1233 1.3 pk struct pool_item_header *ph;
1234 1.3 pk
1235 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1236 1.204 maxv pool_redzone_check(pp, v);
1237 1.262 maxv pool_put_kmsan(pp, v);
1238 1.125 ad FREECHECK_IN(&pp->pr_freecheck, v);
1239 1.134 ad LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1240 1.61 chs
1241 1.207 riastrad KASSERTMSG((pp->pr_nout > 0),
1242 1.213 christos "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1243 1.3 pk
1244 1.121 yamt if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1245 1.213 christos panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1246 1.3 pk }
1247 1.28 thorpej
1248 1.3 pk /*
1249 1.3 pk * Return to item list.
1250 1.3 pk */
1251 1.242 maxv if (pp->pr_roflags & PR_USEBMAP) {
1252 1.234 maxv pr_item_bitmap_put(pp, ph, v);
1253 1.97 yamt } else {
1254 1.234 maxv pr_item_linkedlist_put(pp, ph, v);
1255 1.97 yamt }
1256 1.79 thorpej KDASSERT(ph->ph_nmissing != 0);
1257 1.3 pk ph->ph_nmissing--;
1258 1.3 pk pp->pr_nput++;
1259 1.20 thorpej pp->pr_nitems++;
1260 1.20 thorpej pp->pr_nout--;
1261 1.3 pk
1262 1.3 pk /* Cancel "pool empty" condition if it exists */
1263 1.3 pk if (pp->pr_curpage == NULL)
1264 1.3 pk pp->pr_curpage = ph;
1265 1.3 pk
1266 1.3 pk if (pp->pr_flags & PR_WANTED) {
1267 1.3 pk pp->pr_flags &= ~PR_WANTED;
1268 1.134 ad cv_broadcast(&pp->pr_cv);
1269 1.3 pk }
1270 1.3 pk
1271 1.3 pk /*
1272 1.88 chs * If this page is now empty, do one of two things:
1273 1.21 thorpej *
1274 1.88 chs * (1) If we have more pages than the page high water mark,
1275 1.96 thorpej * free the page back to the system. ONLY CONSIDER
1276 1.90 thorpej * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1277 1.90 thorpej * CLAIM.
1278 1.21 thorpej *
1279 1.88 chs * (2) Otherwise, move the page to the empty page list.
1280 1.88 chs *
1281 1.88 chs * Either way, select a new current page (so we use a partially-full
1282 1.88 chs * page if one is available).
1283 1.3 pk */
1284 1.3 pk if (ph->ph_nmissing == 0) {
1285 1.6 thorpej pp->pr_nidle++;
1286 1.267 chs if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1287 1.267 chs pp->pr_npages > pp->pr_minpages &&
1288 1.152 yamt pp->pr_npages > pp->pr_maxpages) {
1289 1.101 thorpej pr_rmpage(pp, ph, pq);
1290 1.3 pk } else {
1291 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1292 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1293 1.3 pk
1294 1.21 thorpej /*
1295 1.21 thorpej * Update the timestamp on the page. A page must
1296 1.21 thorpej * be idle for some period of time before it can
1297 1.21 thorpej * be reclaimed by the pagedaemon. This minimizes
1298 1.21 thorpej * ping-pong'ing for memory.
1299 1.151 yamt *
1300 1.151 yamt * note for 64-bit time_t: truncating to 32-bit is not
1301 1.151 yamt * a problem for our usage.
1302 1.21 thorpej */
1303 1.151 yamt ph->ph_time = time_uptime;
1304 1.1 pk }
1305 1.88 chs pool_update_curpage(pp);
1306 1.1 pk }
1307 1.88 chs
1308 1.21 thorpej /*
1309 1.88 chs * If the page was previously completely full, move it to the
1310 1.88 chs * partially-full list and make it the current page. The next
1311 1.88 chs * allocation will get the item from this page, instead of
1312 1.88 chs * further fragmenting the pool.
1313 1.21 thorpej */
1314 1.21 thorpej else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1315 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1316 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1317 1.21 thorpej pp->pr_curpage = ph;
1318 1.21 thorpej }
1319 1.43 thorpej }
1320 1.43 thorpej
1321 1.56 sommerfe void
1322 1.56 sommerfe pool_put(struct pool *pp, void *v)
1323 1.56 sommerfe {
1324 1.101 thorpej struct pool_pagelist pq;
1325 1.101 thorpej
1326 1.101 thorpej LIST_INIT(&pq);
1327 1.56 sommerfe
1328 1.134 ad mutex_enter(&pp->pr_lock);
1329 1.249 maxv if (!pool_put_quarantine(pp, v, &pq)) {
1330 1.249 maxv pool_do_put(pp, v, &pq);
1331 1.249 maxv }
1332 1.134 ad mutex_exit(&pp->pr_lock);
1333 1.56 sommerfe
1334 1.102 chs pr_pagelist_free(pp, &pq);
1335 1.56 sommerfe }
1336 1.57 sommerfe
1337 1.74 thorpej /*
1338 1.113 yamt * pool_grow: grow a pool by a page.
1339 1.113 yamt *
1340 1.113 yamt * => called with pool locked.
1341 1.113 yamt * => unlock and relock the pool.
1342 1.113 yamt * => return with pool locked.
1343 1.113 yamt */
1344 1.113 yamt
1345 1.113 yamt static int
1346 1.113 yamt pool_grow(struct pool *pp, int flags)
1347 1.113 yamt {
1348 1.236 maxv struct pool_item_header *ph;
1349 1.237 maxv char *storage;
1350 1.236 maxv
1351 1.209 riastrad /*
1352 1.209 riastrad * If there's a pool_grow in progress, wait for it to complete
1353 1.209 riastrad * and try again from the top.
1354 1.209 riastrad */
1355 1.209 riastrad if (pp->pr_flags & PR_GROWING) {
1356 1.209 riastrad if (flags & PR_WAITOK) {
1357 1.209 riastrad do {
1358 1.209 riastrad cv_wait(&pp->pr_cv, &pp->pr_lock);
1359 1.209 riastrad } while (pp->pr_flags & PR_GROWING);
1360 1.209 riastrad return ERESTART;
1361 1.209 riastrad } else {
1362 1.219 mrg if (pp->pr_flags & PR_GROWINGNOWAIT) {
1363 1.219 mrg /*
1364 1.219 mrg * This needs an unlock/relock dance so
1365 1.219 mrg * that the other caller has a chance to
1366 1.219 mrg * run and actually do the thing. Note
1367 1.219 mrg * that this is effectively a busy-wait.
1368 1.219 mrg */
1369 1.219 mrg mutex_exit(&pp->pr_lock);
1370 1.219 mrg mutex_enter(&pp->pr_lock);
1371 1.219 mrg return ERESTART;
1372 1.219 mrg }
1373 1.209 riastrad return EWOULDBLOCK;
1374 1.209 riastrad }
1375 1.209 riastrad }
1376 1.209 riastrad pp->pr_flags |= PR_GROWING;
1377 1.220 christos if (flags & PR_WAITOK)
1378 1.220 christos mutex_exit(&pp->pr_lock);
1379 1.220 christos else
1380 1.219 mrg pp->pr_flags |= PR_GROWINGNOWAIT;
1381 1.113 yamt
1382 1.237 maxv storage = pool_allocator_alloc(pp, flags);
1383 1.237 maxv if (__predict_false(storage == NULL))
1384 1.216 christos goto out;
1385 1.216 christos
1386 1.237 maxv ph = pool_alloc_item_header(pp, storage, flags);
1387 1.216 christos if (__predict_false(ph == NULL)) {
1388 1.237 maxv pool_allocator_free(pp, storage);
1389 1.209 riastrad goto out;
1390 1.113 yamt }
1391 1.113 yamt
1392 1.220 christos if (flags & PR_WAITOK)
1393 1.220 christos mutex_enter(&pp->pr_lock);
1394 1.237 maxv pool_prime_page(pp, storage, ph);
1395 1.113 yamt pp->pr_npagealloc++;
1396 1.216 christos KASSERT(pp->pr_flags & PR_GROWING);
1397 1.219 mrg pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1398 1.209 riastrad /*
1399 1.209 riastrad * If anyone was waiting for pool_grow, notify them that we
1400 1.209 riastrad * may have just done it.
1401 1.209 riastrad */
1402 1.216 christos cv_broadcast(&pp->pr_cv);
1403 1.216 christos return 0;
1404 1.216 christos out:
1405 1.220 christos if (flags & PR_WAITOK)
1406 1.220 christos mutex_enter(&pp->pr_lock);
1407 1.209 riastrad KASSERT(pp->pr_flags & PR_GROWING);
1408 1.219 mrg pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1409 1.216 christos return ENOMEM;
1410 1.113 yamt }
1411 1.113 yamt
1412 1.267 chs void
1413 1.74 thorpej pool_prime(struct pool *pp, int n)
1414 1.74 thorpej {
1415 1.74 thorpej
1416 1.134 ad mutex_enter(&pp->pr_lock);
1417 1.267 chs pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1418 1.267 chs if (pp->pr_maxpages <= pp->pr_minpages)
1419 1.74 thorpej pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1420 1.267 chs while (pp->pr_npages < pp->pr_minpages)
1421 1.267 chs (void) pool_grow(pp, PR_WAITOK);
1422 1.134 ad mutex_exit(&pp->pr_lock);
1423 1.74 thorpej }
1424 1.55 thorpej
1425 1.55 thorpej /*
1426 1.3 pk * Add a page worth of items to the pool.
1427 1.21 thorpej *
1428 1.21 thorpej * Note, we must be called with the pool descriptor LOCKED.
1429 1.3 pk */
1430 1.55 thorpej static void
1431 1.128 christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1432 1.3 pk {
1433 1.236 maxv const unsigned int align = pp->pr_align;
1434 1.3 pk struct pool_item *pi;
1435 1.128 christos void *cp = storage;
1436 1.55 thorpej int n;
1437 1.36 pk
1438 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1439 1.207 riastrad KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1440 1.207 riastrad (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1441 1.213 christos "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1442 1.3 pk
1443 1.3 pk /*
1444 1.3 pk * Insert page header.
1445 1.3 pk */
1446 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1447 1.102 chs LIST_INIT(&ph->ph_itemlist);
1448 1.3 pk ph->ph_page = storage;
1449 1.3 pk ph->ph_nmissing = 0;
1450 1.151 yamt ph->ph_time = time_uptime;
1451 1.245 maxv if (pp->pr_roflags & PR_PHINPAGE)
1452 1.245 maxv ph->ph_poolid = pp->pr_poolid;
1453 1.245 maxv else
1454 1.88 chs SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1455 1.3 pk
1456 1.6 thorpej pp->pr_nidle++;
1457 1.6 thorpej
1458 1.3 pk /*
1459 1.241 maxv * The item space starts after the on-page header, if any.
1460 1.241 maxv */
1461 1.241 maxv ph->ph_off = pp->pr_itemoffset;
1462 1.241 maxv
1463 1.241 maxv /*
1464 1.3 pk * Color this page.
1465 1.3 pk */
1466 1.241 maxv ph->ph_off += pp->pr_curcolor;
1467 1.141 yamt cp = (char *)cp + ph->ph_off;
1468 1.3 pk if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1469 1.3 pk pp->pr_curcolor = 0;
1470 1.3 pk
1471 1.238 maxv KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1472 1.125 ad
1473 1.3 pk /*
1474 1.3 pk * Insert remaining chunks on the bucket list.
1475 1.3 pk */
1476 1.3 pk n = pp->pr_itemsperpage;
1477 1.20 thorpej pp->pr_nitems += n;
1478 1.3 pk
1479 1.242 maxv if (pp->pr_roflags & PR_USEBMAP) {
1480 1.234 maxv pr_item_bitmap_init(pp, ph);
1481 1.97 yamt } else {
1482 1.97 yamt while (n--) {
1483 1.97 yamt pi = (struct pool_item *)cp;
1484 1.78 thorpej
1485 1.238 maxv KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1486 1.3 pk
1487 1.97 yamt /* Insert on page list */
1488 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1489 1.229 maxv #ifdef POOL_CHECK_MAGIC
1490 1.97 yamt pi->pi_magic = PI_MAGIC;
1491 1.3 pk #endif
1492 1.128 christos cp = (char *)cp + pp->pr_size;
1493 1.125 ad
1494 1.238 maxv KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1495 1.97 yamt }
1496 1.3 pk }
1497 1.3 pk
1498 1.3 pk /*
1499 1.3 pk * If the pool was depleted, point at the new page.
