Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.285.4.2
      1  1.285.4.2    martin /*	$NetBSD: subr_pool.c,v 1.285.4.2 2024/12/15 14:58:45 martin Exp $	*/
      2        1.1        pk 
      3      1.229      maxv /*
      4      1.271        ad  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
      5      1.279   thorpej  *     2020, 2021 The NetBSD Foundation, Inc.
      6        1.1        pk  * All rights reserved.
      7        1.1        pk  *
      8        1.1        pk  * This code is derived from software contributed to The NetBSD Foundation
      9       1.20   thorpej  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
     10      1.204      maxv  * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
     11      1.204      maxv  * Maxime Villard.
     12        1.1        pk  *
     13        1.1        pk  * Redistribution and use in source and binary forms, with or without
     14        1.1        pk  * modification, are permitted provided that the following conditions
     15        1.1        pk  * are met:
     16        1.1        pk  * 1. Redistributions of source code must retain the above copyright
     17        1.1        pk  *    notice, this list of conditions and the following disclaimer.
     18        1.1        pk  * 2. Redistributions in binary form must reproduce the above copyright
     19        1.1        pk  *    notice, this list of conditions and the following disclaimer in the
     20        1.1        pk  *    documentation and/or other materials provided with the distribution.
     21        1.1        pk  *
     22        1.1        pk  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23        1.1        pk  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24        1.1        pk  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25        1.1        pk  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26        1.1        pk  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27        1.1        pk  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28        1.1        pk  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29        1.1        pk  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30        1.1        pk  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31        1.1        pk  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32        1.1        pk  * POSSIBILITY OF SUCH DAMAGE.
     33        1.1        pk  */
     34       1.64     lukem 
     35       1.64     lukem #include <sys/cdefs.h>
     36  1.285.4.2    martin __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.285.4.2 2024/12/15 14:58:45 martin Exp $");
     37       1.24    scottr 
     38      1.205     pooka #ifdef _KERNEL_OPT
     39      1.141      yamt #include "opt_ddb.h"
     40       1.28   thorpej #include "opt_lockdebug.h"
     41      1.249      maxv #include "opt_pool.h"
     42      1.205     pooka #endif
     43        1.1        pk 
     44        1.1        pk #include <sys/param.h>
     45        1.1        pk #include <sys/systm.h>
     46      1.203     joerg #include <sys/sysctl.h>
     47      1.135      yamt #include <sys/bitops.h>
     48        1.1        pk #include <sys/proc.h>
     49        1.1        pk #include <sys/errno.h>
     50        1.1        pk #include <sys/kernel.h>
     51      1.191      para #include <sys/vmem.h>
     52        1.1        pk #include <sys/pool.h>
     53       1.20   thorpej #include <sys/syslog.h>
     54      1.125        ad #include <sys/debug.h>
     55      1.271        ad #include <sys/lock.h>
     56      1.134        ad #include <sys/lockdebug.h>
     57      1.134        ad #include <sys/xcall.h>
     58      1.134        ad #include <sys/cpu.h>
     59      1.145        ad #include <sys/atomic.h>
     60      1.224      maxv #include <sys/asan.h>
     61      1.262      maxv #include <sys/msan.h>
     62      1.270      maxv #include <sys/fault.h>
     63        1.3        pk 
     64      1.187  uebayasi #include <uvm/uvm_extern.h>
     65        1.3        pk 
     66        1.1        pk /*
     67        1.1        pk  * Pool resource management utility.
     68        1.3        pk  *
     69       1.88       chs  * Memory is allocated in pages which are split into pieces according to
     70       1.88       chs  * the pool item size. Each page is kept on one of three lists in the
     71       1.88       chs  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     72       1.88       chs  * for empty, full and partially-full pages respectively. The individual
     73       1.88       chs  * pool items are on a linked list headed by `ph_itemlist' in each page
     74       1.88       chs  * header. The memory for building the page list is either taken from
     75       1.88       chs  * the allocated pages themselves (for small pool items) or taken from
     76       1.88       chs  * an internal pool of page headers (`phpool').
     77        1.1        pk  */
     78        1.1        pk 
     79      1.221      para /* List of all pools. Non static as needed by 'vmstat -m' */
     80      1.202       abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     81      1.134        ad 
     82        1.3        pk /* Private pool for page header structures */
     83       1.97      yamt #define	PHPOOL_MAX	8
     84       1.97      yamt static struct pool phpool[PHPOOL_MAX];
     85      1.135      yamt #define	PHPOOL_FREELIST_NELEM(idx) \
     86      1.256      maxv 	(((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
     87        1.3        pk 
     88      1.262      maxv #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
     89      1.224      maxv #define POOL_REDZONE
     90      1.224      maxv #endif
     91      1.224      maxv 
     92      1.268      maxv #if defined(POOL_QUARANTINE)
     93      1.268      maxv #define POOL_NOCACHE
     94      1.268      maxv #endif
     95      1.268      maxv 
     96      1.204      maxv #ifdef POOL_REDZONE
     97      1.224      maxv # ifdef KASAN
     98      1.224      maxv #  define POOL_REDZONE_SIZE 8
     99      1.224      maxv # else
    100      1.224      maxv #  define POOL_REDZONE_SIZE 2
    101      1.224      maxv # endif
    102      1.204      maxv static void pool_redzone_init(struct pool *, size_t);
    103      1.204      maxv static void pool_redzone_fill(struct pool *, void *);
    104      1.204      maxv static void pool_redzone_check(struct pool *, void *);
    105      1.229      maxv static void pool_cache_redzone_check(pool_cache_t, void *);
    106      1.204      maxv #else
    107      1.229      maxv # define pool_redzone_init(pp, sz)		__nothing
    108      1.229      maxv # define pool_redzone_fill(pp, ptr)		__nothing
    109      1.229      maxv # define pool_redzone_check(pp, ptr)		__nothing
    110      1.229      maxv # define pool_cache_redzone_check(pc, ptr)	__nothing
    111      1.204      maxv #endif
    112      1.204      maxv 
    113      1.262      maxv #ifdef KMSAN
    114      1.262      maxv static inline void pool_get_kmsan(struct pool *, void *);
    115      1.262      maxv static inline void pool_put_kmsan(struct pool *, void *);
    116      1.262      maxv static inline void pool_cache_get_kmsan(pool_cache_t, void *);
    117      1.262      maxv static inline void pool_cache_put_kmsan(pool_cache_t, void *);
    118      1.262      maxv #else
    119      1.262      maxv #define pool_get_kmsan(pp, ptr)		__nothing
    120      1.262      maxv #define pool_put_kmsan(pp, ptr)		__nothing
    121      1.262      maxv #define pool_cache_get_kmsan(pc, ptr)	__nothing
    122      1.262      maxv #define pool_cache_put_kmsan(pc, ptr)	__nothing
    123      1.262      maxv #endif
    124      1.262      maxv 
    125      1.249      maxv #ifdef POOL_QUARANTINE
    126      1.249      maxv static void pool_quarantine_init(struct pool *);
    127      1.249      maxv static void pool_quarantine_flush(struct pool *);
    128      1.249      maxv static bool pool_put_quarantine(struct pool *, void *,
    129      1.249      maxv     struct pool_pagelist *);
    130      1.249      maxv #else
    131      1.249      maxv #define pool_quarantine_init(a)			__nothing
    132      1.249      maxv #define pool_quarantine_flush(a)		__nothing
    133      1.249      maxv #define pool_put_quarantine(a, b, c)		false
    134      1.268      maxv #endif
    135      1.268      maxv 
    136      1.268      maxv #ifdef POOL_NOCACHE
    137      1.268      maxv static bool pool_cache_put_nocache(pool_cache_t, void *);
    138      1.268      maxv #else
    139      1.268      maxv #define pool_cache_put_nocache(a, b)		false
    140      1.249      maxv #endif
    141      1.249      maxv 
    142      1.261  christos #define NO_CTOR	__FPTRCAST(int (*)(void *, void *, int), nullop)
    143      1.261  christos #define NO_DTOR	__FPTRCAST(void (*)(void *, void *), nullop)
    144      1.261  christos 
    145      1.279   thorpej #define pc_has_pser(pc) (((pc)->pc_roflags & PR_PSERIALIZE) != 0)
    146      1.261  christos #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
    147      1.261  christos #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
    148      1.229      maxv 
    149      1.279   thorpej #define pp_has_pser(pp) (((pp)->pr_roflags & PR_PSERIALIZE) != 0)
    150      1.279   thorpej 
    151      1.279   thorpej #define pool_barrier()	xc_barrier(0)
    152      1.279   thorpej 
    153      1.258      maxv /*
    154      1.258      maxv  * Pool backend allocators.
    155      1.258      maxv  *
    156      1.258      maxv  * Each pool has a backend allocator that handles allocation, deallocation,
    157      1.258      maxv  * and any additional draining that might be needed.
    158      1.258      maxv  *
    159      1.258      maxv  * We provide two standard allocators:
    160      1.258      maxv  *
    161      1.258      maxv  *	pool_allocator_kmem - the default when no allocator is specified
    162      1.258      maxv  *
    163      1.258      maxv  *	pool_allocator_nointr - used for pools that will not be accessed
    164      1.258      maxv  *	in interrupt context.
    165      1.258      maxv  */
    166      1.258      maxv void *pool_page_alloc(struct pool *, int);
    167      1.258      maxv void pool_page_free(struct pool *, void *);
    168      1.258      maxv 
    169       1.98      yamt static void *pool_page_alloc_meta(struct pool *, int);
    170       1.98      yamt static void pool_page_free_meta(struct pool *, void *);
    171       1.98      yamt 
    172      1.258      maxv struct pool_allocator pool_allocator_kmem = {
    173      1.258      maxv 	.pa_alloc = pool_page_alloc,
    174      1.258      maxv 	.pa_free = pool_page_free,
    175      1.258      maxv 	.pa_pagesz = 0
    176      1.258      maxv };
    177      1.258      maxv 
    178      1.258      maxv struct pool_allocator pool_allocator_nointr = {
    179      1.258      maxv 	.pa_alloc = pool_page_alloc,
    180      1.258      maxv 	.pa_free = pool_page_free,
    181      1.258      maxv 	.pa_pagesz = 0
    182      1.258      maxv };
    183      1.258      maxv 
    184      1.134        ad struct pool_allocator pool_allocator_meta = {
    185      1.191      para 	.pa_alloc = pool_page_alloc_meta,
    186      1.191      para 	.pa_free = pool_page_free_meta,
    187      1.191      para 	.pa_pagesz = 0
    188       1.98      yamt };
    189       1.98      yamt 
    190      1.208       chs #define POOL_ALLOCATOR_BIG_BASE 13
    191      1.258      maxv static struct pool_allocator pool_allocator_big[] = {
    192      1.258      maxv 	{
    193      1.258      maxv 		.pa_alloc = pool_page_alloc,
    194      1.258      maxv 		.pa_free = pool_page_free,
    195      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
    196      1.258      maxv 	},
    197      1.258      maxv 	{
    198      1.258      maxv 		.pa_alloc = pool_page_alloc,
    199      1.258      maxv 		.pa_free = pool_page_free,
    200      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
    201      1.258      maxv 	},
    202      1.258      maxv 	{
    203      1.258      maxv 		.pa_alloc = pool_page_alloc,
    204      1.258      maxv 		.pa_free = pool_page_free,
    205      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
    206      1.258      maxv 	},
    207      1.258      maxv 	{
    208      1.258      maxv 		.pa_alloc = pool_page_alloc,
    209      1.258      maxv 		.pa_free = pool_page_free,
    210      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
    211      1.258      maxv 	},
    212      1.258      maxv 	{
    213      1.258      maxv 		.pa_alloc = pool_page_alloc,
    214      1.258      maxv 		.pa_free = pool_page_free,
    215      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
    216      1.258      maxv 	},
    217      1.258      maxv 	{
    218      1.258      maxv 		.pa_alloc = pool_page_alloc,
    219      1.258      maxv 		.pa_free = pool_page_free,
    220      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
    221      1.258      maxv 	},
    222      1.258      maxv 	{
    223      1.258      maxv 		.pa_alloc = pool_page_alloc,
    224      1.258      maxv 		.pa_free = pool_page_free,
    225      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
    226      1.258      maxv 	},
    227      1.258      maxv 	{
    228      1.258      maxv 		.pa_alloc = pool_page_alloc,
    229      1.258      maxv 		.pa_free = pool_page_free,
    230      1.258      maxv 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
    231      1.273  jdolecek 	},
    232      1.273  jdolecek 	{
    233      1.273  jdolecek 		.pa_alloc = pool_page_alloc,
    234      1.273  jdolecek 		.pa_free = pool_page_free,
    235      1.273  jdolecek 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8),
    236      1.273  jdolecek 	},
    237      1.273  jdolecek 	{
    238      1.273  jdolecek 		.pa_alloc = pool_page_alloc,
    239      1.273  jdolecek 		.pa_free = pool_page_free,
    240      1.273  jdolecek 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9),
    241      1.273  jdolecek 	},
    242      1.273  jdolecek 	{
    243      1.273  jdolecek 		.pa_alloc = pool_page_alloc,
    244      1.273  jdolecek 		.pa_free = pool_page_free,
    245      1.273  jdolecek 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10),
    246      1.273  jdolecek 	},
    247      1.273  jdolecek 	{
    248      1.273  jdolecek 		.pa_alloc = pool_page_alloc,
    249      1.273  jdolecek 		.pa_free = pool_page_free,
    250      1.273  jdolecek 		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11),
    251      1.258      maxv 	}
    252      1.258      maxv };
    253      1.258      maxv 
    254      1.208       chs static int pool_bigidx(size_t);
    255      1.208       chs 
    256        1.3        pk /* # of seconds to retain page after last use */
    257        1.3        pk int pool_inactive_time = 10;
    258        1.3        pk 
    259        1.3        pk /* Next candidate for drainage (see pool_drain()) */
    260      1.236      maxv static struct pool *drainpp;
    261       1.23   thorpej 
    262      1.134        ad /* This lock protects both pool_head and drainpp. */
    263      1.134        ad static kmutex_t pool_head_lock;
    264      1.134        ad static kcondvar_t pool_busy;
    265        1.3        pk 
    266      1.178      elad /* This lock protects initialization of a potentially shared pool allocator */
    267      1.178      elad static kmutex_t pool_allocator_lock;
    268      1.178      elad 
    269      1.245      maxv static unsigned int poolid_counter = 0;
    270      1.245      maxv 
    271      1.135      yamt typedef uint32_t pool_item_bitmap_t;
    272      1.135      yamt #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    273      1.135      yamt #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    274      1.256      maxv #define	BITMAP_MIN_SIZE	(CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
    275       1.99      yamt 
    276        1.3        pk struct pool_item_header {
    277        1.3        pk 	/* Page headers */
    278       1.88       chs 	LIST_ENTRY(pool_item_header)
    279        1.3        pk 				ph_pagelist;	/* pool page list */
    280      1.245      maxv 	union {
    281      1.245      maxv 		/* !PR_PHINPAGE */
    282      1.245      maxv 		struct {
    283      1.245      maxv 			SPLAY_ENTRY(pool_item_header)
    284      1.245      maxv 				phu_node;	/* off-page page headers */
    285      1.245      maxv 		} phu_offpage;
    286      1.245      maxv 		/* PR_PHINPAGE */
    287      1.245      maxv 		struct {
    288      1.245      maxv 			unsigned int phu_poolid;
    289      1.245      maxv 		} phu_onpage;
    290      1.245      maxv 	} ph_u1;
    291      1.128  christos 	void *			ph_page;	/* this page's address */
    292      1.151      yamt 	uint32_t		ph_time;	/* last referenced */
    293      1.135      yamt 	uint16_t		ph_nmissing;	/* # of chunks in use */
    294      1.141      yamt 	uint16_t		ph_off;		/* start offset in page */
    295       1.97      yamt 	union {
    296      1.242      maxv 		/* !PR_USEBMAP */
    297       1.97      yamt 		struct {
    298      1.102       chs 			LIST_HEAD(, pool_item)
    299       1.97      yamt 				phu_itemlist;	/* chunk list for this page */
    300       1.97      yamt 		} phu_normal;
    301      1.242      maxv 		/* PR_USEBMAP */
    302       1.97      yamt 		struct {
    303      1.141      yamt 			pool_item_bitmap_t phu_bitmap[1];
    304       1.97      yamt 		} phu_notouch;
    305      1.245      maxv 	} ph_u2;
    306        1.3        pk };
    307      1.245      maxv #define ph_node		ph_u1.phu_offpage.phu_node
    308      1.245      maxv #define ph_poolid	ph_u1.phu_onpage.phu_poolid
    309      1.245      maxv #define ph_itemlist	ph_u2.phu_normal.phu_itemlist
    310      1.245      maxv #define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
    311        1.3        pk 
    312      1.240      maxv #define PHSIZE	ALIGN(sizeof(struct pool_item_header))
    313      1.240      maxv 
    314      1.256      maxv CTASSERT(offsetof(struct pool_item_header, ph_u2) +
    315      1.256      maxv     BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
    316      1.256      maxv 
    317      1.229      maxv #if defined(DIAGNOSTIC) && !defined(KASAN)
    318      1.229      maxv #define POOL_CHECK_MAGIC
    319      1.229      maxv #endif
    320      1.229      maxv 
    321        1.1        pk struct pool_item {
    322      1.229      maxv #ifdef POOL_CHECK_MAGIC
    323       1.82   thorpej 	u_int pi_magic;
    324       1.33       chs #endif
    325      1.134        ad #define	PI_MAGIC 0xdeaddeadU
    326        1.3        pk 	/* Other entries use only this list entry */
    327      1.102       chs 	LIST_ENTRY(pool_item)	pi_list;
    328        1.3        pk };
    329        1.3        pk 
    330       1.53   thorpej #define	POOL_NEEDS_CATCHUP(pp)						\
    331      1.267       chs 	((pp)->pr_nitems < (pp)->pr_minitems ||				\
    332      1.267       chs 	 (pp)->pr_npages < (pp)->pr_minpages)
    333      1.253      maxv #define	POOL_OBJ_TO_PAGE(pp, v)						\
    334      1.253      maxv 	(void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
    335       1.53   thorpej 
    336       1.43   thorpej /*
    337       1.43   thorpej  * Pool cache management.
    338       1.43   thorpej  *
    339       1.43   thorpej  * Pool caches provide a way for constructed objects to be cached by the
    340       1.43   thorpej  * pool subsystem.  This can lead to performance improvements by avoiding
    341       1.43   thorpej  * needless object construction/destruction; it is deferred until absolutely
    342       1.43   thorpej  * necessary.
    343       1.43   thorpej  *
    344      1.134        ad  * Caches are grouped into cache groups.  Each cache group references up
    345      1.134        ad  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    346      1.134        ad  * object from the pool, it calls the object's constructor and places it
    347      1.134        ad  * into a cache group.  When a cache group frees an object back to the
    348      1.134        ad  * pool, it first calls the object's destructor.  This allows the object
    349      1.134        ad  * to persist in constructed form while freed to the cache.
    350      1.134        ad  *
    351      1.134        ad  * The pool references each cache, so that when a pool is drained by the
    352      1.134        ad  * pagedaemon, it can drain each individual cache as well.  Each time a
    353      1.134        ad  * cache is drained, the most idle cache group is freed to the pool in
    354      1.134        ad  * its entirety.
    355       1.43   thorpej  *
    356      1.284    andvar  * Pool caches are laid on top of pools.  By layering them, we can avoid
    357       1.43   thorpej  * the complexity of cache management for pools which would not benefit
    358       1.43   thorpej  * from it.
