subr_pool.c revision 1.101.2.11 1 /* $NetBSD: subr_pool.c,v 1.101.2.11 2008/02/27 08:36:56 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.101.2.11 2008/02/27 08:36:56 yamt Exp $");
42
43 #include "opt_ddb.h"
44 #include "opt_pool.h"
45 #include "opt_poollog.h"
46 #include "opt_lockdebug.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bitops.h>
51 #include <sys/proc.h>
52 #include <sys/errno.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/pool.h>
56 #include <sys/syslog.h>
57 #include <sys/debug.h>
58 #include <sys/lockdebug.h>
59 #include <sys/xcall.h>
60 #include <sys/cpu.h>
61 #include <sys/atomic.h>
62
63 #include <uvm/uvm.h>
64
65 /*
66 * Pool resource management utility.
67 *
68 * Memory is allocated in pages which are split into pieces according to
69 * the pool item size. Each page is kept on one of three lists in the
70 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
71 * for empty, full and partially-full pages respectively. The individual
72 * pool items are on a linked list headed by `ph_itemlist' in each page
73 * header. The memory for building the page list is either taken from
74 * the allocated pages themselves (for small pool items) or taken from
75 * an internal pool of page headers (`phpool').
76 */
77
78 /* List of all pools */
79 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
80
81 /* Private pool for page header structures */
82 #define PHPOOL_MAX 8
83 static struct pool phpool[PHPOOL_MAX];
84 #define PHPOOL_FREELIST_NELEM(idx) \
85 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
86
87 #ifdef POOL_SUBPAGE
88 /* Pool of subpages for use by normal pools. */
89 static struct pool psppool;
90 #endif
91
92 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
93 SLIST_HEAD_INITIALIZER(pa_deferinitq);
94
95 static void *pool_page_alloc_meta(struct pool *, int);
96 static void pool_page_free_meta(struct pool *, void *);
97
98 /* allocator for pool metadata */
99 struct pool_allocator pool_allocator_meta = {
100 pool_page_alloc_meta, pool_page_free_meta,
101 .pa_backingmapptr = &kmem_map,
102 };
103
104 /* # of seconds to retain page after last use */
105 int pool_inactive_time = 10;
106
107 /* Next candidate for drainage (see pool_drain()) */
108 static struct pool *drainpp;
109
110 /* This lock protects both pool_head and drainpp. */
111 static kmutex_t pool_head_lock;
112 static kcondvar_t pool_busy;
113
114 typedef uint32_t pool_item_bitmap_t;
115 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
116 #define BITMAP_MASK (BITMAP_SIZE - 1)
117
118 struct pool_item_header {
119 /* Page headers */
120 LIST_ENTRY(pool_item_header)
121 ph_pagelist; /* pool page list */
122 SPLAY_ENTRY(pool_item_header)
123 ph_node; /* Off-page page headers */
124 void * ph_page; /* this page's address */
125 uint32_t ph_time; /* last referenced */
126 uint16_t ph_nmissing; /* # of chunks in use */
127 uint16_t ph_off; /* start offset in page */
128 union {
129 /* !PR_NOTOUCH */
130 struct {
131 LIST_HEAD(, pool_item)
132 phu_itemlist; /* chunk list for this page */
133 } phu_normal;
134 /* PR_NOTOUCH */
135 struct {
136 pool_item_bitmap_t phu_bitmap[1];
137 } phu_notouch;
138 } ph_u;
139 };
140 #define ph_itemlist ph_u.phu_normal.phu_itemlist
141 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
142
143 struct pool_item {
144 #ifdef DIAGNOSTIC
145 u_int pi_magic;
146 #endif
147 #define PI_MAGIC 0xdeaddeadU
148 /* Other entries use only this list entry */
149 LIST_ENTRY(pool_item) pi_list;
150 };
151
152 #define POOL_NEEDS_CATCHUP(pp) \
153 ((pp)->pr_nitems < (pp)->pr_minitems)
154
155 /*
156 * Pool cache management.
157 *
158 * Pool caches provide a way for constructed objects to be cached by the
159 * pool subsystem. This can lead to performance improvements by avoiding
160 * needless object construction/destruction; it is deferred until absolutely
161 * necessary.
162 *
163 * Caches are grouped into cache groups. Each cache group references up
164 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
165 * object from the pool, it calls the object's constructor and places it
166 * into a cache group. When a cache group frees an object back to the
167 * pool, it first calls the object's destructor. This allows the object
168 * to persist in constructed form while freed to the cache.
169 *
170 * The pool references each cache, so that when a pool is drained by the
171 * pagedaemon, it can drain each individual cache as well. Each time a
172 * cache is drained, the most idle cache group is freed to the pool in
173 * its entirety.
174 *
175 * Pool caches are layed on top of pools. By layering them, we can avoid
176 * the complexity of cache management for pools which would not benefit
177 * from it.
178 */
179
180 static struct pool pcg_normal_pool;
181 static struct pool pcg_large_pool;
182 static struct pool cache_pool;
183 static struct pool cache_cpu_pool;
184
185 /* List of all caches. */
186 TAILQ_HEAD(,pool_cache) pool_cache_head =
187 TAILQ_HEAD_INITIALIZER(pool_cache_head);
188
189 int pool_cache_disable;
190
191
192 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
193 void *, paddr_t);
194 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
195 void **, paddr_t *, int);
196 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
197 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
198 static void pool_cache_xcall(pool_cache_t);
199
200 static int pool_catchup(struct pool *);
201 static void pool_prime_page(struct pool *, void *,
202 struct pool_item_header *);
203 static void pool_update_curpage(struct pool *);
204
205 static int pool_grow(struct pool *, int);
206 static void *pool_allocator_alloc(struct pool *, int);
207 static void pool_allocator_free(struct pool *, void *);
208
209 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
210 void (*)(const char *, ...));
211 static void pool_print1(struct pool *, const char *,
212 void (*)(const char *, ...));
213
214 static int pool_chk_page(struct pool *, const char *,
215 struct pool_item_header *);
216
217 /*
218 * Pool log entry. An array of these is allocated in pool_init().
219 */
220 struct pool_log {
221 const char *pl_file;
222 long pl_line;
223 int pl_action;
224 #define PRLOG_GET 1
225 #define PRLOG_PUT 2
226 void *pl_addr;
227 };
228
229 #ifdef POOL_DIAGNOSTIC
230 /* Number of entries in pool log buffers */
231 #ifndef POOL_LOGSIZE
232 #define POOL_LOGSIZE 10
233 #endif
234
235 int pool_logsize = POOL_LOGSIZE;
236
237 static inline void
238 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
239 {
240 int n = pp->pr_curlogentry;
241 struct pool_log *pl;
242
243 if ((pp->pr_roflags & PR_LOGGING) == 0)
244 return;
245
246 /*
247 * Fill in the current entry. Wrap around and overwrite
248 * the oldest entry if necessary.
249 */
250 pl = &pp->pr_log[n];
251 pl->pl_file = file;
252 pl->pl_line = line;
253 pl->pl_action = action;
254 pl->pl_addr = v;
255 if (++n >= pp->pr_logsize)
256 n = 0;
257 pp->pr_curlogentry = n;
258 }
259
260 static void
261 pr_printlog(struct pool *pp, struct pool_item *pi,
262 void (*pr)(const char *, ...))
263 {
264 int i = pp->pr_logsize;
265 int n = pp->pr_curlogentry;
266
267 if ((pp->pr_roflags & PR_LOGGING) == 0)
268 return;
269
270 /*
271 * Print all entries in this pool's log.
272 */
273 while (i-- > 0) {
274 struct pool_log *pl = &pp->pr_log[n];
275 if (pl->pl_action != 0) {
276 if (pi == NULL || pi == pl->pl_addr) {
277 (*pr)("\tlog entry %d:\n", i);
278 (*pr)("\t\taction = %s, addr = %p\n",
279 pl->pl_action == PRLOG_GET ? "get" : "put",
280 pl->pl_addr);
281 (*pr)("\t\tfile: %s at line %lu\n",
282 pl->pl_file, pl->pl_line);
283 }
284 }
285 if (++n >= pp->pr_logsize)
286 n = 0;
287 }
288 }
289
290 static inline void
291 pr_enter(struct pool *pp, const char *file, long line)
292 {
293
294 if (__predict_false(pp->pr_entered_file != NULL)) {
295 printf("pool %s: reentrancy at file %s line %ld\n",
296 pp->pr_wchan, file, line);
297 printf(" previous entry at file %s line %ld\n",
298 pp->pr_entered_file, pp->pr_entered_line);
299 panic("pr_enter");
300 }
301
302 pp->pr_entered_file = file;
303 pp->pr_entered_line = line;
304 }
305
306 static inline void
307 pr_leave(struct pool *pp)
308 {
309
310 if (__predict_false(pp->pr_entered_file == NULL)) {
311 printf("pool %s not entered?\n", pp->pr_wchan);
312 panic("pr_leave");
313 }
314
315 pp->pr_entered_file = NULL;
316 pp->pr_entered_line = 0;
317 }
318
319 static inline void
320 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
321 {
322
323 if (pp->pr_entered_file != NULL)
324 (*pr)("\n\tcurrently entered from file %s line %ld\n",
325 pp->pr_entered_file, pp->pr_entered_line);
326 }
327 #else
328 #define pr_log(pp, v, action, file, line)
329 #define pr_printlog(pp, pi, pr)
330 #define pr_enter(pp, file, line)
331 #define pr_leave(pp)
332 #define pr_enter_check(pp, pr)
333 #endif /* POOL_DIAGNOSTIC */
334
335 static inline unsigned int
336 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
337 const void *v)
338 {
339 const char *cp = v;
340 unsigned int idx;
341
342 KASSERT(pp->pr_roflags & PR_NOTOUCH);
343 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
344 KASSERT(idx < pp->pr_itemsperpage);
345 return idx;
346 }
347
348 static inline void
349 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
350 void *obj)
351 {
352 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
353 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
354 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
355
356 KASSERT((*bitmap & mask) == 0);
357 *bitmap |= mask;
358 }
359
360 static inline void *
361 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
362 {
363 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
364 unsigned int idx;
365 int i;
366
367 for (i = 0; ; i++) {
368 int bit;
369
370 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
371 bit = ffs32(bitmap[i]);
372 if (bit) {
373 pool_item_bitmap_t mask;
374
375 bit--;
376 idx = (i * BITMAP_SIZE) + bit;
377 mask = 1 << bit;
378 KASSERT((bitmap[i] & mask) != 0);
379 bitmap[i] &= ~mask;
380 break;
381 }
382 }
383 KASSERT(idx < pp->pr_itemsperpage);
384 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
385 }
386
387 static inline void
388 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
389 {
390 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
391 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
392 int i;
393
394 for (i = 0; i < n; i++) {
395 bitmap[i] = (pool_item_bitmap_t)-1;
396 }
397 }
398
399 static inline int
400 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
401 {
402
403 /*
404 * we consider pool_item_header with smaller ph_page bigger.
