subr_pool.c revision 1.101.2.1 1 /* $NetBSD: subr_pool.c,v 1.101.2.1 2006/06/21 15:09:38 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.101.2.1 2006/06/21 15:09:38 yamt Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 #define PHPOOL_MAX 8
77 static struct pool phpool[PHPOOL_MAX];
78 #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
79
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84
85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
86 SLIST_HEAD_INITIALIZER(pa_deferinitq);
87
88 static void *pool_page_alloc_meta(struct pool *, int);
89 static void pool_page_free_meta(struct pool *, void *);
90
91 /* allocator for pool metadata */
92 static struct pool_allocator pool_allocator_meta = {
93 pool_page_alloc_meta, pool_page_free_meta,
94 .pa_backingmapptr = &kmem_map,
95 };
96
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
99
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool *drainpp;
102
103 /* This spin lock protects both pool_head and drainpp. */
104 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
105
106 typedef uint8_t pool_item_freelist_t;
107
108 struct pool_item_header {
109 /* Page headers */
110 LIST_ENTRY(pool_item_header)
111 ph_pagelist; /* pool page list */
112 SPLAY_ENTRY(pool_item_header)
113 ph_node; /* Off-page page headers */
114 caddr_t ph_page; /* this page's address */
115 struct timeval ph_time; /* last referenced */
116 union {
117 /* !PR_NOTOUCH */
118 struct {
119 LIST_HEAD(, pool_item)
120 phu_itemlist; /* chunk list for this page */
121 } phu_normal;
122 /* PR_NOTOUCH */
123 struct {
124 uint16_t
125 phu_off; /* start offset in page */
126 pool_item_freelist_t
127 phu_firstfree; /* first free item */
128 /*
129 * XXX it might be better to use
130 * a simple bitmap and ffs(3)
131 */
132 } phu_notouch;
133 } ph_u;
134 uint16_t ph_nmissing; /* # of chunks in use */
135 };
136 #define ph_itemlist ph_u.phu_normal.phu_itemlist
137 #define ph_off ph_u.phu_notouch.phu_off
138 #define ph_firstfree ph_u.phu_notouch.phu_firstfree
139
140 struct pool_item {
141 #ifdef DIAGNOSTIC
142 u_int pi_magic;
143 #endif
144 #define PI_MAGIC 0xdeadbeefU
145 /* Other entries use only this list entry */
146 LIST_ENTRY(pool_item) pi_list;
147 };
148
149 #define POOL_NEEDS_CATCHUP(pp) \
150 ((pp)->pr_nitems < (pp)->pr_minitems)
151
152 /*
153 * Pool cache management.
154 *
155 * Pool caches provide a way for constructed objects to be cached by the
156 * pool subsystem. This can lead to performance improvements by avoiding
157 * needless object construction/destruction; it is deferred until absolutely
158 * necessary.
159 *
160 * Caches are grouped into cache groups. Each cache group references
161 * up to 16 constructed objects. When a cache allocates an object
162 * from the pool, it calls the object's constructor and places it into
163 * a cache group. When a cache group frees an object back to the pool,
164 * it first calls the object's destructor. This allows the object to
165 * persist in constructed form while freed to the cache.
166 *
167 * Multiple caches may exist for each pool. This allows a single
168 * object type to have multiple constructed forms. The pool references
169 * each cache, so that when a pool is drained by the pagedaemon, it can
170 * drain each individual cache as well. Each time a cache is drained,
171 * the most idle cache group is freed to the pool in its entirety.
172 *
173 * Pool caches are layed on top of pools. By layering them, we can avoid
174 * the complexity of cache management for pools which would not benefit
175 * from it.
176 */
177
178 /* The cache group pool. */
179 static struct pool pcgpool;
180
181 static void pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
182 struct pool_cache_grouplist *);
183 static void pcg_grouplist_free(struct pool_cache_grouplist *);
184
185 static int pool_catchup(struct pool *);
186 static void pool_prime_page(struct pool *, caddr_t,
187 struct pool_item_header *);
188 static void pool_update_curpage(struct pool *);
189
190 static int pool_grow(struct pool *, int);
191 static void *pool_allocator_alloc(struct pool *, int);
192 static void pool_allocator_free(struct pool *, void *);
193
194 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
195 void (*)(const char *, ...));
196 static void pool_print1(struct pool *, const char *,
197 void (*)(const char *, ...));
198
199 static int pool_chk_page(struct pool *, const char *,
200 struct pool_item_header *);
201
202 /*
203 * Pool log entry. An array of these is allocated in pool_init().
204 */
205 struct pool_log {
206 const char *pl_file;
207 long pl_line;
208 int pl_action;
209 #define PRLOG_GET 1
210 #define PRLOG_PUT 2
211 void *pl_addr;
212 };
213
214 #ifdef POOL_DIAGNOSTIC
215 /* Number of entries in pool log buffers */
216 #ifndef POOL_LOGSIZE
217 #define POOL_LOGSIZE 10
218 #endif
219
220 int pool_logsize = POOL_LOGSIZE;
221
222 static inline void
223 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
224 {
225 int n = pp->pr_curlogentry;
226 struct pool_log *pl;
227
228 if ((pp->pr_roflags & PR_LOGGING) == 0)
229 return;
230
231 /*
232 * Fill in the current entry. Wrap around and overwrite
233 * the oldest entry if necessary.
234 */
235 pl = &pp->pr_log[n];
236 pl->pl_file = file;
237 pl->pl_line = line;
238 pl->pl_action = action;
239 pl->pl_addr = v;
240 if (++n >= pp->pr_logsize)
241 n = 0;
242 pp->pr_curlogentry = n;
243 }
244
245 static void
246 pr_printlog(struct pool *pp, struct pool_item *pi,
247 void (*pr)(const char *, ...))
248 {
249 int i = pp->pr_logsize;
250 int n = pp->pr_curlogentry;
251
252 if ((pp->pr_roflags & PR_LOGGING) == 0)
253 return;
254
255 /*
256 * Print all entries in this pool's log.
257 */
258 while (i-- > 0) {
259 struct pool_log *pl = &pp->pr_log[n];
260 if (pl->pl_action != 0) {
261 if (pi == NULL || pi == pl->pl_addr) {
262 (*pr)("\tlog entry %d:\n", i);
263 (*pr)("\t\taction = %s, addr = %p\n",
264 pl->pl_action == PRLOG_GET ? "get" : "put",
265 pl->pl_addr);
266 (*pr)("\t\tfile: %s at line %lu\n",
267 pl->pl_file, pl->pl_line);
268 }
269 }
270 if (++n >= pp->pr_logsize)
271 n = 0;
272 }
273 }
274
275 static inline void
276 pr_enter(struct pool *pp, const char *file, long line)
277 {
278
279 if (__predict_false(pp->pr_entered_file != NULL)) {
280 printf("pool %s: reentrancy at file %s line %ld\n",
281 pp->pr_wchan, file, line);
282 printf(" previous entry at file %s line %ld\n",
283 pp->pr_entered_file, pp->pr_entered_line);
284 panic("pr_enter");
285 }
286
287 pp->pr_entered_file = file;
288 pp->pr_entered_line = line;
289 }
290
291 static inline void
292 pr_leave(struct pool *pp)
293 {
294
295 if (__predict_false(pp->pr_entered_file == NULL)) {
296 printf("pool %s not entered?\n", pp->pr_wchan);
297 panic("pr_leave");
298 }
299
300 pp->pr_entered_file = NULL;
301 pp->pr_entered_line = 0;
302 }
303
304 static inline void
305 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
306 {
307
308 if (pp->pr_entered_file != NULL)
309 (*pr)("\n\tcurrently entered from file %s line %ld\n",
310 pp->pr_entered_file, pp->pr_entered_line);
311 }
312 #else
313 #define pr_log(pp, v, action, file, line)
314 #define pr_printlog(pp, pi, pr)
315 #define pr_enter(pp, file, line)
316 #define pr_leave(pp)
317 #define pr_enter_check(pp, pr)
318 #endif /* POOL_DIAGNOSTIC */
319
320 static inline int
321 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
322 const void *v)
323 {
324 const char *cp = v;
325 int idx;
326
327 KASSERT(pp->pr_roflags & PR_NOTOUCH);
328 idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
329 KASSERT(idx < pp->pr_itemsperpage);
330 return idx;
331 }
332
333 #define PR_FREELIST_ALIGN(p) \
334 roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
335 #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
336 #define PR_INDEX_USED ((pool_item_freelist_t)-1)
337 #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
338
339 static inline void
340 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
341 void *obj)
342 {
343 int idx = pr_item_notouch_index(pp, ph, obj);
344 pool_item_freelist_t *freelist = PR_FREELIST(ph);
345
346 KASSERT(freelist[idx] == PR_INDEX_USED);
347 freelist[idx] = ph->ph_firstfree;
348 ph->ph_firstfree = idx;
349 }
350
351 static inline void *
352 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
353 {
354 int idx = ph->ph_firstfree;
355 pool_item_freelist_t *freelist = PR_FREELIST(ph);
356
357 KASSERT(freelist[idx] != PR_INDEX_USED);
358 ph->ph_firstfree = freelist[idx];
359 freelist[idx] = PR_INDEX_USED;
360
361 return ph->ph_page + ph->ph_off + idx * pp->pr_size;
362 }
363
364 static inline int
365 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
366 {
367 if (a->ph_page < b->ph_page)
368 return (-1);
369 else if (a->ph_page > b->ph_page)
370 return (1);
371 else
372 return (0);
373 }
374
375 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
376 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
377
378 /*
379 * Return the pool page header based on page address.