    359       1.43   thorpej  */
    360       1.43   thorpej 
    361      1.142        ad static struct pool pcg_normal_pool;
    362      1.142        ad static struct pool pcg_large_pool;
    363      1.134        ad static struct pool cache_pool;
    364      1.134        ad static struct pool cache_cpu_pool;
    365        1.3        pk 
    366      1.271        ad static pcg_t *volatile pcg_large_cache __cacheline_aligned;
    367      1.271        ad static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
    368      1.271        ad 
    369      1.145        ad /* List of all caches. */
    370      1.145        ad TAILQ_HEAD(,pool_cache) pool_cache_head =
    371      1.145        ad     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    372      1.145        ad 
    373      1.162        ad int pool_cache_disable;		/* global disable for caching */
    374      1.169      yamt static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    375      1.145        ad 
    376      1.271        ad static bool	pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
    377      1.162        ad 				    void *);
    378      1.271        ad static bool	pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
    379      1.162        ad 				    void **, paddr_t *, int);
    380      1.134        ad static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    381      1.271        ad static int	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    382      1.175       jym static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
    383      1.196       jym static void	pool_cache_transfer(pool_cache_t);
    384      1.271        ad static int	pool_pcg_get(pcg_t *volatile *, pcg_t **);
    385      1.271        ad static int	pool_pcg_put(pcg_t *volatile *, pcg_t *);
    386      1.271        ad static pcg_t *	pool_pcg_trunc(pcg_t *volatile *);
    387        1.3        pk 
    388       1.42   thorpej static int	pool_catchup(struct pool *);
    389      1.128  christos static void	pool_prime_page(struct pool *, void *,
    390       1.55   thorpej 		    struct pool_item_header *);
    391       1.88       chs static void	pool_update_curpage(struct pool *);
    392       1.66   thorpej 
    393      1.113      yamt static int	pool_grow(struct pool *, int);
    394      1.117      yamt static void	*pool_allocator_alloc(struct pool *, int);
    395      1.117      yamt static void	pool_allocator_free(struct pool *, void *);
    396        1.3        pk 
    397       1.97      yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    398      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    399       1.42   thorpej static void pool_print1(struct pool *, const char *,
    400      1.199  christos 	void (*)(const char *, ...) __printflike(1, 2));
    401        1.3        pk 
    402       1.88       chs static int pool_chk_page(struct pool *, const char *,
    403       1.88       chs 			 struct pool_item_header *);
    404       1.88       chs 
    405      1.234      maxv /* -------------------------------------------------------------------------- */
    406      1.234      maxv 
    407      1.135      yamt static inline unsigned int
    408      1.234      maxv pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
    409       1.97      yamt     const void *v)
    410       1.97      yamt {
    411       1.97      yamt 	const char *cp = v;
    412      1.135      yamt 	unsigned int idx;
    413       1.97      yamt 
    414      1.242      maxv 	KASSERT(pp->pr_roflags & PR_USEBMAP);
    415      1.128  christos 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    416      1.237      maxv 
    417      1.237      maxv 	if (__predict_false(idx >= pp->pr_itemsperpage)) {
    418      1.237      maxv 		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
    419      1.237      maxv 		    pp->pr_itemsperpage);
    420      1.237      maxv 	}
    421      1.237      maxv 
    422       1.97      yamt 	return idx;
    423       1.97      yamt }
    424       1.97      yamt 
    425      1.110     perry static inline void
    426      1.234      maxv pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
    427       1.97      yamt     void *obj)
    428       1.97      yamt {
    429      1.234      maxv 	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
    430      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    431      1.223     kamil 	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
    432       1.97      yamt 
    433      1.237      maxv 	if (__predict_false((*bitmap & mask) != 0)) {
    434      1.237      maxv 		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
    435      1.237      maxv 	}
    436      1.237      maxv 
    437      1.135      yamt 	*bitmap |= mask;
    438       1.97      yamt }
    439       1.97      yamt 
    440      1.110     perry static inline void *
    441      1.234      maxv pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
    442       1.97      yamt {
    443      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    444      1.135      yamt 	unsigned int idx;
    445      1.135      yamt 	int i;
    446       1.97      yamt 
    447      1.135      yamt 	for (i = 0; ; i++) {
    448      1.135      yamt 		int bit;
    449       1.97      yamt 
    450      1.135      yamt 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    451      1.135      yamt 		bit = ffs32(bitmap[i]);
    452      1.135      yamt 		if (bit) {
    453      1.135      yamt 			pool_item_bitmap_t mask;
    454      1.135      yamt 
    455      1.135      yamt 			bit--;
    456      1.135      yamt 			idx = (i * BITMAP_SIZE) + bit;
    457      1.222     kamil 			mask = 1U << bit;
    458      1.135      yamt 			KASSERT((bitmap[i] & mask) != 0);
    459      1.135      yamt 			bitmap[i] &= ~mask;
    460      1.135      yamt 			break;
    461      1.135      yamt 		}
    462      1.135      yamt 	}
    463      1.135      yamt 	KASSERT(idx < pp->pr_itemsperpage);
    464      1.128  christos 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    465       1.97      yamt }
    466       1.97      yamt 
    467      1.135      yamt static inline void
    468      1.234      maxv pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
    469      1.135      yamt {
    470      1.135      yamt 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    471      1.135      yamt 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    472      1.135      yamt 	int i;
    473      1.135      yamt 
    474      1.135      yamt 	for (i = 0; i < n; i++) {
    475      1.135      yamt 		bitmap[i] = (pool_item_bitmap_t)-1;
    476      1.135      yamt 	}
    477      1.135      yamt }
    478      1.135      yamt 
    479      1.234      maxv /* -------------------------------------------------------------------------- */
    480      1.234      maxv 
    481      1.234      maxv static inline void
    482      1.234      maxv pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
    483      1.234      maxv     void *obj)
    484      1.234      maxv {
    485      1.234      maxv 	struct pool_item *pi = obj;
    486      1.234      maxv 
    487      1.279   thorpej 	KASSERT(!pp_has_pser(pp));
    488      1.279   thorpej 
    489      1.234      maxv #ifdef POOL_CHECK_MAGIC
    490      1.234      maxv 	pi->pi_magic = PI_MAGIC;
    491      1.234      maxv #endif
    492      1.234      maxv 
    493      1.234      maxv 	if (pp->pr_redzone) {
    494      1.234      maxv 		/*
    495      1.234      maxv 		 * Mark the pool_item as valid. The rest is already
    496      1.234      maxv 		 * invalid.
    497      1.234      maxv 		 */
    498      1.248      maxv 		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
    499      1.234      maxv 	}
    500      1.234      maxv 
    501      1.234      maxv 	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    502      1.234      maxv }
    503      1.234      maxv 
    504      1.234      maxv static inline void *
    505      1.234      maxv pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
    506      1.234      maxv {
    507      1.234      maxv 	struct pool_item *pi;
    508      1.234      maxv 	void *v;
    509      1.234      maxv 
    510      1.234      maxv 	v = pi = LIST_FIRST(&ph->ph_itemlist);
    511      1.234      maxv 	if (__predict_false(v == NULL)) {
    512      1.234      maxv 		mutex_exit(&pp->pr_lock);
    513      1.234      maxv 		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
    514      1.234      maxv 	}
    515      1.234      maxv 	KASSERTMSG((pp->pr_nitems > 0),
    516      1.234      maxv 	    "%s: [%s] nitems %u inconsistent on itemlist",
    517      1.234      maxv 	    __func__, pp->pr_wchan, pp->pr_nitems);
    518      1.234      maxv #ifdef POOL_CHECK_MAGIC
    519      1.234      maxv 	KASSERTMSG((pi->pi_magic == PI_MAGIC),
    520      1.234      maxv 	    "%s: [%s] free list modified: "
    521      1.234      maxv 	    "magic=%x; page %p; item addr %p", __func__,
    522      1.234      maxv 	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    523      1.234      maxv #endif
    524      1.234      maxv 
    525      1.234      maxv 	/*
    526      1.234      maxv 	 * Remove from item list.
    527      1.234      maxv 	 */
    528      1.234      maxv 	LIST_REMOVE(pi, pi_list);
    529      1.234      maxv 
    530      1.234      maxv 	return v;
    531      1.234      maxv }
    532      1.234      maxv 
    533      1.234      maxv /* -------------------------------------------------------------------------- */
    534      1.234      maxv 
    535      1.253      maxv static inline void
    536      1.253      maxv pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
    537      1.253      maxv     void *object)
    538      1.253      maxv {
    539      1.253      maxv 	if (__predict_false((void *)ph->ph_page != page)) {
    540      1.253      maxv 		panic("%s: [%s] item %p not part of pool", __func__,
    541      1.253      maxv 		    pp->pr_wchan, object);
    542      1.253      maxv 	}
    543      1.253      maxv 	if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
    544      1.253      maxv 		panic("%s: [%s] item %p below item space", __func__,
    545      1.253      maxv 		    pp->pr_wchan, object);
    546      1.253      maxv 	}
    547      1.253      maxv 	if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    548      1.253      maxv 		panic("%s: [%s] item %p poolid %u != %u", __func__,
    549      1.253      maxv 		    pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
    550      1.253      maxv 	}
    551      1.253      maxv }
    552      1.253      maxv 
    553      1.253      maxv static inline void
    554      1.253      maxv pc_phinpage_check(pool_cache_t pc, void *object)
    555      1.253      maxv {
    556      1.253      maxv 	struct pool_item_header *ph;
    557      1.253      maxv 	struct pool *pp;
    558      1.253      maxv 	void *page;
    559      1.253      maxv 
    560      1.253      maxv 	pp = &pc->pc_pool;
    561      1.253      maxv 	page = POOL_OBJ_TO_PAGE(pp, object);
    562      1.253      maxv 	ph = (struct pool_item_header *)page;
    563      1.253      maxv 
    564      1.253      maxv 	pr_phinpage_check(pp, ph, page, object);
    565      1.253      maxv }
    566      1.253      maxv 
    567      1.253      maxv /* -------------------------------------------------------------------------- */
    568      1.253      maxv 
    569      1.110     perry static inline int
    570       1.88       chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    571       1.88       chs {
    572      1.121      yamt 
    573      1.121      yamt 	/*
    574      1.236      maxv 	 * We consider pool_item_header with smaller ph_page bigger. This
    575      1.236      maxv 	 * unnatural ordering is for the benefit of pr_find_pagehead.
    576      1.121      yamt 	 */
    577       1.88       chs 	if (a->ph_page < b->ph_page)
    578      1.236      maxv 		return 1;
    579      1.121      yamt 	else if (a->ph_page > b->ph_page)
    580      1.236      maxv 		return -1;
    581       1.88       chs 	else
    582      1.236      maxv 		return 0;
    583       1.88       chs }
    584       1.88       chs 
    585       1.88       chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    586       1.88       chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    587       1.88       chs 
    588      1.141      yamt static inline struct pool_item_header *
    589      1.141      yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
    590      1.141      yamt {
    591      1.141      yamt 	struct pool_item_header *ph, tmp;
    592      1.141      yamt 
    593      1.141      yamt 	tmp.ph_page = (void *)(uintptr_t)v;
    594      1.141      yamt 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    595      1.141      yamt 	if (ph == NULL) {
    596      1.141      yamt 		ph = SPLAY_ROOT(&pp->pr_phtree);
    597      1.141      yamt 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    598      1.141      yamt 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    599      1.141      yamt 		}
    600      1.141      yamt 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    601      1.141      yamt 	}
    602      1.141      yamt 
    603      1.141      yamt 	return ph;
    604      1.141      yamt }
    605      1.141      yamt 
    606        1.3        pk /*
    607      1.121      yamt  * Return the pool page header based on item address.
    608        1.3        pk  */
    609      1.110     perry static inline struct pool_item_header *
    610      1.121      yamt pr_find_pagehead(struct pool *pp, void *v)
    611        1.3        pk {
    612       1.88       chs 	struct pool_item_header *ph, tmp;
    613        1.3        pk 
    614      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    615      1.141      yamt 		ph = pr_find_pagehead_noalign(pp, v);
    616      1.121      yamt 	} else {
    617      1.253      maxv 		void *page = POOL_OBJ_TO_PAGE(pp, v);
    618      1.121      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    619      1.241      maxv 			ph = (struct pool_item_header *)page;
    620      1.253      maxv 			pr_phinpage_check(pp, ph, page, v);
    621      1.121      yamt 		} else {
    622      1.121      yamt 			tmp.ph_page = page;
    623      1.121      yamt 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    624      1.121      yamt 		}
    625      1.121      yamt 	}
    626        1.3        pk 
    627      1.121      yamt 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    628      1.128  christos 	    ((char *)ph->ph_page <= (char *)v &&
    629      1.128  christos 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    630       1.88       chs 	return ph;
    631        1.3        pk }
    632        1.3        pk 
    633      1.101   thorpej static void
    634      1.101   thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    635      1.101   thorpej {
    636      1.101   thorpej 	struct pool_item_header *ph;
    637      1.101   thorpej 
    638      1.101   thorpej 	while ((ph = LIST_FIRST(pq)) != NULL) {
    639      1.101   thorpej 		LIST_REMOVE(ph, ph_pagelist);
    640      1.101   thorpej 		pool_allocator_free(pp, ph->ph_page);
    641      1.134        ad 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    642      1.101   thorpej 			pool_put(pp->pr_phpool, ph);
    643      1.101   thorpej 	}
    644      1.101   thorpej }
    645      1.101   thorpej 
    646        1.3        pk /*
    647        1.3        pk  * Remove a page from the pool.
    648        1.3        pk  */
    649      1.110     perry static inline void
    650       1.61       chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    651       1.61       chs      struct pool_pagelist *pq)
    652        1.3        pk {
    653        1.3        pk 
    654      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
    655       1.91      yamt 
    656        1.3        pk 	/*
    657        1.7   thorpej 	 * If the page was idle, decrement the idle page count.
    658        1.3        pk 	 */
    659        1.6   thorpej 	if (ph->ph_nmissing == 0) {
    660      1.207  riastrad 		KASSERT(pp->pr_nidle != 0);
    661      1.207  riastrad 		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
    662      1.251  christos 		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
    663      1.251  christos 		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
    664        1.6   thorpej 		pp->pr_nidle--;
    665        1.6   thorpej 	}
    666        1.7   thorpej 
    667       1.20   thorpej 	pp->pr_nitems -= pp->pr_itemsperpage;
    668       1.20   thorpej 
    669        1.7   thorpej 	/*
    670      1.101   thorpej 	 * Unlink the page from the pool and queue it for release.
    671        1.7   thorpej 	 */
    672       1.88       chs 	LIST_REMOVE(ph, ph_pagelist);
    673      1.245      maxv 	if (pp->pr_roflags & PR_PHINPAGE) {
    674      1.245      maxv 		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
    675      1.245      maxv 			panic("%s: [%s] ph %p poolid %u != %u",
    676      1.245      maxv 			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
    677      1.245      maxv 			    pp->pr_poolid);
    678      1.245      maxv 		}
    679      1.245      maxv 	} else {
    680       1.91      yamt 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    681      1.245      maxv 	}
    682      1.101   thorpej 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    683      1.101   thorpej 
    684        1.7   thorpej 	pp->pr_npages--;
    685        1.7   thorpej 	pp->pr_npagefree++;
    686        1.6   thorpej 
    687       1.88       chs 	pool_update_curpage(pp);
    688        1.3        pk }
    689        1.3        pk 
    690        1.3        pk /*
    691       1.94    simonb  * Initialize all the pools listed in the "pools" link set.
    692       1.94    simonb  */
    693       1.94    simonb void
    694      1.117      yamt pool_subsystem_init(void)
    695       1.94    simonb {
    696      1.192     rmind 	size_t size;
    697      1.191      para 	int idx;
    698       1.94    simonb 
    699      1.134        ad 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    700      1.179   mlelstv 	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
    701      1.134        ad 	cv_init(&pool_busy, "poolbusy");
    702      1.134        ad 
    703      1.191      para 	/*
    704      1.191      para 	 * Initialize private page header pool and cache magazine pool if we
    705      1.191      para 	 * haven't done so yet.
    706      1.191      para 	 */
    707      1.191      para 	for (idx = 0; idx < PHPOOL_MAX; idx++) {
    708      1.191      para 		static char phpool_names[PHPOOL_MAX][6+1+6+1];
    709      1.191      para 		int nelem;
    710      1.191      para 		size_t sz;
    711      1.191      para 
    712      1.191      para 		nelem = PHPOOL_FREELIST_NELEM(idx);
    713      1.256      maxv 		KASSERT(nelem != 0);
    714      1.191      para 		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    715      1.191      para 		    "phpool-%d", nelem);
    716      1.256      maxv 		sz = offsetof(struct pool_item_header,
    717      1.256      maxv 		    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    718      1.191      para 		pool_init(&phpool[idx], sz, 0, 0, 0,
    719      1.191      para 		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    720      1.117      yamt 	}
    721      1.191      para 
    722      1.191      para 	size = sizeof(pcg_t) +
    723      1.191      para 	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    724      1.191      para 	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    725      1.191      para 	    "pcgnormal", &pool_allocator_meta, IPL_VM);
    726      1.191      para 
    727      1.191      para 	size = sizeof(pcg_t) +
    728      1.191      para 	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    729      1.191      para 	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    730      1.191      para 	    "pcglarge", &pool_allocator_meta, IPL_VM);
    731      1.134        ad 
    732      1.156        ad 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    733      1.191      para 	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
    734      1.134        ad 
    735      1.156        ad 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    736      1.191      para 	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
    737       1.94    simonb }
    738       1.94    simonb 
    739      1.240      maxv static inline bool
    740      1.240      maxv pool_init_is_phinpage(const struct pool *pp)
    741      1.240      maxv {
    742      1.240      maxv 	size_t pagesize;
    743      1.240      maxv 
    744      1.240      maxv 	if (pp->pr_roflags & PR_PHINPAGE) {
    745      1.240      maxv 		return true;
    746      1.240      maxv 	}
    747      1.240      maxv 	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
    748      1.240      maxv 		return false;
    749      1.240      maxv 	}
    750      1.240      maxv 
    751      1.240      maxv 	pagesize = pp->pr_alloc->pa_pagesz;
    752      1.240      maxv 
    753      1.240      maxv 	/*
    754      1.240      maxv 	 * Threshold: the item size is below 1/16 of a page size, and below
    755      1.240      maxv 	 * 8 times the page header size. The latter ensures we go off-page
    756      1.240      maxv 	 * if the page header would make us waste a rather big item.
    757      1.240      maxv 	 */
    758      1.240      maxv 	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
    759      1.240      maxv 		return true;
    760      1.240      maxv 	}
    761      1.240      maxv 
    762      1.240      maxv 	/* Put the header into the page if it doesn't waste any items. */
    763      1.240      maxv 	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
    764      1.240      maxv 		return true;
    765      1.240      maxv 	}
    766      1.240      maxv 
    767      1.240      maxv 	return false;
    768      1.240      maxv }
    769      1.240      maxv 
    770      1.242      maxv static inline bool
    771      1.242      maxv pool_init_is_usebmap(const struct pool *pp)
    772      1.242      maxv {
    773      1.243      maxv 	size_t bmapsize;
    774      1.243      maxv 
    775      1.242      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
    776      1.242      maxv 		return true;
    777      1.242      maxv 	}
    778      1.242      maxv 
    779      1.243      maxv 	/*
    780      1.256      maxv 	 * If we're off-page, go with a bitmap.
    781      1.256      maxv 	 */
    782      1.256      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    783      1.256      maxv 		return true;
    784      1.256      maxv 	}
    785      1.256      maxv 
    786      1.256      maxv 	/*
    787      1.243      maxv 	 * If we're on-page, and the page header can already contain a bitmap
    788      1.243      maxv 	 * big enough to cover all the items of the page, go with a bitmap.
    789      1.243      maxv 	 */
    790      1.243      maxv 	bmapsize = roundup(PHSIZE, pp->pr_align) -
    791      1.243      maxv 	    offsetof(struct pool_item_header, ph_bitmap[0]);
    792      1.243      maxv 	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
    793      1.243      maxv 	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
    794      1.243      maxv 		return true;
    795      1.243      maxv 	}
    796      1.243      maxv 
    797      1.242      maxv 	return false;
    798      1.242      maxv }
    799      1.242      maxv 
    800       1.94    simonb /*
    801        1.3        pk  * Initialize the given pool resource structure.
    802        1.3        pk  *
    803        1.3        pk  * We export this routine to allow other kernel parts to declare
    804      1.195     rmind  * static pools that must be initialized before kmem(9) is available.
    805        1.3        pk  */
    806        1.3        pk void
    807       1.42   thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    808      1.129        ad     const char *wchan, struct pool_allocator *palloc, int ipl)
    809        1.3        pk {
    810      1.116    simonb 	struct pool *pp1;
    811      1.240      maxv 	size_t prsize;
    812      1.237      maxv 	int itemspace, slack;
    813        1.3        pk 
    814      1.238      maxv 	/* XXX ioff will be removed. */
    815      1.238      maxv 	KASSERT(ioff == 0);
    816      1.238      maxv 
    817      1.116    simonb #ifdef DEBUG
    818      1.198  christos 	if (__predict_true(!cold))
    819      1.198  christos 		mutex_enter(&pool_head_lock);
    820      1.116    simonb 	/*
    821      1.116    simonb 	 * Check that the pool hasn't already been initialised and
    822      1.116    simonb 	 * added to the list of all pools.
    823      1.116    simonb 	 */
    824      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    825      1.116    simonb 		if (pp == pp1)
    826      1.213  christos 			panic("%s: [%s] already initialised", __func__,
    827      1.116    simonb 			    wchan);
    828      1.116    simonb 	}
    829      1.198  christos 	if (__predict_true(!cold))
    830      1.198  christos 		mutex_exit(&pool_head_lock);
    831      1.116    simonb #endif
    832      1.116    simonb 
    833       1.66   thorpej 	if (palloc == NULL)
    834       1.66   thorpej 		palloc = &pool_allocator_kmem;
    835      1.244      maxv 
    836      1.180   mlelstv 	if (!cold)
    837      1.180   mlelstv 		mutex_enter(&pool_allocator_lock);
    838      1.178      elad 	if (palloc->pa_refcnt++ == 0) {
    839      1.112     bjh21 		if (palloc->pa_pagesz == 0)
    840       1.66   thorpej 			palloc->pa_pagesz = PAGE_SIZE;
    841       1.66   thorpej 
    842       1.66   thorpej 		TAILQ_INIT(&palloc->pa_list);
    843       1.66   thorpej 
    844      1.134        ad 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    845       1.66   thorpej 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    846       1.66   thorpej 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    847        1.4   thorpej 	}
    848      1.180   mlelstv 	if (!cold)
    849      1.180   mlelstv 		mutex_exit(&pool_allocator_lock);
    850        1.3        pk 
    851      1.279   thorpej 	/*
    852      1.279   thorpej 	 * PR_PSERIALIZE implies PR_NOTOUCH; freed objects must remain
    853      1.279   thorpej 	 * valid until the the backing page is returned to the system.
    854      1.279   thorpej 	 */
    855      1.279   thorpej 	if (flags & PR_PSERIALIZE) {
    856      1.279   thorpej 		flags |= PR_NOTOUCH;
    857      1.279   thorpej 	}
    858      1.279   thorpej 
    859        1.3        pk 	if (align == 0)
    860        1.3        pk 		align = ALIGN(1);
    861       1.14   thorpej 
    862      1.204      maxv 	prsize = size;
    863      1.204      maxv 	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
    864      1.204      maxv 		prsize = sizeof(struct pool_item);
    865        1.3        pk 
    866      1.204      maxv 	prsize = roundup(prsize, align);
    867      1.207  riastrad 	KASSERTMSG((prsize <= palloc->pa_pagesz),
    868      1.213  christos 	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
    869      1.213  christos 	    __func__, wchan, prsize, palloc->pa_pagesz);
    870       1.35        pk 
    871        1.3        pk 	/*
    872        1.3        pk 	 * Initialize the pool structure.