405 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
406 */
407
408 if (a->ph_page < b->ph_page)
409 return (1);
410 else if (a->ph_page > b->ph_page)
411 return (-1);
412 else
413 return (0);
414 }
415
416 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
417 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
418
419 static inline struct pool_item_header *
420 pr_find_pagehead_noalign(struct pool *pp, void *v)
421 {
422 struct pool_item_header *ph, tmp;
423
424 tmp.ph_page = (void *)(uintptr_t)v;
425 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
426 if (ph == NULL) {
427 ph = SPLAY_ROOT(&pp->pr_phtree);
428 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
429 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
430 }
431 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
432 }
433
434 return ph;
435 }
436
437 /*
438 * Return the pool page header based on item address.
439 */
440 static inline struct pool_item_header *
441 pr_find_pagehead(struct pool *pp, void *v)
442 {
443 struct pool_item_header *ph, tmp;
444
445 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
446 ph = pr_find_pagehead_noalign(pp, v);
447 } else {
448 void *page =
449 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
450
451 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
452 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
453 } else {
454 tmp.ph_page = page;
455 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
456 }
457 }
458
459 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
460 ((char *)ph->ph_page <= (char *)v &&
461 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
462 return ph;
463 }
464
465 static void
466 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
467 {
468 struct pool_item_header *ph;
469
470 while ((ph = LIST_FIRST(pq)) != NULL) {
471 LIST_REMOVE(ph, ph_pagelist);
472 pool_allocator_free(pp, ph->ph_page);
473 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
474 pool_put(pp->pr_phpool, ph);
475 }
476 }
477
478 /*
479 * Remove a page from the pool.
480 */
481 static inline void
482 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
483 struct pool_pagelist *pq)
484 {
485
486 KASSERT(mutex_owned(&pp->pr_lock));
487
488 /*
489 * If the page was idle, decrement the idle page count.
490 */
491 if (ph->ph_nmissing == 0) {
492 #ifdef DIAGNOSTIC
493 if (pp->pr_nidle == 0)
494 panic("pr_rmpage: nidle inconsistent");
495 if (pp->pr_nitems < pp->pr_itemsperpage)
496 panic("pr_rmpage: nitems inconsistent");
497 #endif
498 pp->pr_nidle--;
499 }
500
501 pp->pr_nitems -= pp->pr_itemsperpage;
502
503 /*
504 * Unlink the page from the pool and queue it for release.
505 */
506 LIST_REMOVE(ph, ph_pagelist);
507 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
508 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
509 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
510
511 pp->pr_npages--;
512 pp->pr_npagefree++;
513
514 pool_update_curpage(pp);
515 }
516
517 static bool
518 pa_starved_p(struct pool_allocator *pa)
519 {
520
521 if (pa->pa_backingmap != NULL) {
522 return vm_map_starved_p(pa->pa_backingmap);
523 }
524 return false;
525 }
526
527 static int
528 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
529 {
530 struct pool *pp = obj;
531 struct pool_allocator *pa = pp->pr_alloc;
532
533 KASSERT(&pp->pr_reclaimerentry == ce);
534 pool_reclaim(pp);
535 if (!pa_starved_p(pa)) {
536 return CALLBACK_CHAIN_ABORT;
537 }
538 return CALLBACK_CHAIN_CONTINUE;
539 }
540
541 static void
542 pool_reclaim_register(struct pool *pp)
543 {
544 struct vm_map *map = pp->pr_alloc->pa_backingmap;
545 int s;
546
547 if (map == NULL) {
548 return;
549 }
550
551 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
552 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
553 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
554 splx(s);
555 }
556
557 static void
558 pool_reclaim_unregister(struct pool *pp)
559 {
560 struct vm_map *map = pp->pr_alloc->pa_backingmap;
561 int s;
562
563 if (map == NULL) {
564 return;
565 }
566
567 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
568 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
569 &pp->pr_reclaimerentry);
570 splx(s);
571 }
572
573 static void
574 pa_reclaim_register(struct pool_allocator *pa)
575 {
576 struct vm_map *map = *pa->pa_backingmapptr;
577 struct pool *pp;
578
579 KASSERT(pa->pa_backingmap == NULL);
580 if (map == NULL) {
581 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
582 return;
583 }
584 pa->pa_backingmap = map;
585 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
586 pool_reclaim_register(pp);
587 }
588 }
589
590 /*
591 * Initialize all the pools listed in the "pools" link set.
592 */
593 void
594 pool_subsystem_init(void)
595 {
596 struct pool_allocator *pa;
597 __link_set_decl(pools, struct link_pool_init);
598 struct link_pool_init * const *pi;
599
600 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
601 cv_init(&pool_busy, "poolbusy");
602
603 __link_set_foreach(pi, pools)
604 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
605 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
606 (*pi)->palloc, (*pi)->ipl);
607
608 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
609 KASSERT(pa->pa_backingmapptr != NULL);
610 KASSERT(*pa->pa_backingmapptr != NULL);
611 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
612 pa_reclaim_register(pa);
613 }
614
615 pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
616 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
617
618 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
619 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
620 }
621
622 /*
623 * Initialize the given pool resource structure.
624 *
625 * We export this routine to allow other kernel parts to declare
626 * static pools that must be initialized before malloc() is available.
627 */
628 void
629 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
630 const char *wchan, struct pool_allocator *palloc, int ipl)
631 {
632 struct pool *pp1;
633 size_t trysize, phsize;
634 int off, slack;
635
636 #ifdef DEBUG
637 /*
638 * Check that the pool hasn't already been initialised and
639 * added to the list of all pools.
640 */
641 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
642 if (pp == pp1)
643 panic("pool_init: pool %s already initialised",
644 wchan);
645 }
646 #endif
647
648 #ifdef POOL_DIAGNOSTIC
649 /*
650 * Always log if POOL_DIAGNOSTIC is defined.
651 */
652 if (pool_logsize != 0)
653 flags |= PR_LOGGING;
654 #endif
655
656 if (palloc == NULL)
657 palloc = &pool_allocator_kmem;
658 #ifdef POOL_SUBPAGE
659 if (size > palloc->pa_pagesz) {
660 if (palloc == &pool_allocator_kmem)
661 palloc = &pool_allocator_kmem_fullpage;
662 else if (palloc == &pool_allocator_nointr)
663 palloc = &pool_allocator_nointr_fullpage;
664 }
665 #endif /* POOL_SUBPAGE */
666 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
667 if (palloc->pa_pagesz == 0)
668 palloc->pa_pagesz = PAGE_SIZE;
669
670 TAILQ_INIT(&palloc->pa_list);
671
672 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
673 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
674 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
675
676 if (palloc->pa_backingmapptr != NULL) {
677 pa_reclaim_register(palloc);
678 }
679 palloc->pa_flags |= PA_INITIALIZED;
680 }
681
682 if (align == 0)
683 align = ALIGN(1);
684
685 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
686 size = sizeof(struct pool_item);
687
688 size = roundup(size, align);
689 #ifdef DIAGNOSTIC
690 if (size > palloc->pa_pagesz)
691 panic("pool_init: pool item size (%zu) too large", size);
692 #endif
693
694 /*
695 * Initialize the pool structure.
696 */
697 LIST_INIT(&pp->pr_emptypages);
698 LIST_INIT(&pp->pr_fullpages);
699 LIST_INIT(&pp->pr_partpages);
700 pp->pr_cache = NULL;
701 pp->pr_curpage = NULL;
702 pp->pr_npages = 0;
703 pp->pr_minitems = 0;
704 pp->pr_minpages = 0;
705 pp->pr_maxpages = UINT_MAX;
706 pp->pr_roflags = flags;
707 pp->pr_flags = 0;
708 pp->pr_size = size;
709 pp->pr_align = align;
710 pp->pr_wchan = wchan;
711 pp->pr_alloc = palloc;
712 pp->pr_nitems = 0;
713 pp->pr_nout = 0;
714 pp->pr_hardlimit = UINT_MAX;
715 pp->pr_hardlimit_warning = NULL;
716 pp->pr_hardlimit_ratecap.tv_sec = 0;
717 pp->pr_hardlimit_ratecap.tv_usec = 0;
718 pp->pr_hardlimit_warning_last.tv_sec = 0;
719 pp->pr_hardlimit_warning_last.tv_usec = 0;
720 pp->pr_drain_hook = NULL;
721 pp->pr_drain_hook_arg = NULL;
722 pp->pr_freecheck = NULL;
723
724 /*
725 * Decide whether to put the page header off page to avoid
726 * wasting too large a part of the page or too big item.
727 * Off-page page headers go on a hash table, so we can match
728 * a returned item with its header based on the page address.
729 * We use 1/16 of the page size and about 8 times of the item
730 * size as the threshold (XXX: tune)
731 *
732 * However, we'll put the header into the page if we can put
733 * it without wasting any items.
734 *
735 * Silently enforce `0 <= ioff < align'.
736 */
737 pp->pr_itemoffset = ioff %= align;
738 /* See the comment below about reserved bytes. */
739 trysize = palloc->pa_pagesz - ((align - ioff) % align);
740 phsize = ALIGN(sizeof(struct pool_item_header));
741 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
742 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
743 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
744 /* Use the end of the page for the page header */
745 pp->pr_roflags |= PR_PHINPAGE;
746 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
747 } else {
748 /* The page header will be taken from our page header pool */
749 pp->pr_phoffset = 0;
750 off = palloc->pa_pagesz;
751 SPLAY_INIT(&pp->pr_phtree);
752 }
753
754 /*
755 * Alignment is to take place at `ioff' within the item. This means
756 * we must reserve up to `align - 1' bytes on the page to allow
757 * appropriate positioning of each item.
758 */
759 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
760 KASSERT(pp->pr_itemsperpage != 0);
761 if ((pp->pr_roflags & PR_NOTOUCH)) {
762 int idx;
763
764 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
765 idx++) {
766 /* nothing */
767 }
768 if (idx >= PHPOOL_MAX) {
769 /*
770 * if you see this panic, consider to tweak
771 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
772 */
773 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
774 pp->pr_wchan, pp->pr_itemsperpage);
775 }
776 pp->pr_phpool = &phpool[idx];
777 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
778 pp->pr_phpool = &phpool[0];
779 }
780 #if defined(DIAGNOSTIC)
781 else {
782 pp->pr_phpool = NULL;
783 }
784 #endif
785
786 /*
787 * Use the slack between the chunks and the page header
788 * for "cache coloring".
789 */
790 slack = off - pp->pr_itemsperpage * pp->pr_size;
791 pp->pr_maxcolor = (slack / align) * align;
792 pp->pr_curcolor = 0;
793
794 pp->pr_nget = 0;
795 pp->pr_nfail = 0;
796 pp->pr_nput = 0;
797 pp->pr_npagealloc = 0;
798 pp->pr_npagefree = 0;
799 pp->pr_hiwat = 0;
800 pp->pr_nidle = 0;
801 pp->pr_refcnt = 0;
802
803 #ifdef POOL_DIAGNOSTIC
804 if (flags & PR_LOGGING) {
805 if (kmem_map == NULL ||
806 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
807 M_TEMP, M_NOWAIT)) == NULL)
808 pp->pr_roflags &= ~PR_LOGGING;
809 pp->pr_curlogentry = 0;
810 pp->pr_logsize = pool_logsize;
811 }
812 #endif
813
814 pp->pr_entered_file = NULL;
815 pp->pr_entered_line = 0;
816
817 /*
818 * XXXAD hack to prevent IP input processing from blocking.
