Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.274.2.1
      1  1.274.2.1   thorpej /*	$NetBSD: subr_pool.c,v 1.274.2.1 2021/01/03 16:35:04 thorpej Exp $	*/
      2        1.1        pk 
      3      1.229      maxv /*
      4      1.271        ad  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
      5      1.271        ad  *     2020 The NetBSD Foundation, Inc.
      6        1.1        pk  * All rights reserved.
      7        1.1        pk  *
      8        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10      1.204      maxv  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11      1.204      maxv  * Maxime Villard.
     12        1.1        pk  *
     13        1.1        pk  * Redistribution and use in source and binary forms, with or without
     14        1.1        pk  * modification, are permitted provided that the following conditions
     15        1.1        pk  * are met:
     16        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20        1.1        pk  *    documentation and/or other materials provided with the distribution.
     21        1.1        pk  *
     22        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33        1.1        pk  */
     34       1.64     lukem 
     35       1.64     lukem #include <sys/cdefs.h>
     36  1.274.2.1   thorpej __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.274.2.1 2021/01/03 16:35:04 thorpej Exp $");
     37       1.24    scottr 
     38      1.205     pooka #ifdef _KERNEL_OPT
     39      1.141      yamt #include "opt_ddb.h"
     40       1.28   thorpej #include "opt_lockdebug.h"
     41      1.249      maxv #include "opt_pool.h"
     42      1.205     pooka #endif
     43        1.1        pk 
     44        1.1        pk #include <sys/param.h>
     45        1.1        pk #include <sys/systm.h>
     46      1.203     joerg #include <sys/sysctl.h>
     47      1.135      yamt #include <sys/bitops.h>
     48        1.1        pk #include <sys/proc.h>
     49        1.1        pk #include <sys/errno.h>
     50        1.1        pk #include <sys/kernel.h>
     51      1.191      para #include <sys/vmem.h>
     52        1.1        pk #include <sys/pool.h>
     53       1.20   thorpej #include <sys/syslog.h>
     54      1.125        ad #include <sys/debug.h>
     55      1.271        ad #include <sys/lock.h>
     56      1.134        ad #include <sys/lockdebug.h>
     57      1.134        ad #include <sys/xcall.h>
     58      1.134        ad #include <sys/cpu.h>
     59      1.145        ad #include <sys/atomic.h>
     60      1.224      maxv #include <sys/asan.h>
     61      1.262      maxv #include <sys/msan.h>
     62      1.270      maxv #include <sys/fault.h>
     63        1.3        pk 
     64      1.187  uebayasi #include <uvm/uvm_extern.h>
     65        1.3        pk 
     66        1.1        pk /*
     67        1.1        pk  * Pool resource management utility.
     68        1.3        pk  *
     69       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     70       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     71       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     72       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     73       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     74       1.88       chs  * header. The memory for building the page list is either taken from
     75       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     76       1.88       chs  * an internal pool of page headers (`phpool').
     77        1.1        pk  */
     78        1.1        pk 
     79      1.221      para /* List of all pools. Non static as needed by 'vmstat -m' */
     80      1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     81      1.134        ad 
     82        1.3        pk /* Private pool for page header structures */
     83       1.97      yamt #define	PHPOOL_MAX	8
     84       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     85      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     86      1.256      maxv 	(((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
     87        1.3        pk 
     88      1.262      maxv #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
     89      1.224      maxv #define POOL_REDZONE
     90      1.224      maxv #endif
     91      1.224      maxv 
     92      1.268      maxv #if defined(POOL_QUARANTINE)
     93      1.268      maxv #define POOL_NOCACHE
     94      1.268      maxv #endif
     95      1.268      maxv 
     96      1.204      maxv #ifdef POOL_REDZONE
     97      1.224      maxv # ifdef KASAN
     98      1.224      maxv #  define POOL_REDZONE_SIZE 8
     99      1.224      maxv # else
    100      1.224      maxv #  define POOL_REDZONE_SIZE 2
    101      1.224      maxv # endif
    102      1.204      maxv static void pool_redzone_init(struct pool *, size_t);
    103      1.204      maxv static void pool_redzone_fill(struct pool *, void *);
    104      1.204      maxv static void pool_redzone_check(struct pool *, void *);
    105      1.229      maxv static void pool_cache_redzone_check(pool_cache_t, void *);
    106      1.204      maxv #else
    107      1.229      maxv # define pool_redzone_init(pp, sz)		__nothing
    108      1.229      maxv # define pool_redzone_fill(pp, ptr)		__nothing
    109      1.229      maxv # define pool_redzone_check(pp, ptr)		__nothing
    110      1.229      maxv # define pool_cache_redzone_check(pc, ptr)	__nothing
    111      1.204      maxv #endif
    112      1.204      maxv 
    113      1.262      maxv #ifdef KMSAN
    114      1.262      maxv static inline void pool_get_kmsan(struct pool *, void *);
    115      1.262      maxv static inline void pool_put_kmsan(struct pool *, void *);
    116      1.262      maxv static inline void pool_cache_get_kmsan(pool_cache_t, void *);
    117      1.262      maxv static inline void pool_cache_put_kmsan(pool_cache_t, void *);
    118      1.262      maxv #else
    119      1.262      maxv #define pool_get_kmsan(pp, ptr)		__nothing
    120      1.262      maxv #define pool_put_kmsan(pp, ptr)		__nothing
    121      1.262      maxv #define pool_cache_get_kmsan(pc, ptr)	__nothing
    122      1.262      maxv #define pool_cache_put_kmsan(pc, ptr)	__nothing
    123      1.262      maxv #endif
    124      1.262      maxv 
    125      1.249      maxv #ifdef POOL_QUARANTINE
    126      1.249      maxv static void pool_quarantine_init(struct pool *);
    127      1.249      maxv static void pool_quarantine_flush(struct pool *);
    128      1.249      maxv static bool pool_put_quarantine(struct pool *, void *,
    129      1.249      maxv     struct pool_pagelist *);
    130      1.249      maxv #else
    131      1.249      maxv #define pool_quarantine_init(a)			__nothing
    132      1.249      maxv #define pool_quarantine_flush(a)		__nothing
    133      1.249      maxv #define pool_put_quarantine(a, b, c)		false
    134      1.268      maxv #endif
    135      1.268      maxv 
    136      1.268      maxv #ifdef POOL_NOCACHE
    137      1.268      maxv static bool pool_cache_put_nocache(pool_cache_t, void *);
    138      1.268      maxv #else
    139      1.268      maxv #define pool_cache_put_nocache(a, b)		false
    140      1.249      maxv #endif
    141      1.249      maxv 
    142      1.261  christos #define NO_CTOR	__FPTRCAST(int (*)(void *, void *, int), nullop)
    143      1.261  christos #define NO_DTOR	__FPTRCAST(void (*)(void *, void *), nullop)
    144      1.261  christos 
    145      1.261  christos #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
    146      1.261  christos #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
    147      1.229      maxv 
    148      1.258      maxv /*
    149      1.258      maxv  * Pool backend allocators.
    150      1.258      maxv  *
    151      1.258      maxv  * Each pool has a backend allocator that handles allocation, deallocation,
    152      1.258      maxv  * and any additional draining that might be needed.
    153      1.258      maxv  *
    154      1.258      maxv  * We provide two standard allocators:
    155      1.258      maxv  *
    156      1.258      maxv  *	pool_allocator_kmem - the default when no allocator is specified
    157      1.258      maxv  *
    158      1.258      maxv  *	pool_allocator_nointr - used for pools that will not be accessed
    159      1.258      maxv  *	in interrupt context.
    160      1.258      maxv  */
    161      1.258      maxv void *pool_page_alloc(struct pool *, int);
    162      1.258      maxv void pool_page_free(struct pool *, void *);
    163      1.258      maxv 
    164       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    165       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    166       1.98      yamt 
    167      1.258      maxv struct pool_allocator pool_allocator_kmem = {
    168      1.258      maxv 	.pa_alloc = pool_page_alloc,
    169      1.258      maxv 	.pa_free = pool_page_free,
    170      1.258      maxv 	.pa_pagesz = 0
    171      1.258      maxv };
    172      1.258      maxv 
    173      1.258      maxv struct pool_allocator pool_allocator_nointr = {
    174      1.258      maxv 	.pa_alloc = pool_page_alloc,
    175      1.258      maxv 	.pa_free = pool_page_free,
    176      1.258      maxv 	.pa_pagesz = 0
    177      1.258      maxv };
    178      1.258      maxv 
    179      1.134        ad struct pool_allocator pool_allocator_meta = {
    180      1.191      para 	.pa_alloc = pool_page_alloc_meta,
    181      1.191      para 	.pa_free = pool_page_free_meta,
    182      1.191      para 	.pa_pagesz = 0
    183       1.98      yamt };
    184       1.98      yamt 
    185      1.208       chs #define POOL_ALLOCATOR_BIG_BASE 13
    186      1.258      maxv static struct pool_allocator pool_allocator_big[] = {
    187      1.258      maxv 	{
    188      1.258      maxv 		.pa_alloc = pool_page_alloc,
    189      1.258      maxv 		.pa_free = pool_page_free,
    190      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
    191      1.258      maxv 	},
    192      1.258      maxv 	{
    193      1.258      maxv 		.pa_alloc = pool_page_alloc,
    194      1.258      maxv 		.pa_free = pool_page_free,
    195      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
    196      1.258      maxv 	},
    197      1.258      maxv 	{
    198      1.258      maxv 		.pa_alloc = pool_page_alloc,
    199      1.258      maxv 		.pa_free = pool_page_free,
    200      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
    201      1.258      maxv 	},
    202      1.258      maxv 	{
    203      1.258      maxv 		.pa_alloc = pool_page_alloc,
    204      1.258      maxv 		.pa_free = pool_page_free,
    205      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
    206      1.258      maxv 	},
    207      1.258      maxv 	{
    208      1.258      maxv 		.pa_alloc = pool_page_alloc,
    209      1.258      maxv 		.pa_free = pool_page_free,
    210      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
    211      1.258      maxv 	},
    212      1.258      maxv 	{
    213      1.258      maxv 		.pa_alloc = pool_page_alloc,
    214      1.258      maxv 		.pa_free = pool_page_free,
    215      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
    216      1.258      maxv 	},
    217      1.258      maxv 	{
    218      1.258      maxv 		.pa_alloc = pool_page_alloc,
    219      1.258      maxv 		.pa_free = pool_page_free,
    220      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
    221      1.258      maxv 	},
    222      1.258      maxv 	{
    223      1.258      maxv 		.pa_alloc = pool_page_alloc,
    224      1.258      maxv 		.pa_free = pool_page_free,
    225      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
    226      1.273  jdolecek 	},
    227      1.273  jdolecek 	{
    228      1.273  jdolecek 		.pa_alloc = pool_page_alloc,
    229      1.273  jdolecek 		.pa_free = pool_page_free,
    230      1.273  jdolecek 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8),
    231      1.273  jdolecek 	},
    232      1.273  jdolecek 	{
    233      1.273  jdolecek 		.pa_alloc = pool_page_alloc,
    234      1.273  jdolecek 		.pa_free = pool_page_free,
    235      1.273  jdolecek 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9),
    236      1.273  jdolecek 	},
    237      1.273  jdolecek 	{
    238      1.273  jdolecek 		.pa_alloc = pool_page_alloc,
    239      1.273  jdolecek 		.pa_free = pool_page_free,
    240      1.273  jdolecek 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10),
    241      1.273  jdolecek 	},
    242      1.273  jdolecek 	{
    243      1.273  jdolecek 		.pa_alloc = pool_page_alloc,
    244      1.273  jdolecek 		.pa_free = pool_page_free,
    245      1.273  jdolecek 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11),
    246      1.258      maxv 	}
    247      1.258      maxv };
    248      1.258      maxv 
    249      1.208       chs static int pool_bigidx(size_t);
    250      1.208       chs 
    251        1.3        pk /* # of seconds to retain page after last use */
    252        1.3        pk int pool_inactive_time = 10;
    253        1.3        pk 
    254        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    255      1.236      maxv static struct pool *drainpp;
    256       1.23   thorpej 
    257      1.134        ad /* This lock protects both pool_head and drainpp. */
    258      1.134        ad static kmutex_t pool_head_lock;
    259      1.134        ad static kcondvar_t pool_busy;
    260        1.3        pk 
    261      1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    262      1.178      elad static kmutex_t pool_allocator_lock;
    263      1.178      elad 
    264      1.245      maxv static unsigned int poolid_counter = 0;
    265      1.245      maxv 
    266      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    267      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    268      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    269      1.256      maxv #define	BITMAP_MIN_SIZE	(CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
    270       1.99      yamt 
    271        1.3        pk struct pool_item_header {
    272        1.3        pk 	/* Page headers */
    273       1.88       chs 	LIST_ENTRY(pool_item_header)
    274        1.3        pk 				ph_pagelist;	/* pool page list */
    275      1.245      maxv 	union {
    276      1.245      maxv 		/* !PR_PHINPAGE */
    277      1.245      maxv 		struct {
    278      1.245      maxv 			SPLAY_ENTRY(pool_item_header)
    279      1.245      maxv 				phu_node;	/* off-page page headers */
    280      1.245      maxv 		} phu_offpage;
    281      1.245      maxv 		/* PR_PHINPAGE */
    282      1.245      maxv 		struct {
    283      1.245      maxv 			unsigned int phu_poolid;
    284      1.245      maxv 		} phu_onpage;
    285      1.245      maxv 	} ph_u1;
    286      1.128  christos 	void *			ph_page;	/* this page's address */
    287      1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    288      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    289      1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    290       1.97      yamt 	union {
    291      1.242      maxv 		/* !PR_USEBMAP */
    292       1.97      yamt 		struct {
    293      1.102       chs 			LIST_HEAD(, pool_item)
    294       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    295       1.97      yamt 		} phu_normal;
    296      1.242      maxv 		/* PR_USEBMAP */
    297       1.97      yamt 		struct {
    298      1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    299       1.97      yamt 		} phu_notouch;
    300      1.245      maxv 	} ph_u2;
    301        1.3        pk };
    302      1.245      maxv #define ph_node		ph_u1.phu_offpage.phu_node
    303      1.245      maxv #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    304      1.245      maxv #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    305      1.245      maxv #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    306        1.3        pk 
    307      1.240      maxv #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    308      1.240      maxv 
    309      1.256      maxv CTASSERT(offsetof(struct pool_item_header, ph_u2) +
    310      1.256      maxv     BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
    311      1.256      maxv 
    312      1.229      maxv #if defined(DIAGNOSTIC) && !defined(KASAN)
    313      1.229      maxv #define POOL_CHECK_MAGIC
    314      1.229      maxv #endif
    315      1.229      maxv 
    316        1.1        pk struct pool_item {
    317      1.229      maxv #ifdef POOL_CHECK_MAGIC
    318       1.82   thorpej 	u_int pi_magic;
    319       1.33       chs #endif
    320      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    321        1.3        pk 	/* Other entries use only this list entry */
    322      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    323        1.3        pk };
    324        1.3        pk 
    325       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    326      1.267       chs 	((pp)->pr_nitems < (pp)->pr_minitems ||				\
    327      1.267       chs 	 (pp)->pr_npages < (pp)->pr_minpages)
    328      1.253      maxv #define	POOL_OBJ_TO_PAGE(pp, v)						\
    329      1.253      maxv 	(void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
    330       1.53   thorpej 
    331       1.43   thorpej /*
    332       1.43   thorpej  * Pool cache management.
    333       1.43   thorpej  *
    334       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    335       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    336       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    337       1.43   thorpej  * necessary.
    338       1.43   thorpej  *
    339      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    340      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    341      1.134        ad  * object from the pool, it calls the object's constructor and places it
    342      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    343      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    344      1.134        ad  * to persist in constructed form while freed to the cache.
    345      1.134        ad  *
    346      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    347      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    348      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    349      1.134        ad  * its entirety.
    350       1.43   thorpej  *
    351       1.43   thorpej  * Pool caches are layed on top of pools.  By layering them, we can avoid
    352       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    353       1.43   thorpej  * from it.
