subr_pool.c revision 1.285.4.2 1 1.285.4.2 martin /* $NetBSD: subr_pool.c,v 1.285.4.2 2024/12/15 14:58:45 martin Exp $ */
2 1.1 pk
3 1.229 maxv /*
4 1.271 ad * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
5 1.279 thorpej * 2020, 2021 The NetBSD Foundation, Inc.
6 1.1 pk * All rights reserved.
7 1.1 pk *
8 1.1 pk * This code is derived from software contributed to The NetBSD Foundation
9 1.20 thorpej * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 1.204 maxv * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 1.204 maxv * Maxime Villard.
12 1.1 pk *
13 1.1 pk * Redistribution and use in source and binary forms, with or without
14 1.1 pk * modification, are permitted provided that the following conditions
15 1.1 pk * are met:
16 1.1 pk * 1. Redistributions of source code must retain the above copyright
17 1.1 pk * notice, this list of conditions and the following disclaimer.
18 1.1 pk * 2. Redistributions in binary form must reproduce the above copyright
19 1.1 pk * notice, this list of conditions and the following disclaimer in the
20 1.1 pk * documentation and/or other materials provided with the distribution.
21 1.1 pk *
22 1.1 pk * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.1 pk * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.1 pk * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.1 pk * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.1 pk * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 pk * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 pk * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 pk * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 pk * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 pk * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.1 pk * POSSIBILITY OF SUCH DAMAGE.
33 1.1 pk */
34 1.64 lukem
35 1.64 lukem #include <sys/cdefs.h>
36 1.285.4.2 martin __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.285.4.2 2024/12/15 14:58:45 martin Exp $");
37 1.24 scottr
38 1.205 pooka #ifdef _KERNEL_OPT
39 1.141 yamt #include "opt_ddb.h"
40 1.28 thorpej #include "opt_lockdebug.h"
41 1.249 maxv #include "opt_pool.h"
42 1.205 pooka #endif
43 1.1 pk
44 1.1 pk #include <sys/param.h>
45 1.1 pk #include <sys/systm.h>
46 1.203 joerg #include <sys/sysctl.h>
47 1.135 yamt #include <sys/bitops.h>
48 1.1 pk #include <sys/proc.h>
49 1.1 pk #include <sys/errno.h>
50 1.1 pk #include <sys/kernel.h>
51 1.191 para #include <sys/vmem.h>
52 1.1 pk #include <sys/pool.h>
53 1.20 thorpej #include <sys/syslog.h>
54 1.125 ad #include <sys/debug.h>
55 1.271 ad #include <sys/lock.h>
56 1.134 ad #include <sys/lockdebug.h>
57 1.134 ad #include <sys/xcall.h>
58 1.134 ad #include <sys/cpu.h>
59 1.145 ad #include <sys/atomic.h>
60 1.224 maxv #include <sys/asan.h>
61 1.262 maxv #include <sys/msan.h>
62 1.270 maxv #include <sys/fault.h>
63 1.3 pk
64 1.187 uebayasi #include <uvm/uvm_extern.h>
65 1.3 pk
66 1.1 pk /*
67 1.1 pk * Pool resource management utility.
68 1.3 pk *
69 1.88 chs * Memory is allocated in pages which are split into pieces according to
70 1.88 chs * the pool item size. Each page is kept on one of three lists in the
71 1.88 chs * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
72 1.88 chs * for empty, full and partially-full pages respectively. The individual
73 1.88 chs * pool items are on a linked list headed by `ph_itemlist' in each page
74 1.88 chs * header. The memory for building the page list is either taken from
75 1.88 chs * the allocated pages themselves (for small pool items) or taken from
76 1.88 chs * an internal pool of page headers (`phpool').
77 1.1 pk */
78 1.1 pk
79 1.221 para /* List of all pools. Non static as needed by 'vmstat -m' */
80 1.202 abs TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
81 1.134 ad
82 1.3 pk /* Private pool for page header structures */
83 1.97 yamt #define PHPOOL_MAX 8
84 1.97 yamt static struct pool phpool[PHPOOL_MAX];
85 1.135 yamt #define PHPOOL_FREELIST_NELEM(idx) \
86 1.256 maxv (((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
87 1.3 pk
88 1.262 maxv #if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
89 1.224 maxv #define POOL_REDZONE
90 1.224 maxv #endif
91 1.224 maxv
92 1.268 maxv #if defined(POOL_QUARANTINE)
93 1.268 maxv #define POOL_NOCACHE
94 1.268 maxv #endif
95 1.268 maxv
96 1.204 maxv #ifdef POOL_REDZONE
97 1.224 maxv # ifdef KASAN
98 1.224 maxv # define POOL_REDZONE_SIZE 8
99 1.224 maxv # else
100 1.224 maxv # define POOL_REDZONE_SIZE 2
101 1.224 maxv # endif
102 1.204 maxv static void pool_redzone_init(struct pool *, size_t);
103 1.204 maxv static void pool_redzone_fill(struct pool *, void *);
104 1.204 maxv static void pool_redzone_check(struct pool *, void *);
105 1.229 maxv static void pool_cache_redzone_check(pool_cache_t, void *);
106 1.204 maxv #else
107 1.229 maxv # define pool_redzone_init(pp, sz) __nothing
108 1.229 maxv # define pool_redzone_fill(pp, ptr) __nothing
109 1.229 maxv # define pool_redzone_check(pp, ptr) __nothing
110 1.229 maxv # define pool_cache_redzone_check(pc, ptr) __nothing
111 1.204 maxv #endif
112 1.204 maxv
113 1.262 maxv #ifdef KMSAN
114 1.262 maxv static inline void pool_get_kmsan(struct pool *, void *);
115 1.262 maxv static inline void pool_put_kmsan(struct pool *, void *);
116 1.262 maxv static inline void pool_cache_get_kmsan(pool_cache_t, void *);
117 1.262 maxv static inline void pool_cache_put_kmsan(pool_cache_t, void *);
118 1.262 maxv #else
119 1.262 maxv #define pool_get_kmsan(pp, ptr) __nothing
120 1.262 maxv #define pool_put_kmsan(pp, ptr) __nothing
121 1.262 maxv #define pool_cache_get_kmsan(pc, ptr) __nothing
122 1.262 maxv #define pool_cache_put_kmsan(pc, ptr) __nothing
123 1.262 maxv #endif
124 1.262 maxv
125 1.249 maxv #ifdef POOL_QUARANTINE
126 1.249 maxv static void pool_quarantine_init(struct pool *);
127 1.249 maxv static void pool_quarantine_flush(struct pool *);
128 1.249 maxv static bool pool_put_quarantine(struct pool *, void *,
129 1.249 maxv struct pool_pagelist *);
130 1.249 maxv #else
131 1.249 maxv #define pool_quarantine_init(a) __nothing
132 1.249 maxv #define pool_quarantine_flush(a) __nothing
133 1.249 maxv #define pool_put_quarantine(a, b, c) false
134 1.268 maxv #endif
135 1.268 maxv
136 1.268 maxv #ifdef POOL_NOCACHE
137 1.268 maxv static bool pool_cache_put_nocache(pool_cache_t, void *);
138 1.268 maxv #else
139 1.268 maxv #define pool_cache_put_nocache(a, b) false
140 1.249 maxv #endif
141 1.249 maxv
142 1.261 christos #define NO_CTOR __FPTRCAST(int (*)(void *, void *, int), nullop)
143 1.261 christos #define NO_DTOR __FPTRCAST(void (*)(void *, void *), nullop)
144 1.261 christos
145 1.279 thorpej #define pc_has_pser(pc) (((pc)->pc_roflags & PR_PSERIALIZE) != 0)
146 1.261 christos #define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
147 1.261 christos #define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
148 1.229 maxv
149 1.279 thorpej #define pp_has_pser(pp) (((pp)->pr_roflags & PR_PSERIALIZE) != 0)
150 1.279 thorpej
151 1.279 thorpej #define pool_barrier() xc_barrier(0)
152 1.279 thorpej
153 1.258 maxv /*
154 1.258 maxv * Pool backend allocators.
155 1.258 maxv *
156 1.258 maxv * Each pool has a backend allocator that handles allocation, deallocation,
157 1.258 maxv * and any additional draining that might be needed.
158 1.258 maxv *
159 1.258 maxv * We provide two standard allocators:
160 1.258 maxv *
161 1.258 maxv * pool_allocator_kmem - the default when no allocator is specified
162 1.258 maxv *
163 1.258 maxv * pool_allocator_nointr - used for pools that will not be accessed
164 1.258 maxv * in interrupt context.
165 1.258 maxv */
166 1.258 maxv void *pool_page_alloc(struct pool *, int);
167 1.258 maxv void pool_page_free(struct pool *, void *);
168 1.258 maxv
169 1.98 yamt static void *pool_page_alloc_meta(struct pool *, int);
170 1.98 yamt static void pool_page_free_meta(struct pool *, void *);
171 1.98 yamt
172 1.258 maxv struct pool_allocator pool_allocator_kmem = {
173 1.258 maxv .pa_alloc = pool_page_alloc,
174 1.258 maxv .pa_free = pool_page_free,
175 1.258 maxv .pa_pagesz = 0
176 1.258 maxv };
177 1.258 maxv
178 1.258 maxv struct pool_allocator pool_allocator_nointr = {
179 1.258 maxv .pa_alloc = pool_page_alloc,
180 1.258 maxv .pa_free = pool_page_free,
181 1.258 maxv .pa_pagesz = 0
182 1.258 maxv };
183 1.258 maxv
184 1.134 ad struct pool_allocator pool_allocator_meta = {
185 1.191 para .pa_alloc = pool_page_alloc_meta,
186 1.191 para .pa_free = pool_page_free_meta,
187 1.191 para .pa_pagesz = 0
188 1.98 yamt };
189 1.98 yamt
190 1.208 chs #define POOL_ALLOCATOR_BIG_BASE 13
191 1.258 maxv static struct pool_allocator pool_allocator_big[] = {
192 1.258 maxv {
193 1.258 maxv .pa_alloc = pool_page_alloc,
194 1.258 maxv .pa_free = pool_page_free,
195 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
196 1.258 maxv },
197 1.258 maxv {
198 1.258 maxv .pa_alloc = pool_page_alloc,
199 1.258 maxv .pa_free = pool_page_free,
200 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
201 1.258 maxv },
202 1.258 maxv {
203 1.258 maxv .pa_alloc = pool_page_alloc,
204 1.258 maxv .pa_free = pool_page_free,
205 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
206 1.258 maxv },
207 1.258 maxv {
208 1.258 maxv .pa_alloc = pool_page_alloc,
209 1.258 maxv .pa_free = pool_page_free,
210 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
211 1.258 maxv },
212 1.258 maxv {
213 1.258 maxv .pa_alloc = pool_page_alloc,
214 1.258 maxv .pa_free = pool_page_free,
215 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
216 1.258 maxv },
217 1.258 maxv {
218 1.258 maxv .pa_alloc = pool_page_alloc,
219 1.258 maxv .pa_free = pool_page_free,
220 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
221 1.258 maxv },
222 1.258 maxv {
223 1.258 maxv .pa_alloc = pool_page_alloc,
224 1.258 maxv .pa_free = pool_page_free,
225 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
226 1.258 maxv },
227 1.258 maxv {
228 1.258 maxv .pa_alloc = pool_page_alloc,
229 1.258 maxv .pa_free = pool_page_free,
230 1.258 maxv .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
231 1.273 jdolecek },
232 1.273 jdolecek {
233 1.273 jdolecek .pa_alloc = pool_page_alloc,
234 1.273 jdolecek .pa_free = pool_page_free,
235 1.273 jdolecek .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8),
236 1.273 jdolecek },
237 1.273 jdolecek {
238 1.273 jdolecek .pa_alloc = pool_page_alloc,
239 1.273 jdolecek .pa_free = pool_page_free,
240 1.273 jdolecek .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9),
241 1.273 jdolecek },
242 1.273 jdolecek {
243 1.273 jdolecek .pa_alloc = pool_page_alloc,
244 1.273 jdolecek .pa_free = pool_page_free,
245 1.273 jdolecek .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10),
246 1.273 jdolecek },
247 1.273 jdolecek {
248 1.273 jdolecek .pa_alloc = pool_page_alloc,
249 1.273 jdolecek .pa_free = pool_page_free,
250 1.273 jdolecek .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11),
251 1.258 maxv }
252 1.258 maxv };
253 1.258 maxv
254 1.208 chs static int pool_bigidx(size_t);
255 1.208 chs
256 1.3 pk /* # of seconds to retain page after last use */
257 1.3 pk int pool_inactive_time = 10;
258 1.3 pk
259 1.3 pk /* Next candidate for drainage (see pool_drain()) */
260 1.236 maxv static struct pool *drainpp;
261 1.23 thorpej
262 1.134 ad /* This lock protects both pool_head and drainpp. */
263 1.134 ad static kmutex_t pool_head_lock;
264 1.134 ad static kcondvar_t pool_busy;
265 1.3 pk
266 1.178 elad /* This lock protects initialization of a potentially shared pool allocator */
267 1.178 elad static kmutex_t pool_allocator_lock;
268 1.178 elad
269 1.245 maxv static unsigned int poolid_counter = 0;
270 1.245 maxv
271 1.135 yamt typedef uint32_t pool_item_bitmap_t;
272 1.135 yamt #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
273 1.135 yamt #define BITMAP_MASK (BITMAP_SIZE - 1)
274 1.256 maxv #define BITMAP_MIN_SIZE (CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
275 1.99 yamt
276 1.3 pk struct pool_item_header {
277 1.3 pk /* Page headers */
278 1.88 chs LIST_ENTRY(pool_item_header)
279 1.3 pk ph_pagelist; /* pool page list */
280 1.245 maxv union {
281 1.245 maxv /* !PR_PHINPAGE */
282 1.245 maxv struct {
283 1.245 maxv SPLAY_ENTRY(pool_item_header)
284 1.245 maxv phu_node; /* off-page page headers */
285 1.245 maxv } phu_offpage;
286 1.245 maxv /* PR_PHINPAGE */
287 1.245 maxv struct {
288 1.245 maxv unsigned int phu_poolid;
289 1.245 maxv } phu_onpage;
290 1.245 maxv } ph_u1;
291 1.128 christos void * ph_page; /* this page's address */
292 1.151 yamt uint32_t ph_time; /* last referenced */
293 1.135 yamt uint16_t ph_nmissing; /* # of chunks in use */
294 1.141 yamt uint16_t ph_off; /* start offset in page */
295 1.97 yamt union {
296 1.242 maxv /* !PR_USEBMAP */
297 1.97 yamt struct {
298 1.102 chs LIST_HEAD(, pool_item)
299 1.97 yamt phu_itemlist; /* chunk list for this page */
300 1.97 yamt } phu_normal;
301 1.242 maxv /* PR_USEBMAP */
302 1.97 yamt struct {
303 1.141 yamt pool_item_bitmap_t phu_bitmap[1];
304 1.97 yamt } phu_notouch;
305 1.245 maxv } ph_u2;
306 1.3 pk };
307 1.245 maxv #define ph_node ph_u1.phu_offpage.phu_node
308 1.245 maxv #define ph_poolid ph_u1.phu_onpage.phu_poolid
309 1.245 maxv #define ph_itemlist ph_u2.phu_normal.phu_itemlist
310 1.245 maxv #define ph_bitmap ph_u2.phu_notouch.phu_bitmap
311 1.3 pk
312 1.240 maxv #define PHSIZE ALIGN(sizeof(struct pool_item_header))
313 1.240 maxv
314 1.256 maxv CTASSERT(offsetof(struct pool_item_header, ph_u2) +
315 1.256 maxv BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
316 1.256 maxv
317 1.229 maxv #if defined(DIAGNOSTIC) && !defined(KASAN)
318 1.229 maxv #define POOL_CHECK_MAGIC
319 1.229 maxv #endif
320 1.229 maxv
321 1.1 pk struct pool_item {
322 1.229 maxv #ifdef POOL_CHECK_MAGIC
323 1.82 thorpej u_int pi_magic;
324 1.33 chs #endif
325 1.134 ad #define PI_MAGIC 0xdeaddeadU
326 1.3 pk /* Other entries use only this list entry */
327 1.102 chs LIST_ENTRY(pool_item) pi_list;
328 1.3 pk };
329 1.3 pk
330 1.53 thorpej #define POOL_NEEDS_CATCHUP(pp) \
331 1.267 chs ((pp)->pr_nitems < (pp)->pr_minitems || \
332 1.267 chs (pp)->pr_npages < (pp)->pr_minpages)
333 1.253 maxv #define POOL_OBJ_TO_PAGE(pp, v) \
334 1.253 maxv (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
335 1.53 thorpej
336 1.43 thorpej /*
337 1.43 thorpej * Pool cache management.
338 1.43 thorpej *
339 1.43 thorpej * Pool caches provide a way for constructed objects to be cached by the
340 1.43 thorpej * pool subsystem. This can lead to performance improvements by avoiding
341 1.43 thorpej * needless object construction/destruction; it is deferred until absolutely
342 1.43 thorpej * necessary.
343 1.43 thorpej *
344 1.134 ad * Caches are grouped into cache groups. Each cache group references up
345 1.134 ad * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
346 1.134 ad * object from the pool, it calls the object's constructor and places it
347 1.134 ad * into a cache group. When a cache group frees an object back to the
348 1.134 ad * pool, it first calls the object's destructor. This allows the object
349 1.134 ad * to persist in constructed form while freed to the cache.
350 1.134 ad *
351 1.134 ad * The pool references each cache, so that when a pool is drained by the
352 1.134 ad * pagedaemon, it can drain each individual cache as well. Each time a
353 1.134 ad * cache is drained, the most idle cache group is freed to the pool in
354 1.134 ad * its entirety.
355 1.43 thorpej *
356 1.284 andvar * Pool caches are laid on top of pools. By layering them, we can avoid
357 1.43 thorpej * the complexity of cache management for pools which would not benefit
358 1.43 thorpej * from it.