1500 1.3 pk */
1501 1.3 pk if (pp->pr_curpage == NULL)
1502 1.3 pk pp->pr_curpage = ph;
1503 1.3 pk
1504 1.3 pk if (++pp->pr_npages > pp->pr_hiwat)
1505 1.3 pk pp->pr_hiwat = pp->pr_npages;
1506 1.3 pk }
1507 1.3 pk
1508 1.20 thorpej /*
1509 1.52 thorpej * Used by pool_get() when nitems drops below the low water mark. This
1510 1.88 chs * is used to catch up pr_nitems with the low water mark.
1511 1.20 thorpej *
1512 1.21 thorpej * Note 1, we never wait for memory here, we let the caller decide what to do.
1513 1.20 thorpej *
1514 1.73 thorpej * Note 2, we must be called with the pool already locked, and we return
1515 1.20 thorpej * with it locked.
1516 1.20 thorpej */
1517 1.20 thorpej static int
1518 1.42 thorpej pool_catchup(struct pool *pp)
1519 1.20 thorpej {
1520 1.20 thorpej int error = 0;
1521 1.20 thorpej
1522 1.54 thorpej while (POOL_NEEDS_CATCHUP(pp)) {
1523 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1524 1.113 yamt if (error) {
1525 1.214 christos if (error == ERESTART)
1526 1.214 christos continue;
1527 1.20 thorpej break;
1528 1.20 thorpej }
1529 1.20 thorpej }
1530 1.113 yamt return error;
1531 1.20 thorpej }
1532 1.20 thorpej
1533 1.88 chs static void
1534 1.88 chs pool_update_curpage(struct pool *pp)
1535 1.88 chs {
1536 1.88 chs
1537 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1538 1.88 chs if (pp->pr_curpage == NULL) {
1539 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1540 1.88 chs }
1541 1.168 yamt KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1542 1.168 yamt (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1543 1.88 chs }
1544 1.88 chs
1545 1.3 pk void
1546 1.42 thorpej pool_setlowat(struct pool *pp, int n)
1547 1.3 pk {
1548 1.15 pk
1549 1.134 ad mutex_enter(&pp->pr_lock);
1550 1.3 pk pp->pr_minitems = n;
1551 1.20 thorpej
1552 1.20 thorpej /* Make sure we're caught up with the newly-set low water mark. */
1553 1.75 simonb if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1554 1.20 thorpej /*
1555 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1556 1.20 thorpej * to try again in a second or so? The latter could break
1557 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1558 1.20 thorpej */
1559 1.20 thorpej }
1560 1.21 thorpej
1561 1.134 ad mutex_exit(&pp->pr_lock);
1562 1.3 pk }
1563 1.3 pk
1564 1.3 pk void
1565 1.42 thorpej pool_sethiwat(struct pool *pp, int n)
1566 1.3 pk {
1567 1.15 pk
1568 1.134 ad mutex_enter(&pp->pr_lock);
1569 1.21 thorpej
1570 1.267 chs pp->pr_maxitems = n;
1571 1.21 thorpej
1572 1.134 ad mutex_exit(&pp->pr_lock);
1573 1.3 pk }
1574 1.3 pk
1575 1.20 thorpej void
1576 1.42 thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1577 1.20 thorpej {
1578 1.20 thorpej
1579 1.134 ad mutex_enter(&pp->pr_lock);
1580 1.20 thorpej
1581 1.20 thorpej pp->pr_hardlimit = n;
1582 1.20 thorpej pp->pr_hardlimit_warning = warnmess;
1583 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1584 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
1585 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
1586 1.20 thorpej
1587 1.267 chs pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1588 1.21 thorpej
1589 1.134 ad mutex_exit(&pp->pr_lock);
1590 1.20 thorpej }
1591 1.3 pk
1592 1.3 pk /*
1593 1.3 pk * Release all complete pages that have not been used recently.
1594 1.184 rmind *
1595 1.197 jym * Must not be called from interrupt context.
1596 1.3 pk */
1597 1.66 thorpej int
1598 1.56 sommerfe pool_reclaim(struct pool *pp)
1599 1.3 pk {
1600 1.3 pk struct pool_item_header *ph, *phnext;
1601 1.61 chs struct pool_pagelist pq;
1602 1.151 yamt uint32_t curtime;
1603 1.134 ad bool klock;
1604 1.134 ad int rv;
1605 1.3 pk
1606 1.197 jym KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1607 1.184 rmind
1608 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1609 1.68 thorpej /*
1610 1.68 thorpej * The drain hook must be called with the pool unlocked.
1611 1.68 thorpej */
1612 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1613 1.68 thorpej }
1614 1.68 thorpej
1615 1.134 ad /*
1616 1.157 ad * XXXSMP Because we do not want to cause non-MPSAFE code
1617 1.157 ad * to block.
1618 1.134 ad */
1619 1.134 ad if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1620 1.134 ad pp->pr_ipl == IPL_SOFTSERIAL) {
1621 1.134 ad KERNEL_LOCK(1, NULL);
1622 1.134 ad klock = true;
1623 1.134 ad } else
1624 1.134 ad klock = false;
1625 1.134 ad
1626 1.134 ad /* Reclaim items from the pool's cache (if any). */
1627 1.134 ad if (pp->pr_cache != NULL)
1628 1.134 ad pool_cache_invalidate(pp->pr_cache);
1629 1.134 ad
1630 1.134 ad if (mutex_tryenter(&pp->pr_lock) == 0) {
1631 1.134 ad if (klock) {
1632 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1633 1.134 ad }
1634 1.236 maxv return 0;
1635 1.134 ad }
1636 1.68 thorpej
1637 1.88 chs LIST_INIT(&pq);
1638 1.43 thorpej
1639 1.151 yamt curtime = time_uptime;
1640 1.21 thorpej
1641 1.88 chs for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1642 1.88 chs phnext = LIST_NEXT(ph, ph_pagelist);
1643 1.3 pk
1644 1.3 pk /* Check our minimum page claim */
1645 1.3 pk if (pp->pr_npages <= pp->pr_minpages)
1646 1.3 pk break;
1647 1.3 pk
1648 1.88 chs KASSERT(ph->ph_nmissing == 0);
1649 1.191 para if (curtime - ph->ph_time < pool_inactive_time)
1650 1.88 chs continue;
1651 1.21 thorpej
1652 1.88 chs /*
1653 1.267 chs * If freeing this page would put us below the minimum free items
1654 1.267 chs * or the minimum pages, stop now.
1655 1.88 chs */
1656 1.267 chs if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1657 1.267 chs pp->pr_npages - 1 < pp->pr_minpages)
1658 1.88 chs break;
1659 1.21 thorpej
1660 1.88 chs pr_rmpage(pp, ph, &pq);
1661 1.3 pk }
1662 1.3 pk
1663 1.134 ad mutex_exit(&pp->pr_lock);
1664 1.134 ad
1665 1.134 ad if (LIST_EMPTY(&pq))
1666 1.134 ad rv = 0;
1667 1.134 ad else {
1668 1.134 ad pr_pagelist_free(pp, &pq);
1669 1.134 ad rv = 1;
1670 1.134 ad }
1671 1.134 ad
1672 1.134 ad if (klock) {
1673 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1674 1.134 ad }
1675 1.66 thorpej
1676 1.236 maxv return rv;
1677 1.3 pk }
1678 1.3 pk
1679 1.3 pk /*
1680 1.197 jym * Drain pools, one at a time. The drained pool is returned within ppp.
1681 1.131 ad *
1682 1.134 ad * Note, must never be called from interrupt context.
1683 1.3 pk */
1684 1.197 jym bool
1685 1.197 jym pool_drain(struct pool **ppp)
1686 1.3 pk {
1687 1.197 jym bool reclaimed;
1688 1.3 pk struct pool *pp;
1689 1.134 ad
1690 1.145 ad KASSERT(!TAILQ_EMPTY(&pool_head));
1691 1.3 pk
1692 1.61 chs pp = NULL;
1693 1.134 ad
1694 1.134 ad /* Find next pool to drain, and add a reference. */
1695 1.134 ad mutex_enter(&pool_head_lock);
1696 1.134 ad do {
1697 1.134 ad if (drainpp == NULL) {
1698 1.145 ad drainpp = TAILQ_FIRST(&pool_head);
1699 1.134 ad }
1700 1.134 ad if (drainpp != NULL) {
1701 1.134 ad pp = drainpp;
1702 1.145 ad drainpp = TAILQ_NEXT(pp, pr_poollist);
1703 1.134 ad }
1704 1.134 ad /*
1705 1.134 ad * Skip completely idle pools. We depend on at least
1706 1.134 ad * one pool in the system being active.
1707 1.134 ad */
1708 1.134 ad } while (pp == NULL || pp->pr_npages == 0);
1709 1.134 ad pp->pr_refcnt++;
1710 1.134 ad mutex_exit(&pool_head_lock);
1711 1.134 ad
1712 1.134 ad /* Drain the cache (if any) and pool.. */
1713 1.186 pooka reclaimed = pool_reclaim(pp);
1714 1.134 ad
1715 1.134 ad /* Finally, unlock the pool. */
1716 1.134 ad mutex_enter(&pool_head_lock);
1717 1.134 ad pp->pr_refcnt--;
1718 1.134 ad cv_broadcast(&pool_busy);
1719 1.134 ad mutex_exit(&pool_head_lock);
1720 1.186 pooka
1721 1.197 jym if (ppp != NULL)
1722 1.197 jym *ppp = pp;
1723 1.197 jym
1724 1.186 pooka return reclaimed;
1725 1.3 pk }
1726 1.3 pk
1727 1.3 pk /*
1728 1.217 mrg * Calculate the total number of pages consumed by pools.
1729 1.217 mrg */
1730 1.217 mrg int
1731 1.217 mrg pool_totalpages(void)
1732 1.217 mrg {
1733 1.250 skrll
1734 1.250 skrll mutex_enter(&pool_head_lock);
1735 1.250 skrll int pages = pool_totalpages_locked();
1736 1.250 skrll mutex_exit(&pool_head_lock);
1737 1.250 skrll
1738 1.250 skrll return pages;
1739 1.250 skrll }
1740 1.250 skrll
1741 1.250 skrll int
1742 1.250 skrll pool_totalpages_locked(void)
1743 1.250 skrll {
1744 1.217 mrg struct pool *pp;
1745 1.218 mrg uint64_t total = 0;
1746 1.217 mrg
1747 1.218 mrg TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1748 1.218 mrg uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1749 1.218 mrg
1750 1.218 mrg if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1751 1.218 mrg bytes -= (pp->pr_nout * pp->pr_size);
1752 1.218 mrg total += bytes;
1753 1.218 mrg }
1754 1.217 mrg
1755 1.218 mrg return atop(total);
1756 1.217 mrg }
1757 1.217 mrg
1758 1.217 mrg /*
1759 1.3 pk * Diagnostic helpers.
1760 1.3 pk */
1761 1.21 thorpej
1762 1.25 thorpej void
1763 1.108 yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
1764 1.108 yamt {
1765 1.108 yamt struct pool *pp;
1766 1.108 yamt
1767 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1768 1.108 yamt pool_printit(pp, modif, pr);
1769 1.108 yamt }
1770 1.108 yamt }
1771 1.108 yamt
1772 1.108 yamt void
1773 1.42 thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1774 1.25 thorpej {
1775 1.25 thorpej
1776 1.25 thorpej if (pp == NULL) {
1777 1.25 thorpej (*pr)("Must specify a pool to print.\n");
1778 1.25 thorpej return;
1779 1.25 thorpej }
1780 1.25 thorpej
1781 1.25 thorpej pool_print1(pp, modif, pr);
1782 1.25 thorpej }
1783 1.25 thorpej
1784 1.21 thorpej static void
1785 1.124 yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1786 1.97 yamt void (*pr)(const char *, ...))