819 */
820 if (ipl == IPL_SOFTNET) {
821 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
822 } else {
823 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
824 }
825 cv_init(&pp->pr_cv, wchan);
826 pp->pr_ipl = ipl;
827
828 /*
829 * Initialize private page header pool and cache magazine pool if we
830 * haven't done so yet.
831 * XXX LOCKING.
832 */
833 if (phpool[0].pr_size == 0) {
834 int idx;
835 for (idx = 0; idx < PHPOOL_MAX; idx++) {
836 static char phpool_names[PHPOOL_MAX][6+1+6+1];
837 int nelem;
838 size_t sz;
839
840 nelem = PHPOOL_FREELIST_NELEM(idx);
841 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
842 "phpool-%d", nelem);
843 sz = sizeof(struct pool_item_header);
844 if (nelem) {
845 sz = offsetof(struct pool_item_header,
846 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
847 }
848 pool_init(&phpool[idx], sz, 0, 0, 0,
849 phpool_names[idx], &pool_allocator_meta, IPL_VM);
850 }
851 #ifdef POOL_SUBPAGE
852 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
853 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
854 #endif
855
856 size = sizeof(pcg_t) +
857 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
858 pool_init(&pcg_normal_pool, size, CACHE_LINE_SIZE, 0, 0,
859 "pcgnormal", &pool_allocator_meta, IPL_VM);
860
861 size = sizeof(pcg_t) +
862 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
863 pool_init(&pcg_large_pool, size, CACHE_LINE_SIZE, 0, 0,
864 "pcglarge", &pool_allocator_meta, IPL_VM);
865 }
866
867 /* Insert into the list of all pools. */
868 if (__predict_true(!cold))
869 mutex_enter(&pool_head_lock);
870 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
871 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
872 break;
873 }
874 if (pp1 == NULL)
875 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
876 else
877 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
878 if (__predict_true(!cold))
879 mutex_exit(&pool_head_lock);
880
881 /* Insert this into the list of pools using this allocator. */
882 if (__predict_true(!cold))
883 mutex_enter(&palloc->pa_lock);
884 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
885 if (__predict_true(!cold))
886 mutex_exit(&palloc->pa_lock);
887
888 pool_reclaim_register(pp);
889 }
890
891 /*
892 * De-commision a pool resource.
893 */
894 void
895 pool_destroy(struct pool *pp)
896 {
897 struct pool_pagelist pq;
898 struct pool_item_header *ph;
899
900 /* Remove from global pool list */
901 mutex_enter(&pool_head_lock);
902 while (pp->pr_refcnt != 0)
903 cv_wait(&pool_busy, &pool_head_lock);
904 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
905 if (drainpp == pp)
906 drainpp = NULL;
907 mutex_exit(&pool_head_lock);
908
909 /* Remove this pool from its allocator's list of pools. */
910 pool_reclaim_unregister(pp);
911 mutex_enter(&pp->pr_alloc->pa_lock);
912 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
913 mutex_exit(&pp->pr_alloc->pa_lock);
914
915 mutex_enter(&pp->pr_lock);
916
917 KASSERT(pp->pr_cache == NULL);
918
919 #ifdef DIAGNOSTIC
920 if (pp->pr_nout != 0) {
921 pr_printlog(pp, NULL, printf);
922 panic("pool_destroy: pool busy: still out: %u",
923 pp->pr_nout);
924 }
925 #endif
926
927 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
928 KASSERT(LIST_EMPTY(&pp->pr_partpages));
929
930 /* Remove all pages */
931 LIST_INIT(&pq);
932 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
933 pr_rmpage(pp, ph, &pq);
934
935 mutex_exit(&pp->pr_lock);
936
937 pr_pagelist_free(pp, &pq);
938
939 #ifdef POOL_DIAGNOSTIC
940 if ((pp->pr_roflags & PR_LOGGING) != 0)
941 free(pp->pr_log, M_TEMP);
942 #endif
943
944 cv_destroy(&pp->pr_cv);
945 mutex_destroy(&pp->pr_lock);
946 }
947
948 void
949 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
950 {
951
952 /* XXX no locking -- must be used just after pool_init() */
953 #ifdef DIAGNOSTIC
954 if (pp->pr_drain_hook != NULL)
955 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
956 #endif
957 pp->pr_drain_hook = fn;
958 pp->pr_drain_hook_arg = arg;
959 }
960
961 static struct pool_item_header *
962 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
963 {
964 struct pool_item_header *ph;
965
966 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
967 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
968 else
969 ph = pool_get(pp->pr_phpool, flags);
970
971 return (ph);
972 }
973
974 /*
975 * Grab an item from the pool.
976 */
977 void *
978 #ifdef POOL_DIAGNOSTIC
979 _pool_get(struct pool *pp, int flags, const char *file, long line)
980 #else
981 pool_get(struct pool *pp, int flags)
982 #endif
983 {
984 struct pool_item *pi;
985 struct pool_item_header *ph;
986 void *v;
987
988 #ifdef DIAGNOSTIC
989 if (__predict_false(pp->pr_itemsperpage == 0))
990 panic("pool_get: pool %p: pr_itemsperpage is zero, "
991 "pool not initialized?", pp);
992 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
993 (flags & PR_WAITOK) != 0))
994 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
995
996 #endif /* DIAGNOSTIC */
997 #ifdef LOCKDEBUG
998 if (flags & PR_WAITOK)
999 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
1000 #endif
1001
1002 mutex_enter(&pp->pr_lock);
1003 pr_enter(pp, file, line);
1004
1005 startover:
1006 /*
1007 * Check to see if we've reached the hard limit. If we have,
1008 * and we can wait, then wait until an item has been returned to
1009 * the pool.
1010 */
1011 #ifdef DIAGNOSTIC
1012 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1013 pr_leave(pp);
1014 mutex_exit(&pp->pr_lock);
1015 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1016 }
1017 #endif
1018 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1019 if (pp->pr_drain_hook != NULL) {
1020 /*
1021 * Since the drain hook is going to free things
1022 * back to the pool, unlock, call the hook, re-lock,
1023 * and check the hardlimit condition again.
1024 */
1025 pr_leave(pp);
1026 mutex_exit(&pp->pr_lock);
1027 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1028 mutex_enter(&pp->pr_lock);
1029 pr_enter(pp, file, line);
1030 if (pp->pr_nout < pp->pr_hardlimit)
1031 goto startover;
1032 }
1033
1034 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1035 /*
1036 * XXX: A warning isn't logged in this case. Should
1037 * it be?
1038 */
1039 pp->pr_flags |= PR_WANTED;
1040 pr_leave(pp);
1041 cv_wait(&pp->pr_cv, &pp->pr_lock);
1042 pr_enter(pp, file, line);
1043 goto startover;
1044 }
1045
1046 /*
1047 * Log a message that the hard limit has been hit.
1048 */
1049 if (pp->pr_hardlimit_warning != NULL &&
1050 ratecheck(&pp->pr_hardlimit_warning_last,
1051 &pp->pr_hardlimit_ratecap))
1052 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1053
1054 pp->pr_nfail++;
1055
1056 pr_leave(pp);
1057 mutex_exit(&pp->pr_lock);
1058 return (NULL);
1059 }
1060
1061 /*
1062 * The convention we use is that if `curpage' is not NULL, then
1063 * it points at a non-empty bucket. In particular, `curpage'
1064 * never points at a page header which has PR_PHINPAGE set and
1065 * has no items in its bucket.
1066 */
1067 if ((ph = pp->pr_curpage) == NULL) {
1068 int error;
1069
1070 #ifdef DIAGNOSTIC
1071 if (pp->pr_nitems != 0) {
1072 mutex_exit(&pp->pr_lock);
1073 printf("pool_get: %s: curpage NULL, nitems %u\n",
1074 pp->pr_wchan, pp->pr_nitems);
1075 panic("pool_get: nitems inconsistent");
1076 }
1077 #endif
1078
1079 /*
1080 * Call the back-end page allocator for more memory.
1081 * Release the pool lock, as the back-end page allocator
1082 * may block.
1083 */
1084 pr_leave(pp);
1085 error = pool_grow(pp, flags);
1086 pr_enter(pp, file, line);
1087 if (error != 0) {
1088 /*
1089 * We were unable to allocate a page or item
1090 * header, but we released the lock during
1091 * allocation, so perhaps items were freed
1092 * back to the pool. Check for this case.
1093 */
1094 if (pp->pr_curpage != NULL)
1095 goto startover;
1096
1097 pp->pr_nfail++;
1098 pr_leave(pp);
1099 mutex_exit(&pp->pr_lock);
1100 return (NULL);
1101 }
1102
1103 /* Start the allocation process over. */
1104 goto startover;
1105 }
1106 if (pp->pr_roflags & PR_NOTOUCH) {
1107 #ifdef DIAGNOSTIC
1108 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1109 pr_leave(pp);
1110 mutex_exit(&pp->pr_lock);
1111 panic("pool_get: %s: page empty", pp->pr_wchan);
1112 }
1113 #endif
1114 v = pr_item_notouch_get(pp, ph);
1115 #ifdef POOL_DIAGNOSTIC
1116 pr_log(pp, v, PRLOG_GET, file, line);
1117 #endif
1118 } else {
1119 v = pi = LIST_FIRST(&ph->ph_itemlist);
1120 if (__predict_false(v == NULL)) {
1121 pr_leave(pp);
1122 mutex_exit(&pp->pr_lock);
1123 panic("pool_get: %s: page empty", pp->pr_wchan);
1124 }
1125 #ifdef DIAGNOSTIC
1126 if (__predict_false(pp->pr_nitems == 0)) {
1127 pr_leave(pp);
1128 mutex_exit(&pp->pr_lock);
1129 printf("pool_get: %s: items on itemlist, nitems %u\n",
1130 pp->pr_wchan, pp->pr_nitems);
1131 panic("pool_get: nitems inconsistent");
1132 }
1133 #endif
1134
1135 #ifdef POOL_DIAGNOSTIC
1136 pr_log(pp, v, PRLOG_GET, file, line);
1137 #endif
1138
1139 #ifdef DIAGNOSTIC
1140 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1141 pr_printlog(pp, pi, printf);
1142 panic("pool_get(%s): free list modified: "
1143 "magic=%x; page %p; item addr %p\n",
1144 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1145 }
1146 #endif
1147
1148 /*
1149 * Remove from item list.
1150 */
1151 LIST_REMOVE(pi, pi_list);
1152 }
1153 pp->pr_nitems--;
1154 pp->pr_nout++;
1155 if (ph->ph_nmissing == 0) {
1156 #ifdef DIAGNOSTIC
1157 if (__predict_false(pp->pr_nidle == 0))
1158 panic("pool_get: nidle inconsistent");
1159 #endif
1160 pp->pr_nidle--;
1161
1162 /*
1163 * This page was previously empty. Move it to the list of
1164 * partially-full pages. This page is already curpage.