    873        1.3        pk 	 */
    874       1.88       chs 	LIST_INIT(&pp->pr_emptypages);
    875       1.88       chs 	LIST_INIT(&pp->pr_fullpages);
    876       1.88       chs 	LIST_INIT(&pp->pr_partpages);
    877      1.134        ad 	pp->pr_cache = NULL;
    878        1.3        pk 	pp->pr_curpage = NULL;
    879        1.3        pk 	pp->pr_npages = 0;
    880        1.3        pk 	pp->pr_minitems = 0;
    881        1.3        pk 	pp->pr_minpages = 0;
    882  1.285.4.2    martin 	pp->pr_maxitems = UINT_MAX;
    883        1.3        pk 	pp->pr_maxpages = UINT_MAX;
    884       1.20   thorpej 	pp->pr_roflags = flags;
    885       1.20   thorpej 	pp->pr_flags = 0;
    886      1.204      maxv 	pp->pr_size = prsize;
    887      1.233      maxv 	pp->pr_reqsize = size;
    888        1.3        pk 	pp->pr_align = align;
    889        1.3        pk 	pp->pr_wchan = wchan;
    890       1.66   thorpej 	pp->pr_alloc = palloc;
    891      1.245      maxv 	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
    892       1.20   thorpej 	pp->pr_nitems = 0;
    893       1.20   thorpej 	pp->pr_nout = 0;
    894       1.20   thorpej 	pp->pr_hardlimit = UINT_MAX;
    895       1.20   thorpej 	pp->pr_hardlimit_warning = NULL;
    896       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    897       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    898       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    899       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    900       1.68   thorpej 	pp->pr_drain_hook = NULL;
    901       1.68   thorpej 	pp->pr_drain_hook_arg = NULL;
    902      1.125        ad 	pp->pr_freecheck = NULL;
    903      1.255      maxv 	pp->pr_redzone = false;
    904      1.204      maxv 	pool_redzone_init(pp, size);
    905      1.249      maxv 	pool_quarantine_init(pp);
    906        1.3        pk 
    907        1.3        pk 	/*
    908      1.240      maxv 	 * Decide whether to put the page header off-page to avoid wasting too
    909      1.240      maxv 	 * large a part of the page or too big an item. Off-page page headers
    910      1.240      maxv 	 * go on a hash table, so we can match a returned item with its header
    911      1.240      maxv 	 * based on the page address.
    912        1.3        pk 	 */
    913      1.240      maxv 	if (pool_init_is_phinpage(pp)) {
    914      1.241      maxv 		/* Use the beginning of the page for the page header */
    915      1.241      maxv 		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
    916      1.241      maxv 		pp->pr_itemoffset = roundup(PHSIZE, align);
    917      1.239      maxv 		pp->pr_roflags |= PR_PHINPAGE;
    918        1.2        pk 	} else {
    919        1.3        pk 		/* The page header will be taken from our page header pool */
    920      1.237      maxv 		itemspace = palloc->pa_pagesz;
    921      1.241      maxv 		pp->pr_itemoffset = 0;
    922       1.88       chs 		SPLAY_INIT(&pp->pr_phtree);
    923        1.2        pk 	}
    924        1.1        pk 
    925      1.243      maxv 	pp->pr_itemsperpage = itemspace / pp->pr_size;
    926      1.243      maxv 	KASSERT(pp->pr_itemsperpage != 0);
    927      1.243      maxv 
    928      1.242      maxv 	/*
    929      1.242      maxv 	 * Decide whether to use a bitmap or a linked list to manage freed
    930      1.242      maxv 	 * items.
    931      1.242      maxv 	 */
    932      1.242      maxv 	if (pool_init_is_usebmap(pp)) {
    933      1.242      maxv 		pp->pr_roflags |= PR_USEBMAP;
    934      1.242      maxv 	}
    935      1.242      maxv 
    936      1.242      maxv 	/*
    937      1.256      maxv 	 * If we're off-page, then we're using a bitmap; choose the appropriate
    938      1.256      maxv 	 * pool to allocate page headers, whose size varies depending on the
    939      1.256      maxv 	 * bitmap. If we're on-page, nothing to do.
    940      1.242      maxv 	 */
    941      1.256      maxv 	if (!(pp->pr_roflags & PR_PHINPAGE)) {
    942       1.97      yamt 		int idx;
    943       1.97      yamt 
    944      1.256      maxv 		KASSERT(pp->pr_roflags & PR_USEBMAP);
    945      1.256      maxv 
    946       1.97      yamt 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    947       1.97      yamt 		    idx++) {
    948       1.97      yamt 			/* nothing */
    949       1.97      yamt 		}
    950       1.97      yamt 		if (idx >= PHPOOL_MAX) {
    951       1.97      yamt 			/*
    952       1.97      yamt 			 * if you see this panic, consider to tweak
    953       1.97      yamt 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    954       1.97      yamt 			 */
    955      1.213  christos 			panic("%s: [%s] too large itemsperpage(%d) for "
    956      1.242      maxv 			    "PR_USEBMAP", __func__,
    957       1.97      yamt 			    pp->pr_wchan, pp->pr_itemsperpage);
    958       1.97      yamt 		}
    959       1.97      yamt 		pp->pr_phpool = &phpool[idx];
    960      1.242      maxv 	} else {
    961       1.97      yamt 		pp->pr_phpool = NULL;
    962       1.97      yamt 	}
    963        1.3        pk 
    964        1.3        pk 	/*
    965        1.3        pk 	 * Use the slack between the chunks and the page header
    966        1.3        pk 	 * for "cache coloring".
    967        1.3        pk 	 */
    968      1.237      maxv 	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
    969      1.239      maxv 	pp->pr_maxcolor = rounddown(slack, align);
    970        1.3        pk 	pp->pr_curcolor = 0;
    971        1.3        pk 
    972        1.3        pk 	pp->pr_nget = 0;
    973        1.3        pk 	pp->pr_nfail = 0;
    974        1.3        pk 	pp->pr_nput = 0;
    975        1.3        pk 	pp->pr_npagealloc = 0;
    976        1.3        pk 	pp->pr_npagefree = 0;
    977        1.1        pk 	pp->pr_hiwat = 0;
    978        1.8   thorpej 	pp->pr_nidle = 0;
    979      1.134        ad 	pp->pr_refcnt = 0;
    980        1.3        pk 
    981      1.157        ad 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    982      1.134        ad 	cv_init(&pp->pr_cv, wchan);
    983      1.134        ad 	pp->pr_ipl = ipl;
    984        1.1        pk 
    985      1.145        ad 	/* Insert into the list of all pools. */
    986      1.181   mlelstv 	if (!cold)
    987      1.134        ad 		mutex_enter(&pool_head_lock);
    988      1.145        ad 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    989      1.145        ad 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    990      1.145        ad 			break;
    991      1.145        ad 	}
    992      1.145        ad 	if (pp1 == NULL)
    993      1.145        ad 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    994      1.145        ad 	else
    995      1.145        ad 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    996      1.181   mlelstv 	if (!cold)
    997      1.134        ad 		mutex_exit(&pool_head_lock);
    998      1.134        ad 
    999      1.167     skrll 	/* Insert this into the list of pools using this allocator. */
   1000      1.181   mlelstv 	if (!cold)
   1001      1.134        ad 		mutex_enter(&palloc->pa_lock);
   1002      1.145        ad 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
   1003      1.181   mlelstv 	if (!cold)
   1004      1.134        ad 		mutex_exit(&palloc->pa_lock);
   1005        1.1        pk }
   1006        1.1        pk 
   1007        1.1        pk /*
   1008      1.283    andvar  * De-commission a pool resource.
   1009        1.1        pk  */
   1010        1.1        pk void
   1011       1.42   thorpej pool_destroy(struct pool *pp)
   1012        1.1        pk {
   1013      1.101   thorpej 	struct pool_pagelist pq;
   1014        1.3        pk 	struct pool_item_header *ph;
   1015       1.43   thorpej 
   1016      1.249      maxv 	pool_quarantine_flush(pp);
   1017      1.249      maxv 
   1018      1.101   thorpej 	/* Remove from global pool list */
   1019      1.134        ad 	mutex_enter(&pool_head_lock);
   1020      1.134        ad 	while (pp->pr_refcnt != 0)
   1021      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   1022      1.145        ad 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
   1023      1.101   thorpej 	if (drainpp == pp)
   1024      1.101   thorpej 		drainpp = NULL;
   1025      1.134        ad 	mutex_exit(&pool_head_lock);
   1026      1.101   thorpej 
   1027      1.101   thorpej 	/* Remove this pool from its allocator's list of pools. */
   1028      1.134        ad 	mutex_enter(&pp->pr_alloc->pa_lock);
   1029       1.66   thorpej 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
   1030      1.134        ad 	mutex_exit(&pp->pr_alloc->pa_lock);
   1031       1.66   thorpej 
   1032      1.178      elad 	mutex_enter(&pool_allocator_lock);
   1033      1.178      elad 	if (--pp->pr_alloc->pa_refcnt == 0)
   1034      1.178      elad 		mutex_destroy(&pp->pr_alloc->pa_lock);
   1035      1.178      elad 	mutex_exit(&pool_allocator_lock);
   1036      1.178      elad 
   1037      1.134        ad 	mutex_enter(&pp->pr_lock);
   1038      1.101   thorpej 
   1039      1.134        ad 	KASSERT(pp->pr_cache == NULL);
   1040      1.207  riastrad 	KASSERTMSG((pp->pr_nout == 0),
   1041      1.251  christos 	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
   1042      1.251  christos 	    pp->pr_nout);
   1043      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
   1044      1.101   thorpej 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
   1045      1.101   thorpej 
   1046        1.3        pk 	/* Remove all pages */
   1047      1.101   thorpej 	LIST_INIT(&pq);
   1048       1.88       chs 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1049      1.101   thorpej 		pr_rmpage(pp, ph, &pq);
   1050      1.101   thorpej 
   1051      1.134        ad 	mutex_exit(&pp->pr_lock);
   1052        1.3        pk 
   1053      1.101   thorpej 	pr_pagelist_free(pp, &pq);
   1054      1.134        ad 	cv_destroy(&pp->pr_cv);
   1055      1.134        ad 	mutex_destroy(&pp->pr_lock);
   1056        1.1        pk }
   1057        1.1        pk 
   1058       1.68   thorpej void
   1059       1.68   thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
   1060       1.68   thorpej {
   1061       1.68   thorpej 
   1062       1.68   thorpej 	/* XXX no locking -- must be used just after pool_init() */
   1063      1.207  riastrad 	KASSERTMSG((pp->pr_drain_hook == NULL),
   1064      1.213  christos 	    "%s: [%s] already set", __func__, pp->pr_wchan);
   1065       1.68   thorpej 	pp->pr_drain_hook = fn;
   1066       1.68   thorpej 	pp->pr_drain_hook_arg = arg;
   1067       1.68   thorpej }
   1068       1.68   thorpej 
   1069       1.88       chs static struct pool_item_header *
   1070      1.128  christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
   1071       1.55   thorpej {
   1072       1.55   thorpej 	struct pool_item_header *ph;
   1073       1.55   thorpej 
   1074       1.55   thorpej 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
   1075      1.241      maxv 		ph = storage;
   1076      1.134        ad 	else
   1077       1.97      yamt 		ph = pool_get(pp->pr_phpool, flags);
   1078       1.55   thorpej 
   1079      1.236      maxv 	return ph;
   1080       1.55   thorpej }
   1081        1.1        pk 
   1082        1.1        pk /*
   1083      1.134        ad  * Grab an item from the pool.
   1084        1.1        pk  */
   1085        1.3        pk void *
   1086       1.56  sommerfe pool_get(struct pool *pp, int flags)
   1087        1.1        pk {
   1088        1.3        pk 	struct pool_item_header *ph;
   1089       1.55   thorpej 	void *v;
   1090        1.1        pk 
   1091      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   1092      1.207  riastrad 	KASSERTMSG((pp->pr_itemsperpage != 0),
   1093      1.213  christos 	    "%s: [%s] pr_itemsperpage is zero, "
   1094      1.213  christos 	    "pool not initialized?", __func__, pp->pr_wchan);
   1095      1.207  riastrad 	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
   1096      1.207  riastrad 		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
   1097      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   1098      1.213  christos 	    __func__, pp->pr_wchan);
   1099      1.155        ad 	if (flags & PR_WAITOK) {
   1100      1.154      yamt 		ASSERT_SLEEPABLE();
   1101      1.155        ad 	}
   1102        1.1        pk 
   1103      1.270      maxv 	if (flags & PR_NOWAIT) {
   1104      1.270      maxv 		if (fault_inject())
   1105      1.270      maxv 			return NULL;
   1106      1.270      maxv 	}
   1107      1.270      maxv 
   1108      1.134        ad 	mutex_enter(&pp->pr_lock);
   1109       1.20   thorpej  startover:
   1110       1.20   thorpej 	/*
   1111       1.20   thorpej 	 * Check to see if we've reached the hard limit.  If we have,
   1112       1.20   thorpej 	 * and we can wait, then wait until an item has been returned to
   1113       1.20   thorpej 	 * the pool.
   1114       1.20   thorpej 	 */
   1115      1.207  riastrad 	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
   1116      1.213  christos 	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
   1117       1.34   thorpej 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1118       1.68   thorpej 		if (pp->pr_drain_hook != NULL) {
   1119       1.68   thorpej 			/*
   1120       1.68   thorpej 			 * Since the drain hook is going to free things
   1121       1.68   thorpej 			 * back to the pool, unlock, call the hook, re-lock,
   1122       1.68   thorpej 			 * and check the hardlimit condition again.
   1123       1.68   thorpej 			 */
   1124      1.134        ad 			mutex_exit(&pp->pr_lock);
   1125       1.68   thorpej 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1126      1.134        ad 			mutex_enter(&pp->pr_lock);
   1127       1.68   thorpej 			if (pp->pr_nout < pp->pr_hardlimit)
   1128       1.68   thorpej 				goto startover;
   1129       1.68   thorpej 		}
   1130       1.68   thorpej 
   1131       1.29  sommerfe 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1132       1.20   thorpej 			/*
   1133       1.20   thorpej 			 * XXX: A warning isn't logged in this case.  Should
   1134       1.20   thorpej 			 * it be?
   1135       1.20   thorpej 			 */
   1136       1.20   thorpej 			pp->pr_flags |= PR_WANTED;
   1137      1.212  christos 			do {
   1138      1.212  christos 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1139      1.212  christos 			} while (pp->pr_flags & PR_WANTED);
   1140       1.20   thorpej 			goto startover;
   1141       1.20   thorpej 		}
   1142       1.31   thorpej 
   1143       1.31   thorpej 		/*
   1144       1.31   thorpej 		 * Log a message that the hard limit has been hit.
   1145       1.31   thorpej 		 */
   1146       1.31   thorpej 		if (pp->pr_hardlimit_warning != NULL &&
   1147       1.31   thorpej 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1148       1.31   thorpej 			      &pp->pr_hardlimit_ratecap))
   1149       1.31   thorpej 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1150       1.21   thorpej 
   1151       1.21   thorpej 		pp->pr_nfail++;
   1152       1.21   thorpej 
   1153      1.134        ad 		mutex_exit(&pp->pr_lock);
   1154      1.216  christos 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1155      1.236      maxv 		return NULL;
   1156       1.20   thorpej 	}
   1157       1.20   thorpej 
   1158        1.3        pk 	/*
   1159        1.3        pk 	 * The convention we use is that if `curpage' is not NULL, then
   1160        1.3        pk 	 * it points at a non-empty bucket. In particular, `curpage'
   1161        1.3        pk 	 * never points at a page header which has PR_PHINPAGE set and
   1162        1.3        pk 	 * has no items in its bucket.
   1163        1.3        pk 	 */
   1164       1.20   thorpej 	if ((ph = pp->pr_curpage) == NULL) {
   1165      1.113      yamt 		int error;
   1166      1.113      yamt 
   1167      1.207  riastrad 		KASSERTMSG((pp->pr_nitems == 0),
   1168      1.213  christos 		    "%s: [%s] curpage NULL, inconsistent nitems %u",
   1169      1.213  christos 		    __func__, pp->pr_wchan, pp->pr_nitems);
   1170       1.20   thorpej 
   1171       1.21   thorpej 		/*
   1172       1.21   thorpej 		 * Call the back-end page allocator for more memory.
   1173       1.21   thorpej 		 * Release the pool lock, as the back-end page allocator
   1174       1.21   thorpej 		 * may block.
   1175       1.21   thorpej 		 */
   1176      1.113      yamt 		error = pool_grow(pp, flags);
   1177      1.113      yamt 		if (error != 0) {
   1178       1.21   thorpej 			/*
   1179      1.210   mlelstv 			 * pool_grow aborts when another thread
   1180      1.210   mlelstv 			 * is allocating a new page. Retry if it
   1181      1.210   mlelstv 			 * waited for it.
   1182      1.210   mlelstv 			 */
   1183      1.210   mlelstv 			if (error == ERESTART)
   1184      1.210   mlelstv 				goto startover;
   1185      1.210   mlelstv 
   1186      1.210   mlelstv 			/*
   1187       1.55   thorpej 			 * We were unable to allocate a page or item
   1188       1.55   thorpej 			 * header, but we released the lock during
   1189       1.55   thorpej 			 * allocation, so perhaps items were freed
   1190       1.55   thorpej 			 * back to the pool.  Check for this case.
   1191       1.21   thorpej 			 */
   1192       1.21   thorpej 			if (pp->pr_curpage != NULL)
   1193       1.21   thorpej 				goto startover;
   1194       1.15        pk 
   1195      1.117      yamt 			pp->pr_nfail++;
   1196      1.134        ad 			mutex_exit(&pp->pr_lock);
   1197      1.265       chs 			KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   1198      1.236      maxv 			return NULL;
   1199        1.1        pk 		}
   1200        1.3        pk 
   1201       1.20   thorpej 		/* Start the allocation process over. */
   1202       1.20   thorpej 		goto startover;
   1203        1.3        pk 	}
   1204      1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1205      1.207  riastrad 		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
   1206      1.251  christos 		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
   1207      1.234      maxv 		v = pr_item_bitmap_get(pp, ph);
   1208       1.97      yamt 	} else {
   1209      1.234      maxv 		v = pr_item_linkedlist_get(pp, ph);
   1210       1.97      yamt 	}
   1211       1.20   thorpej 	pp->pr_nitems--;
   1212       1.20   thorpej 	pp->pr_nout++;
   1213        1.6   thorpej 	if (ph->ph_nmissing == 0) {
   1214      1.207  riastrad 		KASSERT(pp->pr_nidle > 0);
   1215        1.6   thorpej 		pp->pr_nidle--;
   1216       1.88       chs 
   1217       1.88       chs 		/*
   1218       1.88       chs 		 * This page was previously empty.  Move it to the list of
   1219       1.88       chs 		 * partially-full pages.  This page is already curpage.
   1220       1.88       chs 		 */
   1221       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1222       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1223        1.6   thorpej 	}
   1224        1.3        pk 	ph->ph_nmissing++;
   1225       1.97      yamt 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1226      1.242      maxv 		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
   1227      1.207  riastrad 			LIST_EMPTY(&ph->ph_itemlist)),
   1228      1.213  christos 		    "%s: [%s] nmissing (%u) inconsistent", __func__,
   1229      1.213  christos 			pp->pr_wchan, ph->ph_nmissing);
   1230        1.3        pk 		/*
   1231       1.88       chs 		 * This page is now full.  Move it to the full list
   1232       1.88       chs 		 * and select a new current page.
   1233        1.3        pk 		 */
   1234       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1235       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1236       1.88       chs 		pool_update_curpage(pp);
   1237        1.1        pk 	}
   1238        1.3        pk 
   1239        1.3        pk 	pp->pr_nget++;
   1240       1.20   thorpej 
   1241       1.20   thorpej 	/*
   1242       1.20   thorpej 	 * If we have a low water mark and we are now below that low
   1243       1.20   thorpej 	 * water mark, add more items to the pool.
   1244       1.20   thorpej 	 */
   1245       1.53   thorpej 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1246       1.20   thorpej 		/*
   1247       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1248       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1249       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1250       1.20   thorpej 		 */
   1251       1.20   thorpej 	}
   1252       1.20   thorpej 
   1253      1.134        ad 	mutex_exit(&pp->pr_lock);
   1254      1.238      maxv 	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
   1255      1.125        ad 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1256      1.204      maxv 	pool_redzone_fill(pp, v);
   1257      1.262      maxv 	pool_get_kmsan(pp, v);
   1258      1.232  christos 	if (flags & PR_ZERO)
   1259      1.233      maxv 		memset(v, 0, pp->pr_reqsize);
   1260      1.232  christos 	return v;
   1261        1.1        pk }
   1262        1.1        pk 
   1263        1.1        pk /*
   1264       1.43   thorpej  * Internal version of pool_put().  Pool is already locked/entered.
   1265        1.1        pk  */
   1266       1.43   thorpej static void
   1267      1.101   thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1268        1.1        pk {
   1269        1.3        pk 	struct pool_item_header *ph;
   1270        1.3        pk 
   1271      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1272      1.204      maxv 	pool_redzone_check(pp, v);
   1273      1.262      maxv 	pool_put_kmsan(pp, v);
   1274      1.125        ad 	FREECHECK_IN(&pp->pr_freecheck, v);
   1275      1.134        ad 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1276       1.61       chs 
   1277      1.207  riastrad 	KASSERTMSG((pp->pr_nout > 0),
   1278      1.213  christos 	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
   1279        1.3        pk 
   1280      1.121      yamt 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1281      1.213  christos 		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
   1282        1.3        pk 	}
   1283       1.28   thorpej 
   1284        1.3        pk 	/*
   1285        1.3        pk 	 * Return to item list.
   1286        1.3        pk 	 */
   1287      1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1288      1.234      maxv 		pr_item_bitmap_put(pp, ph, v);
   1289       1.97      yamt 	} else {
   1290      1.234      maxv 		pr_item_linkedlist_put(pp, ph, v);
   1291       1.97      yamt 	}
   1292       1.79   thorpej 	KDASSERT(ph->ph_nmissing != 0);
   1293        1.3        pk 	ph->ph_nmissing--;
   1294        1.3        pk 	pp->pr_nput++;
   1295       1.20   thorpej 	pp->pr_nitems++;
   1296       1.20   thorpej 	pp->pr_nout--;
   1297        1.3        pk 
   1298        1.3        pk 	/* Cancel "pool empty" condition if it exists */
   1299        1.3        pk 	if (pp->pr_curpage == NULL)
   1300        1.3        pk 		pp->pr_curpage = ph;
   1301        1.3        pk 
   1302        1.3        pk 	if (pp->pr_flags & PR_WANTED) {
   1303        1.3        pk 		pp->pr_flags &= ~PR_WANTED;
   1304      1.134        ad 		cv_broadcast(&pp->pr_cv);
   1305        1.3        pk 	}
   1306        1.3        pk 
   1307        1.3        pk 	/*
   1308       1.88       chs 	 * If this page is now empty, do one of two things:
   1309       1.21   thorpej 	 *
   1310       1.88       chs 	 *	(1) If we have more pages than the page high water mark,
   1311       1.96   thorpej 	 *	    free the page back to the system.  ONLY CONSIDER
   1312       1.90   thorpej 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1313       1.90   thorpej 	 *	    CLAIM.
