Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.101.2.6
      1 /*	$NetBSD: subr_pool.c,v 1.101.2.6 2007/11/15 11:44:49 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.101.2.6 2007/11/15 11:44:49 yamt Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/bitops.h>
     50 #include <sys/proc.h>
     51 #include <sys/errno.h>
     52 #include <sys/kernel.h>
     53 #include <sys/malloc.h>
     54 #include <sys/lock.h>
     55 #include <sys/pool.h>
     56 #include <sys/syslog.h>
     57 #include <sys/debug.h>
     58 #include <sys/lockdebug.h>
     59 #include <sys/xcall.h>
     60 #include <sys/cpu.h>
     61 
     62 #include <uvm/uvm.h>
     63 
     64 /*
     65  * Pool resource management utility.
     66  *
     67  * Memory is allocated in pages which are split into pieces according to
     68  * the pool item size. Each page is kept on one of three lists in the
     69  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     70  * for empty, full and partially-full pages respectively. The individual
     71  * pool items are on a linked list headed by `ph_itemlist' in each page
     72  * header. The memory for building the page list is either taken from
     73  * the allocated pages themselves (for small pool items) or taken from
     74  * an internal pool of page headers (`phpool').
     75  */
     76 
     77 /* List of all pools */
     78 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     79 
     80 /* List of all caches. */
     81 LIST_HEAD(,pool_cache) pool_cache_head =
     82     LIST_HEAD_INITIALIZER(pool_cache_head);
     83 
     84 /* Private pool for page header structures */
     85 #define	PHPOOL_MAX	8
     86 static struct pool phpool[PHPOOL_MAX];
     87 #define	PHPOOL_FREELIST_NELEM(idx) \
     88 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     89 
     90 #ifdef POOL_SUBPAGE
     91 /* Pool of subpages for use by normal pools. */
     92 static struct pool psppool;
     93 #endif
     94 
     95 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     96     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     97 
     98 static void *pool_page_alloc_meta(struct pool *, int);
     99 static void pool_page_free_meta(struct pool *, void *);
    100 
    101 /* allocator for pool metadata */
    102 struct pool_allocator pool_allocator_meta = {
    103 	pool_page_alloc_meta, pool_page_free_meta,
    104 	.pa_backingmapptr = &kmem_map,
    105 };
    106 
    107 /* # of seconds to retain page after last use */
    108 int pool_inactive_time = 10;
    109 
    110 /* Next candidate for drainage (see pool_drain()) */
    111 static struct pool	*drainpp;
    112 
    113 /* This lock protects both pool_head and drainpp. */
    114 static kmutex_t pool_head_lock;
    115 static kcondvar_t pool_busy;
    116 
    117 typedef uint32_t pool_item_bitmap_t;
    118 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    119 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    120 
    121 struct pool_item_header {
    122 	/* Page headers */
    123 	LIST_ENTRY(pool_item_header)
    124 				ph_pagelist;	/* pool page list */
    125 	SPLAY_ENTRY(pool_item_header)
    126 				ph_node;	/* Off-page page headers */
    127 	void *			ph_page;	/* this page's address */
    128 	struct timeval		ph_time;	/* last referenced */
    129 	uint16_t		ph_nmissing;	/* # of chunks in use */
    130 	union {
    131 		/* !PR_NOTOUCH */
    132 		struct {
    133 			LIST_HEAD(, pool_item)
    134 				phu_itemlist;	/* chunk list for this page */
    135 		} phu_normal;
    136 		/* PR_NOTOUCH */
    137 		struct {
    138 			uint16_t phu_off;	/* start offset in page */
    139 			pool_item_bitmap_t phu_bitmap[];
    140 		} phu_notouch;
    141 	} ph_u;
    142 };
    143 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    144 #define	ph_off		ph_u.phu_notouch.phu_off
    145 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    146 
    147 struct pool_item {
    148 #ifdef DIAGNOSTIC
    149 	u_int pi_magic;
    150 #endif
    151 #define	PI_MAGIC 0xdeaddeadU
    152 	/* Other entries use only this list entry */
    153 	LIST_ENTRY(pool_item)	pi_list;
    154 };
    155 
    156 #define	POOL_NEEDS_CATCHUP(pp)						\
    157 	((pp)->pr_nitems < (pp)->pr_minitems)
    158 
    159 /*
    160  * Pool cache management.
    161  *
    162  * Pool caches provide a way for constructed objects to be cached by the
    163  * pool subsystem.  This can lead to performance improvements by avoiding
    164  * needless object construction/destruction; it is deferred until absolutely
    165  * necessary.
    166  *
    167  * Caches are grouped into cache groups.  Each cache group references up
    168  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    169  * object from the pool, it calls the object's constructor and places it
    170  * into a cache group.  When a cache group frees an object back to the
    171  * pool, it first calls the object's destructor.  This allows the object
    172  * to persist in constructed form while freed to the cache.
    173  *
    174  * The pool references each cache, so that when a pool is drained by the
    175  * pagedaemon, it can drain each individual cache as well.  Each time a
    176  * cache is drained, the most idle cache group is freed to the pool in
    177  * its entirety.
    178  *
    179  * Pool caches are layed on top of pools.  By layering them, we can avoid
    180  * the complexity of cache management for pools which would not benefit
    181  * from it.
    182  */
    183 
    184 static struct pool pcgpool;
    185 static struct pool cache_pool;
    186 static struct pool cache_cpu_pool;
    187 
    188 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    189 					     void *, paddr_t);
    190 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    191 					     void **, paddr_t *, int);
    192 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    193 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    194 static void	pool_cache_xcall(pool_cache_t);
    195 
    196 static int	pool_catchup(struct pool *);
    197 static void	pool_prime_page(struct pool *, void *,
    198 		    struct pool_item_header *);
    199 static void	pool_update_curpage(struct pool *);
    200 
    201 static int	pool_grow(struct pool *, int);
    202 static void	*pool_allocator_alloc(struct pool *, int);
    203 static void	pool_allocator_free(struct pool *, void *);
    204 
    205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    206 	void (*)(const char *, ...));
    207 static void pool_print1(struct pool *, const char *,
    208 	void (*)(const char *, ...));
    209 
    210 static int pool_chk_page(struct pool *, const char *,
    211 			 struct pool_item_header *);
    212 
    213 /*
    214  * Pool log entry. An array of these is allocated in pool_init().
    215  */
    216 struct pool_log {
    217 	const char	*pl_file;
    218 	long		pl_line;
    219 	int		pl_action;
    220 #define	PRLOG_GET	1
    221 #define	PRLOG_PUT	2
    222 	void		*pl_addr;
    223 };
    224 
    225 #ifdef POOL_DIAGNOSTIC
    226 /* Number of entries in pool log buffers */
    227 #ifndef POOL_LOGSIZE
    228 #define	POOL_LOGSIZE	10
    229 #endif
    230 
    231 int pool_logsize = POOL_LOGSIZE;
    232 
    233 static inline void
    234 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    235 {
    236 	int n = pp->pr_curlogentry;
    237 	struct pool_log *pl;
    238 
    239 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    240 		return;
    241 
    242 	/*
    243 	 * Fill in the current entry. Wrap around and overwrite
    244 	 * the oldest entry if necessary.
    245 	 */
    246 	pl = &pp->pr_log[n];
    247 	pl->pl_file = file;
    248 	pl->pl_line = line;
    249 	pl->pl_action = action;
    250 	pl->pl_addr = v;
    251 	if (++n >= pp->pr_logsize)
    252 		n = 0;
    253 	pp->pr_curlogentry = n;
    254 }
    255 
    256 static void
    257 pr_printlog(struct pool *pp, struct pool_item *pi,
    258     void (*pr)(const char *, ...))
    259 {
    260 	int i = pp->pr_logsize;
    261 	int n = pp->pr_curlogentry;
    262 
    263 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    264 		return;
    265 
    266 	/*
    267 	 * Print all entries in this pool's log.