1165 */
1166 LIST_REMOVE(ph, ph_pagelist);
1167 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1168 }
1169 ph->ph_nmissing++;
1170 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1171 #ifdef DIAGNOSTIC
1172 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1173 !LIST_EMPTY(&ph->ph_itemlist))) {
1174 pr_leave(pp);
1175 mutex_exit(&pp->pr_lock);
1176 panic("pool_get: %s: nmissing inconsistent",
1177 pp->pr_wchan);
1178 }
1179 #endif
1180 /*
1181 * This page is now full. Move it to the full list
1182 * and select a new current page.
1183 */
1184 LIST_REMOVE(ph, ph_pagelist);
1185 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1186 pool_update_curpage(pp);
1187 }
1188
1189 pp->pr_nget++;
1190 pr_leave(pp);
1191
1192 /*
1193 * If we have a low water mark and we are now below that low
1194 * water mark, add more items to the pool.
1195 */
1196 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1197 /*
1198 * XXX: Should we log a warning? Should we set up a timeout
1199 * to try again in a second or so? The latter could break
1200 * a caller's assumptions about interrupt protection, etc.
1201 */
1202 }
1203
1204 mutex_exit(&pp->pr_lock);
1205 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1206 FREECHECK_OUT(&pp->pr_freecheck, v);
1207 return (v);
1208 }
1209
1210 /*
1211 * Internal version of pool_put(). Pool is already locked/entered.
1212 */
1213 static void
1214 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1215 {
1216 struct pool_item *pi = v;
1217 struct pool_item_header *ph;
1218
1219 KASSERT(mutex_owned(&pp->pr_lock));
1220 FREECHECK_IN(&pp->pr_freecheck, v);
1221 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1222
1223 #ifdef DIAGNOSTIC
1224 if (__predict_false(pp->pr_nout == 0)) {
1225 printf("pool %s: putting with none out\n",
1226 pp->pr_wchan);
1227 panic("pool_put");
1228 }
1229 #endif
1230
1231 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1232 pr_printlog(pp, NULL, printf);
1233 panic("pool_put: %s: page header missing", pp->pr_wchan);
1234 }
1235
1236 /*
1237 * Return to item list.
1238 */
1239 if (pp->pr_roflags & PR_NOTOUCH) {
1240 pr_item_notouch_put(pp, ph, v);
1241 } else {
1242 #ifdef DIAGNOSTIC
1243 pi->pi_magic = PI_MAGIC;
1244 #endif
1245 #ifdef DEBUG
1246 {
1247 int i, *ip = v;
1248
1249 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1250 *ip++ = PI_MAGIC;
1251 }
1252 }
1253 #endif
1254
1255 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1256 }
1257 KDASSERT(ph->ph_nmissing != 0);
1258 ph->ph_nmissing--;
1259 pp->pr_nput++;
1260 pp->pr_nitems++;
1261 pp->pr_nout--;
1262
1263 /* Cancel "pool empty" condition if it exists */
1264 if (pp->pr_curpage == NULL)
1265 pp->pr_curpage = ph;
1266
1267 if (pp->pr_flags & PR_WANTED) {
1268 pp->pr_flags &= ~PR_WANTED;
1269 if (ph->ph_nmissing == 0)
1270 pp->pr_nidle++;
1271 cv_broadcast(&pp->pr_cv);
1272 return;
1273 }
1274
1275 /*
1276 * If this page is now empty, do one of two things:
1277 *
1278 * (1) If we have more pages than the page high water mark,
1279 * free the page back to the system. ONLY CONSIDER
1280 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1281 * CLAIM.
1282 *
1283 * (2) Otherwise, move the page to the empty page list.
1284 *
1285 * Either way, select a new current page (so we use a partially-full
1286 * page if one is available).
1287 */
1288 if (ph->ph_nmissing == 0) {
1289 pp->pr_nidle++;
1290 if (pp->pr_npages > pp->pr_minpages &&
1291 (pp->pr_npages > pp->pr_maxpages ||
1292 pa_starved_p(pp->pr_alloc))) {
1293 pr_rmpage(pp, ph, pq);
1294 } else {
1295 LIST_REMOVE(ph, ph_pagelist);
1296 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1297
1298 /*
1299 * Update the timestamp on the page. A page must
1300 * be idle for some period of time before it can
1301 * be reclaimed by the pagedaemon. This minimizes
1302 * ping-pong'ing for memory.
1303 *
1304 * note for 64-bit time_t: truncating to 32-bit is not
1305 * a problem for our usage.
1306 */
1307 ph->ph_time = time_uptime;
1308 }
1309 pool_update_curpage(pp);
1310 }
1311
1312 /*
1313 * If the page was previously completely full, move it to the
1314 * partially-full list and make it the current page. The next
1315 * allocation will get the item from this page, instead of
1316 * further fragmenting the pool.
1317 */
1318 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1319 LIST_REMOVE(ph, ph_pagelist);
1320 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1321 pp->pr_curpage = ph;
1322 }
1323 }
1324
1325 /*
1326 * Return resource to the pool.
1327 */
1328 #ifdef POOL_DIAGNOSTIC
1329 void
1330 _pool_put(struct pool *pp, void *v, const char *file, long line)
1331 {
1332 struct pool_pagelist pq;
1333
1334 LIST_INIT(&pq);
1335
1336 mutex_enter(&pp->pr_lock);
1337 pr_enter(pp, file, line);
1338
1339 pr_log(pp, v, PRLOG_PUT, file, line);
1340
1341 pool_do_put(pp, v, &pq);
1342
1343 pr_leave(pp);
1344 mutex_exit(&pp->pr_lock);
1345
1346 pr_pagelist_free(pp, &pq);
1347 }
1348 #undef pool_put
1349 #endif /* POOL_DIAGNOSTIC */
1350
1351 void
1352 pool_put(struct pool *pp, void *v)
1353 {
1354 struct pool_pagelist pq;
1355
1356 LIST_INIT(&pq);
1357
1358 mutex_enter(&pp->pr_lock);
1359 pool_do_put(pp, v, &pq);
1360 mutex_exit(&pp->pr_lock);
1361
1362 pr_pagelist_free(pp, &pq);
1363 }
1364
1365 #ifdef POOL_DIAGNOSTIC
1366 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1367 #endif
1368
1369 /*
1370 * pool_grow: grow a pool by a page.
1371 *
1372 * => called with pool locked.
1373 * => unlock and relock the pool.
1374 * => return with pool locked.
1375 */
1376
1377 static int
1378 pool_grow(struct pool *pp, int flags)
1379 {
1380 struct pool_item_header *ph = NULL;
1381 char *cp;
1382
1383 mutex_exit(&pp->pr_lock);
1384 cp = pool_allocator_alloc(pp, flags);
1385 if (__predict_true(cp != NULL)) {
1386 ph = pool_alloc_item_header(pp, cp, flags);
1387 }
1388 if (__predict_false(cp == NULL || ph == NULL)) {
1389 if (cp != NULL) {
1390 pool_allocator_free(pp, cp);
1391 }
1392 mutex_enter(&pp->pr_lock);
1393 return ENOMEM;
1394 }
1395
1396 mutex_enter(&pp->pr_lock);
1397 pool_prime_page(pp, cp, ph);
1398 pp->pr_npagealloc++;
1399 return 0;
1400 }
1401
1402 /*
1403 * Add N items to the pool.
1404 */
1405 int
1406 pool_prime(struct pool *pp, int n)
1407 {
1408 int newpages;
1409 int error = 0;
1410
1411 mutex_enter(&pp->pr_lock);
1412
1413 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1414
1415 while (newpages-- > 0) {
1416 error = pool_grow(pp, PR_NOWAIT);
1417 if (error) {
1418 break;
1419 }
1420 pp->pr_minpages++;
1421 }
1422
1423 if (pp->pr_minpages >= pp->pr_maxpages)
1424 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1425
1426 mutex_exit(&pp->pr_lock);
1427 return error;
1428 }
1429
1430 /*
1431 * Add a page worth of items to the pool.
1432 *
1433 * Note, we must be called with the pool descriptor LOCKED.
1434 */
1435 static void
1436 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1437 {
1438 struct pool_item *pi;
1439 void *cp = storage;
1440 const unsigned int align = pp->pr_align;
1441 const unsigned int ioff = pp->pr_itemoffset;
1442 int n;
1443
1444 KASSERT(mutex_owned(&pp->pr_lock));
1445
1446 #ifdef DIAGNOSTIC
1447 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1448 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1449 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1450 #endif
1451
1452 /*
1453 * Insert page header.
1454 */
1455 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1456 LIST_INIT(&ph->ph_itemlist);
1457 ph->ph_page = storage;
1458 ph->ph_nmissing = 0;
1459 ph->ph_time = time_uptime;
1460 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1461 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1462
1463 pp->pr_nidle++;
1464
1465 /*
1466 * Color this page.
1467 */
1468 ph->ph_off = pp->pr_curcolor;
1469 cp = (char *)cp + ph->ph_off;
1470 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1471 pp->pr_curcolor = 0;
1472
1473 /*
1474 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1475 */
1476 if (ioff != 0)
1477 cp = (char *)cp + align - ioff;
1478
1479 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1480
1481 /*
1482 * Insert remaining chunks on the bucket list.
1483 */
1484 n = pp->pr_itemsperpage;
1485 pp->pr_nitems += n;
1486
1487 if (pp->pr_roflags & PR_NOTOUCH) {
1488 pr_item_notouch_init(pp, ph);
1489 } else {
1490 while (n--) {
1491 pi = (struct pool_item *)cp;
1492
1493 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1494
1495 /* Insert on page list */
1496 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1497 #ifdef DIAGNOSTIC
1498 pi->pi_magic = PI_MAGIC;
1499 #endif
1500 cp = (char *)cp + pp->pr_size;
1501
1502 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1503 }
1504 }
1505
1506 /*
1507 * If the pool was depleted, point at the new page.
1508 */
1509 if (pp->pr_curpage == NULL)
1510 pp->pr_curpage = ph;
1511
1512 if (++pp->pr_npages > pp->pr_hiwat)
1513 pp->pr_hiwat = pp->pr_npages;
1514 }
1515
1516 /*
1517 * Used by pool_get() when nitems drops below the low water mark. This
1518 * is used to catch up pr_nitems with the low water mark.
1519 *
1520 * Note 1, we never wait for memory here, we let the caller decide what to do.
1521 *
1522 * Note 2, we must be called with the pool already locked, and we return
1523 * with it locked.
1524 */
1525 static int
1526 pool_catchup(struct pool *pp)
1527 {
1528 int error = 0;
1529
1530 while (POOL_NEEDS_CATCHUP(pp)) {
1531 error = pool_grow(pp, PR_NOWAIT);
1532 if (error) {
1533 break;
1534 }
1535 }
1536 return error;
1537 }
1538
1539 static void
1540 pool_update_curpage(struct pool *pp)
1541 {
1542
1543 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1544 if (pp->pr_curpage == NULL) {
1545 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1546 }
1547 }
1548
1549 void
1550 pool_setlowat(struct pool *pp, int n)
1551 {
1552
1553 mutex_enter(&pp->pr_lock);
1554
1555 pp->pr_minitems = n;
1556 pp->pr_minpages = (n == 0)
1557 ? 0
1558 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1559
1560 /* Make sure we're caught up with the newly-set low water mark. */
1561 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1562 /*
1563 * XXX: Should we log a warning? Should we set up a timeout
1564 * to try again in a second or so? The latter could break
1565 * a caller's assumptions about interrupt protection, etc.