1787 1.88 chs {
1788 1.88 chs struct pool_item_header *ph;
1789 1.88 chs
1790 1.88 chs LIST_FOREACH(ph, pl, ph_pagelist) {
1791 1.151 yamt (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1792 1.151 yamt ph->ph_page, ph->ph_nmissing, ph->ph_time);
1793 1.229 maxv #ifdef POOL_CHECK_MAGIC
1794 1.229 maxv struct pool_item *pi;
1795 1.242 maxv if (!(pp->pr_roflags & PR_USEBMAP)) {
1796 1.102 chs LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1797 1.97 yamt if (pi->pi_magic != PI_MAGIC) {
1798 1.97 yamt (*pr)("\t\t\titem %p, magic 0x%x\n",
1799 1.97 yamt pi, pi->pi_magic);
1800 1.97 yamt }
1801 1.88 chs }
1802 1.88 chs }
1803 1.88 chs #endif
1804 1.88 chs }
1805 1.88 chs }
1806 1.88 chs
1807 1.88 chs static void
1808 1.42 thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1809 1.3 pk {
1810 1.25 thorpej struct pool_item_header *ph;
1811 1.134 ad pool_cache_t pc;
1812 1.134 ad pcg_t *pcg;
1813 1.134 ad pool_cache_cpu_t *cc;
1814 1.271 ad uint64_t cpuhit, cpumiss, pchit, pcmiss;
1815 1.271 ad uint32_t nfull;
1816 1.44 thorpej int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1817 1.25 thorpej char c;
1818 1.25 thorpej
1819 1.25 thorpej while ((c = *modif++) != '\0') {
1820 1.25 thorpej if (c == 'l')
1821 1.25 thorpej print_log = 1;
1822 1.25 thorpej if (c == 'p')
1823 1.25 thorpej print_pagelist = 1;
1824 1.44 thorpej if (c == 'c')
1825 1.44 thorpej print_cache = 1;
1826 1.25 thorpej }
1827 1.25 thorpej
1828 1.134 ad if ((pc = pp->pr_cache) != NULL) {
1829 1.134 ad (*pr)("POOL CACHE");
1830 1.134 ad } else {
1831 1.134 ad (*pr)("POOL");
1832 1.134 ad }
1833 1.134 ad
1834 1.134 ad (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1835 1.25 thorpej pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1836 1.25 thorpej pp->pr_roflags);
1837 1.66 thorpej (*pr)("\talloc %p\n", pp->pr_alloc);
1838 1.25 thorpej (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1839 1.25 thorpej pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1840 1.25 thorpej (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1841 1.25 thorpej pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1842 1.25 thorpej
1843 1.134 ad (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1844 1.25 thorpej pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1845 1.25 thorpej (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1846 1.25 thorpej pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1847 1.25 thorpej
1848 1.25 thorpej if (print_pagelist == 0)
1849 1.25 thorpej goto skip_pagelist;
1850 1.25 thorpej
1851 1.88 chs if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1852 1.88 chs (*pr)("\n\tempty page list:\n");
1853 1.97 yamt pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1854 1.88 chs if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1855 1.88 chs (*pr)("\n\tfull page list:\n");
1856 1.97 yamt pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1857 1.88 chs if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1858 1.88 chs (*pr)("\n\tpartial-page list:\n");
1859 1.97 yamt pool_print_pagelist(pp, &pp->pr_partpages, pr);
1860 1.88 chs
1861 1.25 thorpej if (pp->pr_curpage == NULL)
1862 1.25 thorpej (*pr)("\tno current page\n");
1863 1.25 thorpej else
1864 1.25 thorpej (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1865 1.25 thorpej
1866 1.25 thorpej skip_pagelist:
1867 1.25 thorpej if (print_log == 0)
1868 1.25 thorpej goto skip_log;
1869 1.25 thorpej
1870 1.25 thorpej (*pr)("\n");
1871 1.3 pk
1872 1.25 thorpej skip_log:
1873 1.44 thorpej
1874 1.102 chs #define PR_GROUPLIST(pcg) \
1875 1.102 chs (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1876 1.142 ad for (i = 0; i < pcg->pcg_size; i++) { \
1877 1.102 chs if (pcg->pcg_objects[i].pcgo_pa != \
1878 1.102 chs POOL_PADDR_INVALID) { \
1879 1.102 chs (*pr)("\t\t\t%p, 0x%llx\n", \
1880 1.102 chs pcg->pcg_objects[i].pcgo_va, \
1881 1.102 chs (unsigned long long) \
1882 1.102 chs pcg->pcg_objects[i].pcgo_pa); \
1883 1.102 chs } else { \
1884 1.102 chs (*pr)("\t\t\t%p\n", \
1885 1.102 chs pcg->pcg_objects[i].pcgo_va); \
1886 1.102 chs } \
1887 1.102 chs }
1888 1.102 chs
1889 1.134 ad if (pc != NULL) {
1890 1.134 ad cpuhit = 0;
1891 1.134 ad cpumiss = 0;
1892 1.271 ad pcmiss = 0;
1893 1.271 ad nfull = 0;
1894 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1895 1.134 ad if ((cc = pc->pc_cpus[i]) == NULL)
1896 1.134 ad continue;
1897 1.134 ad cpuhit += cc->cc_hits;
1898 1.134 ad cpumiss += cc->cc_misses;
1899 1.271 ad pcmiss += cc->cc_pcmisses;
1900 1.271 ad nfull += cc->cc_nfull;
1901 1.134 ad }
1902 1.271 ad pchit = cpumiss - pcmiss;
1903 1.134 ad (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1904 1.271 ad (*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
1905 1.271 ad (*pr)("\tcache layer full groups %u\n", nfull);
1906 1.134 ad if (print_cache) {
1907 1.134 ad (*pr)("\tfull cache groups:\n");
1908 1.134 ad for (pcg = pc->pc_fullgroups; pcg != NULL;
1909 1.134 ad pcg = pcg->pcg_next) {
1910 1.134 ad PR_GROUPLIST(pcg);
1911 1.134 ad }
1912 1.103 chs }
1913 1.44 thorpej }
1914 1.102 chs #undef PR_GROUPLIST
1915 1.88 chs }
1916 1.88 chs
1917 1.88 chs static int
1918 1.88 chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1919 1.88 chs {
1920 1.88 chs struct pool_item *pi;
1921 1.128 christos void *page;
1922 1.88 chs int n;
1923 1.88 chs
1924 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1925 1.253 maxv page = POOL_OBJ_TO_PAGE(pp, ph);
1926 1.121 yamt if (page != ph->ph_page &&
1927 1.121 yamt (pp->pr_roflags & PR_PHINPAGE) != 0) {
1928 1.121 yamt if (label != NULL)
1929 1.121 yamt printf("%s: ", label);
1930 1.121 yamt printf("pool(%p:%s): page inconsistency: page %p;"
1931 1.121 yamt " at page head addr %p (p %p)\n", pp,
1932 1.121 yamt pp->pr_wchan, ph->ph_page,
1933 1.121 yamt ph, page);
1934 1.121 yamt return 1;
1935 1.121 yamt }
1936 1.88 chs }
1937 1.3 pk
1938 1.242 maxv if ((pp->pr_roflags & PR_USEBMAP) != 0)
1939 1.97 yamt return 0;
1940 1.97 yamt
1941 1.102 chs for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1942 1.88 chs pi != NULL;
1943 1.102 chs pi = LIST_NEXT(pi,pi_list), n++) {
1944 1.88 chs
1945 1.229 maxv #ifdef POOL_CHECK_MAGIC
1946 1.88 chs if (pi->pi_magic != PI_MAGIC) {
1947 1.88 chs if (label != NULL)
1948 1.88 chs printf("%s: ", label);
1949 1.88 chs printf("pool(%s): free list modified: magic=%x;"
1950 1.121 yamt " page %p; item ordinal %d; addr %p\n",
1951 1.88 chs pp->pr_wchan, pi->pi_magic, ph->ph_page,
1952 1.121 yamt n, pi);
1953 1.88 chs panic("pool");
1954 1.88 chs }
1955 1.88 chs #endif
1956 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1957 1.121 yamt continue;
1958 1.121 yamt }
1959 1.253 maxv page = POOL_OBJ_TO_PAGE(pp, pi);
1960 1.88 chs if (page == ph->ph_page)
1961 1.88 chs continue;
1962 1.88 chs
1963 1.88 chs if (label != NULL)
1964 1.88 chs printf("%s: ", label);
1965 1.88 chs printf("pool(%p:%s): page inconsistency: page %p;"
1966 1.88 chs " item ordinal %d; addr %p (p %p)\n", pp,
1967 1.88 chs pp->pr_wchan, ph->ph_page,
1968 1.88 chs n, pi, page);
1969 1.88 chs return 1;
1970 1.88 chs }
1971 1.88 chs return 0;
1972 1.3 pk }
1973 1.3 pk
1974 1.88 chs
1975 1.3 pk int
1976 1.42 thorpej pool_chk(struct pool *pp, const char *label)
1977 1.3 pk {
1978 1.3 pk struct pool_item_header *ph;
1979 1.3 pk int r = 0;
1980 1.3 pk
1981 1.134 ad mutex_enter(&pp->pr_lock);
1982 1.88 chs LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1983 1.88 chs r = pool_chk_page(pp, label, ph);
1984 1.88 chs if (r) {
1985 1.88 chs goto out;
1986 1.88 chs }
1987 1.88 chs }
1988 1.88 chs LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1989 1.88 chs r = pool_chk_page(pp, label, ph);
1990 1.88 chs if (r) {
1991 1.3 pk goto out;
1992 1.3 pk }
1993 1.88 chs }
1994 1.88 chs LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1995 1.88 chs r = pool_chk_page(pp, label, ph);
1996 1.88 chs if (r) {
1997 1.3 pk goto out;
1998 1.3 pk }
1999 1.3 pk }
2000 1.88 chs
2001 1.3 pk out:
2002 1.134 ad mutex_exit(&pp->pr_lock);
2003 1.236 maxv return r;
2004 1.43 thorpej }
2005 1.43 thorpej
2006 1.43 thorpej /*
2007 1.43 thorpej * pool_cache_init:
2008 1.43 thorpej *
2009 1.43 thorpej * Initialize a pool cache.
2010 1.134 ad */
2011 1.134 ad pool_cache_t
2012 1.134 ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2013 1.134 ad const char *wchan, struct pool_allocator *palloc, int ipl,
2014 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2015 1.134 ad {
2016 1.134 ad pool_cache_t pc;
2017 1.134 ad
2018 1.134 ad pc = pool_get(&cache_pool, PR_WAITOK);
2019 1.134 ad if (pc == NULL)
2020 1.134 ad return NULL;
2021 1.134 ad
2022 1.134 ad pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2023 1.134 ad palloc, ipl, ctor, dtor, arg);
2024 1.134 ad
2025 1.134 ad return pc;
2026 1.134 ad }
2027 1.134 ad
2028 1.134 ad /*
2029 1.134 ad * pool_cache_bootstrap:
2030 1.43 thorpej *
2031 1.134 ad * Kernel-private version of pool_cache_init(). The caller
2032 1.134 ad * provides initial storage.