359 1.43 thorpej */
360 1.43 thorpej
361 1.142 ad static struct pool pcg_normal_pool;
362 1.142 ad static struct pool pcg_large_pool;
363 1.134 ad static struct pool cache_pool;
364 1.134 ad static struct pool cache_cpu_pool;
365 1.3 pk
366 1.271 ad static pcg_t *volatile pcg_large_cache __cacheline_aligned;
367 1.271 ad static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
368 1.271 ad
369 1.145 ad /* List of all caches. */
370 1.145 ad TAILQ_HEAD(,pool_cache) pool_cache_head =
371 1.145 ad TAILQ_HEAD_INITIALIZER(pool_cache_head);
372 1.145 ad
373 1.162 ad int pool_cache_disable; /* global disable for caching */
374 1.169 yamt static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
375 1.145 ad
376 1.271 ad static bool pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
377 1.162 ad void *);
378 1.271 ad static bool pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
379 1.162 ad void **, paddr_t *, int);
380 1.134 ad static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
381 1.271 ad static int pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
382 1.175 jym static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
383 1.196 jym static void pool_cache_transfer(pool_cache_t);
384 1.271 ad static int pool_pcg_get(pcg_t *volatile *, pcg_t **);
385 1.271 ad static int pool_pcg_put(pcg_t *volatile *, pcg_t *);
386 1.271 ad static pcg_t * pool_pcg_trunc(pcg_t *volatile *);
387 1.3 pk
388 1.42 thorpej static int pool_catchup(struct pool *);
389 1.128 christos static void pool_prime_page(struct pool *, void *,
390 1.55 thorpej struct pool_item_header *);
391 1.88 chs static void pool_update_curpage(struct pool *);
392 1.66 thorpej
393 1.113 yamt static int pool_grow(struct pool *, int);
394 1.117 yamt static void *pool_allocator_alloc(struct pool *, int);
395 1.117 yamt static void pool_allocator_free(struct pool *, void *);
396 1.3 pk
397 1.97 yamt static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
398 1.199 christos void (*)(const char *, ...) __printflike(1, 2));
399 1.42 thorpej static void pool_print1(struct pool *, const char *,
400 1.199 christos void (*)(const char *, ...) __printflike(1, 2));
401 1.3 pk
402 1.88 chs static int pool_chk_page(struct pool *, const char *,
403 1.88 chs struct pool_item_header *);
404 1.88 chs
405 1.234 maxv /* -------------------------------------------------------------------------- */
406 1.234 maxv
407 1.135 yamt static inline unsigned int
408 1.234 maxv pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
409 1.97 yamt const void *v)
410 1.97 yamt {
411 1.97 yamt const char *cp = v;
412 1.135 yamt unsigned int idx;
413 1.97 yamt
414 1.242 maxv KASSERT(pp->pr_roflags & PR_USEBMAP);
415 1.128 christos idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
416 1.237 maxv
417 1.237 maxv if (__predict_false(idx >= pp->pr_itemsperpage)) {
418 1.237 maxv panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
419 1.237 maxv pp->pr_itemsperpage);
420 1.237 maxv }
421 1.237 maxv
422 1.97 yamt return idx;
423 1.97 yamt }
424 1.97 yamt
425 1.110 perry static inline void
426 1.234 maxv pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
427 1.97 yamt void *obj)
428 1.97 yamt {
429 1.234 maxv unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
430 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
431 1.223 kamil pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
432 1.97 yamt
433 1.237 maxv if (__predict_false((*bitmap & mask) != 0)) {
434 1.237 maxv panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
435 1.237 maxv }
436 1.237 maxv
437 1.135 yamt *bitmap |= mask;
438 1.97 yamt }
439 1.97 yamt
440 1.110 perry static inline void *
441 1.234 maxv pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
442 1.97 yamt {
443 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
444 1.135 yamt unsigned int idx;
445 1.135 yamt int i;
446 1.97 yamt
447 1.135 yamt for (i = 0; ; i++) {
448 1.135 yamt int bit;
449 1.97 yamt
450 1.135 yamt KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
451 1.135 yamt bit = ffs32(bitmap[i]);
452 1.135 yamt if (bit) {
453 1.135 yamt pool_item_bitmap_t mask;
454 1.135 yamt
455 1.135 yamt bit--;
456 1.135 yamt idx = (i * BITMAP_SIZE) + bit;
457 1.222 kamil mask = 1U << bit;
458 1.135 yamt KASSERT((bitmap[i] & mask) != 0);
459 1.135 yamt bitmap[i] &= ~mask;
460 1.135 yamt break;
461 1.135 yamt }
462 1.135 yamt }
463 1.135 yamt KASSERT(idx < pp->pr_itemsperpage);
464 1.128 christos return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
465 1.97 yamt }
466 1.97 yamt
467 1.135 yamt static inline void
468 1.234 maxv pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
469 1.135 yamt {
470 1.135 yamt pool_item_bitmap_t *bitmap = ph->ph_bitmap;
471 1.135 yamt const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
472 1.135 yamt int i;
473 1.135 yamt
474 1.135 yamt for (i = 0; i < n; i++) {
475 1.135 yamt bitmap[i] = (pool_item_bitmap_t)-1;
476 1.135 yamt }
477 1.135 yamt }
478 1.135 yamt
479 1.234 maxv /* -------------------------------------------------------------------------- */
480 1.234 maxv
481 1.234 maxv static inline void
482 1.234 maxv pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
483 1.234 maxv void *obj)
484 1.234 maxv {
485 1.234 maxv struct pool_item *pi = obj;
486 1.234 maxv
487 1.279 thorpej KASSERT(!pp_has_pser(pp));
488 1.279 thorpej
489 1.234 maxv #ifdef POOL_CHECK_MAGIC
490 1.234 maxv pi->pi_magic = PI_MAGIC;
491 1.234 maxv #endif
492 1.234 maxv
493 1.234 maxv if (pp->pr_redzone) {
494 1.234 maxv /*
495 1.234 maxv * Mark the pool_item as valid. The rest is already
496 1.234 maxv * invalid.
497 1.234 maxv */
498 1.248 maxv kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
499 1.234 maxv }
500 1.234 maxv
501 1.234 maxv LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
502 1.234 maxv }
503 1.234 maxv
504 1.234 maxv static inline void *
505 1.234 maxv pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
506 1.234 maxv {
507 1.234 maxv struct pool_item *pi;
508 1.234 maxv void *v;
509 1.234 maxv
510 1.234 maxv v = pi = LIST_FIRST(&ph->ph_itemlist);
511 1.234 maxv if (__predict_false(v == NULL)) {
512 1.234 maxv mutex_exit(&pp->pr_lock);
513 1.234 maxv panic("%s: [%s] page empty", __func__, pp->pr_wchan);
514 1.234 maxv }
515 1.234 maxv KASSERTMSG((pp->pr_nitems > 0),
516 1.234 maxv "%s: [%s] nitems %u inconsistent on itemlist",
517 1.234 maxv __func__, pp->pr_wchan, pp->pr_nitems);
518 1.234 maxv #ifdef POOL_CHECK_MAGIC
519 1.234 maxv KASSERTMSG((pi->pi_magic == PI_MAGIC),
520 1.234 maxv "%s: [%s] free list modified: "
521 1.234 maxv "magic=%x; page %p; item addr %p", __func__,
522 1.234 maxv pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
523 1.234 maxv #endif
524 1.234 maxv
525 1.234 maxv /*
526 1.234 maxv * Remove from item list.
527 1.234 maxv */
528 1.234 maxv LIST_REMOVE(pi, pi_list);
529 1.234 maxv
530 1.234 maxv return v;
531 1.234 maxv }
532 1.234 maxv
533 1.234 maxv /* -------------------------------------------------------------------------- */
534 1.234 maxv
535 1.253 maxv static inline void
536 1.253 maxv pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
537 1.253 maxv void *object)
538 1.253 maxv {
539 1.253 maxv if (__predict_false((void *)ph->ph_page != page)) {
540 1.253 maxv panic("%s: [%s] item %p not part of pool", __func__,
541 1.253 maxv pp->pr_wchan, object);
542 1.253 maxv }
543 1.253 maxv if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
544 1.253 maxv panic("%s: [%s] item %p below item space", __func__,
545 1.253 maxv pp->pr_wchan, object);
546 1.253 maxv }
547 1.253 maxv if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
548 1.253 maxv panic("%s: [%s] item %p poolid %u != %u", __func__,
549 1.253 maxv pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
550 1.253 maxv }
551 1.253 maxv }
552 1.253 maxv
553 1.253 maxv static inline void
554 1.253 maxv pc_phinpage_check(pool_cache_t pc, void *object)
555 1.253 maxv {
556 1.253 maxv struct pool_item_header *ph;
557 1.253 maxv struct pool *pp;
558 1.253 maxv void *page;
559 1.253 maxv
560 1.253 maxv pp = &pc->pc_pool;
561 1.253 maxv page = POOL_OBJ_TO_PAGE(pp, object);
562 1.253 maxv ph = (struct pool_item_header *)page;
563 1.253 maxv
564 1.253 maxv pr_phinpage_check(pp, ph, page, object);
565 1.253 maxv }
566 1.253 maxv
567 1.253 maxv /* -------------------------------------------------------------------------- */
568 1.253 maxv
569 1.110 perry static inline int
570 1.88 chs phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
571 1.88 chs {
572 1.121 yamt
573 1.121 yamt /*
574 1.236 maxv * We consider pool_item_header with smaller ph_page bigger. This
575 1.236 maxv * unnatural ordering is for the benefit of pr_find_pagehead.
576 1.121 yamt */
577 1.88 chs if (a->ph_page < b->ph_page)
578 1.236 maxv return 1;
579 1.121 yamt else if (a->ph_page > b->ph_page)
580 1.236 maxv return -1;
581 1.88 chs else
582 1.236 maxv return 0;
583 1.88 chs }
584 1.88 chs
585 1.88 chs SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
586 1.88 chs SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
587 1.88 chs
588 1.141 yamt static inline struct pool_item_header *
589 1.141 yamt pr_find_pagehead_noalign(struct pool *pp, void *v)
590 1.141 yamt {
591 1.141 yamt struct pool_item_header *ph, tmp;
592 1.141 yamt
593 1.141 yamt tmp.ph_page = (void *)(uintptr_t)v;
594 1.141 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
595 1.141 yamt if (ph == NULL) {
596 1.141 yamt ph = SPLAY_ROOT(&pp->pr_phtree);
597 1.141 yamt if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
598 1.141 yamt ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
599 1.141 yamt }
600 1.141 yamt KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
601 1.141 yamt }
602 1.141 yamt
603 1.141 yamt return ph;
604 1.141 yamt }
605 1.141 yamt
606 1.3 pk /*
607 1.121 yamt * Return the pool page header based on item address.
608 1.3 pk */
609 1.110 perry static inline struct pool_item_header *
610 1.121 yamt pr_find_pagehead(struct pool *pp, void *v)
611 1.3 pk {
612 1.88 chs struct pool_item_header *ph, tmp;
613 1.3 pk
614 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
615 1.141 yamt ph = pr_find_pagehead_noalign(pp, v);
616 1.121 yamt } else {
617 1.253 maxv void *page = POOL_OBJ_TO_PAGE(pp, v);
618 1.121 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
619 1.241 maxv ph = (struct pool_item_header *)page;
620 1.253 maxv pr_phinpage_check(pp, ph, page, v);
621 1.121 yamt } else {
622 1.121 yamt tmp.ph_page = page;
623 1.121 yamt ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
624 1.121 yamt }
625 1.121 yamt }
626 1.3 pk
627 1.121 yamt KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
628 1.128 christos ((char *)ph->ph_page <= (char *)v &&
629 1.128 christos (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
630 1.88 chs return ph;
631 1.3 pk }
632 1.3 pk
633 1.101 thorpej static void
634 1.101 thorpej pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
635 1.101 thorpej {
636 1.101 thorpej struct pool_item_header *ph;
637 1.101 thorpej
638 1.101 thorpej while ((ph = LIST_FIRST(pq)) != NULL) {
639 1.101 thorpej LIST_REMOVE(ph, ph_pagelist);
640 1.101 thorpej pool_allocator_free(pp, ph->ph_page);
641 1.134 ad if ((pp->pr_roflags & PR_PHINPAGE) == 0)
642 1.101 thorpej pool_put(pp->pr_phpool, ph);
643 1.101 thorpej }
644 1.101 thorpej }
645 1.101 thorpej
646 1.3 pk /*
647 1.3 pk * Remove a page from the pool.
648 1.3 pk */
649 1.110 perry static inline void
650 1.61 chs pr_rmpage(struct pool *pp, struct pool_item_header *ph,
651 1.61 chs struct pool_pagelist *pq)
652 1.3 pk {
653 1.3 pk
654 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
655 1.91 yamt
656 1.3 pk /*
657 1.7 thorpej * If the page was idle, decrement the idle page count.
658 1.3 pk */
659 1.6 thorpej if (ph->ph_nmissing == 0) {
660 1.207 riastrad KASSERT(pp->pr_nidle != 0);
661 1.207 riastrad KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
662 1.251 christos "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
663 1.251 christos pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
664 1.6 thorpej pp->pr_nidle--;
665 1.6 thorpej }
666 1.7 thorpej
667 1.20 thorpej pp->pr_nitems -= pp->pr_itemsperpage;
668 1.20 thorpej
669 1.7 thorpej /*
670 1.101 thorpej * Unlink the page from the pool and queue it for release.
671 1.7 thorpej */
672 1.88 chs LIST_REMOVE(ph, ph_pagelist);
673 1.245 maxv if (pp->pr_roflags & PR_PHINPAGE) {
674 1.245 maxv if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
675 1.245 maxv panic("%s: [%s] ph %p poolid %u != %u",
676 1.245 maxv __func__, pp->pr_wchan, ph, ph->ph_poolid,
677 1.245 maxv pp->pr_poolid);
678 1.245 maxv }
679 1.245 maxv } else {
680 1.91 yamt SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
681 1.245 maxv }
682 1.101 thorpej LIST_INSERT_HEAD(pq, ph, ph_pagelist);
683 1.101 thorpej
684 1.7 thorpej pp->pr_npages--;
685 1.7 thorpej pp->pr_npagefree++;
686 1.6 thorpej
687 1.88 chs pool_update_curpage(pp);
688 1.3 pk }
689 1.3 pk
690 1.3 pk /*
691 1.94 simonb * Initialize all the pools listed in the "pools" link set.
692 1.94 simonb */
693 1.94 simonb void
694 1.117 yamt pool_subsystem_init(void)
695 1.94 simonb {
696 1.192 rmind size_t size;
697 1.191 para int idx;
698 1.94 simonb
699 1.134 ad mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
700 1.179 mlelstv mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
701 1.134 ad cv_init(&pool_busy, "poolbusy");
702 1.134 ad
703 1.191 para /*
704 1.191 para * Initialize private page header pool and cache magazine pool if we
705 1.191 para * haven't done so yet.
706 1.191 para */
707 1.191 para for (idx = 0; idx < PHPOOL_MAX; idx++) {
708 1.191 para static char phpool_names[PHPOOL_MAX][6+1+6+1];
709 1.191 para int nelem;
710 1.191 para size_t sz;
711 1.191 para
712 1.191 para nelem = PHPOOL_FREELIST_NELEM(idx);
713 1.256 maxv KASSERT(nelem != 0);
714 1.191 para snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
715 1.191 para "phpool-%d", nelem);
716 1.256 maxv sz = offsetof(struct pool_item_header,
717 1.256 maxv ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
718 1.191 para pool_init(&phpool[idx], sz, 0, 0, 0,
719 1.191 para phpool_names[idx], &pool_allocator_meta, IPL_VM);
720 1.117 yamt }
721 1.191 para
722 1.191 para size = sizeof(pcg_t) +
723 1.191 para (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
724 1.191 para pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
725 1.191 para "pcgnormal", &pool_allocator_meta, IPL_VM);
726 1.191 para
727 1.191 para size = sizeof(pcg_t) +
728 1.191 para (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
729 1.191 para pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
730 1.191 para "pcglarge", &pool_allocator_meta, IPL_VM);
731 1.134 ad
732 1.156 ad pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
733 1.191 para 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
734 1.134 ad
735 1.156 ad pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
736 1.191 para 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
737 1.94 simonb }
738 1.94 simonb
739 1.240 maxv static inline bool
740 1.240 maxv pool_init_is_phinpage(const struct pool *pp)
741 1.240 maxv {
742 1.240 maxv size_t pagesize;
743 1.240 maxv
744 1.240 maxv if (pp->pr_roflags & PR_PHINPAGE) {
745 1.240 maxv return true;
746 1.240 maxv }
747 1.240 maxv if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
748 1.240 maxv return false;
749 1.240 maxv }
750 1.240 maxv
751 1.240 maxv pagesize = pp->pr_alloc->pa_pagesz;
752 1.240 maxv
753 1.240 maxv /*
754 1.240 maxv * Threshold: the item size is below 1/16 of a page size, and below
755 1.240 maxv * 8 times the page header size. The latter ensures we go off-page
756 1.240 maxv * if the page header would make us waste a rather big item.
757 1.240 maxv */
758 1.240 maxv if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
759 1.240 maxv return true;
760 1.240 maxv }
761 1.240 maxv
762 1.240 maxv /* Put the header into the page if it doesn't waste any items. */
763 1.240 maxv if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
764 1.240 maxv return true;
765 1.240 maxv }
766 1.240 maxv
767 1.240 maxv return false;
768 1.240 maxv }
769 1.240 maxv
770 1.242 maxv static inline bool
771 1.242 maxv pool_init_is_usebmap(const struct pool *pp)
772 1.242 maxv {
773 1.243 maxv size_t bmapsize;
774 1.243 maxv
775 1.242 maxv if (pp->pr_roflags & PR_NOTOUCH) {
776 1.242 maxv return true;
777 1.242 maxv }
778 1.242 maxv
779 1.243 maxv /*
780 1.256 maxv * If we're off-page, go with a bitmap.
781 1.256 maxv */
782 1.256 maxv if (!(pp->pr_roflags & PR_PHINPAGE)) {
783 1.256 maxv return true;
784 1.256 maxv }
785 1.256 maxv
786 1.256 maxv /*
787 1.243 maxv * If we're on-page, and the page header can already contain a bitmap
788 1.243 maxv * big enough to cover all the items of the page, go with a bitmap.
789 1.243 maxv */
790 1.243 maxv bmapsize = roundup(PHSIZE, pp->pr_align) -
791 1.243 maxv offsetof(struct pool_item_header, ph_bitmap[0]);
792 1.243 maxv KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
793 1.243 maxv if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
794 1.243 maxv return true;
795 1.243 maxv }
796 1.243 maxv
797 1.242 maxv return false;
798 1.242 maxv }
799 1.242 maxv
800 1.94 simonb /*
801 1.3 pk * Initialize the given pool resource structure.
802 1.3 pk *
803 1.3 pk * We export this routine to allow other kernel parts to declare
804 1.195 rmind * static pools that must be initialized before kmem(9) is available.
805 1.3 pk */
806 1.3 pk void
807 1.42 thorpej pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
808 1.129 ad const char *wchan, struct pool_allocator *palloc, int ipl)
809 1.3 pk {
810 1.116 simonb struct pool *pp1;
811 1.240 maxv size_t prsize;
812 1.237 maxv int itemspace, slack;
813 1.3 pk
814 1.238 maxv /* XXX ioff will be removed. */
815 1.238 maxv KASSERT(ioff == 0);
816 1.238 maxv
817 1.116 simonb #ifdef DEBUG
818 1.198 christos if (__predict_true(!cold))
819 1.198 christos mutex_enter(&pool_head_lock);
820 1.116 simonb /*
821 1.116 simonb * Check that the pool hasn't already been initialised and
822 1.116 simonb * added to the list of all pools.
823 1.116 simonb */
824 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
825 1.116 simonb if (pp == pp1)
826 1.213 christos panic("%s: [%s] already initialised", __func__,
827 1.116 simonb wchan);
828 1.116 simonb }
829 1.198 christos if (__predict_true(!cold))
830 1.198 christos mutex_exit(&pool_head_lock);
831 1.116 simonb #endif
832 1.116 simonb
833 1.66 thorpej if (palloc == NULL)
834 1.66 thorpej palloc = &pool_allocator_kmem;
835 1.244 maxv
836 1.180 mlelstv if (!cold)
837 1.180 mlelstv mutex_enter(&pool_allocator_lock);
838 1.178 elad if (palloc->pa_refcnt++ == 0) {
839 1.112 bjh21 if (palloc->pa_pagesz == 0)
840 1.66 thorpej palloc->pa_pagesz = PAGE_SIZE;
841 1.66 thorpej
842 1.66 thorpej TAILQ_INIT(&palloc->pa_list);
843 1.66 thorpej
844 1.134 ad mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
845 1.66 thorpej palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
846 1.66 thorpej palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
847 1.4 thorpej }
848 1.180 mlelstv if (!cold)
849 1.180 mlelstv mutex_exit(&pool_allocator_lock);
850 1.3 pk
851 1.279 thorpej /*
852 1.279 thorpej * PR_PSERIALIZE implies PR_NOTOUCH; freed objects must remain
853 1.279 thorpej * valid until the the backing page is returned to the system.
854 1.279 thorpej */
855 1.279 thorpej if (flags & PR_PSERIALIZE) {
856 1.279 thorpej flags |= PR_NOTOUCH;
857 1.279 thorpej }
858 1.279 thorpej
859 1.3 pk if (align == 0)
860 1.3 pk align = ALIGN(1);
861 1.14 thorpej
862 1.204 maxv prsize = size;
863 1.204 maxv if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
864 1.204 maxv prsize = sizeof(struct pool_item);
865 1.3 pk
866 1.204 maxv prsize = roundup(prsize, align);
867 1.207 riastrad KASSERTMSG((prsize <= palloc->pa_pagesz),
868 1.213 christos "%s: [%s] pool item size (%zu) larger than page size (%u)",
869 1.213 christos __func__, wchan, prsize, palloc->pa_pagesz);
870 1.35 pk
871 1.3 pk /*
872 1.3 pk * Initialize the pool structure.