1566 */
1567 }
1568
1569 mutex_exit(&pp->pr_lock);
1570 }
1571
1572 void
1573 pool_sethiwat(struct pool *pp, int n)
1574 {
1575
1576 mutex_enter(&pp->pr_lock);
1577
1578 pp->pr_maxpages = (n == 0)
1579 ? 0
1580 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1581
1582 mutex_exit(&pp->pr_lock);
1583 }
1584
1585 void
1586 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1587 {
1588
1589 mutex_enter(&pp->pr_lock);
1590
1591 pp->pr_hardlimit = n;
1592 pp->pr_hardlimit_warning = warnmess;
1593 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1594 pp->pr_hardlimit_warning_last.tv_sec = 0;
1595 pp->pr_hardlimit_warning_last.tv_usec = 0;
1596
1597 /*
1598 * In-line version of pool_sethiwat(), because we don't want to
1599 * release the lock.
1600 */
1601 pp->pr_maxpages = (n == 0)
1602 ? 0
1603 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1604
1605 mutex_exit(&pp->pr_lock);
1606 }
1607
1608 /*
1609 * Release all complete pages that have not been used recently.
1610 */
1611 int
1612 #ifdef POOL_DIAGNOSTIC
1613 _pool_reclaim(struct pool *pp, const char *file, long line)
1614 #else
1615 pool_reclaim(struct pool *pp)
1616 #endif
1617 {
1618 struct pool_item_header *ph, *phnext;
1619 struct pool_pagelist pq;
1620 uint32_t curtime;
1621 bool klock;
1622 int rv;
1623
1624 if (pp->pr_drain_hook != NULL) {
1625 /*
1626 * The drain hook must be called with the pool unlocked.
1627 */
1628 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1629 }
1630
1631 /*
1632 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
1633 * and we are called from the pagedaemon without kernel_lock.
1634 * Does not apply to IPL_SOFTBIO.
1635 */
1636 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1637 pp->pr_ipl == IPL_SOFTSERIAL) {
1638 KERNEL_LOCK(1, NULL);
1639 klock = true;
1640 } else
1641 klock = false;
1642
1643 /* Reclaim items from the pool's cache (if any). */
1644 if (pp->pr_cache != NULL)
1645 pool_cache_invalidate(pp->pr_cache);
1646
1647 if (mutex_tryenter(&pp->pr_lock) == 0) {
1648 if (klock) {
1649 KERNEL_UNLOCK_ONE(NULL);
1650 }
1651 return (0);
1652 }
1653 pr_enter(pp, file, line);
1654
1655 LIST_INIT(&pq);
1656
1657 curtime = time_uptime;
1658
1659 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1660 phnext = LIST_NEXT(ph, ph_pagelist);
1661
1662 /* Check our minimum page claim */
1663 if (pp->pr_npages <= pp->pr_minpages)
1664 break;
1665
1666 KASSERT(ph->ph_nmissing == 0);
1667 if (curtime - ph->ph_time < pool_inactive_time
1668 && !pa_starved_p(pp->pr_alloc))
1669 continue;
1670
1671 /*
1672 * If freeing this page would put us below
1673 * the low water mark, stop now.
1674 */
1675 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1676 pp->pr_minitems)
1677 break;
1678
1679 pr_rmpage(pp, ph, &pq);
1680 }
1681
1682 pr_leave(pp);
1683 mutex_exit(&pp->pr_lock);
1684
1685 if (LIST_EMPTY(&pq))
1686 rv = 0;
1687 else {
1688 pr_pagelist_free(pp, &pq);
1689 rv = 1;
1690 }
1691
1692 if (klock) {
1693 KERNEL_UNLOCK_ONE(NULL);
1694 }
1695
1696 return (rv);
1697 }
1698
1699 /*
1700 * Drain pools, one at a time. This is a two stage process;
1701 * drain_start kicks off a cross call to drain CPU-level caches
1702 * if the pool has an associated pool_cache. drain_end waits
1703 * for those cross calls to finish, and then drains the cache
1704 * (if any) and pool.
1705 *
1706 * Note, must never be called from interrupt context.
1707 */
1708 void
1709 pool_drain_start(struct pool **ppp, uint64_t *wp)
1710 {
1711 struct pool *pp;
1712
1713 KASSERT(!TAILQ_EMPTY(&pool_head));
1714
1715 pp = NULL;
1716
1717 /* Find next pool to drain, and add a reference. */
1718 mutex_enter(&pool_head_lock);
1719 do {
1720 if (drainpp == NULL) {
1721 drainpp = TAILQ_FIRST(&pool_head);
1722 }
1723 if (drainpp != NULL) {
1724 pp = drainpp;
1725 drainpp = TAILQ_NEXT(pp, pr_poollist);
1726 }
1727 /*
1728 * Skip completely idle pools. We depend on at least
1729 * one pool in the system being active.
1730 */
1731 } while (pp == NULL || pp->pr_npages == 0);
1732 pp->pr_refcnt++;
1733 mutex_exit(&pool_head_lock);
1734
1735 /* If there is a pool_cache, drain CPU level caches. */
1736 *ppp = pp;
1737 if (pp->pr_cache != NULL) {
1738 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1739 pp->pr_cache, NULL);
1740 }
1741 }
1742
1743 void
1744 pool_drain_end(struct pool *pp, uint64_t where)
1745 {
1746
1747 if (pp == NULL)
1748 return;
1749
1750 KASSERT(pp->pr_refcnt > 0);
1751
1752 /* Wait for remote draining to complete. */
1753 if (pp->pr_cache != NULL)
1754 xc_wait(where);
1755
1756 /* Drain the cache (if any) and pool.. */
1757 pool_reclaim(pp);
1758
1759 /* Finally, unlock the pool. */
1760 mutex_enter(&pool_head_lock);
1761 pp->pr_refcnt--;
1762 cv_broadcast(&pool_busy);
1763 mutex_exit(&pool_head_lock);
1764 }
1765
1766 /*
1767 * Diagnostic helpers.
1768 */
1769 void
1770 pool_print(struct pool *pp, const char *modif)
1771 {
1772
1773 pool_print1(pp, modif, printf);
1774 }
1775
1776 void
1777 pool_printall(const char *modif, void (*pr)(const char *, ...))
1778 {
1779 struct pool *pp;
1780
1781 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1782 pool_printit(pp, modif, pr);
1783 }
1784 }
1785
1786 void
1787 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1788 {
1789
1790 if (pp == NULL) {
1791 (*pr)("Must specify a pool to print.\n");
1792 return;
1793 }
1794
1795 pool_print1(pp, modif, pr);
1796 }
1797
1798 static void
1799 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1800 void (*pr)(const char *, ...))
1801 {
1802 struct pool_item_header *ph;
1803 #ifdef DIAGNOSTIC
1804 struct pool_item *pi;
1805 #endif
1806
1807 LIST_FOREACH(ph, pl, ph_pagelist) {
1808 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1809 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1810 #ifdef DIAGNOSTIC
1811 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1812 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1813 if (pi->pi_magic != PI_MAGIC) {
1814 (*pr)("\t\t\titem %p, magic 0x%x\n",
1815 pi, pi->pi_magic);
1816 }
1817 }
1818 }
1819 #endif
1820 }
1821 }
1822
1823 static void
1824 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1825 {
1826 struct pool_item_header *ph;
1827 pool_cache_t pc;
1828 pcg_t *pcg;
1829 pool_cache_cpu_t *cc;
1830 uint64_t cpuhit, cpumiss;
1831 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1832 char c;
1833
1834 while ((c = *modif++) != '\0') {
1835 if (c == 'l')
1836 print_log = 1;
1837 if (c == 'p')
1838 print_pagelist = 1;
1839 if (c == 'c')
1840 print_cache = 1;
1841 }
1842
1843 if ((pc = pp->pr_cache) != NULL) {
1844 (*pr)("POOL CACHE");
1845 } else {
1846 (*pr)("POOL");
1847 }
1848
1849 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1850 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1851 pp->pr_roflags);
1852 (*pr)("\talloc %p\n", pp->pr_alloc);
1853 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1854 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1855 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1856 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1857
1858 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1859 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1860 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1861 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1862
1863 if (print_pagelist == 0)
1864 goto skip_pagelist;
1865
1866 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1867 (*pr)("\n\tempty page list:\n");
1868 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1869 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1870 (*pr)("\n\tfull page list:\n");
1871 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1872 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1873 (*pr)("\n\tpartial-page list:\n");
1874 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1875
1876 if (pp->pr_curpage == NULL)
1877 (*pr)("\tno current page\n");
1878 else
1879 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1880
1881 skip_pagelist:
1882 if (print_log == 0)
1883 goto skip_log;
1884
1885 (*pr)("\n");
1886 if ((pp->pr_roflags & PR_LOGGING) == 0)
1887 (*pr)("\tno log\n");
1888 else {
1889 pr_printlog(pp, NULL, pr);
1890 }
1891
1892 skip_log:
1893
1894 #define PR_GROUPLIST(pcg) \
1895 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1896 for (i = 0; i < pcg->pcg_size; i++) { \
1897 if (pcg->pcg_objects[i].pcgo_pa != \
1898 POOL_PADDR_INVALID) { \
1899 (*pr)("\t\t\t%p, 0x%llx\n", \
1900 pcg->pcg_objects[i].pcgo_va, \
1901 (unsigned long long) \
1902 pcg->pcg_objects[i].pcgo_pa); \
1903 } else { \
1904 (*pr)("\t\t\t%p\n", \
1905 pcg->pcg_objects[i].pcgo_va); \
1906 } \
1907 }
1908
1909 if (pc != NULL) {
1910 cpuhit = 0;
1911 cpumiss = 0;
1912 for (i = 0; i < MAXCPUS; i++) {
1913 if ((cc = pc->pc_cpus[i]) == NULL)
1914 continue;
1915 cpuhit += cc->cc_hits;
1916 cpumiss += cc->cc_misses;
1917 }
1918 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1919 (*pr)("\tcache layer hits %llu misses %llu\n",
1920 pc->pc_hits, pc->pc_misses);
1921 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1922 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1923 pc->pc_contended);
1924 (*pr)("\tcache layer empty groups %u full groups %u\n",
1925 pc->pc_nempty, pc->pc_nfull);
1926 if (print_cache) {
1927 (*pr)("\tfull cache groups:\n");
1928 for (pcg = pc->pc_fullgroups; pcg != NULL;
1929 pcg = pcg->pcg_next) {
1930 PR_GROUPLIST(pcg);
1931 }
1932 (*pr)("\tempty cache groups:\n");
1933 for (pcg = pc->pc_emptygroups; pcg != NULL;
1934 pcg = pcg->pcg_next) {
1935 PR_GROUPLIST(pcg);
1936 }
1937 }
1938 }
1939 #undef PR_GROUPLIST
1940
1941 pr_enter_check(pp, pr);
1942 }
1943
1944 static int
1945 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1946 {
1947 struct pool_item *pi;
1948 void *page;
1949 int n;
1950
1951 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1952 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1953 if (page != ph->ph_page &&
1954 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1955 if (label != NULL)
1956 printf("%s: ", label);
1957 printf("pool(%p:%s): page inconsistency: page %p;"
1958 " at page head addr %p (p %p)\n", pp,
1959 pp->pr_wchan, ph->ph_page,
1960 ph, page);
1961 return 1;
1962 }
1963 }
1964
1965 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1966 return 0;
1967
1968 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1969 pi != NULL;
1970 pi = LIST_NEXT(pi,pi_list), n++) {
1971
1972 #ifdef DIAGNOSTIC
1973 if (pi->pi_magic != PI_MAGIC) {
1974 if (label != NULL)
1975 printf("%s: ", label);
1976 printf("pool(%s): free list modified: magic=%x;"
1977 " page %p; item ordinal %d; addr %p\n",
1978 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1979 n, pi);
1980 panic("pool");
1981 }
1982 #endif
1983 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1984 continue;
1985 }
1986 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1987 if (page == ph->ph_page)
1988 continue;
1989
1990 if (label != NULL)
1991 printf("%s: ", label);
1992 printf("pool(%p:%s): page inconsistency: page %p;"
1993 " item ordinal %d; addr %p (p %p)\n", pp,
1994 pp->pr_wchan, ph->ph_page,
1995 n, pi, page);
1996 return 1;
1997 }
1998 return 0;
1999 }
2000
2001
2002 int
2003 pool_chk(struct pool *pp, const char *label)
2004 {
2005 struct pool_item_header *ph;
2006 int r = 0;
2007
2008 mutex_enter(&pp->pr_lock);
2009 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2010 r = pool_chk_page(pp, label, ph);
2011 if (r) {
2012 goto out;
2013 }
2014 }
2015 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2016 r = pool_chk_page(pp, label, ph);
2017 if (r) {
2018 goto out;
2019 }
2020 }
2021 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2022 r = pool_chk_page(pp, label, ph);
2023 if (r) {
2024 goto out;
2025 }
2026 }
2027
2028 out:
2029 mutex_exit(&pp->pr_lock);
2030 return (r);
2031 }
2032
2033 /*
2034 * pool_cache_init:
2035 *
2036 * Initialize a pool cache.