    354       1.43   thorpej  */
    355       1.43   thorpej 
    356      1.142        ad static struct pool pcg_normal_pool;
    357      1.142        ad static struct pool pcg_large_pool;
    358      1.134        ad static struct pool cache_pool;
    359      1.134        ad static struct pool cache_cpu_pool;
    360        1.3        pk 
    361      1.271        ad static pcg_t *volatile pcg_large_cache __cacheline_aligned;
    362      1.271        ad static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
    363      1.271        ad 
    364      1.145        ad /* List of all caches. */
    365      1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    366      1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    367      1.145        ad 
    368      1.162        ad int pool_cache_disable;		/* global disable for caching */
    369      1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    370      1.145        ad 
    371      1.271        ad static bool	pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
    372      1.162        ad 				    void *);
    373      1.271        ad static bool	pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
    374      1.162        ad 				    void **, paddr_t *, int);
    375      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    376      1.271        ad static int	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    377      1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    378      1.196       jym static void	pool_cache_transfer(pool_cache_t);
    379      1.271        ad static int	pool_pcg_get(pcg_t *volatile *, pcg_t **);
    380      1.271        ad static int	pool_pcg_put(pcg_t *volatile *, pcg_t *);
    381      1.271        ad static pcg_t *	pool_pcg_trunc(pcg_t *volatile *);
    382        1.3        pk 
    383       1.42   thorpej static int	pool_catchup(struct pool *);
    384      1.128  christos static void	pool_prime_page(struct pool *, void *,
    385       1.55   thorpej 		    struct pool_item_header *);
    386       1.88       chs static void	pool_update_curpage(struct pool *);
    387       1.66   thorpej 
    388      1.113      yamt static int	pool_grow(struct pool *, int);
    389      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    390      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    391        1.3        pk 
    392       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    393      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    394       1.42   thorpej static void pool_print1(struct pool *, const char *,
    395      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    396        1.3        pk 
    397       1.88       chs static int pool_chk_page(struct pool *, const char *,
    398       1.88       chs 			 struct pool_item_header *);
    399       1.88       chs 
    400      1.234      maxv /* -------------------------------------------------------------------------- */
    401      1.234      maxv 
    402      1.135      yamt static inline unsigned int
    403      1.234      maxv pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    404       1.97      yamt     const void *v)
    405       1.97      yamt {
    406       1.97      yamt 	const char *cp = v;
    407      1.135      yamt 	unsigned int idx;
    408       1.97      yamt 
    409      1.242      maxv 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    410      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    411      1.237      maxv 
    412      1.237      maxv 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    413      1.237      maxv 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    414      1.237      maxv 		    pp->pr_itemsperpage);
    415      1.237      maxv 	}
    416      1.237      maxv 
    417       1.97      yamt 	return idx;
    418       1.97      yamt }
    419       1.97      yamt 
    420      1.110     perry static inline void
    421      1.234      maxv pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    422       1.97      yamt     void *obj)
    423       1.97      yamt {
    424      1.234      maxv 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    425      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    426      1.223     kamil 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    427       1.97      yamt 
    428      1.237      maxv 	if (__predict_false((*bitmap & mask) != 0)) {
    429      1.237      maxv 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    430      1.237      maxv 	}
    431      1.237      maxv 
    432      1.135      yamt 	*bitmap |= mask;
    433       1.97      yamt }
    434       1.97      yamt 
    435      1.110     perry static inline void *
    436      1.234      maxv pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    437       1.97      yamt {
    438      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    439      1.135      yamt 	unsigned int idx;
    440      1.135      yamt 	int i;
    441       1.97      yamt 
    442      1.135      yamt 	for (i = 0; ; i++) {
    443      1.135      yamt 		int bit;
    444       1.97      yamt 
    445      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    446      1.135      yamt 		bit = ffs32(bitmap[i]);
    447      1.135      yamt 		if (bit) {
    448      1.135      yamt 			pool_item_bitmap_t mask;
    449      1.135      yamt 
    450      1.135      yamt 			bit--;
    451      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    452      1.222     kamil 			mask = 1U << bit;
    453      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    454      1.135      yamt 			bitmap[i] &= ~mask;
    455      1.135      yamt 			break;
    456      1.135      yamt 		}
    457      1.135      yamt 	}
    458      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    459      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    460       1.97      yamt }
    461       1.97      yamt 
    462      1.135      yamt static inline void
    463      1.234      maxv pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    464      1.135      yamt {
    465      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    466      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    467      1.135      yamt 	int i;
    468      1.135      yamt 
    469      1.135      yamt 	for (i = 0; i < n; i++) {
    470      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    471      1.135      yamt 	}
    472      1.135      yamt }
    473      1.135      yamt 
    474      1.234      maxv /* -------------------------------------------------------------------------- */
    475      1.234      maxv 
    476      1.234      maxv static inline void
    477      1.234      maxv pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    478      1.234      maxv     void *obj)
    479      1.234      maxv {
    480      1.234      maxv 	struct pool_item *pi = obj;
    481      1.234      maxv 
    482      1.234      maxv #ifdef POOL_CHECK_MAGIC
    483      1.234      maxv 	pi->pi_magic = PI_MAGIC;
    484      1.234      maxv #endif
    485      1.234      maxv 
    486      1.234      maxv 	if (pp->pr_redzone) {
    487      1.234      maxv 		/*
    488      1.234      maxv 		 * Mark the pool_item as valid. The rest is already
    489      1.234      maxv 		 * invalid.
    490      1.234      maxv 		 */
    491      1.248      maxv 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
    492      1.234      maxv 	}
    493      1.234      maxv 
    494      1.234      maxv 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    495      1.234      maxv }
    496      1.234      maxv 
    497      1.234      maxv static inline void *
    498      1.234      maxv pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    499      1.234      maxv {
    500      1.234      maxv 	struct pool_item *pi;
    501      1.234      maxv 	void *v;
    502      1.234      maxv 
    503      1.234      maxv 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    504      1.234      maxv 	if (__predict_false(v == NULL)) {
    505      1.234      maxv 		mutex_exit(&pp->pr_lock);
    506      1.234      maxv 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    507      1.234      maxv 	}
    508      1.234      maxv 	KASSERTMSG((pp->pr_nitems > 0),
    509      1.234      maxv 	    "%s: [%s] nitems %u inconsistent on itemlist",
    510      1.234      maxv 	    __func__, pp->pr_wchan, pp->pr_nitems);
    511      1.234      maxv #ifdef POOL_CHECK_MAGIC
    512      1.234      maxv 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    513      1.234      maxv 	    "%s: [%s] free list modified: "
    514      1.234      maxv 	    "magic=%x; page %p; item addr %p", __func__,
    515      1.234      maxv 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    516      1.234      maxv #endif
    517      1.234      maxv 
    518      1.234      maxv 	/*
    519      1.234      maxv 	 * Remove from item list.
    520      1.234      maxv 	 */
    521      1.234      maxv 	LIST_REMOVE(pi, pi_list);
    522      1.234      maxv 
    523      1.234      maxv 	return v;
    524      1.234      maxv }
    525      1.234      maxv 
    526      1.234      maxv /* -------------------------------------------------------------------------- */
    527      1.234      maxv 
    528      1.253      maxv static inline void
    529      1.253      maxv pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
    530      1.253      maxv     void *object)
    531      1.253      maxv {
    532      1.253      maxv 	if (__predict_false((void *)ph->ph_page != page)) {
    533      1.253      maxv 		panic("%s: [%s] item %p not part of pool", __func__,
    534      1.253      maxv 		    pp->pr_wchan, object);
    535      1.253      maxv 	}
    536      1.253      maxv 	if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
    537      1.253      maxv 		panic("%s: [%s] item %p below item space", __func__,
    538      1.253      maxv 		    pp->pr_wchan, object);
    539      1.253      maxv 	}
    540      1.253      maxv 	if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    541      1.253      maxv 		panic("%s: [%s] item %p poolid %u != %u", __func__,
    542      1.253      maxv 		    pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
    543      1.253      maxv 	}
    544      1.253      maxv }
    545      1.253      maxv 
    546      1.253      maxv static inline void
    547      1.253      maxv pc_phinpage_check(pool_cache_t pc, void *object)
    548      1.253      maxv {
    549      1.253      maxv 	struct pool_item_header *ph;
    550      1.253      maxv 	struct pool *pp;
    551      1.253      maxv 	void *page;
    552      1.253      maxv 
    553      1.253      maxv 	pp = &pc->pc_pool;
    554      1.253      maxv 	page = POOL_OBJ_TO_PAGE(pp, object);
    555      1.253      maxv 	ph = (struct pool_item_header *)page;
    556      1.253      maxv 
    557      1.253      maxv 	pr_phinpage_check(pp, ph, page, object);
    558      1.253      maxv }
    559      1.253      maxv 
    560      1.253      maxv /* -------------------------------------------------------------------------- */
    561      1.253      maxv 
    562      1.110     perry static inline int
    563       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    564       1.88       chs {
    565      1.121      yamt 
    566      1.121      yamt 	/*
    567      1.236      maxv 	 * We consider pool_item_header with smaller ph_page bigger. This
    568      1.236      maxv 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    569      1.121      yamt 	 */
    570       1.88       chs 	if (a->ph_page < b->ph_page)
    571      1.236      maxv 		return 1;
    572      1.121      yamt 	else if (a->ph_page > b->ph_page)
    573      1.236      maxv 		return -1;
    574       1.88       chs 	else
    575      1.236      maxv 		return 0;
    576       1.88       chs }
    577       1.88       chs 
    578       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    579       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    580       1.88       chs 
    581      1.141      yamt static inline struct pool_item_header *
    582      1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    583      1.141      yamt {
    584      1.141      yamt 	struct pool_item_header *ph, tmp;
    585      1.141      yamt 
    586      1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    587      1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    588      1.141      yamt 	if (ph == NULL) {
    589      1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    590      1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    591      1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    592      1.141      yamt 		}
    593      1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    594      1.141      yamt 	}
    595      1.141      yamt 
    596      1.141      yamt 	return ph;
    597      1.141      yamt }
    598      1.141      yamt 
    599        1.3        pk /*
    600      1.121      yamt  * Return the pool page header based on item address.
    601        1.3        pk  */
    602      1.110     perry static inline struct pool_item_header *
    603      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    604        1.3        pk {
    605       1.88       chs 	struct pool_item_header *ph, tmp;
    606        1.3        pk 
    607      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    608      1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    609      1.121      yamt 	} else {
    610      1.253      maxv 		void *page = POOL_OBJ_TO_PAGE(pp, v);
    611      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    612      1.241      maxv 			ph = (struct pool_item_header *)page;
    613      1.253      maxv 			pr_phinpage_check(pp, ph, page, v);
    614      1.121      yamt 		} else {
    615      1.121      yamt 			tmp.ph_page = page;
    616      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    617      1.121      yamt 		}
    618      1.121      yamt 	}
    619        1.3        pk 
    620      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    621      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    622      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    623       1.88       chs 	return ph;
    624        1.3        pk }
    625        1.3        pk 
    626      1.101   thorpej static void
    627      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    628      1.101   thorpej {
    629      1.101   thorpej 	struct pool_item_header *ph;
    630      1.101   thorpej 
    631      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    632      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    633      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    634      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    635      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    636      1.101   thorpej 	}
    637      1.101   thorpej }
    638      1.101   thorpej 
    639        1.3        pk /*
    640        1.3        pk  * Remove a page from the pool.
    641        1.3        pk  */
    642      1.110     perry static inline void
    643       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    644       1.61       chs      struct pool_pagelist *pq)
    645        1.3        pk {
    646        1.3        pk 
    647      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    648       1.91      yamt 
    649        1.3        pk 	/*
    650        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    651        1.3        pk 	 */
    652        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    653      1.207  riastrad 		KASSERT(pp->pr_nidle != 0);
    654      1.207  riastrad 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    655      1.251  christos 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
    656      1.251  christos 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
    657        1.6   thorpej 		pp->pr_nidle--;
    658        1.6   thorpej 	}
    659        1.7   thorpej 
    660       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    661       1.20   thorpej 
    662        1.7   thorpej 	/*
    663      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    664        1.7   thorpej 	 */
    665       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    666      1.245      maxv 	if (pp->pr_roflags & PR_PHINPAGE) {
    667      1.245      maxv 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    668      1.245      maxv 			panic("%s: [%s] ph %p poolid %u != %u",
    669      1.245      maxv 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    670      1.245      maxv 			    pp->pr_poolid);
    671      1.245      maxv 		}
    672      1.245      maxv 	} else {
    673       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    674      1.245      maxv 	}
    675      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    676      1.101   thorpej 
    677        1.7   thorpej 	pp->pr_npages--;
    678        1.7   thorpej 	pp->pr_npagefree++;
    679        1.6   thorpej 
    680       1.88       chs 	pool_update_curpage(pp);
    681        1.3        pk }
    682        1.3        pk 
    683        1.3        pk /*
    684       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    685       1.94    simonb  */
    686       1.94    simonb void
    687      1.117      yamt pool_subsystem_init(void)
    688       1.94    simonb {
    689      1.192     rmind 	size_t size;
    690      1.191      para 	int idx;
    691       1.94    simonb 
    692      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    693      1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    694      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    695      1.134        ad 
    696      1.191      para 	/*
    697      1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    698      1.191      para 	 * haven't done so yet.
    699      1.191      para 	 */
    700      1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    701      1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    702      1.191      para 		int nelem;
    703      1.191      para 		size_t sz;
    704      1.191      para 
    705      1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    706      1.256      maxv 		KASSERT(nelem != 0);
    707      1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    708      1.191      para 		    "phpool-%d", nelem);
    709      1.256      maxv 		sz = offsetof(struct pool_item_header,
    710      1.256      maxv 		    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    711      1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    712      1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    713      1.117      yamt 	}
    714      1.191      para 
    715      1.191      para 	size = sizeof(pcg_t) +
    716      1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    717      1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    718      1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    719      1.191      para 
    720      1.191      para 	size = sizeof(pcg_t) +
    721      1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    722      1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    723      1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    724      1.134        ad 
    725      1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    726      1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    727      1.134        ad 
    728      1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    729      1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    730       1.94    simonb }
    731       1.94    simonb 
    732      1.240      maxv static inline bool
    733      1.240      maxv pool_init_is_phinpage(const struct pool *pp)
    734      1.240      maxv {
    735      1.240      maxv 	size_t pagesize;
    736      1.240      maxv 
    737      1.240      maxv 	if (pp->pr_roflags & PR_PHINPAGE) {
    738      1.240      maxv 		return true;
    739      1.240      maxv 	}
    740      1.240      maxv 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    741      1.240      maxv 		return false;
    742      1.240      maxv 	}
    743      1.240      maxv 
    744      1.240      maxv 	pagesize = pp->pr_alloc->pa_pagesz;
    745      1.240      maxv 
    746      1.240      maxv 	/*
    747      1.240      maxv 	 * Threshold: the item size is below 1/16 of a page size, and below
    748      1.240      maxv 	 * 8 times the page header size. The latter ensures we go off-page
    749      1.240      maxv 	 * if the page header would make us waste a rather big item.
    750      1.240      maxv 	 */
    751      1.240      maxv 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    752      1.240      maxv 		return true;
    753      1.240      maxv 	}
    754      1.240      maxv 
    755      1.240      maxv 	/* Put the header into the page if it doesn't waste any items. */
    756      1.240      maxv 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    757      1.240      maxv 		return true;
    758      1.240      maxv 	}
    759      1.240      maxv 
    760      1.240      maxv 	return false;
    761      1.240      maxv }
    762      1.240      maxv 
    763      1.242      maxv static inline bool
    764      1.242      maxv pool_init_is_usebmap(const struct pool *pp)
    765      1.242      maxv {
    766      1.243      maxv 	size_t bmapsize;
    767      1.243      maxv 
    768      1.242      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
    769      1.242      maxv 		return true;
    770      1.242      maxv 	}
    771      1.242      maxv 
    772      1.243      maxv 	/*
    773      1.256      maxv 	 * If we're off-page, go with a bitmap.
    774      1.256      maxv 	 */
    775      1.256      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    776      1.256      maxv 		return true;
    777      1.256      maxv 	}
    778      1.256      maxv 
    779      1.256      maxv 	/*
    780      1.243      maxv 	 * If we're on-page, and the page header can already contain a bitmap
    781      1.243      maxv 	 * big enough to cover all the items of the page, go with a bitmap.
    782      1.243      maxv 	 */
    783      1.243      maxv 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    784      1.243      maxv 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    785      1.243      maxv 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    786      1.243      maxv 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    787      1.243      maxv 		return true;
    788      1.243      maxv 	}
    789      1.243      maxv 
    790      1.242      maxv 	return false;
    791      1.242      maxv }
    792      1.242      maxv 
    793       1.94    simonb /*
    794        1.3        pk  * Initialize the given pool resource structure.
    795        1.3        pk  *
    796        1.3        pk  * We export this routine to allow other kernel parts to declare
    797      1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    798        1.3        pk  */
    799        1.3        pk void
    800       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    801      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    802        1.3        pk {
    803      1.116    simonb 	struct pool *pp1;
    804      1.240      maxv 	size_t prsize;
    805      1.237      maxv 	int itemspace, slack;
    806        1.3        pk 
    807      1.238      maxv 	/* XXX ioff will be removed. */
    808      1.238      maxv 	KASSERT(ioff == 0);
    809      1.238      maxv 
    810      1.116    simonb #ifdef DEBUG
    811      1.198  christos 	if (__predict_true(!cold))
    812      1.198  christos 		mutex_enter(&pool_head_lock);
    813      1.116    simonb 	/*
    814      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    815      1.116    simonb 	 * added to the list of all pools.
    816      1.116    simonb 	 */
    817      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    818      1.116    simonb 		if (pp == pp1)
    819      1.213  christos 			panic("%s: [%s] already initialised", __func__,
    820      1.116    simonb 			    wchan);
    821      1.116    simonb 	}
    822      1.198  christos 	if (__predict_true(!cold))
    823      1.198  christos 		mutex_exit(&pool_head_lock);
    824      1.116    simonb #endif
    825      1.116    simonb 
    826       1.66   thorpej 	if (palloc == NULL)
    827       1.66   thorpej 		palloc = &pool_allocator_kmem;
    828      1.244      maxv 
    829      1.180   mlelstv 	if (!cold)
    830      1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    831      1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    832      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    833       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    834       1.66   thorpej 
    835       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    836       1.66   thorpej 
    837      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    838       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    839       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    840        1.4   thorpej 	}
    841      1.180   mlelstv 	if (!cold)
    842      1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    843        1.3        pk 
    844        1.3        pk 	if (align == 0)
    845        1.3        pk 		align = ALIGN(1);
    846       1.14   thorpej 
    847      1.204      maxv 	prsize = size;
    848      1.204      maxv 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    849      1.204      maxv 		prsize = sizeof(struct pool_item);
    850        1.3        pk 
    851      1.204      maxv 	prsize = roundup(prsize, align);
    852      1.207  riastrad 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    853      1.213  christos 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    854      1.213  christos 	    __func__, wchan, prsize, palloc->pa_pagesz);
    855       1.35        pk 
    856        1.3        pk 	/*
    857        1.3        pk 	 * Initialize the pool structure.