380 */
381 static inline struct pool_item_header *
382 pr_find_pagehead(struct pool *pp, caddr_t page)
383 {
384 struct pool_item_header *ph, tmp;
385
386 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
387 return ((struct pool_item_header *)(page + pp->pr_phoffset));
388
389 tmp.ph_page = page;
390 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
391 return ph;
392 }
393
394 static void
395 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
396 {
397 struct pool_item_header *ph;
398 int s;
399
400 while ((ph = LIST_FIRST(pq)) != NULL) {
401 LIST_REMOVE(ph, ph_pagelist);
402 pool_allocator_free(pp, ph->ph_page);
403 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
404 s = splvm();
405 pool_put(pp->pr_phpool, ph);
406 splx(s);
407 }
408 }
409 }
410
411 /*
412 * Remove a page from the pool.
413 */
414 static inline void
415 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
416 struct pool_pagelist *pq)
417 {
418
419 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
420
421 /*
422 * If the page was idle, decrement the idle page count.
423 */
424 if (ph->ph_nmissing == 0) {
425 #ifdef DIAGNOSTIC
426 if (pp->pr_nidle == 0)
427 panic("pr_rmpage: nidle inconsistent");
428 if (pp->pr_nitems < pp->pr_itemsperpage)
429 panic("pr_rmpage: nitems inconsistent");
430 #endif
431 pp->pr_nidle--;
432 }
433
434 pp->pr_nitems -= pp->pr_itemsperpage;
435
436 /*
437 * Unlink the page from the pool and queue it for release.
438 */
439 LIST_REMOVE(ph, ph_pagelist);
440 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
441 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
442 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
443
444 pp->pr_npages--;
445 pp->pr_npagefree++;
446
447 pool_update_curpage(pp);
448 }
449
450 static boolean_t
451 pa_starved_p(struct pool_allocator *pa)
452 {
453
454 if (pa->pa_backingmap != NULL) {
455 return vm_map_starved_p(pa->pa_backingmap);
456 }
457 return FALSE;
458 }
459
460 static int
461 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
462 {
463 struct pool *pp = obj;
464 struct pool_allocator *pa = pp->pr_alloc;
465
466 KASSERT(&pp->pr_reclaimerentry == ce);
467 pool_reclaim(pp);
468 if (!pa_starved_p(pa)) {
469 return CALLBACK_CHAIN_ABORT;
470 }
471 return CALLBACK_CHAIN_CONTINUE;
472 }
473
474 static void
475 pool_reclaim_register(struct pool *pp)
476 {
477 struct vm_map *map = pp->pr_alloc->pa_backingmap;
478 int s;
479
480 if (map == NULL) {
481 return;
482 }
483
484 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
485 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
486 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
487 splx(s);
488 }
489
490 static void
491 pool_reclaim_unregister(struct pool *pp)
492 {
493 struct vm_map *map = pp->pr_alloc->pa_backingmap;
494 int s;
495
496 if (map == NULL) {
497 return;
498 }
499
500 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
501 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
502 &pp->pr_reclaimerentry);
503 splx(s);
504 }
505
506 static void
507 pa_reclaim_register(struct pool_allocator *pa)
508 {
509 struct vm_map *map = *pa->pa_backingmapptr;
510 struct pool *pp;
511
512 KASSERT(pa->pa_backingmap == NULL);
513 if (map == NULL) {
514 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
515 return;
516 }
517 pa->pa_backingmap = map;
518 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
519 pool_reclaim_register(pp);
520 }
521 }
522
523 /*
524 * Initialize all the pools listed in the "pools" link set.
525 */
526 void
527 pool_subsystem_init(void)
528 {
529 struct pool_allocator *pa;
530 __link_set_decl(pools, struct link_pool_init);
531 struct link_pool_init * const *pi;
532
533 __link_set_foreach(pi, pools)
534 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
535 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
536 (*pi)->palloc);
537
538 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
539 KASSERT(pa->pa_backingmapptr != NULL);
540 KASSERT(*pa->pa_backingmapptr != NULL);
541 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
542 pa_reclaim_register(pa);
543 }
544 }
545
546 /*
547 * Initialize the given pool resource structure.
548 *
549 * We export this routine to allow other kernel parts to declare
550 * static pools that must be initialized before malloc() is available.
551 */
552 void
553 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
554 const char *wchan, struct pool_allocator *palloc)
555 {
556 #ifdef DEBUG
557 struct pool *pp1;
558 #endif
559 size_t trysize, phsize;
560 int off, slack, s;
561
562 KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
563 PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
564
565 #ifdef DEBUG
566 /*
567 * Check that the pool hasn't already been initialised and
568 * added to the list of all pools.
569 */
570 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
571 if (pp == pp1)
572 panic("pool_init: pool %s already initialised",
573 wchan);
574 }
575 #endif
576
577 #ifdef POOL_DIAGNOSTIC
578 /*
579 * Always log if POOL_DIAGNOSTIC is defined.
580 */
581 if (pool_logsize != 0)
582 flags |= PR_LOGGING;
583 #endif
584
585 if (palloc == NULL)
586 palloc = &pool_allocator_kmem;
587 #ifdef POOL_SUBPAGE
588 if (size > palloc->pa_pagesz) {
589 if (palloc == &pool_allocator_kmem)
590 palloc = &pool_allocator_kmem_fullpage;
591 else if (palloc == &pool_allocator_nointr)
592 palloc = &pool_allocator_nointr_fullpage;
593 }
594 #endif /* POOL_SUBPAGE */
595 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
596 if (palloc->pa_pagesz == 0)
597 palloc->pa_pagesz = PAGE_SIZE;
598
599 TAILQ_INIT(&palloc->pa_list);
600
601 simple_lock_init(&palloc->pa_slock);
602 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
603 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
604
605 if (palloc->pa_backingmapptr != NULL) {
606 pa_reclaim_register(palloc);
607 }
608 palloc->pa_flags |= PA_INITIALIZED;
609 }
610
611 if (align == 0)
612 align = ALIGN(1);
613
614 if (size < sizeof(struct pool_item))
615 size = sizeof(struct pool_item);
616
617 size = roundup(size, align);
618 #ifdef DIAGNOSTIC
619 if (size > palloc->pa_pagesz)
620 panic("pool_init: pool item size (%lu) too large",
621 (u_long)size);
622 #endif
623
624 /*
625 * Initialize the pool structure.
626 */
627 LIST_INIT(&pp->pr_emptypages);
628 LIST_INIT(&pp->pr_fullpages);
629 LIST_INIT(&pp->pr_partpages);
630 LIST_INIT(&pp->pr_cachelist);
631 pp->pr_curpage = NULL;
632 pp->pr_npages = 0;
633 pp->pr_minitems = 0;
634 pp->pr_minpages = 0;
635 pp->pr_maxpages = UINT_MAX;
636 pp->pr_roflags = flags;
637 pp->pr_flags = 0;
638 pp->pr_size = size;
639 pp->pr_align = align;
640 pp->pr_wchan = wchan;
641 pp->pr_alloc = palloc;
642 pp->pr_nitems = 0;
643 pp->pr_nout = 0;
644 pp->pr_hardlimit = UINT_MAX;
645 pp->pr_hardlimit_warning = NULL;
646 pp->pr_hardlimit_ratecap.tv_sec = 0;
647 pp->pr_hardlimit_ratecap.tv_usec = 0;
648 pp->pr_hardlimit_warning_last.tv_sec = 0;
649 pp->pr_hardlimit_warning_last.tv_usec = 0;
650 pp->pr_drain_hook = NULL;
651 pp->pr_drain_hook_arg = NULL;
652
653 /*
654 * Decide whether to put the page header off page to avoid
655 * wasting too large a part of the page or too big item.