873 1.3 pk */
874 1.88 chs LIST_INIT(&pp->pr_emptypages);
875 1.88 chs LIST_INIT(&pp->pr_fullpages);
876 1.88 chs LIST_INIT(&pp->pr_partpages);
877 1.134 ad pp->pr_cache = NULL;
878 1.3 pk pp->pr_curpage = NULL;
879 1.3 pk pp->pr_npages = 0;
880 1.3 pk pp->pr_minitems = 0;
881 1.3 pk pp->pr_minpages = 0;
882 1.285.4.2 martin pp->pr_maxitems = UINT_MAX;
883 1.3 pk pp->pr_maxpages = UINT_MAX;
884 1.20 thorpej pp->pr_roflags = flags;
885 1.20 thorpej pp->pr_flags = 0;
886 1.204 maxv pp->pr_size = prsize;
887 1.233 maxv pp->pr_reqsize = size;
888 1.3 pk pp->pr_align = align;
889 1.3 pk pp->pr_wchan = wchan;
890 1.66 thorpej pp->pr_alloc = palloc;
891 1.245 maxv pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
892 1.20 thorpej pp->pr_nitems = 0;
893 1.20 thorpej pp->pr_nout = 0;
894 1.20 thorpej pp->pr_hardlimit = UINT_MAX;
895 1.20 thorpej pp->pr_hardlimit_warning = NULL;
896 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = 0;
897 1.31 thorpej pp->pr_hardlimit_ratecap.tv_usec = 0;
898 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
899 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
900 1.68 thorpej pp->pr_drain_hook = NULL;
901 1.68 thorpej pp->pr_drain_hook_arg = NULL;
902 1.125 ad pp->pr_freecheck = NULL;
903 1.255 maxv pp->pr_redzone = false;
904 1.204 maxv pool_redzone_init(pp, size);
905 1.249 maxv pool_quarantine_init(pp);
906 1.3 pk
907 1.3 pk /*
908 1.240 maxv * Decide whether to put the page header off-page to avoid wasting too
909 1.240 maxv * large a part of the page or too big an item. Off-page page headers
910 1.240 maxv * go on a hash table, so we can match a returned item with its header
911 1.240 maxv * based on the page address.
912 1.3 pk */
913 1.240 maxv if (pool_init_is_phinpage(pp)) {
914 1.241 maxv /* Use the beginning of the page for the page header */
915 1.241 maxv itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
916 1.241 maxv pp->pr_itemoffset = roundup(PHSIZE, align);
917 1.239 maxv pp->pr_roflags |= PR_PHINPAGE;
918 1.2 pk } else {
919 1.3 pk /* The page header will be taken from our page header pool */
920 1.237 maxv itemspace = palloc->pa_pagesz;
921 1.241 maxv pp->pr_itemoffset = 0;
922 1.88 chs SPLAY_INIT(&pp->pr_phtree);
923 1.2 pk }
924 1.1 pk
925 1.243 maxv pp->pr_itemsperpage = itemspace / pp->pr_size;
926 1.243 maxv KASSERT(pp->pr_itemsperpage != 0);
927 1.243 maxv
928 1.242 maxv /*
929 1.242 maxv * Decide whether to use a bitmap or a linked list to manage freed
930 1.242 maxv * items.
931 1.242 maxv */
932 1.242 maxv if (pool_init_is_usebmap(pp)) {
933 1.242 maxv pp->pr_roflags |= PR_USEBMAP;
934 1.242 maxv }
935 1.242 maxv
936 1.242 maxv /*
937 1.256 maxv * If we're off-page, then we're using a bitmap; choose the appropriate
938 1.256 maxv * pool to allocate page headers, whose size varies depending on the
939 1.256 maxv * bitmap. If we're on-page, nothing to do.
940 1.242 maxv */
941 1.256 maxv if (!(pp->pr_roflags & PR_PHINPAGE)) {
942 1.97 yamt int idx;
943 1.97 yamt
944 1.256 maxv KASSERT(pp->pr_roflags & PR_USEBMAP);
945 1.256 maxv
946 1.97 yamt for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
947 1.97 yamt idx++) {
948 1.97 yamt /* nothing */
949 1.97 yamt }
950 1.97 yamt if (idx >= PHPOOL_MAX) {
951 1.97 yamt /*
952 1.97 yamt * if you see this panic, consider to tweak
953 1.97 yamt * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
954 1.97 yamt */
955 1.213 christos panic("%s: [%s] too large itemsperpage(%d) for "
956 1.242 maxv "PR_USEBMAP", __func__,
957 1.97 yamt pp->pr_wchan, pp->pr_itemsperpage);
958 1.97 yamt }
959 1.97 yamt pp->pr_phpool = &phpool[idx];
960 1.242 maxv } else {
961 1.97 yamt pp->pr_phpool = NULL;
962 1.97 yamt }
963 1.3 pk
964 1.3 pk /*
965 1.3 pk * Use the slack between the chunks and the page header
966 1.3 pk * for "cache coloring".
967 1.3 pk */
968 1.237 maxv slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
969 1.239 maxv pp->pr_maxcolor = rounddown(slack, align);
970 1.3 pk pp->pr_curcolor = 0;
971 1.3 pk
972 1.3 pk pp->pr_nget = 0;
973 1.3 pk pp->pr_nfail = 0;
974 1.3 pk pp->pr_nput = 0;
975 1.3 pk pp->pr_npagealloc = 0;
976 1.3 pk pp->pr_npagefree = 0;
977 1.1 pk pp->pr_hiwat = 0;
978 1.8 thorpej pp->pr_nidle = 0;
979 1.134 ad pp->pr_refcnt = 0;
980 1.3 pk
981 1.157 ad mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
982 1.134 ad cv_init(&pp->pr_cv, wchan);
983 1.134 ad pp->pr_ipl = ipl;
984 1.1 pk
985 1.145 ad /* Insert into the list of all pools. */
986 1.181 mlelstv if (!cold)
987 1.134 ad mutex_enter(&pool_head_lock);
988 1.145 ad TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
989 1.145 ad if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
990 1.145 ad break;
991 1.145 ad }
992 1.145 ad if (pp1 == NULL)
993 1.145 ad TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
994 1.145 ad else
995 1.145 ad TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
996 1.181 mlelstv if (!cold)
997 1.134 ad mutex_exit(&pool_head_lock);
998 1.134 ad
999 1.167 skrll /* Insert this into the list of pools using this allocator. */
1000 1.181 mlelstv if (!cold)
1001 1.134 ad mutex_enter(&palloc->pa_lock);
1002 1.145 ad TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
1003 1.181 mlelstv if (!cold)
1004 1.134 ad mutex_exit(&palloc->pa_lock);
1005 1.1 pk }
1006 1.1 pk
1007 1.1 pk /*
1008 1.283 andvar * De-commission a pool resource.
1009 1.1 pk */
1010 1.1 pk void
1011 1.42 thorpej pool_destroy(struct pool *pp)
1012 1.1 pk {
1013 1.101 thorpej struct pool_pagelist pq;
1014 1.3 pk struct pool_item_header *ph;
1015 1.43 thorpej
1016 1.249 maxv pool_quarantine_flush(pp);
1017 1.249 maxv
1018 1.101 thorpej /* Remove from global pool list */
1019 1.134 ad mutex_enter(&pool_head_lock);
1020 1.134 ad while (pp->pr_refcnt != 0)
1021 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
1022 1.145 ad TAILQ_REMOVE(&pool_head, pp, pr_poollist);
1023 1.101 thorpej if (drainpp == pp)
1024 1.101 thorpej drainpp = NULL;
1025 1.134 ad mutex_exit(&pool_head_lock);
1026 1.101 thorpej
1027 1.101 thorpej /* Remove this pool from its allocator's list of pools. */
1028 1.134 ad mutex_enter(&pp->pr_alloc->pa_lock);
1029 1.66 thorpej TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
1030 1.134 ad mutex_exit(&pp->pr_alloc->pa_lock);
1031 1.66 thorpej
1032 1.178 elad mutex_enter(&pool_allocator_lock);
1033 1.178 elad if (--pp->pr_alloc->pa_refcnt == 0)
1034 1.178 elad mutex_destroy(&pp->pr_alloc->pa_lock);
1035 1.178 elad mutex_exit(&pool_allocator_lock);
1036 1.178 elad
1037 1.134 ad mutex_enter(&pp->pr_lock);
1038 1.101 thorpej
1039 1.134 ad KASSERT(pp->pr_cache == NULL);
1040 1.207 riastrad KASSERTMSG((pp->pr_nout == 0),
1041 1.251 christos "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
1042 1.251 christos pp->pr_nout);
1043 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_fullpages));
1044 1.101 thorpej KASSERT(LIST_EMPTY(&pp->pr_partpages));
1045 1.101 thorpej
1046 1.3 pk /* Remove all pages */
1047 1.101 thorpej LIST_INIT(&pq);
1048 1.88 chs while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1049 1.101 thorpej pr_rmpage(pp, ph, &pq);
1050 1.101 thorpej
1051 1.134 ad mutex_exit(&pp->pr_lock);
1052 1.3 pk
1053 1.101 thorpej pr_pagelist_free(pp, &pq);
1054 1.134 ad cv_destroy(&pp->pr_cv);
1055 1.134 ad mutex_destroy(&pp->pr_lock);
1056 1.1 pk }
1057 1.1 pk
1058 1.68 thorpej void
1059 1.68 thorpej pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1060 1.68 thorpej {
1061 1.68 thorpej
1062 1.68 thorpej /* XXX no locking -- must be used just after pool_init() */
1063 1.207 riastrad KASSERTMSG((pp->pr_drain_hook == NULL),
1064 1.213 christos "%s: [%s] already set", __func__, pp->pr_wchan);
1065 1.68 thorpej pp->pr_drain_hook = fn;
1066 1.68 thorpej pp->pr_drain_hook_arg = arg;
1067 1.68 thorpej }
1068 1.68 thorpej
1069 1.88 chs static struct pool_item_header *
1070 1.128 christos pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1071 1.55 thorpej {
1072 1.55 thorpej struct pool_item_header *ph;
1073 1.55 thorpej
1074 1.55 thorpej if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1075 1.241 maxv ph = storage;
1076 1.134 ad else
1077 1.97 yamt ph = pool_get(pp->pr_phpool, flags);
1078 1.55 thorpej
1079 1.236 maxv return ph;
1080 1.55 thorpej }
1081 1.1 pk
1082 1.1 pk /*
1083 1.134 ad * Grab an item from the pool.
1084 1.1 pk */
1085 1.3 pk void *
1086 1.56 sommerfe pool_get(struct pool *pp, int flags)
1087 1.1 pk {
1088 1.3 pk struct pool_item_header *ph;
1089 1.55 thorpej void *v;
1090 1.1 pk
1091 1.215 christos KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1092 1.207 riastrad KASSERTMSG((pp->pr_itemsperpage != 0),
1093 1.213 christos "%s: [%s] pr_itemsperpage is zero, "
1094 1.213 christos "pool not initialized?", __func__, pp->pr_wchan);
1095 1.207 riastrad KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1096 1.207 riastrad || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1097 1.213 christos "%s: [%s] is IPL_NONE, but called from interrupt context",
1098 1.213 christos __func__, pp->pr_wchan);
1099 1.155 ad if (flags & PR_WAITOK) {
1100 1.154 yamt ASSERT_SLEEPABLE();
1101 1.155 ad }
1102 1.1 pk
1103 1.270 maxv if (flags & PR_NOWAIT) {
1104 1.270 maxv if (fault_inject())
1105 1.270 maxv return NULL;
1106 1.270 maxv }
1107 1.270 maxv
1108 1.134 ad mutex_enter(&pp->pr_lock);
1109 1.20 thorpej startover:
1110 1.20 thorpej /*
1111 1.20 thorpej * Check to see if we've reached the hard limit. If we have,
1112 1.20 thorpej * and we can wait, then wait until an item has been returned to
1113 1.20 thorpej * the pool.
1114 1.20 thorpej */
1115 1.207 riastrad KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1116 1.213 christos "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1117 1.34 thorpej if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1118 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1119 1.68 thorpej /*
1120 1.68 thorpej * Since the drain hook is going to free things
1121 1.68 thorpej * back to the pool, unlock, call the hook, re-lock,
1122 1.68 thorpej * and check the hardlimit condition again.
1123 1.68 thorpej */
1124 1.134 ad mutex_exit(&pp->pr_lock);
1125 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1126 1.134 ad mutex_enter(&pp->pr_lock);
1127 1.68 thorpej if (pp->pr_nout < pp->pr_hardlimit)
1128 1.68 thorpej goto startover;
1129 1.68 thorpej }
1130 1.68 thorpej
1131 1.29 sommerfe if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1132 1.20 thorpej /*
1133 1.20 thorpej * XXX: A warning isn't logged in this case. Should
1134 1.20 thorpej * it be?
1135 1.20 thorpej */
1136 1.20 thorpej pp->pr_flags |= PR_WANTED;
1137 1.212 christos do {
1138 1.212 christos cv_wait(&pp->pr_cv, &pp->pr_lock);
1139 1.212 christos } while (pp->pr_flags & PR_WANTED);
1140 1.20 thorpej goto startover;
1141 1.20 thorpej }
1142 1.31 thorpej
1143 1.31 thorpej /*
1144 1.31 thorpej * Log a message that the hard limit has been hit.
1145 1.31 thorpej */
1146 1.31 thorpej if (pp->pr_hardlimit_warning != NULL &&
1147 1.31 thorpej ratecheck(&pp->pr_hardlimit_warning_last,
1148 1.31 thorpej &pp->pr_hardlimit_ratecap))
1149 1.31 thorpej log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1150 1.21 thorpej
1151 1.21 thorpej pp->pr_nfail++;
1152 1.21 thorpej
1153 1.134 ad mutex_exit(&pp->pr_lock);
1154 1.216 christos KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1155 1.236 maxv return NULL;
1156 1.20 thorpej }
1157 1.20 thorpej
1158 1.3 pk /*
1159 1.3 pk * The convention we use is that if `curpage' is not NULL, then
1160 1.3 pk * it points at a non-empty bucket. In particular, `curpage'
1161 1.3 pk * never points at a page header which has PR_PHINPAGE set and
1162 1.3 pk * has no items in its bucket.
1163 1.3 pk */
1164 1.20 thorpej if ((ph = pp->pr_curpage) == NULL) {
1165 1.113 yamt int error;
1166 1.113 yamt
1167 1.207 riastrad KASSERTMSG((pp->pr_nitems == 0),
1168 1.213 christos "%s: [%s] curpage NULL, inconsistent nitems %u",
1169 1.213 christos __func__, pp->pr_wchan, pp->pr_nitems);
1170 1.20 thorpej
1171 1.21 thorpej /*
1172 1.21 thorpej * Call the back-end page allocator for more memory.
1173 1.21 thorpej * Release the pool lock, as the back-end page allocator
1174 1.21 thorpej * may block.
1175 1.21 thorpej */
1176 1.113 yamt error = pool_grow(pp, flags);
1177 1.113 yamt if (error != 0) {
1178 1.21 thorpej /*
1179 1.210 mlelstv * pool_grow aborts when another thread
1180 1.210 mlelstv * is allocating a new page. Retry if it
1181 1.210 mlelstv * waited for it.
1182 1.210 mlelstv */
1183 1.210 mlelstv if (error == ERESTART)
1184 1.210 mlelstv goto startover;
1185 1.210 mlelstv
1186 1.210 mlelstv /*
1187 1.55 thorpej * We were unable to allocate a page or item
1188 1.55 thorpej * header, but we released the lock during
1189 1.55 thorpej * allocation, so perhaps items were freed
1190 1.55 thorpej * back to the pool. Check for this case.
1191 1.21 thorpej */
1192 1.21 thorpej if (pp->pr_curpage != NULL)
1193 1.21 thorpej goto startover;
1194 1.15 pk
1195 1.117 yamt pp->pr_nfail++;
1196 1.134 ad mutex_exit(&pp->pr_lock);
1197 1.265 chs KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1198 1.236 maxv return NULL;
1199 1.1 pk }
1200 1.3 pk
1201 1.20 thorpej /* Start the allocation process over. */
1202 1.20 thorpej goto startover;
1203 1.3 pk }
1204 1.242 maxv if (pp->pr_roflags & PR_USEBMAP) {
1205 1.207 riastrad KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1206 1.251 christos "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1207 1.234 maxv v = pr_item_bitmap_get(pp, ph);
1208 1.97 yamt } else {
1209 1.234 maxv v = pr_item_linkedlist_get(pp, ph);
1210 1.97 yamt }
1211 1.20 thorpej pp->pr_nitems--;
1212 1.20 thorpej pp->pr_nout++;
1213 1.6 thorpej if (ph->ph_nmissing == 0) {
1214 1.207 riastrad KASSERT(pp->pr_nidle > 0);
1215 1.6 thorpej pp->pr_nidle--;
1216 1.88 chs
1217 1.88 chs /*
1218 1.88 chs * This page was previously empty. Move it to the list of
1219 1.88 chs * partially-full pages. This page is already curpage.
1220 1.88 chs */
1221 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1222 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1223 1.6 thorpej }
1224 1.3 pk ph->ph_nmissing++;
1225 1.97 yamt if (ph->ph_nmissing == pp->pr_itemsperpage) {
1226 1.242 maxv KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1227 1.207 riastrad LIST_EMPTY(&ph->ph_itemlist)),
1228 1.213 christos "%s: [%s] nmissing (%u) inconsistent", __func__,
1229 1.213 christos pp->pr_wchan, ph->ph_nmissing);
1230 1.3 pk /*
1231 1.88 chs * This page is now full. Move it to the full list
1232 1.88 chs * and select a new current page.
1233 1.3 pk */
1234 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1235 1.88 chs LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1236 1.88 chs pool_update_curpage(pp);
1237 1.1 pk }
1238 1.3 pk
1239 1.3 pk pp->pr_nget++;
1240 1.20 thorpej
1241 1.20 thorpej /*
1242 1.20 thorpej * If we have a low water mark and we are now below that low
1243 1.20 thorpej * water mark, add more items to the pool.
1244 1.20 thorpej */
1245 1.53 thorpej if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1246 1.20 thorpej /*
1247 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1248 1.20 thorpej * to try again in a second or so? The latter could break
1249 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1250 1.20 thorpej */
1251 1.20 thorpej }
1252 1.20 thorpej
1253 1.134 ad mutex_exit(&pp->pr_lock);
1254 1.238 maxv KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1255 1.125 ad FREECHECK_OUT(&pp->pr_freecheck, v);
1256 1.204 maxv pool_redzone_fill(pp, v);
1257 1.262 maxv pool_get_kmsan(pp, v);
1258 1.232 christos if (flags & PR_ZERO)
1259 1.233 maxv memset(v, 0, pp->pr_reqsize);
1260 1.232 christos return v;
1261 1.1 pk }
1262 1.1 pk
1263 1.1 pk /*
1264 1.43 thorpej * Internal version of pool_put(). Pool is already locked/entered.
1265 1.1 pk */
1266 1.43 thorpej static void
1267 1.101 thorpej pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1268 1.1 pk {
1269 1.3 pk struct pool_item_header *ph;
1270 1.3 pk
1271 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1272 1.204 maxv pool_redzone_check(pp, v);
1273 1.262 maxv pool_put_kmsan(pp, v);
1274 1.125 ad FREECHECK_IN(&pp->pr_freecheck, v);
1275 1.134 ad LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1276 1.61 chs
1277 1.207 riastrad KASSERTMSG((pp->pr_nout > 0),
1278 1.213 christos "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1279 1.3 pk
1280 1.121 yamt if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1281 1.213 christos panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1282 1.3 pk }
1283 1.28 thorpej
1284 1.3 pk /*
1285 1.3 pk * Return to item list.
1286 1.3 pk */
1287 1.242 maxv if (pp->pr_roflags & PR_USEBMAP) {
1288 1.234 maxv pr_item_bitmap_put(pp, ph, v);
1289 1.97 yamt } else {
1290 1.234 maxv pr_item_linkedlist_put(pp, ph, v);
1291 1.97 yamt }
1292 1.79 thorpej KDASSERT(ph->ph_nmissing != 0);
1293 1.3 pk ph->ph_nmissing--;
1294 1.3 pk pp->pr_nput++;
1295 1.20 thorpej pp->pr_nitems++;
1296 1.20 thorpej pp->pr_nout--;
1297 1.3 pk
1298 1.3 pk /* Cancel "pool empty" condition if it exists */
1299 1.3 pk if (pp->pr_curpage == NULL)
1300 1.3 pk pp->pr_curpage = ph;
1301 1.3 pk
1302 1.3 pk if (pp->pr_flags & PR_WANTED) {
1303 1.3 pk pp->pr_flags &= ~PR_WANTED;
1304 1.134 ad cv_broadcast(&pp->pr_cv);
1305 1.3 pk }
1306 1.3 pk
1307 1.3 pk /*
1308 1.88 chs * If this page is now empty, do one of two things:
1309 1.21 thorpej *
1310 1.88 chs * (1) If we have more pages than the page high water mark,
1311 1.96 thorpej * free the page back to the system. ONLY CONSIDER
1312 1.90 thorpej * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1313 1.90 thorpej * CLAIM.