    268 	 */
    269 	while (i-- > 0) {
    270 		struct pool_log *pl = &pp->pr_log[n];
    271 		if (pl->pl_action != 0) {
    272 			if (pi == NULL || pi == pl->pl_addr) {
    273 				(*pr)("\tlog entry %d:\n", i);
    274 				(*pr)("\t\taction = %s, addr = %p\n",
    275 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    276 				    pl->pl_addr);
    277 				(*pr)("\t\tfile: %s at line %lu\n",
    278 				    pl->pl_file, pl->pl_line);
    279 			}
    280 		}
    281 		if (++n >= pp->pr_logsize)
    282 			n = 0;
    283 	}
    284 }
    285 
    286 static inline void
    287 pr_enter(struct pool *pp, const char *file, long line)
    288 {
    289 
    290 	if (__predict_false(pp->pr_entered_file != NULL)) {
    291 		printf("pool %s: reentrancy at file %s line %ld\n",
    292 		    pp->pr_wchan, file, line);
    293 		printf("         previous entry at file %s line %ld\n",
    294 		    pp->pr_entered_file, pp->pr_entered_line);
    295 		panic("pr_enter");
    296 	}
    297 
    298 	pp->pr_entered_file = file;
    299 	pp->pr_entered_line = line;
    300 }
    301 
    302 static inline void
    303 pr_leave(struct pool *pp)
    304 {
    305 
    306 	if (__predict_false(pp->pr_entered_file == NULL)) {
    307 		printf("pool %s not entered?\n", pp->pr_wchan);
    308 		panic("pr_leave");
    309 	}
    310 
    311 	pp->pr_entered_file = NULL;
    312 	pp->pr_entered_line = 0;
    313 }
    314 
    315 static inline void
    316 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    317 {
    318 
    319 	if (pp->pr_entered_file != NULL)
    320 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    321 		    pp->pr_entered_file, pp->pr_entered_line);
    322 }
    323 #else
    324 #define	pr_log(pp, v, action, file, line)
    325 #define	pr_printlog(pp, pi, pr)
    326 #define	pr_enter(pp, file, line)
    327 #define	pr_leave(pp)
    328 #define	pr_enter_check(pp, pr)
    329 #endif /* POOL_DIAGNOSTIC */
    330 
    331 static inline unsigned int
    332 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    333     const void *v)
    334 {
    335 	const char *cp = v;
    336 	unsigned int idx;
    337 
    338 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    339 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    340 	KASSERT(idx < pp->pr_itemsperpage);
    341 	return idx;
    342 }
    343 
    344 static inline void
    345 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    346     void *obj)
    347 {
    348 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    349 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    350 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    351 
    352 	KASSERT((*bitmap & mask) == 0);
    353 	*bitmap |= mask;
    354 }
    355 
    356 static inline void *
    357 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    358 {
    359 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    360 	unsigned int idx;
    361 	int i;
    362 
    363 	for (i = 0; ; i++) {
    364 		int bit;
    365 
    366 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    367 		bit = ffs32(bitmap[i]);
    368 		if (bit) {
    369 			pool_item_bitmap_t mask;
    370 
    371 			bit--;
    372 			idx = (i * BITMAP_SIZE) + bit;
    373 			mask = 1 << bit;
    374 			KASSERT((bitmap[i] & mask) != 0);
    375 			bitmap[i] &= ~mask;
    376 			break;
    377 		}
    378 	}
    379 	KASSERT(idx < pp->pr_itemsperpage);
    380 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    381 }
    382 
    383 static inline void
    384 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    385 {
    386 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    387 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    388 	int i;
    389 
    390 	for (i = 0; i < n; i++) {
    391 		bitmap[i] = (pool_item_bitmap_t)-1;
    392 	}
    393 }
    394 
    395 static inline int
    396 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    397 {
    398 
    399 	/*
    400 	 * we consider pool_item_header with smaller ph_page bigger.
    401 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    402 	 */
    403 
    404 	if (a->ph_page < b->ph_page)
    405 		return (1);
    406 	else if (a->ph_page > b->ph_page)
    407 		return (-1);
    408 	else
    409 		return (0);
    410 }
    411 
    412 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    413 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    414 
    415 /*
    416  * Return the pool page header based on item address.
    417  */
    418 static inline struct pool_item_header *
    419 pr_find_pagehead(struct pool *pp, void *v)
    420 {
    421 	struct pool_item_header *ph, tmp;
    422 
    423 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    424 		tmp.ph_page = (void *)(uintptr_t)v;
    425 		ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    426 		if (ph == NULL) {
    427 			ph = SPLAY_ROOT(&pp->pr_phtree);
    428 			if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    429 				ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    430 			}
    431 			KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    432 		}
    433 	} else {
    434 		void *page =
    435 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    436 
    437 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    438 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    439 		} else {
    440 			tmp.ph_page = page;
    441 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    442 		}
    443 	}
    444 
    445 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    446 	    ((char *)ph->ph_page <= (char *)v &&
    447 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    448 	return ph;
    449 }
    450 
    451 static void
    452 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    453 {
    454 	struct pool_item_header *ph;
    455 
    456 	while ((ph = LIST_FIRST(pq)) != NULL) {
    457 		LIST_REMOVE(ph, ph_pagelist);
    458 		pool_allocator_free(pp, ph->ph_page);
    459 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    460 			pool_put(pp->pr_phpool, ph);
    461 	}
    462 }
    463 
    464 /*
    465  * Remove a page from the pool.
    466  */
    467 static inline void
    468 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    469      struct pool_pagelist *pq)
    470 {
    471 
    472 	KASSERT(mutex_owned(&pp->pr_lock));
    473 
    474 	/*
    475 	 * If the page was idle, decrement the idle page count.
    476 	 */
    477 	if (ph->ph_nmissing == 0) {
    478 #ifdef DIAGNOSTIC
    479 		if (pp->pr_nidle == 0)
    480 			panic("pr_rmpage: nidle inconsistent");
    481 		if (pp->pr_nitems < pp->pr_itemsperpage)
    482 			panic("pr_rmpage: nitems inconsistent");
    483 #endif
    484 		pp->pr_nidle--;
    485 	}
    486 
    487 	pp->pr_nitems -= pp->pr_itemsperpage;
    488 
    489 	/*
    490 	 * Unlink the page from the pool and queue it for release.
    491 	 */
    492 	LIST_REMOVE(ph, ph_pagelist);
    493 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    494 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    495 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    496 
    497 	pp->pr_npages--;
    498 	pp->pr_npagefree++;
    499 
    500 	pool_update_curpage(pp);
    501 }
    502 
    503 static bool
    504 pa_starved_p(struct pool_allocator *pa)
    505 {
    506 
    507 	if (pa->pa_backingmap != NULL) {
    508 		return vm_map_starved_p(pa->pa_backingmap);
    509 	}
    510 	return false;
    511 }
    512 
    513 static int
    514 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    515 {
    516 	struct pool *pp = obj;
    517 	struct pool_allocator *pa = pp->pr_alloc;
    518 
    519 	KASSERT(&pp->pr_reclaimerentry == ce);
    520 	pool_reclaim(pp);
    521 	if (!pa_starved_p(pa)) {
    522 		return CALLBACK_CHAIN_ABORT;
    523 	}
    524 	return CALLBACK_CHAIN_CONTINUE;
    525 }
    526 
    527 static void
    528 pool_reclaim_register(struct pool *pp)
    529 {
    530 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    531 	int s;
    532 
    533 	if (map == NULL) {
    534 		return;
    535 	}
    536 
    537 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    538 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    539 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    540 	splx(s);
    541 }
    542 
    543 static void
    544 pool_reclaim_unregister(struct pool *pp)
    545 {
    546 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    547 	int s;
    548 
    549 	if (map == NULL) {
    550 		return;
    551 	}
    552 
    553 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    554 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    555 	    &pp->pr_reclaimerentry);
    556 	splx(s);
    557 }
    558 
    559 static void
    560 pa_reclaim_register(struct pool_allocator *pa)
    561 {
    562 	struct vm_map *map = *pa->pa_backingmapptr;
    563 	struct pool *pp;
    564 
    565 	KASSERT(pa->pa_backingmap == NULL);
    566 	if (map == NULL) {
    567 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    568 		return;
    569 	}
    570 	pa->pa_backingmap = map;
    571 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    572 		pool_reclaim_register(pp);
    573 	}
    574 }
    575 
    576 /*
    577  * Initialize all the pools listed in the "pools" link set.
    578  */
    579 void
    580 pool_subsystem_init(void)
    581 {
    582 	struct pool_allocator *pa;
    583 	__link_set_decl(pools, struct link_pool_init);
    584 	struct link_pool_init * const *pi;
    585 
    586 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    587 	cv_init(&pool_busy, "poolbusy");
    588 
    589 	__link_set_foreach(pi, pools)
    590 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    591 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    592 		    (*pi)->palloc, (*pi)->ipl);
    593 
    594 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    595 		KASSERT(pa->pa_backingmapptr != NULL);
    596 		KASSERT(*pa->pa_backingmapptr != NULL);
    597 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    598 		pa_reclaim_register(pa);
    599 	}
    600 
    601 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
    602 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    603 
    604 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
    605 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    606 }
    607 
    608 /*
    609  * Initialize the given pool resource structure.