656 * Off-page page headers go on a hash table, so we can match
657 * a returned item with its header based on the page address.
658 * We use 1/16 of the page size and about 8 times of the item
659 * size as the threshold (XXX: tune)
660 *
661 * However, we'll put the header into the page if we can put
662 * it without wasting any items.
663 *
664 * Silently enforce `0 <= ioff < align'.
665 */
666 pp->pr_itemoffset = ioff %= align;
667 /* See the comment below about reserved bytes. */
668 trysize = palloc->pa_pagesz - ((align - ioff) % align);
669 phsize = ALIGN(sizeof(struct pool_item_header));
670 if ((pp->pr_roflags & PR_NOTOUCH) == 0 &&
671 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
672 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
673 /* Use the end of the page for the page header */
674 pp->pr_roflags |= PR_PHINPAGE;
675 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
676 } else {
677 /* The page header will be taken from our page header pool */
678 pp->pr_phoffset = 0;
679 off = palloc->pa_pagesz;
680 SPLAY_INIT(&pp->pr_phtree);
681 }
682
683 /*
684 * Alignment is to take place at `ioff' within the item. This means
685 * we must reserve up to `align - 1' bytes on the page to allow
686 * appropriate positioning of each item.
687 */
688 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
689 KASSERT(pp->pr_itemsperpage != 0);
690 if ((pp->pr_roflags & PR_NOTOUCH)) {
691 int idx;
692
693 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
694 idx++) {
695 /* nothing */
696 }
697 if (idx >= PHPOOL_MAX) {
698 /*
699 * if you see this panic, consider to tweak
700 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
701 */
702 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
703 pp->pr_wchan, pp->pr_itemsperpage);
704 }
705 pp->pr_phpool = &phpool[idx];
706 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
707 pp->pr_phpool = &phpool[0];
708 }
709 #if defined(DIAGNOSTIC)
710 else {
711 pp->pr_phpool = NULL;
712 }
713 #endif
714
715 /*
716 * Use the slack between the chunks and the page header
717 * for "cache coloring".
718 */
719 slack = off - pp->pr_itemsperpage * pp->pr_size;
720 pp->pr_maxcolor = (slack / align) * align;
721 pp->pr_curcolor = 0;
722
723 pp->pr_nget = 0;
724 pp->pr_nfail = 0;
725 pp->pr_nput = 0;
726 pp->pr_npagealloc = 0;
727 pp->pr_npagefree = 0;
728 pp->pr_hiwat = 0;
729 pp->pr_nidle = 0;
730
731 #ifdef POOL_DIAGNOSTIC
732 if (flags & PR_LOGGING) {
733 if (kmem_map == NULL ||
734 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
735 M_TEMP, M_NOWAIT)) == NULL)
736 pp->pr_roflags &= ~PR_LOGGING;
737 pp->pr_curlogentry = 0;
738 pp->pr_logsize = pool_logsize;
739 }
740 #endif
741
742 pp->pr_entered_file = NULL;
743 pp->pr_entered_line = 0;
744
745 simple_lock_init(&pp->pr_slock);
746
747 /*
748 * Initialize private page header pool and cache magazine pool if we
749 * haven't done so yet.
750 * XXX LOCKING.
751 */
752 if (phpool[0].pr_size == 0) {
753 int idx;
754 for (idx = 0; idx < PHPOOL_MAX; idx++) {
755 static char phpool_names[PHPOOL_MAX][6+1+6+1];
756 int nelem;
757 size_t sz;
758
759 nelem = PHPOOL_FREELIST_NELEM(idx);
760 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
761 "phpool-%d", nelem);
762 sz = sizeof(struct pool_item_header);
763 if (nelem) {
764 sz = PR_FREELIST_ALIGN(sz)
765 + nelem * sizeof(pool_item_freelist_t);
766 }
767 pool_init(&phpool[idx], sz, 0, 0, 0,
768 phpool_names[idx], &pool_allocator_meta);
769 }
770 #ifdef POOL_SUBPAGE
771 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
772 PR_RECURSIVE, "psppool", &pool_allocator_meta);
773 #endif
774 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
775 0, "pcgpool", &pool_allocator_meta);
776 }
777
778 /* Insert into the list of all pools. */
779 simple_lock(&pool_head_slock);
780 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
781 simple_unlock(&pool_head_slock);
782
783 /* Insert this into the list of pools using this allocator. */
784 s = splvm();
785 simple_lock(&palloc->pa_slock);
786 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
787 simple_unlock(&palloc->pa_slock);
788 splx(s);
789 pool_reclaim_register(pp);
790 }
791
792 /*
793 * De-commision a pool resource.
794 */
795 void
796 pool_destroy(struct pool *pp)
797 {
798 struct pool_pagelist pq;
799 struct pool_item_header *ph;
800 int s;
801
802 /* Remove from global pool list */
803 simple_lock(&pool_head_slock);
804 LIST_REMOVE(pp, pr_poollist);
805 if (drainpp == pp)
806 drainpp = NULL;
807 simple_unlock(&pool_head_slock);
808
809 /* Remove this pool from its allocator's list of pools. */
810 pool_reclaim_unregister(pp);
811 s = splvm();
812 simple_lock(&pp->pr_alloc->pa_slock);
813 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
814 simple_unlock(&pp->pr_alloc->pa_slock);
815 splx(s);
816
817 s = splvm();
818 simple_lock(&pp->pr_slock);
819
820 KASSERT(LIST_EMPTY(&pp->pr_cachelist));
821
822 #ifdef DIAGNOSTIC
823 if (pp->pr_nout != 0) {
824 pr_printlog(pp, NULL, printf);
825 panic("pool_destroy: pool busy: still out: %u",
826 pp->pr_nout);
827 }
828 #endif
829
830 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
831 KASSERT(LIST_EMPTY(&pp->pr_partpages));
832
833 /* Remove all pages */
834 LIST_INIT(&pq);
835 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
836 pr_rmpage(pp, ph, &pq);
837
838 simple_unlock(&pp->pr_slock);
839 splx(s);
840
841 pr_pagelist_free(pp, &pq);
842
843 #ifdef POOL_DIAGNOSTIC
844 if ((pp->pr_roflags & PR_LOGGING) != 0)
845 free(pp->pr_log, M_TEMP);
846 #endif
847 }
848
849 void
850 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
851 {
852
853 /* XXX no locking -- must be used just after pool_init() */
854 #ifdef DIAGNOSTIC
855 if (pp->pr_drain_hook != NULL)
856 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
857 #endif
858 pp->pr_drain_hook = fn;
859 pp->pr_drain_hook_arg = arg;
860 }
861
862 static struct pool_item_header *
863 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
864 {
865 struct pool_item_header *ph;
866 int s;
867
868 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
869
870 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
871 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
872 else {
873 s = splvm();
874 ph = pool_get(pp->pr_phpool, flags);
875 splx(s);
876 }
877
878 return (ph);
879 }
880
881 /*
882 * Grab an item from the pool; must be called at appropriate spl level
883 */
884 void *
885 #ifdef POOL_DIAGNOSTIC
886 _pool_get(struct pool *pp, int flags, const char *file, long line)
887 #else
888 pool_get(struct pool *pp, int flags)
889 #endif
890 {
891 struct pool_item *pi;
892 struct pool_item_header *ph;
893 void *v;
894
895 #ifdef DIAGNOSTIC
896 if (__predict_false(pp->pr_itemsperpage == 0))
897 panic("pool_get: pool %p: pr_itemsperpage is zero, "
898 "pool not initialized?", pp);
899 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
900 (flags & PR_WAITOK) != 0))
901 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
902
903 #endif /* DIAGNOSTIC */
904 #ifdef LOCKDEBUG
905 if (flags & PR_WAITOK)
906 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
907 SCHED_ASSERT_UNLOCKED();
908 #endif
909
910 simple_lock(&pp->pr_slock);
911 pr_enter(pp, file, line);
912
913 startover:
914 /*
915 * Check to see if we've reached the hard limit. If we have,
916 * and we can wait, then wait until an item has been returned to
917 * the pool.
918 */
919 #ifdef DIAGNOSTIC
920 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
921 pr_leave(pp);
922 simple_unlock(&pp->pr_slock);
923 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
924 }
925 #endif
926 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
927 if (pp->pr_drain_hook != NULL) {
928 /*
929 * Since the drain hook is going to free things
930 * back to the pool, unlock, call the hook, re-lock,
931 * and check the hardlimit condition again.