    858        1.3        pk 	 */
    859       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    860       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    861       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    862      1.134        ad 	pp->pr_cache = NULL;
    863        1.3        pk 	pp->pr_curpage = NULL;
    864        1.3        pk 	pp->pr_npages = 0;
    865        1.3        pk 	pp->pr_minitems = 0;
    866        1.3        pk 	pp->pr_minpages = 0;
    867        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    868       1.20   thorpej 	pp->pr_roflags = flags;
    869       1.20   thorpej 	pp->pr_flags = 0;
    870      1.204      maxv 	pp->pr_size = prsize;
    871      1.233      maxv 	pp->pr_reqsize = size;
    872        1.3        pk 	pp->pr_align = align;
    873        1.3        pk 	pp->pr_wchan = wchan;
    874       1.66   thorpej 	pp->pr_alloc = palloc;
    875      1.245      maxv 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    876       1.20   thorpej 	pp->pr_nitems = 0;
    877       1.20   thorpej 	pp->pr_nout = 0;
    878       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    879       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    880       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    881       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    882       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    883       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    884       1.68   thorpej 	pp->pr_drain_hook = NULL;
    885       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    886      1.125        ad 	pp->pr_freecheck = NULL;
    887      1.255      maxv 	pp->pr_redzone = false;
    888      1.204      maxv 	pool_redzone_init(pp, size);
    889      1.249      maxv 	pool_quarantine_init(pp);
    890        1.3        pk 
    891        1.3        pk 	/*
    892      1.240      maxv 	 * Decide whether to put the page header off-page to avoid wasting too
    893      1.240      maxv 	 * large a part of the page or too big an item. Off-page page headers
    894      1.240      maxv 	 * go on a hash table, so we can match a returned item with its header
    895      1.240      maxv 	 * based on the page address.
    896        1.3        pk 	 */
    897      1.240      maxv 	if (pool_init_is_phinpage(pp)) {
    898      1.241      maxv 		/* Use the beginning of the page for the page header */
    899      1.241      maxv 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    900      1.241      maxv 		pp->pr_itemoffset = roundup(PHSIZE, align);
    901      1.239      maxv 		pp->pr_roflags |= PR_PHINPAGE;
    902        1.2        pk 	} else {
    903        1.3        pk 		/* The page header will be taken from our page header pool */
    904      1.237      maxv 		itemspace = palloc->pa_pagesz;
    905      1.241      maxv 		pp->pr_itemoffset = 0;
    906       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    907        1.2        pk 	}
    908        1.1        pk 
    909      1.243      maxv 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    910      1.243      maxv 	KASSERT(pp->pr_itemsperpage != 0);
    911      1.243      maxv 
    912      1.242      maxv 	/*
    913      1.242      maxv 	 * Decide whether to use a bitmap or a linked list to manage freed
    914      1.242      maxv 	 * items.
    915      1.242      maxv 	 */
    916      1.242      maxv 	if (pool_init_is_usebmap(pp)) {
    917      1.242      maxv 		pp->pr_roflags |= PR_USEBMAP;
    918      1.242      maxv 	}
    919      1.242      maxv 
    920      1.242      maxv 	/*
    921      1.256      maxv 	 * If we're off-page, then we're using a bitmap; choose the appropriate
    922      1.256      maxv 	 * pool to allocate page headers, whose size varies depending on the
    923      1.256      maxv 	 * bitmap. If we're on-page, nothing to do.
    924      1.242      maxv 	 */
    925      1.256      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    926       1.97      yamt 		int idx;
    927       1.97      yamt 
    928      1.256      maxv 		KASSERT(pp->pr_roflags & PR_USEBMAP);
    929      1.256      maxv 
    930       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    931       1.97      yamt 		    idx++) {
    932       1.97      yamt 			/* nothing */
    933       1.97      yamt 		}
    934       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    935       1.97      yamt 			/*
    936       1.97      yamt 			 * if you see this panic, consider to tweak
    937       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    938       1.97      yamt 			 */
    939      1.213  christos 			panic("%s: [%s] too large itemsperpage(%d) for "
    940      1.242      maxv 			    "PR_USEBMAP", __func__,
    941       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    942       1.97      yamt 		}
    943       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    944      1.242      maxv 	} else {
    945       1.97      yamt 		pp->pr_phpool = NULL;
    946       1.97      yamt 	}
    947        1.3        pk 
    948        1.3        pk 	/*
    949        1.3        pk 	 * Use the slack between the chunks and the page header
    950        1.3        pk 	 * for "cache coloring".
    951        1.3        pk 	 */
    952      1.237      maxv 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    953      1.239      maxv 	pp->pr_maxcolor = rounddown(slack, align);
    954        1.3        pk 	pp->pr_curcolor = 0;
    955        1.3        pk 
    956        1.3        pk 	pp->pr_nget = 0;
    957        1.3        pk 	pp->pr_nfail = 0;
    958        1.3        pk 	pp->pr_nput = 0;
    959        1.3        pk 	pp->pr_npagealloc = 0;
    960        1.3        pk 	pp->pr_npagefree = 0;
    961        1.1        pk 	pp->pr_hiwat = 0;
    962        1.8   thorpej 	pp->pr_nidle = 0;
    963      1.134        ad 	pp->pr_refcnt = 0;
    964        1.3        pk 
    965      1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    966      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    967      1.134        ad 	pp->pr_ipl = ipl;
    968        1.1        pk 
    969      1.145        ad 	/* Insert into the list of all pools. */
    970      1.181   mlelstv 	if (!cold)
    971      1.134        ad 		mutex_enter(&pool_head_lock);
    972      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    973      1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    974      1.145        ad 			break;
    975      1.145        ad 	}
    976      1.145        ad 	if (pp1 == NULL)
    977      1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    978      1.145        ad 	else
    979      1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    980      1.181   mlelstv 	if (!cold)
    981      1.134        ad 		mutex_exit(&pool_head_lock);
    982      1.134        ad 
    983      1.167     skrll 	/* Insert this into the list of pools using this allocator. */
    984      1.181   mlelstv 	if (!cold)
    985      1.134        ad 		mutex_enter(&palloc->pa_lock);
    986      1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    987      1.181   mlelstv 	if (!cold)
    988      1.134        ad 		mutex_exit(&palloc->pa_lock);
    989        1.1        pk }
    990        1.1        pk 
    991        1.1        pk /*
    992        1.1        pk  * De-commision a pool resource.
    993        1.1        pk  */
    994        1.1        pk void
    995       1.42   thorpej pool_destroy(struct pool *pp)
    996        1.1        pk {
    997      1.101   thorpej 	struct pool_pagelist pq;
    998        1.3        pk 	struct pool_item_header *ph;
    999       1.43   thorpej 
   1000      1.249      maxv 	pool_quarantine_flush(pp);
   1001      1.249      maxv 
   1002      1.101   thorpej 	/* Remove from global pool list */
   1003      1.134        ad 	mutex_enter(&pool_head_lock);
   1004      1.134        ad 	while (pp->pr_refcnt != 0)
   1005      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   1006      1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
   1007      1.101   thorpej 	if (drainpp == pp)
   1008      1.101   thorpej 		drainpp = NULL;
   1009      1.134        ad 	mutex_exit(&pool_head_lock);
   1010      1.101   thorpej 
   1011      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
   1012      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
   1013       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
   1014      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
   1015       1.66   thorpej 
   1016      1.178      elad 	mutex_enter(&pool_allocator_lock);
   1017      1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
   1018      1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
   1019      1.178      elad 	mutex_exit(&pool_allocator_lock);
   1020      1.178      elad 
   1021      1.134        ad 	mutex_enter(&pp->pr_lock);
   1022      1.101   thorpej 
   1023      1.134        ad 	KASSERT(pp->pr_cache == NULL);
   1024      1.207  riastrad 	KASSERTMSG((pp->pr_nout == 0),
   1025      1.251  christos 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
   1026      1.251  christos 	    pp->pr_nout);
   1027      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
   1028      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
   1029      1.101   thorpej 
   1030        1.3        pk 	/* Remove all pages */
   1031      1.101   thorpej 	LIST_INIT(&pq);
   1032       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1033      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
   1034      1.101   thorpej 
   1035      1.134        ad 	mutex_exit(&pp->pr_lock);
   1036        1.3        pk 
   1037      1.101   thorpej 	pr_pagelist_free(pp, &pq);
   1038      1.134        ad 	cv_destroy(&pp->pr_cv);
   1039      1.134        ad 	mutex_destroy(&pp->pr_lock);
   1040        1.1        pk }
   1041        1.1        pk 
   1042       1.68   thorpej void
   1043       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
   1044       1.68   thorpej {
   1045       1.68   thorpej 
   1046       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
   1047      1.207  riastrad 	KASSERTMSG((pp->pr_drain_hook == NULL),
   1048      1.213  christos 	    "%s: [%s] already set", __func__, pp->pr_wchan);
   1049       1.68   thorpej 	pp->pr_drain_hook = fn;
   1050       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
   1051       1.68   thorpej }
   1052       1.68   thorpej 
   1053       1.88       chs static struct pool_item_header *
   1054      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
   1055       1.55   thorpej {
   1056       1.55   thorpej 	struct pool_item_header *ph;
   1057       1.55   thorpej 
   1058       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
   1059      1.241      maxv 		ph = storage;
   1060      1.134        ad 	else
   1061       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
   1062       1.55   thorpej 
   1063      1.236      maxv 	return ph;
   1064       1.55   thorpej }
   1065        1.1        pk 
   1066        1.1        pk /*
   1067      1.134        ad  * Grab an item from the pool.
   1068        1.1        pk  */
   1069        1.3        pk void *
   1070       1.56  sommerfe pool_get(struct pool *pp, int flags)
   1071        1.1        pk {
   1072        1.3        pk 	struct pool_item_header *ph;
   1073       1.55   thorpej 	void *v;
   1074        1.1        pk 
   1075      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   1076      1.207  riastrad 	KASSERTMSG((pp->pr_itemsperpage != 0),
   1077      1.213  christos 	    "%s: [%s] pr_itemsperpage is zero, "
   1078      1.213  christos 	    "pool not initialized?", __func__, pp->pr_wchan);
   1079      1.207  riastrad 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
   1080      1.207  riastrad 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
   1081      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   1082      1.213  christos 	    __func__, pp->pr_wchan);
   1083      1.155        ad 	if (flags & PR_WAITOK) {
   1084      1.154      yamt 		ASSERT_SLEEPABLE();
   1085      1.155        ad 	}
   1086        1.1        pk 
   1087      1.270      maxv 	if (flags & PR_NOWAIT) {
   1088      1.270      maxv 		if (fault_inject())
   1089      1.270      maxv 			return NULL;
   1090      1.270      maxv 	}
   1091      1.270      maxv 
   1092      1.134        ad 	mutex_enter(&pp->pr_lock);
   1093       1.20   thorpej  startover:
   1094       1.20   thorpej 	/*
   1095       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
   1096       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
   1097       1.20   thorpej 	 * the pool.
   1098       1.20   thorpej 	 */
   1099      1.207  riastrad 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
   1100      1.213  christos 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
   1101       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1102       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
   1103       1.68   thorpej 			/*
   1104       1.68   thorpej 			 * Since the drain hook is going to free things
   1105       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
   1106       1.68   thorpej 			 * and check the hardlimit condition again.
   1107       1.68   thorpej 			 */
   1108      1.134        ad 			mutex_exit(&pp->pr_lock);
   1109       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1110      1.134        ad 			mutex_enter(&pp->pr_lock);
   1111       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
   1112       1.68   thorpej 				goto startover;
   1113       1.68   thorpej 		}
   1114       1.68   thorpej 
   1115       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1116       1.20   thorpej 			/*
   1117       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
   1118       1.20   thorpej 			 * it be?
   1119       1.20   thorpej 			 */
   1120       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1121      1.212  christos 			do {
   1122      1.212  christos 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1123      1.212  christos 			} while (pp->pr_flags & PR_WANTED);
   1124       1.20   thorpej 			goto startover;
   1125       1.20   thorpej 		}
   1126       1.31   thorpej 
   1127       1.31   thorpej 		/*
   1128       1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1129       1.31   thorpej 		 */
   1130       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1131       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1132       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1133       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1134       1.21   thorpej 
   1135       1.21   thorpej 		pp->pr_nfail++;
   1136       1.21   thorpej 
   1137      1.134        ad 		mutex_exit(&pp->pr_lock);
   1138      1.216  christos 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1139      1.236      maxv 		return NULL;
   1140       1.20   thorpej 	}
   1141       1.20   thorpej 
   1142        1.3        pk 	/*
   1143        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1144        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1145        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1146        1.3        pk 	 * has no items in its bucket.
   1147        1.3        pk 	 */
   1148       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1149      1.113      yamt 		int error;
   1150      1.113      yamt 
   1151      1.207  riastrad 		KASSERTMSG((pp->pr_nitems == 0),
   1152      1.213  christos 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
   1153      1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
   1154       1.20   thorpej 
   1155       1.21   thorpej 		/*
   1156       1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1157       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1158       1.21   thorpej 		 * may block.
   1159       1.21   thorpej 		 */
   1160      1.113      yamt 		error = pool_grow(pp, flags);
   1161      1.113      yamt 		if (error != 0) {
   1162       1.21   thorpej 			/*
   1163      1.210   mlelstv 			 * pool_grow aborts when another thread
   1164      1.210   mlelstv 			 * is allocating a new page. Retry if it
   1165      1.210   mlelstv 			 * waited for it.
   1166      1.210   mlelstv 			 */
   1167      1.210   mlelstv 			if (error == ERESTART)
   1168      1.210   mlelstv 				goto startover;
   1169      1.210   mlelstv 
   1170      1.210   mlelstv 			/*
   1171       1.55   thorpej 			 * We were unable to allocate a page or item
   1172       1.55   thorpej 			 * header, but we released the lock during
   1173       1.55   thorpej 			 * allocation, so perhaps items were freed
   1174       1.55   thorpej 			 * back to the pool.  Check for this case.
   1175       1.21   thorpej 			 */
   1176       1.21   thorpej 			if (pp->pr_curpage != NULL)
   1177       1.21   thorpej 				goto startover;
   1178       1.15        pk 
   1179      1.117      yamt 			pp->pr_nfail++;
   1180      1.134        ad 			mutex_exit(&pp->pr_lock);
   1181      1.265       chs 			KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1182      1.236      maxv 			return NULL;
   1183        1.1        pk 		}
   1184        1.3        pk 
   1185       1.20   thorpej 		/* Start the allocation process over. */
   1186       1.20   thorpej 		goto startover;
   1187        1.3        pk 	}
   1188      1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1189      1.207  riastrad 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1190      1.251  christos 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
   1191      1.234      maxv 		v = pr_item_bitmap_get(pp, ph);
   1192       1.97      yamt 	} else {
   1193      1.234      maxv 		v = pr_item_linkedlist_get(pp, ph);
   1194       1.97      yamt 	}
   1195       1.20   thorpej 	pp->pr_nitems--;
   1196       1.20   thorpej 	pp->pr_nout++;
   1197        1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1198      1.207  riastrad 		KASSERT(pp->pr_nidle > 0);
   1199        1.6   thorpej 		pp->pr_nidle--;
   1200       1.88       chs 
   1201       1.88       chs 		/*
   1202       1.88       chs 		 * This page was previously empty.  Move it to the list of
   1203       1.88       chs 		 * partially-full pages.  This page is already curpage.
   1204       1.88       chs 		 */
   1205       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1206       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1207        1.6   thorpej 	}
   1208        1.3        pk 	ph->ph_nmissing++;
   1209       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1210      1.242      maxv 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1211      1.207  riastrad 			LIST_EMPTY(&ph->ph_itemlist)),
   1212      1.213  christos 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1213      1.213  christos 			pp->pr_wchan, ph->ph_nmissing);
   1214        1.3        pk 		/*
   1215       1.88       chs 		 * This page is now full.  Move it to the full list
   1216       1.88       chs 		 * and select a new current page.
   1217        1.3        pk 		 */
   1218       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1219       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1220       1.88       chs 		pool_update_curpage(pp);
   1221        1.1        pk 	}
   1222        1.3        pk 
   1223        1.3        pk 	pp->pr_nget++;
   1224       1.20   thorpej 
   1225       1.20   thorpej 	/*
   1226       1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1227       1.20   thorpej 	 * water mark, add more items to the pool.
   1228       1.20   thorpej 	 */
   1229       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1230       1.20   thorpej 		/*
   1231       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1232       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1233       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1234       1.20   thorpej 		 */
   1235       1.20   thorpej 	}
   1236       1.20   thorpej 
   1237      1.134        ad 	mutex_exit(&pp->pr_lock);
   1238      1.238      maxv 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1239      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1240      1.204      maxv 	pool_redzone_fill(pp, v);
   1241      1.262      maxv 	pool_get_kmsan(pp, v);
   1242      1.232  christos 	if (flags & PR_ZERO)
   1243      1.233      maxv 		memset(v, 0, pp->pr_reqsize);
   1244      1.232  christos 	return v;
   1245        1.1        pk }
   1246        1.1        pk 
   1247        1.1        pk /*
   1248       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1249        1.1        pk  */
   1250       1.43   thorpej static void
   1251      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1252        1.1        pk {
   1253        1.3        pk 	struct pool_item_header *ph;
   1254        1.3        pk 
   1255      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1256      1.204      maxv 	pool_redzone_check(pp, v);
   1257      1.262      maxv 	pool_put_kmsan(pp, v);
   1258      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1259      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1260       1.61       chs 
   1261      1.207  riastrad 	KASSERTMSG((pp->pr_nout > 0),
   1262      1.213  christos 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1263        1.3        pk 
   1264      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1265      1.213  christos 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1266        1.3        pk 	}
   1267       1.28   thorpej 
   1268        1.3        pk 	/*
   1269        1.3        pk 	 * Return to item list.
   1270        1.3        pk 	 */
   1271      1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1272      1.234      maxv 		pr_item_bitmap_put(pp, ph, v);
   1273       1.97      yamt 	} else {
   1274      1.234      maxv 		pr_item_linkedlist_put(pp, ph, v);
   1275       1.97      yamt 	}
   1276       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1277        1.3        pk 	ph->ph_nmissing--;
   1278        1.3        pk 	pp->pr_nput++;
   1279       1.20   thorpej 	pp->pr_nitems++;
   1280       1.20   thorpej 	pp->pr_nout--;
   1281        1.3        pk 
   1282        1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1283        1.3        pk 	if (pp->pr_curpage == NULL)
   1284        1.3        pk 		pp->pr_curpage = ph;
   1285        1.3        pk 
   1286        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1287        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1288      1.134        ad 		cv_broadcast(&pp->pr_cv);
   1289        1.3        pk 	}
   1290        1.3        pk 
   1291        1.3        pk 	/*
   1292       1.88       chs 	 * If this page is now empty, do one of two things:
   1293       1.21   thorpej 	 *
   1294       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1295       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1296       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1297       1.90   thorpej 	 *	    CLAIM.