2033 1.43 thorpej */
2034 1.43 thorpej void
2035 1.134 ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2036 1.134 ad u_int align_offset, u_int flags, const char *wchan,
2037 1.134 ad struct pool_allocator *palloc, int ipl,
2038 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2039 1.43 thorpej void *arg)
2040 1.43 thorpej {
2041 1.134 ad CPU_INFO_ITERATOR cii;
2042 1.145 ad pool_cache_t pc1;
2043 1.134 ad struct cpu_info *ci;
2044 1.134 ad struct pool *pp;
2045 1.134 ad
2046 1.134 ad pp = &pc->pc_pool;
2047 1.208 chs if (palloc == NULL && ipl == IPL_NONE) {
2048 1.208 chs if (size > PAGE_SIZE) {
2049 1.208 chs int bigidx = pool_bigidx(size);
2050 1.208 chs
2051 1.208 chs palloc = &pool_allocator_big[bigidx];
2052 1.252 maxv flags |= PR_NOALIGN;
2053 1.208 chs } else
2054 1.208 chs palloc = &pool_allocator_nointr;
2055 1.208 chs }
2056 1.134 ad pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2057 1.43 thorpej
2058 1.134 ad if (ctor == NULL) {
2059 1.261 christos ctor = NO_CTOR;
2060 1.134 ad }
2061 1.134 ad if (dtor == NULL) {
2062 1.261 christos dtor = NO_DTOR;
2063 1.134 ad }
2064 1.43 thorpej
2065 1.134 ad pc->pc_fullgroups = NULL;
2066 1.134 ad pc->pc_partgroups = NULL;
2067 1.43 thorpej pc->pc_ctor = ctor;
2068 1.43 thorpej pc->pc_dtor = dtor;
2069 1.43 thorpej pc->pc_arg = arg;
2070 1.134 ad pc->pc_refcnt = 0;
2071 1.136 yamt pc->pc_freecheck = NULL;
2072 1.134 ad
2073 1.142 ad if ((flags & PR_LARGECACHE) != 0) {
2074 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2075 1.163 ad pc->pc_pcgpool = &pcg_large_pool;
2076 1.271 ad pc->pc_pcgcache = &pcg_large_cache;
2077 1.142 ad } else {
2078 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2079 1.163 ad pc->pc_pcgpool = &pcg_normal_pool;
2080 1.271 ad pc->pc_pcgcache = &pcg_normal_cache;
2081 1.142 ad }
2082 1.142 ad
2083 1.134 ad /* Allocate per-CPU caches. */
2084 1.134 ad memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2085 1.134 ad pc->pc_ncpu = 0;
2086 1.139 ad if (ncpu < 2) {
2087 1.137 ad /* XXX For sparc: boot CPU is not attached yet. */
2088 1.137 ad pool_cache_cpu_init1(curcpu(), pc);
2089 1.137 ad } else {
2090 1.137 ad for (CPU_INFO_FOREACH(cii, ci)) {
2091 1.137 ad pool_cache_cpu_init1(ci, pc);
2092 1.137 ad }
2093 1.134 ad }
2094 1.145 ad
2095 1.145 ad /* Add to list of all pools. */
2096 1.145 ad if (__predict_true(!cold))
2097 1.134 ad mutex_enter(&pool_head_lock);
2098 1.145 ad TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2099 1.145 ad if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2100 1.145 ad break;
2101 1.145 ad }
2102 1.145 ad if (pc1 == NULL)
2103 1.145 ad TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2104 1.145 ad else
2105 1.145 ad TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2106 1.145 ad if (__predict_true(!cold))
2107 1.134 ad mutex_exit(&pool_head_lock);
2108 1.145 ad
2109 1.145 ad membar_sync();
2110 1.145 ad pp->pr_cache = pc;
2111 1.43 thorpej }
2112 1.43 thorpej
2113 1.43 thorpej /*
2114 1.43 thorpej * pool_cache_destroy:
2115 1.43 thorpej *
2116 1.43 thorpej * Destroy a pool cache.
2117 1.43 thorpej */
2118 1.43 thorpej void
2119 1.134 ad pool_cache_destroy(pool_cache_t pc)
2120 1.43 thorpej {
2121 1.191 para
2122 1.191 para pool_cache_bootstrap_destroy(pc);
2123 1.191 para pool_put(&cache_pool, pc);
2124 1.191 para }
2125 1.191 para
2126 1.191 para /*
2127 1.191 para * pool_cache_bootstrap_destroy:
2128 1.191 para *
2129 1.191 para * Destroy a pool cache.
2130 1.191 para */
2131 1.191 para void
2132 1.191 para pool_cache_bootstrap_destroy(pool_cache_t pc)
2133 1.191 para {
2134 1.134 ad struct pool *pp = &pc->pc_pool;
2135 1.175 jym u_int i;
2136 1.134 ad
2137 1.134 ad /* Remove it from the global list. */
2138 1.134 ad mutex_enter(&pool_head_lock);
2139 1.134 ad while (pc->pc_refcnt != 0)
2140 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
2141 1.145 ad TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2142 1.134 ad mutex_exit(&pool_head_lock);
2143 1.43 thorpej
2144 1.43 thorpej /* First, invalidate the entire cache. */
2145 1.43 thorpej pool_cache_invalidate(pc);
2146 1.43 thorpej
2147 1.134 ad /* Disassociate it from the pool. */
2148 1.134 ad mutex_enter(&pp->pr_lock);
2149 1.134 ad pp->pr_cache = NULL;
2150 1.134 ad mutex_exit(&pp->pr_lock);
2151 1.134 ad
2152 1.134 ad /* Destroy per-CPU data */
2153 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2154 1.175 jym pool_cache_invalidate_cpu(pc, i);
2155 1.134 ad
2156 1.134 ad /* Finally, destroy it. */
2157 1.134 ad pool_destroy(pp);
2158 1.134 ad }
2159 1.134 ad
2160 1.134 ad /*
2161 1.134 ad * pool_cache_cpu_init1:
2162 1.134 ad *
2163 1.134 ad * Called for each pool_cache whenever a new CPU is attached.
2164 1.134 ad */
2165 1.134 ad static void
2166 1.134 ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2167 1.134 ad {
2168 1.134 ad pool_cache_cpu_t *cc;
2169 1.137 ad int index;
2170 1.134 ad
2171 1.137 ad index = ci->ci_index;
2172 1.137 ad
2173 1.183 ad KASSERT(index < __arraycount(pc->pc_cpus));
2174 1.134 ad
2175 1.137 ad if ((cc = pc->pc_cpus[index]) != NULL) {
2176 1.134 ad return;
2177 1.134 ad }
2178 1.134 ad
2179 1.134 ad /*
2180 1.134 ad * The first CPU is 'free'. This needs to be the case for
2181 1.134 ad * bootstrap - we may not be able to allocate yet.
2182 1.134 ad */
2183 1.134 ad if (pc->pc_ncpu == 0) {
2184 1.134 ad cc = &pc->pc_cpu0;
2185 1.134 ad pc->pc_ncpu = 1;
2186 1.134 ad } else {
2187 1.134 ad pc->pc_ncpu++;
2188 1.134 ad cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2189 1.134 ad }
2190 1.134 ad
2191 1.271 ad cc->cc_current = __UNCONST(&pcg_dummy);
2192 1.271 ad cc->cc_previous = __UNCONST(&pcg_dummy);
2193 1.271 ad cc->cc_pcgcache = pc->pc_pcgcache;
2194 1.134 ad cc->cc_hits = 0;
2195 1.134 ad cc->cc_misses = 0;
2196 1.271 ad cc->cc_pcmisses = 0;
2197 1.271 ad cc->cc_contended = 0;
2198 1.271 ad cc->cc_nfull = 0;
2199 1.271 ad cc->cc_npart = 0;
2200 1.134 ad
2201 1.137 ad pc->pc_cpus[index] = cc;
2202 1.43 thorpej }
2203 1.43 thorpej
2204 1.134 ad /*
2205 1.134 ad * pool_cache_cpu_init:
2206 1.134 ad *
2207 1.134 ad * Called whenever a new CPU is attached.
2208 1.134 ad */
2209 1.134 ad void
2210 1.134 ad pool_cache_cpu_init(struct cpu_info *ci)
2211 1.43 thorpej {
2212 1.134 ad pool_cache_t pc;
2213 1.134 ad
2214 1.134 ad mutex_enter(&pool_head_lock);
2215 1.145 ad TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2216 1.134 ad pc->pc_refcnt++;
2217 1.134 ad mutex_exit(&pool_head_lock);
2218 1.43 thorpej
2219 1.134 ad pool_cache_cpu_init1(ci, pc);
2220 1.43 thorpej
2221 1.134 ad mutex_enter(&pool_head_lock);
2222 1.134 ad pc->pc_refcnt--;
2223 1.134 ad cv_broadcast(&pool_busy);
2224 1.134 ad }
2225 1.134 ad mutex_exit(&pool_head_lock);
2226 1.43 thorpej }
2227 1.43 thorpej
2228 1.134 ad /*
2229 1.134 ad * pool_cache_reclaim:
2230 1.134 ad *
2231 1.134 ad * Reclaim memory from a pool cache.
2232 1.134 ad */
2233 1.134 ad bool
2234 1.134 ad pool_cache_reclaim(pool_cache_t pc)
2235 1.43 thorpej {
2236 1.43 thorpej
2237 1.134 ad return pool_reclaim(&pc->pc_pool);
2238 1.134 ad }
2239 1.43 thorpej
2240 1.136 yamt static void
2241 1.136 yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
2242 1.136 yamt {
2243 1.136 yamt (*pc->pc_dtor)(pc->pc_arg, object);
2244 1.136 yamt pool_put(&pc->pc_pool, object);
2245 1.136 yamt }
2246 1.136 yamt
2247 1.134 ad /*
2248 1.134 ad * pool_cache_destruct_object:
2249 1.134 ad *
2250 1.134 ad * Force destruction of an object and its release back into
2251 1.134 ad * the pool.
2252 1.134 ad */
2253 1.134 ad void
2254 1.134 ad pool_cache_destruct_object(pool_cache_t pc, void *object)
2255 1.134 ad {
2256 1.134 ad
2257 1.136 yamt FREECHECK_IN(&pc->pc_freecheck, object);
2258 1.136 yamt
2259 1.136 yamt pool_cache_destruct_object1(pc, object);
2260 1.43 thorpej }
2261 1.43 thorpej
2262 1.134 ad /*
2263 1.134 ad * pool_cache_invalidate_groups:
2264 1.134 ad *
2265 1.271 ad * Invalidate a chain of groups and destruct all objects. Return the
2266 1.271 ad * number of groups that were invalidated.
2267 1.134 ad */
2268 1.271 ad static int
2269 1.134 ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2270 1.102 chs {
2271 1.134 ad void *object;
2272 1.134 ad pcg_t *next;
2273 1.271 ad int i, n;
2274 1.134 ad
2275 1.271 ad for (n = 0; pcg != NULL; pcg = next, n++) {
2276 1.134 ad next = pcg->pcg_next;
2277 1.134 ad
2278 1.134 ad for (i = 0; i < pcg->pcg_avail; i++) {
2279 1.134 ad object = pcg->pcg_objects[i].pcgo_va;
2280 1.136 yamt pool_cache_destruct_object1(pc, object);
2281 1.134 ad }
2282 1.102 chs
2283 1.142 ad if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2284 1.142 ad pool_put(&pcg_large_pool, pcg);
2285 1.142 ad } else {
2286 1.142 ad KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2287 1.142 ad pool_put(&pcg_normal_pool, pcg);
2288 1.142 ad }
2289 1.102 chs }
2290 1.271 ad return n;
2291 1.102 chs }
2292 1.102 chs
2293 1.43 thorpej /*
2294 1.134 ad * pool_cache_invalidate:
2295 1.43 thorpej *
2296 1.134 ad * Invalidate a pool cache (destruct and release all of the
2297 1.134 ad * cached objects). Does not reclaim objects from the pool.
2298 1.176 thorpej *
2299 1.176 thorpej * Note: For pool caches that provide constructed objects, there
2300 1.176 thorpej * is an assumption that another level of synchronization is occurring
2301 1.176 thorpej * between the input to the constructor and the cache invalidation.
2302 1.196 jym *
2303 1.196 jym * Invalidation is a costly process and should not be called from
2304 1.196 jym * interrupt context.
2305 1.43 thorpej */
2306 1.134 ad void
2307 1.134 ad pool_cache_invalidate(pool_cache_t pc)
2308 1.134 ad {
2309 1.196 jym uint64_t where;
2310 1.271 ad pcg_t *pcg;
2311 1.271 ad int n, s;
2312 1.196 jym
2313 1.196 jym KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2314 1.176 thorpej
2315 1.177 jym if (ncpu < 2 || !mp_online) {
2316 1.176 thorpej /*
2317 1.176 thorpej * We might be called early enough in the boot process
2318 1.176 thorpej * for the CPU data structures to not be fully initialized.