932 */
933 pr_leave(pp);
934 simple_unlock(&pp->pr_slock);
935 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
936 simple_lock(&pp->pr_slock);
937 pr_enter(pp, file, line);
938 if (pp->pr_nout < pp->pr_hardlimit)
939 goto startover;
940 }
941
942 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
943 /*
944 * XXX: A warning isn't logged in this case. Should
945 * it be?
946 */
947 pp->pr_flags |= PR_WANTED;
948 pr_leave(pp);
949 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
950 pr_enter(pp, file, line);
951 goto startover;
952 }
953
954 /*
955 * Log a message that the hard limit has been hit.
956 */
957 if (pp->pr_hardlimit_warning != NULL &&
958 ratecheck(&pp->pr_hardlimit_warning_last,
959 &pp->pr_hardlimit_ratecap))
960 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
961
962 pp->pr_nfail++;
963
964 pr_leave(pp);
965 simple_unlock(&pp->pr_slock);
966 return (NULL);
967 }
968
969 /*
970 * The convention we use is that if `curpage' is not NULL, then
971 * it points at a non-empty bucket. In particular, `curpage'
972 * never points at a page header which has PR_PHINPAGE set and
973 * has no items in its bucket.
974 */
975 if ((ph = pp->pr_curpage) == NULL) {
976 int error;
977
978 #ifdef DIAGNOSTIC
979 if (pp->pr_nitems != 0) {
980 simple_unlock(&pp->pr_slock);
981 printf("pool_get: %s: curpage NULL, nitems %u\n",
982 pp->pr_wchan, pp->pr_nitems);
983 panic("pool_get: nitems inconsistent");
984 }
985 #endif
986
987 /*
988 * Call the back-end page allocator for more memory.
989 * Release the pool lock, as the back-end page allocator
990 * may block.
991 */
992 pr_leave(pp);
993 error = pool_grow(pp, flags);
994 pr_enter(pp, file, line);
995 if (error != 0) {
996 /*
997 * We were unable to allocate a page or item
998 * header, but we released the lock during
999 * allocation, so perhaps items were freed
1000 * back to the pool. Check for this case.
1001 */
1002 if (pp->pr_curpage != NULL)
1003 goto startover;
1004
1005 pp->pr_nfail++;
1006 pr_leave(pp);
1007 simple_unlock(&pp->pr_slock);
1008 return (NULL);
1009 }
1010
1011 /* Start the allocation process over. */
1012 goto startover;
1013 }
1014 if (pp->pr_roflags & PR_NOTOUCH) {
1015 #ifdef DIAGNOSTIC
1016 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1017 pr_leave(pp);
1018 simple_unlock(&pp->pr_slock);
1019 panic("pool_get: %s: page empty", pp->pr_wchan);
1020 }
1021 #endif
1022 v = pr_item_notouch_get(pp, ph);
1023 #ifdef POOL_DIAGNOSTIC
1024 pr_log(pp, v, PRLOG_GET, file, line);
1025 #endif
1026 } else {
1027 v = pi = LIST_FIRST(&ph->ph_itemlist);
1028 if (__predict_false(v == NULL)) {
1029 pr_leave(pp);
1030 simple_unlock(&pp->pr_slock);
1031 panic("pool_get: %s: page empty", pp->pr_wchan);
1032 }
1033 #ifdef DIAGNOSTIC
1034 if (__predict_false(pp->pr_nitems == 0)) {
1035 pr_leave(pp);
1036 simple_unlock(&pp->pr_slock);
1037 printf("pool_get: %s: items on itemlist, nitems %u\n",
1038 pp->pr_wchan, pp->pr_nitems);
1039 panic("pool_get: nitems inconsistent");
1040 }
1041 #endif
1042
1043 #ifdef POOL_DIAGNOSTIC
1044 pr_log(pp, v, PRLOG_GET, file, line);
1045 #endif
1046
1047 #ifdef DIAGNOSTIC
1048 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1049 pr_printlog(pp, pi, printf);
1050 panic("pool_get(%s): free list modified: "
1051 "magic=%x; page %p; item addr %p\n",
1052 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1053 }
1054 #endif
1055
1056 /*
1057 * Remove from item list.
1058 */
1059 LIST_REMOVE(pi, pi_list);
1060 }
1061 pp->pr_nitems--;
1062 pp->pr_nout++;
1063 if (ph->ph_nmissing == 0) {
1064 #ifdef DIAGNOSTIC
1065 if (__predict_false(pp->pr_nidle == 0))
1066 panic("pool_get: nidle inconsistent");
1067 #endif
1068 pp->pr_nidle--;
1069
1070 /*
1071 * This page was previously empty. Move it to the list of
1072 * partially-full pages. This page is already curpage.
1073 */
1074 LIST_REMOVE(ph, ph_pagelist);
1075 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1076 }
1077 ph->ph_nmissing++;
1078 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1079 #ifdef DIAGNOSTIC
1080 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1081 !LIST_EMPTY(&ph->ph_itemlist))) {
1082 pr_leave(pp);
1083 simple_unlock(&pp->pr_slock);
1084 panic("pool_get: %s: nmissing inconsistent",
1085 pp->pr_wchan);
1086 }
1087 #endif
1088 /*
1089 * This page is now full. Move it to the full list
1090 * and select a new current page.
1091 */
1092 LIST_REMOVE(ph, ph_pagelist);
1093 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1094 pool_update_curpage(pp);
1095 }
1096
1097 pp->pr_nget++;
1098 pr_leave(pp);
1099
1100 /*
1101 * If we have a low water mark and we are now below that low
1102 * water mark, add more items to the pool.
1103 */
1104 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1105 /*
1106 * XXX: Should we log a warning? Should we set up a timeout
1107 * to try again in a second or so? The latter could break
1108 * a caller's assumptions about interrupt protection, etc.
1109 */
1110 }
1111
1112 simple_unlock(&pp->pr_slock);
1113 return (v);
1114 }
1115
1116 /*
1117 * Internal version of pool_put(). Pool is already locked/entered.
1118 */
1119 static void
1120 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1121 {
1122 struct pool_item *pi = v;
1123 struct pool_item_header *ph;
1124 caddr_t page;
1125
1126 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1127 SCHED_ASSERT_UNLOCKED();
1128
1129 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
1130
1131 #ifdef DIAGNOSTIC
1132 if (__predict_false(pp->pr_nout == 0)) {
1133 printf("pool %s: putting with none out\n",
1134 pp->pr_wchan);
1135 panic("pool_put");
1136 }
1137 #endif
1138
1139 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
1140 pr_printlog(pp, NULL, printf);
1141 panic("pool_put: %s: page header missing", pp->pr_wchan);
1142 }
1143
1144 #ifdef LOCKDEBUG
1145 /*
1146 * Check if we're freeing a locked simple lock.
1147 */
1148 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
1149 #endif
1150
1151 /*
1152 * Return to item list.
1153 */
1154 if (pp->pr_roflags & PR_NOTOUCH) {
1155 pr_item_notouch_put(pp, ph, v);
1156 } else {
1157 #ifdef DIAGNOSTIC
1158 pi->pi_magic = PI_MAGIC;
1159 #endif
1160 #ifdef DEBUG
1161 {
1162 int i, *ip = v;
1163
1164 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1165 *ip++ = PI_MAGIC;
1166 }
1167 }
1168 #endif
1169
1170 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1171 }
1172 KDASSERT(ph->ph_nmissing != 0);
1173 ph->ph_nmissing--;
1174 pp->pr_nput++;
1175 pp->pr_nitems++;
1176 pp->pr_nout--;
1177
1178 /* Cancel "pool empty" condition if it exists */
1179 if (pp->pr_curpage == NULL)
1180 pp->pr_curpage = ph;
1181
1182 if (pp->pr_flags & PR_WANTED) {
1183 pp->pr_flags &= ~PR_WANTED;
1184 if (ph->ph_nmissing == 0)
1185 pp->pr_nidle++;
1186 wakeup((caddr_t)pp);
1187 return;
1188 }
1189
1190 /*
1191 * If this page is now empty, do one of two things:
1192 *
1193 * (1) If we have more pages than the page high water mark,
1194 * free the page back to the system. ONLY CONSIDER
1195 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1196 * CLAIM.
1197 *
1198 * (2) Otherwise, move the page to the empty page list.
1199 *
1200 * Either way, select a new current page (so we use a partially-full
1201 * page if one is available).