    610  *
    611  * We export this routine to allow other kernel parts to declare
    612  * static pools that must be initialized before malloc() is available.
    613  */
    614 void
    615 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    616     const char *wchan, struct pool_allocator *palloc, int ipl)
    617 {
    618 #ifdef DEBUG
    619 	struct pool *pp1;
    620 #endif
    621 	size_t trysize, phsize;
    622 	int off, slack;
    623 
    624 #ifdef DEBUG
    625 	/*
    626 	 * Check that the pool hasn't already been initialised and
    627 	 * added to the list of all pools.
    628 	 */
    629 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
    630 		if (pp == pp1)
    631 			panic("pool_init: pool %s already initialised",
    632 			    wchan);
    633 	}
    634 #endif
    635 
    636 #ifdef POOL_DIAGNOSTIC
    637 	/*
    638 	 * Always log if POOL_DIAGNOSTIC is defined.
    639 	 */
    640 	if (pool_logsize != 0)
    641 		flags |= PR_LOGGING;
    642 #endif
    643 
    644 	if (palloc == NULL)
    645 		palloc = &pool_allocator_kmem;
    646 #ifdef POOL_SUBPAGE
    647 	if (size > palloc->pa_pagesz) {
    648 		if (palloc == &pool_allocator_kmem)
    649 			palloc = &pool_allocator_kmem_fullpage;
    650 		else if (palloc == &pool_allocator_nointr)
    651 			palloc = &pool_allocator_nointr_fullpage;
    652 	}
    653 #endif /* POOL_SUBPAGE */
    654 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    655 		if (palloc->pa_pagesz == 0)
    656 			palloc->pa_pagesz = PAGE_SIZE;
    657 
    658 		TAILQ_INIT(&palloc->pa_list);
    659 
    660 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    661 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    662 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    663 
    664 		if (palloc->pa_backingmapptr != NULL) {
    665 			pa_reclaim_register(palloc);
    666 		}
    667 		palloc->pa_flags |= PA_INITIALIZED;
    668 	}
    669 
    670 	if (align == 0)
    671 		align = ALIGN(1);
    672 
    673 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    674 		size = sizeof(struct pool_item);
    675 
    676 	size = roundup(size, align);
    677 #ifdef DIAGNOSTIC
    678 	if (size > palloc->pa_pagesz)
    679 		panic("pool_init: pool item size (%zu) too large", size);
    680 #endif
    681 
    682 	/*
    683 	 * Initialize the pool structure.
    684 	 */
    685 	LIST_INIT(&pp->pr_emptypages);
    686 	LIST_INIT(&pp->pr_fullpages);
    687 	LIST_INIT(&pp->pr_partpages);
    688 	pp->pr_cache = NULL;
    689 	pp->pr_curpage = NULL;
    690 	pp->pr_npages = 0;
    691 	pp->pr_minitems = 0;
    692 	pp->pr_minpages = 0;
    693 	pp->pr_maxpages = UINT_MAX;
    694 	pp->pr_roflags = flags;
    695 	pp->pr_flags = 0;
    696 	pp->pr_size = size;
    697 	pp->pr_align = align;
    698 	pp->pr_wchan = wchan;
    699 	pp->pr_alloc = palloc;
    700 	pp->pr_nitems = 0;
    701 	pp->pr_nout = 0;
    702 	pp->pr_hardlimit = UINT_MAX;
    703 	pp->pr_hardlimit_warning = NULL;
    704 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    705 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    706 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    707 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    708 	pp->pr_drain_hook = NULL;
    709 	pp->pr_drain_hook_arg = NULL;
    710 	pp->pr_freecheck = NULL;
    711 
    712 	/*
    713 	 * Decide whether to put the page header off page to avoid
    714 	 * wasting too large a part of the page or too big item.
    715 	 * Off-page page headers go on a hash table, so we can match
    716 	 * a returned item with its header based on the page address.
    717 	 * We use 1/16 of the page size and about 8 times of the item
    718 	 * size as the threshold (XXX: tune)
    719 	 *
    720 	 * However, we'll put the header into the page if we can put
    721 	 * it without wasting any items.
    722 	 *
    723 	 * Silently enforce `0 <= ioff < align'.
    724 	 */
    725 	pp->pr_itemoffset = ioff %= align;
    726 	/* See the comment below about reserved bytes. */
    727 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    728 	phsize = ALIGN(sizeof(struct pool_item_header));
    729 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    730 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    731 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    732 		/* Use the end of the page for the page header */
    733 		pp->pr_roflags |= PR_PHINPAGE;
    734 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    735 	} else {
    736 		/* The page header will be taken from our page header pool */
    737 		pp->pr_phoffset = 0;
    738 		off = palloc->pa_pagesz;
    739 		SPLAY_INIT(&pp->pr_phtree);
    740 	}
    741 
    742 	/*
    743 	 * Alignment is to take place at `ioff' within the item. This means
    744 	 * we must reserve up to `align - 1' bytes on the page to allow
    745 	 * appropriate positioning of each item.
    746 	 */
    747 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    748 	KASSERT(pp->pr_itemsperpage != 0);
    749 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    750 		int idx;
    751 
    752 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    753 		    idx++) {
    754 			/* nothing */
    755 		}
    756 		if (idx >= PHPOOL_MAX) {
    757 			/*
    758 			 * if you see this panic, consider to tweak
    759 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    760 			 */
    761 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    762 			    pp->pr_wchan, pp->pr_itemsperpage);
    763 		}
    764 		pp->pr_phpool = &phpool[idx];
    765 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    766 		pp->pr_phpool = &phpool[0];
    767 	}
    768 #if defined(DIAGNOSTIC)
    769 	else {
    770 		pp->pr_phpool = NULL;
    771 	}
    772 #endif
    773 
    774 	/*
    775 	 * Use the slack between the chunks and the page header
    776 	 * for "cache coloring".
    777 	 */
    778 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    779 	pp->pr_maxcolor = (slack / align) * align;
    780 	pp->pr_curcolor = 0;
    781 
    782 	pp->pr_nget = 0;
    783 	pp->pr_nfail = 0;
    784 	pp->pr_nput = 0;
    785 	pp->pr_npagealloc = 0;
    786 	pp->pr_npagefree = 0;
    787 	pp->pr_hiwat = 0;
    788 	pp->pr_nidle = 0;
    789 	pp->pr_refcnt = 0;
    790 
    791 #ifdef POOL_DIAGNOSTIC
    792 	if (flags & PR_LOGGING) {
    793 		if (kmem_map == NULL ||
    794 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    795 		     M_TEMP, M_NOWAIT)) == NULL)
    796 			pp->pr_roflags &= ~PR_LOGGING;
    797 		pp->pr_curlogentry = 0;
    798 		pp->pr_logsize = pool_logsize;
    799 	}
    800 #endif
    801 
    802 	pp->pr_entered_file = NULL;
    803 	pp->pr_entered_line = 0;
    804 
    805 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    806 	cv_init(&pp->pr_cv, wchan);
    807 	pp->pr_ipl = ipl;
    808 
    809 	/*
    810 	 * Initialize private page header pool and cache magazine pool if we
    811 	 * haven't done so yet.
    812 	 * XXX LOCKING.
    813 	 */
    814 	if (phpool[0].pr_size == 0) {
    815 		int idx;
    816 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    817 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    818 			int nelem;
    819 			size_t sz;
    820 
    821 			nelem = PHPOOL_FREELIST_NELEM(idx);
    822 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    823 			    "phpool-%d", nelem);
    824 			sz = sizeof(struct pool_item_header);
    825 			if (nelem) {
    826 				sz = offsetof(struct pool_item_header,
    827 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    828 			}
    829 			pool_init(&phpool[idx], sz, 0, 0, 0,
    830 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    831 		}
    832 #ifdef POOL_SUBPAGE
    833 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    834 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    835 #endif
    836 		pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
    837 		    "cachegrp", &pool_allocator_meta, IPL_VM);
    838 	}
    839 
    840 	if (__predict_true(!cold)) {
    841 		/* Insert into the list of all pools. */
    842 		mutex_enter(&pool_head_lock);
    843 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    844 		mutex_exit(&pool_head_lock);
    845 
    846 		/* Insert this into the list of pools using this allocator. */
    847 		mutex_enter(&palloc->pa_lock);
    848 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    849 		mutex_exit(&palloc->pa_lock);
    850 	} else {
    851 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    852 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    853 	}
    854 
    855 	pool_reclaim_register(pp);
    856 }
    857 
    858 /*
    859  * De-commision a pool resource.