1314 1.21 thorpej *
1315 1.88 chs * (2) Otherwise, move the page to the empty page list.
1316 1.88 chs *
1317 1.88 chs * Either way, select a new current page (so we use a partially-full
1318 1.88 chs * page if one is available).
1319 1.3 pk */
1320 1.3 pk if (ph->ph_nmissing == 0) {
1321 1.6 thorpej pp->pr_nidle++;
1322 1.267 chs if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1323 1.267 chs pp->pr_npages > pp->pr_minpages &&
1324 1.285.4.2 martin (pp->pr_npages > pp->pr_maxpages ||
1325 1.285.4.2 martin pp->pr_nitems > pp->pr_maxitems)) {
1326 1.101 thorpej pr_rmpage(pp, ph, pq);
1327 1.3 pk } else {
1328 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1329 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1330 1.3 pk
1331 1.21 thorpej /*
1332 1.21 thorpej * Update the timestamp on the page. A page must
1333 1.21 thorpej * be idle for some period of time before it can
1334 1.21 thorpej * be reclaimed by the pagedaemon. This minimizes
1335 1.21 thorpej * ping-pong'ing for memory.
1336 1.151 yamt *
1337 1.151 yamt * note for 64-bit time_t: truncating to 32-bit is not
1338 1.151 yamt * a problem for our usage.
1339 1.21 thorpej */
1340 1.151 yamt ph->ph_time = time_uptime;
1341 1.1 pk }
1342 1.88 chs pool_update_curpage(pp);
1343 1.1 pk }
1344 1.88 chs
1345 1.21 thorpej /*
1346 1.88 chs * If the page was previously completely full, move it to the
1347 1.88 chs * partially-full list and make it the current page. The next
1348 1.88 chs * allocation will get the item from this page, instead of
1349 1.88 chs * further fragmenting the pool.
1350 1.21 thorpej */
1351 1.21 thorpej else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1352 1.88 chs LIST_REMOVE(ph, ph_pagelist);
1353 1.88 chs LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1354 1.21 thorpej pp->pr_curpage = ph;
1355 1.21 thorpej }
1356 1.43 thorpej }
1357 1.43 thorpej
1358 1.56 sommerfe void
1359 1.56 sommerfe pool_put(struct pool *pp, void *v)
1360 1.56 sommerfe {
1361 1.101 thorpej struct pool_pagelist pq;
1362 1.101 thorpej
1363 1.101 thorpej LIST_INIT(&pq);
1364 1.56 sommerfe
1365 1.134 ad mutex_enter(&pp->pr_lock);
1366 1.249 maxv if (!pool_put_quarantine(pp, v, &pq)) {
1367 1.249 maxv pool_do_put(pp, v, &pq);
1368 1.249 maxv }
1369 1.134 ad mutex_exit(&pp->pr_lock);
1370 1.56 sommerfe
1371 1.102 chs pr_pagelist_free(pp, &pq);
1372 1.56 sommerfe }
1373 1.57 sommerfe
1374 1.74 thorpej /*
1375 1.113 yamt * pool_grow: grow a pool by a page.
1376 1.113 yamt *
1377 1.113 yamt * => called with pool locked.
1378 1.113 yamt * => unlock and relock the pool.
1379 1.113 yamt * => return with pool locked.
1380 1.113 yamt */
1381 1.113 yamt
1382 1.113 yamt static int
1383 1.113 yamt pool_grow(struct pool *pp, int flags)
1384 1.113 yamt {
1385 1.236 maxv struct pool_item_header *ph;
1386 1.237 maxv char *storage;
1387 1.236 maxv
1388 1.209 riastrad /*
1389 1.209 riastrad * If there's a pool_grow in progress, wait for it to complete
1390 1.209 riastrad * and try again from the top.
1391 1.209 riastrad */
1392 1.209 riastrad if (pp->pr_flags & PR_GROWING) {
1393 1.209 riastrad if (flags & PR_WAITOK) {
1394 1.209 riastrad do {
1395 1.209 riastrad cv_wait(&pp->pr_cv, &pp->pr_lock);
1396 1.209 riastrad } while (pp->pr_flags & PR_GROWING);
1397 1.209 riastrad return ERESTART;
1398 1.209 riastrad } else {
1399 1.219 mrg if (pp->pr_flags & PR_GROWINGNOWAIT) {
1400 1.219 mrg /*
1401 1.219 mrg * This needs an unlock/relock dance so
1402 1.219 mrg * that the other caller has a chance to
1403 1.219 mrg * run and actually do the thing. Note
1404 1.219 mrg * that this is effectively a busy-wait.
1405 1.219 mrg */
1406 1.219 mrg mutex_exit(&pp->pr_lock);
1407 1.219 mrg mutex_enter(&pp->pr_lock);
1408 1.219 mrg return ERESTART;
1409 1.219 mrg }
1410 1.209 riastrad return EWOULDBLOCK;
1411 1.209 riastrad }
1412 1.209 riastrad }
1413 1.209 riastrad pp->pr_flags |= PR_GROWING;
1414 1.220 christos if (flags & PR_WAITOK)
1415 1.220 christos mutex_exit(&pp->pr_lock);
1416 1.220 christos else
1417 1.219 mrg pp->pr_flags |= PR_GROWINGNOWAIT;
1418 1.113 yamt
1419 1.237 maxv storage = pool_allocator_alloc(pp, flags);
1420 1.237 maxv if (__predict_false(storage == NULL))
1421 1.216 christos goto out;
1422 1.216 christos
1423 1.237 maxv ph = pool_alloc_item_header(pp, storage, flags);
1424 1.216 christos if (__predict_false(ph == NULL)) {
1425 1.237 maxv pool_allocator_free(pp, storage);
1426 1.209 riastrad goto out;
1427 1.113 yamt }
1428 1.113 yamt
1429 1.220 christos if (flags & PR_WAITOK)
1430 1.220 christos mutex_enter(&pp->pr_lock);
1431 1.237 maxv pool_prime_page(pp, storage, ph);
1432 1.113 yamt pp->pr_npagealloc++;
1433 1.216 christos KASSERT(pp->pr_flags & PR_GROWING);
1434 1.219 mrg pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1435 1.209 riastrad /*
1436 1.209 riastrad * If anyone was waiting for pool_grow, notify them that we
1437 1.209 riastrad * may have just done it.
1438 1.209 riastrad */
1439 1.216 christos cv_broadcast(&pp->pr_cv);
1440 1.216 christos return 0;
1441 1.216 christos out:
1442 1.220 christos if (flags & PR_WAITOK)
1443 1.220 christos mutex_enter(&pp->pr_lock);
1444 1.209 riastrad KASSERT(pp->pr_flags & PR_GROWING);
1445 1.219 mrg pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1446 1.216 christos return ENOMEM;
1447 1.113 yamt }
1448 1.113 yamt
1449 1.267 chs void
1450 1.74 thorpej pool_prime(struct pool *pp, int n)
1451 1.74 thorpej {
1452 1.74 thorpej
1453 1.134 ad mutex_enter(&pp->pr_lock);
1454 1.267 chs pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1455 1.267 chs if (pp->pr_maxpages <= pp->pr_minpages)
1456 1.74 thorpej pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1457 1.267 chs while (pp->pr_npages < pp->pr_minpages)
1458 1.267 chs (void) pool_grow(pp, PR_WAITOK);
1459 1.134 ad mutex_exit(&pp->pr_lock);
1460 1.74 thorpej }
1461 1.55 thorpej
1462 1.55 thorpej /*
1463 1.3 pk * Add a page worth of items to the pool.
1464 1.21 thorpej *
1465 1.21 thorpej * Note, we must be called with the pool descriptor LOCKED.
1466 1.3 pk */
1467 1.55 thorpej static void
1468 1.128 christos pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1469 1.3 pk {
1470 1.236 maxv const unsigned int align = pp->pr_align;
1471 1.3 pk struct pool_item *pi;
1472 1.128 christos void *cp = storage;
1473 1.55 thorpej int n;
1474 1.36 pk
1475 1.134 ad KASSERT(mutex_owned(&pp->pr_lock));
1476 1.207 riastrad KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1477 1.207 riastrad (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1478 1.213 christos "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1479 1.3 pk
1480 1.3 pk /*
1481 1.3 pk * Insert page header.
1482 1.3 pk */
1483 1.88 chs LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1484 1.102 chs LIST_INIT(&ph->ph_itemlist);
1485 1.3 pk ph->ph_page = storage;
1486 1.3 pk ph->ph_nmissing = 0;
1487 1.151 yamt ph->ph_time = time_uptime;
1488 1.245 maxv if (pp->pr_roflags & PR_PHINPAGE)
1489 1.245 maxv ph->ph_poolid = pp->pr_poolid;
1490 1.245 maxv else
1491 1.88 chs SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1492 1.3 pk
1493 1.6 thorpej pp->pr_nidle++;
1494 1.6 thorpej
1495 1.3 pk /*
1496 1.241 maxv * The item space starts after the on-page header, if any.
1497 1.241 maxv */
1498 1.241 maxv ph->ph_off = pp->pr_itemoffset;
1499 1.241 maxv
1500 1.241 maxv /*
1501 1.3 pk * Color this page.
1502 1.3 pk */
1503 1.241 maxv ph->ph_off += pp->pr_curcolor;
1504 1.141 yamt cp = (char *)cp + ph->ph_off;
1505 1.3 pk if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1506 1.3 pk pp->pr_curcolor = 0;
1507 1.3 pk
1508 1.238 maxv KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1509 1.125 ad
1510 1.3 pk /*
1511 1.3 pk * Insert remaining chunks on the bucket list.
1512 1.3 pk */
1513 1.3 pk n = pp->pr_itemsperpage;
1514 1.20 thorpej pp->pr_nitems += n;
1515 1.3 pk
1516 1.242 maxv if (pp->pr_roflags & PR_USEBMAP) {
1517 1.234 maxv pr_item_bitmap_init(pp, ph);
1518 1.97 yamt } else {
1519 1.97 yamt while (n--) {
1520 1.97 yamt pi = (struct pool_item *)cp;
1521 1.78 thorpej
1522 1.238 maxv KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1523 1.3 pk
1524 1.97 yamt /* Insert on page list */
1525 1.102 chs LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1526 1.229 maxv #ifdef POOL_CHECK_MAGIC
1527 1.97 yamt pi->pi_magic = PI_MAGIC;
1528 1.3 pk #endif
1529 1.128 christos cp = (char *)cp + pp->pr_size;
1530 1.125 ad
1531 1.238 maxv KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1532 1.97 yamt }
1533 1.3 pk }
1534 1.3 pk
1535 1.3 pk /*
1536 1.3 pk * If the pool was depleted, point at the new page.
1537 1.3 pk */
1538 1.3 pk if (pp->pr_curpage == NULL)
1539 1.3 pk pp->pr_curpage = ph;
1540 1.3 pk
1541 1.3 pk if (++pp->pr_npages > pp->pr_hiwat)
1542 1.3 pk pp->pr_hiwat = pp->pr_npages;
1543 1.3 pk }
1544 1.3 pk
1545 1.20 thorpej /*
1546 1.52 thorpej * Used by pool_get() when nitems drops below the low water mark. This
1547 1.88 chs * is used to catch up pr_nitems with the low water mark.
1548 1.20 thorpej *
1549 1.21 thorpej * Note 1, we never wait for memory here, we let the caller decide what to do.
1550 1.20 thorpej *
1551 1.73 thorpej * Note 2, we must be called with the pool already locked, and we return
1552 1.20 thorpej * with it locked.
1553 1.20 thorpej */
1554 1.20 thorpej static int
1555 1.42 thorpej pool_catchup(struct pool *pp)
1556 1.20 thorpej {
1557 1.20 thorpej int error = 0;
1558 1.20 thorpej
1559 1.54 thorpej while (POOL_NEEDS_CATCHUP(pp)) {
1560 1.113 yamt error = pool_grow(pp, PR_NOWAIT);
1561 1.113 yamt if (error) {
1562 1.214 christos if (error == ERESTART)
1563 1.214 christos continue;
1564 1.20 thorpej break;
1565 1.20 thorpej }
1566 1.20 thorpej }
1567 1.113 yamt return error;
1568 1.20 thorpej }
1569 1.20 thorpej
1570 1.88 chs static void
1571 1.88 chs pool_update_curpage(struct pool *pp)
1572 1.88 chs {
1573 1.88 chs
1574 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1575 1.88 chs if (pp->pr_curpage == NULL) {
1576 1.88 chs pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1577 1.88 chs }
1578 1.168 yamt KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1579 1.168 yamt (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1580 1.88 chs }
1581 1.88 chs
1582 1.3 pk void
1583 1.42 thorpej pool_setlowat(struct pool *pp, int n)
1584 1.3 pk {
1585 1.15 pk
1586 1.134 ad mutex_enter(&pp->pr_lock);
1587 1.3 pk pp->pr_minitems = n;
1588 1.20 thorpej
1589 1.20 thorpej /* Make sure we're caught up with the newly-set low water mark. */
1590 1.75 simonb if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1591 1.20 thorpej /*
1592 1.20 thorpej * XXX: Should we log a warning? Should we set up a timeout
1593 1.20 thorpej * to try again in a second or so? The latter could break
1594 1.20 thorpej * a caller's assumptions about interrupt protection, etc.
1595 1.20 thorpej */
1596 1.20 thorpej }
1597 1.21 thorpej
1598 1.134 ad mutex_exit(&pp->pr_lock);
1599 1.3 pk }
1600 1.3 pk
1601 1.3 pk void
1602 1.42 thorpej pool_sethiwat(struct pool *pp, int n)
1603 1.3 pk {
1604 1.15 pk
1605 1.134 ad mutex_enter(&pp->pr_lock);
1606 1.21 thorpej
1607 1.267 chs pp->pr_maxitems = n;
1608 1.21 thorpej
1609 1.134 ad mutex_exit(&pp->pr_lock);
1610 1.3 pk }
1611 1.3 pk
1612 1.20 thorpej void
1613 1.42 thorpej pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1614 1.20 thorpej {
1615 1.20 thorpej
1616 1.134 ad mutex_enter(&pp->pr_lock);
1617 1.20 thorpej
1618 1.20 thorpej pp->pr_hardlimit = n;
1619 1.20 thorpej pp->pr_hardlimit_warning = warnmess;
1620 1.31 thorpej pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1621 1.31 thorpej pp->pr_hardlimit_warning_last.tv_sec = 0;
1622 1.31 thorpej pp->pr_hardlimit_warning_last.tv_usec = 0;
1623 1.20 thorpej
1624 1.267 chs pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1625 1.21 thorpej
1626 1.134 ad mutex_exit(&pp->pr_lock);
1627 1.20 thorpej }
1628 1.3 pk
1629 1.277 simonb unsigned int
1630 1.277 simonb pool_nget(struct pool *pp)
1631 1.277 simonb {
1632 1.277 simonb
1633 1.277 simonb return pp->pr_nget;
1634 1.277 simonb }
1635 1.277 simonb
1636 1.277 simonb unsigned int
1637 1.277 simonb pool_nput(struct pool *pp)
1638 1.277 simonb {
1639 1.277 simonb
1640 1.277 simonb return pp->pr_nput;
1641 1.277 simonb }
1642 1.277 simonb
1643 1.3 pk /*
1644 1.3 pk * Release all complete pages that have not been used recently.
1645 1.184 rmind *
1646 1.197 jym * Must not be called from interrupt context.
1647 1.3 pk */
1648 1.66 thorpej int
1649 1.56 sommerfe pool_reclaim(struct pool *pp)
1650 1.3 pk {
1651 1.3 pk struct pool_item_header *ph, *phnext;
1652 1.61 chs struct pool_pagelist pq;
1653 1.281 riastrad struct pool_cache *pc;
1654 1.151 yamt uint32_t curtime;
1655 1.134 ad bool klock;
1656 1.134 ad int rv;
1657 1.3 pk
1658 1.197 jym KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1659 1.184 rmind
1660 1.68 thorpej if (pp->pr_drain_hook != NULL) {
1661 1.68 thorpej /*
1662 1.68 thorpej * The drain hook must be called with the pool unlocked.
1663 1.68 thorpej */
1664 1.68 thorpej (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1665 1.68 thorpej }
1666 1.68 thorpej
1667 1.134 ad /*
1668 1.157 ad * XXXSMP Because we do not want to cause non-MPSAFE code
1669 1.157 ad * to block.
1670 1.134 ad */
1671 1.134 ad if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1672 1.134 ad pp->pr_ipl == IPL_SOFTSERIAL) {
1673 1.134 ad KERNEL_LOCK(1, NULL);
1674 1.134 ad klock = true;
1675 1.134 ad } else
1676 1.134 ad klock = false;
1677 1.134 ad
1678 1.134 ad /* Reclaim items from the pool's cache (if any). */
1679 1.281 riastrad if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL)
1680 1.281 riastrad pool_cache_invalidate(pc);
1681 1.134 ad
1682 1.134 ad if (mutex_tryenter(&pp->pr_lock) == 0) {
1683 1.134 ad if (klock) {
1684 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1685 1.134 ad }
1686 1.236 maxv return 0;
1687 1.134 ad }
1688 1.68 thorpej
1689 1.88 chs LIST_INIT(&pq);
1690 1.43 thorpej
1691 1.151 yamt curtime = time_uptime;
1692 1.21 thorpej
1693 1.88 chs for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1694 1.88 chs phnext = LIST_NEXT(ph, ph_pagelist);
1695 1.3 pk
1696 1.3 pk /* Check our minimum page claim */
1697 1.3 pk if (pp->pr_npages <= pp->pr_minpages)
1698 1.3 pk break;
1699 1.3 pk
1700 1.88 chs KASSERT(ph->ph_nmissing == 0);
1701 1.191 para if (curtime - ph->ph_time < pool_inactive_time)
1702 1.88 chs continue;
1703 1.21 thorpej
1704 1.88 chs /*
1705 1.267 chs * If freeing this page would put us below the minimum free items
1706 1.267 chs * or the minimum pages, stop now.
1707 1.88 chs */
1708 1.267 chs if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1709 1.267 chs pp->pr_npages - 1 < pp->pr_minpages)
1710 1.88 chs break;
1711 1.21 thorpej
1712 1.88 chs pr_rmpage(pp, ph, &pq);
1713 1.3 pk }
1714 1.3 pk
1715 1.134 ad mutex_exit(&pp->pr_lock);
1716 1.134 ad
1717 1.134 ad if (LIST_EMPTY(&pq))
1718 1.134 ad rv = 0;
1719 1.134 ad else {
1720 1.134 ad pr_pagelist_free(pp, &pq);
1721 1.134 ad rv = 1;
1722 1.134 ad }
1723 1.134 ad
1724 1.134 ad if (klock) {
1725 1.134 ad KERNEL_UNLOCK_ONE(NULL);
1726 1.134 ad }
1727 1.66 thorpej
1728 1.236 maxv return rv;
1729 1.3 pk }
1730 1.3 pk
1731 1.3 pk /*
1732 1.197 jym * Drain pools, one at a time. The drained pool is returned within ppp.
1733 1.131 ad *
1734 1.134 ad * Note, must never be called from interrupt context.
1735 1.3 pk */
1736 1.197 jym bool
1737 1.197 jym pool_drain(struct pool **ppp)
1738 1.3 pk {
1739 1.197 jym bool reclaimed;
1740 1.3 pk struct pool *pp;
1741 1.134 ad
1742 1.145 ad KASSERT(!TAILQ_EMPTY(&pool_head));
1743 1.3 pk
1744 1.61 chs pp = NULL;
1745 1.134 ad
1746 1.134 ad /* Find next pool to drain, and add a reference. */
1747 1.134 ad mutex_enter(&pool_head_lock);
1748 1.134 ad do {
1749 1.134 ad if (drainpp == NULL) {
1750 1.145 ad drainpp = TAILQ_FIRST(&pool_head);
1751 1.134 ad }
1752 1.134 ad if (drainpp != NULL) {
1753 1.134 ad pp = drainpp;
1754 1.145 ad drainpp = TAILQ_NEXT(pp, pr_poollist);
1755 1.134 ad }
1756 1.134 ad /*
1757 1.134 ad * Skip completely idle pools. We depend on at least
1758 1.134 ad * one pool in the system being active.