1202 */
1203 if (ph->ph_nmissing == 0) {
1204 pp->pr_nidle++;
1205 if (pp->pr_npages > pp->pr_minpages &&
1206 (pp->pr_npages > pp->pr_maxpages ||
1207 pa_starved_p(pp->pr_alloc))) {
1208 pr_rmpage(pp, ph, pq);
1209 } else {
1210 LIST_REMOVE(ph, ph_pagelist);
1211 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1212
1213 /*
1214 * Update the timestamp on the page. A page must
1215 * be idle for some period of time before it can
1216 * be reclaimed by the pagedaemon. This minimizes
1217 * ping-pong'ing for memory.
1218 */
1219 getmicrotime(&ph->ph_time);
1220 }
1221 pool_update_curpage(pp);
1222 }
1223
1224 /*
1225 * If the page was previously completely full, move it to the
1226 * partially-full list and make it the current page. The next
1227 * allocation will get the item from this page, instead of
1228 * further fragmenting the pool.
1229 */
1230 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1231 LIST_REMOVE(ph, ph_pagelist);
1232 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1233 pp->pr_curpage = ph;
1234 }
1235 }
1236
1237 /*
1238 * Return resource to the pool; must be called at appropriate spl level
1239 */
1240 #ifdef POOL_DIAGNOSTIC
1241 void
1242 _pool_put(struct pool *pp, void *v, const char *file, long line)
1243 {
1244 struct pool_pagelist pq;
1245
1246 LIST_INIT(&pq);
1247
1248 simple_lock(&pp->pr_slock);
1249 pr_enter(pp, file, line);
1250
1251 pr_log(pp, v, PRLOG_PUT, file, line);
1252
1253 pool_do_put(pp, v, &pq);
1254
1255 pr_leave(pp);
1256 simple_unlock(&pp->pr_slock);
1257
1258 pr_pagelist_free(pp, &pq);
1259 }
1260 #undef pool_put
1261 #endif /* POOL_DIAGNOSTIC */
1262
1263 void
1264 pool_put(struct pool *pp, void *v)
1265 {
1266 struct pool_pagelist pq;
1267
1268 LIST_INIT(&pq);
1269
1270 simple_lock(&pp->pr_slock);
1271 pool_do_put(pp, v, &pq);
1272 simple_unlock(&pp->pr_slock);
1273
1274 pr_pagelist_free(pp, &pq);
1275 }
1276
1277 #ifdef POOL_DIAGNOSTIC
1278 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1279 #endif
1280
1281 /*
1282 * pool_grow: grow a pool by a page.
1283 *
1284 * => called with pool locked.
1285 * => unlock and relock the pool.
1286 * => return with pool locked.
1287 */
1288
1289 static int
1290 pool_grow(struct pool *pp, int flags)
1291 {
1292 struct pool_item_header *ph = NULL;
1293 char *cp;
1294
1295 simple_unlock(&pp->pr_slock);
1296 cp = pool_allocator_alloc(pp, flags);
1297 if (__predict_true(cp != NULL)) {
1298 ph = pool_alloc_item_header(pp, cp, flags);
1299 }
1300 if (__predict_false(cp == NULL || ph == NULL)) {
1301 if (cp != NULL) {
1302 pool_allocator_free(pp, cp);
1303 }
1304 simple_lock(&pp->pr_slock);
1305 return ENOMEM;
1306 }
1307
1308 simple_lock(&pp->pr_slock);
1309 pool_prime_page(pp, cp, ph);
1310 pp->pr_npagealloc++;
1311 return 0;
1312 }
1313
1314 /*
1315 * Add N items to the pool.
1316 */
1317 int
1318 pool_prime(struct pool *pp, int n)
1319 {
1320 int newpages;
1321 int error = 0;
1322
1323 simple_lock(&pp->pr_slock);
1324
1325 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1326
1327 while (newpages-- > 0) {
1328 error = pool_grow(pp, PR_NOWAIT);
1329 if (error) {
1330 break;
1331 }
1332 pp->pr_minpages++;
1333 }
1334
1335 if (pp->pr_minpages >= pp->pr_maxpages)
1336 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1337
1338 simple_unlock(&pp->pr_slock);
1339 return error;
1340 }
1341
1342 /*
1343 * Add a page worth of items to the pool.
1344 *
1345 * Note, we must be called with the pool descriptor LOCKED.
1346 */
1347 static void
1348 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1349 {
1350 struct pool_item *pi;
1351 caddr_t cp = storage;
1352 unsigned int align = pp->pr_align;
1353 unsigned int ioff = pp->pr_itemoffset;
1354 int n;
1355
1356 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1357
1358 #ifdef DIAGNOSTIC
1359 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1360 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1361 #endif
1362
1363 /*
1364 * Insert page header.
1365 */
1366 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1367 LIST_INIT(&ph->ph_itemlist);
1368 ph->ph_page = storage;
1369 ph->ph_nmissing = 0;
1370 getmicrotime(&ph->ph_time);
1371 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1372 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1373
1374 pp->pr_nidle++;
1375
1376 /*
1377 * Color this page.
1378 */
1379 cp = (caddr_t)(cp + pp->pr_curcolor);
1380 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1381 pp->pr_curcolor = 0;
1382
1383 /*
1384 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1385 */
1386 if (ioff != 0)
1387 cp = (caddr_t)(cp + (align - ioff));
1388
1389 /*
1390 * Insert remaining chunks on the bucket list.
1391 */
1392 n = pp->pr_itemsperpage;
1393 pp->pr_nitems += n;
1394
1395 if (pp->pr_roflags & PR_NOTOUCH) {
1396 pool_item_freelist_t *freelist = PR_FREELIST(ph);
1397 int i;
1398
1399 ph->ph_off = cp - storage;
1400 ph->ph_firstfree = 0;
1401 for (i = 0; i < n - 1; i++)
1402 freelist[i] = i + 1;
1403 freelist[n - 1] = PR_INDEX_EOL;
1404 } else {
1405 while (n--) {
1406 pi = (struct pool_item *)cp;
1407
1408 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1409
1410 /* Insert on page list */
1411 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1412 #ifdef DIAGNOSTIC
1413 pi->pi_magic = PI_MAGIC;
1414 #endif
1415 cp = (caddr_t)(cp + pp->pr_size);
1416 }
1417 }
1418
1419 /*
1420 * If the pool was depleted, point at the new page.
1421 */
1422 if (pp->pr_curpage == NULL)
1423 pp->pr_curpage = ph;
1424
1425 if (++pp->pr_npages > pp->pr_hiwat)
1426 pp->pr_hiwat = pp->pr_npages;
1427 }
1428
1429 /*
1430 * Used by pool_get() when nitems drops below the low water mark. This
1431 * is used to catch up pr_nitems with the low water mark.
1432 *
1433 * Note 1, we never wait for memory here, we let the caller decide what to do.
1434 *
1435 * Note 2, we must be called with the pool already locked, and we return
1436 * with it locked.
1437 */
1438 static int
1439 pool_catchup(struct pool *pp)
1440 {
1441 int error = 0;
1442
1443 while (POOL_NEEDS_CATCHUP(pp)) {
1444 error = pool_grow(pp, PR_NOWAIT);
1445 if (error) {
1446 break;
1447 }
1448 }
1449 return error;
1450 }
1451
1452 static void
1453 pool_update_curpage(struct pool *pp)
1454 {
1455
1456 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1457 if (pp->pr_curpage == NULL) {
1458 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1459 }
1460 }
1461
1462 void
1463 pool_setlowat(struct pool *pp, int n)
1464 {
1465
1466 simple_lock(&pp->pr_slock);
1467
1468 pp->pr_minitems = n;
1469 pp->pr_minpages = (n == 0)
1470 ? 0
1471 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1472
1473 /* Make sure we're caught up with the newly-set low water mark. */
1474 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1475 /*
1476 * XXX: Should we log a warning? Should we set up a timeout
1477 * to try again in a second or so? The latter could break
1478 * a caller's assumptions about interrupt protection, etc.
1479 */
1480 }
1481
1482 simple_unlock(&pp->pr_slock);
1483 }
1484
1485 void
1486 pool_sethiwat(struct pool *pp, int n)
1487 {
1488
1489 simple_lock(&pp->pr_slock);
1490
1491 pp->pr_maxpages = (n == 0)
1492 ? 0
1493 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1494
1495 simple_unlock(&pp->pr_slock);
1496 }
1497
1498 void
1499 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1500 {
1501
1502 simple_lock(&pp->pr_slock);
1503
1504 pp->pr_hardlimit = n;
1505 pp->pr_hardlimit_warning = warnmess;
1506 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1507 pp->pr_hardlimit_warning_last.tv_sec = 0;
1508 pp->pr_hardlimit_warning_last.tv_usec = 0;
1509
1510 /*
1511 * In-line version of pool_sethiwat(), because we don't want to
1512 * release the lock.