   1314       1.21   thorpej 	 *
   1315       1.88       chs 	 *	(2) Otherwise, move the page to the empty page list.
   1316       1.88       chs 	 *
   1317       1.88       chs 	 * Either way, select a new current page (so we use a partially-full
   1318       1.88       chs 	 * page if one is available).
   1319        1.3        pk 	 */
   1320        1.3        pk 	if (ph->ph_nmissing == 0) {
   1321        1.6   thorpej 		pp->pr_nidle++;
   1322      1.267       chs 		if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
   1323      1.267       chs 		    pp->pr_npages > pp->pr_minpages &&
   1324  1.285.4.2    martin 		    (pp->pr_npages > pp->pr_maxpages ||
   1325  1.285.4.2    martin 		     pp->pr_nitems > pp->pr_maxitems)) {
   1326      1.101   thorpej 			pr_rmpage(pp, ph, pq);
   1327        1.3        pk 		} else {
   1328       1.88       chs 			LIST_REMOVE(ph, ph_pagelist);
   1329       1.88       chs 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1330        1.3        pk 
   1331       1.21   thorpej 			/*
   1332       1.21   thorpej 			 * Update the timestamp on the page.  A page must
   1333       1.21   thorpej 			 * be idle for some period of time before it can
   1334       1.21   thorpej 			 * be reclaimed by the pagedaemon.  This minimizes
   1335       1.21   thorpej 			 * ping-pong'ing for memory.
   1336      1.151      yamt 			 *
   1337      1.151      yamt 			 * note for 64-bit time_t: truncating to 32-bit is not
   1338      1.151      yamt 			 * a problem for our usage.
   1339       1.21   thorpej 			 */
   1340      1.151      yamt 			ph->ph_time = time_uptime;
   1341        1.1        pk 		}
   1342       1.88       chs 		pool_update_curpage(pp);
   1343        1.1        pk 	}
   1344       1.88       chs 
   1345       1.21   thorpej 	/*
   1346       1.88       chs 	 * If the page was previously completely full, move it to the
   1347       1.88       chs 	 * partially-full list and make it the current page.  The next
   1348       1.88       chs 	 * allocation will get the item from this page, instead of
   1349       1.88       chs 	 * further fragmenting the pool.
   1350       1.21   thorpej 	 */
   1351       1.21   thorpej 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1352       1.88       chs 		LIST_REMOVE(ph, ph_pagelist);
   1353       1.88       chs 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1354       1.21   thorpej 		pp->pr_curpage = ph;
   1355       1.21   thorpej 	}
   1356       1.43   thorpej }
   1357       1.43   thorpej 
   1358       1.56  sommerfe void
   1359       1.56  sommerfe pool_put(struct pool *pp, void *v)
   1360       1.56  sommerfe {
   1361      1.101   thorpej 	struct pool_pagelist pq;
   1362      1.101   thorpej 
   1363      1.101   thorpej 	LIST_INIT(&pq);
   1364       1.56  sommerfe 
   1365      1.134        ad 	mutex_enter(&pp->pr_lock);
   1366      1.249      maxv 	if (!pool_put_quarantine(pp, v, &pq)) {
   1367      1.249      maxv 		pool_do_put(pp, v, &pq);
   1368      1.249      maxv 	}
   1369      1.134        ad 	mutex_exit(&pp->pr_lock);
   1370       1.56  sommerfe 
   1371      1.102       chs 	pr_pagelist_free(pp, &pq);
   1372       1.56  sommerfe }
   1373       1.57  sommerfe 
   1374       1.74   thorpej /*
   1375      1.113      yamt  * pool_grow: grow a pool by a page.
   1376      1.113      yamt  *
   1377      1.113      yamt  * => called with pool locked.
   1378      1.113      yamt  * => unlock and relock the pool.
   1379      1.113      yamt  * => return with pool locked.
   1380      1.113      yamt  */
   1381      1.113      yamt 
   1382      1.113      yamt static int
   1383      1.113      yamt pool_grow(struct pool *pp, int flags)
   1384      1.113      yamt {
   1385      1.236      maxv 	struct pool_item_header *ph;
   1386      1.237      maxv 	char *storage;
   1387      1.236      maxv 
   1388      1.209  riastrad 	/*
   1389      1.209  riastrad 	 * If there's a pool_grow in progress, wait for it to complete
   1390      1.209  riastrad 	 * and try again from the top.
   1391      1.209  riastrad 	 */
   1392      1.209  riastrad 	if (pp->pr_flags & PR_GROWING) {
   1393      1.209  riastrad 		if (flags & PR_WAITOK) {
   1394      1.209  riastrad 			do {
   1395      1.209  riastrad 				cv_wait(&pp->pr_cv, &pp->pr_lock);
   1396      1.209  riastrad 			} while (pp->pr_flags & PR_GROWING);
   1397      1.209  riastrad 			return ERESTART;
   1398      1.209  riastrad 		} else {
   1399      1.219       mrg 			if (pp->pr_flags & PR_GROWINGNOWAIT) {
   1400      1.219       mrg 				/*
   1401      1.219       mrg 				 * This needs an unlock/relock dance so
   1402      1.219       mrg 				 * that the other caller has a chance to
   1403      1.219       mrg 				 * run and actually do the thing.  Note
   1404      1.219       mrg 				 * that this is effectively a busy-wait.
   1405      1.219       mrg 				 */
   1406      1.219       mrg 				mutex_exit(&pp->pr_lock);
   1407      1.219       mrg 				mutex_enter(&pp->pr_lock);
   1408      1.219       mrg 				return ERESTART;
   1409      1.219       mrg 			}
   1410      1.209  riastrad 			return EWOULDBLOCK;
   1411      1.209  riastrad 		}
   1412      1.209  riastrad 	}
   1413      1.209  riastrad 	pp->pr_flags |= PR_GROWING;
   1414      1.220  christos 	if (flags & PR_WAITOK)
   1415      1.220  christos 		mutex_exit(&pp->pr_lock);
   1416      1.220  christos 	else
   1417      1.219       mrg 		pp->pr_flags |= PR_GROWINGNOWAIT;
   1418      1.113      yamt 
   1419      1.237      maxv 	storage = pool_allocator_alloc(pp, flags);
   1420      1.237      maxv 	if (__predict_false(storage == NULL))
   1421      1.216  christos 		goto out;
   1422      1.216  christos 
   1423      1.237      maxv 	ph = pool_alloc_item_header(pp, storage, flags);
   1424      1.216  christos 	if (__predict_false(ph == NULL)) {
   1425      1.237      maxv 		pool_allocator_free(pp, storage);
   1426      1.209  riastrad 		goto out;
   1427      1.113      yamt 	}
   1428      1.113      yamt 
   1429      1.220  christos 	if (flags & PR_WAITOK)
   1430      1.220  christos 		mutex_enter(&pp->pr_lock);
   1431      1.237      maxv 	pool_prime_page(pp, storage, ph);
   1432      1.113      yamt 	pp->pr_npagealloc++;
   1433      1.216  christos 	KASSERT(pp->pr_flags & PR_GROWING);
   1434      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1435      1.209  riastrad 	/*
   1436      1.209  riastrad 	 * If anyone was waiting for pool_grow, notify them that we
   1437      1.209  riastrad 	 * may have just done it.
   1438      1.209  riastrad 	 */
   1439      1.216  christos 	cv_broadcast(&pp->pr_cv);
   1440      1.216  christos 	return 0;
   1441      1.216  christos out:
   1442      1.220  christos 	if (flags & PR_WAITOK)
   1443      1.220  christos 		mutex_enter(&pp->pr_lock);
   1444      1.209  riastrad 	KASSERT(pp->pr_flags & PR_GROWING);
   1445      1.219       mrg 	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
   1446      1.216  christos 	return ENOMEM;
   1447      1.113      yamt }
   1448      1.113      yamt 
   1449      1.267       chs void
   1450       1.74   thorpej pool_prime(struct pool *pp, int n)
   1451       1.74   thorpej {
   1452       1.74   thorpej 
   1453      1.134        ad 	mutex_enter(&pp->pr_lock);
   1454      1.267       chs 	pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1455      1.267       chs 	if (pp->pr_maxpages <= pp->pr_minpages)
   1456       1.74   thorpej 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1457      1.267       chs 	while (pp->pr_npages < pp->pr_minpages)
   1458      1.267       chs 		(void) pool_grow(pp, PR_WAITOK);
   1459      1.134        ad 	mutex_exit(&pp->pr_lock);
   1460       1.74   thorpej }
   1461       1.55   thorpej 
   1462       1.55   thorpej /*
   1463        1.3        pk  * Add a page worth of items to the pool.
   1464       1.21   thorpej  *
   1465       1.21   thorpej  * Note, we must be called with the pool descriptor LOCKED.
   1466        1.3        pk  */
   1467       1.55   thorpej static void
   1468      1.128  christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1469        1.3        pk {
   1470      1.236      maxv 	const unsigned int align = pp->pr_align;
   1471        1.3        pk 	struct pool_item *pi;
   1472      1.128  christos 	void *cp = storage;
   1473       1.55   thorpej 	int n;
   1474       1.36        pk 
   1475      1.134        ad 	KASSERT(mutex_owned(&pp->pr_lock));
   1476      1.207  riastrad 	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
   1477      1.207  riastrad 		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
   1478      1.213  christos 	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
   1479        1.3        pk 
   1480        1.3        pk 	/*
   1481        1.3        pk 	 * Insert page header.
   1482        1.3        pk 	 */
   1483       1.88       chs 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1484      1.102       chs 	LIST_INIT(&ph->ph_itemlist);
   1485        1.3        pk 	ph->ph_page = storage;
   1486        1.3        pk 	ph->ph_nmissing = 0;
   1487      1.151      yamt 	ph->ph_time = time_uptime;
   1488      1.245      maxv 	if (pp->pr_roflags & PR_PHINPAGE)
   1489      1.245      maxv 		ph->ph_poolid = pp->pr_poolid;
   1490      1.245      maxv 	else
   1491       1.88       chs 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1492        1.3        pk 
   1493        1.6   thorpej 	pp->pr_nidle++;
   1494        1.6   thorpej 
   1495        1.3        pk 	/*
   1496      1.241      maxv 	 * The item space starts after the on-page header, if any.
   1497      1.241      maxv 	 */
   1498      1.241      maxv 	ph->ph_off = pp->pr_itemoffset;
   1499      1.241      maxv 
   1500      1.241      maxv 	/*
   1501        1.3        pk 	 * Color this page.
   1502        1.3        pk 	 */
   1503      1.241      maxv 	ph->ph_off += pp->pr_curcolor;
   1504      1.141      yamt 	cp = (char *)cp + ph->ph_off;
   1505        1.3        pk 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1506        1.3        pk 		pp->pr_curcolor = 0;
   1507        1.3        pk 
   1508      1.238      maxv 	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1509      1.125        ad 
   1510        1.3        pk 	/*
   1511        1.3        pk 	 * Insert remaining chunks on the bucket list.
   1512        1.3        pk 	 */
   1513        1.3        pk 	n = pp->pr_itemsperpage;
   1514       1.20   thorpej 	pp->pr_nitems += n;
   1515        1.3        pk 
   1516      1.242      maxv 	if (pp->pr_roflags & PR_USEBMAP) {
   1517      1.234      maxv 		pr_item_bitmap_init(pp, ph);
   1518       1.97      yamt 	} else {
   1519       1.97      yamt 		while (n--) {
   1520       1.97      yamt 			pi = (struct pool_item *)cp;
   1521       1.78   thorpej 
   1522      1.238      maxv 			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
   1523        1.3        pk 
   1524       1.97      yamt 			/* Insert on page list */
   1525      1.102       chs 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1526      1.229      maxv #ifdef POOL_CHECK_MAGIC
   1527       1.97      yamt 			pi->pi_magic = PI_MAGIC;
   1528        1.3        pk #endif
   1529      1.128  christos 			cp = (char *)cp + pp->pr_size;
   1530      1.125        ad 
   1531      1.238      maxv 			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
   1532       1.97      yamt 		}
   1533        1.3        pk 	}
   1534        1.3        pk 
   1535        1.3        pk 	/*
   1536        1.3        pk 	 * If the pool was depleted, point at the new page.
   1537        1.3        pk 	 */
   1538        1.3        pk 	if (pp->pr_curpage == NULL)
   1539        1.3        pk 		pp->pr_curpage = ph;
   1540        1.3        pk 
   1541        1.3        pk 	if (++pp->pr_npages > pp->pr_hiwat)
   1542        1.3        pk 		pp->pr_hiwat = pp->pr_npages;
   1543        1.3        pk }
   1544        1.3        pk 
   1545       1.20   thorpej /*
   1546       1.52   thorpej  * Used by pool_get() when nitems drops below the low water mark.  This
   1547       1.88       chs  * is used to catch up pr_nitems with the low water mark.
   1548       1.20   thorpej  *
   1549       1.21   thorpej  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1550       1.20   thorpej  *
   1551       1.73   thorpej  * Note 2, we must be called with the pool already locked, and we return
   1552       1.20   thorpej  * with it locked.
   1553       1.20   thorpej  */
   1554       1.20   thorpej static int
   1555       1.42   thorpej pool_catchup(struct pool *pp)
   1556       1.20   thorpej {
   1557       1.20   thorpej 	int error = 0;
   1558       1.20   thorpej 
   1559       1.54   thorpej 	while (POOL_NEEDS_CATCHUP(pp)) {
   1560      1.113      yamt 		error = pool_grow(pp, PR_NOWAIT);
   1561      1.113      yamt 		if (error) {
   1562      1.214  christos 			if (error == ERESTART)
   1563      1.214  christos 				continue;
   1564       1.20   thorpej 			break;
   1565       1.20   thorpej 		}
   1566       1.20   thorpej 	}
   1567      1.113      yamt 	return error;
   1568       1.20   thorpej }
   1569       1.20   thorpej 
   1570       1.88       chs static void
   1571       1.88       chs pool_update_curpage(struct pool *pp)
   1572       1.88       chs {
   1573       1.88       chs 
   1574       1.88       chs 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1575       1.88       chs 	if (pp->pr_curpage == NULL) {
   1576       1.88       chs 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1577       1.88       chs 	}
   1578      1.168      yamt 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1579      1.168      yamt 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1580       1.88       chs }
   1581       1.88       chs 
   1582        1.3        pk void
   1583       1.42   thorpej pool_setlowat(struct pool *pp, int n)
   1584        1.3        pk {
   1585       1.15        pk 
   1586      1.134        ad 	mutex_enter(&pp->pr_lock);
   1587        1.3        pk 	pp->pr_minitems = n;
   1588       1.20   thorpej 
   1589       1.20   thorpej 	/* Make sure we're caught up with the newly-set low water mark. */
   1590       1.75    simonb 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1591       1.20   thorpej 		/*
   1592       1.20   thorpej 		 * XXX: Should we log a warning?  Should we set up a timeout
   1593       1.20   thorpej 		 * to try again in a second or so?  The latter could break
   1594       1.20   thorpej 		 * a caller's assumptions about interrupt protection, etc.
   1595       1.20   thorpej 		 */
   1596       1.20   thorpej 	}
   1597       1.21   thorpej 
   1598      1.134        ad 	mutex_exit(&pp->pr_lock);
   1599        1.3        pk }
   1600        1.3        pk 
   1601        1.3        pk void
   1602       1.42   thorpej pool_sethiwat(struct pool *pp, int n)
   1603        1.3        pk {
   1604       1.15        pk 
   1605      1.134        ad 	mutex_enter(&pp->pr_lock);
   1606       1.21   thorpej 
   1607      1.267       chs 	pp->pr_maxitems = n;
   1608       1.21   thorpej 
   1609      1.134        ad 	mutex_exit(&pp->pr_lock);
   1610        1.3        pk }
   1611        1.3        pk 
   1612       1.20   thorpej void
   1613       1.42   thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1614       1.20   thorpej {
   1615       1.20   thorpej 
   1616      1.134        ad 	mutex_enter(&pp->pr_lock);
   1617       1.20   thorpej 
   1618       1.20   thorpej 	pp->pr_hardlimit = n;
   1619       1.20   thorpej 	pp->pr_hardlimit_warning = warnmess;
   1620       1.31   thorpej 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1621       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1622       1.31   thorpej 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1623       1.20   thorpej 
   1624      1.267       chs 	pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1625       1.21   thorpej 
   1626      1.134        ad 	mutex_exit(&pp->pr_lock);
   1627       1.20   thorpej }
   1628        1.3        pk 
   1629      1.277    simonb unsigned int
   1630      1.277    simonb pool_nget(struct pool *pp)
   1631      1.277    simonb {
   1632      1.277    simonb 
   1633      1.277    simonb 	return pp->pr_nget;
   1634      1.277    simonb }
   1635      1.277    simonb 
   1636      1.277    simonb unsigned int
   1637      1.277    simonb pool_nput(struct pool *pp)
   1638      1.277    simonb {
   1639      1.277    simonb 
   1640      1.277    simonb 	return pp->pr_nput;
   1641      1.277    simonb }
   1642      1.277    simonb 
   1643        1.3        pk /*
   1644        1.3        pk  * Release all complete pages that have not been used recently.
   1645      1.184     rmind  *
   1646      1.197       jym  * Must not be called from interrupt context.
   1647        1.3        pk  */
   1648       1.66   thorpej int
   1649       1.56  sommerfe pool_reclaim(struct pool *pp)
   1650        1.3        pk {
   1651        1.3        pk 	struct pool_item_header *ph, *phnext;
   1652       1.61       chs 	struct pool_pagelist pq;
   1653      1.281  riastrad 	struct pool_cache *pc;
   1654      1.151      yamt 	uint32_t curtime;
   1655      1.134        ad 	bool klock;
   1656      1.134        ad 	int rv;
   1657        1.3        pk 
   1658      1.197       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   1659      1.184     rmind 
   1660       1.68   thorpej 	if (pp->pr_drain_hook != NULL) {
   1661       1.68   thorpej 		/*
   1662       1.68   thorpej 		 * The drain hook must be called with the pool unlocked.
   1663       1.68   thorpej 		 */
   1664       1.68   thorpej 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1665       1.68   thorpej 	}
   1666       1.68   thorpej 
   1667      1.134        ad 	/*
   1668      1.157        ad 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1669      1.157        ad 	 * to block.
   1670      1.134        ad 	 */
   1671      1.134        ad 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1672      1.134        ad 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1673      1.134        ad 		KERNEL_LOCK(1, NULL);
   1674      1.134        ad 		klock = true;
   1675      1.134        ad 	} else
   1676      1.134        ad 		klock = false;
   1677      1.134        ad 
   1678      1.134        ad 	/* Reclaim items from the pool's cache (if any). */
   1679      1.281  riastrad 	if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL)
   1680      1.281  riastrad 		pool_cache_invalidate(pc);
   1681      1.134        ad 
   1682      1.134        ad 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1683      1.134        ad 		if (klock) {
   1684      1.134        ad 			KERNEL_UNLOCK_ONE(NULL);
   1685      1.134        ad 		}
   1686      1.236      maxv 		return 0;
   1687      1.134        ad 	}
   1688       1.68   thorpej 
   1689       1.88       chs 	LIST_INIT(&pq);
   1690       1.43   thorpej 
   1691      1.151      yamt 	curtime = time_uptime;
   1692       1.21   thorpej 
   1693       1.88       chs 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1694       1.88       chs 		phnext = LIST_NEXT(ph, ph_pagelist);
   1695        1.3        pk 
   1696        1.3        pk 		/* Check our minimum page claim */
   1697        1.3        pk 		if (pp->pr_npages <= pp->pr_minpages)
   1698        1.3        pk 			break;
   1699        1.3        pk 
   1700       1.88       chs 		KASSERT(ph->ph_nmissing == 0);
   1701      1.191      para 		if (curtime - ph->ph_time < pool_inactive_time)
   1702       1.88       chs 			continue;
   1703       1.21   thorpej 
   1704       1.88       chs 		/*
   1705      1.267       chs 		 * If freeing this page would put us below the minimum free items
   1706      1.267       chs 		 * or the minimum pages, stop now.
   1707       1.88       chs 		 */
   1708      1.267       chs 		if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
   1709      1.267       chs 		    pp->pr_npages - 1 < pp->pr_minpages)
   1710       1.88       chs 			break;
   1711       1.21   thorpej 
   1712       1.88       chs 		pr_rmpage(pp, ph, &pq);
   1713        1.3        pk 	}
   1714        1.3        pk 
   1715      1.134        ad 	mutex_exit(&pp->pr_lock);
   1716      1.134        ad 
   1717      1.134        ad 	if (LIST_EMPTY(&pq))
   1718      1.134        ad 		rv = 0;
   1719      1.134        ad 	else {
   1720      1.134        ad 		pr_pagelist_free(pp, &pq);
   1721      1.134        ad 		rv = 1;
   1722      1.134        ad 	}
   1723      1.134        ad 
   1724      1.134        ad 	if (klock) {
   1725      1.134        ad 		KERNEL_UNLOCK_ONE(NULL);
   1726      1.134        ad 	}
   1727       1.66   thorpej 
   1728      1.236      maxv 	return rv;
   1729        1.3        pk }
   1730        1.3        pk 
   1731        1.3        pk /*
   1732      1.197       jym  * Drain pools, one at a time. The drained pool is returned within ppp.
   1733      1.131        ad  *
   1734      1.134        ad  * Note, must never be called from interrupt context.
   1735        1.3        pk  */
   1736      1.197       jym bool
   1737      1.197       jym pool_drain(struct pool **ppp)
   1738        1.3        pk {
   1739      1.197       jym 	bool reclaimed;
   1740        1.3        pk 	struct pool *pp;
   1741      1.134        ad 
   1742      1.145        ad 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1743        1.3        pk 
   1744       1.61       chs 	pp = NULL;
   1745      1.134        ad 
   1746      1.134        ad 	/* Find next pool to drain, and add a reference. */
   1747      1.134        ad 	mutex_enter(&pool_head_lock);
   1748      1.134        ad 	do {
   1749      1.134        ad 		if (drainpp == NULL) {
   1750      1.145        ad 			drainpp = TAILQ_FIRST(&pool_head);
   1751      1.134        ad 		}
   1752      1.134        ad 		if (drainpp != NULL) {
   1753      1.134        ad 			pp = drainpp;
   1754      1.145        ad 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1755      1.134        ad 		}
   1756      1.134        ad 		/*
   1757      1.134        ad 		 * Skip completely idle pools.  We depend on at least
   1758      1.134        ad 		 * one pool in the system being active.