2319 1.196 jym * In this case, transfer the content of the local CPU's
2320 1.196 jym * cache back into global cache as only this CPU is currently
2321 1.196 jym * running.
2322 1.176 thorpej */
2323 1.196 jym pool_cache_transfer(pc);
2324 1.176 thorpej } else {
2325 1.176 thorpej /*
2326 1.196 jym * Signal all CPUs that they must transfer their local
2327 1.196 jym * cache back to the global pool then wait for the xcall to
2328 1.196 jym * complete.
2329 1.176 thorpej */
2330 1.261 christos where = xc_broadcast(0,
2331 1.261 christos __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2332 1.176 thorpej xc_wait(where);
2333 1.176 thorpej }
2334 1.196 jym
2335 1.271 ad /* Now dequeue and invalidate everything. */
2336 1.271 ad pcg = pool_pcg_trunc(&pcg_normal_cache);
2337 1.271 ad (void)pool_cache_invalidate_groups(pc, pcg);
2338 1.271 ad
2339 1.271 ad pcg = pool_pcg_trunc(&pcg_large_cache);
2340 1.271 ad (void)pool_cache_invalidate_groups(pc, pcg);
2341 1.271 ad
2342 1.271 ad pcg = pool_pcg_trunc(&pc->pc_fullgroups);
2343 1.271 ad n = pool_cache_invalidate_groups(pc, pcg);
2344 1.271 ad s = splvm();
2345 1.271 ad ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
2346 1.271 ad splx(s);
2347 1.271 ad
2348 1.271 ad pcg = pool_pcg_trunc(&pc->pc_partgroups);
2349 1.271 ad n = pool_cache_invalidate_groups(pc, pcg);
2350 1.271 ad s = splvm();
2351 1.271 ad ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
2352 1.271 ad splx(s);
2353 1.134 ad }
2354 1.134 ad
2355 1.175 jym /*
2356 1.175 jym * pool_cache_invalidate_cpu:
2357 1.175 jym *
2358 1.175 jym * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2359 1.175 jym * identified by its associated index.
2360 1.175 jym * It is caller's responsibility to ensure that no operation is
2361 1.175 jym * taking place on this pool cache while doing this invalidation.
2362 1.175 jym * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2363 1.175 jym * pool cached objects from a CPU different from the one currently running
2364 1.175 jym * may result in an undefined behaviour.
2365 1.175 jym */
2366 1.175 jym static void
2367 1.175 jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2368 1.175 jym {
2369 1.175 jym pool_cache_cpu_t *cc;
2370 1.175 jym pcg_t *pcg;
2371 1.175 jym
2372 1.175 jym if ((cc = pc->pc_cpus[index]) == NULL)
2373 1.175 jym return;
2374 1.175 jym
2375 1.175 jym if ((pcg = cc->cc_current) != &pcg_dummy) {
2376 1.175 jym pcg->pcg_next = NULL;
2377 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2378 1.175 jym }
2379 1.175 jym if ((pcg = cc->cc_previous) != &pcg_dummy) {
2380 1.175 jym pcg->pcg_next = NULL;
2381 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2382 1.175 jym }
2383 1.175 jym if (cc != &pc->pc_cpu0)
2384 1.175 jym pool_put(&cache_cpu_pool, cc);
2385 1.175 jym
2386 1.175 jym }
2387 1.175 jym
2388 1.134 ad void
2389 1.134 ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2390 1.134 ad {
2391 1.134 ad
2392 1.134 ad pool_set_drain_hook(&pc->pc_pool, fn, arg);
2393 1.134 ad }
2394 1.134 ad
2395 1.134 ad void
2396 1.134 ad pool_cache_setlowat(pool_cache_t pc, int n)
2397 1.134 ad {
2398 1.134 ad
2399 1.134 ad pool_setlowat(&pc->pc_pool, n);
2400 1.134 ad }
2401 1.134 ad
2402 1.134 ad void
2403 1.134 ad pool_cache_sethiwat(pool_cache_t pc, int n)
2404 1.134 ad {
2405 1.134 ad
2406 1.134 ad pool_sethiwat(&pc->pc_pool, n);
2407 1.134 ad }
2408 1.134 ad
2409 1.134 ad void
2410 1.134 ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2411 1.134 ad {
2412 1.134 ad
2413 1.134 ad pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2414 1.134 ad }
2415 1.134 ad
2416 1.267 chs void
2417 1.267 chs pool_cache_prime(pool_cache_t pc, int n)
2418 1.267 chs {
2419 1.267 chs
2420 1.267 chs pool_prime(&pc->pc_pool, n);
2421 1.267 chs }
2422 1.267 chs
2423 1.271 ad /*
2424 1.271 ad * pool_pcg_get:
2425 1.271 ad *
2426 1.271 ad * Get a cache group from the specified list. Return true if
2427 1.271 ad * contention was encountered. Must be called at IPL_VM because
2428 1.271 ad * of spin wait vs. kernel_lock.
2429 1.271 ad */
2430 1.271 ad static int
2431 1.271 ad pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
2432 1.271 ad {
2433 1.271 ad int count = SPINLOCK_BACKOFF_MIN;
2434 1.271 ad pcg_t *o, *n;
2435 1.271 ad
2436 1.271 ad for (o = atomic_load_relaxed(head);; o = n) {
2437 1.271 ad if (__predict_false(o == &pcg_dummy)) {
2438 1.271 ad /* Wait for concurrent get to complete. */
2439 1.271 ad SPINLOCK_BACKOFF(count);
2440 1.271 ad n = atomic_load_relaxed(head);
2441 1.271 ad continue;
2442 1.271 ad }
2443 1.271 ad if (__predict_false(o == NULL)) {
2444 1.271 ad break;
2445 1.271 ad }
2446 1.271 ad /* Lock out concurrent get/put. */
2447 1.271 ad n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
2448 1.271 ad if (o == n) {
2449 1.271 ad /* Fetch pointer to next item and then unlock. */
2450 1.271 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
2451 1.271 ad membar_datadep_consumer(); /* alpha */
2452 1.271 ad #endif
2453 1.271 ad n = atomic_load_relaxed(&o->pcg_next);
2454 1.271 ad atomic_store_release(head, n);
2455 1.271 ad break;
2456 1.271 ad }
2457 1.271 ad }
2458 1.271 ad *pcgp = o;
2459 1.271 ad return count != SPINLOCK_BACKOFF_MIN;
2460 1.271 ad }
2461 1.271 ad
2462 1.271 ad /*
2463 1.271 ad * pool_pcg_trunc:
2464 1.271 ad *
2465 1.271 ad * Chop out entire list of pool cache groups.
2466 1.271 ad */
2467 1.271 ad static pcg_t *
2468 1.271 ad pool_pcg_trunc(pcg_t *volatile *head)
2469 1.271 ad {
2470 1.271 ad int count = SPINLOCK_BACKOFF_MIN, s;
2471 1.271 ad pcg_t *o, *n;
2472 1.271 ad
2473 1.271 ad s = splvm();
2474 1.271 ad for (o = atomic_load_relaxed(head);; o = n) {
2475 1.271 ad if (__predict_false(o == &pcg_dummy)) {
2476 1.271 ad /* Wait for concurrent get to complete. */
2477 1.271 ad SPINLOCK_BACKOFF(count);
2478 1.271 ad n = atomic_load_relaxed(head);
2479 1.271 ad continue;
2480 1.271 ad }
2481 1.271 ad n = atomic_cas_ptr(head, o, NULL);
2482 1.271 ad if (o == n) {
2483 1.271 ad splx(s);
2484 1.271 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
2485 1.271 ad membar_datadep_consumer(); /* alpha */
2486 1.271 ad #endif
2487 1.271 ad return o;
2488 1.271 ad }
2489 1.271 ad }
2490 1.271 ad }
2491 1.271 ad
2492 1.271 ad /*
2493 1.271 ad * pool_pcg_put:
2494 1.271 ad *
2495 1.271 ad * Put a pool cache group to the specified list. Return true if
2496 1.271 ad * contention was encountered. Must be called at IPL_VM because of
2497 1.271 ad * spin wait vs. kernel_lock.
2498 1.271 ad */
2499 1.271 ad static int
2500 1.271 ad pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
2501 1.271 ad {
2502 1.271 ad int count = SPINLOCK_BACKOFF_MIN;
2503 1.271 ad pcg_t *o, *n;
2504 1.271 ad
2505 1.271 ad for (o = atomic_load_relaxed(head);; o = n) {
2506 1.271 ad if (__predict_false(o == &pcg_dummy)) {
2507 1.271 ad /* Wait for concurrent get to complete. */
2508 1.271 ad SPINLOCK_BACKOFF(count);
2509 1.271 ad n = atomic_load_relaxed(head);
2510 1.271 ad continue;
2511 1.271 ad }
2512 1.271 ad pcg->pcg_next = o;
2513 1.271 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
2514 1.271 ad membar_exit();
2515 1.271 ad #endif
2516 1.271 ad n = atomic_cas_ptr(head, o, pcg);
2517 1.271 ad if (o == n) {
2518 1.271 ad return count != SPINLOCK_BACKOFF_MIN;
2519 1.271 ad }
2520 1.271 ad }
2521 1.271 ad }
2522 1.271 ad
2523 1.162 ad static bool __noinline
2524 1.271 ad pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
2525 1.271 ad void **objectp, paddr_t *pap, int flags)
2526 1.43 thorpej {
2527 1.134 ad pcg_t *pcg, *cur;
2528 1.43 thorpej void *object;
2529 1.58 thorpej
2530 1.168 yamt KASSERT(cc->cc_current->pcg_avail == 0);
2531 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == 0);
2532 1.168 yamt
2533 1.134 ad cc->cc_misses++;
2534 1.43 thorpej
2535 1.134 ad /*
2536 1.271 ad * If there's a full group, release our empty group back to the
2537 1.271 ad * cache. Install the full group as cc_current and return.
2538 1.134 ad */
2539 1.271 ad cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
2540 1.271 ad if (__predict_true(pcg != NULL)) {
2541 1.271 ad KASSERT(pcg->pcg_avail == pcg->pcg_size);
2542 1.162 ad if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2543 1.134 ad KASSERT(cur->pcg_avail == 0);
2544 1.271 ad (void)pool_pcg_put(cc->cc_pcgcache, cur);
2545 1.87 thorpej }
2546 1.271 ad cc->cc_nfull--;
2547 1.134 ad cc->cc_current = pcg;
2548 1.162 ad return true;
2549 1.134 ad }
2550 1.134 ad
2551 1.134 ad /*
2552 1.134 ad * Nothing available locally or in cache. Take the slow
2553 1.134 ad * path: fetch a new object from the pool and construct
2554 1.134 ad * it.
2555 1.134 ad */
2556 1.271 ad cc->cc_pcmisses++;
2557 1.162 ad splx(s);
2558 1.134 ad
2559 1.134 ad object = pool_get(&pc->pc_pool, flags);
2560 1.134 ad *objectp = object;
2561 1.211 riastrad if (__predict_false(object == NULL)) {
2562 1.265 chs KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2563 1.162 ad return false;
2564 1.211 riastrad }
2565 1.125 ad
2566 1.162 ad if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2567 1.134 ad pool_put(&pc->pc_pool, object);
2568 1.134 ad *objectp = NULL;
2569 1.162 ad return false;
2570 1.43 thorpej }
2571 1.43 thorpej
2572 1.238 maxv KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2573 1.43 thorpej
2574 1.134 ad if (pap != NULL) {
2575 1.134 ad #ifdef POOL_VTOPHYS
2576 1.134 ad *pap = POOL_VTOPHYS(object);
2577 1.134 ad #else
2578 1.134 ad *pap = POOL_PADDR_INVALID;
2579 1.134 ad #endif
2580 1.102 chs }
2581 1.43 thorpej
2582 1.125 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2583 1.162 ad return false;
2584 1.43 thorpej }
2585 1.43 thorpej
2586 1.43 thorpej /*
2587 1.134 ad * pool_cache_get{,_paddr}:
2588 1.43 thorpej *
2589 1.134 ad * Get an object from a pool cache (optionally returning
2590 1.134 ad * the physical address of the object).