    860  */
    861 void
    862 pool_destroy(struct pool *pp)
    863 {
    864 	struct pool_pagelist pq;
    865 	struct pool_item_header *ph;
    866 
    867 	/* Remove from global pool list */
    868 	mutex_enter(&pool_head_lock);
    869 	while (pp->pr_refcnt != 0)
    870 		cv_wait(&pool_busy, &pool_head_lock);
    871 	LIST_REMOVE(pp, pr_poollist);
    872 	if (drainpp == pp)
    873 		drainpp = NULL;
    874 	mutex_exit(&pool_head_lock);
    875 
    876 	/* Remove this pool from its allocator's list of pools. */
    877 	pool_reclaim_unregister(pp);
    878 	mutex_enter(&pp->pr_alloc->pa_lock);
    879 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    880 	mutex_exit(&pp->pr_alloc->pa_lock);
    881 
    882 	mutex_enter(&pp->pr_lock);
    883 
    884 	KASSERT(pp->pr_cache == NULL);
    885 
    886 #ifdef DIAGNOSTIC
    887 	if (pp->pr_nout != 0) {
    888 		pr_printlog(pp, NULL, printf);
    889 		panic("pool_destroy: pool busy: still out: %u",
    890 		    pp->pr_nout);
    891 	}
    892 #endif
    893 
    894 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    895 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    896 
    897 	/* Remove all pages */
    898 	LIST_INIT(&pq);
    899 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    900 		pr_rmpage(pp, ph, &pq);
    901 
    902 	mutex_exit(&pp->pr_lock);
    903 
    904 	pr_pagelist_free(pp, &pq);
    905 
    906 #ifdef POOL_DIAGNOSTIC
    907 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    908 		free(pp->pr_log, M_TEMP);
    909 #endif
    910 
    911 	cv_destroy(&pp->pr_cv);
    912 	mutex_destroy(&pp->pr_lock);
    913 }
    914 
    915 void
    916 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    917 {
    918 
    919 	/* XXX no locking -- must be used just after pool_init() */
    920 #ifdef DIAGNOSTIC
    921 	if (pp->pr_drain_hook != NULL)
    922 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    923 #endif
    924 	pp->pr_drain_hook = fn;
    925 	pp->pr_drain_hook_arg = arg;
    926 }
    927 
    928 static struct pool_item_header *
    929 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    930 {
    931 	struct pool_item_header *ph;
    932 
    933 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    934 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    935 	else
    936 		ph = pool_get(pp->pr_phpool, flags);
    937 
    938 	return (ph);
    939 }
    940 
    941 /*
    942  * Grab an item from the pool.
    943  */
    944 void *
    945 #ifdef POOL_DIAGNOSTIC
    946 _pool_get(struct pool *pp, int flags, const char *file, long line)
    947 #else
    948 pool_get(struct pool *pp, int flags)
    949 #endif
    950 {
    951 	struct pool_item *pi;
    952 	struct pool_item_header *ph;
    953 	void *v;
    954 
    955 #ifdef DIAGNOSTIC
    956 	if (__predict_false(pp->pr_itemsperpage == 0))
    957 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    958 		    "pool not initialized?", pp);
    959 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    960 			    (flags & PR_WAITOK) != 0))
    961 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    962 
    963 #endif /* DIAGNOSTIC */
    964 #ifdef LOCKDEBUG
    965 	if (flags & PR_WAITOK)
    966 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
    967 #endif
    968 
    969 	mutex_enter(&pp->pr_lock);
    970 	pr_enter(pp, file, line);
    971 
    972  startover:
    973 	/*
    974 	 * Check to see if we've reached the hard limit.  If we have,
    975 	 * and we can wait, then wait until an item has been returned to
    976 	 * the pool.
    977 	 */
    978 #ifdef DIAGNOSTIC
    979 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    980 		pr_leave(pp);
    981 		mutex_exit(&pp->pr_lock);
    982 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    983 	}
    984 #endif
    985 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    986 		if (pp->pr_drain_hook != NULL) {
    987 			/*
    988 			 * Since the drain hook is going to free things
    989 			 * back to the pool, unlock, call the hook, re-lock,
    990 			 * and check the hardlimit condition again.
    991 			 */
    992 			pr_leave(pp);
    993 			mutex_exit(&pp->pr_lock);
    994 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    995 			mutex_enter(&pp->pr_lock);
    996 			pr_enter(pp, file, line);
    997 			if (pp->pr_nout < pp->pr_hardlimit)
    998 				goto startover;
    999 		}
   1000 
   1001 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1002 			/*
   1003 			 * XXX: A warning isn't logged in this case.  Should
   1004 			 * it be?
   1005 			 */
   1006 			pp->pr_flags |= PR_WANTED;
   1007 			pr_leave(pp);
   1008 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1009 			pr_enter(pp, file, line);
   1010 			goto startover;
   1011 		}
   1012 
   1013 		/*
   1014 		 * Log a message that the hard limit has been hit.
   1015 		 */
   1016 		if (pp->pr_hardlimit_warning != NULL &&
   1017 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1018 			      &pp->pr_hardlimit_ratecap))
   1019 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1020 
   1021 		pp->pr_nfail++;
   1022 
   1023 		pr_leave(pp);
   1024 		mutex_exit(&pp->pr_lock);
   1025 		return (NULL);
   1026 	}
   1027 
   1028 	/*
   1029 	 * The convention we use is that if `curpage' is not NULL, then
   1030 	 * it points at a non-empty bucket. In particular, `curpage'
   1031 	 * never points at a page header which has PR_PHINPAGE set and
   1032 	 * has no items in its bucket.
   1033 	 */
   1034 	if ((ph = pp->pr_curpage) == NULL) {
   1035 		int error;
   1036 
   1037 #ifdef DIAGNOSTIC
   1038 		if (pp->pr_nitems != 0) {
   1039 			mutex_exit(&pp->pr_lock);
   1040 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1041 			    pp->pr_wchan, pp->pr_nitems);
   1042 			panic("pool_get: nitems inconsistent");
   1043 		}
   1044 #endif
   1045 
   1046 		/*
   1047 		 * Call the back-end page allocator for more memory.
   1048 		 * Release the pool lock, as the back-end page allocator
   1049 		 * may block.
   1050 		 */
   1051 		pr_leave(pp);
   1052 		error = pool_grow(pp, flags);
   1053 		pr_enter(pp, file, line);
   1054 		if (error != 0) {
   1055 			/*
   1056 			 * We were unable to allocate a page or item
   1057 			 * header, but we released the lock during
   1058 			 * allocation, so perhaps items were freed
   1059 			 * back to the pool.  Check for this case.
   1060 			 */
   1061 			if (pp->pr_curpage != NULL)
   1062 				goto startover;
   1063 
   1064 			pp->pr_nfail++;
   1065 			pr_leave(pp);
   1066 			mutex_exit(&pp->pr_lock);
   1067 			return (NULL);
   1068 		}
   1069 
   1070 		/* Start the allocation process over. */
   1071 		goto startover;
   1072 	}
   1073 	if (pp->pr_roflags & PR_NOTOUCH) {
   1074 #ifdef DIAGNOSTIC
   1075 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1076 			pr_leave(pp);
   1077 			mutex_exit(&pp->pr_lock);
   1078 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1079 		}
   1080 #endif
   1081 		v = pr_item_notouch_get(pp, ph);
   1082 #ifdef POOL_DIAGNOSTIC
   1083 		pr_log(pp, v, PRLOG_GET, file, line);
   1084 #endif
   1085 	} else {
   1086 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1087 		if (__predict_false(v == NULL)) {
   1088 			pr_leave(pp);
   1089 			mutex_exit(&pp->pr_lock);
   1090 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1091 		}
   1092 #ifdef DIAGNOSTIC
   1093 		if (__predict_false(pp->pr_nitems == 0)) {
   1094 			pr_leave(pp);
   1095 			mutex_exit(&pp->pr_lock);
   1096 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1097 			    pp->pr_wchan, pp->pr_nitems);
   1098 			panic("pool_get: nitems inconsistent");
   1099 		}
   1100 #endif
   1101 
   1102 #ifdef POOL_DIAGNOSTIC
   1103 		pr_log(pp, v, PRLOG_GET, file, line);
   1104 #endif
   1105 
   1106 #ifdef DIAGNOSTIC
   1107 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1108 			pr_printlog(pp, pi, printf);
   1109 			panic("pool_get(%s): free list modified: "
   1110 			    "magic=%x; page %p; item addr %p\n",
   1111 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1112 		}
   1113 #endif
   1114 
   1115 		/*
   1116 		 * Remove from item list.