   1759      1.134        ad 		 */
   1760      1.134        ad 	} while (pp == NULL || pp->pr_npages == 0);
   1761      1.134        ad 	pp->pr_refcnt++;
   1762      1.134        ad 	mutex_exit(&pool_head_lock);
   1763      1.134        ad 
   1764      1.134        ad 	/* Drain the cache (if any) and pool.. */
   1765      1.186     pooka 	reclaimed = pool_reclaim(pp);
   1766      1.134        ad 
   1767      1.134        ad 	/* Finally, unlock the pool. */
   1768      1.134        ad 	mutex_enter(&pool_head_lock);
   1769      1.134        ad 	pp->pr_refcnt--;
   1770      1.134        ad 	cv_broadcast(&pool_busy);
   1771      1.134        ad 	mutex_exit(&pool_head_lock);
   1772      1.186     pooka 
   1773      1.197       jym 	if (ppp != NULL)
   1774      1.197       jym 		*ppp = pp;
   1775      1.197       jym 
   1776      1.186     pooka 	return reclaimed;
   1777        1.3        pk }
   1778        1.3        pk 
   1779        1.3        pk /*
   1780      1.217       mrg  * Calculate the total number of pages consumed by pools.
   1781      1.217       mrg  */
   1782      1.217       mrg int
   1783      1.217       mrg pool_totalpages(void)
   1784      1.217       mrg {
   1785      1.250     skrll 
   1786      1.250     skrll 	mutex_enter(&pool_head_lock);
   1787      1.250     skrll 	int pages = pool_totalpages_locked();
   1788      1.250     skrll 	mutex_exit(&pool_head_lock);
   1789      1.250     skrll 
   1790      1.250     skrll 	return pages;
   1791      1.250     skrll }
   1792      1.250     skrll 
   1793      1.250     skrll int
   1794      1.250     skrll pool_totalpages_locked(void)
   1795      1.250     skrll {
   1796      1.217       mrg 	struct pool *pp;
   1797      1.218       mrg 	uint64_t total = 0;
   1798      1.217       mrg 
   1799      1.218       mrg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1800      1.285    simonb 		uint64_t bytes =
   1801      1.285    simonb 		    (uint64_t)pp->pr_npages * pp->pr_alloc->pa_pagesz;
   1802      1.218       mrg 
   1803      1.218       mrg 		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
   1804      1.285    simonb 			bytes -= ((uint64_t)pp->pr_nout * pp->pr_size);
   1805      1.218       mrg 		total += bytes;
   1806      1.218       mrg 	}
   1807      1.217       mrg 
   1808      1.218       mrg 	return atop(total);
   1809      1.217       mrg }
   1810      1.217       mrg 
   1811      1.217       mrg /*
   1812        1.3        pk  * Diagnostic helpers.
   1813        1.3        pk  */
   1814       1.21   thorpej 
   1815       1.25   thorpej void
   1816      1.108      yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
   1817      1.108      yamt {
   1818      1.108      yamt 	struct pool *pp;
   1819      1.108      yamt 
   1820      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1821      1.108      yamt 		pool_printit(pp, modif, pr);
   1822      1.108      yamt 	}
   1823      1.108      yamt }
   1824      1.108      yamt 
   1825      1.108      yamt void
   1826       1.42   thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1827       1.25   thorpej {
   1828       1.25   thorpej 
   1829       1.25   thorpej 	if (pp == NULL) {
   1830       1.25   thorpej 		(*pr)("Must specify a pool to print.\n");
   1831       1.25   thorpej 		return;
   1832       1.25   thorpej 	}
   1833       1.25   thorpej 
   1834       1.25   thorpej 	pool_print1(pp, modif, pr);
   1835       1.25   thorpej }
   1836       1.25   thorpej 
   1837       1.21   thorpej static void
   1838      1.124      yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1839       1.97      yamt     void (*pr)(const char *, ...))
   1840       1.88       chs {
   1841       1.88       chs 	struct pool_item_header *ph;
   1842       1.88       chs 
   1843       1.88       chs 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1844      1.151      yamt 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1845      1.151      yamt 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1846      1.229      maxv #ifdef POOL_CHECK_MAGIC
   1847      1.229      maxv 		struct pool_item *pi;
   1848      1.242      maxv 		if (!(pp->pr_roflags & PR_USEBMAP)) {
   1849      1.102       chs 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1850       1.97      yamt 				if (pi->pi_magic != PI_MAGIC) {
   1851       1.97      yamt 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1852       1.97      yamt 					    pi, pi->pi_magic);
   1853       1.97      yamt 				}
   1854       1.88       chs 			}
   1855       1.88       chs 		}
   1856       1.88       chs #endif
   1857       1.88       chs 	}
   1858       1.88       chs }
   1859       1.88       chs 
   1860       1.88       chs static void
   1861       1.42   thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1862        1.3        pk {
   1863       1.25   thorpej 	struct pool_item_header *ph;
   1864      1.134        ad 	pool_cache_t pc;
   1865      1.134        ad 	pcg_t *pcg;
   1866      1.134        ad 	pool_cache_cpu_t *cc;
   1867      1.271        ad 	uint64_t cpuhit, cpumiss, pchit, pcmiss;
   1868      1.271        ad 	uint32_t nfull;
   1869      1.275       mrg 	int i;
   1870      1.275       mrg 	bool print_log = false, print_pagelist = false, print_cache = false;
   1871      1.275       mrg 	bool print_short = false, skip_empty = false;
   1872       1.25   thorpej 	char c;
   1873       1.25   thorpej 
   1874       1.25   thorpej 	while ((c = *modif++) != '\0') {
   1875       1.25   thorpej 		if (c == 'l')
   1876      1.275       mrg 			print_log = true;
   1877       1.25   thorpej 		if (c == 'p')
   1878      1.275       mrg 			print_pagelist = true;
   1879       1.44   thorpej 		if (c == 'c')
   1880      1.275       mrg 			print_cache = true;
   1881      1.275       mrg 		if (c == 's')
   1882      1.275       mrg 			print_short = true;
   1883      1.275       mrg 		if (c == 'S')
   1884      1.275       mrg 			skip_empty = true;
   1885       1.25   thorpej 	}
   1886       1.25   thorpej 
   1887      1.275       mrg 	if (skip_empty && pp->pr_nget == 0)
   1888      1.275       mrg 		return;
   1889      1.275       mrg 
   1890      1.281  riastrad 	if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
   1891      1.275       mrg 		(*pr)("POOLCACHE");
   1892      1.134        ad 	} else {
   1893      1.134        ad 		(*pr)("POOL");
   1894      1.134        ad 	}
   1895      1.134        ad 
   1896      1.275       mrg 	/* Single line output. */
   1897      1.275       mrg 	if (print_short) {
   1898  1.285.4.2    martin 		(*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u:%zu\n",
   1899      1.275       mrg 		    pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages,
   1900      1.275       mrg 		    pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput,
   1901  1.285.4.2    martin 		    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle,
   1902  1.285.4.2    martin 		    (size_t)pp->pr_npagealloc * pp->pr_alloc->pa_pagesz);
   1903      1.275       mrg 		return;
   1904      1.275       mrg 	}
   1905      1.275       mrg 
   1906  1.285.4.2    martin 	(*pr)(" %s: itemsize %u, totalmem %zu align %u, ioff %u, roflags 0x%08x\n",
   1907  1.285.4.2    martin 	    pp->pr_wchan, pp->pr_size,
   1908  1.285.4.2    martin 	    (size_t)pp->pr_npagealloc * pp->pr_alloc->pa_pagesz,
   1909  1.285.4.2    martin 	    pp->pr_align, pp->pr_itemoffset, pp->pr_roflags);
   1910      1.275       mrg 	(*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc);
   1911       1.25   thorpej 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1912       1.25   thorpej 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1913       1.25   thorpej 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1914       1.25   thorpej 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1915       1.25   thorpej 
   1916      1.134        ad 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1917       1.25   thorpej 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1918       1.25   thorpej 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1919       1.25   thorpej 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1920       1.25   thorpej 
   1921      1.275       mrg 	if (!print_pagelist)
   1922       1.25   thorpej 		goto skip_pagelist;
   1923       1.25   thorpej 
   1924       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1925       1.88       chs 		(*pr)("\n\tempty page list:\n");
   1926       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1927       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1928       1.88       chs 		(*pr)("\n\tfull page list:\n");
   1929       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1930       1.88       chs 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1931       1.88       chs 		(*pr)("\n\tpartial-page list:\n");
   1932       1.97      yamt 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1933       1.88       chs 
   1934       1.25   thorpej 	if (pp->pr_curpage == NULL)
   1935       1.25   thorpej 		(*pr)("\tno current page\n");
   1936       1.25   thorpej 	else
   1937       1.25   thorpej 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1938       1.25   thorpej 
   1939       1.25   thorpej  skip_pagelist:
   1940      1.275       mrg 	if (print_log)
   1941       1.25   thorpej 		goto skip_log;
   1942       1.25   thorpej 
   1943       1.25   thorpej 	(*pr)("\n");
   1944        1.3        pk 
   1945       1.25   thorpej  skip_log:
   1946       1.44   thorpej 
   1947      1.102       chs #define PR_GROUPLIST(pcg)						\
   1948      1.102       chs 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1949      1.142        ad 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1950      1.102       chs 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1951      1.102       chs 		    POOL_PADDR_INVALID) {				\
   1952      1.102       chs 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1953      1.102       chs 			    pcg->pcg_objects[i].pcgo_va,		\
   1954      1.102       chs 			    (unsigned long long)			\
   1955      1.102       chs 			    pcg->pcg_objects[i].pcgo_pa);		\
   1956      1.102       chs 		} else {						\
   1957      1.102       chs 			(*pr)("\t\t\t%p\n",				\
   1958      1.102       chs 			    pcg->pcg_objects[i].pcgo_va);		\
   1959      1.102       chs 		}							\
   1960      1.102       chs 	}
   1961      1.102       chs 
   1962      1.134        ad 	if (pc != NULL) {
   1963      1.134        ad 		cpuhit = 0;
   1964      1.134        ad 		cpumiss = 0;
   1965      1.271        ad 		pcmiss = 0;
   1966      1.271        ad 		nfull = 0;
   1967      1.183        ad 		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   1968      1.134        ad 			if ((cc = pc->pc_cpus[i]) == NULL)
   1969      1.134        ad 				continue;
   1970      1.134        ad 			cpuhit += cc->cc_hits;
   1971      1.134        ad 			cpumiss += cc->cc_misses;
   1972      1.271        ad 			pcmiss += cc->cc_pcmisses;
   1973      1.271        ad 			nfull += cc->cc_nfull;
   1974      1.134        ad 		}
   1975      1.271        ad 		pchit = cpumiss - pcmiss;
   1976      1.134        ad 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1977      1.271        ad 		(*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
   1978      1.271        ad 		(*pr)("\tcache layer full groups %u\n", nfull);
   1979      1.134        ad 		if (print_cache) {
   1980      1.134        ad 			(*pr)("\tfull cache groups:\n");
   1981      1.134        ad 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1982      1.134        ad 			    pcg = pcg->pcg_next) {
   1983      1.134        ad 				PR_GROUPLIST(pcg);
   1984      1.134        ad 			}
   1985      1.103       chs 		}
   1986       1.44   thorpej 	}
   1987      1.102       chs #undef PR_GROUPLIST
   1988       1.88       chs }
   1989       1.88       chs 
   1990       1.88       chs static int
   1991       1.88       chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1992       1.88       chs {
   1993       1.88       chs 	struct pool_item *pi;
   1994      1.128  christos 	void *page;
   1995       1.88       chs 	int n;
   1996       1.88       chs 
   1997      1.121      yamt 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1998      1.253      maxv 		page = POOL_OBJ_TO_PAGE(pp, ph);
   1999      1.121      yamt 		if (page != ph->ph_page &&
   2000      1.121      yamt 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   2001      1.121      yamt 			if (label != NULL)
   2002      1.121      yamt 				printf("%s: ", label);
   2003      1.121      yamt 			printf("pool(%p:%s): page inconsistency: page %p;"
   2004      1.121      yamt 			       " at page head addr %p (p %p)\n", pp,
   2005      1.121      yamt 				pp->pr_wchan, ph->ph_page,
   2006      1.121      yamt 				ph, page);
   2007      1.121      yamt 			return 1;
   2008      1.121      yamt 		}
   2009       1.88       chs 	}
   2010        1.3        pk 
   2011      1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0)
   2012       1.97      yamt 		return 0;
   2013       1.97      yamt 
   2014      1.102       chs 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   2015       1.88       chs 	     pi != NULL;
   2016      1.102       chs 	     pi = LIST_NEXT(pi,pi_list), n++) {
   2017       1.88       chs 
   2018      1.229      maxv #ifdef POOL_CHECK_MAGIC
   2019       1.88       chs 		if (pi->pi_magic != PI_MAGIC) {
   2020       1.88       chs 			if (label != NULL)
   2021       1.88       chs 				printf("%s: ", label);
   2022       1.88       chs 			printf("pool(%s): free list modified: magic=%x;"
   2023      1.121      yamt 			       " page %p; item ordinal %d; addr %p\n",
   2024       1.88       chs 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   2025      1.121      yamt 				n, pi);
   2026       1.88       chs 			panic("pool");
   2027       1.88       chs 		}
   2028       1.88       chs #endif
   2029      1.121      yamt 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   2030      1.121      yamt 			continue;
   2031      1.121      yamt 		}
   2032      1.253      maxv 		page = POOL_OBJ_TO_PAGE(pp, pi);
   2033       1.88       chs 		if (page == ph->ph_page)
   2034       1.88       chs 			continue;
   2035       1.88       chs 
   2036       1.88       chs 		if (label != NULL)
   2037       1.88       chs 			printf("%s: ", label);
   2038       1.88       chs 		printf("pool(%p:%s): page inconsistency: page %p;"
   2039       1.88       chs 		       " item ordinal %d; addr %p (p %p)\n", pp,
   2040       1.88       chs 			pp->pr_wchan, ph->ph_page,
   2041       1.88       chs 			n, pi, page);
   2042       1.88       chs 		return 1;
   2043       1.88       chs 	}
   2044       1.88       chs 	return 0;
   2045        1.3        pk }
   2046        1.3        pk 
   2047       1.88       chs 
   2048        1.3        pk int
   2049       1.42   thorpej pool_chk(struct pool *pp, const char *label)
   2050        1.3        pk {
   2051        1.3        pk 	struct pool_item_header *ph;
   2052        1.3        pk 	int r = 0;
   2053        1.3        pk 
   2054      1.134        ad 	mutex_enter(&pp->pr_lock);
   2055       1.88       chs 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2056       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2057       1.88       chs 		if (r) {
   2058       1.88       chs 			goto out;
   2059       1.88       chs 		}
   2060       1.88       chs 	}
   2061       1.88       chs 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2062       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2063       1.88       chs 		if (r) {
   2064        1.3        pk 			goto out;
   2065        1.3        pk 		}
   2066       1.88       chs 	}
   2067       1.88       chs 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2068       1.88       chs 		r = pool_chk_page(pp, label, ph);
   2069       1.88       chs 		if (r) {
   2070        1.3        pk 			goto out;
   2071        1.3        pk 		}
   2072        1.3        pk 	}
   2073       1.88       chs 
   2074        1.3        pk out:
   2075      1.134        ad 	mutex_exit(&pp->pr_lock);
   2076      1.236      maxv 	return r;
   2077       1.43   thorpej }
   2078       1.43   thorpej 
   2079       1.43   thorpej /*
   2080       1.43   thorpej  * pool_cache_init:
   2081       1.43   thorpej  *
   2082       1.43   thorpej  *	Initialize a pool cache.
   2083      1.134        ad  */
   2084      1.134        ad pool_cache_t
   2085      1.134        ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2086      1.134        ad     const char *wchan, struct pool_allocator *palloc, int ipl,
   2087      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2088      1.134        ad {
   2089      1.134        ad 	pool_cache_t pc;
   2090      1.134        ad 
   2091      1.134        ad 	pc = pool_get(&cache_pool, PR_WAITOK);
   2092      1.134        ad 	if (pc == NULL)
   2093      1.134        ad 		return NULL;
   2094      1.134        ad 
   2095      1.134        ad 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2096      1.134        ad 	   palloc, ipl, ctor, dtor, arg);
   2097      1.134        ad 
   2098      1.134        ad 	return pc;
   2099      1.134        ad }
   2100      1.134        ad 
   2101      1.134        ad /*
   2102      1.134        ad  * pool_cache_bootstrap:
   2103       1.43   thorpej  *
   2104      1.134        ad  *	Kernel-private version of pool_cache_init().  The caller
   2105      1.134        ad  *	provides initial storage.
   2106       1.43   thorpej  */
   2107       1.43   thorpej void
   2108      1.134        ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2109      1.134        ad     u_int align_offset, u_int flags, const char *wchan,
   2110      1.134        ad     struct pool_allocator *palloc, int ipl,
   2111      1.134        ad     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2112       1.43   thorpej     void *arg)
   2113       1.43   thorpej {
   2114      1.134        ad 	CPU_INFO_ITERATOR cii;
   2115      1.145        ad 	pool_cache_t pc1;
   2116      1.134        ad 	struct cpu_info *ci;
   2117      1.134        ad 	struct pool *pp;
   2118      1.280  riastrad 	unsigned int ppflags;
   2119      1.134        ad 
   2120      1.134        ad 	pp = &pc->pc_pool;
   2121      1.208       chs 	if (palloc == NULL && ipl == IPL_NONE) {
   2122      1.208       chs 		if (size > PAGE_SIZE) {
   2123      1.208       chs 			int bigidx = pool_bigidx(size);
   2124      1.208       chs 
   2125      1.208       chs 			palloc = &pool_allocator_big[bigidx];
   2126      1.252      maxv 			flags |= PR_NOALIGN;
   2127      1.208       chs 		} else
   2128      1.208       chs 			palloc = &pool_allocator_nointr;
   2129      1.208       chs 	}
   2130       1.43   thorpej 
   2131      1.280  riastrad 	ppflags = flags;
   2132      1.134        ad 	if (ctor == NULL) {
   2133      1.261  christos 		ctor = NO_CTOR;
   2134      1.134        ad 	}
   2135      1.134        ad 	if (dtor == NULL) {
   2136      1.261  christos 		dtor = NO_DTOR;
   2137      1.279   thorpej 	} else {
   2138      1.279   thorpej 		/*
   2139      1.279   thorpej 		 * If we have a destructor, then the pool layer does not
   2140      1.279   thorpej 		 * need to worry about PR_PSERIALIZE.
   2141      1.279   thorpej 		 */
   2142      1.279   thorpej 		ppflags &= ~PR_PSERIALIZE;
   2143      1.134        ad 	}
   2144       1.43   thorpej 
   2145      1.279   thorpej 	pool_init(pp, size, align, align_offset, ppflags, wchan, palloc, ipl);
   2146      1.279   thorpej 
   2147      1.134        ad 	pc->pc_fullgroups = NULL;
   2148      1.134        ad 	pc->pc_partgroups = NULL;
   2149       1.43   thorpej 	pc->pc_ctor = ctor;
   2150       1.43   thorpej 	pc->pc_dtor = dtor;
   2151       1.43   thorpej 	pc->pc_arg  = arg;
   2152      1.134        ad 	pc->pc_refcnt = 0;
   2153      1.279   thorpej 	pc->pc_roflags = flags;
   2154      1.136      yamt 	pc->pc_freecheck = NULL;
   2155      1.134        ad 
   2156      1.142        ad 	if ((flags & PR_LARGECACHE) != 0) {
   2157      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2158      1.163        ad 		pc->pc_pcgpool = &pcg_large_pool;
   2159      1.271        ad 		pc->pc_pcgcache = &pcg_large_cache;
   2160      1.142        ad 	} else {
   2161      1.142        ad 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2162      1.163        ad 		pc->pc_pcgpool = &pcg_normal_pool;
   2163      1.271        ad 		pc->pc_pcgcache = &pcg_normal_cache;
   2164      1.142        ad 	}
   2165      1.142        ad 
   2166      1.134        ad 	/* Allocate per-CPU caches. */
   2167      1.134        ad 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2168      1.134        ad 	pc->pc_ncpu = 0;
   2169      1.139        ad 	if (ncpu < 2) {
   2170      1.137        ad 		/* XXX For sparc: boot CPU is not attached yet. */
   2171      1.137        ad 		pool_cache_cpu_init1(curcpu(), pc);
   2172      1.137        ad 	} else {
   2173      1.137        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
   2174      1.137        ad 			pool_cache_cpu_init1(ci, pc);
   2175      1.137        ad 		}
   2176      1.134        ad 	}
   2177      1.145        ad 
   2178      1.145        ad 	/* Add to list of all pools. */
   2179      1.145        ad 	if (__predict_true(!cold))
   2180      1.134        ad 		mutex_enter(&pool_head_lock);
   2181      1.145        ad 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2182      1.145        ad 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2183      1.145        ad 			break;
   2184      1.145        ad 	}
   2185      1.145        ad 	if (pc1 == NULL)
   2186      1.145        ad 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2187      1.145        ad 	else
   2188      1.145        ad 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2189      1.145        ad 	if (__predict_true(!cold))
   2190      1.134        ad 		mutex_exit(&pool_head_lock);
   2191      1.145        ad 
   2192      1.281  riastrad 	atomic_store_release(&pp->pr_cache, pc);
   2193       1.43   thorpej }
   2194       1.43   thorpej 
   2195       1.43   thorpej /*
   2196       1.43   thorpej  * pool_cache_destroy:
   2197       1.43   thorpej  *
   2198       1.43   thorpej  *	Destroy a pool cache.
   2199       1.43   thorpej  */
   2200       1.43   thorpej void
   2201      1.134        ad pool_cache_destroy(pool_cache_t pc)
   2202       1.43   thorpej {
   2203      1.191      para 
   2204      1.191      para 	pool_cache_bootstrap_destroy(pc);
   2205      1.191      para 	pool_put(&cache_pool, pc);
   2206      1.191      para }
   2207      1.191      para 
   2208      1.191      para /*
   2209      1.191      para  * pool_cache_bootstrap_destroy:
   2210      1.191      para  *
   2211      1.191      para  *	Destroy a pool cache.