2037 */
2038 pool_cache_t
2039 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2040 const char *wchan, struct pool_allocator *palloc, int ipl,
2041 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2042 {
2043 pool_cache_t pc;
2044
2045 pc = pool_get(&cache_pool, PR_WAITOK);
2046 if (pc == NULL)
2047 return NULL;
2048
2049 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2050 palloc, ipl, ctor, dtor, arg);
2051
2052 return pc;
2053 }
2054
2055 /*
2056 * pool_cache_bootstrap:
2057 *
2058 * Kernel-private version of pool_cache_init(). The caller
2059 * provides initial storage.
2060 */
2061 void
2062 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2063 u_int align_offset, u_int flags, const char *wchan,
2064 struct pool_allocator *palloc, int ipl,
2065 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2066 void *arg)
2067 {
2068 CPU_INFO_ITERATOR cii;
2069 pool_cache_t pc1;
2070 struct cpu_info *ci;
2071 struct pool *pp;
2072
2073 pp = &pc->pc_pool;
2074 if (palloc == NULL && ipl == IPL_NONE)
2075 palloc = &pool_allocator_nointr;
2076 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2077
2078 /*
2079 * XXXAD hack to prevent IP input processing from blocking.
2080 */
2081 if (ipl == IPL_SOFTNET) {
2082 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
2083 } else {
2084 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2085 }
2086
2087 if (ctor == NULL) {
2088 ctor = (int (*)(void *, void *, int))nullop;
2089 }
2090 if (dtor == NULL) {
2091 dtor = (void (*)(void *, void *))nullop;
2092 }
2093
2094 pc->pc_emptygroups = NULL;
2095 pc->pc_fullgroups = NULL;
2096 pc->pc_partgroups = NULL;
2097 pc->pc_ctor = ctor;
2098 pc->pc_dtor = dtor;
2099 pc->pc_arg = arg;
2100 pc->pc_hits = 0;
2101 pc->pc_misses = 0;
2102 pc->pc_nempty = 0;
2103 pc->pc_npart = 0;
2104 pc->pc_nfull = 0;
2105 pc->pc_contended = 0;
2106 pc->pc_refcnt = 0;
2107 pc->pc_freecheck = NULL;
2108
2109 if ((flags & PR_LARGECACHE) != 0) {
2110 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2111 } else {
2112 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2113 }
2114
2115 /* Allocate per-CPU caches. */
2116 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2117 pc->pc_ncpu = 0;
2118 if (ncpu < 2) {
2119 /* XXX For sparc: boot CPU is not attached yet. */
2120 pool_cache_cpu_init1(curcpu(), pc);
2121 } else {
2122 for (CPU_INFO_FOREACH(cii, ci)) {
2123 pool_cache_cpu_init1(ci, pc);
2124 }
2125 }
2126
2127 /* Add to list of all pools. */
2128 if (__predict_true(!cold))
2129 mutex_enter(&pool_head_lock);
2130 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2131 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2132 break;
2133 }
2134 if (pc1 == NULL)
2135 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2136 else
2137 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2138 if (__predict_true(!cold))
2139 mutex_exit(&pool_head_lock);
2140
2141 membar_sync();
2142 pp->pr_cache = pc;
2143 }
2144
2145 /*
2146 * pool_cache_destroy:
2147 *
2148 * Destroy a pool cache.
2149 */
2150 void
2151 pool_cache_destroy(pool_cache_t pc)
2152 {
2153 struct pool *pp = &pc->pc_pool;
2154 pool_cache_cpu_t *cc;
2155 pcg_t *pcg;
2156 int i;
2157
2158 /* Remove it from the global list. */
2159 mutex_enter(&pool_head_lock);
2160 while (pc->pc_refcnt != 0)
2161 cv_wait(&pool_busy, &pool_head_lock);
2162 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2163 mutex_exit(&pool_head_lock);
2164
2165 /* First, invalidate the entire cache. */
2166 pool_cache_invalidate(pc);
2167
2168 /* Disassociate it from the pool. */
2169 mutex_enter(&pp->pr_lock);
2170 pp->pr_cache = NULL;
2171 mutex_exit(&pp->pr_lock);
2172
2173 /* Destroy per-CPU data */
2174 for (i = 0; i < MAXCPUS; i++) {
2175 if ((cc = pc->pc_cpus[i]) == NULL)
2176 continue;
2177 if ((pcg = cc->cc_current) != NULL) {
2178 pcg->pcg_next = NULL;
2179 pool_cache_invalidate_groups(pc, pcg);
2180 }
2181 if ((pcg = cc->cc_previous) != NULL) {
2182 pcg->pcg_next = NULL;
2183 pool_cache_invalidate_groups(pc, pcg);
2184 }
2185 if (cc != &pc->pc_cpu0)
2186 pool_put(&cache_cpu_pool, cc);
2187 }
2188
2189 /* Finally, destroy it. */
2190 mutex_destroy(&pc->pc_lock);
2191 pool_destroy(pp);
2192 pool_put(&cache_pool, pc);
2193 }
2194
2195 /*
2196 * pool_cache_cpu_init1:
2197 *
2198 * Called for each pool_cache whenever a new CPU is attached.
2199 */
2200 static void
2201 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2202 {
2203 pool_cache_cpu_t *cc;
2204 int index;
2205
2206 index = ci->ci_index;
2207
2208 KASSERT(index < MAXCPUS);
2209 KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2210
2211 if ((cc = pc->pc_cpus[index]) != NULL) {
2212 KASSERT(cc->cc_cpuindex == index);
2213 return;
2214 }
2215
2216 /*
2217 * The first CPU is 'free'. This needs to be the case for
2218 * bootstrap - we may not be able to allocate yet.
2219 */
2220 if (pc->pc_ncpu == 0) {
2221 cc = &pc->pc_cpu0;
2222 pc->pc_ncpu = 1;
2223 } else {
2224 mutex_enter(&pc->pc_lock);
2225 pc->pc_ncpu++;
2226 mutex_exit(&pc->pc_lock);
2227 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2228 }
2229
2230 cc->cc_ipl = pc->pc_pool.pr_ipl;
2231 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2232 cc->cc_cache = pc;
2233 cc->cc_cpuindex = index;
2234 cc->cc_hits = 0;
2235 cc->cc_misses = 0;
2236 cc->cc_current = NULL;
2237 cc->cc_previous = NULL;
2238
2239 pc->pc_cpus[index] = cc;
2240 }
2241
2242 /*
2243 * pool_cache_cpu_init:
2244 *
2245 * Called whenever a new CPU is attached.
2246 */
2247 void
2248 pool_cache_cpu_init(struct cpu_info *ci)
2249 {
2250 pool_cache_t pc;
2251
2252 mutex_enter(&pool_head_lock);
2253 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2254 pc->pc_refcnt++;
2255 mutex_exit(&pool_head_lock);
2256
2257 pool_cache_cpu_init1(ci, pc);
2258
2259 mutex_enter(&pool_head_lock);
2260 pc->pc_refcnt--;
2261 cv_broadcast(&pool_busy);
2262 }
2263 mutex_exit(&pool_head_lock);
2264 }
2265
2266 /*
2267 * pool_cache_reclaim:
2268 *
2269 * Reclaim memory from a pool cache.
2270 */
2271 bool
2272 pool_cache_reclaim(pool_cache_t pc)
2273 {
2274
2275 return pool_reclaim(&pc->pc_pool);
2276 }
2277
2278 static void
2279 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2280 {
2281
2282 (*pc->pc_dtor)(pc->pc_arg, object);
2283 pool_put(&pc->pc_pool, object);
2284 }
2285
2286 /*
2287 * pool_cache_destruct_object:
2288 *
2289 * Force destruction of an object and its release back into
2290 * the pool.
2291 */
2292 void
2293 pool_cache_destruct_object(pool_cache_t pc, void *object)
2294 {
2295
2296 FREECHECK_IN(&pc->pc_freecheck, object);
2297
2298 pool_cache_destruct_object1(pc, object);
2299 }
2300
2301 /*
2302 * pool_cache_invalidate_groups:
2303 *
2304 * Invalidate a chain of groups and destruct all objects.
2305 */
2306 static void
2307 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2308 {
2309 void *object;
2310 pcg_t *next;
2311 int i;
2312
2313 for (; pcg != NULL; pcg = next) {
2314 next = pcg->pcg_next;
2315
2316 for (i = 0; i < pcg->pcg_avail; i++) {
2317 object = pcg->pcg_objects[i].pcgo_va;
2318 pool_cache_destruct_object1(pc, object);
2319 }
2320
2321 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2322 pool_put(&pcg_large_pool, pcg);
2323 } else {
2324 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2325 pool_put(&pcg_normal_pool, pcg);
2326 }
2327 }
2328 }
2329
2330 /*
2331 * pool_cache_invalidate:
2332 *
2333 * Invalidate a pool cache (destruct and release all of the
2334 * cached objects). Does not reclaim objects from the pool.