2591 1.43 thorpej */
2592 1.134 ad void *
2593 1.134 ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2594 1.43 thorpej {
2595 1.134 ad pool_cache_cpu_t *cc;
2596 1.134 ad pcg_t *pcg;
2597 1.134 ad void *object;
2598 1.60 thorpej int s;
2599 1.43 thorpej
2600 1.215 christos KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2601 1.184 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2602 1.185 rmind (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2603 1.213 christos "%s: [%s] is IPL_NONE, but called from interrupt context",
2604 1.213 christos __func__, pc->pc_pool.pr_wchan);
2605 1.184 rmind
2606 1.155 ad if (flags & PR_WAITOK) {
2607 1.154 yamt ASSERT_SLEEPABLE();
2608 1.155 ad }
2609 1.125 ad
2610 1.270 maxv if (flags & PR_NOWAIT) {
2611 1.270 maxv if (fault_inject())
2612 1.270 maxv return NULL;
2613 1.270 maxv }
2614 1.270 maxv
2615 1.162 ad /* Lock out interrupts and disable preemption. */
2616 1.162 ad s = splvm();
2617 1.165 yamt while (/* CONSTCOND */ true) {
2618 1.134 ad /* Try and allocate an object from the current group. */
2619 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2620 1.134 ad pcg = cc->cc_current;
2621 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2622 1.134 ad object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2623 1.162 ad if (__predict_false(pap != NULL))
2624 1.134 ad *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2625 1.148 yamt #if defined(DIAGNOSTIC)
2626 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2627 1.163 ad KASSERT(pcg->pcg_avail < pcg->pcg_size);
2628 1.134 ad KASSERT(object != NULL);
2629 1.163 ad #endif
2630 1.134 ad cc->cc_hits++;
2631 1.162 ad splx(s);
2632 1.134 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2633 1.204 maxv pool_redzone_fill(&pc->pc_pool, object);
2634 1.262 maxv pool_cache_get_kmsan(pc, object);
2635 1.134 ad return object;
2636 1.43 thorpej }
2637 1.43 thorpej
2638 1.43 thorpej /*
2639 1.134 ad * That failed. If the previous group isn't empty, swap
2640 1.134 ad * it with the current group and allocate from there.
2641 1.43 thorpej */
2642 1.134 ad pcg = cc->cc_previous;
2643 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2644 1.134 ad cc->cc_previous = cc->cc_current;
2645 1.134 ad cc->cc_current = pcg;
2646 1.134 ad continue;
2647 1.43 thorpej }
2648 1.43 thorpej
2649 1.134 ad /*
2650 1.134 ad * Can't allocate from either group: try the slow path.
2651 1.134 ad * If get_slow() allocated an object for us, or if
2652 1.162 ad * no more objects are available, it will return false.
2653 1.134 ad * Otherwise, we need to retry.
2654 1.134 ad */
2655 1.271 ad if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
2656 1.269 maxv if (object != NULL) {
2657 1.269 maxv kmsan_orig(object, pc->pc_pool.pr_size,
2658 1.269 maxv KMSAN_TYPE_POOL, __RET_ADDR);
2659 1.269 maxv }
2660 1.165 yamt break;
2661 1.269 maxv }
2662 1.165 yamt }
2663 1.43 thorpej
2664 1.211 riastrad /*
2665 1.211 riastrad * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2666 1.211 riastrad * pool_cache_get can fail even in the PR_WAITOK case, if the
2667 1.211 riastrad * constructor fails.
2668 1.211 riastrad */
2669 1.134 ad return object;
2670 1.51 thorpej }
2671 1.51 thorpej
2672 1.162 ad static bool __noinline
2673 1.271 ad pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
2674 1.51 thorpej {
2675 1.163 ad pcg_t *pcg, *cur;
2676 1.51 thorpej
2677 1.168 yamt KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2678 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2679 1.168 yamt
2680 1.134 ad cc->cc_misses++;
2681 1.43 thorpej
2682 1.171 ad /*
2683 1.271 ad * Try to get an empty group from the cache. If there are no empty
2684 1.271 ad * groups in the cache then allocate one.
2685 1.171 ad */
2686 1.271 ad (void)pool_pcg_get(cc->cc_pcgcache, &pcg);
2687 1.271 ad if (__predict_false(pcg == NULL)) {
2688 1.171 ad if (__predict_true(!pool_cache_disable)) {
2689 1.171 ad pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2690 1.171 ad }
2691 1.171 ad if (__predict_true(pcg != NULL)) {
2692 1.171 ad pcg->pcg_avail = 0;
2693 1.171 ad pcg->pcg_size = pc->pc_pcgsize;
2694 1.171 ad }
2695 1.171 ad }
2696 1.171 ad
2697 1.162 ad /*
2698 1.271 ad * If there's a empty group, release our full group back to the
2699 1.271 ad * cache. Install the empty group to the local CPU and return.
2700 1.162 ad */
2701 1.163 ad if (pcg != NULL) {
2702 1.134 ad KASSERT(pcg->pcg_avail == 0);
2703 1.162 ad if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2704 1.146 ad cc->cc_previous = pcg;
2705 1.146 ad } else {
2706 1.162 ad cur = cc->cc_current;
2707 1.162 ad if (__predict_true(cur != &pcg_dummy)) {
2708 1.163 ad KASSERT(cur->pcg_avail == cur->pcg_size);
2709 1.271 ad cc->cc_contended +=
2710 1.271 ad pool_pcg_put(&pc->pc_fullgroups, cur);
2711 1.271 ad cc->cc_nfull++;
2712 1.146 ad }
2713 1.146 ad cc->cc_current = pcg;
2714 1.146 ad }
2715 1.162 ad return true;
2716 1.102 chs }
2717 1.105 christos
2718 1.134 ad /*
2719 1.162 ad * Nothing available locally or in cache, and we didn't
2720 1.162 ad * allocate an empty group. Take the slow path and destroy
2721 1.162 ad * the object here and now.
2722 1.134 ad */
2723 1.271 ad cc->cc_pcmisses++;
2724 1.162 ad splx(s);
2725 1.162 ad pool_cache_destruct_object(pc, object);
2726 1.105 christos
2727 1.162 ad return false;
2728 1.236 maxv }
2729 1.102 chs
2730 1.43 thorpej /*
2731 1.134 ad * pool_cache_put{,_paddr}:
2732 1.43 thorpej *
2733 1.134 ad * Put an object back to the pool cache (optionally caching the
2734 1.134 ad * physical address of the object).
2735 1.43 thorpej */
2736 1.101 thorpej void
2737 1.134 ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2738 1.43 thorpej {
2739 1.134 ad pool_cache_cpu_t *cc;
2740 1.134 ad pcg_t *pcg;
2741 1.134 ad int s;
2742 1.101 thorpej
2743 1.172 yamt KASSERT(object != NULL);
2744 1.262 maxv pool_cache_put_kmsan(pc, object);
2745 1.229 maxv pool_cache_redzone_check(pc, object);
2746 1.134 ad FREECHECK_IN(&pc->pc_freecheck, object);
2747 1.101 thorpej
2748 1.253 maxv if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2749 1.253 maxv pc_phinpage_check(pc, object);
2750 1.253 maxv }
2751 1.253 maxv
2752 1.268 maxv if (pool_cache_put_nocache(pc, object)) {
2753 1.249 maxv return;
2754 1.249 maxv }
2755 1.249 maxv
2756 1.162 ad /* Lock out interrupts and disable preemption. */
2757 1.162 ad s = splvm();
2758 1.165 yamt while (/* CONSTCOND */ true) {
2759 1.134 ad /* If the current group isn't full, release it there. */
2760 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2761 1.134 ad pcg = cc->cc_current;
2762 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2763 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2764 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2765 1.134 ad pcg->pcg_avail++;
2766 1.134 ad cc->cc_hits++;
2767 1.162 ad splx(s);
2768 1.134 ad return;
2769 1.134 ad }
2770 1.43 thorpej
2771 1.134 ad /*
2772 1.162 ad * That failed. If the previous group isn't full, swap
2773 1.134 ad * it with the current group and try again.
2774 1.134 ad */
2775 1.134 ad pcg = cc->cc_previous;
2776 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2777 1.134 ad cc->cc_previous = cc->cc_current;
2778 1.134 ad cc->cc_current = pcg;
2779 1.134 ad continue;
2780 1.134 ad }
2781 1.43 thorpej
2782 1.134 ad /*
2783 1.236 maxv * Can't free to either group: try the slow path.
2784 1.134 ad * If put_slow() releases the object for us, it
2785 1.162 ad * will return false. Otherwise we need to retry.
2786 1.134 ad */
2787 1.271 ad if (!pool_cache_put_slow(pc, cc, s, object))
2788 1.165 yamt break;
2789 1.165 yamt }
2790 1.43 thorpej }
2791 1.43 thorpej
2792 1.43 thorpej /*
2793 1.196 jym * pool_cache_transfer:
2794 1.43 thorpej *
2795 1.134 ad * Transfer objects from the per-CPU cache to the global cache.
2796 1.134 ad * Run within a cross-call thread.
2797 1.43 thorpej */
2798 1.43 thorpej static void
2799 1.196 jym pool_cache_transfer(pool_cache_t pc)
2800 1.43 thorpej {
2801 1.134 ad pool_cache_cpu_t *cc;
2802 1.271 ad pcg_t *prev, *cur;
2803 1.162 ad int s;
2804 1.134 ad
2805 1.162 ad s = splvm();
2806 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2807 1.134 ad cur = cc->cc_current;
2808 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
2809 1.134 ad prev = cc->cc_previous;
2810 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
2811 1.162 ad if (cur != &pcg_dummy) {
2812 1.142 ad if (cur->pcg_avail == cur->pcg_size) {
2813 1.271 ad (void)pool_pcg_put(&pc->pc_fullgroups, cur);
2814 1.271 ad cc->cc_nfull++;
2815 1.134 ad } else if (cur->pcg_avail == 0) {
2816 1.271 ad (void)pool_pcg_put(pc->pc_pcgcache, cur);
2817 1.134 ad } else {
2818 1.271 ad (void)pool_pcg_put(&pc->pc_partgroups, cur);
2819 1.271 ad cc->cc_npart++;
2820 1.134 ad }
2821 1.134 ad }
2822 1.162 ad if (prev != &pcg_dummy) {
2823 1.142 ad if (prev->pcg_avail == prev->pcg_size) {
2824 1.271 ad (void)pool_pcg_put(&pc->pc_fullgroups, prev);
2825 1.271 ad cc->cc_nfull++;
2826 1.134 ad } else if (prev->pcg_avail == 0) {
2827 1.271 ad (void)pool_pcg_put(pc->pc_pcgcache, prev);
2828 1.134 ad } else {
2829 1.271 ad (void)pool_pcg_put(&pc->pc_partgroups, prev);
2830 1.271 ad cc->cc_npart++;
2831 1.134 ad }
2832 1.134 ad }
2833 1.134 ad splx(s);
2834 1.3 pk }
2835 1.66 thorpej
2836 1.208 chs static int
2837 1.208 chs pool_bigidx(size_t size)
2838 1.208 chs {
2839 1.208 chs int i;
2840 1.208 chs
2841 1.208 chs for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2842 1.208 chs if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2843 1.208 chs return i;
2844 1.208 chs }
2845 1.208 chs panic("pool item size %zu too large, use a custom allocator", size);
2846 1.208 chs }
2847 1.208 chs
2848 1.117 yamt static void *
2849 1.117 yamt pool_allocator_alloc(struct pool *pp, int flags)
2850 1.66 thorpej {
2851 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
2852 1.66 thorpej void *res;
2853 1.66 thorpej
2854 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2855 1.117 yamt if (res == NULL && (flags & PR_WAITOK) == 0) {
2856 1.66 thorpej /*
2857 1.117 yamt * We only run the drain hook here if PR_NOWAIT.
2858 1.117 yamt * In other cases, the hook will be run in
2859 1.117 yamt * pool_reclaim().