   2212      1.191      para  */
   2213      1.191      para void
   2214      1.191      para pool_cache_bootstrap_destroy(pool_cache_t pc)
   2215      1.191      para {
   2216      1.134        ad 	struct pool *pp = &pc->pc_pool;
   2217      1.175       jym 	u_int i;
   2218      1.134        ad 
   2219      1.134        ad 	/* Remove it from the global list. */
   2220      1.134        ad 	mutex_enter(&pool_head_lock);
   2221      1.134        ad 	while (pc->pc_refcnt != 0)
   2222      1.134        ad 		cv_wait(&pool_busy, &pool_head_lock);
   2223      1.145        ad 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2224      1.134        ad 	mutex_exit(&pool_head_lock);
   2225       1.43   thorpej 
   2226       1.43   thorpej 	/* First, invalidate the entire cache. */
   2227       1.43   thorpej 	pool_cache_invalidate(pc);
   2228       1.43   thorpej 
   2229      1.134        ad 	/* Disassociate it from the pool. */
   2230      1.134        ad 	mutex_enter(&pp->pr_lock);
   2231      1.281  riastrad 	atomic_store_relaxed(&pp->pr_cache, NULL);
   2232      1.134        ad 	mutex_exit(&pp->pr_lock);
   2233      1.134        ad 
   2234      1.134        ad 	/* Destroy per-CPU data */
   2235      1.183        ad 	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
   2236      1.175       jym 		pool_cache_invalidate_cpu(pc, i);
   2237      1.134        ad 
   2238      1.134        ad 	/* Finally, destroy it. */
   2239      1.134        ad 	pool_destroy(pp);
   2240      1.134        ad }
   2241      1.134        ad 
   2242      1.134        ad /*
   2243      1.134        ad  * pool_cache_cpu_init1:
   2244      1.134        ad  *
   2245      1.134        ad  *	Called for each pool_cache whenever a new CPU is attached.
   2246      1.134        ad  */
   2247      1.134        ad static void
   2248      1.134        ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2249      1.134        ad {
   2250      1.134        ad 	pool_cache_cpu_t *cc;
   2251      1.137        ad 	int index;
   2252      1.134        ad 
   2253      1.137        ad 	index = ci->ci_index;
   2254      1.137        ad 
   2255      1.183        ad 	KASSERT(index < __arraycount(pc->pc_cpus));
   2256      1.134        ad 
   2257      1.137        ad 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2258      1.134        ad 		return;
   2259      1.134        ad 	}
   2260      1.134        ad 
   2261      1.134        ad 	/*
   2262      1.134        ad 	 * The first CPU is 'free'.  This needs to be the case for
   2263      1.134        ad 	 * bootstrap - we may not be able to allocate yet.
   2264      1.134        ad 	 */
   2265      1.134        ad 	if (pc->pc_ncpu == 0) {
   2266      1.134        ad 		cc = &pc->pc_cpu0;
   2267      1.134        ad 		pc->pc_ncpu = 1;
   2268      1.134        ad 	} else {
   2269      1.134        ad 		pc->pc_ncpu++;
   2270      1.134        ad 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2271      1.134        ad 	}
   2272      1.134        ad 
   2273      1.271        ad 	cc->cc_current = __UNCONST(&pcg_dummy);
   2274      1.271        ad 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2275      1.271        ad 	cc->cc_pcgcache = pc->pc_pcgcache;
   2276      1.134        ad 	cc->cc_hits = 0;
   2277      1.134        ad 	cc->cc_misses = 0;
   2278      1.271        ad 	cc->cc_pcmisses = 0;
   2279      1.271        ad 	cc->cc_contended = 0;
   2280      1.271        ad 	cc->cc_nfull = 0;
   2281      1.271        ad 	cc->cc_npart = 0;
   2282      1.134        ad 
   2283      1.137        ad 	pc->pc_cpus[index] = cc;
   2284       1.43   thorpej }
   2285       1.43   thorpej 
   2286      1.134        ad /*
   2287      1.134        ad  * pool_cache_cpu_init:
   2288      1.134        ad  *
   2289      1.134        ad  *	Called whenever a new CPU is attached.
   2290      1.134        ad  */
   2291      1.134        ad void
   2292      1.134        ad pool_cache_cpu_init(struct cpu_info *ci)
   2293       1.43   thorpej {
   2294      1.134        ad 	pool_cache_t pc;
   2295      1.134        ad 
   2296      1.134        ad 	mutex_enter(&pool_head_lock);
   2297      1.145        ad 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2298      1.134        ad 		pc->pc_refcnt++;
   2299      1.134        ad 		mutex_exit(&pool_head_lock);
   2300       1.43   thorpej 
   2301      1.134        ad 		pool_cache_cpu_init1(ci, pc);
   2302       1.43   thorpej 
   2303      1.134        ad 		mutex_enter(&pool_head_lock);
   2304      1.134        ad 		pc->pc_refcnt--;
   2305      1.134        ad 		cv_broadcast(&pool_busy);
   2306      1.134        ad 	}
   2307      1.134        ad 	mutex_exit(&pool_head_lock);
   2308       1.43   thorpej }
   2309       1.43   thorpej 
   2310      1.134        ad /*
   2311      1.134        ad  * pool_cache_reclaim:
   2312      1.134        ad  *
   2313      1.134        ad  *	Reclaim memory from a pool cache.
   2314      1.134        ad  */
   2315      1.134        ad bool
   2316      1.134        ad pool_cache_reclaim(pool_cache_t pc)
   2317       1.43   thorpej {
   2318       1.43   thorpej 
   2319      1.134        ad 	return pool_reclaim(&pc->pc_pool);
   2320      1.134        ad }
   2321       1.43   thorpej 
   2322      1.278   thorpej static inline void
   2323      1.278   thorpej pool_cache_pre_destruct(pool_cache_t pc)
   2324      1.278   thorpej {
   2325      1.278   thorpej 	/*
   2326      1.279   thorpej 	 * Perform a passive serialization barrier before destructing
   2327      1.279   thorpej 	 * a batch of one or more objects.
   2328      1.278   thorpej 	 */
   2329      1.279   thorpej 	if (__predict_false(pc_has_pser(pc))) {
   2330      1.279   thorpej 		pool_barrier();
   2331      1.278   thorpej 	}
   2332      1.278   thorpej }
   2333      1.278   thorpej 
   2334      1.136      yamt static void
   2335      1.136      yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2336      1.136      yamt {
   2337      1.136      yamt 	(*pc->pc_dtor)(pc->pc_arg, object);
   2338      1.136      yamt 	pool_put(&pc->pc_pool, object);
   2339      1.136      yamt }
   2340      1.136      yamt 
   2341      1.134        ad /*
   2342      1.134        ad  * pool_cache_destruct_object:
   2343      1.134        ad  *
   2344      1.134        ad  *	Force destruction of an object and its release back into
   2345      1.134        ad  *	the pool.
   2346      1.134        ad  */
   2347      1.134        ad void
   2348      1.134        ad pool_cache_destruct_object(pool_cache_t pc, void *object)
   2349      1.134        ad {
   2350      1.134        ad 
   2351      1.136      yamt 	FREECHECK_IN(&pc->pc_freecheck, object);
   2352      1.136      yamt 
   2353      1.278   thorpej 	pool_cache_pre_destruct(pc);
   2354      1.136      yamt 	pool_cache_destruct_object1(pc, object);
   2355       1.43   thorpej }
   2356       1.43   thorpej 
   2357      1.134        ad /*
   2358      1.134        ad  * pool_cache_invalidate_groups:
   2359      1.134        ad  *
   2360      1.271        ad  *	Invalidate a chain of groups and destruct all objects.  Return the
   2361      1.271        ad  *	number of groups that were invalidated.
   2362      1.134        ad  */
   2363      1.271        ad static int
   2364      1.134        ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2365      1.102       chs {
   2366      1.134        ad 	void *object;
   2367      1.134        ad 	pcg_t *next;
   2368      1.271        ad 	int i, n;
   2369      1.134        ad 
   2370      1.278   thorpej 	if (pcg == NULL) {
   2371      1.278   thorpej 		return 0;
   2372      1.278   thorpej 	}
   2373      1.278   thorpej 
   2374      1.278   thorpej 	pool_cache_pre_destruct(pc);
   2375      1.278   thorpej 
   2376      1.271        ad 	for (n = 0; pcg != NULL; pcg = next, n++) {
   2377      1.134        ad 		next = pcg->pcg_next;
   2378      1.134        ad 
   2379      1.134        ad 		for (i = 0; i < pcg->pcg_avail; i++) {
   2380      1.134        ad 			object = pcg->pcg_objects[i].pcgo_va;
   2381      1.136      yamt 			pool_cache_destruct_object1(pc, object);
   2382      1.134        ad 		}
   2383      1.102       chs 
   2384      1.142        ad 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2385      1.142        ad 			pool_put(&pcg_large_pool, pcg);
   2386      1.142        ad 		} else {
   2387      1.142        ad 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2388      1.142        ad 			pool_put(&pcg_normal_pool, pcg);
   2389      1.142        ad 		}
   2390      1.102       chs 	}
   2391      1.271        ad 	return n;
   2392      1.102       chs }
   2393      1.102       chs 
   2394       1.43   thorpej /*
   2395      1.134        ad  * pool_cache_invalidate:
   2396       1.43   thorpej  *
   2397      1.134        ad  *	Invalidate a pool cache (destruct and release all of the
   2398      1.134        ad  *	cached objects).  Does not reclaim objects from the pool.
   2399      1.176   thorpej  *
   2400      1.176   thorpej  *	Note: For pool caches that provide constructed objects, there
   2401      1.176   thorpej  *	is an assumption that another level of synchronization is occurring
   2402      1.176   thorpej  *	between the input to the constructor and the cache invalidation.
   2403      1.196       jym  *
   2404      1.196       jym  *	Invalidation is a costly process and should not be called from
   2405      1.196       jym  *	interrupt context.
   2406       1.43   thorpej  */
   2407      1.134        ad void
   2408      1.134        ad pool_cache_invalidate(pool_cache_t pc)
   2409      1.134        ad {
   2410      1.196       jym 	uint64_t where;
   2411      1.271        ad 	pcg_t *pcg;
   2412      1.271        ad 	int n, s;
   2413      1.196       jym 
   2414      1.196       jym 	KASSERT(!cpu_intr_p() && !cpu_softintr_p());
   2415      1.176   thorpej 
   2416      1.177       jym 	if (ncpu < 2 || !mp_online) {
   2417      1.176   thorpej 		/*
   2418      1.176   thorpej 		 * We might be called early enough in the boot process
   2419      1.176   thorpej 		 * for the CPU data structures to not be fully initialized.
   2420      1.196       jym 		 * In this case, transfer the content of the local CPU's
   2421      1.196       jym 		 * cache back into global cache as only this CPU is currently
   2422      1.196       jym 		 * running.
   2423      1.176   thorpej 		 */
   2424      1.196       jym 		pool_cache_transfer(pc);
   2425      1.176   thorpej 	} else {
   2426      1.176   thorpej 		/*
   2427      1.196       jym 		 * Signal all CPUs that they must transfer their local
   2428      1.196       jym 		 * cache back to the global pool then wait for the xcall to
   2429      1.196       jym 		 * complete.
   2430      1.176   thorpej 		 */
   2431      1.261  christos 		where = xc_broadcast(0,
   2432      1.261  christos 		    __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
   2433      1.176   thorpej 		xc_wait(where);
   2434      1.176   thorpej 	}
   2435      1.196       jym 
   2436      1.271        ad 	/* Now dequeue and invalidate everything. */
   2437      1.271        ad 	pcg = pool_pcg_trunc(&pcg_normal_cache);
   2438      1.271        ad 	(void)pool_cache_invalidate_groups(pc, pcg);
   2439      1.271        ad 
   2440      1.271        ad 	pcg = pool_pcg_trunc(&pcg_large_cache);
   2441      1.271        ad 	(void)pool_cache_invalidate_groups(pc, pcg);
   2442      1.271        ad 
   2443      1.271        ad 	pcg = pool_pcg_trunc(&pc->pc_fullgroups);
   2444      1.271        ad 	n = pool_cache_invalidate_groups(pc, pcg);
   2445      1.271        ad 	s = splvm();
   2446      1.271        ad 	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
   2447      1.271        ad 	splx(s);
   2448      1.271        ad 
   2449      1.271        ad 	pcg = pool_pcg_trunc(&pc->pc_partgroups);
   2450      1.271        ad 	n = pool_cache_invalidate_groups(pc, pcg);
   2451      1.271        ad 	s = splvm();
   2452      1.271        ad 	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
   2453      1.271        ad 	splx(s);
   2454      1.134        ad }
   2455      1.134        ad 
   2456      1.175       jym /*
   2457      1.175       jym  * pool_cache_invalidate_cpu:
   2458      1.175       jym  *
   2459      1.175       jym  *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
   2460      1.175       jym  *	identified by its associated index.
   2461      1.175       jym  *	It is caller's responsibility to ensure that no operation is
   2462      1.175       jym  *	taking place on this pool cache while doing this invalidation.
   2463      1.175       jym  *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
   2464      1.175       jym  *	pool cached objects from a CPU different from the one currently running
   2465      1.175       jym  *	may result in an undefined behaviour.
   2466      1.175       jym  */
   2467      1.175       jym static void
   2468      1.175       jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
   2469      1.175       jym {
   2470      1.175       jym 	pool_cache_cpu_t *cc;
   2471      1.175       jym 	pcg_t *pcg;
   2472      1.175       jym 
   2473      1.175       jym 	if ((cc = pc->pc_cpus[index]) == NULL)
   2474      1.175       jym 		return;
   2475      1.175       jym 
   2476      1.175       jym 	if ((pcg = cc->cc_current) != &pcg_dummy) {
   2477      1.175       jym 		pcg->pcg_next = NULL;
   2478      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2479      1.175       jym 	}
   2480      1.175       jym 	if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2481      1.175       jym 		pcg->pcg_next = NULL;
   2482      1.175       jym 		pool_cache_invalidate_groups(pc, pcg);
   2483      1.175       jym 	}
   2484      1.175       jym 	if (cc != &pc->pc_cpu0)
   2485      1.175       jym 		pool_put(&cache_cpu_pool, cc);
   2486      1.175       jym 
   2487      1.175       jym }
   2488      1.175       jym 
   2489      1.134        ad void
   2490      1.134        ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2491      1.134        ad {
   2492      1.134        ad 
   2493      1.134        ad 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2494      1.134        ad }
   2495      1.134        ad 
   2496      1.134        ad void
   2497      1.134        ad pool_cache_setlowat(pool_cache_t pc, int n)
   2498      1.134        ad {
   2499      1.134        ad 
   2500      1.134        ad 	pool_setlowat(&pc->pc_pool, n);
   2501      1.134        ad }
   2502      1.134        ad 
   2503      1.134        ad void
   2504      1.134        ad pool_cache_sethiwat(pool_cache_t pc, int n)
   2505      1.134        ad {
   2506      1.134        ad 
   2507      1.134        ad 	pool_sethiwat(&pc->pc_pool, n);
   2508      1.134        ad }
   2509      1.134        ad 
   2510      1.134        ad void
   2511      1.134        ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2512      1.134        ad {
   2513      1.134        ad 
   2514      1.134        ad 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2515      1.134        ad }
   2516      1.134        ad 
   2517      1.267       chs void
   2518      1.267       chs pool_cache_prime(pool_cache_t pc, int n)
   2519      1.267       chs {
   2520      1.267       chs 
   2521      1.267       chs 	pool_prime(&pc->pc_pool, n);
   2522      1.267       chs }
   2523      1.267       chs 
   2524      1.277    simonb unsigned int
   2525      1.277    simonb pool_cache_nget(pool_cache_t pc)
   2526      1.277    simonb {
   2527      1.277    simonb 
   2528      1.277    simonb 	return pool_nget(&pc->pc_pool);
   2529      1.277    simonb }
   2530      1.277    simonb 
   2531      1.277    simonb unsigned int
   2532      1.277    simonb pool_cache_nput(pool_cache_t pc)
   2533      1.277    simonb {
   2534      1.277    simonb 
   2535      1.277    simonb 	return pool_nput(&pc->pc_pool);
   2536      1.277    simonb }
   2537      1.277    simonb 
   2538      1.271        ad /*
   2539      1.271        ad  * pool_pcg_get:
   2540      1.271        ad  *
   2541      1.271        ad  *	Get a cache group from the specified list.  Return true if
   2542      1.271        ad  *	contention was encountered.  Must be called at IPL_VM because
   2543      1.271        ad  *	of spin wait vs. kernel_lock.
   2544      1.271        ad  */
   2545      1.271        ad static int
   2546      1.271        ad pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
   2547      1.271        ad {
   2548      1.271        ad 	int count = SPINLOCK_BACKOFF_MIN;
   2549      1.271        ad 	pcg_t *o, *n;
   2550      1.271        ad 
   2551      1.271        ad 	for (o = atomic_load_relaxed(head);; o = n) {
   2552      1.271        ad 		if (__predict_false(o == &pcg_dummy)) {
   2553      1.271        ad 			/* Wait for concurrent get to complete. */
   2554      1.271        ad 			SPINLOCK_BACKOFF(count);
   2555      1.271        ad 			n = atomic_load_relaxed(head);
   2556      1.271        ad 			continue;
   2557      1.271        ad 		}
   2558      1.271        ad 		if (__predict_false(o == NULL)) {
   2559      1.271        ad 			break;
   2560      1.271        ad 		}
   2561      1.271        ad 		/* Lock out concurrent get/put. */
   2562      1.271        ad 		n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
   2563      1.271        ad 		if (o == n) {
   2564      1.271        ad 			/* Fetch pointer to next item and then unlock. */
   2565      1.271        ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
   2566      1.271        ad 			membar_datadep_consumer(); /* alpha */
   2567      1.271        ad #endif
   2568      1.271        ad 			n = atomic_load_relaxed(&o->pcg_next);
   2569      1.271        ad 			atomic_store_release(head, n);
   2570      1.271        ad 			break;
   2571      1.271        ad 		}
   2572      1.271        ad 	}
   2573      1.271        ad 	*pcgp = o;
   2574      1.271        ad 	return count != SPINLOCK_BACKOFF_MIN;
   2575      1.271        ad }
   2576      1.271        ad 
   2577      1.271        ad /*
   2578      1.271        ad  * pool_pcg_trunc:
   2579      1.271        ad  *
   2580      1.271        ad  *	Chop out entire list of pool cache groups.
   2581      1.271        ad  */
   2582      1.271        ad static pcg_t *
   2583      1.271        ad pool_pcg_trunc(pcg_t *volatile *head)
   2584      1.271        ad {
   2585      1.271        ad 	int count = SPINLOCK_BACKOFF_MIN, s;
   2586      1.271        ad 	pcg_t *o, *n;
   2587      1.271        ad 
   2588      1.271        ad 	s = splvm();
   2589      1.271        ad 	for (o = atomic_load_relaxed(head);; o = n) {
   2590      1.271        ad 		if (__predict_false(o == &pcg_dummy)) {
   2591      1.271        ad 			/* Wait for concurrent get to complete. */
   2592      1.271        ad 			SPINLOCK_BACKOFF(count);
   2593      1.271        ad 			n = atomic_load_relaxed(head);
   2594      1.271        ad 			continue;
   2595      1.271        ad 		}
   2596      1.271        ad 		n = atomic_cas_ptr(head, o, NULL);
   2597      1.271        ad 		if (o == n) {
   2598      1.271        ad 			splx(s);
   2599      1.271        ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
   2600      1.271        ad 			membar_datadep_consumer(); /* alpha */
   2601      1.271        ad #endif
   2602      1.271        ad 			return o;
   2603      1.271        ad 		}
   2604      1.271        ad 	}
   2605      1.271        ad }
   2606      1.271        ad 
   2607      1.271        ad /*
   2608      1.271        ad  * pool_pcg_put:
   2609      1.271        ad  *
   2610      1.271        ad  *	Put a pool cache group to the specified list.  Return true if
   2611      1.271        ad  *	contention was encountered.  Must be called at IPL_VM because of
   2612      1.271        ad  *	spin wait vs. kernel_lock.
   2613      1.271        ad  */
   2614      1.271        ad static int
   2615      1.271        ad pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
   2616      1.271        ad {
   2617      1.271        ad 	int count = SPINLOCK_BACKOFF_MIN;
   2618      1.271        ad 	pcg_t *o, *n;
   2619      1.271        ad 
   2620      1.271        ad 	for (o = atomic_load_relaxed(head);; o = n) {
   2621      1.271        ad 		if (__predict_false(o == &pcg_dummy)) {
   2622      1.271        ad 			/* Wait for concurrent get to complete. */
   2623      1.271        ad 			SPINLOCK_BACKOFF(count);
   2624      1.271        ad 			n = atomic_load_relaxed(head);
   2625      1.271        ad 			continue;
   2626      1.271        ad 		}
   2627      1.271        ad 		pcg->pcg_next = o;
   2628      1.271        ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
   2629      1.282  riastrad 		membar_release();
   2630      1.271        ad #endif
   2631      1.271        ad 		n = atomic_cas_ptr(head, o, pcg);
   2632      1.271        ad 		if (o == n) {
   2633      1.271        ad 			return count != SPINLOCK_BACKOFF_MIN;
   2634      1.271        ad 		}
   2635      1.271        ad 	}
   2636      1.271        ad }
   2637      1.271        ad 
   2638      1.162        ad static bool __noinline
   2639      1.271        ad pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
   2640      1.271        ad     void **objectp, paddr_t *pap, int flags)
   2641       1.43   thorpej {
   2642      1.134        ad 	pcg_t *pcg, *cur;
   2643       1.43   thorpej 	void *object;
   2644       1.58   thorpej 
   2645      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == 0);
   2646      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2647      1.168      yamt 
   2648      1.134        ad 	cc->cc_misses++;
   2649       1.43   thorpej 
   2650      1.134        ad 	/*
   2651      1.271        ad 	 * If there's a full group, release our empty group back to the
   2652      1.271        ad 	 * cache.  Install the full group as cc_current and return.