1759 1.134 ad */
1760 1.134 ad } while (pp == NULL || pp->pr_npages == 0);
1761 1.134 ad pp->pr_refcnt++;
1762 1.134 ad mutex_exit(&pool_head_lock);
1763 1.134 ad
1764 1.134 ad /* Drain the cache (if any) and pool.. */
1765 1.186 pooka reclaimed = pool_reclaim(pp);
1766 1.134 ad
1767 1.134 ad /* Finally, unlock the pool. */
1768 1.134 ad mutex_enter(&pool_head_lock);
1769 1.134 ad pp->pr_refcnt--;
1770 1.134 ad cv_broadcast(&pool_busy);
1771 1.134 ad mutex_exit(&pool_head_lock);
1772 1.186 pooka
1773 1.197 jym if (ppp != NULL)
1774 1.197 jym *ppp = pp;
1775 1.197 jym
1776 1.186 pooka return reclaimed;
1777 1.3 pk }
1778 1.3 pk
1779 1.3 pk /*
1780 1.217 mrg * Calculate the total number of pages consumed by pools.
1781 1.217 mrg */
1782 1.217 mrg int
1783 1.217 mrg pool_totalpages(void)
1784 1.217 mrg {
1785 1.250 skrll
1786 1.250 skrll mutex_enter(&pool_head_lock);
1787 1.250 skrll int pages = pool_totalpages_locked();
1788 1.250 skrll mutex_exit(&pool_head_lock);
1789 1.250 skrll
1790 1.250 skrll return pages;
1791 1.250 skrll }
1792 1.250 skrll
1793 1.250 skrll int
1794 1.250 skrll pool_totalpages_locked(void)
1795 1.250 skrll {
1796 1.217 mrg struct pool *pp;
1797 1.218 mrg uint64_t total = 0;
1798 1.217 mrg
1799 1.218 mrg TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1800 1.285 simonb uint64_t bytes =
1801 1.285 simonb (uint64_t)pp->pr_npages * pp->pr_alloc->pa_pagesz;
1802 1.218 mrg
1803 1.218 mrg if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1804 1.285 simonb bytes -= ((uint64_t)pp->pr_nout * pp->pr_size);
1805 1.218 mrg total += bytes;
1806 1.218 mrg }
1807 1.217 mrg
1808 1.218 mrg return atop(total);
1809 1.217 mrg }
1810 1.217 mrg
1811 1.217 mrg /*
1812 1.3 pk * Diagnostic helpers.
1813 1.3 pk */
1814 1.21 thorpej
1815 1.25 thorpej void
1816 1.108 yamt pool_printall(const char *modif, void (*pr)(const char *, ...))
1817 1.108 yamt {
1818 1.108 yamt struct pool *pp;
1819 1.108 yamt
1820 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1821 1.108 yamt pool_printit(pp, modif, pr);
1822 1.108 yamt }
1823 1.108 yamt }
1824 1.108 yamt
1825 1.108 yamt void
1826 1.42 thorpej pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1827 1.25 thorpej {
1828 1.25 thorpej
1829 1.25 thorpej if (pp == NULL) {
1830 1.25 thorpej (*pr)("Must specify a pool to print.\n");
1831 1.25 thorpej return;
1832 1.25 thorpej }
1833 1.25 thorpej
1834 1.25 thorpej pool_print1(pp, modif, pr);
1835 1.25 thorpej }
1836 1.25 thorpej
1837 1.21 thorpej static void
1838 1.124 yamt pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1839 1.97 yamt void (*pr)(const char *, ...))
1840 1.88 chs {
1841 1.88 chs struct pool_item_header *ph;
1842 1.88 chs
1843 1.88 chs LIST_FOREACH(ph, pl, ph_pagelist) {
1844 1.151 yamt (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1845 1.151 yamt ph->ph_page, ph->ph_nmissing, ph->ph_time);
1846 1.229 maxv #ifdef POOL_CHECK_MAGIC
1847 1.229 maxv struct pool_item *pi;
1848 1.242 maxv if (!(pp->pr_roflags & PR_USEBMAP)) {
1849 1.102 chs LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1850 1.97 yamt if (pi->pi_magic != PI_MAGIC) {
1851 1.97 yamt (*pr)("\t\t\titem %p, magic 0x%x\n",
1852 1.97 yamt pi, pi->pi_magic);
1853 1.97 yamt }
1854 1.88 chs }
1855 1.88 chs }
1856 1.88 chs #endif
1857 1.88 chs }
1858 1.88 chs }
1859 1.88 chs
1860 1.88 chs static void
1861 1.42 thorpej pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1862 1.3 pk {
1863 1.25 thorpej struct pool_item_header *ph;
1864 1.134 ad pool_cache_t pc;
1865 1.134 ad pcg_t *pcg;
1866 1.134 ad pool_cache_cpu_t *cc;
1867 1.271 ad uint64_t cpuhit, cpumiss, pchit, pcmiss;
1868 1.271 ad uint32_t nfull;
1869 1.275 mrg int i;
1870 1.275 mrg bool print_log = false, print_pagelist = false, print_cache = false;
1871 1.275 mrg bool print_short = false, skip_empty = false;
1872 1.25 thorpej char c;
1873 1.25 thorpej
1874 1.25 thorpej while ((c = *modif++) != '\0') {
1875 1.25 thorpej if (c == 'l')
1876 1.275 mrg print_log = true;
1877 1.25 thorpej if (c == 'p')
1878 1.275 mrg print_pagelist = true;
1879 1.44 thorpej if (c == 'c')
1880 1.275 mrg print_cache = true;
1881 1.275 mrg if (c == 's')
1882 1.275 mrg print_short = true;
1883 1.275 mrg if (c == 'S')
1884 1.275 mrg skip_empty = true;
1885 1.25 thorpej }
1886 1.25 thorpej
1887 1.275 mrg if (skip_empty && pp->pr_nget == 0)
1888 1.275 mrg return;
1889 1.275 mrg
1890 1.281 riastrad if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
1891 1.275 mrg (*pr)("POOLCACHE");
1892 1.134 ad } else {
1893 1.134 ad (*pr)("POOL");
1894 1.134 ad }
1895 1.134 ad
1896 1.275 mrg /* Single line output. */
1897 1.275 mrg if (print_short) {
1898 1.285.4.2 martin (*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u:%zu\n",
1899 1.275 mrg pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages,
1900 1.275 mrg pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput,
1901 1.285.4.2 martin pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle,
1902 1.285.4.2 martin (size_t)pp->pr_npagealloc * pp->pr_alloc->pa_pagesz);
1903 1.275 mrg return;
1904 1.275 mrg }
1905 1.275 mrg
1906 1.285.4.2 martin (*pr)(" %s: itemsize %u, totalmem %zu align %u, ioff %u, roflags 0x%08x\n",
1907 1.285.4.2 martin pp->pr_wchan, pp->pr_size,
1908 1.285.4.2 martin (size_t)pp->pr_npagealloc * pp->pr_alloc->pa_pagesz,
1909 1.285.4.2 martin pp->pr_align, pp->pr_itemoffset, pp->pr_roflags);
1910 1.275 mrg (*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc);
1911 1.25 thorpej (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1912 1.25 thorpej pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1913 1.25 thorpej (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1914 1.25 thorpej pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1915 1.25 thorpej
1916 1.134 ad (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1917 1.25 thorpej pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1918 1.25 thorpej (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1919 1.25 thorpej pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1920 1.25 thorpej
1921 1.275 mrg if (!print_pagelist)
1922 1.25 thorpej goto skip_pagelist;
1923 1.25 thorpej
1924 1.88 chs if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1925 1.88 chs (*pr)("\n\tempty page list:\n");
1926 1.97 yamt pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1927 1.88 chs if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1928 1.88 chs (*pr)("\n\tfull page list:\n");
1929 1.97 yamt pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1930 1.88 chs if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1931 1.88 chs (*pr)("\n\tpartial-page list:\n");
1932 1.97 yamt pool_print_pagelist(pp, &pp->pr_partpages, pr);
1933 1.88 chs
1934 1.25 thorpej if (pp->pr_curpage == NULL)
1935 1.25 thorpej (*pr)("\tno current page\n");
1936 1.25 thorpej else
1937 1.25 thorpej (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1938 1.25 thorpej
1939 1.25 thorpej skip_pagelist:
1940 1.275 mrg if (print_log)
1941 1.25 thorpej goto skip_log;
1942 1.25 thorpej
1943 1.25 thorpej (*pr)("\n");
1944 1.3 pk
1945 1.25 thorpej skip_log:
1946 1.44 thorpej
1947 1.102 chs #define PR_GROUPLIST(pcg) \
1948 1.102 chs (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1949 1.142 ad for (i = 0; i < pcg->pcg_size; i++) { \
1950 1.102 chs if (pcg->pcg_objects[i].pcgo_pa != \
1951 1.102 chs POOL_PADDR_INVALID) { \
1952 1.102 chs (*pr)("\t\t\t%p, 0x%llx\n", \
1953 1.102 chs pcg->pcg_objects[i].pcgo_va, \
1954 1.102 chs (unsigned long long) \
1955 1.102 chs pcg->pcg_objects[i].pcgo_pa); \
1956 1.102 chs } else { \
1957 1.102 chs (*pr)("\t\t\t%p\n", \
1958 1.102 chs pcg->pcg_objects[i].pcgo_va); \
1959 1.102 chs } \
1960 1.102 chs }
1961 1.102 chs
1962 1.134 ad if (pc != NULL) {
1963 1.134 ad cpuhit = 0;
1964 1.134 ad cpumiss = 0;
1965 1.271 ad pcmiss = 0;
1966 1.271 ad nfull = 0;
1967 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1968 1.134 ad if ((cc = pc->pc_cpus[i]) == NULL)
1969 1.134 ad continue;
1970 1.134 ad cpuhit += cc->cc_hits;
1971 1.134 ad cpumiss += cc->cc_misses;
1972 1.271 ad pcmiss += cc->cc_pcmisses;
1973 1.271 ad nfull += cc->cc_nfull;
1974 1.134 ad }
1975 1.271 ad pchit = cpumiss - pcmiss;
1976 1.134 ad (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1977 1.271 ad (*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
1978 1.271 ad (*pr)("\tcache layer full groups %u\n", nfull);
1979 1.134 ad if (print_cache) {
1980 1.134 ad (*pr)("\tfull cache groups:\n");
1981 1.134 ad for (pcg = pc->pc_fullgroups; pcg != NULL;
1982 1.134 ad pcg = pcg->pcg_next) {
1983 1.134 ad PR_GROUPLIST(pcg);
1984 1.134 ad }
1985 1.103 chs }
1986 1.44 thorpej }
1987 1.102 chs #undef PR_GROUPLIST
1988 1.88 chs }
1989 1.88 chs
1990 1.88 chs static int
1991 1.88 chs pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1992 1.88 chs {
1993 1.88 chs struct pool_item *pi;
1994 1.128 christos void *page;
1995 1.88 chs int n;
1996 1.88 chs
1997 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1998 1.253 maxv page = POOL_OBJ_TO_PAGE(pp, ph);
1999 1.121 yamt if (page != ph->ph_page &&
2000 1.121 yamt (pp->pr_roflags & PR_PHINPAGE) != 0) {
2001 1.121 yamt if (label != NULL)
2002 1.121 yamt printf("%s: ", label);
2003 1.121 yamt printf("pool(%p:%s): page inconsistency: page %p;"
2004 1.121 yamt " at page head addr %p (p %p)\n", pp,
2005 1.121 yamt pp->pr_wchan, ph->ph_page,
2006 1.121 yamt ph, page);
2007 1.121 yamt return 1;
2008 1.121 yamt }
2009 1.88 chs }
2010 1.3 pk
2011 1.242 maxv if ((pp->pr_roflags & PR_USEBMAP) != 0)
2012 1.97 yamt return 0;
2013 1.97 yamt
2014 1.102 chs for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
2015 1.88 chs pi != NULL;
2016 1.102 chs pi = LIST_NEXT(pi,pi_list), n++) {
2017 1.88 chs
2018 1.229 maxv #ifdef POOL_CHECK_MAGIC
2019 1.88 chs if (pi->pi_magic != PI_MAGIC) {
2020 1.88 chs if (label != NULL)
2021 1.88 chs printf("%s: ", label);
2022 1.88 chs printf("pool(%s): free list modified: magic=%x;"
2023 1.121 yamt " page %p; item ordinal %d; addr %p\n",
2024 1.88 chs pp->pr_wchan, pi->pi_magic, ph->ph_page,
2025 1.121 yamt n, pi);
2026 1.88 chs panic("pool");
2027 1.88 chs }
2028 1.88 chs #endif
2029 1.121 yamt if ((pp->pr_roflags & PR_NOALIGN) != 0) {
2030 1.121 yamt continue;
2031 1.121 yamt }
2032 1.253 maxv page = POOL_OBJ_TO_PAGE(pp, pi);
2033 1.88 chs if (page == ph->ph_page)
2034 1.88 chs continue;
2035 1.88 chs
2036 1.88 chs if (label != NULL)
2037 1.88 chs printf("%s: ", label);
2038 1.88 chs printf("pool(%p:%s): page inconsistency: page %p;"
2039 1.88 chs " item ordinal %d; addr %p (p %p)\n", pp,
2040 1.88 chs pp->pr_wchan, ph->ph_page,
2041 1.88 chs n, pi, page);
2042 1.88 chs return 1;
2043 1.88 chs }
2044 1.88 chs return 0;
2045 1.3 pk }
2046 1.3 pk
2047 1.88 chs
2048 1.3 pk int
2049 1.42 thorpej pool_chk(struct pool *pp, const char *label)
2050 1.3 pk {
2051 1.3 pk struct pool_item_header *ph;
2052 1.3 pk int r = 0;
2053 1.3 pk
2054 1.134 ad mutex_enter(&pp->pr_lock);
2055 1.88 chs LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2056 1.88 chs r = pool_chk_page(pp, label, ph);
2057 1.88 chs if (r) {
2058 1.88 chs goto out;
2059 1.88 chs }
2060 1.88 chs }
2061 1.88 chs LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2062 1.88 chs r = pool_chk_page(pp, label, ph);
2063 1.88 chs if (r) {
2064 1.3 pk goto out;
2065 1.3 pk }
2066 1.88 chs }
2067 1.88 chs LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2068 1.88 chs r = pool_chk_page(pp, label, ph);
2069 1.88 chs if (r) {
2070 1.3 pk goto out;
2071 1.3 pk }
2072 1.3 pk }
2073 1.88 chs
2074 1.3 pk out:
2075 1.134 ad mutex_exit(&pp->pr_lock);
2076 1.236 maxv return r;
2077 1.43 thorpej }
2078 1.43 thorpej
2079 1.43 thorpej /*
2080 1.43 thorpej * pool_cache_init:
2081 1.43 thorpej *
2082 1.43 thorpej * Initialize a pool cache.
2083 1.134 ad */
2084 1.134 ad pool_cache_t
2085 1.134 ad pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2086 1.134 ad const char *wchan, struct pool_allocator *palloc, int ipl,
2087 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2088 1.134 ad {
2089 1.134 ad pool_cache_t pc;
2090 1.134 ad
2091 1.134 ad pc = pool_get(&cache_pool, PR_WAITOK);
2092 1.134 ad if (pc == NULL)
2093 1.134 ad return NULL;
2094 1.134 ad
2095 1.134 ad pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2096 1.134 ad palloc, ipl, ctor, dtor, arg);
2097 1.134 ad
2098 1.134 ad return pc;
2099 1.134 ad }
2100 1.134 ad
2101 1.134 ad /*
2102 1.134 ad * pool_cache_bootstrap:
2103 1.43 thorpej *
2104 1.134 ad * Kernel-private version of pool_cache_init(). The caller
2105 1.134 ad * provides initial storage.
2106 1.43 thorpej */
2107 1.43 thorpej void
2108 1.134 ad pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2109 1.134 ad u_int align_offset, u_int flags, const char *wchan,
2110 1.134 ad struct pool_allocator *palloc, int ipl,
2111 1.134 ad int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2112 1.43 thorpej void *arg)
2113 1.43 thorpej {
2114 1.134 ad CPU_INFO_ITERATOR cii;
2115 1.145 ad pool_cache_t pc1;
2116 1.134 ad struct cpu_info *ci;
2117 1.134 ad struct pool *pp;
2118 1.280 riastrad unsigned int ppflags;
2119 1.134 ad
2120 1.134 ad pp = &pc->pc_pool;
2121 1.208 chs if (palloc == NULL && ipl == IPL_NONE) {
2122 1.208 chs if (size > PAGE_SIZE) {
2123 1.208 chs int bigidx = pool_bigidx(size);
2124 1.208 chs
2125 1.208 chs palloc = &pool_allocator_big[bigidx];
2126 1.252 maxv flags |= PR_NOALIGN;
2127 1.208 chs } else
2128 1.208 chs palloc = &pool_allocator_nointr;
2129 1.208 chs }
2130 1.43 thorpej
2131 1.280 riastrad ppflags = flags;
2132 1.134 ad if (ctor == NULL) {
2133 1.261 christos ctor = NO_CTOR;
2134 1.134 ad }
2135 1.134 ad if (dtor == NULL) {
2136 1.261 christos dtor = NO_DTOR;
2137 1.279 thorpej } else {
2138 1.279 thorpej /*
2139 1.279 thorpej * If we have a destructor, then the pool layer does not
2140 1.279 thorpej * need to worry about PR_PSERIALIZE.
2141 1.279 thorpej */
2142 1.279 thorpej ppflags &= ~PR_PSERIALIZE;
2143 1.134 ad }
2144 1.43 thorpej
2145 1.279 thorpej pool_init(pp, size, align, align_offset, ppflags, wchan, palloc, ipl);
2146 1.279 thorpej
2147 1.134 ad pc->pc_fullgroups = NULL;
2148 1.134 ad pc->pc_partgroups = NULL;
2149 1.43 thorpej pc->pc_ctor = ctor;
2150 1.43 thorpej pc->pc_dtor = dtor;
2151 1.43 thorpej pc->pc_arg = arg;
2152 1.134 ad pc->pc_refcnt = 0;
2153 1.279 thorpej pc->pc_roflags = flags;
2154 1.136 yamt pc->pc_freecheck = NULL;
2155 1.134 ad
2156 1.142 ad if ((flags & PR_LARGECACHE) != 0) {
2157 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2158 1.163 ad pc->pc_pcgpool = &pcg_large_pool;
2159 1.271 ad pc->pc_pcgcache = &pcg_large_cache;
2160 1.142 ad } else {
2161 1.142 ad pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2162 1.163 ad pc->pc_pcgpool = &pcg_normal_pool;
2163 1.271 ad pc->pc_pcgcache = &pcg_normal_cache;
2164 1.142 ad }
2165 1.142 ad
2166 1.134 ad /* Allocate per-CPU caches. */
2167 1.134 ad memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2168 1.134 ad pc->pc_ncpu = 0;
2169 1.139 ad if (ncpu < 2) {
2170 1.137 ad /* XXX For sparc: boot CPU is not attached yet. */
2171 1.137 ad pool_cache_cpu_init1(curcpu(), pc);
2172 1.137 ad } else {
2173 1.137 ad for (CPU_INFO_FOREACH(cii, ci)) {
2174 1.137 ad pool_cache_cpu_init1(ci, pc);
2175 1.137 ad }
2176 1.134 ad }
2177 1.145 ad
2178 1.145 ad /* Add to list of all pools. */
2179 1.145 ad if (__predict_true(!cold))
2180 1.134 ad mutex_enter(&pool_head_lock);
2181 1.145 ad TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2182 1.145 ad if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2183 1.145 ad break;
2184 1.145 ad }
2185 1.145 ad if (pc1 == NULL)
2186 1.145 ad TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2187 1.145 ad else
2188 1.145 ad TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2189 1.145 ad if (__predict_true(!cold))
2190 1.134 ad mutex_exit(&pool_head_lock);
2191 1.145 ad
2192 1.281 riastrad atomic_store_release(&pp->pr_cache, pc);
2193 1.43 thorpej }
2194 1.43 thorpej
2195 1.43 thorpej /*
2196 1.43 thorpej * pool_cache_destroy:
2197 1.43 thorpej *
2198 1.43 thorpej * Destroy a pool cache.