   1298       1.21   thorpej 	 *
   1299       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1300       1.88       chs 	 *
   1301       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1302       1.88       chs 	 * page if one is available).
   1303        1.3        pk 	 */
   1304        1.3        pk 	if (ph->ph_nmissing == 0) {
   1305        1.6   thorpej 		pp->pr_nidle++;
   1306      1.267       chs 		if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
   1307      1.267       chs 		    pp->pr_npages > pp->pr_minpages &&
   1308      1.152      yamt 		    pp->pr_npages > pp->pr_maxpages) {
   1309      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1310        1.3        pk 		} else {
   1311       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1312       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1313        1.3        pk 
   1314       1.21   thorpej 			/*
   1315       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1316       1.21   thorpej 			 * be idle for some period of time before it can
   1317       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1318       1.21   thorpej 			 * ping-pong'ing for memory.
   1319      1.151      yamt 			 *
   1320      1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1321      1.151      yamt 			 * a problem for our usage.
   1322       1.21   thorpej 			 */
   1323      1.151      yamt 			ph->ph_time = time_uptime;
   1324        1.1        pk 		}
   1325       1.88       chs 		pool_update_curpage(pp);
   1326        1.1        pk 	}
   1327       1.88       chs 
   1328       1.21   thorpej 	/*
   1329       1.88       chs 	 * If the page was previously completely full, move it to the
   1330       1.88       chs 	 * partially-full list and make it the current page.  The next
   1331       1.88       chs 	 * allocation will get the item from this page, instead of
   1332       1.88       chs 	 * further fragmenting the pool.
   1333       1.21   thorpej 	 */
   1334       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1335       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1336       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1337       1.21   thorpej 		pp->pr_curpage = ph;
   1338       1.21   thorpej 	}
   1339       1.43   thorpej }
   1340       1.43   thorpej 
   1341       1.56  sommerfe void
   1342       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1343       1.56  sommerfe {
   1344      1.101   thorpej 	struct pool_pagelist pq;
   1345      1.101   thorpej 
   1346      1.101   thorpej 	LIST_INIT(&pq);
   1347       1.56  sommerfe 
   1348      1.134        ad 	mutex_enter(&pp->pr_lock);
   1349      1.249      maxv 	if (!pool_put_quarantine(pp, v, &pq)) {
   1350      1.249      maxv 		pool_do_put(pp, v, &pq);
   1351      1.249      maxv 	}
   1352      1.134        ad 	mutex_exit(&pp->pr_lock);
   1353       1.56  sommerfe 
   1354      1.102       chs 	pr_pagelist_free(pp, &pq);
   1355       1.56  sommerfe }
   1356       1.57  sommerfe 
   1357       1.74   thorpej /*
   1358      1.113      yamt  * pool_grow: grow a pool by a page.
   1359      1.113      yamt  *
   1360      1.113      yamt  * => called with pool locked.
   1361      1.113      yamt  * => unlock and relock the pool.
   1362      1.113      yamt  * => return with pool locked.
   1363      1.113      yamt  */
   1364      1.113      yamt 
   1365      1.113      yamt static int
   1366      1.113      yamt pool_grow(struct pool *pp, int flags)
   1367      1.113      yamt {
   1368      1.236      maxv 	struct pool_item_header *ph;
   1369      1.237      maxv 	char *storage;
   1370      1.236      maxv 
   1371      1.209  riastrad 	/*
   1372      1.209  riastrad 	 * If there's a pool_grow in progress, wait for it to complete
   1373      1.209  riastrad 	 * and try again from the top.
   1374      1.209  riastrad 	 */
   1375      1.209  riastrad 	if (pp->pr_flags & PR_GROWING) {
   1376      1.209  riastrad 		if (flags & PR_WAITOK) {
   1377      1.209  riastrad 			do {
   1378      1.209  riastrad 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1379      1.209  riastrad 			} while (pp->pr_flags & PR_GROWING);
   1380      1.209  riastrad 			return ERESTART;
   1381      1.209  riastrad 		} else {
   1382      1.219       mrg 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1383      1.219       mrg 				/*
   1384      1.219       mrg 				 * This needs an unlock/relock dance so
   1385      1.219       mrg 				 * that the other caller has a chance to
   1386      1.219       mrg 				 * run and actually do the thing.  Note
   1387      1.219       mrg 				 * that this is effectively a busy-wait.
   1388      1.219       mrg 				 */
   1389      1.219       mrg 				mutex_exit(&pp->pr_lock);
   1390      1.219       mrg 				mutex_enter(&pp->pr_lock);
   1391      1.219       mrg 				return ERESTART;
   1392      1.219       mrg 			}
   1393      1.209  riastrad 			return EWOULDBLOCK;
   1394      1.209  riastrad 		}
   1395      1.209  riastrad 	}
   1396      1.209  riastrad 	pp->pr_flags |= PR_GROWING;
   1397      1.220  christos 	if (flags & PR_WAITOK)
   1398      1.220  christos 		mutex_exit(&pp->pr_lock);
   1399      1.220  christos 	else
   1400      1.219       mrg 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1401      1.113      yamt 
   1402      1.237      maxv 	storage = pool_allocator_alloc(pp, flags);
   1403      1.237      maxv 	if (__predict_false(storage == NULL))
   1404      1.216  christos 		goto out;
   1405      1.216  christos 
   1406      1.237      maxv 	ph = pool_alloc_item_header(pp, storage, flags);
   1407      1.216  christos 	if (__predict_false(ph == NULL)) {
   1408      1.237      maxv 		pool_allocator_free(pp, storage);
   1409      1.209  riastrad 		goto out;
   1410      1.113      yamt 	}
   1411      1.113      yamt 
   1412      1.220  christos 	if (flags & PR_WAITOK)
   1413      1.220  christos 		mutex_enter(&pp->pr_lock);
   1414      1.237      maxv 	pool_prime_page(pp, storage, ph);
   1415      1.113      yamt 	pp->pr_npagealloc++;
   1416      1.216  christos 	KASSERT(pp->pr_flags & PR_GROWING);
   1417      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1418      1.209  riastrad 	/*
   1419      1.209  riastrad 	 * If anyone was waiting for pool_grow, notify them that we
   1420      1.209  riastrad 	 * may have just done it.
   1421      1.209  riastrad 	 */
   1422      1.216  christos 	cv_broadcast(&pp->pr_cv);
   1423      1.216  christos 	return 0;
   1424      1.216  christos out:
   1425      1.220  christos 	if (flags & PR_WAITOK)
   1426      1.220  christos 		mutex_enter(&pp->pr_lock);
   1427      1.209  riastrad 	KASSERT(pp->pr_flags & PR_GROWING);
   1428      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1429      1.216  christos 	return ENOMEM;
   1430      1.113      yamt }
   1431      1.113      yamt 
   1432      1.267       chs void
   1433       1.74   thorpej pool_prime(struct pool *pp, int n)
   1434       1.74   thorpej {
   1435       1.74   thorpej 
   1436      1.134        ad 	mutex_enter(&pp->pr_lock);
   1437      1.267       chs 	pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1438      1.267       chs 	if (pp->pr_maxpages <= pp->pr_minpages)
   1439       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1440      1.267       chs 	while (pp->pr_npages < pp->pr_minpages)
   1441      1.267       chs 		(void) pool_grow(pp, PR_WAITOK);
   1442      1.134        ad 	mutex_exit(&pp->pr_lock);
   1443       1.74   thorpej }
   1444       1.55   thorpej 
   1445       1.55   thorpej /*
   1446        1.3        pk  * Add a page worth of items to the pool.
   1447       1.21   thorpej  *
   1448       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1449        1.3        pk  */
   1450       1.55   thorpej static void
   1451      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1452        1.3        pk {
   1453      1.236      maxv 	const unsigned int align = pp->pr_align;
   1454        1.3        pk 	struct pool_item *pi;
   1455      1.128  christos 	void *cp = storage;
   1456       1.55   thorpej 	int n;
   1457       1.36        pk 
   1458      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1459      1.207  riastrad 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1460      1.207  riastrad 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1461      1.213  christos 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1462        1.3        pk 
   1463        1.3        pk 	/*
   1464        1.3        pk 	 * Insert page header.
   1465        1.3        pk 	 */
   1466       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1467      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1468        1.3        pk 	ph->ph_page = storage;
   1469        1.3        pk 	ph->ph_nmissing = 0;
   1470      1.151      yamt 	ph->ph_time = time_uptime;
   1471      1.245      maxv 	if (pp->pr_roflags & PR_PHINPAGE)
   1472      1.245      maxv 		ph->ph_poolid = pp->pr_poolid;
   1473      1.245      maxv 	else
   1474       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1475        1.3        pk 
   1476        1.6   thorpej 	pp->pr_nidle++;
   1477        1.6   thorpej 
   1478        1.3        pk 	/*
   1479      1.241      maxv 	 * The item space starts after the on-page header, if any.
   1480      1.241      maxv 	 */
   1481      1.241      maxv 	ph->ph_off = pp->pr_itemoffset;
   1482      1.241      maxv 
   1483      1.241      maxv 	/*
   1484        1.3        pk 	 * Color this page.
   1485        1.3        pk 	 */
   1486      1.241      maxv 	ph->ph_off += pp->pr_curcolor;
   1487      1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1488        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1489        1.3        pk 		pp->pr_curcolor = 0;
   1490        1.3        pk 
   1491      1.238      maxv 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1492      1.125        ad 
   1493        1.3        pk 	/*
   1494        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1495        1.3        pk 	 */
   1496        1.3        pk 	n = pp->pr_itemsperpage;
   1497       1.20   thorpej 	pp->pr_nitems += n;
   1498        1.3        pk 
   1499      1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1500      1.234      maxv 		pr_item_bitmap_init(pp, ph);
   1501       1.97      yamt 	} else {
   1502       1.97      yamt 		while (n--) {
   1503       1.97      yamt 			pi = (struct pool_item *)cp;
   1504       1.78   thorpej 
   1505      1.238      maxv 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1506        1.3        pk 
   1507       1.97      yamt 			/* Insert on page list */
   1508      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1509      1.229      maxv #ifdef POOL_CHECK_MAGIC
   1510       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1511        1.3        pk #endif
   1512      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1513      1.125        ad 
   1514      1.238      maxv 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1515       1.97      yamt 		}
   1516        1.3        pk 	}
   1517        1.3        pk 
   1518        1.3        pk 	/*
   1519        1.3        pk 	 * If the pool was depleted, point at the new page.
   1520        1.3        pk 	 */
   1521        1.3        pk 	if (pp->pr_curpage == NULL)
   1522        1.3        pk 		pp->pr_curpage = ph;
   1523        1.3        pk 
   1524        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1525        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1526        1.3        pk }
   1527        1.3        pk 
   1528       1.20   thorpej /*
   1529       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1530       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1531       1.20   thorpej  *
   1532       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1533       1.20   thorpej  *
   1534       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1535       1.20   thorpej  * with it locked.
   1536       1.20   thorpej  */
   1537       1.20   thorpej static int
   1538       1.42   thorpej pool_catchup(struct pool *pp)
   1539       1.20   thorpej {
   1540       1.20   thorpej 	int error = 0;
   1541       1.20   thorpej 
   1542       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1543      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1544      1.113      yamt 		if (error) {
   1545      1.214  christos 			if (error == ERESTART)
   1546      1.214  christos 				continue;
   1547       1.20   thorpej 			break;
   1548       1.20   thorpej 		}
   1549       1.20   thorpej 	}
   1550      1.113      yamt 	return error;
   1551       1.20   thorpej }
   1552       1.20   thorpej 
   1553       1.88       chs static void
   1554       1.88       chs pool_update_curpage(struct pool *pp)
   1555       1.88       chs {
   1556       1.88       chs 
   1557       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1558       1.88       chs 	if (pp->pr_curpage == NULL) {
   1559       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1560       1.88       chs 	}
   1561      1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1562      1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1563       1.88       chs }
   1564       1.88       chs 
   1565        1.3        pk void
   1566       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1567        1.3        pk {
   1568       1.15        pk 
   1569      1.134        ad 	mutex_enter(&pp->pr_lock);
   1570        1.3        pk 	pp->pr_minitems = n;
   1571       1.20   thorpej 
   1572       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1573       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1574       1.20   thorpej 		/*
   1575       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1576       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1577       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1578       1.20   thorpej 		 */
   1579       1.20   thorpej 	}
   1580       1.21   thorpej 
   1581      1.134        ad 	mutex_exit(&pp->pr_lock);
   1582        1.3        pk }
   1583        1.3        pk 
   1584        1.3        pk void
   1585       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1586        1.3        pk {
   1587       1.15        pk 
   1588      1.134        ad 	mutex_enter(&pp->pr_lock);
   1589       1.21   thorpej 
   1590      1.267       chs 	pp->pr_maxitems = n;
   1591       1.21   thorpej 
   1592      1.134        ad 	mutex_exit(&pp->pr_lock);
   1593        1.3        pk }
   1594        1.3        pk 
   1595       1.20   thorpej void
   1596       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1597       1.20   thorpej {
   1598       1.20   thorpej 
   1599      1.134        ad 	mutex_enter(&pp->pr_lock);
   1600       1.20   thorpej 
   1601       1.20   thorpej 	pp->pr_hardlimit = n;
   1602       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1603       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1604       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1605       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1606       1.20   thorpej 
   1607      1.267       chs 	pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1608       1.21   thorpej 
   1609      1.134        ad 	mutex_exit(&pp->pr_lock);
   1610       1.20   thorpej }
   1611        1.3        pk 
   1612        1.3        pk /*
   1613        1.3        pk  * Release all complete pages that have not been used recently.
   1614      1.184     rmind  *
   1615      1.197       jym  * Must not be called from interrupt context.
   1616        1.3        pk  */
   1617       1.66   thorpej int
   1618       1.56  sommerfe pool_reclaim(struct pool *pp)
   1619        1.3        pk {
   1620        1.3        pk 	struct pool_item_header *ph, *phnext;
   1621       1.61       chs 	struct pool_pagelist pq;
   1622      1.151      yamt 	uint32_t curtime;
   1623      1.134        ad 	bool klock;
   1624      1.134        ad 	int rv;
   1625        1.3        pk 
   1626      1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1627      1.184     rmind 
   1628       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1629       1.68   thorpej 		/*
   1630       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1631       1.68   thorpej 		 */
   1632       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1633       1.68   thorpej 	}
   1634       1.68   thorpej 
   1635      1.134        ad 	/*
   1636      1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1637      1.157        ad 	 * to block.
   1638      1.134        ad 	 */
   1639      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1640      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1641      1.134        ad 		KERNEL_LOCK(1, NULL);
   1642      1.134        ad 		klock = true;
   1643      1.134        ad 	} else
   1644      1.134        ad 		klock = false;
   1645      1.134        ad 
   1646      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1647      1.134        ad 	if (pp->pr_cache != NULL)
   1648      1.134        ad 		pool_cache_invalidate(pp->pr_cache);
   1649      1.134        ad 
   1650      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1651      1.134        ad 		if (klock) {
   1652      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1653      1.134        ad 		}
   1654      1.236      maxv 		return 0;
   1655      1.134        ad 	}
   1656       1.68   thorpej 
   1657       1.88       chs 	LIST_INIT(&pq);
   1658       1.43   thorpej 
   1659      1.151      yamt 	curtime = time_uptime;
   1660       1.21   thorpej 
   1661       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1662       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1663        1.3        pk 
   1664        1.3        pk 		/* Check our minimum page claim */
   1665        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1666        1.3        pk 			break;
   1667        1.3        pk 
   1668       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1669      1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1670       1.88       chs 			continue;
   1671       1.21   thorpej 
   1672       1.88       chs 		/*
   1673      1.267       chs 		 * If freeing this page would put us below the minimum free items
   1674      1.267       chs 		 * or the minimum pages, stop now.
   1675       1.88       chs 		 */
   1676      1.267       chs 		if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
   1677      1.267       chs 		    pp->pr_npages - 1 < pp->pr_minpages)
   1678       1.88       chs 			break;
   1679       1.21   thorpej 
   1680       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1681        1.3        pk 	}
   1682        1.3        pk 
   1683      1.134        ad 	mutex_exit(&pp->pr_lock);
   1684      1.134        ad 
   1685      1.134        ad 	if (LIST_EMPTY(&pq))
   1686      1.134        ad 		rv = 0;
   1687      1.134        ad 	else {
   1688      1.134        ad 		pr_pagelist_free(pp, &pq);
   1689      1.134        ad 		rv = 1;
   1690      1.134        ad 	}
   1691      1.134        ad 
   1692      1.134        ad 	if (klock) {
   1693      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1694      1.134        ad 	}
   1695       1.66   thorpej 
   1696      1.236      maxv 	return rv;
   1697        1.3        pk }
   1698        1.3        pk 
   1699        1.3        pk /*
   1700      1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1701      1.131        ad  *
   1702      1.134        ad  * Note, must never be called from interrupt context.
   1703        1.3        pk  */
   1704      1.197       jym bool
   1705      1.197       jym pool_drain(struct pool **ppp)
   1706        1.3        pk {
   1707      1.197       jym 	bool reclaimed;
   1708        1.3        pk 	struct pool *pp;
   1709      1.134        ad 
   1710      1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1711        1.3        pk 
   1712       1.61       chs 	pp = NULL;
   1713      1.134        ad 
   1714      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1715      1.134        ad 	mutex_enter(&pool_head_lock);
   1716      1.134        ad 	do {
   1717      1.134        ad 		if (drainpp == NULL) {
   1718      1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1719      1.134        ad 		}
   1720      1.134        ad 		if (drainpp != NULL) {
   1721      1.134        ad 			pp = drainpp;
   1722      1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1723      1.134        ad 		}
   1724      1.134        ad 		/*
   1725      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1726      1.134        ad 		 * one pool in the system being active.