   1117 		 */
   1118 		LIST_REMOVE(pi, pi_list);
   1119 	}
   1120 	pp->pr_nitems--;
   1121 	pp->pr_nout++;
   1122 	if (ph->ph_nmissing == 0) {
   1123 #ifdef DIAGNOSTIC
   1124 		if (__predict_false(pp->pr_nidle == 0))
   1125 			panic("pool_get: nidle inconsistent");
   1126 #endif
   1127 		pp->pr_nidle--;
   1128 
   1129 		/*
   1130 		 * This page was previously empty.  Move it to the list of
   1131 		 * partially-full pages.  This page is already curpage.
   1132 		 */
   1133 		LIST_REMOVE(ph, ph_pagelist);
   1134 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1135 	}
   1136 	ph->ph_nmissing++;
   1137 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1138 #ifdef DIAGNOSTIC
   1139 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1140 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1141 			pr_leave(pp);
   1142 			mutex_exit(&pp->pr_lock);
   1143 			panic("pool_get: %s: nmissing inconsistent",
   1144 			    pp->pr_wchan);
   1145 		}
   1146 #endif
   1147 		/*
   1148 		 * This page is now full.  Move it to the full list
   1149 		 * and select a new current page.
   1150 		 */
   1151 		LIST_REMOVE(ph, ph_pagelist);
   1152 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1153 		pool_update_curpage(pp);
   1154 	}
   1155 
   1156 	pp->pr_nget++;
   1157 	pr_leave(pp);
   1158 
   1159 	/*
   1160 	 * If we have a low water mark and we are now below that low
   1161 	 * water mark, add more items to the pool.
   1162 	 */
   1163 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1164 		/*
   1165 		 * XXX: Should we log a warning?  Should we set up a timeout
   1166 		 * to try again in a second or so?  The latter could break
   1167 		 * a caller's assumptions about interrupt protection, etc.
   1168 		 */
   1169 	}
   1170 
   1171 	mutex_exit(&pp->pr_lock);
   1172 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1173 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1174 	return (v);
   1175 }
   1176 
   1177 /*
   1178  * Internal version of pool_put().  Pool is already locked/entered.
   1179  */
   1180 static void
   1181 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1182 {
   1183 	struct pool_item *pi = v;
   1184 	struct pool_item_header *ph;
   1185 
   1186 	KASSERT(mutex_owned(&pp->pr_lock));
   1187 	FREECHECK_IN(&pp->pr_freecheck, v);
   1188 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1189 
   1190 #ifdef DIAGNOSTIC
   1191 	if (__predict_false(pp->pr_nout == 0)) {
   1192 		printf("pool %s: putting with none out\n",
   1193 		    pp->pr_wchan);
   1194 		panic("pool_put");
   1195 	}
   1196 #endif
   1197 
   1198 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1199 		pr_printlog(pp, NULL, printf);
   1200 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1201 	}
   1202 
   1203 	/*
   1204 	 * Return to item list.
   1205 	 */
   1206 	if (pp->pr_roflags & PR_NOTOUCH) {
   1207 		pr_item_notouch_put(pp, ph, v);
   1208 	} else {
   1209 #ifdef DIAGNOSTIC
   1210 		pi->pi_magic = PI_MAGIC;
   1211 #endif
   1212 #ifdef DEBUG
   1213 		{
   1214 			int i, *ip = v;
   1215 
   1216 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1217 				*ip++ = PI_MAGIC;
   1218 			}
   1219 		}
   1220 #endif
   1221 
   1222 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1223 	}
   1224 	KDASSERT(ph->ph_nmissing != 0);
   1225 	ph->ph_nmissing--;
   1226 	pp->pr_nput++;
   1227 	pp->pr_nitems++;
   1228 	pp->pr_nout--;
   1229 
   1230 	/* Cancel "pool empty" condition if it exists */
   1231 	if (pp->pr_curpage == NULL)
   1232 		pp->pr_curpage = ph;
   1233 
   1234 	if (pp->pr_flags & PR_WANTED) {
   1235 		pp->pr_flags &= ~PR_WANTED;
   1236 		if (ph->ph_nmissing == 0)
   1237 			pp->pr_nidle++;
   1238 		cv_broadcast(&pp->pr_cv);
   1239 		return;
   1240 	}
   1241 
   1242 	/*
   1243 	 * If this page is now empty, do one of two things:
   1244 	 *
   1245 	 *	(1) If we have more pages than the page high water mark,
   1246 	 *	    free the page back to the system.  ONLY CONSIDER
   1247 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1248 	 *	    CLAIM.
   1249 	 *
   1250 	 *	(2) Otherwise, move the page to the empty page list.
   1251 	 *
   1252 	 * Either way, select a new current page (so we use a partially-full
   1253 	 * page if one is available).
   1254 	 */
   1255 	if (ph->ph_nmissing == 0) {
   1256 		pp->pr_nidle++;
   1257 		if (pp->pr_npages > pp->pr_minpages &&
   1258 		    (pp->pr_npages > pp->pr_maxpages ||
   1259 		     pa_starved_p(pp->pr_alloc))) {
   1260 			pr_rmpage(pp, ph, pq);
   1261 		} else {
   1262 			LIST_REMOVE(ph, ph_pagelist);
   1263 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1264 
   1265 			/*
   1266 			 * Update the timestamp on the page.  A page must
   1267 			 * be idle for some period of time before it can
   1268 			 * be reclaimed by the pagedaemon.  This minimizes
   1269 			 * ping-pong'ing for memory.
   1270 			 */
   1271 			getmicrotime(&ph->ph_time);
   1272 		}
   1273 		pool_update_curpage(pp);
   1274 	}
   1275 
   1276 	/*
   1277 	 * If the page was previously completely full, move it to the
   1278 	 * partially-full list and make it the current page.  The next
   1279 	 * allocation will get the item from this page, instead of
   1280 	 * further fragmenting the pool.
   1281 	 */
   1282 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1283 		LIST_REMOVE(ph, ph_pagelist);
   1284 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1285 		pp->pr_curpage = ph;
   1286 	}
   1287 }
   1288 
   1289 /*
   1290  * Return resource to the pool.
   1291  */
   1292 #ifdef POOL_DIAGNOSTIC
   1293 void
   1294 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1295 {
   1296 	struct pool_pagelist pq;
   1297 
   1298 	LIST_INIT(&pq);
   1299 
   1300 	mutex_enter(&pp->pr_lock);
   1301 	pr_enter(pp, file, line);
   1302 
   1303 	pr_log(pp, v, PRLOG_PUT, file, line);
   1304 
   1305 	pool_do_put(pp, v, &pq);
   1306 
   1307 	pr_leave(pp);
   1308 	mutex_exit(&pp->pr_lock);
   1309 
   1310 	pr_pagelist_free(pp, &pq);
   1311 }
   1312 #undef pool_put
   1313 #endif /* POOL_DIAGNOSTIC */
   1314 
   1315 void
   1316 pool_put(struct pool *pp, void *v)
   1317 {
   1318 	struct pool_pagelist pq;
   1319 
   1320 	LIST_INIT(&pq);
   1321 
   1322 	mutex_enter(&pp->pr_lock);
   1323 	pool_do_put(pp, v, &pq);
   1324 	mutex_exit(&pp->pr_lock);
   1325 
   1326 	pr_pagelist_free(pp, &pq);
   1327 }
   1328 
   1329 #ifdef POOL_DIAGNOSTIC
   1330 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1331 #endif
   1332 
   1333 /*
   1334  * pool_grow: grow a pool by a page.
   1335  *
   1336  * => called with pool locked.
   1337  * => unlock and relock the pool.
   1338  * => return with pool locked.