2199 1.43 thorpej */
2200 1.43 thorpej void
2201 1.134 ad pool_cache_destroy(pool_cache_t pc)
2202 1.43 thorpej {
2203 1.191 para
2204 1.191 para pool_cache_bootstrap_destroy(pc);
2205 1.191 para pool_put(&cache_pool, pc);
2206 1.191 para }
2207 1.191 para
2208 1.191 para /*
2209 1.191 para * pool_cache_bootstrap_destroy:
2210 1.191 para *
2211 1.191 para * Destroy a pool cache.
2212 1.191 para */
2213 1.191 para void
2214 1.191 para pool_cache_bootstrap_destroy(pool_cache_t pc)
2215 1.191 para {
2216 1.134 ad struct pool *pp = &pc->pc_pool;
2217 1.175 jym u_int i;
2218 1.134 ad
2219 1.134 ad /* Remove it from the global list. */
2220 1.134 ad mutex_enter(&pool_head_lock);
2221 1.134 ad while (pc->pc_refcnt != 0)
2222 1.134 ad cv_wait(&pool_busy, &pool_head_lock);
2223 1.145 ad TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2224 1.134 ad mutex_exit(&pool_head_lock);
2225 1.43 thorpej
2226 1.43 thorpej /* First, invalidate the entire cache. */
2227 1.43 thorpej pool_cache_invalidate(pc);
2228 1.43 thorpej
2229 1.134 ad /* Disassociate it from the pool. */
2230 1.134 ad mutex_enter(&pp->pr_lock);
2231 1.281 riastrad atomic_store_relaxed(&pp->pr_cache, NULL);
2232 1.134 ad mutex_exit(&pp->pr_lock);
2233 1.134 ad
2234 1.134 ad /* Destroy per-CPU data */
2235 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2236 1.175 jym pool_cache_invalidate_cpu(pc, i);
2237 1.134 ad
2238 1.134 ad /* Finally, destroy it. */
2239 1.134 ad pool_destroy(pp);
2240 1.134 ad }
2241 1.134 ad
2242 1.134 ad /*
2243 1.134 ad * pool_cache_cpu_init1:
2244 1.134 ad *
2245 1.134 ad * Called for each pool_cache whenever a new CPU is attached.
2246 1.134 ad */
2247 1.134 ad static void
2248 1.134 ad pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2249 1.134 ad {
2250 1.134 ad pool_cache_cpu_t *cc;
2251 1.137 ad int index;
2252 1.134 ad
2253 1.137 ad index = ci->ci_index;
2254 1.137 ad
2255 1.183 ad KASSERT(index < __arraycount(pc->pc_cpus));
2256 1.134 ad
2257 1.137 ad if ((cc = pc->pc_cpus[index]) != NULL) {
2258 1.134 ad return;
2259 1.134 ad }
2260 1.134 ad
2261 1.134 ad /*
2262 1.134 ad * The first CPU is 'free'. This needs to be the case for
2263 1.134 ad * bootstrap - we may not be able to allocate yet.
2264 1.134 ad */
2265 1.134 ad if (pc->pc_ncpu == 0) {
2266 1.134 ad cc = &pc->pc_cpu0;
2267 1.134 ad pc->pc_ncpu = 1;
2268 1.134 ad } else {
2269 1.134 ad pc->pc_ncpu++;
2270 1.134 ad cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2271 1.134 ad }
2272 1.134 ad
2273 1.271 ad cc->cc_current = __UNCONST(&pcg_dummy);
2274 1.271 ad cc->cc_previous = __UNCONST(&pcg_dummy);
2275 1.271 ad cc->cc_pcgcache = pc->pc_pcgcache;
2276 1.134 ad cc->cc_hits = 0;
2277 1.134 ad cc->cc_misses = 0;
2278 1.271 ad cc->cc_pcmisses = 0;
2279 1.271 ad cc->cc_contended = 0;
2280 1.271 ad cc->cc_nfull = 0;
2281 1.271 ad cc->cc_npart = 0;
2282 1.134 ad
2283 1.137 ad pc->pc_cpus[index] = cc;
2284 1.43 thorpej }
2285 1.43 thorpej
2286 1.134 ad /*
2287 1.134 ad * pool_cache_cpu_init:
2288 1.134 ad *
2289 1.134 ad * Called whenever a new CPU is attached.
2290 1.134 ad */
2291 1.134 ad void
2292 1.134 ad pool_cache_cpu_init(struct cpu_info *ci)
2293 1.43 thorpej {
2294 1.134 ad pool_cache_t pc;
2295 1.134 ad
2296 1.134 ad mutex_enter(&pool_head_lock);
2297 1.145 ad TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2298 1.134 ad pc->pc_refcnt++;
2299 1.134 ad mutex_exit(&pool_head_lock);
2300 1.43 thorpej
2301 1.134 ad pool_cache_cpu_init1(ci, pc);
2302 1.43 thorpej
2303 1.134 ad mutex_enter(&pool_head_lock);
2304 1.134 ad pc->pc_refcnt--;
2305 1.134 ad cv_broadcast(&pool_busy);
2306 1.134 ad }
2307 1.134 ad mutex_exit(&pool_head_lock);
2308 1.43 thorpej }
2309 1.43 thorpej
2310 1.134 ad /*
2311 1.134 ad * pool_cache_reclaim:
2312 1.134 ad *
2313 1.134 ad * Reclaim memory from a pool cache.
2314 1.134 ad */
2315 1.134 ad bool
2316 1.134 ad pool_cache_reclaim(pool_cache_t pc)
2317 1.43 thorpej {
2318 1.43 thorpej
2319 1.134 ad return pool_reclaim(&pc->pc_pool);
2320 1.134 ad }
2321 1.43 thorpej
2322 1.278 thorpej static inline void
2323 1.278 thorpej pool_cache_pre_destruct(pool_cache_t pc)
2324 1.278 thorpej {
2325 1.278 thorpej /*
2326 1.279 thorpej * Perform a passive serialization barrier before destructing
2327 1.279 thorpej * a batch of one or more objects.
2328 1.278 thorpej */
2329 1.279 thorpej if (__predict_false(pc_has_pser(pc))) {
2330 1.279 thorpej pool_barrier();
2331 1.278 thorpej }
2332 1.278 thorpej }
2333 1.278 thorpej
2334 1.136 yamt static void
2335 1.136 yamt pool_cache_destruct_object1(pool_cache_t pc, void *object)
2336 1.136 yamt {
2337 1.136 yamt (*pc->pc_dtor)(pc->pc_arg, object);
2338 1.136 yamt pool_put(&pc->pc_pool, object);
2339 1.136 yamt }
2340 1.136 yamt
2341 1.134 ad /*
2342 1.134 ad * pool_cache_destruct_object:
2343 1.134 ad *
2344 1.134 ad * Force destruction of an object and its release back into
2345 1.134 ad * the pool.
2346 1.134 ad */
2347 1.134 ad void
2348 1.134 ad pool_cache_destruct_object(pool_cache_t pc, void *object)
2349 1.134 ad {
2350 1.134 ad
2351 1.136 yamt FREECHECK_IN(&pc->pc_freecheck, object);
2352 1.136 yamt
2353 1.278 thorpej pool_cache_pre_destruct(pc);
2354 1.136 yamt pool_cache_destruct_object1(pc, object);
2355 1.43 thorpej }
2356 1.43 thorpej
2357 1.134 ad /*
2358 1.134 ad * pool_cache_invalidate_groups:
2359 1.134 ad *
2360 1.271 ad * Invalidate a chain of groups and destruct all objects. Return the
2361 1.271 ad * number of groups that were invalidated.
2362 1.134 ad */
2363 1.271 ad static int
2364 1.134 ad pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2365 1.102 chs {
2366 1.134 ad void *object;
2367 1.134 ad pcg_t *next;
2368 1.271 ad int i, n;
2369 1.134 ad
2370 1.278 thorpej if (pcg == NULL) {
2371 1.278 thorpej return 0;
2372 1.278 thorpej }
2373 1.278 thorpej
2374 1.278 thorpej pool_cache_pre_destruct(pc);
2375 1.278 thorpej
2376 1.271 ad for (n = 0; pcg != NULL; pcg = next, n++) {
2377 1.134 ad next = pcg->pcg_next;
2378 1.134 ad
2379 1.134 ad for (i = 0; i < pcg->pcg_avail; i++) {
2380 1.134 ad object = pcg->pcg_objects[i].pcgo_va;
2381 1.136 yamt pool_cache_destruct_object1(pc, object);
2382 1.134 ad }
2383 1.102 chs
2384 1.142 ad if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2385 1.142 ad pool_put(&pcg_large_pool, pcg);
2386 1.142 ad } else {
2387 1.142 ad KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2388 1.142 ad pool_put(&pcg_normal_pool, pcg);
2389 1.142 ad }
2390 1.102 chs }
2391 1.271 ad return n;
2392 1.102 chs }
2393 1.102 chs
2394 1.43 thorpej /*
2395 1.134 ad * pool_cache_invalidate:
2396 1.43 thorpej *
2397 1.134 ad * Invalidate a pool cache (destruct and release all of the
2398 1.134 ad * cached objects). Does not reclaim objects from the pool.
2399 1.176 thorpej *
2400 1.176 thorpej * Note: For pool caches that provide constructed objects, there
2401 1.176 thorpej * is an assumption that another level of synchronization is occurring
2402 1.176 thorpej * between the input to the constructor and the cache invalidation.
2403 1.196 jym *
2404 1.196 jym * Invalidation is a costly process and should not be called from
2405 1.196 jym * interrupt context.
2406 1.43 thorpej */
2407 1.134 ad void
2408 1.134 ad pool_cache_invalidate(pool_cache_t pc)
2409 1.134 ad {
2410 1.196 jym uint64_t where;
2411 1.271 ad pcg_t *pcg;
2412 1.271 ad int n, s;
2413 1.196 jym
2414 1.196 jym KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2415 1.176 thorpej
2416 1.177 jym if (ncpu < 2 || !mp_online) {
2417 1.176 thorpej /*
2418 1.176 thorpej * We might be called early enough in the boot process
2419 1.176 thorpej * for the CPU data structures to not be fully initialized.
2420 1.196 jym * In this case, transfer the content of the local CPU's
2421 1.196 jym * cache back into global cache as only this CPU is currently
2422 1.196 jym * running.
2423 1.176 thorpej */
2424 1.196 jym pool_cache_transfer(pc);
2425 1.176 thorpej } else {
2426 1.176 thorpej /*
2427 1.196 jym * Signal all CPUs that they must transfer their local
2428 1.196 jym * cache back to the global pool then wait for the xcall to
2429 1.196 jym * complete.
2430 1.176 thorpej */
2431 1.261 christos where = xc_broadcast(0,
2432 1.261 christos __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2433 1.176 thorpej xc_wait(where);
2434 1.176 thorpej }
2435 1.196 jym
2436 1.271 ad /* Now dequeue and invalidate everything. */
2437 1.271 ad pcg = pool_pcg_trunc(&pcg_normal_cache);
2438 1.271 ad (void)pool_cache_invalidate_groups(pc, pcg);
2439 1.271 ad
2440 1.271 ad pcg = pool_pcg_trunc(&pcg_large_cache);
2441 1.271 ad (void)pool_cache_invalidate_groups(pc, pcg);
2442 1.271 ad
2443 1.271 ad pcg = pool_pcg_trunc(&pc->pc_fullgroups);
2444 1.271 ad n = pool_cache_invalidate_groups(pc, pcg);
2445 1.271 ad s = splvm();
2446 1.271 ad ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
2447 1.271 ad splx(s);
2448 1.271 ad
2449 1.271 ad pcg = pool_pcg_trunc(&pc->pc_partgroups);
2450 1.271 ad n = pool_cache_invalidate_groups(pc, pcg);
2451 1.271 ad s = splvm();
2452 1.271 ad ((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
2453 1.271 ad splx(s);
2454 1.134 ad }
2455 1.134 ad
2456 1.175 jym /*
2457 1.175 jym * pool_cache_invalidate_cpu:
2458 1.175 jym *
2459 1.175 jym * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2460 1.175 jym * identified by its associated index.
2461 1.175 jym * It is caller's responsibility to ensure that no operation is
2462 1.175 jym * taking place on this pool cache while doing this invalidation.
2463 1.175 jym * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2464 1.175 jym * pool cached objects from a CPU different from the one currently running
2465 1.175 jym * may result in an undefined behaviour.
2466 1.175 jym */
2467 1.175 jym static void
2468 1.175 jym pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2469 1.175 jym {
2470 1.175 jym pool_cache_cpu_t *cc;
2471 1.175 jym pcg_t *pcg;
2472 1.175 jym
2473 1.175 jym if ((cc = pc->pc_cpus[index]) == NULL)
2474 1.175 jym return;
2475 1.175 jym
2476 1.175 jym if ((pcg = cc->cc_current) != &pcg_dummy) {
2477 1.175 jym pcg->pcg_next = NULL;
2478 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2479 1.175 jym }
2480 1.175 jym if ((pcg = cc->cc_previous) != &pcg_dummy) {
2481 1.175 jym pcg->pcg_next = NULL;
2482 1.175 jym pool_cache_invalidate_groups(pc, pcg);
2483 1.175 jym }
2484 1.175 jym if (cc != &pc->pc_cpu0)
2485 1.175 jym pool_put(&cache_cpu_pool, cc);
2486 1.175 jym
2487 1.175 jym }
2488 1.175 jym
2489 1.134 ad void
2490 1.134 ad pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2491 1.134 ad {
2492 1.134 ad
2493 1.134 ad pool_set_drain_hook(&pc->pc_pool, fn, arg);
2494 1.134 ad }
2495 1.134 ad
2496 1.134 ad void
2497 1.134 ad pool_cache_setlowat(pool_cache_t pc, int n)
2498 1.134 ad {
2499 1.134 ad
2500 1.134 ad pool_setlowat(&pc->pc_pool, n);
2501 1.134 ad }
2502 1.134 ad
2503 1.134 ad void
2504 1.134 ad pool_cache_sethiwat(pool_cache_t pc, int n)
2505 1.134 ad {
2506 1.134 ad
2507 1.134 ad pool_sethiwat(&pc->pc_pool, n);
2508 1.134 ad }
2509 1.134 ad
2510 1.134 ad void
2511 1.134 ad pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2512 1.134 ad {
2513 1.134 ad
2514 1.134 ad pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2515 1.134 ad }
2516 1.134 ad
2517 1.267 chs void
2518 1.267 chs pool_cache_prime(pool_cache_t pc, int n)
2519 1.267 chs {
2520 1.267 chs
2521 1.267 chs pool_prime(&pc->pc_pool, n);
2522 1.267 chs }
2523 1.267 chs
2524 1.277 simonb unsigned int
2525 1.277 simonb pool_cache_nget(pool_cache_t pc)
2526 1.277 simonb {
2527 1.277 simonb
2528 1.277 simonb return pool_nget(&pc->pc_pool);
2529 1.277 simonb }
2530 1.277 simonb
2531 1.277 simonb unsigned int
2532 1.277 simonb pool_cache_nput(pool_cache_t pc)
2533 1.277 simonb {
2534 1.277 simonb
2535 1.277 simonb return pool_nput(&pc->pc_pool);
2536 1.277 simonb }
2537 1.277 simonb
2538 1.271 ad /*
2539 1.271 ad * pool_pcg_get:
2540 1.271 ad *
2541 1.271 ad * Get a cache group from the specified list. Return true if
2542 1.271 ad * contention was encountered. Must be called at IPL_VM because
2543 1.271 ad * of spin wait vs. kernel_lock.
2544 1.271 ad */
2545 1.271 ad static int
2546 1.271 ad pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
2547 1.271 ad {
2548 1.271 ad int count = SPINLOCK_BACKOFF_MIN;
2549 1.271 ad pcg_t *o, *n;
2550 1.271 ad
2551 1.271 ad for (o = atomic_load_relaxed(head);; o = n) {
2552 1.271 ad if (__predict_false(o == &pcg_dummy)) {
2553 1.271 ad /* Wait for concurrent get to complete. */
2554 1.271 ad SPINLOCK_BACKOFF(count);
2555 1.271 ad n = atomic_load_relaxed(head);
2556 1.271 ad continue;
2557 1.271 ad }
2558 1.271 ad if (__predict_false(o == NULL)) {
2559 1.271 ad break;
2560 1.271 ad }
2561 1.271 ad /* Lock out concurrent get/put. */
2562 1.271 ad n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
2563 1.271 ad if (o == n) {
2564 1.271 ad /* Fetch pointer to next item and then unlock. */
2565 1.271 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
2566 1.271 ad membar_datadep_consumer(); /* alpha */
2567 1.271 ad #endif
2568 1.271 ad n = atomic_load_relaxed(&o->pcg_next);
2569 1.271 ad atomic_store_release(head, n);
2570 1.271 ad break;
2571 1.271 ad }
2572 1.271 ad }
2573 1.271 ad *pcgp = o;
2574 1.271 ad return count != SPINLOCK_BACKOFF_MIN;
2575 1.271 ad }
2576 1.271 ad
2577 1.271 ad /*
2578 1.271 ad * pool_pcg_trunc:
2579 1.271 ad *
2580 1.271 ad * Chop out entire list of pool cache groups.
2581 1.271 ad */
2582 1.271 ad static pcg_t *
2583 1.271 ad pool_pcg_trunc(pcg_t *volatile *head)
2584 1.271 ad {
2585 1.271 ad int count = SPINLOCK_BACKOFF_MIN, s;
2586 1.271 ad pcg_t *o, *n;
2587 1.271 ad
2588 1.271 ad s = splvm();
2589 1.271 ad for (o = atomic_load_relaxed(head);; o = n) {
2590 1.271 ad if (__predict_false(o == &pcg_dummy)) {
2591 1.271 ad /* Wait for concurrent get to complete. */
2592 1.271 ad SPINLOCK_BACKOFF(count);
2593 1.271 ad n = atomic_load_relaxed(head);
2594 1.271 ad continue;
2595 1.271 ad }
2596 1.271 ad n = atomic_cas_ptr(head, o, NULL);
2597 1.271 ad if (o == n) {
2598 1.271 ad splx(s);
2599 1.271 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
2600 1.271 ad membar_datadep_consumer(); /* alpha */
2601 1.271 ad #endif
2602 1.271 ad return o;
2603 1.271 ad }
2604 1.271 ad }
2605 1.271 ad }
2606 1.271 ad
2607 1.271 ad /*
2608 1.271 ad * pool_pcg_put:
2609 1.271 ad *
2610 1.271 ad * Put a pool cache group to the specified list. Return true if
2611 1.271 ad * contention was encountered. Must be called at IPL_VM because of
2612 1.271 ad * spin wait vs. kernel_lock.
2613 1.271 ad */
2614 1.271 ad static int
2615 1.271 ad pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
2616 1.271 ad {
2617 1.271 ad int count = SPINLOCK_BACKOFF_MIN;
2618 1.271 ad pcg_t *o, *n;
2619 1.271 ad
2620 1.271 ad for (o = atomic_load_relaxed(head);; o = n) {
2621 1.271 ad if (__predict_false(o == &pcg_dummy)) {
2622 1.271 ad /* Wait for concurrent get to complete. */
2623 1.271 ad SPINLOCK_BACKOFF(count);
2624 1.271 ad n = atomic_load_relaxed(head);
2625 1.271 ad continue;
2626 1.271 ad }
2627 1.271 ad pcg->pcg_next = o;
2628 1.271 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
2629 1.282 riastrad membar_release();
2630 1.271 ad #endif
2631 1.271 ad n = atomic_cas_ptr(head, o, pcg);
2632 1.271 ad if (o == n) {
2633 1.271 ad return count != SPINLOCK_BACKOFF_MIN;
2634 1.271 ad }
2635 1.271 ad }
2636 1.271 ad }
2637 1.271 ad
2638 1.162 ad static bool __noinline
2639 1.271 ad pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
2640 1.271 ad void **objectp, paddr_t *pap, int flags)
2641 1.43 thorpej {
2642 1.134 ad pcg_t *pcg, *cur;
2643 1.43 thorpej void *object;
2644 1.58 thorpej
2645 1.168 yamt KASSERT(cc->cc_current->pcg_avail == 0);
2646 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == 0);
2647 1.168 yamt
2648 1.134 ad cc->cc_misses++;
2649 1.43 thorpej
2650 1.134 ad /*
2651 1.271 ad * If there's a full group, release our empty group back to the
2652 1.271 ad * cache. Install the full group as cc_current and return.