   1727      1.134        ad 		 */
   1728      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1729      1.134        ad 	pp->pr_refcnt++;
   1730      1.134        ad 	mutex_exit(&pool_head_lock);
   1731      1.134        ad 
   1732      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1733      1.186     pooka 	reclaimed = pool_reclaim(pp);
   1734      1.134        ad 
   1735      1.134        ad 	/* Finally, unlock the pool. */
   1736      1.134        ad 	mutex_enter(&pool_head_lock);
   1737      1.134        ad 	pp->pr_refcnt--;
   1738      1.134        ad 	cv_broadcast(&pool_busy);
   1739      1.134        ad 	mutex_exit(&pool_head_lock);
   1740      1.186     pooka 
   1741      1.197       jym 	if (ppp != NULL)
   1742      1.197       jym 		*ppp = pp;
   1743      1.197       jym 
   1744      1.186     pooka 	return reclaimed;
   1745        1.3        pk }
   1746        1.3        pk 
   1747        1.3        pk /*
   1748      1.217       mrg  * Calculate the total number of pages consumed by pools.
   1749      1.217       mrg  */
   1750      1.217       mrg int
   1751      1.217       mrg pool_totalpages(void)
   1752      1.217       mrg {
   1753      1.250     skrll 
   1754      1.250     skrll 	mutex_enter(&pool_head_lock);
   1755      1.250     skrll 	int pages = pool_totalpages_locked();
   1756      1.250     skrll 	mutex_exit(&pool_head_lock);
   1757      1.250     skrll 
   1758      1.250     skrll 	return pages;
   1759      1.250     skrll }
   1760      1.250     skrll 
   1761      1.250     skrll int
   1762      1.250     skrll pool_totalpages_locked(void)
   1763      1.250     skrll {
   1764      1.217       mrg 	struct pool *pp;
   1765      1.218       mrg 	uint64_t total = 0;
   1766      1.217       mrg 
   1767      1.218       mrg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1768      1.218       mrg 		uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1769      1.218       mrg 
   1770      1.218       mrg 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1771      1.218       mrg 			bytes -= (pp->pr_nout * pp->pr_size);
   1772      1.218       mrg 		total += bytes;
   1773      1.218       mrg 	}
   1774      1.217       mrg 
   1775      1.218       mrg 	return atop(total);
   1776      1.217       mrg }
   1777      1.217       mrg 
   1778      1.217       mrg /*
   1779        1.3        pk  * Diagnostic helpers.
   1780        1.3        pk  */
   1781       1.21   thorpej 
   1782       1.25   thorpej void
   1783      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1784      1.108      yamt {
   1785      1.108      yamt 	struct pool *pp;
   1786      1.108      yamt 
   1787      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1788      1.108      yamt 		pool_printit(pp, modif, pr);
   1789      1.108      yamt 	}
   1790      1.108      yamt }
   1791      1.108      yamt 
   1792      1.108      yamt void
   1793       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1794       1.25   thorpej {
   1795       1.25   thorpej 
   1796       1.25   thorpej 	if (pp == NULL) {
   1797       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1798       1.25   thorpej 		return;
   1799       1.25   thorpej 	}
   1800       1.25   thorpej 
   1801       1.25   thorpej 	pool_print1(pp, modif, pr);
   1802       1.25   thorpej }
   1803       1.25   thorpej 
   1804       1.21   thorpej static void
   1805      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1806       1.97      yamt     void (*pr)(const char *, ...))
   1807       1.88       chs {
   1808       1.88       chs 	struct pool_item_header *ph;
   1809       1.88       chs 
   1810       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1811      1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1812      1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1813      1.229      maxv #ifdef POOL_CHECK_MAGIC
   1814      1.229      maxv 		struct pool_item *pi;
   1815      1.242      maxv 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1816      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1817       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1818       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1819       1.97      yamt 					    pi, pi->pi_magic);
   1820       1.97      yamt 				}
   1821       1.88       chs 			}
   1822       1.88       chs 		}
   1823       1.88       chs #endif
   1824       1.88       chs 	}
   1825       1.88       chs }
   1826       1.88       chs 
   1827       1.88       chs static void
   1828       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1829        1.3        pk {
   1830       1.25   thorpej 	struct pool_item_header *ph;
   1831      1.134        ad 	pool_cache_t pc;
   1832      1.134        ad 	pcg_t *pcg;
   1833      1.134        ad 	pool_cache_cpu_t *cc;
   1834      1.271        ad 	uint64_t cpuhit, cpumiss, pchit, pcmiss;
   1835      1.271        ad 	uint32_t nfull;
   1836  1.274.2.1   thorpej 	int i;
   1837  1.274.2.1   thorpej 	bool print_log = false, print_pagelist = false, print_cache = false;
   1838  1.274.2.1   thorpej 	bool print_short = false, skip_empty = false;
   1839       1.25   thorpej 	char c;
   1840       1.25   thorpej 
   1841       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1842       1.25   thorpej 		if (c == 'l')
   1843  1.274.2.1   thorpej 			print_log = true;
   1844       1.25   thorpej 		if (c == 'p')
   1845  1.274.2.1   thorpej 			print_pagelist = true;
   1846       1.44   thorpej 		if (c == 'c')
   1847  1.274.2.1   thorpej 			print_cache = true;
   1848  1.274.2.1   thorpej 		if (c == 's')
   1849  1.274.2.1   thorpej 			print_short = true;
   1850  1.274.2.1   thorpej 		if (c == 'S')
   1851  1.274.2.1   thorpej 			skip_empty = true;
   1852       1.25   thorpej 	}
   1853       1.25   thorpej 
   1854  1.274.2.1   thorpej 	if (skip_empty && pp->pr_nget == 0)
   1855  1.274.2.1   thorpej 		return;
   1856  1.274.2.1   thorpej 
   1857      1.134        ad 	if ((pc = pp->pr_cache) != NULL) {
   1858  1.274.2.1   thorpej 		(*pr)("POOLCACHE");
   1859      1.134        ad 	} else {
   1860      1.134        ad 		(*pr)("POOL");
   1861      1.134        ad 	}
   1862      1.134        ad 
   1863  1.274.2.1   thorpej 	/* Single line output. */
   1864  1.274.2.1   thorpej 	if (print_short) {
   1865  1.274.2.1   thorpej 		(*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u\n",
   1866  1.274.2.1   thorpej 		    pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages,
   1867  1.274.2.1   thorpej 		    pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput,
   1868  1.274.2.1   thorpej 		    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle);
   1869  1.274.2.1   thorpej 
   1870  1.274.2.1   thorpej 		return;
   1871  1.274.2.1   thorpej 	}
   1872  1.274.2.1   thorpej 
   1873      1.134        ad 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1874       1.25   thorpej 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1875       1.25   thorpej 	    pp->pr_roflags);
   1876  1.274.2.1   thorpej 	(*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc);
   1877       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1878       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1879       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1880       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1881       1.25   thorpej 
   1882      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1883       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1884       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1885       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1886       1.25   thorpej 
   1887  1.274.2.1   thorpej 	if (!print_pagelist)
   1888       1.25   thorpej 		goto skip_pagelist;
   1889       1.25   thorpej 
   1890       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1891       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1892       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1893       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1894       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1895       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1896       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1897       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1898       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1899       1.88       chs 
   1900       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1901       1.25   thorpej 		(*pr)("\tno current page\n");
   1902       1.25   thorpej 	else
   1903       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1904       1.25   thorpej 
   1905       1.25   thorpej  skip_pagelist:
   1906  1.274.2.1   thorpej 	if (print_log)
   1907       1.25   thorpej 		goto skip_log;
   1908       1.25   thorpej 
   1909       1.25   thorpej 	(*pr)("\n");
   1910        1.3        pk 
   1911       1.25   thorpej  skip_log:
   1912       1.44   thorpej 
   1913      1.102       chs #define PR_GROUPLIST(pcg)						\
   1914      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1915      1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1916      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1917      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1918      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1919      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1920      1.102       chs 			    (unsigned long long)			\
   1921      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1922      1.102       chs 		} else {						\
   1923      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1924      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1925      1.102       chs 		}							\
   1926      1.102       chs 	}
   1927      1.102       chs 
   1928      1.134        ad 	if (pc != NULL) {
   1929      1.134        ad 		cpuhit = 0;
   1930      1.134        ad 		cpumiss = 0;
   1931      1.271        ad 		pcmiss = 0;
   1932      1.271        ad 		nfull = 0;
   1933      1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1934      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1935      1.134        ad 				continue;
   1936      1.134        ad 			cpuhit += cc->cc_hits;
   1937      1.134        ad 			cpumiss += cc->cc_misses;
   1938      1.271        ad 			pcmiss += cc->cc_pcmisses;
   1939      1.271        ad 			nfull += cc->cc_nfull;
   1940      1.134        ad 		}
   1941      1.271        ad 		pchit = cpumiss - pcmiss;
   1942      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1943      1.271        ad 		(*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
   1944      1.271        ad 		(*pr)("\tcache layer full groups %u\n", nfull);
   1945      1.134        ad 		if (print_cache) {
   1946      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1947      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1948      1.134        ad 			    pcg = pcg->pcg_next) {
   1949      1.134        ad 				PR_GROUPLIST(pcg);
   1950      1.134        ad 			}
   1951      1.103       chs 		}
   1952       1.44   thorpej 	}
   1953      1.102       chs #undef PR_GROUPLIST
   1954       1.88       chs }
   1955       1.88       chs 
   1956       1.88       chs static int
   1957       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1958       1.88       chs {
   1959       1.88       chs 	struct pool_item *pi;
   1960      1.128  christos 	void *page;
   1961       1.88       chs 	int n;
   1962       1.88       chs 
   1963      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1964      1.253      maxv 		page = POOL_OBJ_TO_PAGE(pp, ph);
   1965      1.121      yamt 		if (page != ph->ph_page &&
   1966      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1967      1.121      yamt 			if (label != NULL)
   1968      1.121      yamt 				printf("%s: ", label);
   1969      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   1970      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   1971      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   1972      1.121      yamt 				ph, page);
   1973      1.121      yamt 			return 1;
   1974      1.121      yamt 		}
   1975       1.88       chs 	}
   1976        1.3        pk 
   1977      1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   1978       1.97      yamt 		return 0;
   1979       1.97      yamt 
   1980      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1981       1.88       chs 	     pi != NULL;
   1982      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1983       1.88       chs 
   1984      1.229      maxv #ifdef POOL_CHECK_MAGIC
   1985       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   1986       1.88       chs 			if (label != NULL)
   1987       1.88       chs 				printf("%s: ", label);
   1988       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   1989      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   1990       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1991      1.121      yamt 				n, pi);
   1992       1.88       chs 			panic("pool");
   1993       1.88       chs 		}
   1994       1.88       chs #endif
   1995      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1996      1.121      yamt 			continue;
   1997      1.121      yamt 		}
   1998      1.253      maxv 		page = POOL_OBJ_TO_PAGE(pp, pi);
   1999       1.88       chs 		if (page == ph->ph_page)
   2000       1.88       chs 			continue;
   2001       1.88       chs 
   2002       1.88       chs 		if (label != NULL)
   2003       1.88       chs 			printf("%s: ", label);
   2004       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   2005       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   2006       1.88       chs 			pp->pr_wchan, ph->ph_page,
   2007       1.88       chs 			n, pi, page);
   2008       1.88       chs 		return 1;
   2009       1.88       chs 	}
   2010       1.88       chs 	return 0;
   2011        1.3        pk }
   2012        1.3        pk 
   2013       1.88       chs 
   2014        1.3        pk int
   2015       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   2016        1.3        pk {
   2017        1.3        pk 	struct pool_item_header *ph;
   2018        1.3        pk 	int r = 0;
   2019        1.3        pk 
   2020      1.134        ad 	mutex_enter(&pp->pr_lock);
   2021       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2022       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2023       1.88       chs 		if (r) {
   2024       1.88       chs 			goto out;
   2025       1.88       chs 		}
   2026       1.88       chs 	}
   2027       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2028       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2029       1.88       chs 		if (r) {
   2030        1.3        pk 			goto out;
   2031        1.3        pk 		}
   2032       1.88       chs 	}
   2033       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2034       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2035       1.88       chs 		if (r) {
   2036        1.3        pk 			goto out;
   2037        1.3        pk 		}
   2038        1.3        pk 	}
   2039       1.88       chs 
   2040        1.3        pk out:
   2041      1.134        ad 	mutex_exit(&pp->pr_lock);
   2042      1.236      maxv 	return r;
   2043       1.43   thorpej }
   2044       1.43   thorpej 
   2045       1.43   thorpej /*
   2046       1.43   thorpej  * pool_cache_init:
   2047       1.43   thorpej  *
   2048       1.43   thorpej  *	Initialize a pool cache.
   2049      1.134        ad  */
   2050      1.134        ad pool_cache_t
   2051      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2052      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   2053      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2054      1.134        ad {
   2055      1.134        ad 	pool_cache_t pc;
   2056      1.134        ad 
   2057      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   2058      1.134        ad 	if (pc == NULL)
   2059      1.134        ad 		return NULL;
   2060      1.134        ad 
   2061      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2062      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   2063      1.134        ad 
   2064      1.134        ad 	return pc;
   2065      1.134        ad }
   2066      1.134        ad 
   2067      1.134        ad /*
   2068      1.134        ad  * pool_cache_bootstrap:
   2069       1.43   thorpej  *
   2070      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   2071      1.134        ad  *	provides initial storage.
   2072       1.43   thorpej  */
   2073       1.43   thorpej void
   2074      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2075      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   2076      1.134        ad     struct pool_allocator *palloc, int ipl,
   2077      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2078       1.43   thorpej     void *arg)
   2079       1.43   thorpej {
   2080      1.134        ad 	CPU_INFO_ITERATOR cii;
   2081      1.145        ad 	pool_cache_t pc1;
   2082      1.134        ad 	struct cpu_info *ci;
   2083      1.134        ad 	struct pool *pp;
   2084      1.134        ad 
   2085      1.134        ad 	pp = &pc->pc_pool;
   2086      1.208       chs 	if (palloc == NULL && ipl == IPL_NONE) {
   2087      1.208       chs 		if (size > PAGE_SIZE) {
   2088      1.208       chs 			int bigidx = pool_bigidx(size);
   2089      1.208       chs 
   2090      1.208       chs 			palloc = &pool_allocator_big[bigidx];
   2091      1.252      maxv 			flags |= PR_NOALIGN;
   2092      1.208       chs 		} else
   2093      1.208       chs 			palloc = &pool_allocator_nointr;
   2094      1.208       chs 	}
   2095      1.134        ad 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2096       1.43   thorpej 
   2097      1.134        ad 	if (ctor == NULL) {
   2098      1.261  christos 		ctor = NO_CTOR;
   2099      1.134        ad 	}
   2100      1.134        ad 	if (dtor == NULL) {
   2101      1.261  christos 		dtor = NO_DTOR;
   2102      1.134        ad 	}
   2103       1.43   thorpej 
   2104      1.134        ad 	pc->pc_fullgroups = NULL;
   2105      1.134        ad 	pc->pc_partgroups = NULL;
   2106       1.43   thorpej 	pc->pc_ctor = ctor;
   2107       1.43   thorpej 	pc->pc_dtor = dtor;
   2108       1.43   thorpej 	pc->pc_arg  = arg;
   2109      1.134        ad 	pc->pc_refcnt = 0;
   2110      1.136      yamt 	pc->pc_freecheck = NULL;
   2111      1.134        ad 
   2112      1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   2113      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2114      1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   2115      1.271        ad 		pc->pc_pcgcache = &pcg_large_cache;
   2116      1.142        ad 	} else {
   2117      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2118      1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   2119      1.271        ad 		pc->pc_pcgcache = &pcg_normal_cache;
   2120      1.142        ad 	}
   2121      1.142        ad 
   2122      1.134        ad 	/* Allocate per-CPU caches. */
   2123      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2124      1.134        ad 	pc->pc_ncpu = 0;
   2125      1.139        ad 	if (ncpu < 2) {
   2126      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2127      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2128      1.137        ad 	} else {
   2129      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2130      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2131      1.137        ad 		}
   2132      1.134        ad 	}
   2133      1.145        ad 
   2134      1.145        ad 	/* Add to list of all pools. */
   2135      1.145        ad 	if (__predict_true(!cold))
   2136      1.134        ad 		mutex_enter(&pool_head_lock);
   2137      1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2138      1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2139      1.145        ad 			break;
   2140      1.145        ad 	}
   2141      1.145        ad 	if (pc1 == NULL)
   2142      1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2143      1.145        ad 	else
   2144      1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2145      1.145        ad 	if (__predict_true(!cold))
   2146      1.134        ad 		mutex_exit(&pool_head_lock);
   2147      1.145        ad 
   2148      1.145        ad 	membar_sync();
   2149      1.145        ad 	pp->pr_cache = pc;
   2150       1.43   thorpej }
   2151       1.43   thorpej 
   2152       1.43   thorpej /*
   2153       1.43   thorpej  * pool_cache_destroy:
   2154       1.43   thorpej  *
   2155       1.43   thorpej  *	Destroy a pool cache.
   2156       1.43   thorpej  */
   2157       1.43   thorpej void
   2158      1.134        ad pool_cache_destroy(pool_cache_t pc)
   2159       1.43   thorpej {
   2160      1.191      para 
   2161      1.191      para 	pool_cache_bootstrap_destroy(pc);
   2162      1.191      para 	pool_put(&cache_pool, pc);
   2163      1.191      para }
   2164      1.191      para 
   2165      1.191      para /*
   2166      1.191      para  * pool_cache_bootstrap_destroy:
   2167      1.191      para  *
   2168      1.191      para  *	Destroy a pool cache.