   1339  */
   1340 
   1341 static int
   1342 pool_grow(struct pool *pp, int flags)
   1343 {
   1344 	struct pool_item_header *ph = NULL;
   1345 	char *cp;
   1346 
   1347 	mutex_exit(&pp->pr_lock);
   1348 	cp = pool_allocator_alloc(pp, flags);
   1349 	if (__predict_true(cp != NULL)) {
   1350 		ph = pool_alloc_item_header(pp, cp, flags);
   1351 	}
   1352 	if (__predict_false(cp == NULL || ph == NULL)) {
   1353 		if (cp != NULL) {
   1354 			pool_allocator_free(pp, cp);
   1355 		}
   1356 		mutex_enter(&pp->pr_lock);
   1357 		return ENOMEM;
   1358 	}
   1359 
   1360 	mutex_enter(&pp->pr_lock);
   1361 	pool_prime_page(pp, cp, ph);
   1362 	pp->pr_npagealloc++;
   1363 	return 0;
   1364 }
   1365 
   1366 /*
   1367  * Add N items to the pool.
   1368  */
   1369 int
   1370 pool_prime(struct pool *pp, int n)
   1371 {
   1372 	int newpages;
   1373 	int error = 0;
   1374 
   1375 	mutex_enter(&pp->pr_lock);
   1376 
   1377 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1378 
   1379 	while (newpages-- > 0) {
   1380 		error = pool_grow(pp, PR_NOWAIT);
   1381 		if (error) {
   1382 			break;
   1383 		}
   1384 		pp->pr_minpages++;
   1385 	}
   1386 
   1387 	if (pp->pr_minpages >= pp->pr_maxpages)
   1388 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1389 
   1390 	mutex_exit(&pp->pr_lock);
   1391 	return error;
   1392 }
   1393 
   1394 /*
   1395  * Add a page worth of items to the pool.
   1396  *
   1397  * Note, we must be called with the pool descriptor LOCKED.
   1398  */
   1399 static void
   1400 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1401 {
   1402 	struct pool_item *pi;
   1403 	void *cp = storage;
   1404 	const unsigned int align = pp->pr_align;
   1405 	const unsigned int ioff = pp->pr_itemoffset;
   1406 	int n;
   1407 
   1408 	KASSERT(mutex_owned(&pp->pr_lock));
   1409 
   1410 #ifdef DIAGNOSTIC
   1411 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1412 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1413 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1414 #endif
   1415 
   1416 	/*
   1417 	 * Insert page header.
   1418 	 */
   1419 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1420 	LIST_INIT(&ph->ph_itemlist);
   1421 	ph->ph_page = storage;
   1422 	ph->ph_nmissing = 0;
   1423 	getmicrotime(&ph->ph_time);
   1424 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1425 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1426 
   1427 	pp->pr_nidle++;
   1428 
   1429 	/*
   1430 	 * Color this page.
   1431 	 */
   1432 	cp = (char *)cp + pp->pr_curcolor;
   1433 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1434 		pp->pr_curcolor = 0;
   1435 
   1436 	/*
   1437 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1438 	 */
   1439 	if (ioff != 0)
   1440 		cp = (char *)cp + align - ioff;
   1441 
   1442 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1443 
   1444 	/*
   1445 	 * Insert remaining chunks on the bucket list.
   1446 	 */
   1447 	n = pp->pr_itemsperpage;
   1448 	pp->pr_nitems += n;
   1449 
   1450 	if (pp->pr_roflags & PR_NOTOUCH) {
   1451 		pr_item_notouch_init(pp, ph);
   1452 	} else {
   1453 		while (n--) {
   1454 			pi = (struct pool_item *)cp;
   1455 
   1456 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1457 
   1458 			/* Insert on page list */
   1459 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1460 #ifdef DIAGNOSTIC
   1461 			pi->pi_magic = PI_MAGIC;
   1462 #endif
   1463 			cp = (char *)cp + pp->pr_size;
   1464 
   1465 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1466 		}
   1467 	}
   1468 
   1469 	/*
   1470 	 * If the pool was depleted, point at the new page.
   1471 	 */
   1472 	if (pp->pr_curpage == NULL)
   1473 		pp->pr_curpage = ph;
   1474 
   1475 	if (++pp->pr_npages > pp->pr_hiwat)
   1476 		pp->pr_hiwat = pp->pr_npages;
   1477 }
   1478 
   1479 /*
   1480  * Used by pool_get() when nitems drops below the low water mark.  This
   1481  * is used to catch up pr_nitems with the low water mark.
   1482  *
   1483  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1484  *
   1485  * Note 2, we must be called with the pool already locked, and we return
   1486  * with it locked.
   1487  */
   1488 static int
   1489 pool_catchup(struct pool *pp)
   1490 {
   1491 	int error = 0;
   1492 
   1493 	while (POOL_NEEDS_CATCHUP(pp)) {
   1494 		error = pool_grow(pp, PR_NOWAIT);
   1495 		if (error) {
   1496 			break;
   1497 		}
   1498 	}
   1499 	return error;
   1500 }
   1501 
   1502 static void
   1503 pool_update_curpage(struct pool *pp)
   1504 {
   1505 
   1506 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1507 	if (pp->pr_curpage == NULL) {
   1508 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1509 	}
   1510 }
   1511 
   1512 void
   1513 pool_setlowat(struct pool *pp, int n)
   1514 {
   1515 
   1516 	mutex_enter(&pp->pr_lock);
   1517 
   1518 	pp->pr_minitems = n;
   1519 	pp->pr_minpages = (n == 0)
   1520 		? 0
   1521 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1522 
   1523 	/* Make sure we're caught up with the newly-set low water mark. */
   1524 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1525 		/*
   1526 		 * XXX: Should we log a warning?  Should we set up a timeout
   1527 		 * to try again in a second or so?  The latter could break
   1528 		 * a caller's assumptions about interrupt protection, etc.
   1529 		 */
   1530 	}
   1531 
   1532 	mutex_exit(&pp->pr_lock);
   1533 }
   1534 
   1535 void
   1536 pool_sethiwat(struct pool *pp, int n)
   1537 {
   1538 
   1539 	mutex_enter(&pp->pr_lock);
   1540 
   1541 	pp->pr_maxpages = (n == 0)
   1542 		? 0
   1543 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1544 
   1545 	mutex_exit(&pp->pr_lock);
   1546 }
   1547 
   1548 void
   1549 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1550 {
   1551 
   1552 	mutex_enter(&pp->pr_lock);
   1553 
   1554 	pp->pr_hardlimit = n;
   1555 	pp->pr_hardlimit_warning = warnmess;
   1556 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1557 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1558 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1559 
   1560 	/*
   1561 	 * In-line version of pool_sethiwat(), because we don't want to
   1562 	 * release the lock.
   1563 	 */
   1564 	pp->pr_maxpages = (n == 0)
   1565 		? 0
   1566 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1567 
   1568 	mutex_exit(&pp->pr_lock);
   1569 }
   1570 
   1571 /*
   1572  * Release all complete pages that have not been used recently.
   1573  */
   1574 int
   1575 #ifdef POOL_DIAGNOSTIC
   1576 _pool_reclaim(struct pool *pp, const char *file, long line)
   1577 #else
   1578 pool_reclaim(struct pool *pp)
   1579 #endif
   1580 {
   1581 	struct pool_item_header *ph, *phnext;
   1582 	struct pool_pagelist pq;
   1583 	struct timeval curtime, diff;
   1584 	bool klock;
   1585 	int rv;
   1586 
   1587 	if (pp->pr_drain_hook != NULL) {
   1588 		/*
   1589 		 * The drain hook must be called with the pool unlocked.
   1590 		 */
   1591 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1592 	}
   1593 
   1594 	/*
   1595 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
   1596 	 * and we are called from the pagedaemon without kernel_lock.
   1597 	 * Does not apply to IPL_SOFTBIO.
   1598 	 */
   1599 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1600 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1601 		KERNEL_LOCK(1, NULL);
   1602 		klock = true;
   1603 	} else
   1604 		klock = false;
   1605 
   1606 	/* Reclaim items from the pool's cache (if any). */
   1607 	if (pp->pr_cache != NULL)
   1608 		pool_cache_invalidate(pp->pr_cache);
   1609 
   1610 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1611 		if (klock) {
   1612 			KERNEL_UNLOCK_ONE(NULL);
   1613 		}
   1614 		return (0);
   1615 	}
   1616 	pr_enter(pp, file, line);
   1617 
   1618 	LIST_INIT(&pq);
   1619 
   1620 	getmicrotime(&curtime);
   1621 
   1622 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1623 		phnext = LIST_NEXT(ph, ph_pagelist);
   1624 
   1625 		/* Check our minimum page claim */
   1626 		if (pp->pr_npages <= pp->pr_minpages)
   1627 			break;
   1628 
   1629 		KASSERT(ph->ph_nmissing == 0);
   1630 		timersub(&curtime, &ph->ph_time, &diff);
   1631 		if (diff.tv_sec < pool_inactive_time
   1632 		    && !pa_starved_p(pp->pr_alloc))
   1633 			continue;
   1634 
   1635 		/*
   1636 		 * If freeing this page would put us below
   1637 		 * the low water mark, stop now.