2335 */
2336 void
2337 pool_cache_invalidate(pool_cache_t pc)
2338 {
2339 pcg_t *full, *empty, *part;
2340
2341 mutex_enter(&pc->pc_lock);
2342 full = pc->pc_fullgroups;
2343 empty = pc->pc_emptygroups;
2344 part = pc->pc_partgroups;
2345 pc->pc_fullgroups = NULL;
2346 pc->pc_emptygroups = NULL;
2347 pc->pc_partgroups = NULL;
2348 pc->pc_nfull = 0;
2349 pc->pc_nempty = 0;
2350 pc->pc_npart = 0;
2351 mutex_exit(&pc->pc_lock);
2352
2353 pool_cache_invalidate_groups(pc, full);
2354 pool_cache_invalidate_groups(pc, empty);
2355 pool_cache_invalidate_groups(pc, part);
2356 }
2357
2358 void
2359 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2360 {
2361
2362 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2363 }
2364
2365 void
2366 pool_cache_setlowat(pool_cache_t pc, int n)
2367 {
2368
2369 pool_setlowat(&pc->pc_pool, n);
2370 }
2371
2372 void
2373 pool_cache_sethiwat(pool_cache_t pc, int n)
2374 {
2375
2376 pool_sethiwat(&pc->pc_pool, n);
2377 }
2378
2379 void
2380 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2381 {
2382
2383 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2384 }
2385
2386 static inline pool_cache_cpu_t *
2387 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2388 {
2389 pool_cache_cpu_t *cc;
2390
2391 /*
2392 * Prevent other users of the cache from accessing our
2393 * CPU-local data. To avoid touching shared state, we
2394 * pull the neccessary information from CPU local data.
2395 */
2396 crit_enter();
2397 cc = pc->pc_cpus[curcpu()->ci_index];
2398 KASSERT(cc->cc_cache == pc);
2399 if (cc->cc_ipl != IPL_NONE) {
2400 *s = splraiseipl(cc->cc_iplcookie);
2401 }
2402 KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2403
2404 return cc;
2405 }
2406
2407 static inline void
2408 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2409 {
2410
2411 /* No longer need exclusive access to the per-CPU data. */
2412 if (cc->cc_ipl != IPL_NONE) {
2413 splx(*s);
2414 }
2415 crit_exit();
2416 }
2417
2418 #if __GNUC_PREREQ__(3, 0)
2419 __attribute ((noinline))
2420 #endif
2421 pool_cache_cpu_t *
2422 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2423 paddr_t *pap, int flags)
2424 {
2425 pcg_t *pcg, *cur;
2426 uint64_t ncsw;
2427 pool_cache_t pc;
2428 void *object;
2429
2430 pc = cc->cc_cache;
2431 cc->cc_misses++;
2432
2433 /*
2434 * Nothing was available locally. Try and grab a group
2435 * from the cache.
2436 */
2437 if (!mutex_tryenter(&pc->pc_lock)) {
2438 ncsw = curlwp->l_ncsw;
2439 mutex_enter(&pc->pc_lock);
2440 pc->pc_contended++;
2441
2442 /*
2443 * If we context switched while locking, then
2444 * our view of the per-CPU data is invalid:
2445 * retry.
2446 */
2447 if (curlwp->l_ncsw != ncsw) {
2448 mutex_exit(&pc->pc_lock);
2449 pool_cache_cpu_exit(cc, s);
2450 return pool_cache_cpu_enter(pc, s);
2451 }
2452 }
2453
2454 if ((pcg = pc->pc_fullgroups) != NULL) {
2455 /*
2456 * If there's a full group, release our empty
2457 * group back to the cache. Install the full
2458 * group as cc_current and return.
2459 */
2460 if ((cur = cc->cc_current) != NULL) {
2461 KASSERT(cur->pcg_avail == 0);
2462 cur->pcg_next = pc->pc_emptygroups;
2463 pc->pc_emptygroups = cur;
2464 pc->pc_nempty++;
2465 }
2466 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2467 cc->cc_current = pcg;
2468 pc->pc_fullgroups = pcg->pcg_next;
2469 pc->pc_hits++;
2470 pc->pc_nfull--;
2471 mutex_exit(&pc->pc_lock);
2472 return cc;
2473 }
2474
2475 /*
2476 * Nothing available locally or in cache. Take the slow
2477 * path: fetch a new object from the pool and construct
2478 * it.
2479 */
2480 pc->pc_misses++;
2481 mutex_exit(&pc->pc_lock);
2482 pool_cache_cpu_exit(cc, s);
2483
2484 object = pool_get(&pc->pc_pool, flags);
2485 *objectp = object;
2486 if (object == NULL)
2487 return NULL;
2488
2489 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2490 pool_put(&pc->pc_pool, object);
2491 *objectp = NULL;
2492 return NULL;
2493 }
2494
2495 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2496 (pc->pc_pool.pr_align - 1)) == 0);
2497
2498 if (pap != NULL) {
2499 #ifdef POOL_VTOPHYS
2500 *pap = POOL_VTOPHYS(object);
2501 #else
2502 *pap = POOL_PADDR_INVALID;
2503 #endif
2504 }
2505
2506 FREECHECK_OUT(&pc->pc_freecheck, object);
2507 return NULL;
2508 }
2509
2510 /*
2511 * pool_cache_get{,_paddr}:
2512 *
2513 * Get an object from a pool cache (optionally returning
2514 * the physical address of the object).
2515 */
2516 void *
2517 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2518 {
2519 pool_cache_cpu_t *cc;
2520 pcg_t *pcg;
2521 void *object;
2522 int s;
2523
2524 #ifdef LOCKDEBUG
2525 if (flags & PR_WAITOK)
2526 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2527 #endif
2528
2529 cc = pool_cache_cpu_enter(pc, &s);
2530 do {
2531 /* Try and allocate an object from the current group. */
2532 pcg = cc->cc_current;
2533 if (pcg != NULL && pcg->pcg_avail > 0) {
2534 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2535 if (pap != NULL)
2536 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2537 #if defined(DIAGNOSTIC)
2538 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2539 #endif /* defined(DIAGNOSTIC) */
2540 KASSERT(pcg->pcg_avail <= pcg->pcg_size);
2541 KASSERT(object != NULL);
2542 cc->cc_hits++;
2543 pool_cache_cpu_exit(cc, &s);
2544 FREECHECK_OUT(&pc->pc_freecheck, object);
2545 return object;
2546 }
2547
2548 /*
2549 * That failed. If the previous group isn't empty, swap
2550 * it with the current group and allocate from there.
2551 */
2552 pcg = cc->cc_previous;
2553 if (pcg != NULL && pcg->pcg_avail > 0) {
2554 cc->cc_previous = cc->cc_current;
2555 cc->cc_current = pcg;
2556 continue;
2557 }
2558
2559 /*
2560 * Can't allocate from either group: try the slow path.
2561 * If get_slow() allocated an object for us, or if
2562 * no more objects are available, it will return NULL.
2563 * Otherwise, we need to retry.
2564 */
2565 cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2566 } while (cc != NULL);
2567
2568 return object;
2569 }
2570
2571 #if __GNUC_PREREQ__(3, 0)
2572 __attribute ((noinline))
2573 #endif
2574 pool_cache_cpu_t *
2575 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2576 {
2577 pcg_t *pcg, *cur;
2578 uint64_t ncsw;
2579 pool_cache_t pc;
2580 u_int nobj;
2581
2582 pc = cc->cc_cache;
2583 cc->cc_misses++;
2584
2585 /*
2586 * No free slots locally. Try to grab an empty, unused
2587 * group from the cache.
2588 */
2589 if (!mutex_tryenter(&pc->pc_lock)) {
2590 ncsw = curlwp->l_ncsw;
2591 mutex_enter(&pc->pc_lock);
2592 pc->pc_contended++;
2593
2594 /*
2595 * If we context switched while locking, then
2596 * our view of the per-CPU data is invalid:
2597 * retry.
2598 */
2599 if (curlwp->l_ncsw != ncsw) {
2600 mutex_exit(&pc->pc_lock);
2601 pool_cache_cpu_exit(cc, s);
2602 return pool_cache_cpu_enter(pc, s);
2603 }
2604 }
2605
2606 if ((pcg = pc->pc_emptygroups) != NULL) {
2607 /*
2608 * If there's a empty group, release our full
2609 * group back to the cache. Install the empty
2610 * group and return.
2611 */
2612 KASSERT(pcg->pcg_avail == 0);
2613 pc->pc_emptygroups = pcg->pcg_next;
2614 if (cc->cc_previous == NULL) {
2615 cc->cc_previous = pcg;
2616 } else {
2617 if ((cur = cc->cc_current) != NULL) {
2618 KASSERT(cur->pcg_avail == pcg->pcg_size);
2619 cur->pcg_next = pc->pc_fullgroups;
2620 pc->pc_fullgroups = cur;
2621 pc->pc_nfull++;
2622 }
2623 cc->cc_current = pcg;
2624 }
2625 pc->pc_hits++;
2626 pc->pc_nempty--;
2627 mutex_exit(&pc->pc_lock);
2628 return cc;
2629 }
2630
2631 /*
2632 * Nothing available locally or in cache. Take the
2633 * slow path and try to allocate a new group that we
2634 * can release to.
2635 */
2636 pc->pc_misses++;
2637 mutex_exit(&pc->pc_lock);
2638 pool_cache_cpu_exit(cc, s);
2639
2640 /*
2641 * If we can't allocate a new group, just throw the
2642 * object away.
2643 */
2644 nobj = pc->pc_pcgsize;
2645 if (pool_cache_disable) {
2646 pcg = NULL;
2647 } else if (nobj == PCG_NOBJECTS_LARGE) {
2648 pcg = pool_get(&pcg_large_pool, PR_NOWAIT);
2649 } else {
2650 pcg = pool_get(&pcg_normal_pool, PR_NOWAIT);
2651 }
2652 if (pcg == NULL) {
2653 pool_cache_destruct_object(pc, object);
2654 return NULL;
2655 }
2656 pcg->pcg_avail = 0;
2657 pcg->pcg_size = nobj;
2658
2659 /*
2660 * Add the empty group to the cache and try again.
2661 */
2662 mutex_enter(&pc->pc_lock);
2663 pcg->pcg_next = pc->pc_emptygroups;
2664 pc->pc_emptygroups = pcg;
2665 pc->pc_nempty++;
2666 mutex_exit(&pc->pc_lock);
2667
2668 return pool_cache_cpu_enter(pc, s);
2669 }
2670
2671 /*
2672 * pool_cache_put{,_paddr}:
2673 *
2674 * Put an object back to the pool cache (optionally caching the
2675 * physical address of the object).
2676 */
2677 void
2678 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2679 {
2680 pool_cache_cpu_t *cc;
2681 pcg_t *pcg;
2682 int s;
2683
2684 FREECHECK_IN(&pc->pc_freecheck, object);
2685
2686 cc = pool_cache_cpu_enter(pc, &s);
2687 do {
2688 /* If the current group isn't full, release it there. */
2689 pcg = cc->cc_current;
2690 if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) {
2691 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2692 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2693 pcg->pcg_avail++;
2694 cc->cc_hits++;
2695 pool_cache_cpu_exit(cc, &s);
2696 return;
2697 }
2698
2699 /*
2700 * That failed. If the previous group is empty, swap
2701 * it with the current group and try again.