   2169      1.191      para  */
   2170      1.191      para void
   2171      1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   2172      1.191      para {
   2173      1.134        ad 	struct pool *pp = &pc->pc_pool;
   2174      1.175       jym 	u_int i;
   2175      1.134        ad 
   2176      1.134        ad 	/* Remove it from the global list. */
   2177      1.134        ad 	mutex_enter(&pool_head_lock);
   2178      1.134        ad 	while (pc->pc_refcnt != 0)
   2179      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2180      1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2181      1.134        ad 	mutex_exit(&pool_head_lock);
   2182       1.43   thorpej 
   2183       1.43   thorpej 	/* First, invalidate the entire cache. */
   2184       1.43   thorpej 	pool_cache_invalidate(pc);
   2185       1.43   thorpej 
   2186      1.134        ad 	/* Disassociate it from the pool. */
   2187      1.134        ad 	mutex_enter(&pp->pr_lock);
   2188      1.134        ad 	pp->pr_cache = NULL;
   2189      1.134        ad 	mutex_exit(&pp->pr_lock);
   2190      1.134        ad 
   2191      1.134        ad 	/* Destroy per-CPU data */
   2192      1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2193      1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   2194      1.134        ad 
   2195      1.134        ad 	/* Finally, destroy it. */
   2196      1.134        ad 	pool_destroy(pp);
   2197      1.134        ad }
   2198      1.134        ad 
   2199      1.134        ad /*
   2200      1.134        ad  * pool_cache_cpu_init1:
   2201      1.134        ad  *
   2202      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2203      1.134        ad  */
   2204      1.134        ad static void
   2205      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2206      1.134        ad {
   2207      1.134        ad 	pool_cache_cpu_t *cc;
   2208      1.137        ad 	int index;
   2209      1.134        ad 
   2210      1.137        ad 	index = ci->ci_index;
   2211      1.137        ad 
   2212      1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   2213      1.134        ad 
   2214      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2215      1.134        ad 		return;
   2216      1.134        ad 	}
   2217      1.134        ad 
   2218      1.134        ad 	/*
   2219      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2220      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2221      1.134        ad 	 */
   2222      1.134        ad 	if (pc->pc_ncpu == 0) {
   2223      1.134        ad 		cc = &pc->pc_cpu0;
   2224      1.134        ad 		pc->pc_ncpu = 1;
   2225      1.134        ad 	} else {
   2226      1.134        ad 		pc->pc_ncpu++;
   2227      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2228      1.134        ad 	}
   2229      1.134        ad 
   2230      1.271        ad 	cc->cc_current = __UNCONST(&pcg_dummy);
   2231      1.271        ad 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2232      1.271        ad 	cc->cc_pcgcache = pc->pc_pcgcache;
   2233      1.134        ad 	cc->cc_hits = 0;
   2234      1.134        ad 	cc->cc_misses = 0;
   2235      1.271        ad 	cc->cc_pcmisses = 0;
   2236      1.271        ad 	cc->cc_contended = 0;
   2237      1.271        ad 	cc->cc_nfull = 0;
   2238      1.271        ad 	cc->cc_npart = 0;
   2239      1.134        ad 
   2240      1.137        ad 	pc->pc_cpus[index] = cc;
   2241       1.43   thorpej }
   2242       1.43   thorpej 
   2243      1.134        ad /*
   2244      1.134        ad  * pool_cache_cpu_init:
   2245      1.134        ad  *
   2246      1.134        ad  *	Called whenever a new CPU is attached.
   2247      1.134        ad  */
   2248      1.134        ad void
   2249      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2250       1.43   thorpej {
   2251      1.134        ad 	pool_cache_t pc;
   2252      1.134        ad 
   2253      1.134        ad 	mutex_enter(&pool_head_lock);
   2254      1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2255      1.134        ad 		pc->pc_refcnt++;
   2256      1.134        ad 		mutex_exit(&pool_head_lock);
   2257       1.43   thorpej 
   2258      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2259       1.43   thorpej 
   2260      1.134        ad 		mutex_enter(&pool_head_lock);
   2261      1.134        ad 		pc->pc_refcnt--;
   2262      1.134        ad 		cv_broadcast(&pool_busy);
   2263      1.134        ad 	}
   2264      1.134        ad 	mutex_exit(&pool_head_lock);
   2265       1.43   thorpej }
   2266       1.43   thorpej 
   2267      1.134        ad /*
   2268      1.134        ad  * pool_cache_reclaim:
   2269      1.134        ad  *
   2270      1.134        ad  *	Reclaim memory from a pool cache.
   2271      1.134        ad  */
   2272      1.134        ad bool
   2273      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2274       1.43   thorpej {
   2275       1.43   thorpej 
   2276      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2277      1.134        ad }
   2278       1.43   thorpej 
   2279      1.136      yamt static void
   2280      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2281      1.136      yamt {
   2282      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2283      1.136      yamt 	pool_put(&pc->pc_pool, object);
   2284      1.136      yamt }
   2285      1.136      yamt 
   2286      1.134        ad /*
   2287      1.134        ad  * pool_cache_destruct_object:
   2288      1.134        ad  *
   2289      1.134        ad  *	Force destruction of an object and its release back into
   2290      1.134        ad  *	the pool.
   2291      1.134        ad  */
   2292      1.134        ad void
   2293      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2294      1.134        ad {
   2295      1.134        ad 
   2296      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2297      1.136      yamt 
   2298      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2299       1.43   thorpej }
   2300       1.43   thorpej 
   2301      1.134        ad /*
   2302      1.134        ad  * pool_cache_invalidate_groups:
   2303      1.134        ad  *
   2304      1.271        ad  *	Invalidate a chain of groups and destruct all objects.  Return the
   2305      1.271        ad  *	number of groups that were invalidated.
   2306      1.134        ad  */
   2307      1.271        ad static int
   2308      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2309      1.102       chs {
   2310      1.134        ad 	void *object;
   2311      1.134        ad 	pcg_t *next;
   2312      1.271        ad 	int i, n;
   2313      1.134        ad 
   2314      1.271        ad 	for (n = 0; pcg != NULL; pcg = next, n++) {
   2315      1.134        ad 		next = pcg->pcg_next;
   2316      1.134        ad 
   2317      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2318      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2319      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2320      1.134        ad 		}
   2321      1.102       chs 
   2322      1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2323      1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2324      1.142        ad 		} else {
   2325      1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2326      1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2327      1.142        ad 		}
   2328      1.102       chs 	}
   2329      1.271        ad 	return n;
   2330      1.102       chs }
   2331      1.102       chs 
   2332       1.43   thorpej /*
   2333      1.134        ad  * pool_cache_invalidate:
   2334       1.43   thorpej  *
   2335      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2336      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2337      1.176   thorpej  *
   2338      1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2339      1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2340      1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2341      1.196       jym  *
   2342      1.196       jym  *	Invalidation is a costly process and should not be called from
   2343      1.196       jym  *	interrupt context.
   2344       1.43   thorpej  */
   2345      1.134        ad void
   2346      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2347      1.134        ad {
   2348      1.196       jym 	uint64_t where;
   2349      1.271        ad 	pcg_t *pcg;
   2350      1.271        ad 	int n, s;
   2351      1.196       jym 
   2352      1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2353      1.176   thorpej 
   2354      1.177       jym 	if (ncpu < 2 || !mp_online) {
   2355      1.176   thorpej 		/*
   2356      1.176   thorpej 		 * We might be called early enough in the boot process
   2357      1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2358      1.196       jym 		 * In this case, transfer the content of the local CPU's
   2359      1.196       jym 		 * cache back into global cache as only this CPU is currently
   2360      1.196       jym 		 * running.
   2361      1.176   thorpej 		 */
   2362      1.196       jym 		pool_cache_transfer(pc);
   2363      1.176   thorpej 	} else {
   2364      1.176   thorpej 		/*
   2365      1.196       jym 		 * Signal all CPUs that they must transfer their local
   2366      1.196       jym 		 * cache back to the global pool then wait for the xcall to
   2367      1.196       jym 		 * complete.
   2368      1.176   thorpej 		 */
   2369      1.261  christos 		where = xc_broadcast(0,
   2370      1.261  christos 		    __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
   2371      1.176   thorpej 		xc_wait(where);
   2372      1.176   thorpej 	}
   2373      1.196       jym 
   2374      1.271        ad 	/* Now dequeue and invalidate everything. */
   2375      1.271        ad 	pcg = pool_pcg_trunc(&pcg_normal_cache);
   2376      1.271        ad 	(void)pool_cache_invalidate_groups(pc, pcg);
   2377      1.271        ad 
   2378      1.271        ad 	pcg = pool_pcg_trunc(&pcg_large_cache);
   2379      1.271        ad 	(void)pool_cache_invalidate_groups(pc, pcg);
   2380      1.271        ad 
   2381      1.271        ad 	pcg = pool_pcg_trunc(&pc->pc_fullgroups);
   2382      1.271        ad 	n = pool_cache_invalidate_groups(pc, pcg);
   2383      1.271        ad 	s = splvm();
   2384      1.271        ad 	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
   2385      1.271        ad 	splx(s);
   2386      1.271        ad 
   2387      1.271        ad 	pcg = pool_pcg_trunc(&pc->pc_partgroups);
   2388      1.271        ad 	n = pool_cache_invalidate_groups(pc, pcg);
   2389      1.271        ad 	s = splvm();
   2390      1.271        ad 	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
   2391      1.271        ad 	splx(s);
   2392      1.134        ad }
   2393      1.134        ad 
   2394      1.175       jym /*
   2395      1.175       jym  * pool_cache_invalidate_cpu:
   2396      1.175       jym  *
   2397      1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2398      1.175       jym  *	identified by its associated index.
   2399      1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2400      1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2401      1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2402      1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2403      1.175       jym  *	may result in an undefined behaviour.
   2404      1.175       jym  */
   2405      1.175       jym static void
   2406      1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2407      1.175       jym {
   2408      1.175       jym 	pool_cache_cpu_t *cc;
   2409      1.175       jym 	pcg_t *pcg;
   2410      1.175       jym 
   2411      1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2412      1.175       jym 		return;
   2413      1.175       jym 
   2414      1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2415      1.175       jym 		pcg->pcg_next = NULL;
   2416      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2417      1.175       jym 	}
   2418      1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2419      1.175       jym 		pcg->pcg_next = NULL;
   2420      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2421      1.175       jym 	}
   2422      1.175       jym 	if (cc != &pc->pc_cpu0)
   2423      1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2424      1.175       jym 
   2425      1.175       jym }
   2426      1.175       jym 
   2427      1.134        ad void
   2428      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2429      1.134        ad {
   2430      1.134        ad 
   2431      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2432      1.134        ad }
   2433      1.134        ad 
   2434      1.134        ad void
   2435      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2436      1.134        ad {
   2437      1.134        ad 
   2438      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2439      1.134        ad }
   2440      1.134        ad 
   2441      1.134        ad void
   2442      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2443      1.134        ad {
   2444      1.134        ad 
   2445      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2446      1.134        ad }
   2447      1.134        ad 
   2448      1.134        ad void
   2449      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2450      1.134        ad {
   2451      1.134        ad 
   2452      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2453      1.134        ad }
   2454      1.134        ad 
   2455      1.267       chs void
   2456      1.267       chs pool_cache_prime(pool_cache_t pc, int n)
   2457      1.267       chs {
   2458      1.267       chs 
   2459      1.267       chs 	pool_prime(&pc->pc_pool, n);
   2460      1.267       chs }
   2461      1.267       chs 
   2462      1.271        ad /*
   2463      1.271        ad  * pool_pcg_get:
   2464      1.271        ad  *
   2465      1.271        ad  *	Get a cache group from the specified list.  Return true if
   2466      1.271        ad  *	contention was encountered.  Must be called at IPL_VM because
   2467      1.271        ad  *	of spin wait vs. kernel_lock.
   2468      1.271        ad  */
   2469      1.271        ad static int
   2470      1.271        ad pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
   2471      1.271        ad {
   2472      1.271        ad 	int count = SPINLOCK_BACKOFF_MIN;
   2473      1.271        ad 	pcg_t *o, *n;
   2474      1.271        ad 
   2475      1.271        ad 	for (o = atomic_load_relaxed(head);; o = n) {
   2476      1.271        ad 		if (__predict_false(o == &pcg_dummy)) {
   2477      1.271        ad 			/* Wait for concurrent get to complete. */
   2478      1.271        ad 			SPINLOCK_BACKOFF(count);
   2479      1.271        ad 			n = atomic_load_relaxed(head);
   2480      1.271        ad 			continue;
   2481      1.271        ad 		}
   2482      1.271        ad 		if (__predict_false(o == NULL)) {
   2483      1.271        ad 			break;
   2484      1.271        ad 		}
   2485      1.271        ad 		/* Lock out concurrent get/put. */
   2486      1.271        ad 		n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
   2487      1.271        ad 		if (o == n) {
   2488      1.271        ad 			/* Fetch pointer to next item and then unlock. */
   2489      1.271        ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
   2490      1.271        ad 			membar_datadep_consumer(); /* alpha */
   2491      1.271        ad #endif
   2492      1.271        ad 			n = atomic_load_relaxed(&o->pcg_next);
   2493      1.271        ad 			atomic_store_release(head, n);
   2494      1.271        ad 			break;
   2495      1.271        ad 		}
   2496      1.271        ad 	}
   2497      1.271        ad 	*pcgp = o;
   2498      1.271        ad 	return count != SPINLOCK_BACKOFF_MIN;
   2499      1.271        ad }
   2500      1.271        ad 
   2501      1.271        ad /*
   2502      1.271        ad  * pool_pcg_trunc:
   2503      1.271        ad  *
   2504      1.271        ad  *	Chop out entire list of pool cache groups.
   2505      1.271        ad  */
   2506      1.271        ad static pcg_t *
   2507      1.271        ad pool_pcg_trunc(pcg_t *volatile *head)
   2508      1.271        ad {
   2509      1.271        ad 	int count = SPINLOCK_BACKOFF_MIN, s;
   2510      1.271        ad 	pcg_t *o, *n;
   2511      1.271        ad 
   2512      1.271        ad 	s = splvm();
   2513      1.271        ad 	for (o = atomic_load_relaxed(head);; o = n) {
   2514      1.271        ad 		if (__predict_false(o == &pcg_dummy)) {
   2515      1.271        ad 			/* Wait for concurrent get to complete. */
   2516      1.271        ad 			SPINLOCK_BACKOFF(count);
   2517      1.271        ad 			n = atomic_load_relaxed(head);
   2518      1.271        ad 			continue;
   2519      1.271        ad 		}
   2520      1.271        ad 		n = atomic_cas_ptr(head, o, NULL);
   2521      1.271        ad 		if (o == n) {
   2522      1.271        ad 			splx(s);
   2523      1.271        ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
   2524      1.271        ad 			membar_datadep_consumer(); /* alpha */
   2525      1.271        ad #endif
   2526      1.271        ad 			return o;
   2527      1.271        ad 		}
   2528      1.271        ad 	}
   2529      1.271        ad }
   2530      1.271        ad 
   2531      1.271        ad /*
   2532      1.271        ad  * pool_pcg_put:
   2533      1.271        ad  *
   2534      1.271        ad  *	Put a pool cache group to the specified list.  Return true if
   2535      1.271        ad  *	contention was encountered.  Must be called at IPL_VM because of
   2536      1.271        ad  *	spin wait vs. kernel_lock.
   2537      1.271        ad  */
   2538      1.271        ad static int
   2539      1.271        ad pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
   2540      1.271        ad {
   2541      1.271        ad 	int count = SPINLOCK_BACKOFF_MIN;
   2542      1.271        ad 	pcg_t *o, *n;
   2543      1.271        ad 
   2544      1.271        ad 	for (o = atomic_load_relaxed(head);; o = n) {
   2545      1.271        ad 		if (__predict_false(o == &pcg_dummy)) {
   2546      1.271        ad 			/* Wait for concurrent get to complete. */
   2547      1.271        ad 			SPINLOCK_BACKOFF(count);
   2548      1.271        ad 			n = atomic_load_relaxed(head);
   2549      1.271        ad 			continue;
   2550      1.271        ad 		}
   2551      1.271        ad 		pcg->pcg_next = o;
   2552      1.271        ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
   2553      1.271        ad 		membar_exit();
   2554      1.271        ad #endif
   2555      1.271        ad 		n = atomic_cas_ptr(head, o, pcg);
   2556      1.271        ad 		if (o == n) {
   2557      1.271        ad 			return count != SPINLOCK_BACKOFF_MIN;
   2558      1.271        ad 		}
   2559      1.271        ad 	}
   2560      1.271        ad }
   2561      1.271        ad 
   2562      1.162        ad static bool __noinline
   2563      1.271        ad pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
   2564      1.271        ad     void **objectp, paddr_t *pap, int flags)
   2565       1.43   thorpej {
   2566      1.134        ad 	pcg_t *pcg, *cur;
   2567       1.43   thorpej 	void *object;
   2568       1.58   thorpej 
   2569      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2570      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2571      1.168      yamt 
   2572      1.134        ad 	cc->cc_misses++;
   2573       1.43   thorpej 
   2574      1.134        ad 	/*
   2575      1.271        ad 	 * If there's a full group, release our empty group back to the
   2576      1.271        ad 	 * cache.  Install the full group as cc_current and return.
   2577      1.134        ad 	 */
   2578      1.271        ad 	cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
   2579      1.271        ad 	if (__predict_true(pcg != NULL)) {
   2580      1.271        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2581      1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2582      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2583      1.271        ad 			(void)pool_pcg_put(cc->cc_pcgcache, cur);
   2584       1.87   thorpej 		}
   2585      1.271        ad 		cc->cc_nfull--;
   2586      1.134        ad 		cc->cc_current = pcg;
   2587      1.162        ad 		return true;
   2588      1.134        ad 	}
   2589      1.134        ad 
   2590      1.134        ad 	/*
   2591      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2592      1.134        ad 	 * path: fetch a new object from the pool and construct
   2593      1.134        ad 	 * it.