1513 */
1514 pp->pr_maxpages = (n == 0)
1515 ? 0
1516 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1517
1518 simple_unlock(&pp->pr_slock);
1519 }
1520
1521 /*
1522 * Release all complete pages that have not been used recently.
1523 */
1524 int
1525 #ifdef POOL_DIAGNOSTIC
1526 _pool_reclaim(struct pool *pp, const char *file, long line)
1527 #else
1528 pool_reclaim(struct pool *pp)
1529 #endif
1530 {
1531 struct pool_item_header *ph, *phnext;
1532 struct pool_cache *pc;
1533 struct pool_pagelist pq;
1534 struct pool_cache_grouplist pcgl;
1535 struct timeval curtime, diff;
1536
1537 if (pp->pr_drain_hook != NULL) {
1538 /*
1539 * The drain hook must be called with the pool unlocked.
1540 */
1541 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1542 }
1543
1544 if (simple_lock_try(&pp->pr_slock) == 0)
1545 return (0);
1546 pr_enter(pp, file, line);
1547
1548 LIST_INIT(&pq);
1549 LIST_INIT(&pcgl);
1550
1551 /*
1552 * Reclaim items from the pool's caches.
1553 */
1554 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1555 pool_cache_reclaim(pc, &pq, &pcgl);
1556
1557 getmicrotime(&curtime);
1558
1559 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1560 phnext = LIST_NEXT(ph, ph_pagelist);
1561
1562 /* Check our minimum page claim */
1563 if (pp->pr_npages <= pp->pr_minpages)
1564 break;
1565
1566 KASSERT(ph->ph_nmissing == 0);
1567 timersub(&curtime, &ph->ph_time, &diff);
1568 if (diff.tv_sec < pool_inactive_time
1569 && !pa_starved_p(pp->pr_alloc))
1570 continue;
1571
1572 /*
1573 * If freeing this page would put us below
1574 * the low water mark, stop now.
1575 */
1576 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1577 pp->pr_minitems)
1578 break;
1579
1580 pr_rmpage(pp, ph, &pq);
1581 }
1582
1583 pr_leave(pp);
1584 simple_unlock(&pp->pr_slock);
1585 if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
1586 return 0;
1587
1588 pr_pagelist_free(pp, &pq);
1589 pcg_grouplist_free(&pcgl);
1590 return (1);
1591 }
1592
1593 /*
1594 * Drain pools, one at a time.
1595 *
1596 * Note, we must never be called from an interrupt context.
1597 */
1598 void
1599 pool_drain(void *arg)
1600 {
1601 struct pool *pp;
1602 int s;
1603
1604 pp = NULL;
1605 s = splvm();
1606 simple_lock(&pool_head_slock);
1607 if (drainpp == NULL) {
1608 drainpp = LIST_FIRST(&pool_head);
1609 }
1610 if (drainpp) {
1611 pp = drainpp;
1612 drainpp = LIST_NEXT(pp, pr_poollist);
1613 }
1614 simple_unlock(&pool_head_slock);
1615 if (pp)
1616 pool_reclaim(pp);
1617 splx(s);
1618 }
1619
1620 /*
1621 * Diagnostic helpers.
1622 */
1623 void
1624 pool_print(struct pool *pp, const char *modif)
1625 {
1626 int s;
1627
1628 s = splvm();
1629 if (simple_lock_try(&pp->pr_slock) == 0) {
1630 printf("pool %s is locked; try again later\n",
1631 pp->pr_wchan);
1632 splx(s);
1633 return;
1634 }
1635 pool_print1(pp, modif, printf);
1636 simple_unlock(&pp->pr_slock);
1637 splx(s);
1638 }
1639
1640 void
1641 pool_printall(const char *modif, void (*pr)(const char *, ...))
1642 {
1643 struct pool *pp;
1644
1645 if (simple_lock_try(&pool_head_slock) == 0) {
1646 (*pr)("WARNING: pool_head_slock is locked\n");
1647 } else {
1648 simple_unlock(&pool_head_slock);
1649 }
1650
1651 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1652 pool_printit(pp, modif, pr);
1653 }
1654 }
1655
1656 void
1657 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1658 {
1659
1660 if (pp == NULL) {
1661 (*pr)("Must specify a pool to print.\n");
1662 return;
1663 }
1664
1665 /*
1666 * Called from DDB; interrupts should be blocked, and all
1667 * other processors should be paused. We can skip locking
1668 * the pool in this case.
1669 *
1670 * We do a simple_lock_try() just to print the lock
1671 * status, however.
1672 */
1673
1674 if (simple_lock_try(&pp->pr_slock) == 0)
1675 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1676 else
1677 simple_unlock(&pp->pr_slock);
1678
1679 pool_print1(pp, modif, pr);
1680 }
1681
1682 static void
1683 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1684 void (*pr)(const char *, ...))
1685 {
1686 struct pool_item_header *ph;
1687 #ifdef DIAGNOSTIC
1688 struct pool_item *pi;
1689 #endif
1690
1691 LIST_FOREACH(ph, pl, ph_pagelist) {
1692 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1693 ph->ph_page, ph->ph_nmissing,
1694 (u_long)ph->ph_time.tv_sec,
1695 (u_long)ph->ph_time.tv_usec);
1696 #ifdef DIAGNOSTIC
1697 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1698 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1699 if (pi->pi_magic != PI_MAGIC) {
1700 (*pr)("\t\t\titem %p, magic 0x%x\n",
1701 pi, pi->pi_magic);
1702 }
1703 }
1704 }
1705 #endif
1706 }
1707 }
1708
1709 static void
1710 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1711 {
1712 struct pool_item_header *ph;
1713 struct pool_cache *pc;
1714 struct pool_cache_group *pcg;
1715 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1716 char c;
1717
1718 while ((c = *modif++) != '\0') {
1719 if (c == 'l')
1720 print_log = 1;
1721 if (c == 'p')
1722 print_pagelist = 1;
1723 if (c == 'c')
1724 print_cache = 1;
1725 }
1726
1727 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1728 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1729 pp->pr_roflags);
1730 (*pr)("\talloc %p\n", pp->pr_alloc);
1731 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1732 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1733 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1734 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1735
1736 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1737 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1738 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1739 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1740
1741 if (print_pagelist == 0)
1742 goto skip_pagelist;
1743
1744 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1745 (*pr)("\n\tempty page list:\n");
1746 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1747 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1748 (*pr)("\n\tfull page list:\n");
1749 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1750 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1751 (*pr)("\n\tpartial-page list:\n");
1752 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1753
1754 if (pp->pr_curpage == NULL)
1755 (*pr)("\tno current page\n");
1756 else
1757 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1758
1759 skip_pagelist:
1760 if (print_log == 0)
1761 goto skip_log;
1762
1763 (*pr)("\n");
1764 if ((pp->pr_roflags & PR_LOGGING) == 0)
1765 (*pr)("\tno log\n");
1766 else
1767 pr_printlog(pp, NULL, pr);
1768
1769 skip_log:
1770 if (print_cache == 0)
1771 goto skip_cache;
1772
1773 #define PR_GROUPLIST(pcg) \
1774 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1775 for (i = 0; i < PCG_NOBJECTS; i++) { \
1776 if (pcg->pcg_objects[i].pcgo_pa != \
1777 POOL_PADDR_INVALID) { \
1778 (*pr)("\t\t\t%p, 0x%llx\n", \
1779 pcg->pcg_objects[i].pcgo_va, \
1780 (unsigned long long) \
1781 pcg->pcg_objects[i].pcgo_pa); \
1782 } else { \
1783 (*pr)("\t\t\t%p\n", \
1784 pcg->pcg_objects[i].pcgo_va); \
1785 } \
1786 }
1787
1788 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1789 (*pr)("\tcache %p\n", pc);
1790 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1791 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1792 (*pr)("\t full groups:\n");
1793 LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
1794 PR_GROUPLIST(pcg);
1795 }
1796 (*pr)("\t partial groups:\n");
1797 LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
1798 PR_GROUPLIST(pcg);
1799 }
1800 (*pr)("\t empty groups:\n");
1801 LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
1802 PR_GROUPLIST(pcg);
1803 }
1804 }
1805 #undef PR_GROUPLIST
1806
1807 skip_cache:
1808 pr_enter_check(pp, pr);
1809 }
1810
1811 static int
1812 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1813 {
1814 struct pool_item *pi;
1815 caddr_t page;
1816 int n;
1817
1818 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1819 if (page != ph->ph_page &&
1820 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1821 if (label != NULL)
1822 printf("%s: ", label);
1823 printf("pool(%p:%s): page inconsistency: page %p;"
1824 " at page head addr %p (p %p)\n", pp,
1825 pp->pr_wchan, ph->ph_page,
1826 ph, page);
1827 return 1;
1828 }
1829
1830 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1831 return 0;
1832
1833 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1834 pi != NULL;
1835 pi = LIST_NEXT(pi,pi_list), n++) {
1836
1837 #ifdef DIAGNOSTIC
1838 if (pi->pi_magic != PI_MAGIC) {
1839 if (label != NULL)
1840 printf("%s: ", label);
1841 printf("pool(%s): free list modified: magic=%x;"
1842 " page %p; item ordinal %d;"
1843 " addr %p (p %p)\n",
1844 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1845 n, pi, page);
1846 panic("pool");
1847 }
1848 #endif
1849 page =
1850 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1851 if (page == ph->ph_page)
1852 continue;
1853
1854 if (label != NULL)
1855 printf("%s: ", label);
1856 printf("pool(%p:%s): page inconsistency: page %p;"
1857 " item ordinal %d; addr %p (p %p)\n", pp,
1858 pp->pr_wchan, ph->ph_page,
1859 n, pi, page);
1860 return 1;
1861 }
1862 return 0;
1863 }
1864
1865
1866 int
1867 pool_chk(struct pool *pp, const char *label)
1868 {
1869 struct pool_item_header *ph;
1870 int r = 0;
1871
1872 simple_lock(&pp->pr_slock);
1873 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1874 r = pool_chk_page(pp, label, ph);
1875 if (r) {
1876 goto out;
1877 }
1878 }
1879 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1880 r = pool_chk_page(pp, label, ph);
1881 if (r) {
1882 goto out;
1883 }
1884 }
1885 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1886 r = pool_chk_page(pp, label, ph);
1887 if (r) {
1888 goto out;
1889 }
1890 }
1891
1892 out:
1893 simple_unlock(&pp->pr_slock);
1894 return (r);
1895 }
1896
1897 /*
1898 * pool_cache_init:
1899 *
1900 * Initialize a pool cache.