2702 */
2703 pcg = cc->cc_previous;
2704 if (pcg != NULL && pcg->pcg_avail == 0) {
2705 cc->cc_previous = cc->cc_current;
2706 cc->cc_current = pcg;
2707 continue;
2708 }
2709
2710 /*
2711 * Can't free to either group: try the slow path.
2712 * If put_slow() releases the object for us, it
2713 * will return NULL. Otherwise we need to retry.
2714 */
2715 cc = pool_cache_put_slow(cc, &s, object, pa);
2716 } while (cc != NULL);
2717 }
2718
2719 /*
2720 * pool_cache_xcall:
2721 *
2722 * Transfer objects from the per-CPU cache to the global cache.
2723 * Run within a cross-call thread.
2724 */
2725 static void
2726 pool_cache_xcall(pool_cache_t pc)
2727 {
2728 pool_cache_cpu_t *cc;
2729 pcg_t *prev, *cur, **list;
2730 int s = 0; /* XXXgcc */
2731
2732 cc = pool_cache_cpu_enter(pc, &s);
2733 cur = cc->cc_current;
2734 cc->cc_current = NULL;
2735 prev = cc->cc_previous;
2736 cc->cc_previous = NULL;
2737 pool_cache_cpu_exit(cc, &s);
2738
2739 /*
2740 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2741 * because locks at IPL_SOFTXXX are still spinlocks. Does not
2742 * apply to IPL_SOFTBIO. Cross-call threads do not take the
2743 * kernel_lock.
2744 */
2745 s = splvm();
2746 mutex_enter(&pc->pc_lock);
2747 if (cur != NULL) {
2748 if (cur->pcg_avail == cur->pcg_size) {
2749 list = &pc->pc_fullgroups;
2750 pc->pc_nfull++;
2751 } else if (cur->pcg_avail == 0) {
2752 list = &pc->pc_emptygroups;
2753 pc->pc_nempty++;
2754 } else {
2755 list = &pc->pc_partgroups;
2756 pc->pc_npart++;
2757 }
2758 cur->pcg_next = *list;
2759 *list = cur;
2760 }
2761 if (prev != NULL) {
2762 if (prev->pcg_avail == prev->pcg_size) {
2763 list = &pc->pc_fullgroups;
2764 pc->pc_nfull++;
2765 } else if (prev->pcg_avail == 0) {
2766 list = &pc->pc_emptygroups;
2767 pc->pc_nempty++;
2768 } else {
2769 list = &pc->pc_partgroups;
2770 pc->pc_npart++;
2771 }
2772 prev->pcg_next = *list;
2773 *list = prev;
2774 }
2775 mutex_exit(&pc->pc_lock);
2776 splx(s);
2777 }
2778
2779 /*
2780 * Pool backend allocators.
2781 *
2782 * Each pool has a backend allocator that handles allocation, deallocation,
2783 * and any additional draining that might be needed.
2784 *
2785 * We provide two standard allocators:
2786 *
2787 * pool_allocator_kmem - the default when no allocator is specified
2788 *
2789 * pool_allocator_nointr - used for pools that will not be accessed
2790 * in interrupt context.
2791 */
2792 void *pool_page_alloc(struct pool *, int);
2793 void pool_page_free(struct pool *, void *);
2794
2795 #ifdef POOL_SUBPAGE
2796 struct pool_allocator pool_allocator_kmem_fullpage = {
2797 pool_page_alloc, pool_page_free, 0,
2798 .pa_backingmapptr = &kmem_map,
2799 };
2800 #else
2801 struct pool_allocator pool_allocator_kmem = {
2802 pool_page_alloc, pool_page_free, 0,
2803 .pa_backingmapptr = &kmem_map,
2804 };
2805 #endif
2806
2807 void *pool_page_alloc_nointr(struct pool *, int);
2808 void pool_page_free_nointr(struct pool *, void *);
2809
2810 #ifdef POOL_SUBPAGE
2811 struct pool_allocator pool_allocator_nointr_fullpage = {
2812 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2813 .pa_backingmapptr = &kernel_map,
2814 };
2815 #else
2816 struct pool_allocator pool_allocator_nointr = {
2817 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2818 .pa_backingmapptr = &kernel_map,
2819 };
2820 #endif
2821
2822 #ifdef POOL_SUBPAGE
2823 void *pool_subpage_alloc(struct pool *, int);
2824 void pool_subpage_free(struct pool *, void *);
2825
2826 struct pool_allocator pool_allocator_kmem = {
2827 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2828 .pa_backingmapptr = &kmem_map,
2829 };
2830
2831 void *pool_subpage_alloc_nointr(struct pool *, int);
2832 void pool_subpage_free_nointr(struct pool *, void *);
2833
2834 struct pool_allocator pool_allocator_nointr = {
2835 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2836 .pa_backingmapptr = &kmem_map,
2837 };
2838 #endif /* POOL_SUBPAGE */
2839
2840 static void *
2841 pool_allocator_alloc(struct pool *pp, int flags)
2842 {
2843 struct pool_allocator *pa = pp->pr_alloc;
2844 void *res;
2845
2846 res = (*pa->pa_alloc)(pp, flags);
2847 if (res == NULL && (flags & PR_WAITOK) == 0) {
2848 /*
2849 * We only run the drain hook here if PR_NOWAIT.
2850 * In other cases, the hook will be run in
2851 * pool_reclaim().
2852 */
2853 if (pp->pr_drain_hook != NULL) {
2854 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2855 res = (*pa->pa_alloc)(pp, flags);
2856 }
2857 }
2858 return res;
2859 }
2860
2861 static void
2862 pool_allocator_free(struct pool *pp, void *v)
2863 {
2864 struct pool_allocator *pa = pp->pr_alloc;
2865
2866 (*pa->pa_free)(pp, v);
2867 }
2868
2869 void *
2870 pool_page_alloc(struct pool *pp, int flags)
2871 {
2872 bool waitok = (flags & PR_WAITOK) ? true : false;
2873
2874 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2875 }
2876
2877 void
2878 pool_page_free(struct pool *pp, void *v)
2879 {
2880
2881 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2882 }
2883
2884 static void *
2885 pool_page_alloc_meta(struct pool *pp, int flags)
2886 {
2887 bool waitok = (flags & PR_WAITOK) ? true : false;
2888
2889 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2890 }
2891
2892 static void
2893 pool_page_free_meta(struct pool *pp, void *v)
2894 {
2895
2896 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2897 }
2898
2899 #ifdef POOL_SUBPAGE
2900 /* Sub-page allocator, for machines with large hardware pages. */
2901 void *
2902 pool_subpage_alloc(struct pool *pp, int flags)
2903 {
2904 return pool_get(&psppool, flags);
2905 }
2906
2907 void
2908 pool_subpage_free(struct pool *pp, void *v)
2909 {
2910 pool_put(&psppool, v);
2911 }
2912
2913 /* We don't provide a real nointr allocator. Maybe later. */
2914 void *
2915 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2916 {
2917
2918 return (pool_subpage_alloc(pp, flags));
2919 }
2920
2921 void
2922 pool_subpage_free_nointr(struct pool *pp, void *v)
2923 {
2924
2925 pool_subpage_free(pp, v);
2926 }
2927 #endif /* POOL_SUBPAGE */
2928 void *
2929 pool_page_alloc_nointr(struct pool *pp, int flags)
2930 {
2931 bool waitok = (flags & PR_WAITOK) ? true : false;
2932
2933 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2934 }
2935
2936 void
2937 pool_page_free_nointr(struct pool *pp, void *v)
2938 {
2939
2940 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2941 }
2942
2943 #if defined(DDB)
2944 static bool
2945 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2946 {
2947
2948 return (uintptr_t)ph->ph_page <= addr &&
2949 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2950 }
2951
2952 static bool
2953 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2954 {
2955
2956 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2957 }
2958
2959 static bool
2960 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2961 {
2962 int i;
2963
2964 if (pcg == NULL) {
2965 return false;
2966 }
2967 for (i = 0; i < pcg->pcg_avail; i++) {
2968 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2969 return true;
2970 }
2971 }
2972 return false;
2973 }
2974
2975 static bool
2976 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2977 {
2978
2979 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2980 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2981 pool_item_bitmap_t *bitmap =
2982 ph->ph_bitmap + (idx / BITMAP_SIZE);
2983 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2984
2985 return (*bitmap & mask) == 0;
2986 } else {
2987 struct pool_item *pi;
2988
2989 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2990 if (pool_in_item(pp, pi, addr)) {
2991 return false;
2992 }
2993 }
2994 return true;
2995 }
2996 }
2997
2998 void
2999 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3000 {
3001 struct pool *pp;
3002
3003 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3004 struct pool_item_header *ph;
3005 uintptr_t item;
3006 bool allocated = true;
3007 bool incache = false;
3008 bool incpucache = false;
3009 char cpucachestr[32];
3010
3011 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3012 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3013 if (pool_in_page(pp, ph, addr)) {
3014 goto found;
3015 }
3016 }
3017 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3018 if (pool_in_page(pp, ph, addr)) {
3019 allocated =
3020 pool_allocated(pp, ph, addr);
3021 goto found;
3022 }
3023 }
3024 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3025 if (pool_in_page(pp, ph, addr)) {
3026 allocated = false;
3027 goto found;
3028 }
3029 }
3030 continue;
3031 } else {
3032 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3033 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3034 continue;
3035 }
3036 allocated = pool_allocated(pp, ph, addr);
3037 }
3038 found:
3039 if (allocated && pp->pr_cache) {
3040 pool_cache_t pc = pp->pr_cache;
3041 struct pool_cache_group *pcg;
3042 int i;
3043
3044 for (pcg = pc->pc_fullgroups; pcg != NULL;
3045 pcg = pcg->pcg_next) {
3046 if (pool_in_cg(pp, pcg, addr)) {
3047 incache = true;
3048 goto print;
3049 }
3050 }
3051 for (i = 0; i < MAXCPUS; i++) {
3052 pool_cache_cpu_t *cc;
3053
3054 if ((cc = pc->pc_cpus[i]) == NULL) {
3055 continue;
3056 }
3057 if (pool_in_cg(pp, cc->cc_current, addr) ||
3058 pool_in_cg(pp, cc->cc_previous, addr)) {
3059 struct cpu_info *ci =
3060 cpu_lookup_byindex(i);
3061
3062 incpucache = true;
3063 snprintf(cpucachestr,
3064 sizeof(cpucachestr),
3065 "cached by CPU %u",
3066 (u_int)ci->ci_cpuid);
3067 goto print;
3068 }
3069 }
3070 }
3071 print:
3072 item = (uintptr_t)ph->ph_page + ph->ph_off;
3073 item = item + rounddown(addr - item, pp->pr_size);
3074 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3075 (void *)addr, item, (size_t)(addr - item),
3076 pp->pr_wchan,
3077 incpucache ? cpucachestr :
3078 incache ? "cached" : allocated ? "allocated" : "free");
3079 }
3080 }
3081 #endif /* defined(DDB) */
3082