   2594      1.134        ad 	 */
   2595      1.271        ad 	cc->cc_pcmisses++;
   2596      1.162        ad 	splx(s);
   2597      1.134        ad 
   2598      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2599      1.134        ad 	*objectp = object;
   2600      1.211  riastrad 	if (__predict_false(object == NULL)) {
   2601      1.265       chs 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   2602      1.162        ad 		return false;
   2603      1.211  riastrad 	}
   2604      1.125        ad 
   2605      1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2606      1.134        ad 		pool_put(&pc->pc_pool, object);
   2607      1.134        ad 		*objectp = NULL;
   2608      1.162        ad 		return false;
   2609       1.43   thorpej 	}
   2610       1.43   thorpej 
   2611      1.238      maxv 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2612       1.43   thorpej 
   2613      1.134        ad 	if (pap != NULL) {
   2614      1.134        ad #ifdef POOL_VTOPHYS
   2615      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2616      1.134        ad #else
   2617      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2618      1.134        ad #endif
   2619      1.102       chs 	}
   2620       1.43   thorpej 
   2621      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2622      1.162        ad 	return false;
   2623       1.43   thorpej }
   2624       1.43   thorpej 
   2625       1.43   thorpej /*
   2626      1.134        ad  * pool_cache_get{,_paddr}:
   2627       1.43   thorpej  *
   2628      1.134        ad  *	Get an object from a pool cache (optionally returning
   2629      1.134        ad  *	the physical address of the object).
   2630       1.43   thorpej  */
   2631      1.134        ad void *
   2632      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2633       1.43   thorpej {
   2634      1.134        ad 	pool_cache_cpu_t *cc;
   2635      1.134        ad 	pcg_t *pcg;
   2636      1.134        ad 	void *object;
   2637       1.60   thorpej 	int s;
   2638       1.43   thorpej 
   2639      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2640      1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2641      1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2642      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2643      1.213  christos 	    __func__, pc->pc_pool.pr_wchan);
   2644      1.184     rmind 
   2645      1.155        ad 	if (flags & PR_WAITOK) {
   2646      1.154      yamt 		ASSERT_SLEEPABLE();
   2647      1.155        ad 	}
   2648      1.125        ad 
   2649      1.270      maxv 	if (flags & PR_NOWAIT) {
   2650      1.270      maxv 		if (fault_inject())
   2651      1.270      maxv 			return NULL;
   2652      1.270      maxv 	}
   2653      1.270      maxv 
   2654      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2655      1.162        ad 	s = splvm();
   2656      1.165      yamt 	while (/* CONSTCOND */ true) {
   2657      1.134        ad 		/* Try and allocate an object from the current group. */
   2658      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2659      1.134        ad 	 	pcg = cc->cc_current;
   2660      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2661      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2662      1.162        ad 			if (__predict_false(pap != NULL))
   2663      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2664      1.148      yamt #if defined(DIAGNOSTIC)
   2665      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2666      1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2667      1.134        ad 			KASSERT(object != NULL);
   2668      1.163        ad #endif
   2669      1.134        ad 			cc->cc_hits++;
   2670      1.162        ad 			splx(s);
   2671      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2672      1.204      maxv 			pool_redzone_fill(&pc->pc_pool, object);
   2673      1.262      maxv 			pool_cache_get_kmsan(pc, object);
   2674      1.134        ad 			return object;
   2675       1.43   thorpej 		}
   2676       1.43   thorpej 
   2677       1.43   thorpej 		/*
   2678      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2679      1.134        ad 		 * it with the current group and allocate from there.
   2680       1.43   thorpej 		 */
   2681      1.134        ad 		pcg = cc->cc_previous;
   2682      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2683      1.134        ad 			cc->cc_previous = cc->cc_current;
   2684      1.134        ad 			cc->cc_current = pcg;
   2685      1.134        ad 			continue;
   2686       1.43   thorpej 		}
   2687       1.43   thorpej 
   2688      1.134        ad 		/*
   2689      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2690      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2691      1.162        ad 		 * no more objects are available, it will return false.
   2692      1.134        ad 		 * Otherwise, we need to retry.
   2693      1.134        ad 		 */
   2694      1.271        ad 		if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
   2695      1.269      maxv 			if (object != NULL) {
   2696      1.269      maxv 				kmsan_orig(object, pc->pc_pool.pr_size,
   2697      1.269      maxv 				    KMSAN_TYPE_POOL, __RET_ADDR);
   2698      1.269      maxv 			}
   2699      1.165      yamt 			break;
   2700      1.269      maxv 		}
   2701      1.165      yamt 	}
   2702       1.43   thorpej 
   2703      1.211  riastrad 	/*
   2704      1.211  riastrad 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2705      1.211  riastrad 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2706      1.211  riastrad 	 * constructor fails.
   2707      1.211  riastrad 	 */
   2708      1.134        ad 	return object;
   2709       1.51   thorpej }
   2710       1.51   thorpej 
   2711      1.162        ad static bool __noinline
   2712      1.271        ad pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
   2713       1.51   thorpej {
   2714      1.163        ad 	pcg_t *pcg, *cur;
   2715       1.51   thorpej 
   2716      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2717      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2718      1.168      yamt 
   2719      1.134        ad 	cc->cc_misses++;
   2720       1.43   thorpej 
   2721      1.171        ad 	/*
   2722      1.271        ad 	 * Try to get an empty group from the cache.  If there are no empty
   2723      1.271        ad 	 * groups in the cache then allocate one.
   2724      1.171        ad 	 */
   2725      1.271        ad 	(void)pool_pcg_get(cc->cc_pcgcache, &pcg);
   2726      1.271        ad 	if (__predict_false(pcg == NULL)) {
   2727      1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2728      1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2729      1.171        ad 		}
   2730      1.171        ad 		if (__predict_true(pcg != NULL)) {
   2731      1.171        ad 			pcg->pcg_avail = 0;
   2732      1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2733      1.171        ad 		}
   2734      1.171        ad 	}
   2735      1.171        ad 
   2736      1.162        ad 	/*
   2737      1.271        ad 	 * If there's a empty group, release our full group back to the
   2738      1.271        ad 	 * cache.  Install the empty group to the local CPU and return.
   2739      1.162        ad 	 */
   2740      1.163        ad 	if (pcg != NULL) {
   2741      1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2742      1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2743      1.146        ad 			cc->cc_previous = pcg;
   2744      1.146        ad 		} else {
   2745      1.162        ad 			cur = cc->cc_current;
   2746      1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2747      1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2748      1.271        ad 				cc->cc_contended +=
   2749      1.271        ad 				    pool_pcg_put(&pc->pc_fullgroups, cur);
   2750      1.271        ad 				cc->cc_nfull++;
   2751      1.146        ad 			}
   2752      1.146        ad 			cc->cc_current = pcg;
   2753      1.146        ad 		}
   2754      1.162        ad 		return true;
   2755      1.102       chs 	}
   2756      1.105  christos 
   2757      1.134        ad 	/*
   2758      1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2759      1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2760      1.162        ad 	 * the object here and now.
   2761      1.134        ad 	 */
   2762      1.271        ad 	cc->cc_pcmisses++;
   2763      1.162        ad 	splx(s);
   2764      1.162        ad 	pool_cache_destruct_object(pc, object);
   2765      1.105  christos 
   2766      1.162        ad 	return false;
   2767      1.236      maxv }
   2768      1.102       chs 
   2769       1.43   thorpej /*
   2770      1.134        ad  * pool_cache_put{,_paddr}:
   2771       1.43   thorpej  *
   2772      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2773      1.134        ad  *	physical address of the object).
   2774       1.43   thorpej  */
   2775      1.101   thorpej void
   2776      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2777       1.43   thorpej {
   2778      1.134        ad 	pool_cache_cpu_t *cc;
   2779      1.134        ad 	pcg_t *pcg;
   2780      1.134        ad 	int s;
   2781      1.101   thorpej 
   2782      1.172      yamt 	KASSERT(object != NULL);
   2783      1.262      maxv 	pool_cache_put_kmsan(pc, object);
   2784      1.229      maxv 	pool_cache_redzone_check(pc, object);
   2785      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2786      1.101   thorpej 
   2787      1.253      maxv 	if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
   2788      1.253      maxv 		pc_phinpage_check(pc, object);
   2789      1.253      maxv 	}
   2790      1.253      maxv 
   2791      1.268      maxv 	if (pool_cache_put_nocache(pc, object)) {
   2792      1.249      maxv 		return;
   2793      1.249      maxv 	}
   2794      1.249      maxv 
   2795      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2796      1.162        ad 	s = splvm();
   2797      1.165      yamt 	while (/* CONSTCOND */ true) {
   2798      1.134        ad 		/* If the current group isn't full, release it there. */
   2799      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2800      1.134        ad 	 	pcg = cc->cc_current;
   2801      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2802      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2803      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2804      1.134        ad 			pcg->pcg_avail++;
   2805      1.134        ad 			cc->cc_hits++;
   2806      1.162        ad 			splx(s);
   2807      1.134        ad 			return;
   2808      1.134        ad 		}
   2809       1.43   thorpej 
   2810      1.134        ad 		/*
   2811      1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2812      1.134        ad 		 * it with the current group and try again.
   2813      1.134        ad 		 */
   2814      1.134        ad 		pcg = cc->cc_previous;
   2815      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2816      1.134        ad 			cc->cc_previous = cc->cc_current;
   2817      1.134        ad 			cc->cc_current = pcg;
   2818      1.134        ad 			continue;
   2819      1.134        ad 		}
   2820       1.43   thorpej 
   2821      1.134        ad 		/*
   2822      1.236      maxv 		 * Can't free to either group: try the slow path.
   2823      1.134        ad 		 * If put_slow() releases the object for us, it
   2824      1.162        ad 		 * will return false.  Otherwise we need to retry.
   2825      1.134        ad 		 */
   2826      1.271        ad 		if (!pool_cache_put_slow(pc, cc, s, object))
   2827      1.165      yamt 			break;
   2828      1.165      yamt 	}
   2829       1.43   thorpej }
   2830       1.43   thorpej 
   2831       1.43   thorpej /*
   2832      1.196       jym  * pool_cache_transfer:
   2833       1.43   thorpej  *
   2834      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2835      1.134        ad  *	Run within a cross-call thread.
   2836       1.43   thorpej  */
   2837       1.43   thorpej static void
   2838      1.196       jym pool_cache_transfer(pool_cache_t pc)
   2839       1.43   thorpej {
   2840      1.134        ad 	pool_cache_cpu_t *cc;
   2841      1.271        ad 	pcg_t *prev, *cur;
   2842      1.162        ad 	int s;
   2843      1.134        ad 
   2844      1.162        ad 	s = splvm();
   2845      1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2846      1.134        ad 	cur = cc->cc_current;
   2847      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2848      1.134        ad 	prev = cc->cc_previous;
   2849      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2850      1.162        ad 	if (cur != &pcg_dummy) {
   2851      1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2852      1.271        ad 			(void)pool_pcg_put(&pc->pc_fullgroups, cur);
   2853      1.271        ad 			cc->cc_nfull++;
   2854      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2855      1.271        ad 			(void)pool_pcg_put(pc->pc_pcgcache, cur);
   2856      1.134        ad 		} else {
   2857      1.271        ad 			(void)pool_pcg_put(&pc->pc_partgroups, cur);
   2858      1.271        ad 			cc->cc_npart++;
   2859      1.134        ad 		}
   2860      1.134        ad 	}
   2861      1.162        ad 	if (prev != &pcg_dummy) {
   2862      1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2863      1.271        ad 			(void)pool_pcg_put(&pc->pc_fullgroups, prev);
   2864      1.271        ad 			cc->cc_nfull++;
   2865      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2866      1.271        ad 			(void)pool_pcg_put(pc->pc_pcgcache, prev);
   2867      1.134        ad 		} else {
   2868      1.271        ad 			(void)pool_pcg_put(&pc->pc_partgroups, prev);
   2869      1.271        ad 			cc->cc_npart++;
   2870      1.134        ad 		}
   2871      1.134        ad 	}
   2872      1.134        ad 	splx(s);
   2873        1.3        pk }
   2874       1.66   thorpej 
   2875      1.208       chs static int
   2876      1.208       chs pool_bigidx(size_t size)
   2877      1.208       chs {
   2878      1.208       chs 	int i;
   2879      1.208       chs 
   2880      1.208       chs 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2881      1.208       chs 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2882      1.208       chs 			return i;
   2883      1.208       chs 	}
   2884      1.208       chs 	panic("pool item size %zu too large, use a custom allocator", size);
   2885      1.208       chs }
   2886      1.208       chs 
   2887      1.117      yamt static void *
   2888      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2889       1.66   thorpej {
   2890      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2891       1.66   thorpej 	void *res;
   2892       1.66   thorpej 
   2893      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2894      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2895       1.66   thorpej 		/*
   2896      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2897      1.117      yamt 		 * In other cases, the hook will be run in
   2898      1.117      yamt 		 * pool_reclaim().
   2899       1.66   thorpej 		 */
   2900      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2901      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2902      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2903       1.66   thorpej 		}
   2904      1.117      yamt 	}
   2905      1.117      yamt 	return res;
   2906       1.66   thorpej }
   2907       1.66   thorpej 
   2908      1.117      yamt static void
   2909       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2910       1.66   thorpej {
   2911       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2912       1.66   thorpej 
   2913      1.229      maxv 	if (pp->pr_redzone) {
   2914      1.248      maxv 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
   2915      1.229      maxv 	}
   2916       1.66   thorpej 	(*pa->pa_free)(pp, v);
   2917       1.66   thorpej }
   2918       1.66   thorpej 
   2919       1.66   thorpej void *
   2920      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   2921       1.66   thorpej {
   2922      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2923      1.191      para 	vmem_addr_t va;
   2924      1.192     rmind 	int ret;
   2925      1.191      para 
   2926      1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   2927      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2928       1.66   thorpej 
   2929      1.192     rmind 	return ret ? NULL : (void *)va;
   2930       1.66   thorpej }
   2931       1.66   thorpej 
   2932       1.66   thorpej void
   2933      1.124      yamt pool_page_free(struct pool *pp, void *v)
   2934       1.66   thorpej {
   2935       1.66   thorpej 
   2936      1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   2937       1.98      yamt }
   2938       1.98      yamt 
   2939       1.98      yamt static void *
   2940      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   2941       1.98      yamt {
   2942      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   2943      1.192     rmind 	vmem_addr_t va;
   2944      1.192     rmind 	int ret;
   2945      1.191      para 
   2946      1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   2947      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   2948       1.98      yamt 
   2949      1.192     rmind 	return ret ? NULL : (void *)va;
   2950       1.98      yamt }
   2951       1.98      yamt 
   2952       1.98      yamt static void
   2953      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   2954       1.98      yamt {
   2955       1.98      yamt 
   2956      1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   2957       1.66   thorpej }
   2958       1.66   thorpej 
   2959      1.262      maxv #ifdef KMSAN
   2960      1.262      maxv static inline void
   2961      1.262      maxv pool_get_kmsan(struct pool *pp, void *p)
   2962      1.262      maxv {
   2963      1.262      maxv 	kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
   2964      1.262      maxv 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
   2965      1.262      maxv }
   2966      1.262      maxv 
   2967      1.262      maxv static inline void
   2968      1.262      maxv pool_put_kmsan(struct pool *pp, void *p)
   2969      1.262      maxv {
   2970      1.262      maxv 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
   2971      1.262      maxv }
   2972      1.262      maxv 
   2973      1.262      maxv static inline void
   2974      1.262      maxv pool_cache_get_kmsan(pool_cache_t pc, void *p)
   2975      1.262      maxv {
   2976      1.262      maxv 	if (__predict_false(pc_has_ctor(pc))) {
   2977      1.262      maxv 		return;
   2978      1.262      maxv 	}
   2979      1.262      maxv 	pool_get_kmsan(&pc->pc_pool, p);
   2980      1.262      maxv }
   2981      1.262      maxv 
   2982      1.262      maxv static inline void
   2983      1.262      maxv pool_cache_put_kmsan(pool_cache_t pc, void *p)
   2984      1.262      maxv {
   2985      1.262      maxv 	pool_put_kmsan(&pc->pc_pool, p);
   2986      1.262      maxv }
   2987      1.262      maxv #endif
   2988      1.262      maxv 
   2989      1.249      maxv #ifdef POOL_QUARANTINE
   2990      1.249      maxv static void
   2991      1.249      maxv pool_quarantine_init(struct pool *pp)
   2992      1.249      maxv {
   2993      1.249      maxv 	pp->pr_quar.rotor = 0;
   2994      1.249      maxv 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
   2995      1.249      maxv }
   2996      1.249      maxv 
   2997      1.249      maxv static void
   2998      1.249      maxv pool_quarantine_flush(struct pool *pp)
   2999      1.249      maxv {
   3000      1.249      maxv 	pool_quar_t *quar = &pp->pr_quar;
   3001      1.249      maxv 	struct pool_pagelist pq;
   3002      1.249      maxv 	size_t i;
   3003      1.249      maxv 
   3004      1.249      maxv 	LIST_INIT(&pq);
   3005      1.249      maxv 
   3006      1.249      maxv 	mutex_enter(&pp->pr_lock);
   3007      1.249      maxv 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
   3008      1.249      maxv 		if (quar->list[i] == 0)
   3009      1.249      maxv 			continue;
   3010      1.249      maxv 		pool_do_put(pp, (void *)quar->list[i], &pq);
   3011      1.249      maxv 	}
   3012      1.249      maxv 	mutex_exit(&pp->pr_lock);
   3013      1.249      maxv 
   3014      1.249      maxv 	pr_pagelist_free(pp, &pq);
   3015      1.249      maxv }
   3016      1.249      maxv 
   3017      1.249      maxv static bool
   3018      1.249      maxv pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
   3019      1.249      maxv {
   3020      1.249      maxv 	pool_quar_t *quar = &pp->pr_quar;
   3021      1.249      maxv 	uintptr_t old;
   3022      1.249      maxv 
   3023      1.249      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   3024      1.249      maxv 		return false;
   3025      1.249      maxv 	}
   3026      1.249      maxv 
   3027      1.249      maxv 	pool_redzone_check(pp, v);
   3028      1.249      maxv 
   3029      1.249      maxv 	old = quar->list[quar->rotor];
   3030      1.249      maxv 	quar->list[quar->rotor] = (uintptr_t)v;
   3031      1.249      maxv 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
   3032      1.249      maxv 	if (old != 0) {
   3033      1.249      maxv 		pool_do_put(pp, (void *)old, pq);
   3034      1.249      maxv 	}
   3035      1.249      maxv 
   3036      1.249      maxv 	return true;
   3037      1.249      maxv }
   3038      1.268      maxv #endif
   3039      1.249      maxv 
   3040      1.268      maxv #ifdef POOL_NOCACHE
   3041      1.249      maxv static bool
   3042      1.268      maxv pool_cache_put_nocache(pool_cache_t pc, void *p)
   3043      1.249      maxv {
   3044      1.249      maxv 	pool_cache_destruct_object(pc, p);
   3045      1.249      maxv 	return true;
   3046      1.249      maxv }
   3047      1.249      maxv #endif
   3048      1.249      maxv 
   3049      1.204      maxv #ifdef POOL_REDZONE
   3050      1.204      maxv #if defined(_LP64)
   3051      1.204      maxv # define PRIME 0x9e37fffffffc0000UL
   3052      1.204      maxv #else /* defined(_LP64) */
   3053      1.204      maxv # define PRIME 0x9e3779b1
   3054      1.204      maxv #endif /* defined(_LP64) */
   3055      1.204      maxv #define STATIC_BYTE	0xFE
   3056      1.204      maxv CTASSERT(POOL_REDZONE_SIZE > 1);
   3057      1.204      maxv 
   3058      1.224      maxv #ifndef KASAN
   3059      1.204      maxv static inline uint8_t
   3060      1.204      maxv pool_pattern_generate(const void *p)
   3061      1.204      maxv {
   3062      1.204      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
   3063      1.204      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   3064      1.204      maxv }
   3065      1.224      maxv #endif
   3066      1.204      maxv 
   3067      1.204      maxv static void
   3068      1.204      maxv pool_redzone_init(struct pool *pp, size_t requested_size)
   3069      1.204      maxv {
   3070      1.227      maxv 	size_t redzsz;
   3071      1.204      maxv 	size_t nsz;
   3072      1.204      maxv 
   3073      1.227      maxv #ifdef KASAN
   3074      1.227      maxv 	redzsz = requested_size;
   3075      1.227      maxv 	kasan_add_redzone(&redzsz);
   3076      1.227      maxv 	redzsz -= requested_size;
   3077      1.227      maxv #else
   3078      1.227      maxv 	redzsz = POOL_REDZONE_SIZE;
   3079      1.227      maxv #endif
   3080      1.227      maxv 
   3081      1.204      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   3082      1.204      maxv 		pp->pr_redzone = false;
   3083      1.204      maxv 		return;
   3084      1.204      maxv 	}
   3085      1.204      maxv 
   3086      1.204      maxv 	/*
   3087      1.204      maxv 	 * We may have extended the requested size earlier; check if
   3088      1.204      maxv 	 * there's naturally space in the padding for a red zone.