   2653      1.134        ad 	 */
   2654      1.271        ad 	cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
   2655      1.271        ad 	if (__predict_true(pcg != NULL)) {
   2656      1.271        ad 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2657      1.162        ad 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2658      1.134        ad 			KASSERT(cur->pcg_avail == 0);
   2659      1.271        ad 			(void)pool_pcg_put(cc->cc_pcgcache, cur);
   2660       1.87   thorpej 		}
   2661      1.271        ad 		cc->cc_nfull--;
   2662      1.134        ad 		cc->cc_current = pcg;
   2663      1.162        ad 		return true;
   2664      1.134        ad 	}
   2665      1.134        ad 
   2666      1.134        ad 	/*
   2667      1.134        ad 	 * Nothing available locally or in cache.  Take the slow
   2668      1.134        ad 	 * path: fetch a new object from the pool and construct
   2669      1.134        ad 	 * it.
   2670      1.134        ad 	 */
   2671      1.271        ad 	cc->cc_pcmisses++;
   2672      1.162        ad 	splx(s);
   2673      1.134        ad 
   2674      1.134        ad 	object = pool_get(&pc->pc_pool, flags);
   2675      1.134        ad 	*objectp = object;
   2676      1.211  riastrad 	if (__predict_false(object == NULL)) {
   2677      1.265       chs 		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
   2678      1.162        ad 		return false;
   2679      1.211  riastrad 	}
   2680      1.125        ad 
   2681      1.162        ad 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2682      1.134        ad 		pool_put(&pc->pc_pool, object);
   2683      1.134        ad 		*objectp = NULL;
   2684      1.162        ad 		return false;
   2685       1.43   thorpej 	}
   2686       1.43   thorpej 
   2687      1.238      maxv 	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
   2688       1.43   thorpej 
   2689      1.134        ad 	if (pap != NULL) {
   2690      1.134        ad #ifdef POOL_VTOPHYS
   2691      1.134        ad 		*pap = POOL_VTOPHYS(object);
   2692      1.134        ad #else
   2693      1.134        ad 		*pap = POOL_PADDR_INVALID;
   2694      1.134        ad #endif
   2695      1.102       chs 	}
   2696       1.43   thorpej 
   2697      1.125        ad 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2698      1.162        ad 	return false;
   2699       1.43   thorpej }
   2700       1.43   thorpej 
   2701       1.43   thorpej /*
   2702      1.134        ad  * pool_cache_get{,_paddr}:
   2703       1.43   thorpej  *
   2704      1.134        ad  *	Get an object from a pool cache (optionally returning
   2705      1.134        ad  *	the physical address of the object).
   2706       1.43   thorpej  */
   2707      1.134        ad void *
   2708      1.134        ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2709       1.43   thorpej {
   2710      1.134        ad 	pool_cache_cpu_t *cc;
   2711      1.134        ad 	pcg_t *pcg;
   2712      1.134        ad 	void *object;
   2713       1.60   thorpej 	int s;
   2714       1.43   thorpej 
   2715      1.215  christos 	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
   2716      1.184     rmind 	KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
   2717      1.185     rmind 	    (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
   2718      1.213  christos 	    "%s: [%s] is IPL_NONE, but called from interrupt context",
   2719      1.213  christos 	    __func__, pc->pc_pool.pr_wchan);
   2720      1.184     rmind 
   2721      1.155        ad 	if (flags & PR_WAITOK) {
   2722      1.154      yamt 		ASSERT_SLEEPABLE();
   2723      1.155        ad 	}
   2724      1.125        ad 
   2725      1.270      maxv 	if (flags & PR_NOWAIT) {
   2726      1.270      maxv 		if (fault_inject())
   2727      1.270      maxv 			return NULL;
   2728      1.270      maxv 	}
   2729      1.270      maxv 
   2730      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2731      1.162        ad 	s = splvm();
   2732      1.165      yamt 	while (/* CONSTCOND */ true) {
   2733      1.134        ad 		/* Try and allocate an object from the current group. */
   2734      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2735      1.134        ad 	 	pcg = cc->cc_current;
   2736      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2737      1.134        ad 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2738      1.162        ad 			if (__predict_false(pap != NULL))
   2739      1.134        ad 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2740      1.148      yamt #if defined(DIAGNOSTIC)
   2741      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2742      1.163        ad 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2743      1.134        ad 			KASSERT(object != NULL);
   2744      1.163        ad #endif
   2745      1.134        ad 			cc->cc_hits++;
   2746      1.162        ad 			splx(s);
   2747      1.134        ad 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2748      1.204      maxv 			pool_redzone_fill(&pc->pc_pool, object);
   2749      1.262      maxv 			pool_cache_get_kmsan(pc, object);
   2750      1.134        ad 			return object;
   2751       1.43   thorpej 		}
   2752       1.43   thorpej 
   2753       1.43   thorpej 		/*
   2754      1.134        ad 		 * That failed.  If the previous group isn't empty, swap
   2755      1.134        ad 		 * it with the current group and allocate from there.
   2756       1.43   thorpej 		 */
   2757      1.134        ad 		pcg = cc->cc_previous;
   2758      1.162        ad 		if (__predict_true(pcg->pcg_avail > 0)) {
   2759      1.134        ad 			cc->cc_previous = cc->cc_current;
   2760      1.134        ad 			cc->cc_current = pcg;
   2761      1.134        ad 			continue;
   2762       1.43   thorpej 		}
   2763       1.43   thorpej 
   2764      1.134        ad 		/*
   2765      1.134        ad 		 * Can't allocate from either group: try the slow path.
   2766      1.134        ad 		 * If get_slow() allocated an object for us, or if
   2767      1.162        ad 		 * no more objects are available, it will return false.
   2768      1.134        ad 		 * Otherwise, we need to retry.
   2769      1.134        ad 		 */
   2770      1.271        ad 		if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
   2771      1.269      maxv 			if (object != NULL) {
   2772      1.269      maxv 				kmsan_orig(object, pc->pc_pool.pr_size,
   2773      1.269      maxv 				    KMSAN_TYPE_POOL, __RET_ADDR);
   2774      1.269      maxv 			}
   2775      1.165      yamt 			break;
   2776      1.269      maxv 		}
   2777      1.165      yamt 	}
   2778       1.43   thorpej 
   2779      1.211  riastrad 	/*
   2780      1.211  riastrad 	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
   2781      1.211  riastrad 	 * pool_cache_get can fail even in the PR_WAITOK case, if the
   2782      1.211  riastrad 	 * constructor fails.
   2783      1.211  riastrad 	 */
   2784      1.134        ad 	return object;
   2785       1.51   thorpej }
   2786       1.51   thorpej 
   2787      1.162        ad static bool __noinline
   2788      1.271        ad pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
   2789       1.51   thorpej {
   2790      1.163        ad 	pcg_t *pcg, *cur;
   2791       1.51   thorpej 
   2792      1.168      yamt 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2793      1.168      yamt 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2794      1.168      yamt 
   2795      1.134        ad 	cc->cc_misses++;
   2796       1.43   thorpej 
   2797      1.171        ad 	/*
   2798      1.271        ad 	 * Try to get an empty group from the cache.  If there are no empty
   2799      1.271        ad 	 * groups in the cache then allocate one.
   2800      1.171        ad 	 */
   2801      1.271        ad 	(void)pool_pcg_get(cc->cc_pcgcache, &pcg);
   2802      1.271        ad 	if (__predict_false(pcg == NULL)) {
   2803      1.171        ad 		if (__predict_true(!pool_cache_disable)) {
   2804      1.171        ad 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2805      1.171        ad 		}
   2806      1.171        ad 		if (__predict_true(pcg != NULL)) {
   2807      1.171        ad 			pcg->pcg_avail = 0;
   2808      1.171        ad 			pcg->pcg_size = pc->pc_pcgsize;
   2809      1.171        ad 		}
   2810      1.171        ad 	}
   2811      1.171        ad 
   2812      1.162        ad 	/*
   2813      1.271        ad 	 * If there's a empty group, release our full group back to the
   2814      1.271        ad 	 * cache.  Install the empty group to the local CPU and return.
   2815      1.162        ad 	 */
   2816      1.163        ad 	if (pcg != NULL) {
   2817      1.134        ad 		KASSERT(pcg->pcg_avail == 0);
   2818      1.162        ad 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2819      1.146        ad 			cc->cc_previous = pcg;
   2820      1.146        ad 		} else {
   2821      1.162        ad 			cur = cc->cc_current;
   2822      1.162        ad 			if (__predict_true(cur != &pcg_dummy)) {
   2823      1.163        ad 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2824      1.271        ad 				cc->cc_contended +=
   2825      1.271        ad 				    pool_pcg_put(&pc->pc_fullgroups, cur);
   2826      1.271        ad 				cc->cc_nfull++;
   2827      1.146        ad 			}
   2828      1.146        ad 			cc->cc_current = pcg;
   2829      1.146        ad 		}
   2830      1.162        ad 		return true;
   2831      1.102       chs 	}
   2832      1.105  christos 
   2833      1.134        ad 	/*
   2834      1.162        ad 	 * Nothing available locally or in cache, and we didn't
   2835      1.162        ad 	 * allocate an empty group.  Take the slow path and destroy
   2836      1.162        ad 	 * the object here and now.
   2837      1.134        ad 	 */
   2838      1.271        ad 	cc->cc_pcmisses++;
   2839      1.162        ad 	splx(s);
   2840      1.162        ad 	pool_cache_destruct_object(pc, object);
   2841      1.105  christos 
   2842      1.162        ad 	return false;
   2843      1.236      maxv }
   2844      1.102       chs 
   2845       1.43   thorpej /*
   2846      1.134        ad  * pool_cache_put{,_paddr}:
   2847       1.43   thorpej  *
   2848      1.134        ad  *	Put an object back to the pool cache (optionally caching the
   2849      1.134        ad  *	physical address of the object).
   2850       1.43   thorpej  */
   2851      1.101   thorpej void
   2852      1.134        ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2853       1.43   thorpej {
   2854      1.134        ad 	pool_cache_cpu_t *cc;
   2855      1.134        ad 	pcg_t *pcg;
   2856      1.134        ad 	int s;
   2857      1.101   thorpej 
   2858      1.172      yamt 	KASSERT(object != NULL);
   2859      1.262      maxv 	pool_cache_put_kmsan(pc, object);
   2860      1.229      maxv 	pool_cache_redzone_check(pc, object);
   2861      1.134        ad 	FREECHECK_IN(&pc->pc_freecheck, object);
   2862      1.101   thorpej 
   2863      1.253      maxv 	if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
   2864      1.253      maxv 		pc_phinpage_check(pc, object);
   2865      1.253      maxv 	}
   2866      1.253      maxv 
   2867      1.268      maxv 	if (pool_cache_put_nocache(pc, object)) {
   2868      1.249      maxv 		return;
   2869      1.249      maxv 	}
   2870      1.249      maxv 
   2871      1.162        ad 	/* Lock out interrupts and disable preemption. */
   2872      1.162        ad 	s = splvm();
   2873      1.165      yamt 	while (/* CONSTCOND */ true) {
   2874      1.134        ad 		/* If the current group isn't full, release it there. */
   2875      1.162        ad 		cc = pc->pc_cpus[curcpu()->ci_index];
   2876      1.134        ad 	 	pcg = cc->cc_current;
   2877      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2878      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2879      1.134        ad 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2880      1.134        ad 			pcg->pcg_avail++;
   2881      1.134        ad 			cc->cc_hits++;
   2882      1.162        ad 			splx(s);
   2883      1.134        ad 			return;
   2884      1.134        ad 		}
   2885       1.43   thorpej 
   2886      1.134        ad 		/*
   2887      1.162        ad 		 * That failed.  If the previous group isn't full, swap
   2888      1.134        ad 		 * it with the current group and try again.
   2889      1.134        ad 		 */
   2890      1.134        ad 		pcg = cc->cc_previous;
   2891      1.162        ad 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2892      1.134        ad 			cc->cc_previous = cc->cc_current;
   2893      1.134        ad 			cc->cc_current = pcg;
   2894      1.134        ad 			continue;
   2895      1.134        ad 		}
   2896       1.43   thorpej 
   2897      1.134        ad 		/*
   2898      1.236      maxv 		 * Can't free to either group: try the slow path.
   2899      1.134        ad 		 * If put_slow() releases the object for us, it
   2900      1.162        ad 		 * will return false.  Otherwise we need to retry.
   2901      1.134        ad 		 */
   2902      1.271        ad 		if (!pool_cache_put_slow(pc, cc, s, object))
   2903      1.165      yamt 			break;
   2904      1.165      yamt 	}
   2905       1.43   thorpej }
   2906       1.43   thorpej 
   2907       1.43   thorpej /*
   2908      1.196       jym  * pool_cache_transfer:
   2909       1.43   thorpej  *
   2910      1.134        ad  *	Transfer objects from the per-CPU cache to the global cache.
   2911      1.134        ad  *	Run within a cross-call thread.
   2912       1.43   thorpej  */
   2913       1.43   thorpej static void
   2914      1.196       jym pool_cache_transfer(pool_cache_t pc)
   2915       1.43   thorpej {
   2916      1.134        ad 	pool_cache_cpu_t *cc;
   2917      1.271        ad 	pcg_t *prev, *cur;
   2918      1.162        ad 	int s;
   2919      1.134        ad 
   2920      1.162        ad 	s = splvm();
   2921      1.162        ad 	cc = pc->pc_cpus[curcpu()->ci_index];
   2922      1.134        ad 	cur = cc->cc_current;
   2923      1.169      yamt 	cc->cc_current = __UNCONST(&pcg_dummy);
   2924      1.134        ad 	prev = cc->cc_previous;
   2925      1.169      yamt 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2926      1.162        ad 	if (cur != &pcg_dummy) {
   2927      1.142        ad 		if (cur->pcg_avail == cur->pcg_size) {
   2928      1.271        ad 			(void)pool_pcg_put(&pc->pc_fullgroups, cur);
   2929      1.271        ad 			cc->cc_nfull++;
   2930      1.134        ad 		} else if (cur->pcg_avail == 0) {
   2931      1.271        ad 			(void)pool_pcg_put(pc->pc_pcgcache, cur);
   2932      1.134        ad 		} else {
   2933      1.271        ad 			(void)pool_pcg_put(&pc->pc_partgroups, cur);
   2934      1.271        ad 			cc->cc_npart++;
   2935      1.134        ad 		}
   2936      1.134        ad 	}
   2937      1.162        ad 	if (prev != &pcg_dummy) {
   2938      1.142        ad 		if (prev->pcg_avail == prev->pcg_size) {
   2939      1.271        ad 			(void)pool_pcg_put(&pc->pc_fullgroups, prev);
   2940      1.271        ad 			cc->cc_nfull++;
   2941      1.134        ad 		} else if (prev->pcg_avail == 0) {
   2942      1.271        ad 			(void)pool_pcg_put(pc->pc_pcgcache, prev);
   2943      1.134        ad 		} else {
   2944      1.271        ad 			(void)pool_pcg_put(&pc->pc_partgroups, prev);
   2945      1.271        ad 			cc->cc_npart++;
   2946      1.134        ad 		}
   2947      1.134        ad 	}
   2948      1.134        ad 	splx(s);
   2949        1.3        pk }
   2950       1.66   thorpej 
   2951      1.208       chs static int
   2952      1.208       chs pool_bigidx(size_t size)
   2953      1.208       chs {
   2954      1.208       chs 	int i;
   2955      1.208       chs 
   2956      1.208       chs 	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
   2957      1.208       chs 		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
   2958      1.208       chs 			return i;
   2959      1.208       chs 	}
   2960      1.208       chs 	panic("pool item size %zu too large, use a custom allocator", size);
   2961      1.208       chs }
   2962      1.208       chs 
   2963      1.117      yamt static void *
   2964      1.117      yamt pool_allocator_alloc(struct pool *pp, int flags)
   2965       1.66   thorpej {
   2966      1.117      yamt 	struct pool_allocator *pa = pp->pr_alloc;
   2967       1.66   thorpej 	void *res;
   2968       1.66   thorpej 
   2969      1.117      yamt 	res = (*pa->pa_alloc)(pp, flags);
   2970      1.117      yamt 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2971       1.66   thorpej 		/*
   2972      1.117      yamt 		 * We only run the drain hook here if PR_NOWAIT.
   2973      1.117      yamt 		 * In other cases, the hook will be run in
   2974      1.117      yamt 		 * pool_reclaim().
   2975       1.66   thorpej 		 */
   2976      1.117      yamt 		if (pp->pr_drain_hook != NULL) {
   2977      1.117      yamt 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2978      1.117      yamt 			res = (*pa->pa_alloc)(pp, flags);
   2979       1.66   thorpej 		}
   2980      1.117      yamt 	}
   2981      1.117      yamt 	return res;
   2982       1.66   thorpej }
   2983       1.66   thorpej 
   2984      1.117      yamt static void
   2985       1.66   thorpej pool_allocator_free(struct pool *pp, void *v)
   2986       1.66   thorpej {
   2987       1.66   thorpej 	struct pool_allocator *pa = pp->pr_alloc;
   2988       1.66   thorpej 
   2989      1.229      maxv 	if (pp->pr_redzone) {
   2990      1.279   thorpej 		KASSERT(!pp_has_pser(pp));
   2991      1.248      maxv 		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
   2992      1.279   thorpej 	} else if (__predict_false(pp_has_pser(pp))) {
   2993      1.279   thorpej 		/*
   2994      1.279   thorpej 		 * Perform a passive serialization barrier before freeing
   2995      1.279   thorpej 		 * the pool page back to the system.
   2996      1.279   thorpej 		 */
   2997      1.279   thorpej 		pool_barrier();
   2998      1.229      maxv 	}
   2999       1.66   thorpej 	(*pa->pa_free)(pp, v);
   3000       1.66   thorpej }
   3001       1.66   thorpej 
   3002       1.66   thorpej void *
   3003      1.124      yamt pool_page_alloc(struct pool *pp, int flags)
   3004       1.66   thorpej {
   3005      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   3006      1.191      para 	vmem_addr_t va;
   3007      1.192     rmind 	int ret;
   3008      1.191      para 
   3009      1.192     rmind 	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
   3010      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   3011       1.66   thorpej 
   3012      1.192     rmind 	return ret ? NULL : (void *)va;
   3013       1.66   thorpej }
   3014       1.66   thorpej 
   3015       1.66   thorpej void
   3016      1.124      yamt pool_page_free(struct pool *pp, void *v)
   3017       1.66   thorpej {
   3018       1.66   thorpej 
   3019      1.191      para 	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
   3020       1.98      yamt }
   3021       1.98      yamt 
   3022       1.98      yamt static void *
   3023      1.124      yamt pool_page_alloc_meta(struct pool *pp, int flags)
   3024       1.98      yamt {
   3025      1.192     rmind 	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
   3026      1.192     rmind 	vmem_addr_t va;
   3027      1.192     rmind 	int ret;
   3028      1.191      para 
   3029      1.192     rmind 	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
   3030      1.192     rmind 	    vflags | VM_INSTANTFIT, &va);
   3031       1.98      yamt 
   3032      1.192     rmind 	return ret ? NULL : (void *)va;
   3033       1.98      yamt }
   3034       1.98      yamt 
   3035       1.98      yamt static void
   3036      1.124      yamt pool_page_free_meta(struct pool *pp, void *v)
   3037       1.98      yamt {
   3038       1.98      yamt 
   3039      1.192     rmind 	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
   3040       1.66   thorpej }
   3041       1.66   thorpej 
   3042      1.262      maxv #ifdef KMSAN
   3043      1.262      maxv static inline void
   3044      1.262      maxv pool_get_kmsan(struct pool *pp, void *p)
   3045      1.262      maxv {
   3046      1.262      maxv 	kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
   3047      1.262      maxv 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
   3048      1.262      maxv }
   3049      1.262      maxv 
   3050      1.262      maxv static inline void
   3051      1.262      maxv pool_put_kmsan(struct pool *pp, void *p)
   3052      1.262      maxv {
   3053      1.262      maxv 	kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
   3054      1.262      maxv }
   3055      1.262      maxv 
   3056      1.262      maxv static inline void
   3057      1.262      maxv pool_cache_get_kmsan(pool_cache_t pc, void *p)
   3058      1.262      maxv {
   3059      1.262      maxv 	if (__predict_false(pc_has_ctor(pc))) {
   3060      1.262      maxv 		return;
   3061      1.262      maxv 	}
   3062      1.262      maxv 	pool_get_kmsan(&pc->pc_pool, p);
   3063      1.262      maxv }
   3064      1.262      maxv 
   3065      1.262      maxv static inline void
   3066      1.262      maxv pool_cache_put_kmsan(pool_cache_t pc, void *p)
   3067      1.262      maxv {
   3068      1.262      maxv 	pool_put_kmsan(&pc->pc_pool, p);
   3069      1.262      maxv }
   3070      1.262      maxv #endif
   3071      1.262      maxv 
   3072      1.249      maxv #ifdef POOL_QUARANTINE
   3073      1.249      maxv static void
   3074      1.249      maxv pool_quarantine_init(struct pool *pp)
   3075      1.249      maxv {
   3076      1.249      maxv 	pp->pr_quar.rotor = 0;
   3077      1.249      maxv 	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
   3078      1.249      maxv }
   3079      1.249      maxv 
   3080      1.249      maxv static void
   3081      1.249      maxv pool_quarantine_flush(struct pool *pp)
   3082      1.249      maxv {
   3083      1.249      maxv 	pool_quar_t *quar = &pp->pr_quar;
   3084      1.249      maxv 	struct pool_pagelist pq;
   3085      1.249      maxv 	size_t i;
   3086      1.249      maxv 
   3087      1.249      maxv 	LIST_INIT(&pq);
   3088      1.249      maxv 
   3089      1.249      maxv 	mutex_enter(&pp->pr_lock);
   3090      1.249      maxv 	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
   3091      1.249      maxv 		if (quar->list[i] == 0)
   3092      1.249      maxv 			continue;
   3093      1.249      maxv 		pool_do_put(pp, (void *)quar->list[i], &pq);
   3094      1.249      maxv 	}
   3095      1.249      maxv 	mutex_exit(&pp->pr_lock);
   3096      1.249      maxv 
   3097      1.249      maxv 	pr_pagelist_free(pp, &pq);
   3098      1.249      maxv }
   3099      1.249      maxv 
   3100      1.249      maxv static bool
   3101      1.249      maxv pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
   3102      1.249      maxv {
   3103      1.249      maxv 	pool_quar_t *quar = &pp->pr_quar;
   3104      1.249      maxv 	uintptr_t old;
   3105      1.249      maxv 
   3106      1.249      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   3107      1.249      maxv 		return false;
   3108      1.249      maxv 	}
   3109      1.249      maxv 
   3110      1.249      maxv 	pool_redzone_check(pp, v);
   3111      1.249      maxv 
   3112      1.249      maxv 	old = quar->list[quar->rotor];
   3113      1.249      maxv 	quar->list[quar->rotor] = (uintptr_t)v;
   3114      1.249      maxv 	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
   3115      1.249      maxv 	if (old != 0) {
   3116      1.249      maxv 		pool_do_put(pp, (void *)old, pq);
   3117      1.249      maxv 	}
   3118      1.249      maxv 
   3119      1.249      maxv 	return true;
   3120      1.249      maxv }
   3121      1.268      maxv #endif
   3122      1.249      maxv 
   3123      1.268      maxv #ifdef POOL_NOCACHE
   3124      1.249      maxv static bool
   3125      1.268      maxv pool_cache_put_nocache(pool_cache_t pc, void *p)
   3126      1.249      maxv {
   3127      1.249      maxv 	pool_cache_destruct_object(pc, p);
   3128      1.249      maxv 	return true;
   3129      1.249      maxv }
   3130      1.249      maxv #endif
   3131      1.249      maxv 
   3132      1.204      maxv #ifdef POOL_REDZONE
   3133      1.204      maxv #if defined(_LP64)
   3134      1.204      maxv # define PRIME 0x9e37fffffffc0000UL
   3135      1.204      maxv #else /* defined(_LP64) */
   3136      1.204      maxv # define PRIME 0x9e3779b1
   3137      1.204      maxv #endif /* defined(_LP64) */
   3138      1.204      maxv #define STATIC_BYTE	0xFE
   3139      1.204      maxv CTASSERT(POOL_REDZONE_SIZE > 1);
   3140      1.204      maxv 
   3141      1.224      maxv #ifndef KASAN
   3142      1.204      maxv static inline uint8_t
   3143      1.204      maxv pool_pattern_generate(const void *p)
   3144      1.204      maxv {
   3145      1.204      maxv 	return (uint8_t)(((uintptr_t)p) * PRIME
   3146      1.204      maxv 	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
   3147      1.204      maxv }
   3148      1.224      maxv #endif
   3149      1.204      maxv 
   3150      1.204      maxv static void
   3151      1.204      maxv pool_redzone_init(struct pool *pp, size_t requested_size)
   3152      1.204      maxv {
   3153      1.227      maxv 	size_t redzsz;
   3154      1.204      maxv 	size_t nsz;
   3155      1.204      maxv 
   3156      1.227      maxv #ifdef KASAN
   3157      1.227      maxv 	redzsz = requested_size;
   3158      1.227      maxv 	kasan_add_redzone(&redzsz);
   3159      1.227      maxv 	redzsz -= requested_size;
   3160      1.227      maxv #else
   3161      1.227      maxv 	redzsz = POOL_REDZONE_SIZE;
   3162      1.227      maxv #endif
   3163      1.227      maxv 
   3164      1.204      maxv 	if (pp->pr_roflags & PR_NOTOUCH) {
   3165      1.204      maxv 		pp->pr_redzone = false;
   3166      1.204      maxv 		return;
   3167      1.204      maxv 	}
   3168      1.204      maxv 
   3169      1.204      maxv 	/*
   3170      1.204      maxv 	 * We may have extended the requested size earlier; check if
   3171      1.204      maxv 	 * there's naturally space in the padding for a red zone.