   1638 		 */
   1639 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1640 		    pp->pr_minitems)
   1641 			break;
   1642 
   1643 		pr_rmpage(pp, ph, &pq);
   1644 	}
   1645 
   1646 	pr_leave(pp);
   1647 	mutex_exit(&pp->pr_lock);
   1648 
   1649 	if (LIST_EMPTY(&pq))
   1650 		rv = 0;
   1651 	else {
   1652 		pr_pagelist_free(pp, &pq);
   1653 		rv = 1;
   1654 	}
   1655 
   1656 	if (klock) {
   1657 		KERNEL_UNLOCK_ONE(NULL);
   1658 	}
   1659 
   1660 	return (rv);
   1661 }
   1662 
   1663 /*
   1664  * Drain pools, one at a time.  This is a two stage process;
   1665  * drain_start kicks off a cross call to drain CPU-level caches
   1666  * if the pool has an associated pool_cache.  drain_end waits
   1667  * for those cross calls to finish, and then drains the cache
   1668  * (if any) and pool.
   1669  *
   1670  * Note, must never be called from interrupt context.
   1671  */
   1672 void
   1673 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1674 {
   1675 	struct pool *pp;
   1676 
   1677 	KASSERT(!LIST_EMPTY(&pool_head));
   1678 
   1679 	pp = NULL;
   1680 
   1681 	/* Find next pool to drain, and add a reference. */
   1682 	mutex_enter(&pool_head_lock);
   1683 	do {
   1684 		if (drainpp == NULL) {
   1685 			drainpp = LIST_FIRST(&pool_head);
   1686 		}
   1687 		if (drainpp != NULL) {
   1688 			pp = drainpp;
   1689 			drainpp = LIST_NEXT(pp, pr_poollist);
   1690 		}
   1691 		/*
   1692 		 * Skip completely idle pools.  We depend on at least
   1693 		 * one pool in the system being active.
   1694 		 */
   1695 	} while (pp == NULL || pp->pr_npages == 0);
   1696 	pp->pr_refcnt++;
   1697 	mutex_exit(&pool_head_lock);
   1698 
   1699 	/* If there is a pool_cache, drain CPU level caches. */
   1700 	*ppp = pp;
   1701 	if (pp->pr_cache != NULL) {
   1702 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1703 		    pp->pr_cache, NULL);
   1704 	}
   1705 }
   1706 
   1707 void
   1708 pool_drain_end(struct pool *pp, uint64_t where)
   1709 {
   1710 
   1711 	if (pp == NULL)
   1712 		return;
   1713 
   1714 	KASSERT(pp->pr_refcnt > 0);
   1715 
   1716 	/* Wait for remote draining to complete. */
   1717 	if (pp->pr_cache != NULL)
   1718 		xc_wait(where);
   1719 
   1720 	/* Drain the cache (if any) and pool.. */
   1721 	pool_reclaim(pp);
   1722 
   1723 	/* Finally, unlock the pool. */
   1724 	mutex_enter(&pool_head_lock);
   1725 	pp->pr_refcnt--;
   1726 	cv_broadcast(&pool_busy);
   1727 	mutex_exit(&pool_head_lock);
   1728 }
   1729 
   1730 /*
   1731  * Diagnostic helpers.
   1732  */
   1733 void
   1734 pool_print(struct pool *pp, const char *modif)
   1735 {
   1736 
   1737 	pool_print1(pp, modif, printf);
   1738 }
   1739 
   1740 void
   1741 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1742 {
   1743 	struct pool *pp;
   1744 
   1745 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   1746 		pool_printit(pp, modif, pr);
   1747 	}
   1748 }
   1749 
   1750 void
   1751 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1752 {
   1753 
   1754 	if (pp == NULL) {
   1755 		(*pr)("Must specify a pool to print.\n");
   1756 		return;
   1757 	}
   1758 
   1759 	pool_print1(pp, modif, pr);
   1760 }
   1761 
   1762 static void
   1763 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1764     void (*pr)(const char *, ...))
   1765 {
   1766 	struct pool_item_header *ph;
   1767 #ifdef DIAGNOSTIC
   1768 	struct pool_item *pi;
   1769 #endif
   1770 
   1771 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1772 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1773 		    ph->ph_page, ph->ph_nmissing,
   1774 		    (u_long)ph->ph_time.tv_sec,
   1775 		    (u_long)ph->ph_time.tv_usec);
   1776 #ifdef DIAGNOSTIC
   1777 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1778 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1779 				if (pi->pi_magic != PI_MAGIC) {
   1780 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1781 					    pi, pi->pi_magic);
   1782 				}
   1783 			}
   1784 		}
   1785 #endif
   1786 	}
   1787 }
   1788 
   1789 static void
   1790 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1791 {
   1792 	struct pool_item_header *ph;
   1793 	pool_cache_t pc;
   1794 	pcg_t *pcg;
   1795 	pool_cache_cpu_t *cc;
   1796 	uint64_t cpuhit, cpumiss;
   1797 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1798 	char c;
   1799 
   1800 	while ((c = *modif++) != '\0') {
   1801 		if (c == 'l')
   1802 			print_log = 1;
   1803 		if (c == 'p')
   1804 			print_pagelist = 1;
   1805 		if (c == 'c')
   1806 			print_cache = 1;
   1807 	}
   1808 
   1809 	if ((pc = pp->pr_cache) != NULL) {
   1810 		(*pr)("POOL CACHE");
   1811 	} else {
   1812 		(*pr)("POOL");
   1813 	}
   1814 
   1815 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1816 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1817 	    pp->pr_roflags);
   1818 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1819 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1820 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1821 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1822 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1823 
   1824 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1825 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1826 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1827 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1828 
   1829 	if (print_pagelist == 0)
   1830 		goto skip_pagelist;
   1831 
   1832 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1833 		(*pr)("\n\tempty page list:\n");
   1834 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1835 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1836 		(*pr)("\n\tfull page list:\n");
   1837 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1838 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1839 		(*pr)("\n\tpartial-page list:\n");
   1840 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1841 
   1842 	if (pp->pr_curpage == NULL)
   1843 		(*pr)("\tno current page\n");
   1844 	else
   1845 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1846 
   1847  skip_pagelist:
   1848 	if (print_log == 0)
   1849 		goto skip_log;
   1850 
   1851 	(*pr)("\n");
   1852 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1853 		(*pr)("\tno log\n");
   1854 	else {
   1855 		pr_printlog(pp, NULL, pr);
   1856 	}
   1857 
   1858  skip_log:
   1859 
   1860 #define PR_GROUPLIST(pcg)						\
   1861 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1862 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1863 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1864 		    POOL_PADDR_INVALID) {				\
   1865 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1866 			    pcg->pcg_objects[i].pcgo_va,		\
   1867 			    (unsigned long long)			\
   1868 			    pcg->pcg_objects[i].pcgo_pa);		\
   1869 		} else {						\
   1870 			(*pr)("\t\t\t%p\n",				\
   1871 			    pcg->pcg_objects[i].pcgo_va);		\
   1872 		}							\
   1873 	}
   1874 
   1875 	if (pc != NULL) {
   1876 		cpuhit = 0;
   1877 		cpumiss = 0;
   1878 		for (i = 0; i < MAXCPUS; i++) {
   1879 			if ((cc = pc->pc_cpus[i]) == NULL)
   1880 				continue;
   1881 			cpuhit += cc->cc_hits;
   1882 			cpumiss += cc->cc_misses;
   1883 		}
   1884 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1885 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1886 		    pc->pc_hits, pc->pc_misses);
   1887 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1888 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1889 		    pc->pc_contended);
   1890 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1891 		    pc->pc_nempty, pc->pc_nfull);