2860 1.66 thorpej */
2861 1.117 yamt if (pp->pr_drain_hook != NULL) {
2862 1.117 yamt (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2863 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2864 1.66 thorpej }
2865 1.117 yamt }
2866 1.117 yamt return res;
2867 1.66 thorpej }
2868 1.66 thorpej
2869 1.117 yamt static void
2870 1.66 thorpej pool_allocator_free(struct pool *pp, void *v)
2871 1.66 thorpej {
2872 1.66 thorpej struct pool_allocator *pa = pp->pr_alloc;
2873 1.66 thorpej
2874 1.229 maxv if (pp->pr_redzone) {
2875 1.248 maxv kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2876 1.229 maxv }
2877 1.66 thorpej (*pa->pa_free)(pp, v);
2878 1.66 thorpej }
2879 1.66 thorpej
2880 1.66 thorpej void *
2881 1.124 yamt pool_page_alloc(struct pool *pp, int flags)
2882 1.66 thorpej {
2883 1.192 rmind const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2884 1.191 para vmem_addr_t va;
2885 1.192 rmind int ret;
2886 1.191 para
2887 1.192 rmind ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2888 1.192 rmind vflags | VM_INSTANTFIT, &va);
2889 1.66 thorpej
2890 1.192 rmind return ret ? NULL : (void *)va;
2891 1.66 thorpej }
2892 1.66 thorpej
2893 1.66 thorpej void
2894 1.124 yamt pool_page_free(struct pool *pp, void *v)
2895 1.66 thorpej {
2896 1.66 thorpej
2897 1.191 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2898 1.98 yamt }
2899 1.98 yamt
2900 1.98 yamt static void *
2901 1.124 yamt pool_page_alloc_meta(struct pool *pp, int flags)
2902 1.98 yamt {
2903 1.192 rmind const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2904 1.192 rmind vmem_addr_t va;
2905 1.192 rmind int ret;
2906 1.191 para
2907 1.192 rmind ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2908 1.192 rmind vflags | VM_INSTANTFIT, &va);
2909 1.98 yamt
2910 1.192 rmind return ret ? NULL : (void *)va;
2911 1.98 yamt }
2912 1.98 yamt
2913 1.98 yamt static void
2914 1.124 yamt pool_page_free_meta(struct pool *pp, void *v)
2915 1.98 yamt {
2916 1.98 yamt
2917 1.192 rmind vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2918 1.66 thorpej }
2919 1.66 thorpej
2920 1.262 maxv #ifdef KMSAN
2921 1.262 maxv static inline void
2922 1.262 maxv pool_get_kmsan(struct pool *pp, void *p)
2923 1.262 maxv {
2924 1.262 maxv kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
2925 1.262 maxv kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
2926 1.262 maxv }
2927 1.262 maxv
2928 1.262 maxv static inline void
2929 1.262 maxv pool_put_kmsan(struct pool *pp, void *p)
2930 1.262 maxv {
2931 1.262 maxv kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
2932 1.262 maxv }
2933 1.262 maxv
2934 1.262 maxv static inline void
2935 1.262 maxv pool_cache_get_kmsan(pool_cache_t pc, void *p)
2936 1.262 maxv {
2937 1.262 maxv if (__predict_false(pc_has_ctor(pc))) {
2938 1.262 maxv return;
2939 1.262 maxv }
2940 1.262 maxv pool_get_kmsan(&pc->pc_pool, p);
2941 1.262 maxv }
2942 1.262 maxv
2943 1.262 maxv static inline void
2944 1.262 maxv pool_cache_put_kmsan(pool_cache_t pc, void *p)
2945 1.262 maxv {
2946 1.262 maxv pool_put_kmsan(&pc->pc_pool, p);
2947 1.262 maxv }
2948 1.262 maxv #endif
2949 1.262 maxv
2950 1.249 maxv #ifdef POOL_QUARANTINE
2951 1.249 maxv static void
2952 1.249 maxv pool_quarantine_init(struct pool *pp)
2953 1.249 maxv {
2954 1.249 maxv pp->pr_quar.rotor = 0;
2955 1.249 maxv memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
2956 1.249 maxv }
2957 1.249 maxv
2958 1.249 maxv static void
2959 1.249 maxv pool_quarantine_flush(struct pool *pp)
2960 1.249 maxv {
2961 1.249 maxv pool_quar_t *quar = &pp->pr_quar;
2962 1.249 maxv struct pool_pagelist pq;
2963 1.249 maxv size_t i;
2964 1.249 maxv
2965 1.249 maxv LIST_INIT(&pq);
2966 1.249 maxv
2967 1.249 maxv mutex_enter(&pp->pr_lock);
2968 1.249 maxv for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
2969 1.249 maxv if (quar->list[i] == 0)
2970 1.249 maxv continue;
2971 1.249 maxv pool_do_put(pp, (void *)quar->list[i], &pq);
2972 1.249 maxv }
2973 1.249 maxv mutex_exit(&pp->pr_lock);
2974 1.249 maxv
2975 1.249 maxv pr_pagelist_free(pp, &pq);
2976 1.249 maxv }
2977 1.249 maxv
2978 1.249 maxv static bool
2979 1.249 maxv pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
2980 1.249 maxv {
2981 1.249 maxv pool_quar_t *quar = &pp->pr_quar;
2982 1.249 maxv uintptr_t old;
2983 1.249 maxv
2984 1.249 maxv if (pp->pr_roflags & PR_NOTOUCH) {
2985 1.249 maxv return false;
2986 1.249 maxv }
2987 1.249 maxv
2988 1.249 maxv pool_redzone_check(pp, v);
2989 1.249 maxv
2990 1.249 maxv old = quar->list[quar->rotor];
2991 1.249 maxv quar->list[quar->rotor] = (uintptr_t)v;
2992 1.249 maxv quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
2993 1.249 maxv if (old != 0) {
2994 1.249 maxv pool_do_put(pp, (void *)old, pq);
2995 1.249 maxv }
2996 1.249 maxv
2997 1.249 maxv return true;
2998 1.249 maxv }
2999 1.268 maxv #endif
3000 1.249 maxv
3001 1.268 maxv #ifdef POOL_NOCACHE
3002 1.249 maxv static bool
3003 1.268 maxv pool_cache_put_nocache(pool_cache_t pc, void *p)
3004 1.249 maxv {
3005 1.249 maxv pool_cache_destruct_object(pc, p);
3006 1.249 maxv return true;
3007 1.249 maxv }
3008 1.249 maxv #endif
3009 1.249 maxv
3010 1.204 maxv #ifdef POOL_REDZONE
3011 1.204 maxv #if defined(_LP64)
3012 1.204 maxv # define PRIME 0x9e37fffffffc0000UL
3013 1.204 maxv #else /* defined(_LP64) */
3014 1.204 maxv # define PRIME 0x9e3779b1
3015 1.204 maxv #endif /* defined(_LP64) */
3016 1.204 maxv #define STATIC_BYTE 0xFE
3017 1.204 maxv CTASSERT(POOL_REDZONE_SIZE > 1);
3018 1.204 maxv
3019 1.224 maxv #ifndef KASAN
3020 1.204 maxv static inline uint8_t
3021 1.204 maxv pool_pattern_generate(const void *p)
3022 1.204 maxv {
3023 1.204 maxv return (uint8_t)(((uintptr_t)p) * PRIME
3024 1.204 maxv >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
3025 1.204 maxv }
3026 1.224 maxv #endif
3027 1.204 maxv
3028 1.204 maxv static void
3029 1.204 maxv pool_redzone_init(struct pool *pp, size_t requested_size)
3030 1.204 maxv {
3031 1.227 maxv size_t redzsz;
3032 1.204 maxv size_t nsz;
3033 1.204 maxv
3034 1.227 maxv #ifdef KASAN
3035 1.227 maxv redzsz = requested_size;
3036 1.227 maxv kasan_add_redzone(&redzsz);
3037 1.227 maxv redzsz -= requested_size;
3038 1.227 maxv #else
3039 1.227 maxv redzsz = POOL_REDZONE_SIZE;
3040 1.227 maxv #endif
3041 1.227 maxv
3042 1.204 maxv if (pp->pr_roflags & PR_NOTOUCH) {
3043 1.204 maxv pp->pr_redzone = false;
3044 1.204 maxv return;
3045 1.204 maxv }
3046 1.204 maxv
3047 1.204 maxv /*
3048 1.204 maxv * We may have extended the requested size earlier; check if
3049 1.204 maxv * there's naturally space in the padding for a red zone.
3050 1.204 maxv */
3051 1.227 maxv if (pp->pr_size - requested_size >= redzsz) {
3052 1.229 maxv pp->pr_reqsize_with_redzone = requested_size + redzsz;
3053 1.204 maxv pp->pr_redzone = true;
3054 1.204 maxv return;
3055 1.204 maxv }
3056 1.204 maxv
3057 1.204 maxv /*
3058 1.204 maxv * No space in the natural padding; check if we can extend a
3059 1.204 maxv * bit the size of the pool.
3060 1.204 maxv */
3061 1.227 maxv nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3062 1.204 maxv if (nsz <= pp->pr_alloc->pa_pagesz) {
3063 1.204 maxv /* Ok, we can */
3064 1.204 maxv pp->pr_size = nsz;
3065 1.229 maxv pp->pr_reqsize_with_redzone = requested_size + redzsz;
3066 1.204 maxv pp->pr_redzone = true;
3067 1.204 maxv } else {
3068 1.204 maxv /* No space for a red zone... snif :'( */
3069 1.204 maxv pp->pr_redzone = false;
3070 1.204 maxv printf("pool redzone disabled for '%s'\n", pp->pr_wchan);
3071 1.204 maxv }
3072 1.204 maxv }
3073 1.204 maxv
3074 1.204 maxv static void
3075 1.204 maxv pool_redzone_fill(struct pool *pp, void *p)
3076 1.204 maxv {
3077 1.224 maxv if (!pp->pr_redzone)
3078 1.224 maxv return;
3079 1.224 maxv #ifdef KASAN
3080 1.248 maxv kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3081 1.248 maxv KASAN_POOL_REDZONE);
3082 1.224 maxv #else
3083 1.204 maxv uint8_t *cp, pat;
3084 1.204 maxv const uint8_t *ep;
3085 1.204 maxv
3086 1.204 maxv cp = (uint8_t *)p + pp->pr_reqsize;
3087 1.204 maxv ep = cp + POOL_REDZONE_SIZE;
3088 1.204 maxv
3089 1.204 maxv /*
3090 1.204 maxv * We really don't want the first byte of the red zone to be '\0';
3091 1.204 maxv * an off-by-one in a string may not be properly detected.