   3089      1.204      maxv 	 */
   3090      1.227      maxv 	if (pp->pr_size - requested_size >= redzsz) {
   3091      1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3092      1.204      maxv 		pp->pr_redzone = true;
   3093      1.204      maxv 		return;
   3094      1.204      maxv 	}
   3095      1.204      maxv 
   3096      1.204      maxv 	/*
   3097      1.204      maxv 	 * No space in the natural padding; check if we can extend a
   3098      1.204      maxv 	 * bit the size of the pool.
   3099      1.204      maxv 	 */
   3100      1.227      maxv 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   3101      1.204      maxv 	if (nsz <= pp->pr_alloc->pa_pagesz) {
   3102      1.204      maxv 		/* Ok, we can */
   3103      1.204      maxv 		pp->pr_size = nsz;
   3104      1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3105      1.204      maxv 		pp->pr_redzone = true;
   3106      1.204      maxv 	} else {
   3107      1.204      maxv 		/* No space for a red zone... snif :'( */
   3108      1.204      maxv 		pp->pr_redzone = false;
   3109      1.274  riastrad 		aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan);
   3110      1.204      maxv 	}
   3111      1.204      maxv }
   3112      1.204      maxv 
   3113      1.204      maxv static void
   3114      1.204      maxv pool_redzone_fill(struct pool *pp, void *p)
   3115      1.204      maxv {
   3116      1.224      maxv 	if (!pp->pr_redzone)
   3117      1.224      maxv 		return;
   3118      1.224      maxv #ifdef KASAN
   3119      1.248      maxv 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
   3120      1.248      maxv 	    KASAN_POOL_REDZONE);
   3121      1.224      maxv #else
   3122      1.204      maxv 	uint8_t *cp, pat;
   3123      1.204      maxv 	const uint8_t *ep;
   3124      1.204      maxv 
   3125      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3126      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3127      1.204      maxv 
   3128      1.204      maxv 	/*
   3129      1.204      maxv 	 * We really don't want the first byte of the red zone to be '\0';
   3130      1.204      maxv 	 * an off-by-one in a string may not be properly detected.
   3131      1.204      maxv 	 */
   3132      1.204      maxv 	pat = pool_pattern_generate(cp);
   3133      1.204      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   3134      1.204      maxv 	cp++;
   3135      1.204      maxv 
   3136      1.204      maxv 	while (cp < ep) {
   3137      1.204      maxv 		*cp = pool_pattern_generate(cp);
   3138      1.204      maxv 		cp++;
   3139      1.204      maxv 	}
   3140      1.224      maxv #endif
   3141      1.204      maxv }
   3142      1.204      maxv 
   3143      1.204      maxv static void
   3144      1.204      maxv pool_redzone_check(struct pool *pp, void *p)
   3145      1.204      maxv {
   3146      1.224      maxv 	if (!pp->pr_redzone)
   3147      1.224      maxv 		return;
   3148      1.224      maxv #ifdef KASAN
   3149      1.248      maxv 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
   3150      1.224      maxv #else
   3151      1.204      maxv 	uint8_t *cp, pat, expected;
   3152      1.204      maxv 	const uint8_t *ep;
   3153      1.204      maxv 
   3154      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3155      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3156      1.204      maxv 
   3157      1.204      maxv 	pat = pool_pattern_generate(cp);
   3158      1.204      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   3159      1.264      maxv 	if (__predict_false(*cp != expected)) {
   3160      1.264      maxv 		panic("%s: [%s] 0x%02x != 0x%02x", __func__,
   3161      1.264      maxv 		    pp->pr_wchan, *cp, expected);
   3162      1.204      maxv 	}
   3163      1.204      maxv 	cp++;
   3164      1.204      maxv 
   3165      1.204      maxv 	while (cp < ep) {
   3166      1.204      maxv 		expected = pool_pattern_generate(cp);
   3167      1.225      maxv 		if (__predict_false(*cp != expected)) {
   3168      1.264      maxv 			panic("%s: [%s] 0x%02x != 0x%02x", __func__,
   3169      1.264      maxv 			    pp->pr_wchan, *cp, expected);
   3170      1.204      maxv 		}
   3171      1.204      maxv 		cp++;
   3172      1.204      maxv 	}
   3173      1.224      maxv #endif
   3174      1.204      maxv }
   3175      1.204      maxv 
   3176      1.229      maxv static void
   3177      1.229      maxv pool_cache_redzone_check(pool_cache_t pc, void *p)
   3178      1.229      maxv {
   3179      1.229      maxv #ifdef KASAN
   3180      1.257      maxv 	/* If there is a ctor/dtor, leave the data as valid. */
   3181      1.257      maxv 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
   3182      1.229      maxv 		return;
   3183      1.229      maxv 	}
   3184      1.229      maxv #endif
   3185      1.229      maxv 	pool_redzone_check(&pc->pc_pool, p);
   3186      1.229      maxv }
   3187      1.229      maxv 
   3188      1.204      maxv #endif /* POOL_REDZONE */
   3189      1.204      maxv 
   3190      1.141      yamt #if defined(DDB)
   3191      1.141      yamt static bool
   3192      1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3193      1.141      yamt {
   3194      1.141      yamt 
   3195      1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   3196      1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3197      1.141      yamt }
   3198      1.141      yamt 
   3199      1.143      yamt static bool
   3200      1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3201      1.143      yamt {
   3202      1.143      yamt 
   3203      1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3204      1.143      yamt }
   3205      1.143      yamt 
   3206      1.143      yamt static bool
   3207      1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3208      1.143      yamt {
   3209      1.143      yamt 	int i;
   3210      1.143      yamt 
   3211      1.143      yamt 	if (pcg == NULL) {
   3212      1.143      yamt 		return false;
   3213      1.143      yamt 	}
   3214      1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   3215      1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3216      1.143      yamt 			return true;
   3217      1.143      yamt 		}
   3218      1.143      yamt 	}
   3219      1.143      yamt 	return false;
   3220      1.143      yamt }
   3221      1.143      yamt 
   3222      1.143      yamt static bool
   3223      1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3224      1.143      yamt {
   3225      1.143      yamt 
   3226      1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3227      1.234      maxv 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3228      1.143      yamt 		pool_item_bitmap_t *bitmap =
   3229      1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3230      1.143      yamt 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   3231      1.143      yamt 
   3232      1.143      yamt 		return (*bitmap & mask) == 0;
   3233      1.143      yamt 	} else {
   3234      1.143      yamt 		struct pool_item *pi;
   3235      1.143      yamt 
   3236      1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3237      1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   3238      1.143      yamt 				return false;
   3239      1.143      yamt 			}
   3240      1.143      yamt 		}
   3241      1.143      yamt 		return true;
   3242      1.143      yamt 	}
   3243      1.143      yamt }
   3244      1.143      yamt 
   3245      1.141      yamt void
   3246      1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3247      1.141      yamt {
   3248      1.141      yamt 	struct pool *pp;
   3249      1.141      yamt 
   3250      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3251      1.141      yamt 		struct pool_item_header *ph;
   3252      1.141      yamt 		uintptr_t item;
   3253      1.143      yamt 		bool allocated = true;
   3254      1.143      yamt 		bool incache = false;
   3255      1.143      yamt 		bool incpucache = false;
   3256      1.143      yamt 		char cpucachestr[32];
   3257      1.141      yamt 
   3258      1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3259      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3260      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3261      1.141      yamt 					goto found;
   3262      1.141      yamt 				}
   3263      1.141      yamt 			}
   3264      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3265      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3266      1.143      yamt 					allocated =
   3267      1.143      yamt 					    pool_allocated(pp, ph, addr);
   3268      1.143      yamt 					goto found;
   3269      1.143      yamt 				}
   3270      1.143      yamt 			}
   3271      1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3272      1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   3273      1.143      yamt 					allocated = false;
   3274      1.141      yamt 					goto found;
   3275      1.141      yamt 				}
   3276      1.141      yamt 			}
   3277      1.141      yamt 			continue;
   3278      1.141      yamt 		} else {
   3279      1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3280      1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3281      1.141      yamt 				continue;
   3282      1.141      yamt 			}
   3283      1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3284      1.141      yamt 		}
   3285      1.141      yamt found:
   3286      1.143      yamt 		if (allocated && pp->pr_cache) {
   3287      1.143      yamt 			pool_cache_t pc = pp->pr_cache;
   3288      1.143      yamt 			struct pool_cache_group *pcg;
   3289      1.143      yamt 			int i;
   3290      1.143      yamt 
   3291      1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3292      1.143      yamt 			    pcg = pcg->pcg_next) {
   3293      1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3294      1.143      yamt 					incache = true;
   3295      1.143      yamt 					goto print;
   3296      1.143      yamt 				}
   3297      1.143      yamt 			}
   3298      1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3299      1.143      yamt 				pool_cache_cpu_t *cc;
   3300      1.143      yamt 
   3301      1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3302      1.143      yamt 					continue;
   3303      1.143      yamt 				}
   3304      1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3305      1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3306      1.143      yamt 					struct cpu_info *ci =
   3307      1.170        ad 					    cpu_lookup(i);
   3308      1.143      yamt 
   3309      1.143      yamt 					incpucache = true;
   3310      1.143      yamt 					snprintf(cpucachestr,
   3311      1.143      yamt 					    sizeof(cpucachestr),
   3312      1.143      yamt 					    "cached by CPU %u",
   3313      1.153    martin 					    ci->ci_index);
   3314      1.143      yamt 					goto print;
   3315      1.143      yamt 				}
   3316      1.143      yamt 			}
   3317      1.143      yamt 		}
   3318      1.143      yamt print:
   3319      1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3320      1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3321      1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3322      1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3323      1.143      yamt 		    pp->pr_wchan,
   3324      1.143      yamt 		    incpucache ? cpucachestr :
   3325      1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3326      1.141      yamt 	}
   3327      1.141      yamt }
   3328      1.141      yamt #endif /* defined(DDB) */
   3329      1.203     joerg 
   3330      1.203     joerg static int
   3331      1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   3332      1.203     joerg {
   3333      1.203     joerg 	struct pool_sysctl data;
   3334      1.203     joerg 	struct pool *pp;
   3335      1.203     joerg 	struct pool_cache *pc;
   3336      1.203     joerg 	pool_cache_cpu_t *cc;
   3337      1.203     joerg 	int error;
   3338      1.203     joerg 	size_t i, written;
   3339      1.203     joerg 
   3340      1.203     joerg 	if (oldp == NULL) {
   3341      1.203     joerg 		*oldlenp = 0;
   3342      1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3343      1.203     joerg 			*oldlenp += sizeof(data);
   3344      1.203     joerg 		return 0;
   3345      1.203     joerg 	}
   3346      1.203     joerg 
   3347      1.203     joerg 	memset(&data, 0, sizeof(data));
   3348      1.203     joerg 	error = 0;
   3349      1.203     joerg 	written = 0;
   3350      1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3351      1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   3352      1.203     joerg 			break;
   3353      1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3354      1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3355      1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3356      1.203     joerg #define COPY(field) data.field = pp->field
   3357      1.203     joerg 		COPY(pr_size);
   3358      1.203     joerg 
   3359      1.203     joerg 		COPY(pr_itemsperpage);
   3360      1.203     joerg 		COPY(pr_nitems);
   3361      1.203     joerg 		COPY(pr_nout);
   3362      1.203     joerg 		COPY(pr_hardlimit);
   3363      1.203     joerg 		COPY(pr_npages);
   3364      1.203     joerg 		COPY(pr_minpages);
   3365      1.203     joerg 		COPY(pr_maxpages);
   3366      1.203     joerg 
   3367      1.203     joerg 		COPY(pr_nget);
   3368      1.203     joerg 		COPY(pr_nfail);
   3369      1.203     joerg 		COPY(pr_nput);
   3370      1.203     joerg 		COPY(pr_npagealloc);
   3371      1.203     joerg 		COPY(pr_npagefree);
   3372      1.203     joerg 		COPY(pr_hiwat);
   3373      1.203     joerg 		COPY(pr_nidle);
   3374      1.203     joerg #undef COPY
   3375      1.203     joerg 
   3376      1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   3377      1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   3378      1.271        ad 		data.pr_cache_nmiss_global = 0;
   3379      1.271        ad 		data.pr_cache_nempty = 0;
   3380      1.271        ad 		data.pr_cache_ncontended = 0;
   3381      1.271        ad 		data.pr_cache_npartial = 0;
   3382      1.203     joerg 		if (pp->pr_cache) {
   3383      1.271        ad 			uint32_t nfull = 0;
   3384      1.203     joerg 			pc = pp->pr_cache;
   3385      1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3386      1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3387      1.203     joerg 				cc = pc->pc_cpus[i];
   3388      1.203     joerg 				if (cc == NULL)
   3389      1.203     joerg 					continue;
   3390      1.271        ad 				data.pr_cache_ncontended += cc->cc_contended;
   3391      1.206  knakahar 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3392      1.206  knakahar 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3393      1.271        ad 				data.pr_cache_nmiss_global += cc->cc_pcmisses;
   3394      1.271        ad 				nfull += cc->cc_nfull; /* 32-bit rollover! */
   3395      1.272        ad 				data.pr_cache_npartial += cc->cc_npart;
   3396      1.203     joerg 			}
   3397      1.271        ad 			data.pr_cache_nfull = nfull;
   3398      1.203     joerg 		} else {
   3399      1.203     joerg 			data.pr_cache_meta_size = 0;
   3400      1.203     joerg 			data.pr_cache_nfull = 0;
   3401      1.203     joerg 		}
   3402      1.271        ad 		data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
   3403      1.271        ad 		    data.pr_cache_nmiss_global;
   3404      1.203     joerg 
   3405      1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3406      1.203     joerg 		if (error)
   3407      1.203     joerg 			break;
   3408      1.203     joerg 		written += sizeof(data);
   3409      1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   3410      1.203     joerg 	}
   3411      1.203     joerg 
   3412      1.203     joerg 	*oldlenp = written;
   3413      1.203     joerg 	return error;
   3414      1.203     joerg }
   3415      1.203     joerg 
   3416      1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3417      1.203     joerg {
   3418      1.203     joerg 	const struct sysctlnode *rnode = NULL;
   3419      1.203     joerg 
   3420      1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   3421      1.203     joerg 		       CTLFLAG_PERMANENT,
   3422      1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   3423      1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   3424      1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   3425      1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3426      1.203     joerg }
   3427