2653 1.134 ad */
2654 1.271 ad cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
2655 1.271 ad if (__predict_true(pcg != NULL)) {
2656 1.271 ad KASSERT(pcg->pcg_avail == pcg->pcg_size);
2657 1.162 ad if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2658 1.134 ad KASSERT(cur->pcg_avail == 0);
2659 1.271 ad (void)pool_pcg_put(cc->cc_pcgcache, cur);
2660 1.87 thorpej }
2661 1.271 ad cc->cc_nfull--;
2662 1.134 ad cc->cc_current = pcg;
2663 1.162 ad return true;
2664 1.134 ad }
2665 1.134 ad
2666 1.134 ad /*
2667 1.134 ad * Nothing available locally or in cache. Take the slow
2668 1.134 ad * path: fetch a new object from the pool and construct
2669 1.134 ad * it.
2670 1.134 ad */
2671 1.271 ad cc->cc_pcmisses++;
2672 1.162 ad splx(s);
2673 1.134 ad
2674 1.134 ad object = pool_get(&pc->pc_pool, flags);
2675 1.134 ad *objectp = object;
2676 1.211 riastrad if (__predict_false(object == NULL)) {
2677 1.265 chs KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2678 1.162 ad return false;
2679 1.211 riastrad }
2680 1.125 ad
2681 1.162 ad if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2682 1.134 ad pool_put(&pc->pc_pool, object);
2683 1.134 ad *objectp = NULL;
2684 1.162 ad return false;
2685 1.43 thorpej }
2686 1.43 thorpej
2687 1.238 maxv KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2688 1.43 thorpej
2689 1.134 ad if (pap != NULL) {
2690 1.134 ad #ifdef POOL_VTOPHYS
2691 1.134 ad *pap = POOL_VTOPHYS(object);
2692 1.134 ad #else
2693 1.134 ad *pap = POOL_PADDR_INVALID;
2694 1.134 ad #endif
2695 1.102 chs }
2696 1.43 thorpej
2697 1.125 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2698 1.162 ad return false;
2699 1.43 thorpej }
2700 1.43 thorpej
2701 1.43 thorpej /*
2702 1.134 ad * pool_cache_get{,_paddr}:
2703 1.43 thorpej *
2704 1.134 ad * Get an object from a pool cache (optionally returning
2705 1.134 ad * the physical address of the object).
2706 1.43 thorpej */
2707 1.134 ad void *
2708 1.134 ad pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2709 1.43 thorpej {
2710 1.134 ad pool_cache_cpu_t *cc;
2711 1.134 ad pcg_t *pcg;
2712 1.134 ad void *object;
2713 1.60 thorpej int s;
2714 1.43 thorpej
2715 1.215 christos KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2716 1.184 rmind KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2717 1.185 rmind (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2718 1.213 christos "%s: [%s] is IPL_NONE, but called from interrupt context",
2719 1.213 christos __func__, pc->pc_pool.pr_wchan);
2720 1.184 rmind
2721 1.155 ad if (flags & PR_WAITOK) {
2722 1.154 yamt ASSERT_SLEEPABLE();
2723 1.155 ad }
2724 1.125 ad
2725 1.270 maxv if (flags & PR_NOWAIT) {
2726 1.270 maxv if (fault_inject())
2727 1.270 maxv return NULL;
2728 1.270 maxv }
2729 1.270 maxv
2730 1.162 ad /* Lock out interrupts and disable preemption. */
2731 1.162 ad s = splvm();
2732 1.165 yamt while (/* CONSTCOND */ true) {
2733 1.134 ad /* Try and allocate an object from the current group. */
2734 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2735 1.134 ad pcg = cc->cc_current;
2736 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2737 1.134 ad object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2738 1.162 ad if (__predict_false(pap != NULL))
2739 1.134 ad *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2740 1.148 yamt #if defined(DIAGNOSTIC)
2741 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2742 1.163 ad KASSERT(pcg->pcg_avail < pcg->pcg_size);
2743 1.134 ad KASSERT(object != NULL);
2744 1.163 ad #endif
2745 1.134 ad cc->cc_hits++;
2746 1.162 ad splx(s);
2747 1.134 ad FREECHECK_OUT(&pc->pc_freecheck, object);
2748 1.204 maxv pool_redzone_fill(&pc->pc_pool, object);
2749 1.262 maxv pool_cache_get_kmsan(pc, object);
2750 1.134 ad return object;
2751 1.43 thorpej }
2752 1.43 thorpej
2753 1.43 thorpej /*
2754 1.134 ad * That failed. If the previous group isn't empty, swap
2755 1.134 ad * it with the current group and allocate from there.
2756 1.43 thorpej */
2757 1.134 ad pcg = cc->cc_previous;
2758 1.162 ad if (__predict_true(pcg->pcg_avail > 0)) {
2759 1.134 ad cc->cc_previous = cc->cc_current;
2760 1.134 ad cc->cc_current = pcg;
2761 1.134 ad continue;
2762 1.43 thorpej }
2763 1.43 thorpej
2764 1.134 ad /*
2765 1.134 ad * Can't allocate from either group: try the slow path.
2766 1.134 ad * If get_slow() allocated an object for us, or if
2767 1.162 ad * no more objects are available, it will return false.
2768 1.134 ad * Otherwise, we need to retry.
2769 1.134 ad */
2770 1.271 ad if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
2771 1.269 maxv if (object != NULL) {
2772 1.269 maxv kmsan_orig(object, pc->pc_pool.pr_size,
2773 1.269 maxv KMSAN_TYPE_POOL, __RET_ADDR);
2774 1.269 maxv }
2775 1.165 yamt break;
2776 1.269 maxv }
2777 1.165 yamt }
2778 1.43 thorpej
2779 1.211 riastrad /*
2780 1.211 riastrad * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2781 1.211 riastrad * pool_cache_get can fail even in the PR_WAITOK case, if the
2782 1.211 riastrad * constructor fails.
2783 1.211 riastrad */
2784 1.134 ad return object;
2785 1.51 thorpej }
2786 1.51 thorpej
2787 1.162 ad static bool __noinline
2788 1.271 ad pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
2789 1.51 thorpej {
2790 1.163 ad pcg_t *pcg, *cur;
2791 1.51 thorpej
2792 1.168 yamt KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2793 1.168 yamt KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2794 1.168 yamt
2795 1.134 ad cc->cc_misses++;
2796 1.43 thorpej
2797 1.171 ad /*
2798 1.271 ad * Try to get an empty group from the cache. If there are no empty
2799 1.271 ad * groups in the cache then allocate one.
2800 1.171 ad */
2801 1.271 ad (void)pool_pcg_get(cc->cc_pcgcache, &pcg);
2802 1.271 ad if (__predict_false(pcg == NULL)) {
2803 1.171 ad if (__predict_true(!pool_cache_disable)) {
2804 1.171 ad pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2805 1.171 ad }
2806 1.171 ad if (__predict_true(pcg != NULL)) {
2807 1.171 ad pcg->pcg_avail = 0;
2808 1.171 ad pcg->pcg_size = pc->pc_pcgsize;
2809 1.171 ad }
2810 1.171 ad }
2811 1.171 ad
2812 1.162 ad /*
2813 1.271 ad * If there's a empty group, release our full group back to the
2814 1.271 ad * cache. Install the empty group to the local CPU and return.
2815 1.162 ad */
2816 1.163 ad if (pcg != NULL) {
2817 1.134 ad KASSERT(pcg->pcg_avail == 0);
2818 1.162 ad if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2819 1.146 ad cc->cc_previous = pcg;
2820 1.146 ad } else {
2821 1.162 ad cur = cc->cc_current;
2822 1.162 ad if (__predict_true(cur != &pcg_dummy)) {
2823 1.163 ad KASSERT(cur->pcg_avail == cur->pcg_size);
2824 1.271 ad cc->cc_contended +=
2825 1.271 ad pool_pcg_put(&pc->pc_fullgroups, cur);
2826 1.271 ad cc->cc_nfull++;
2827 1.146 ad }
2828 1.146 ad cc->cc_current = pcg;
2829 1.146 ad }
2830 1.162 ad return true;
2831 1.102 chs }
2832 1.105 christos
2833 1.134 ad /*
2834 1.162 ad * Nothing available locally or in cache, and we didn't
2835 1.162 ad * allocate an empty group. Take the slow path and destroy
2836 1.162 ad * the object here and now.
2837 1.134 ad */
2838 1.271 ad cc->cc_pcmisses++;
2839 1.162 ad splx(s);
2840 1.162 ad pool_cache_destruct_object(pc, object);
2841 1.105 christos
2842 1.162 ad return false;
2843 1.236 maxv }
2844 1.102 chs
2845 1.43 thorpej /*
2846 1.134 ad * pool_cache_put{,_paddr}:
2847 1.43 thorpej *
2848 1.134 ad * Put an object back to the pool cache (optionally caching the
2849 1.134 ad * physical address of the object).
2850 1.43 thorpej */
2851 1.101 thorpej void
2852 1.134 ad pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2853 1.43 thorpej {
2854 1.134 ad pool_cache_cpu_t *cc;
2855 1.134 ad pcg_t *pcg;
2856 1.134 ad int s;
2857 1.101 thorpej
2858 1.172 yamt KASSERT(object != NULL);
2859 1.262 maxv pool_cache_put_kmsan(pc, object);
2860 1.229 maxv pool_cache_redzone_check(pc, object);
2861 1.134 ad FREECHECK_IN(&pc->pc_freecheck, object);
2862 1.101 thorpej
2863 1.253 maxv if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2864 1.253 maxv pc_phinpage_check(pc, object);
2865 1.253 maxv }
2866 1.253 maxv
2867 1.268 maxv if (pool_cache_put_nocache(pc, object)) {
2868 1.249 maxv return;
2869 1.249 maxv }
2870 1.249 maxv
2871 1.162 ad /* Lock out interrupts and disable preemption. */
2872 1.162 ad s = splvm();
2873 1.165 yamt while (/* CONSTCOND */ true) {
2874 1.134 ad /* If the current group isn't full, release it there. */
2875 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2876 1.134 ad pcg = cc->cc_current;
2877 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2878 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2879 1.134 ad pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2880 1.134 ad pcg->pcg_avail++;
2881 1.134 ad cc->cc_hits++;
2882 1.162 ad splx(s);
2883 1.134 ad return;
2884 1.134 ad }
2885 1.43 thorpej
2886 1.134 ad /*
2887 1.162 ad * That failed. If the previous group isn't full, swap
2888 1.134 ad * it with the current group and try again.
2889 1.134 ad */
2890 1.134 ad pcg = cc->cc_previous;
2891 1.162 ad if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2892 1.134 ad cc->cc_previous = cc->cc_current;
2893 1.134 ad cc->cc_current = pcg;
2894 1.134 ad continue;
2895 1.134 ad }
2896 1.43 thorpej
2897 1.134 ad /*
2898 1.236 maxv * Can't free to either group: try the slow path.
2899 1.134 ad * If put_slow() releases the object for us, it
2900 1.162 ad * will return false. Otherwise we need to retry.
2901 1.134 ad */
2902 1.271 ad if (!pool_cache_put_slow(pc, cc, s, object))
2903 1.165 yamt break;
2904 1.165 yamt }
2905 1.43 thorpej }
2906 1.43 thorpej
2907 1.43 thorpej /*
2908 1.196 jym * pool_cache_transfer:
2909 1.43 thorpej *
2910 1.134 ad * Transfer objects from the per-CPU cache to the global cache.
2911 1.134 ad * Run within a cross-call thread.
2912 1.43 thorpej */
2913 1.43 thorpej static void
2914 1.196 jym pool_cache_transfer(pool_cache_t pc)
2915 1.43 thorpej {
2916 1.134 ad pool_cache_cpu_t *cc;
2917 1.271 ad pcg_t *prev, *cur;
2918 1.162 ad int s;
2919 1.134 ad
2920 1.162 ad s = splvm();
2921 1.162 ad cc = pc->pc_cpus[curcpu()->ci_index];
2922 1.134 ad cur = cc->cc_current;
2923 1.169 yamt cc->cc_current = __UNCONST(&pcg_dummy);
2924 1.134 ad prev = cc->cc_previous;
2925 1.169 yamt cc->cc_previous = __UNCONST(&pcg_dummy);
2926 1.162 ad if (cur != &pcg_dummy) {
2927 1.142 ad if (cur->pcg_avail == cur->pcg_size) {
2928 1.271 ad (void)pool_pcg_put(&pc->pc_fullgroups, cur);
2929 1.271 ad cc->cc_nfull++;
2930 1.134 ad } else if (cur->pcg_avail == 0) {
2931 1.271 ad (void)pool_pcg_put(pc->pc_pcgcache, cur);
2932 1.134 ad } else {
2933 1.271 ad (void)pool_pcg_put(&pc->pc_partgroups, cur);
2934 1.271 ad cc->cc_npart++;
2935 1.134 ad }
2936 1.134 ad }
2937 1.162 ad if (prev != &pcg_dummy) {
2938 1.142 ad if (prev->pcg_avail == prev->pcg_size) {
2939 1.271 ad (void)pool_pcg_put(&pc->pc_fullgroups, prev);
2940 1.271 ad cc->cc_nfull++;
2941 1.134 ad } else if (prev->pcg_avail == 0) {
2942 1.271 ad (void)pool_pcg_put(pc->pc_pcgcache, prev);
2943 1.134 ad } else {
2944 1.271 ad (void)pool_pcg_put(&pc->pc_partgroups, prev);
2945 1.271 ad cc->cc_npart++;
2946 1.134 ad }
2947 1.134 ad }
2948 1.134 ad splx(s);
2949 1.3 pk }
2950 1.66 thorpej
2951 1.208 chs static int
2952 1.208 chs pool_bigidx(size_t size)
2953 1.208 chs {
2954 1.208 chs int i;
2955 1.208 chs
2956 1.208 chs for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2957 1.208 chs if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2958 1.208 chs return i;
2959 1.208 chs }
2960 1.208 chs panic("pool item size %zu too large, use a custom allocator", size);
2961 1.208 chs }
2962 1.208 chs
2963 1.117 yamt static void *
2964 1.117 yamt pool_allocator_alloc(struct pool *pp, int flags)
2965 1.66 thorpej {
2966 1.117 yamt struct pool_allocator *pa = pp->pr_alloc;
2967 1.66 thorpej void *res;
2968 1.66 thorpej
2969 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2970 1.117 yamt if (res == NULL && (flags & PR_WAITOK) == 0) {
2971 1.66 thorpej /*
2972 1.117 yamt * We only run the drain hook here if PR_NOWAIT.
2973 1.117 yamt * In other cases, the hook will be run in
2974 1.117 yamt * pool_reclaim().
2975 1.66 thorpej */
2976 1.117 yamt if (pp->pr_drain_hook != NULL) {
2977 1.117 yamt (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2978 1.117 yamt res = (*pa->pa_alloc)(pp, flags);
2979 1.66 thorpej }
2980 1.117 yamt }
2981 1.117 yamt return res;
2982 1.66 thorpej }
2983 1.66 thorpej
2984 1.117 yamt static void
2985 1.66 thorpej pool_allocator_free(struct pool *pp, void *v)
2986 1.66 thorpej {
2987 1.66 thorpej struct pool_allocator *pa = pp->pr_alloc;
2988 1.66 thorpej
2989 1.229 maxv if (pp->pr_redzone) {
2990 1.279 thorpej KASSERT(!pp_has_pser(pp));
2991 1.248 maxv kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2992 1.279 thorpej } else if (__predict_false(pp_has_pser(pp))) {
2993 1.279 thorpej /*
2994 1.279 thorpej * Perform a passive serialization barrier before freeing
2995 1.279 thorpej * the pool page back to the system.
2996 1.279 thorpej */
2997 1.279 thorpej pool_barrier();
2998 1.229 maxv }
2999 1.66 thorpej (*pa->pa_free)(pp, v);
3000 1.66 thorpej }
3001 1.66 thorpej
3002 1.66 thorpej void *
3003 1.124 yamt pool_page_alloc(struct pool *pp, int flags)
3004 1.66 thorpej {
3005 1.192 rmind const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
3006 1.191 para vmem_addr_t va;
3007 1.192 rmind int ret;
3008 1.191 para
3009 1.192 rmind ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
3010 1.192 rmind vflags | VM_INSTANTFIT, &va);
3011 1.66 thorpej
3012 1.192 rmind return ret ? NULL : (void *)va;
3013 1.66 thorpej }
3014 1.66 thorpej
3015 1.66 thorpej void
3016 1.124 yamt pool_page_free(struct pool *pp, void *v)
3017 1.66 thorpej {
3018 1.66 thorpej
3019 1.191 para uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
3020 1.98 yamt }
3021 1.98 yamt
3022 1.98 yamt static void *
3023 1.124 yamt pool_page_alloc_meta(struct pool *pp, int flags)
3024 1.98 yamt {
3025 1.192 rmind const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
3026 1.192 rmind vmem_addr_t va;
3027 1.192 rmind int ret;
3028 1.191 para
3029 1.192 rmind ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
3030 1.192 rmind vflags | VM_INSTANTFIT, &va);
3031 1.98 yamt
3032 1.192 rmind return ret ? NULL : (void *)va;
3033 1.98 yamt }
3034 1.98 yamt
3035 1.98 yamt static void
3036 1.124 yamt pool_page_free_meta(struct pool *pp, void *v)
3037 1.98 yamt {
3038 1.98 yamt
3039 1.192 rmind vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
3040 1.66 thorpej }
3041 1.66 thorpej
3042 1.262 maxv #ifdef KMSAN
3043 1.262 maxv static inline void
3044 1.262 maxv pool_get_kmsan(struct pool *pp, void *p)
3045 1.262 maxv {
3046 1.262 maxv kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
3047 1.262 maxv kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
3048 1.262 maxv }
3049 1.262 maxv
3050 1.262 maxv static inline void
3051 1.262 maxv pool_put_kmsan(struct pool *pp, void *p)
3052 1.262 maxv {
3053 1.262 maxv kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
3054 1.262 maxv }
3055 1.262 maxv
3056 1.262 maxv static inline void
3057 1.262 maxv pool_cache_get_kmsan(pool_cache_t pc, void *p)
3058 1.262 maxv {
3059 1.262 maxv if (__predict_false(pc_has_ctor(pc))) {
3060 1.262 maxv return;
3061 1.262 maxv }
3062 1.262 maxv pool_get_kmsan(&pc->pc_pool, p);
3063 1.262 maxv }
3064 1.262 maxv
3065 1.262 maxv static inline void
3066 1.262 maxv pool_cache_put_kmsan(pool_cache_t pc, void *p)
3067 1.262 maxv {
3068 1.262 maxv pool_put_kmsan(&pc->pc_pool, p);
3069 1.262 maxv }
3070 1.262 maxv #endif
3071 1.262 maxv
3072 1.249 maxv #ifdef POOL_QUARANTINE
3073 1.249 maxv static void
3074 1.249 maxv pool_quarantine_init(struct pool *pp)
3075 1.249 maxv {
3076 1.249 maxv pp->pr_quar.rotor = 0;
3077 1.249 maxv memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
3078 1.249 maxv }
3079 1.249 maxv
3080 1.249 maxv static void
3081 1.249 maxv pool_quarantine_flush(struct pool *pp)
3082 1.249 maxv {
3083 1.249 maxv pool_quar_t *quar = &pp->pr_quar;
3084 1.249 maxv struct pool_pagelist pq;
3085 1.249 maxv size_t i;
3086 1.249 maxv
3087 1.249 maxv LIST_INIT(&pq);
3088 1.249 maxv
3089 1.249 maxv mutex_enter(&pp->pr_lock);
3090 1.249 maxv for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
3091 1.249 maxv if (quar->list[i] == 0)
3092 1.249 maxv continue;
3093 1.249 maxv pool_do_put(pp, (void *)quar->list[i], &pq);
3094 1.249 maxv }
3095 1.249 maxv mutex_exit(&pp->pr_lock);
3096 1.249 maxv
3097 1.249 maxv pr_pagelist_free(pp, &pq);
3098 1.249 maxv }
3099 1.249 maxv
3100 1.249 maxv static bool
3101 1.249 maxv pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
3102 1.249 maxv {
3103 1.249 maxv pool_quar_t *quar = &pp->pr_quar;
3104 1.249 maxv uintptr_t old;
3105 1.249 maxv
3106 1.249 maxv if (pp->pr_roflags & PR_NOTOUCH) {
3107 1.249 maxv return false;
3108 1.249 maxv }
3109 1.249 maxv
3110 1.249 maxv pool_redzone_check(pp, v);
3111 1.249 maxv
3112 1.249 maxv old = quar->list[quar->rotor];
3113 1.249 maxv quar->list[quar->rotor] = (uintptr_t)v;
3114 1.249 maxv quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
3115 1.249 maxv if (old != 0) {
3116 1.249 maxv pool_do_put(pp, (void *)old, pq);
3117 1.249 maxv }
3118 1.249 maxv
3119 1.249 maxv return true;
3120 1.249 maxv }
3121 1.268 maxv #endif
3122 1.249 maxv
3123 1.268 maxv #ifdef POOL_NOCACHE
3124 1.249 maxv static bool
3125 1.268 maxv pool_cache_put_nocache(pool_cache_t pc, void *p)
3126 1.249 maxv {
3127 1.249 maxv pool_cache_destruct_object(pc, p);
3128 1.249 maxv return true;
3129 1.249 maxv }
3130 1.249 maxv #endif
3131 1.249 maxv
3132 1.204 maxv #ifdef POOL_REDZONE
3133 1.204 maxv #if defined(_LP64)
3134 1.204 maxv # define PRIME 0x9e37fffffffc0000UL
3135 1.204 maxv #else /* defined(_LP64) */
3136 1.204 maxv # define PRIME 0x9e3779b1
3137 1.204 maxv #endif /* defined(_LP64) */
3138 1.204 maxv #define STATIC_BYTE 0xFE
3139 1.204 maxv CTASSERT(POOL_REDZONE_SIZE > 1);
3140 1.204 maxv
3141 1.224 maxv #ifndef KASAN
3142 1.204 maxv static inline uint8_t
3143 1.204 maxv pool_pattern_generate(const void *p)
3144 1.204 maxv {
3145 1.204 maxv return (uint8_t)(((uintptr_t)p) * PRIME
3146 1.204 maxv >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
3147 1.204 maxv }
3148 1.224 maxv #endif
3149 1.204 maxv
3150 1.204 maxv static void
3151 1.204 maxv pool_redzone_init(struct pool *pp, size_t requested_size)
3152 1.204 maxv {
3153 1.227 maxv size_t redzsz;
3154 1.204 maxv size_t nsz;
3155 1.204 maxv
3156 1.227 maxv #ifdef KASAN
3157 1.227 maxv redzsz = requested_size;
3158 1.227 maxv kasan_add_redzone(&redzsz);
3159 1.227 maxv redzsz -= requested_size;
3160 1.227 maxv #else
3161 1.227 maxv redzsz = POOL_REDZONE_SIZE;
3162 1.227 maxv #endif
3163 1.227 maxv
3164 1.204 maxv if (pp->pr_roflags & PR_NOTOUCH) {
3165 1.204 maxv pp->pr_redzone = false;
3166 1.204 maxv return;
3167 1.204 maxv }
3168 1.204 maxv
3169 1.204 maxv /*
3170 1.204 maxv * We may have extended the requested size earlier; check if
3171 1.204 maxv * there's naturally space in the padding for a red zone.