   3172      1.204      maxv 	 */
   3173      1.227      maxv 	if (pp->pr_size - requested_size >= redzsz) {
   3174      1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3175      1.204      maxv 		pp->pr_redzone = true;
   3176      1.204      maxv 		return;
   3177      1.204      maxv 	}
   3178      1.204      maxv 
   3179      1.204      maxv 	/*
   3180      1.204      maxv 	 * No space in the natural padding; check if we can extend a
   3181      1.204      maxv 	 * bit the size of the pool.
   3182      1.276       mrg 	 *
   3183      1.276       mrg 	 * Avoid using redzone for allocations half of a page or larger.
   3184      1.276       mrg 	 * For pagesize items, we'd waste a whole new page (could be
   3185      1.276       mrg 	 * unmapped?), and for half pagesize items, approximately half
   3186      1.276       mrg 	 * the space is lost (eg, 4K pages, you get one 2K allocation.)
   3187      1.204      maxv 	 */
   3188      1.227      maxv 	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
   3189      1.276       mrg 	if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) {
   3190      1.204      maxv 		/* Ok, we can */
   3191      1.204      maxv 		pp->pr_size = nsz;
   3192      1.229      maxv 		pp->pr_reqsize_with_redzone = requested_size + redzsz;
   3193      1.204      maxv 		pp->pr_redzone = true;
   3194      1.204      maxv 	} else {
   3195      1.204      maxv 		/* No space for a red zone... snif :'( */
   3196      1.204      maxv 		pp->pr_redzone = false;
   3197      1.274  riastrad 		aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan);
   3198      1.204      maxv 	}
   3199      1.204      maxv }
   3200      1.204      maxv 
   3201      1.204      maxv static void
   3202      1.204      maxv pool_redzone_fill(struct pool *pp, void *p)
   3203      1.204      maxv {
   3204      1.224      maxv 	if (!pp->pr_redzone)
   3205      1.224      maxv 		return;
   3206      1.279   thorpej 	KASSERT(!pp_has_pser(pp));
   3207      1.224      maxv #ifdef KASAN
   3208      1.248      maxv 	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
   3209      1.248      maxv 	    KASAN_POOL_REDZONE);
   3210      1.224      maxv #else
   3211      1.204      maxv 	uint8_t *cp, pat;
   3212      1.204      maxv 	const uint8_t *ep;
   3213      1.204      maxv 
   3214      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3215      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3216      1.204      maxv 
   3217      1.204      maxv 	/*
   3218      1.204      maxv 	 * We really don't want the first byte of the red zone to be '\0';
   3219      1.204      maxv 	 * an off-by-one in a string may not be properly detected.
   3220      1.204      maxv 	 */
   3221      1.204      maxv 	pat = pool_pattern_generate(cp);
   3222      1.204      maxv 	*cp = (pat == '\0') ? STATIC_BYTE: pat;
   3223      1.204      maxv 	cp++;
   3224      1.204      maxv 
   3225      1.204      maxv 	while (cp < ep) {
   3226      1.204      maxv 		*cp = pool_pattern_generate(cp);
   3227      1.204      maxv 		cp++;
   3228      1.204      maxv 	}
   3229      1.224      maxv #endif
   3230      1.204      maxv }
   3231      1.204      maxv 
   3232      1.204      maxv static void
   3233      1.204      maxv pool_redzone_check(struct pool *pp, void *p)
   3234      1.204      maxv {
   3235      1.224      maxv 	if (!pp->pr_redzone)
   3236      1.224      maxv 		return;
   3237      1.279   thorpej 	KASSERT(!pp_has_pser(pp));
   3238      1.224      maxv #ifdef KASAN
   3239      1.248      maxv 	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
   3240      1.224      maxv #else
   3241      1.204      maxv 	uint8_t *cp, pat, expected;
   3242      1.204      maxv 	const uint8_t *ep;
   3243      1.204      maxv 
   3244      1.204      maxv 	cp = (uint8_t *)p + pp->pr_reqsize;
   3245      1.204      maxv 	ep = cp + POOL_REDZONE_SIZE;
   3246      1.204      maxv 
   3247      1.204      maxv 	pat = pool_pattern_generate(cp);
   3248      1.204      maxv 	expected = (pat == '\0') ? STATIC_BYTE: pat;
   3249      1.264      maxv 	if (__predict_false(*cp != expected)) {
   3250      1.264      maxv 		panic("%s: [%s] 0x%02x != 0x%02x", __func__,
   3251      1.264      maxv 		    pp->pr_wchan, *cp, expected);
   3252      1.204      maxv 	}
   3253      1.204      maxv 	cp++;
   3254      1.204      maxv 
   3255      1.204      maxv 	while (cp < ep) {
   3256      1.204      maxv 		expected = pool_pattern_generate(cp);
   3257      1.225      maxv 		if (__predict_false(*cp != expected)) {
   3258      1.264      maxv 			panic("%s: [%s] 0x%02x != 0x%02x", __func__,
   3259      1.264      maxv 			    pp->pr_wchan, *cp, expected);
   3260      1.204      maxv 		}
   3261      1.204      maxv 		cp++;
   3262      1.204      maxv 	}
   3263      1.224      maxv #endif
   3264      1.204      maxv }
   3265      1.204      maxv 
   3266      1.229      maxv static void
   3267      1.229      maxv pool_cache_redzone_check(pool_cache_t pc, void *p)
   3268      1.229      maxv {
   3269      1.229      maxv #ifdef KASAN
   3270      1.279   thorpej 	/*
   3271      1.279   thorpej 	 * If there is a ctor/dtor, or if the cache objects use
   3272      1.279   thorpej 	 * passive serialization, leave the data as valid.
   3273      1.279   thorpej 	 */
   3274      1.279   thorpej 	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc) ||
   3275      1.279   thorpej 	    pc_has_pser(pc))) {
   3276      1.229      maxv 		return;
   3277      1.229      maxv 	}
   3278      1.229      maxv #endif
   3279      1.229      maxv 	pool_redzone_check(&pc->pc_pool, p);
   3280      1.229      maxv }
   3281      1.229      maxv 
   3282      1.204      maxv #endif /* POOL_REDZONE */
   3283      1.204      maxv 
   3284      1.141      yamt #if defined(DDB)
   3285      1.141      yamt static bool
   3286      1.141      yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3287      1.141      yamt {
   3288      1.141      yamt 
   3289      1.141      yamt 	return (uintptr_t)ph->ph_page <= addr &&
   3290      1.141      yamt 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   3291      1.141      yamt }
   3292      1.141      yamt 
   3293      1.143      yamt static bool
   3294      1.143      yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   3295      1.143      yamt {
   3296      1.143      yamt 
   3297      1.143      yamt 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   3298      1.143      yamt }
   3299      1.143      yamt 
   3300      1.143      yamt static bool
   3301      1.143      yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   3302      1.143      yamt {
   3303      1.143      yamt 	int i;
   3304      1.143      yamt 
   3305      1.143      yamt 	if (pcg == NULL) {
   3306      1.143      yamt 		return false;
   3307      1.143      yamt 	}
   3308      1.144      yamt 	for (i = 0; i < pcg->pcg_avail; i++) {
   3309      1.143      yamt 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   3310      1.143      yamt 			return true;
   3311      1.143      yamt 		}
   3312      1.143      yamt 	}
   3313      1.143      yamt 	return false;
   3314      1.143      yamt }
   3315      1.143      yamt 
   3316      1.143      yamt static bool
   3317      1.143      yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   3318      1.143      yamt {
   3319      1.143      yamt 
   3320      1.242      maxv 	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
   3321      1.234      maxv 		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
   3322      1.143      yamt 		pool_item_bitmap_t *bitmap =
   3323      1.143      yamt 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   3324  1.285.4.1    martin 		pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
   3325      1.143      yamt 
   3326      1.143      yamt 		return (*bitmap & mask) == 0;
   3327      1.143      yamt 	} else {
   3328      1.143      yamt 		struct pool_item *pi;
   3329      1.143      yamt 
   3330      1.143      yamt 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   3331      1.143      yamt 			if (pool_in_item(pp, pi, addr)) {
   3332      1.143      yamt 				return false;
   3333      1.143      yamt 			}
   3334      1.143      yamt 		}
   3335      1.143      yamt 		return true;
   3336      1.143      yamt 	}
   3337      1.143      yamt }
   3338      1.143      yamt 
   3339      1.141      yamt void
   3340      1.141      yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3341      1.141      yamt {
   3342      1.141      yamt 	struct pool *pp;
   3343      1.141      yamt 
   3344      1.145        ad 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3345      1.141      yamt 		struct pool_item_header *ph;
   3346      1.281  riastrad 		struct pool_cache *pc;
   3347      1.141      yamt 		uintptr_t item;
   3348      1.143      yamt 		bool allocated = true;
   3349      1.143      yamt 		bool incache = false;
   3350      1.143      yamt 		bool incpucache = false;
   3351      1.143      yamt 		char cpucachestr[32];
   3352      1.141      yamt 
   3353      1.141      yamt 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3354      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3355      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3356      1.141      yamt 					goto found;
   3357      1.141      yamt 				}
   3358      1.141      yamt 			}
   3359      1.141      yamt 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3360      1.141      yamt 				if (pool_in_page(pp, ph, addr)) {
   3361      1.143      yamt 					allocated =
   3362      1.143      yamt 					    pool_allocated(pp, ph, addr);
   3363      1.143      yamt 					goto found;
   3364      1.143      yamt 				}
   3365      1.143      yamt 			}
   3366      1.143      yamt 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3367      1.143      yamt 				if (pool_in_page(pp, ph, addr)) {
   3368      1.143      yamt 					allocated = false;
   3369      1.141      yamt 					goto found;
   3370      1.141      yamt 				}
   3371      1.141      yamt 			}
   3372      1.141      yamt 			continue;
   3373      1.141      yamt 		} else {
   3374      1.141      yamt 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3375      1.141      yamt 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3376      1.141      yamt 				continue;
   3377      1.141      yamt 			}
   3378      1.143      yamt 			allocated = pool_allocated(pp, ph, addr);
   3379      1.141      yamt 		}
   3380      1.141      yamt found:
   3381      1.281  riastrad 		if (allocated &&
   3382      1.281  riastrad 		    (pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
   3383      1.143      yamt 			struct pool_cache_group *pcg;
   3384      1.143      yamt 			int i;
   3385      1.143      yamt 
   3386      1.143      yamt 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3387      1.143      yamt 			    pcg = pcg->pcg_next) {
   3388      1.143      yamt 				if (pool_in_cg(pp, pcg, addr)) {
   3389      1.143      yamt 					incache = true;
   3390      1.143      yamt 					goto print;
   3391      1.143      yamt 				}
   3392      1.143      yamt 			}
   3393      1.183        ad 			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
   3394      1.143      yamt 				pool_cache_cpu_t *cc;
   3395      1.143      yamt 
   3396      1.143      yamt 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3397      1.143      yamt 					continue;
   3398      1.143      yamt 				}
   3399      1.143      yamt 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3400      1.143      yamt 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3401      1.143      yamt 					struct cpu_info *ci =
   3402      1.170        ad 					    cpu_lookup(i);
   3403      1.143      yamt 
   3404      1.143      yamt 					incpucache = true;
   3405      1.143      yamt 					snprintf(cpucachestr,
   3406      1.143      yamt 					    sizeof(cpucachestr),
   3407      1.143      yamt 					    "cached by CPU %u",
   3408      1.153    martin 					    ci->ci_index);
   3409      1.143      yamt 					goto print;
   3410      1.143      yamt 				}
   3411      1.143      yamt 			}
   3412      1.143      yamt 		}
   3413      1.143      yamt print:
   3414      1.141      yamt 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3415      1.141      yamt 		item = item + rounddown(addr - item, pp->pr_size);
   3416      1.143      yamt 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3417      1.141      yamt 		    (void *)addr, item, (size_t)(addr - item),
   3418      1.143      yamt 		    pp->pr_wchan,
   3419      1.143      yamt 		    incpucache ? cpucachestr :
   3420      1.143      yamt 		    incache ? "cached" : allocated ? "allocated" : "free");
   3421      1.141      yamt 	}
   3422      1.141      yamt }
   3423      1.141      yamt #endif /* defined(DDB) */
   3424      1.203     joerg 
   3425      1.203     joerg static int
   3426      1.203     joerg pool_sysctl(SYSCTLFN_ARGS)
   3427      1.203     joerg {
   3428      1.203     joerg 	struct pool_sysctl data;
   3429      1.203     joerg 	struct pool *pp;
   3430      1.203     joerg 	struct pool_cache *pc;
   3431      1.203     joerg 	pool_cache_cpu_t *cc;
   3432      1.203     joerg 	int error;
   3433      1.203     joerg 	size_t i, written;
   3434      1.203     joerg 
   3435      1.203     joerg 	if (oldp == NULL) {
   3436      1.203     joerg 		*oldlenp = 0;
   3437      1.203     joerg 		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
   3438      1.203     joerg 			*oldlenp += sizeof(data);
   3439      1.203     joerg 		return 0;
   3440      1.203     joerg 	}
   3441      1.203     joerg 
   3442      1.203     joerg 	memset(&data, 0, sizeof(data));
   3443      1.203     joerg 	error = 0;
   3444      1.203     joerg 	written = 0;
   3445      1.281  riastrad 	mutex_enter(&pool_head_lock);
   3446      1.203     joerg 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3447      1.203     joerg 		if (written + sizeof(data) > *oldlenp)
   3448      1.203     joerg 			break;
   3449      1.281  riastrad 		pp->pr_refcnt++;
   3450      1.203     joerg 		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
   3451      1.203     joerg 		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
   3452      1.203     joerg 		data.pr_flags = pp->pr_roflags | pp->pr_flags;
   3453      1.203     joerg #define COPY(field) data.field = pp->field
   3454      1.203     joerg 		COPY(pr_size);
   3455      1.203     joerg 
   3456      1.203     joerg 		COPY(pr_itemsperpage);
   3457      1.203     joerg 		COPY(pr_nitems);
   3458      1.203     joerg 		COPY(pr_nout);
   3459      1.203     joerg 		COPY(pr_hardlimit);
   3460      1.203     joerg 		COPY(pr_npages);
   3461      1.203     joerg 		COPY(pr_minpages);
   3462      1.203     joerg 		COPY(pr_maxpages);
   3463      1.203     joerg 
   3464      1.203     joerg 		COPY(pr_nget);
   3465      1.203     joerg 		COPY(pr_nfail);
   3466      1.203     joerg 		COPY(pr_nput);
   3467      1.203     joerg 		COPY(pr_npagealloc);
   3468      1.203     joerg 		COPY(pr_npagefree);
   3469      1.203     joerg 		COPY(pr_hiwat);
   3470      1.203     joerg 		COPY(pr_nidle);
   3471      1.203     joerg #undef COPY
   3472      1.203     joerg 
   3473      1.203     joerg 		data.pr_cache_nmiss_pcpu = 0;
   3474      1.203     joerg 		data.pr_cache_nhit_pcpu = 0;
   3475      1.271        ad 		data.pr_cache_nmiss_global = 0;
   3476      1.271        ad 		data.pr_cache_nempty = 0;
   3477      1.271        ad 		data.pr_cache_ncontended = 0;
   3478      1.271        ad 		data.pr_cache_npartial = 0;
   3479      1.281  riastrad 		if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
   3480      1.271        ad 			uint32_t nfull = 0;
   3481      1.203     joerg 			data.pr_cache_meta_size = pc->pc_pcgsize;
   3482      1.203     joerg 			for (i = 0; i < pc->pc_ncpu; ++i) {
   3483      1.203     joerg 				cc = pc->pc_cpus[i];
   3484      1.203     joerg 				if (cc == NULL)
   3485      1.203     joerg 					continue;
   3486      1.271        ad 				data.pr_cache_ncontended += cc->cc_contended;
   3487      1.206  knakahar 				data.pr_cache_nmiss_pcpu += cc->cc_misses;
   3488      1.206  knakahar 				data.pr_cache_nhit_pcpu += cc->cc_hits;
   3489      1.271        ad 				data.pr_cache_nmiss_global += cc->cc_pcmisses;
   3490      1.271        ad 				nfull += cc->cc_nfull; /* 32-bit rollover! */
   3491      1.272        ad 				data.pr_cache_npartial += cc->cc_npart;
   3492      1.203     joerg 			}
   3493      1.271        ad 			data.pr_cache_nfull = nfull;
   3494      1.203     joerg 		} else {
   3495      1.203     joerg 			data.pr_cache_meta_size = 0;
   3496      1.203     joerg 			data.pr_cache_nfull = 0;
   3497      1.203     joerg 		}
   3498      1.271        ad 		data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
   3499      1.271        ad 		    data.pr_cache_nmiss_global;
   3500      1.203     joerg 
   3501      1.281  riastrad 		if (pp->pr_refcnt == UINT_MAX) /* XXX possible? */
   3502      1.281  riastrad 			continue;
   3503      1.281  riastrad 		mutex_exit(&pool_head_lock);
   3504      1.203     joerg 		error = sysctl_copyout(l, &data, oldp, sizeof(data));
   3505      1.281  riastrad 		mutex_enter(&pool_head_lock);
   3506      1.281  riastrad 		if (--pp->pr_refcnt == 0)
   3507      1.281  riastrad 			cv_broadcast(&pool_busy);
   3508      1.203     joerg 		if (error)
   3509      1.203     joerg 			break;
   3510      1.203     joerg 		written += sizeof(data);
   3511      1.203     joerg 		oldp = (char *)oldp + sizeof(data);
   3512      1.203     joerg 	}
   3513      1.281  riastrad 	mutex_exit(&pool_head_lock);
   3514      1.203     joerg 
   3515      1.203     joerg 	*oldlenp = written;
   3516      1.203     joerg 	return error;
   3517      1.203     joerg }
   3518      1.203     joerg 
   3519      1.203     joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
   3520      1.203     joerg {
   3521      1.203     joerg 	const struct sysctlnode *rnode = NULL;
   3522      1.203     joerg 
   3523      1.203     joerg 	sysctl_createv(clog, 0, NULL, &rnode,
   3524      1.203     joerg 		       CTLFLAG_PERMANENT,
   3525      1.203     joerg 		       CTLTYPE_STRUCT, "pool",
   3526      1.203     joerg 		       SYSCTL_DESCR("Get pool statistics"),
   3527      1.203     joerg 		       pool_sysctl, 0, NULL, 0,
   3528      1.203     joerg 		       CTL_KERN, CTL_CREATE, CTL_EOL);
   3529      1.203     joerg }
   3530