3092 1.204 maxv */
3093 1.204 maxv pat = pool_pattern_generate(cp);
3094 1.204 maxv *cp = (pat == '\0') ? STATIC_BYTE: pat;
3095 1.204 maxv cp++;
3096 1.204 maxv
3097 1.204 maxv while (cp < ep) {
3098 1.204 maxv *cp = pool_pattern_generate(cp);
3099 1.204 maxv cp++;
3100 1.204 maxv }
3101 1.224 maxv #endif
3102 1.204 maxv }
3103 1.204 maxv
3104 1.204 maxv static void
3105 1.204 maxv pool_redzone_check(struct pool *pp, void *p)
3106 1.204 maxv {
3107 1.224 maxv if (!pp->pr_redzone)
3108 1.224 maxv return;
3109 1.224 maxv #ifdef KASAN
3110 1.248 maxv kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3111 1.224 maxv #else
3112 1.204 maxv uint8_t *cp, pat, expected;
3113 1.204 maxv const uint8_t *ep;
3114 1.204 maxv
3115 1.204 maxv cp = (uint8_t *)p + pp->pr_reqsize;
3116 1.204 maxv ep = cp + POOL_REDZONE_SIZE;
3117 1.204 maxv
3118 1.204 maxv pat = pool_pattern_generate(cp);
3119 1.204 maxv expected = (pat == '\0') ? STATIC_BYTE: pat;
3120 1.264 maxv if (__predict_false(*cp != expected)) {
3121 1.264 maxv panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3122 1.264 maxv pp->pr_wchan, *cp, expected);
3123 1.204 maxv }
3124 1.204 maxv cp++;
3125 1.204 maxv
3126 1.204 maxv while (cp < ep) {
3127 1.204 maxv expected = pool_pattern_generate(cp);
3128 1.225 maxv if (__predict_false(*cp != expected)) {
3129 1.264 maxv panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3130 1.264 maxv pp->pr_wchan, *cp, expected);
3131 1.204 maxv }
3132 1.204 maxv cp++;
3133 1.204 maxv }
3134 1.224 maxv #endif
3135 1.204 maxv }
3136 1.204 maxv
3137 1.229 maxv static void
3138 1.229 maxv pool_cache_redzone_check(pool_cache_t pc, void *p)
3139 1.229 maxv {
3140 1.229 maxv #ifdef KASAN
3141 1.257 maxv /* If there is a ctor/dtor, leave the data as valid. */
3142 1.257 maxv if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
3143 1.229 maxv return;
3144 1.229 maxv }
3145 1.229 maxv #endif
3146 1.229 maxv pool_redzone_check(&pc->pc_pool, p);
3147 1.229 maxv }
3148 1.229 maxv
3149 1.204 maxv #endif /* POOL_REDZONE */
3150 1.204 maxv
3151 1.141 yamt #if defined(DDB)
3152 1.141 yamt static bool
3153 1.141 yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3154 1.141 yamt {
3155 1.141 yamt
3156 1.141 yamt return (uintptr_t)ph->ph_page <= addr &&
3157 1.141 yamt addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3158 1.141 yamt }
3159 1.141 yamt
3160 1.143 yamt static bool
3161 1.143 yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3162 1.143 yamt {
3163 1.143 yamt
3164 1.143 yamt return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3165 1.143 yamt }
3166 1.143 yamt
3167 1.143 yamt static bool
3168 1.143 yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3169 1.143 yamt {
3170 1.143 yamt int i;
3171 1.143 yamt
3172 1.143 yamt if (pcg == NULL) {
3173 1.143 yamt return false;
3174 1.143 yamt }
3175 1.144 yamt for (i = 0; i < pcg->pcg_avail; i++) {
3176 1.143 yamt if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3177 1.143 yamt return true;
3178 1.143 yamt }
3179 1.143 yamt }
3180 1.143 yamt return false;
3181 1.143 yamt }
3182 1.143 yamt
3183 1.143 yamt static bool
3184 1.143 yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3185 1.143 yamt {
3186 1.143 yamt
3187 1.242 maxv if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3188 1.234 maxv unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3189 1.143 yamt pool_item_bitmap_t *bitmap =
3190 1.143 yamt ph->ph_bitmap + (idx / BITMAP_SIZE);
3191 1.143 yamt pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
3192 1.143 yamt
3193 1.143 yamt return (*bitmap & mask) == 0;
3194 1.143 yamt } else {
3195 1.143 yamt struct pool_item *pi;
3196 1.143 yamt
3197 1.143 yamt LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3198 1.143 yamt if (pool_in_item(pp, pi, addr)) {
3199 1.143 yamt return false;
3200 1.143 yamt }
3201 1.143 yamt }
3202 1.143 yamt return true;
3203 1.143 yamt }
3204 1.143 yamt }
3205 1.143 yamt
3206 1.141 yamt void
3207 1.141 yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3208 1.141 yamt {
3209 1.141 yamt struct pool *pp;
3210 1.141 yamt
3211 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3212 1.141 yamt struct pool_item_header *ph;
3213 1.141 yamt uintptr_t item;
3214 1.143 yamt bool allocated = true;
3215 1.143 yamt bool incache = false;
3216 1.143 yamt bool incpucache = false;
3217 1.143 yamt char cpucachestr[32];
3218 1.141 yamt
3219 1.141 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3220 1.141 yamt LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3221 1.141 yamt if (pool_in_page(pp, ph, addr)) {
3222 1.141 yamt goto found;
3223 1.141 yamt }
3224 1.141 yamt }
3225 1.141 yamt LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3226 1.141 yamt if (pool_in_page(pp, ph, addr)) {
3227 1.143 yamt allocated =
3228 1.143 yamt pool_allocated(pp, ph, addr);
3229 1.143 yamt goto found;
3230 1.143 yamt }
3231 1.143 yamt }
3232 1.143 yamt LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3233 1.143 yamt if (pool_in_page(pp, ph, addr)) {
3234 1.143 yamt allocated = false;
3235 1.141 yamt goto found;
3236 1.141 yamt }
3237 1.141 yamt }
3238 1.141 yamt continue;
3239 1.141 yamt } else {
3240 1.141 yamt ph = pr_find_pagehead_noalign(pp, (void *)addr);
3241 1.141 yamt if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3242 1.141 yamt continue;
3243 1.141 yamt }
3244 1.143 yamt allocated = pool_allocated(pp, ph, addr);
3245 1.141 yamt }
3246 1.141 yamt found:
3247 1.143 yamt if (allocated && pp->pr_cache) {
3248 1.143 yamt pool_cache_t pc = pp->pr_cache;
3249 1.143 yamt struct pool_cache_group *pcg;
3250 1.143 yamt int i;
3251 1.143 yamt
3252 1.143 yamt for (pcg = pc->pc_fullgroups; pcg != NULL;
3253 1.143 yamt pcg = pcg->pcg_next) {
3254 1.143 yamt if (pool_in_cg(pp, pcg, addr)) {
3255 1.143 yamt incache = true;
3256 1.143 yamt goto print;
3257 1.143 yamt }
3258 1.143 yamt }
3259 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3260 1.143 yamt pool_cache_cpu_t *cc;
3261 1.143 yamt
3262 1.143 yamt if ((cc = pc->pc_cpus[i]) == NULL) {
3263 1.143 yamt continue;
3264 1.143 yamt }
3265 1.143 yamt if (pool_in_cg(pp, cc->cc_current, addr) ||
3266 1.143 yamt pool_in_cg(pp, cc->cc_previous, addr)) {
3267 1.143 yamt struct cpu_info *ci =
3268 1.170 ad cpu_lookup(i);
3269 1.143 yamt
3270 1.143 yamt incpucache = true;
3271 1.143 yamt snprintf(cpucachestr,
3272 1.143 yamt sizeof(cpucachestr),
3273 1.143 yamt "cached by CPU %u",
3274 1.153 martin ci->ci_index);
3275 1.143 yamt goto print;
3276 1.143 yamt }
3277 1.143 yamt }
3278 1.143 yamt }
3279 1.143 yamt print:
3280 1.141 yamt item = (uintptr_t)ph->ph_page + ph->ph_off;
3281 1.141 yamt item = item + rounddown(addr - item, pp->pr_size);
3282 1.143 yamt (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3283 1.141 yamt (void *)addr, item, (size_t)(addr - item),
3284 1.143 yamt pp->pr_wchan,
3285 1.143 yamt incpucache ? cpucachestr :
3286 1.143 yamt incache ? "cached" : allocated ? "allocated" : "free");
3287 1.141 yamt }
3288 1.141 yamt }
3289 1.141 yamt #endif /* defined(DDB) */
3290 1.203 joerg
3291 1.203 joerg static int
3292 1.203 joerg pool_sysctl(SYSCTLFN_ARGS)
3293 1.203 joerg {
3294 1.203 joerg struct pool_sysctl data;
3295 1.203 joerg struct pool *pp;
3296 1.203 joerg struct pool_cache *pc;
3297 1.203 joerg pool_cache_cpu_t *cc;
3298 1.203 joerg int error;
3299 1.203 joerg size_t i, written;
3300 1.203 joerg
3301 1.203 joerg if (oldp == NULL) {
3302 1.203 joerg *oldlenp = 0;
3303 1.203 joerg TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3304 1.203 joerg *oldlenp += sizeof(data);
3305 1.203 joerg return 0;
3306 1.203 joerg }
3307 1.203 joerg
3308 1.203 joerg memset(&data, 0, sizeof(data));
3309 1.203 joerg error = 0;
3310 1.203 joerg written = 0;
3311 1.203 joerg TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3312 1.203 joerg if (written + sizeof(data) > *oldlenp)
3313 1.203 joerg break;
3314 1.203 joerg strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3315 1.203 joerg data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3316 1.203 joerg data.pr_flags = pp->pr_roflags | pp->pr_flags;
3317 1.203 joerg #define COPY(field) data.field = pp->field
3318 1.203 joerg COPY(pr_size);
3319 1.203 joerg
3320 1.203 joerg COPY(pr_itemsperpage);
3321 1.203 joerg COPY(pr_nitems);
3322 1.203 joerg COPY(pr_nout);
3323 1.203 joerg COPY(pr_hardlimit);
3324 1.203 joerg COPY(pr_npages);
3325 1.203 joerg COPY(pr_minpages);
3326 1.203 joerg COPY(pr_maxpages);
3327 1.203 joerg
3328 1.203 joerg COPY(pr_nget);
3329 1.203 joerg COPY(pr_nfail);
3330 1.203 joerg COPY(pr_nput);
3331 1.203 joerg COPY(pr_npagealloc);
3332 1.203 joerg COPY(pr_npagefree);
3333 1.203 joerg COPY(pr_hiwat);
3334 1.203 joerg COPY(pr_nidle);
3335 1.203 joerg #undef COPY
3336 1.203 joerg
3337 1.203 joerg data.pr_cache_nmiss_pcpu = 0;
3338 1.203 joerg data.pr_cache_nhit_pcpu = 0;
3339 1.271 ad data.pr_cache_nmiss_global = 0;
3340 1.271 ad data.pr_cache_nempty = 0;
3341 1.271 ad data.pr_cache_ncontended = 0;
3342 1.271 ad data.pr_cache_npartial = 0;
3343 1.203 joerg if (pp->pr_cache) {
3344 1.271 ad uint32_t nfull = 0;
3345 1.203 joerg pc = pp->pr_cache;
3346 1.203 joerg data.pr_cache_meta_size = pc->pc_pcgsize;
3347 1.203 joerg for (i = 0; i < pc->pc_ncpu; ++i) {
3348 1.203 joerg cc = pc->pc_cpus[i];
3349 1.203 joerg if (cc == NULL)
3350 1.203 joerg continue;
3351 1.271 ad data.pr_cache_ncontended += cc->cc_contended;
3352 1.206 knakahar data.pr_cache_nmiss_pcpu += cc->cc_misses;
3353 1.206 knakahar data.pr_cache_nhit_pcpu += cc->cc_hits;
3354 1.271 ad data.pr_cache_nmiss_global += cc->cc_pcmisses;
3355 1.271 ad nfull += cc->cc_nfull; /* 32-bit rollover! */
3356 1.271 ad data.pr_cache_npartial = cc->cc_npart;
3357 1.203 joerg }
3358 1.271 ad data.pr_cache_nfull = nfull;
3359 1.203 joerg } else {
3360 1.203 joerg data.pr_cache_meta_size = 0;
3361 1.203 joerg data.pr_cache_nfull = 0;
3362 1.203 joerg }
3363 1.271 ad data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
3364 1.271 ad data.pr_cache_nmiss_global;
3365 1.203 joerg
3366 1.203 joerg error = sysctl_copyout(l, &data, oldp, sizeof(data));
3367 1.203 joerg if (error)
3368 1.203 joerg break;
3369 1.203 joerg written += sizeof(data);
3370 1.203 joerg oldp = (char *)oldp + sizeof(data);
3371 1.203 joerg }
3372 1.203 joerg
3373 1.203 joerg *oldlenp = written;
3374 1.203 joerg return error;
3375 1.203 joerg }
3376 1.203 joerg
3377 1.203 joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3378 1.203 joerg {
3379 1.203 joerg const struct sysctlnode *rnode = NULL;
3380 1.203 joerg
3381 1.203 joerg sysctl_createv(clog, 0, NULL, &rnode,
3382 1.203 joerg CTLFLAG_PERMANENT,
3383 1.203 joerg CTLTYPE_STRUCT, "pool",
3384 1.203 joerg SYSCTL_DESCR("Get pool statistics"),
3385 1.203 joerg pool_sysctl, 0, NULL, 0,
3386 1.203 joerg CTL_KERN, CTL_CREATE, CTL_EOL);
3387 1.203 joerg }
3388