3172 1.204 maxv */
3173 1.227 maxv if (pp->pr_size - requested_size >= redzsz) {
3174 1.229 maxv pp->pr_reqsize_with_redzone = requested_size + redzsz;
3175 1.204 maxv pp->pr_redzone = true;
3176 1.204 maxv return;
3177 1.204 maxv }
3178 1.204 maxv
3179 1.204 maxv /*
3180 1.204 maxv * No space in the natural padding; check if we can extend a
3181 1.204 maxv * bit the size of the pool.
3182 1.276 mrg *
3183 1.276 mrg * Avoid using redzone for allocations half of a page or larger.
3184 1.276 mrg * For pagesize items, we'd waste a whole new page (could be
3185 1.276 mrg * unmapped?), and for half pagesize items, approximately half
3186 1.276 mrg * the space is lost (eg, 4K pages, you get one 2K allocation.)
3187 1.204 maxv */
3188 1.227 maxv nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3189 1.276 mrg if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) {
3190 1.204 maxv /* Ok, we can */
3191 1.204 maxv pp->pr_size = nsz;
3192 1.229 maxv pp->pr_reqsize_with_redzone = requested_size + redzsz;
3193 1.204 maxv pp->pr_redzone = true;
3194 1.204 maxv } else {
3195 1.204 maxv /* No space for a red zone... snif :'( */
3196 1.204 maxv pp->pr_redzone = false;
3197 1.274 riastrad aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan);
3198 1.204 maxv }
3199 1.204 maxv }
3200 1.204 maxv
3201 1.204 maxv static void
3202 1.204 maxv pool_redzone_fill(struct pool *pp, void *p)
3203 1.204 maxv {
3204 1.224 maxv if (!pp->pr_redzone)
3205 1.224 maxv return;
3206 1.279 thorpej KASSERT(!pp_has_pser(pp));
3207 1.224 maxv #ifdef KASAN
3208 1.248 maxv kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3209 1.248 maxv KASAN_POOL_REDZONE);
3210 1.224 maxv #else
3211 1.204 maxv uint8_t *cp, pat;
3212 1.204 maxv const uint8_t *ep;
3213 1.204 maxv
3214 1.204 maxv cp = (uint8_t *)p + pp->pr_reqsize;
3215 1.204 maxv ep = cp + POOL_REDZONE_SIZE;
3216 1.204 maxv
3217 1.204 maxv /*
3218 1.204 maxv * We really don't want the first byte of the red zone to be '\0';
3219 1.204 maxv * an off-by-one in a string may not be properly detected.
3220 1.204 maxv */
3221 1.204 maxv pat = pool_pattern_generate(cp);
3222 1.204 maxv *cp = (pat == '\0') ? STATIC_BYTE: pat;
3223 1.204 maxv cp++;
3224 1.204 maxv
3225 1.204 maxv while (cp < ep) {
3226 1.204 maxv *cp = pool_pattern_generate(cp);
3227 1.204 maxv cp++;
3228 1.204 maxv }
3229 1.224 maxv #endif
3230 1.204 maxv }
3231 1.204 maxv
3232 1.204 maxv static void
3233 1.204 maxv pool_redzone_check(struct pool *pp, void *p)
3234 1.204 maxv {
3235 1.224 maxv if (!pp->pr_redzone)
3236 1.224 maxv return;
3237 1.279 thorpej KASSERT(!pp_has_pser(pp));
3238 1.224 maxv #ifdef KASAN
3239 1.248 maxv kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3240 1.224 maxv #else
3241 1.204 maxv uint8_t *cp, pat, expected;
3242 1.204 maxv const uint8_t *ep;
3243 1.204 maxv
3244 1.204 maxv cp = (uint8_t *)p + pp->pr_reqsize;
3245 1.204 maxv ep = cp + POOL_REDZONE_SIZE;
3246 1.204 maxv
3247 1.204 maxv pat = pool_pattern_generate(cp);
3248 1.204 maxv expected = (pat == '\0') ? STATIC_BYTE: pat;
3249 1.264 maxv if (__predict_false(*cp != expected)) {
3250 1.264 maxv panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3251 1.264 maxv pp->pr_wchan, *cp, expected);
3252 1.204 maxv }
3253 1.204 maxv cp++;
3254 1.204 maxv
3255 1.204 maxv while (cp < ep) {
3256 1.204 maxv expected = pool_pattern_generate(cp);
3257 1.225 maxv if (__predict_false(*cp != expected)) {
3258 1.264 maxv panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3259 1.264 maxv pp->pr_wchan, *cp, expected);
3260 1.204 maxv }
3261 1.204 maxv cp++;
3262 1.204 maxv }
3263 1.224 maxv #endif
3264 1.204 maxv }
3265 1.204 maxv
3266 1.229 maxv static void
3267 1.229 maxv pool_cache_redzone_check(pool_cache_t pc, void *p)
3268 1.229 maxv {
3269 1.229 maxv #ifdef KASAN
3270 1.279 thorpej /*
3271 1.279 thorpej * If there is a ctor/dtor, or if the cache objects use
3272 1.279 thorpej * passive serialization, leave the data as valid.
3273 1.279 thorpej */
3274 1.279 thorpej if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc) ||
3275 1.279 thorpej pc_has_pser(pc))) {
3276 1.229 maxv return;
3277 1.229 maxv }
3278 1.229 maxv #endif
3279 1.229 maxv pool_redzone_check(&pc->pc_pool, p);
3280 1.229 maxv }
3281 1.229 maxv
3282 1.204 maxv #endif /* POOL_REDZONE */
3283 1.204 maxv
3284 1.141 yamt #if defined(DDB)
3285 1.141 yamt static bool
3286 1.141 yamt pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3287 1.141 yamt {
3288 1.141 yamt
3289 1.141 yamt return (uintptr_t)ph->ph_page <= addr &&
3290 1.141 yamt addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3291 1.141 yamt }
3292 1.141 yamt
3293 1.143 yamt static bool
3294 1.143 yamt pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3295 1.143 yamt {
3296 1.143 yamt
3297 1.143 yamt return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3298 1.143 yamt }
3299 1.143 yamt
3300 1.143 yamt static bool
3301 1.143 yamt pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3302 1.143 yamt {
3303 1.143 yamt int i;
3304 1.143 yamt
3305 1.143 yamt if (pcg == NULL) {
3306 1.143 yamt return false;
3307 1.143 yamt }
3308 1.144 yamt for (i = 0; i < pcg->pcg_avail; i++) {
3309 1.143 yamt if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3310 1.143 yamt return true;
3311 1.143 yamt }
3312 1.143 yamt }
3313 1.143 yamt return false;
3314 1.143 yamt }
3315 1.143 yamt
3316 1.143 yamt static bool
3317 1.143 yamt pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3318 1.143 yamt {
3319 1.143 yamt
3320 1.242 maxv if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3321 1.234 maxv unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3322 1.143 yamt pool_item_bitmap_t *bitmap =
3323 1.143 yamt ph->ph_bitmap + (idx / BITMAP_SIZE);
3324 1.285.4.1 martin pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
3325 1.143 yamt
3326 1.143 yamt return (*bitmap & mask) == 0;
3327 1.143 yamt } else {
3328 1.143 yamt struct pool_item *pi;
3329 1.143 yamt
3330 1.143 yamt LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3331 1.143 yamt if (pool_in_item(pp, pi, addr)) {
3332 1.143 yamt return false;
3333 1.143 yamt }
3334 1.143 yamt }
3335 1.143 yamt return true;
3336 1.143 yamt }
3337 1.143 yamt }
3338 1.143 yamt
3339 1.141 yamt void
3340 1.141 yamt pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3341 1.141 yamt {
3342 1.141 yamt struct pool *pp;
3343 1.141 yamt
3344 1.145 ad TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3345 1.141 yamt struct pool_item_header *ph;
3346 1.281 riastrad struct pool_cache *pc;
3347 1.141 yamt uintptr_t item;
3348 1.143 yamt bool allocated = true;
3349 1.143 yamt bool incache = false;
3350 1.143 yamt bool incpucache = false;
3351 1.143 yamt char cpucachestr[32];
3352 1.141 yamt
3353 1.141 yamt if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3354 1.141 yamt LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3355 1.141 yamt if (pool_in_page(pp, ph, addr)) {
3356 1.141 yamt goto found;
3357 1.141 yamt }
3358 1.141 yamt }
3359 1.141 yamt LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3360 1.141 yamt if (pool_in_page(pp, ph, addr)) {
3361 1.143 yamt allocated =
3362 1.143 yamt pool_allocated(pp, ph, addr);
3363 1.143 yamt goto found;
3364 1.143 yamt }
3365 1.143 yamt }
3366 1.143 yamt LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3367 1.143 yamt if (pool_in_page(pp, ph, addr)) {
3368 1.143 yamt allocated = false;
3369 1.141 yamt goto found;
3370 1.141 yamt }
3371 1.141 yamt }
3372 1.141 yamt continue;
3373 1.141 yamt } else {
3374 1.141 yamt ph = pr_find_pagehead_noalign(pp, (void *)addr);
3375 1.141 yamt if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3376 1.141 yamt continue;
3377 1.141 yamt }
3378 1.143 yamt allocated = pool_allocated(pp, ph, addr);
3379 1.141 yamt }
3380 1.141 yamt found:
3381 1.281 riastrad if (allocated &&
3382 1.281 riastrad (pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
3383 1.143 yamt struct pool_cache_group *pcg;
3384 1.143 yamt int i;
3385 1.143 yamt
3386 1.143 yamt for (pcg = pc->pc_fullgroups; pcg != NULL;
3387 1.143 yamt pcg = pcg->pcg_next) {
3388 1.143 yamt if (pool_in_cg(pp, pcg, addr)) {
3389 1.143 yamt incache = true;
3390 1.143 yamt goto print;
3391 1.143 yamt }
3392 1.143 yamt }
3393 1.183 ad for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3394 1.143 yamt pool_cache_cpu_t *cc;
3395 1.143 yamt
3396 1.143 yamt if ((cc = pc->pc_cpus[i]) == NULL) {
3397 1.143 yamt continue;
3398 1.143 yamt }
3399 1.143 yamt if (pool_in_cg(pp, cc->cc_current, addr) ||
3400 1.143 yamt pool_in_cg(pp, cc->cc_previous, addr)) {
3401 1.143 yamt struct cpu_info *ci =
3402 1.170 ad cpu_lookup(i);
3403 1.143 yamt
3404 1.143 yamt incpucache = true;
3405 1.143 yamt snprintf(cpucachestr,
3406 1.143 yamt sizeof(cpucachestr),
3407 1.143 yamt "cached by CPU %u",
3408 1.153 martin ci->ci_index);
3409 1.143 yamt goto print;
3410 1.143 yamt }
3411 1.143 yamt }
3412 1.143 yamt }
3413 1.143 yamt print:
3414 1.141 yamt item = (uintptr_t)ph->ph_page + ph->ph_off;
3415 1.141 yamt item = item + rounddown(addr - item, pp->pr_size);
3416 1.143 yamt (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3417 1.141 yamt (void *)addr, item, (size_t)(addr - item),
3418 1.143 yamt pp->pr_wchan,
3419 1.143 yamt incpucache ? cpucachestr :
3420 1.143 yamt incache ? "cached" : allocated ? "allocated" : "free");
3421 1.141 yamt }
3422 1.141 yamt }
3423 1.141 yamt #endif /* defined(DDB) */
3424 1.203 joerg
3425 1.203 joerg static int
3426 1.203 joerg pool_sysctl(SYSCTLFN_ARGS)
3427 1.203 joerg {
3428 1.203 joerg struct pool_sysctl data;
3429 1.203 joerg struct pool *pp;
3430 1.203 joerg struct pool_cache *pc;
3431 1.203 joerg pool_cache_cpu_t *cc;
3432 1.203 joerg int error;
3433 1.203 joerg size_t i, written;
3434 1.203 joerg
3435 1.203 joerg if (oldp == NULL) {
3436 1.203 joerg *oldlenp = 0;
3437 1.203 joerg TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3438 1.203 joerg *oldlenp += sizeof(data);
3439 1.203 joerg return 0;
3440 1.203 joerg }
3441 1.203 joerg
3442 1.203 joerg memset(&data, 0, sizeof(data));
3443 1.203 joerg error = 0;
3444 1.203 joerg written = 0;
3445 1.281 riastrad mutex_enter(&pool_head_lock);
3446 1.203 joerg TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3447 1.203 joerg if (written + sizeof(data) > *oldlenp)
3448 1.203 joerg break;
3449 1.281 riastrad pp->pr_refcnt++;
3450 1.203 joerg strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3451 1.203 joerg data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3452 1.203 joerg data.pr_flags = pp->pr_roflags | pp->pr_flags;
3453 1.203 joerg #define COPY(field) data.field = pp->field
3454 1.203 joerg COPY(pr_size);
3455 1.203 joerg
3456 1.203 joerg COPY(pr_itemsperpage);
3457 1.203 joerg COPY(pr_nitems);
3458 1.203 joerg COPY(pr_nout);
3459 1.203 joerg COPY(pr_hardlimit);
3460 1.203 joerg COPY(pr_npages);
3461 1.203 joerg COPY(pr_minpages);
3462 1.203 joerg COPY(pr_maxpages);
3463 1.203 joerg
3464 1.203 joerg COPY(pr_nget);
3465 1.203 joerg COPY(pr_nfail);
3466 1.203 joerg COPY(pr_nput);
3467 1.203 joerg COPY(pr_npagealloc);
3468 1.203 joerg COPY(pr_npagefree);
3469 1.203 joerg COPY(pr_hiwat);
3470 1.203 joerg COPY(pr_nidle);
3471 1.203 joerg #undef COPY
3472 1.203 joerg
3473 1.203 joerg data.pr_cache_nmiss_pcpu = 0;
3474 1.203 joerg data.pr_cache_nhit_pcpu = 0;
3475 1.271 ad data.pr_cache_nmiss_global = 0;
3476 1.271 ad data.pr_cache_nempty = 0;
3477 1.271 ad data.pr_cache_ncontended = 0;
3478 1.271 ad data.pr_cache_npartial = 0;
3479 1.281 riastrad if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
3480 1.271 ad uint32_t nfull = 0;
3481 1.203 joerg data.pr_cache_meta_size = pc->pc_pcgsize;
3482 1.203 joerg for (i = 0; i < pc->pc_ncpu; ++i) {
3483 1.203 joerg cc = pc->pc_cpus[i];
3484 1.203 joerg if (cc == NULL)
3485 1.203 joerg continue;
3486 1.271 ad data.pr_cache_ncontended += cc->cc_contended;
3487 1.206 knakahar data.pr_cache_nmiss_pcpu += cc->cc_misses;
3488 1.206 knakahar data.pr_cache_nhit_pcpu += cc->cc_hits;
3489 1.271 ad data.pr_cache_nmiss_global += cc->cc_pcmisses;
3490 1.271 ad nfull += cc->cc_nfull; /* 32-bit rollover! */
3491 1.272 ad data.pr_cache_npartial += cc->cc_npart;
3492 1.203 joerg }
3493 1.271 ad data.pr_cache_nfull = nfull;
3494 1.203 joerg } else {
3495 1.203 joerg data.pr_cache_meta_size = 0;
3496 1.203 joerg data.pr_cache_nfull = 0;
3497 1.203 joerg }
3498 1.271 ad data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
3499 1.271 ad data.pr_cache_nmiss_global;
3500 1.203 joerg
3501 1.281 riastrad if (pp->pr_refcnt == UINT_MAX) /* XXX possible? */
3502 1.281 riastrad continue;
3503 1.281 riastrad mutex_exit(&pool_head_lock);
3504 1.203 joerg error = sysctl_copyout(l, &data, oldp, sizeof(data));
3505 1.281 riastrad mutex_enter(&pool_head_lock);
3506 1.281 riastrad if (--pp->pr_refcnt == 0)
3507 1.281 riastrad cv_broadcast(&pool_busy);
3508 1.203 joerg if (error)
3509 1.203 joerg break;
3510 1.203 joerg written += sizeof(data);
3511 1.203 joerg oldp = (char *)oldp + sizeof(data);
3512 1.203 joerg }
3513 1.281 riastrad mutex_exit(&pool_head_lock);
3514 1.203 joerg
3515 1.203 joerg *oldlenp = written;
3516 1.203 joerg return error;
3517 1.203 joerg }
3518 1.203 joerg
3519 1.203 joerg SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3520 1.203 joerg {
3521 1.203 joerg const struct sysctlnode *rnode = NULL;
3522 1.203 joerg
3523 1.203 joerg sysctl_createv(clog, 0, NULL, &rnode,
3524 1.203 joerg CTLFLAG_PERMANENT,
3525 1.203 joerg CTLTYPE_STRUCT, "pool",
3526 1.203 joerg SYSCTL_DESCR("Get pool statistics"),
3527 1.203 joerg pool_sysctl, 0, NULL, 0,
3528 1.203 joerg CTL_KERN, CTL_CREATE, CTL_EOL);
3529 1.203 joerg }
3530