1901 *
1902 * NOTE: If the pool must be protected from interrupts, we expect
1903 * to be called at the appropriate interrupt priority level.
1904 */
1905 void
1906 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1907 int (*ctor)(void *, void *, int),
1908 void (*dtor)(void *, void *),
1909 void *arg)
1910 {
1911
1912 LIST_INIT(&pc->pc_emptygroups);
1913 LIST_INIT(&pc->pc_fullgroups);
1914 LIST_INIT(&pc->pc_partgroups);
1915 simple_lock_init(&pc->pc_slock);
1916
1917 pc->pc_pool = pp;
1918
1919 pc->pc_ctor = ctor;
1920 pc->pc_dtor = dtor;
1921 pc->pc_arg = arg;
1922
1923 pc->pc_hits = 0;
1924 pc->pc_misses = 0;
1925
1926 pc->pc_ngroups = 0;
1927
1928 pc->pc_nitems = 0;
1929
1930 simple_lock(&pp->pr_slock);
1931 LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1932 simple_unlock(&pp->pr_slock);
1933 }
1934
1935 /*
1936 * pool_cache_destroy:
1937 *
1938 * Destroy a pool cache.
1939 */
1940 void
1941 pool_cache_destroy(struct pool_cache *pc)
1942 {
1943 struct pool *pp = pc->pc_pool;
1944
1945 /* First, invalidate the entire cache. */
1946 pool_cache_invalidate(pc);
1947
1948 /* ...and remove it from the pool's cache list. */
1949 simple_lock(&pp->pr_slock);
1950 LIST_REMOVE(pc, pc_poollist);
1951 simple_unlock(&pp->pr_slock);
1952 }
1953
1954 static inline void *
1955 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1956 {
1957 void *object;
1958 u_int idx;
1959
1960 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1961 KASSERT(pcg->pcg_avail != 0);
1962 idx = --pcg->pcg_avail;
1963
1964 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1965 object = pcg->pcg_objects[idx].pcgo_va;
1966 if (pap != NULL)
1967 *pap = pcg->pcg_objects[idx].pcgo_pa;
1968 pcg->pcg_objects[idx].pcgo_va = NULL;
1969
1970 return (object);
1971 }
1972
1973 static inline void
1974 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1975 {
1976 u_int idx;
1977
1978 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1979 idx = pcg->pcg_avail++;
1980
1981 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1982 pcg->pcg_objects[idx].pcgo_va = object;
1983 pcg->pcg_objects[idx].pcgo_pa = pa;
1984 }
1985
1986 static void
1987 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
1988 {
1989 struct pool_cache_group *pcg;
1990 int s;
1991
1992 s = splvm();
1993 while ((pcg = LIST_FIRST(pcgl)) != NULL) {
1994 LIST_REMOVE(pcg, pcg_list);
1995 pool_put(&pcgpool, pcg);
1996 }
1997 splx(s);
1998 }
1999
2000 /*
2001 * pool_cache_get{,_paddr}:
2002 *
2003 * Get an object from a pool cache (optionally returning
2004 * the physical address of the object).
2005 */
2006 void *
2007 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
2008 {
2009 struct pool_cache_group *pcg;
2010 void *object;
2011
2012 #ifdef LOCKDEBUG
2013 if (flags & PR_WAITOK)
2014 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
2015 #endif
2016
2017 simple_lock(&pc->pc_slock);
2018
2019 pcg = LIST_FIRST(&pc->pc_partgroups);
2020 if (pcg == NULL) {
2021 pcg = LIST_FIRST(&pc->pc_fullgroups);
2022 if (pcg != NULL) {
2023 LIST_REMOVE(pcg, pcg_list);
2024 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2025 }
2026 }
2027 if (pcg == NULL) {
2028
2029 /*
2030 * No groups with any available objects. Allocate
2031 * a new object, construct it, and return it to
2032 * the caller. We will allocate a group, if necessary,
2033 * when the object is freed back to the cache.
2034 */
2035 pc->pc_misses++;
2036 simple_unlock(&pc->pc_slock);
2037 object = pool_get(pc->pc_pool, flags);
2038 if (object != NULL && pc->pc_ctor != NULL) {
2039 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2040 pool_put(pc->pc_pool, object);
2041 return (NULL);
2042 }
2043 }
2044 if (object != NULL && pap != NULL) {
2045 #ifdef POOL_VTOPHYS
2046 *pap = POOL_VTOPHYS(object);
2047 #else
2048 *pap = POOL_PADDR_INVALID;
2049 #endif
2050 }
2051 return (object);
2052 }
2053
2054 pc->pc_hits++;
2055 pc->pc_nitems--;
2056 object = pcg_get(pcg, pap);
2057
2058 if (pcg->pcg_avail == 0) {
2059 LIST_REMOVE(pcg, pcg_list);
2060 LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
2061 }
2062 simple_unlock(&pc->pc_slock);
2063
2064 return (object);
2065 }
2066
2067 /*
2068 * pool_cache_put{,_paddr}:
2069 *
2070 * Put an object back to the pool cache (optionally caching the
2071 * physical address of the object).
2072 */
2073 void
2074 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
2075 {
2076 struct pool_cache_group *pcg;
2077 int s;
2078
2079 if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
2080 goto destruct;
2081 }
2082
2083 simple_lock(&pc->pc_slock);
2084
2085 pcg = LIST_FIRST(&pc->pc_partgroups);
2086 if (pcg == NULL) {
2087 pcg = LIST_FIRST(&pc->pc_emptygroups);
2088 if (pcg != NULL) {
2089 LIST_REMOVE(pcg, pcg_list);
2090 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2091 }
2092 }
2093 if (pcg == NULL) {
2094
2095 /*
2096 * No empty groups to free the object to. Attempt to
2097 * allocate one.
2098 */
2099 simple_unlock(&pc->pc_slock);
2100 s = splvm();
2101 pcg = pool_get(&pcgpool, PR_NOWAIT);
2102 splx(s);
2103 if (pcg == NULL) {
2104 destruct:
2105
2106 /*
2107 * Unable to allocate a cache group; destruct the object
2108 * and free it back to the pool.
2109 */
2110 pool_cache_destruct_object(pc, object);
2111 return;
2112 }
2113 memset(pcg, 0, sizeof(*pcg));
2114 simple_lock(&pc->pc_slock);
2115 pc->pc_ngroups++;
2116 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2117 }
2118
2119 pc->pc_nitems++;
2120 pcg_put(pcg, object, pa);
2121
2122 if (pcg->pcg_avail == PCG_NOBJECTS) {
2123 LIST_REMOVE(pcg, pcg_list);
2124 LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
2125 }
2126 simple_unlock(&pc->pc_slock);
2127 }
2128
2129 /*
2130 * pool_cache_destruct_object:
2131 *
2132 * Force destruction of an object and its release back into
2133 * the pool.
2134 */
2135 void
2136 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2137 {
2138
2139 if (pc->pc_dtor != NULL)
2140 (*pc->pc_dtor)(pc->pc_arg, object);
2141 pool_put(pc->pc_pool, object);
2142 }
2143
2144 static void
2145 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
2146 struct pool_cache *pc, struct pool_pagelist *pq,
2147 struct pool_cache_grouplist *pcgdl)
2148 {
2149 struct pool_cache_group *pcg, *npcg;
2150 void *object;
2151
2152 for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
2153 npcg = LIST_NEXT(pcg, pcg_list);
2154 while (pcg->pcg_avail != 0) {
2155 pc->pc_nitems--;
2156 object = pcg_get(pcg, NULL);
2157 if (pc->pc_dtor != NULL)
2158 (*pc->pc_dtor)(pc->pc_arg, object);
2159 pool_do_put(pc->pc_pool, object, pq);
2160 }
2161 pc->pc_ngroups--;
2162 LIST_REMOVE(pcg, pcg_list);
2163 LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
2164 }
2165 }
2166
2167 static void
2168 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
2169 struct pool_cache_grouplist *pcgl)
2170 {
2171
2172 LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
2173 LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
2174
2175 pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
2176 pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
2177
2178 KASSERT(LIST_EMPTY(&pc->pc_partgroups));
2179 KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
2180 KASSERT(pc->pc_nitems == 0);
2181 }
2182
2183 /*
2184 * pool_cache_invalidate:
2185 *
2186 * Invalidate a pool cache (destruct and release all of the
2187 * cached objects).
2188 */
2189 void
2190 pool_cache_invalidate(struct pool_cache *pc)
2191 {
2192 struct pool_pagelist pq;
2193 struct pool_cache_grouplist pcgl;
2194
2195 LIST_INIT(&pq);
2196 LIST_INIT(&pcgl);
2197
2198 simple_lock(&pc->pc_slock);
2199 simple_lock(&pc->pc_pool->pr_slock);
2200
2201 pool_do_cache_invalidate(pc, &pq, &pcgl);
2202
2203 simple_unlock(&pc->pc_pool->pr_slock);
2204 simple_unlock(&pc->pc_slock);
2205
2206 pr_pagelist_free(pc->pc_pool, &pq);
2207 pcg_grouplist_free(&pcgl);
2208 }
2209
2210 /*
2211 * pool_cache_reclaim:
2212 *
2213 * Reclaim a pool cache for pool_reclaim().
2214 */
2215 static void
2216 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
2217 struct pool_cache_grouplist *pcgl)
2218 {
2219
2220 /*
2221 * We're locking in the wrong order (normally pool_cache -> pool,
2222 * but the pool is already locked when we get here), so we have
2223 * to use trylock. If we can't lock the pool_cache, it's not really
2224 * a big deal here.
2225 */
2226 if (simple_lock_try(&pc->pc_slock) == 0)
2227 return;
2228
2229 pool_do_cache_invalidate(pc, pq, pcgl);
2230
2231 simple_unlock(&pc->pc_slock);
2232 }
2233
2234 /*
2235 * Pool backend allocators.
2236 *
2237 * Each pool has a backend allocator that handles allocation, deallocation,
2238 * and any additional draining that might be needed.
2239 *
2240 * We provide two standard allocators:
2241 *
2242 * pool_allocator_kmem - the default when no allocator is specified
2243 *
2244 * pool_allocator_nointr - used for pools that will not be accessed
2245 * in interrupt context.
2246 */
2247 void *pool_page_alloc(struct pool *, int);
2248 void pool_page_free(struct pool *, void *);
2249
2250 #ifdef POOL_SUBPAGE
2251 struct pool_allocator pool_allocator_kmem_fullpage = {
2252 pool_page_alloc, pool_page_free, 0,
2253 .pa_backingmapptr = &kmem_map,
2254 };
2255 #else
2256 struct pool_allocator pool_allocator_kmem = {
2257 pool_page_alloc, pool_page_free, 0,
2258 .pa_backingmapptr = &kmem_map,
2259 };
2260 #endif
2261
2262 void *pool_page_alloc_nointr(struct pool *, int);
2263 void pool_page_free_nointr(struct pool *, void *);
2264
2265 #ifdef POOL_SUBPAGE
2266 struct pool_allocator pool_allocator_nointr_fullpage = {
2267 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2268 .pa_backingmapptr = &kernel_map,
2269 };
2270 #else
2271 struct pool_allocator pool_allocator_nointr = {
2272 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2273 .pa_backingmapptr = &kernel_map,
2274 };
2275 #endif
2276
2277 #ifdef POOL_SUBPAGE
2278 void *pool_subpage_alloc(struct pool *, int);
2279 void pool_subpage_free(struct pool *, void *);
2280
2281 struct pool_allocator pool_allocator_kmem = {
2282 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2283 .pa_backingmapptr = &kmem_map,
2284 };
2285
2286 void *pool_subpage_alloc_nointr(struct pool *, int);
2287 void pool_subpage_free_nointr(struct pool *, void *);
2288
2289 struct pool_allocator pool_allocator_nointr = {
2290 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2291 .pa_backingmapptr = &kmem_map,
2292 };
2293 #endif /* POOL_SUBPAGE */
2294
2295 static void *
2296 pool_allocator_alloc(struct pool *pp, int flags)
2297 {
2298 struct pool_allocator *pa = pp->pr_alloc;
2299 void *res;
2300
2301 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2302
2303 res = (*pa->pa_alloc)(pp, flags);
2304 if (res == NULL && (flags & PR_WAITOK) == 0) {
2305 /*
2306 * We only run the drain hook here if PR_NOWAIT.
2307 * In other cases, the hook will be run in
2308 * pool_reclaim().
2309 */
2310 if (pp->pr_drain_hook != NULL) {
2311 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2312 res = (*pa->pa_alloc)(pp, flags);
2313 }
2314 }
2315 return res;
2316 }
2317
2318 static void
2319 pool_allocator_free(struct pool *pp, void *v)
2320 {
2321 struct pool_allocator *pa = pp->pr_alloc;
2322
2323 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2324
2325 (*pa->pa_free)(pp, v);
2326 }
2327
2328 void *
2329 pool_page_alloc(struct pool *pp, int flags)
2330 {
2331 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2332
2333 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2334 }
2335
2336 void
2337 pool_page_free(struct pool *pp, void *v)
2338 {
2339
2340 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2341 }
2342
2343 static void *
2344 pool_page_alloc_meta(struct pool *pp, int flags)
2345 {
2346 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2347
2348 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2349 }
2350
2351 static void
2352 pool_page_free_meta(struct pool *pp, void *v)
2353 {
2354
2355 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2356 }
2357
2358 #ifdef POOL_SUBPAGE
2359 /* Sub-page allocator, for machines with large hardware pages. */
2360 void *
2361 pool_subpage_alloc(struct pool *pp, int flags)
2362 {
2363 void *v;
2364 int s;
2365 s = splvm();
2366 v = pool_get(&psppool, flags);
2367 splx(s);
2368 return v;
2369 }
2370
2371 void
2372 pool_subpage_free(struct pool *pp, void *v)
2373 {
2374 int s;
2375 s = splvm();
2376 pool_put(&psppool, v);
2377 splx(s);
2378 }
2379
2380 /* We don't provide a real nointr allocator. Maybe later. */
2381 void *
2382 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2383 {
2384
2385 return (pool_subpage_alloc(pp, flags));
2386 }
2387
2388 void
2389 pool_subpage_free_nointr(struct pool *pp, void *v)
2390 {
2391
2392 pool_subpage_free(pp, v);
2393 }
2394 #endif /* POOL_SUBPAGE */
2395 void *
2396 pool_page_alloc_nointr(struct pool *pp, int flags)
2397 {
2398 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2399
2400 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2401 }
2402
2403 void
2404 pool_page_free_nointr(struct pool *pp, void *v)
2405 {
2406
2407 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2408 }
2409