   1892 		if (print_cache) {
   1893 			(*pr)("\tfull cache groups:\n");
   1894 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1895 			    pcg = pcg->pcg_next) {
   1896 				PR_GROUPLIST(pcg);
   1897 			}
   1898 			(*pr)("\tempty cache groups:\n");
   1899 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1900 			    pcg = pcg->pcg_next) {
   1901 				PR_GROUPLIST(pcg);
   1902 			}
   1903 		}
   1904 	}
   1905 #undef PR_GROUPLIST
   1906 
   1907 	pr_enter_check(pp, pr);
   1908 }
   1909 
   1910 static int
   1911 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1912 {
   1913 	struct pool_item *pi;
   1914 	void *page;
   1915 	int n;
   1916 
   1917 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1918 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1919 		if (page != ph->ph_page &&
   1920 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1921 			if (label != NULL)
   1922 				printf("%s: ", label);
   1923 			printf("pool(%p:%s): page inconsistency: page %p;"
   1924 			       " at page head addr %p (p %p)\n", pp,
   1925 				pp->pr_wchan, ph->ph_page,
   1926 				ph, page);
   1927 			return 1;
   1928 		}
   1929 	}
   1930 
   1931 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1932 		return 0;
   1933 
   1934 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1935 	     pi != NULL;
   1936 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1937 
   1938 #ifdef DIAGNOSTIC
   1939 		if (pi->pi_magic != PI_MAGIC) {
   1940 			if (label != NULL)
   1941 				printf("%s: ", label);
   1942 			printf("pool(%s): free list modified: magic=%x;"
   1943 			       " page %p; item ordinal %d; addr %p\n",
   1944 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1945 				n, pi);
   1946 			panic("pool");
   1947 		}
   1948 #endif
   1949 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1950 			continue;
   1951 		}
   1952 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1953 		if (page == ph->ph_page)
   1954 			continue;
   1955 
   1956 		if (label != NULL)
   1957 			printf("%s: ", label);
   1958 		printf("pool(%p:%s): page inconsistency: page %p;"
   1959 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1960 			pp->pr_wchan, ph->ph_page,
   1961 			n, pi, page);
   1962 		return 1;
   1963 	}
   1964 	return 0;
   1965 }
   1966 
   1967 
   1968 int
   1969 pool_chk(struct pool *pp, const char *label)
   1970 {
   1971 	struct pool_item_header *ph;
   1972 	int r = 0;
   1973 
   1974 	mutex_enter(&pp->pr_lock);
   1975 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1976 		r = pool_chk_page(pp, label, ph);
   1977 		if (r) {
   1978 			goto out;
   1979 		}
   1980 	}
   1981 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1982 		r = pool_chk_page(pp, label, ph);
   1983 		if (r) {
   1984 			goto out;
   1985 		}
   1986 	}
   1987 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1988 		r = pool_chk_page(pp, label, ph);
   1989 		if (r) {
   1990 			goto out;
   1991 		}
   1992 	}
   1993 
   1994 out:
   1995 	mutex_exit(&pp->pr_lock);
   1996 	return (r);
   1997 }
   1998 
   1999 /*
   2000  * pool_cache_init:
   2001  *
   2002  *	Initialize a pool cache.
   2003  */
   2004 pool_cache_t
   2005 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2006     const char *wchan, struct pool_allocator *palloc, int ipl,
   2007     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2008 {
   2009 	pool_cache_t pc;
   2010 
   2011 	pc = pool_get(&cache_pool, PR_WAITOK);
   2012 	if (pc == NULL)
   2013 		return NULL;
   2014 
   2015 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2016 	   palloc, ipl, ctor, dtor, arg);
   2017 
   2018 	return pc;
   2019 }
   2020 
   2021 /*
   2022  * pool_cache_bootstrap:
   2023  *
   2024  *	Kernel-private version of pool_cache_init().  The caller
   2025  *	provides initial storage.
   2026  */
   2027 void
   2028 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2029     u_int align_offset, u_int flags, const char *wchan,
   2030     struct pool_allocator *palloc, int ipl,
   2031     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2032     void *arg)
   2033 {
   2034 	CPU_INFO_ITERATOR cii;
   2035 	struct cpu_info *ci;
   2036 	struct pool *pp;
   2037 
   2038 	pp = &pc->pc_pool;
   2039 	if (palloc == NULL && ipl == IPL_NONE)
   2040 		palloc = &pool_allocator_nointr;
   2041 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2042 
   2043 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, pp->pr_ipl);
   2044 
   2045 	if (ctor == NULL) {
   2046 		ctor = (int (*)(void *, void *, int))nullop;
   2047 	}
   2048 	if (dtor == NULL) {
   2049 		dtor = (void (*)(void *, void *))nullop;
   2050 	}
   2051 
   2052 	pc->pc_emptygroups = NULL;
   2053 	pc->pc_fullgroups = NULL;
   2054 	pc->pc_partgroups = NULL;
   2055 	pc->pc_ctor = ctor;
   2056 	pc->pc_dtor = dtor;
   2057 	pc->pc_arg  = arg;
   2058 	pc->pc_hits  = 0;
   2059 	pc->pc_misses = 0;
   2060 	pc->pc_nempty = 0;
   2061 	pc->pc_npart = 0;
   2062 	pc->pc_nfull = 0;
   2063 	pc->pc_contended = 0;
   2064 	pc->pc_refcnt = 0;
   2065 	pc->pc_freecheck = NULL;
   2066 
   2067 	/* Allocate per-CPU caches. */
   2068 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2069 	pc->pc_ncpu = 0;
   2070 	for (CPU_INFO_FOREACH(cii, ci)) {
   2071 		pool_cache_cpu_init1(ci, pc);
   2072 	}
   2073 
   2074 	if (__predict_true(!cold)) {
   2075 		mutex_enter(&pp->pr_lock);
   2076 		pp->pr_cache = pc;
   2077 		mutex_exit(&pp->pr_lock);
   2078 		mutex_enter(&pool_head_lock);
   2079 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2080 		mutex_exit(&pool_head_lock);
   2081 	} else {
   2082 		pp->pr_cache = pc;
   2083 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2084 	}
   2085 }
   2086 
   2087 /*
   2088  * pool_cache_destroy:
   2089  *
   2090  *	Destroy a pool cache.
   2091  */
   2092 void
   2093 pool_cache_destroy(pool_cache_t pc)
   2094 {
   2095 	struct pool *pp = &pc->pc_pool;
   2096 	pool_cache_cpu_t *cc;
   2097 	pcg_t *pcg;
   2098 	int i;
   2099 
   2100 	/* Remove it from the global list. */
   2101 	mutex_enter(&pool_head_lock);
   2102 	while (pc->pc_refcnt != 0)
   2103 		cv_wait(&pool_busy, &pool_head_lock);
   2104 	LIST_REMOVE(pc, pc_cachelist);
   2105 	mutex_exit(&pool_head_lock);
   2106 
   2107 	/* First, invalidate the entire cache. */
   2108 	pool_cache_invalidate(pc);
   2109 
   2110 	/* Disassociate it from the pool. */
   2111 	mutex_enter(&pp->pr_lock);
   2112 	pp->pr_cache = NULL;
   2113 	mutex_exit(&pp->pr_lock);
   2114 
   2115 	/* Destroy per-CPU data */
   2116 	for (i = 0; i < MAXCPUS; i++) {
   2117 		if ((cc = pc->pc_cpus[i]) == NULL)
   2118 			continue;
   2119 		if ((pcg = cc->cc_current) != NULL) {
   2120 			pcg->pcg_next = NULL;
   2121 			pool_cache_invalidate_groups(pc, pcg);
   2122 		}
   2123 		if ((pcg = cc->cc_previous) != NULL) {
   2124 			pcg->pcg_next = NULL;
   2125 			pool_cache_invalidate_groups(pc, pcg);
   2126 		}
   2127 		if (cc != &pc->pc_cpu0)
   2128 			pool_put(&cache_cpu_pool, cc);
   2129 	}
   2130 
   2131 	/* Finally, destroy it. */
   2132 	mutex_destroy(&pc->pc_lock);
   2133 	pool_destroy(pp);
   2134 	pool_put(&cache_pool, pc);
   2135 }
   2136 
   2137 /*
   2138  * pool_cache_cpu_init1:
   2139  *
   2140  *	Called for each pool_cache whenever a new CPU is attached.
   2141  */
   2142 static void
   2143 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2144 {
   2145 	pool_cache_cpu_t *cc;
   2146 
   2147 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
   2148 
   2149 	if ((cc = pc->pc_cpus[ci->ci_index]) != NULL) {
   2150 		KASSERT(cc->cc_cpu = ci);
   2151 		return;
   2152 	}
   2153 
   2154 	/*
   2155 	 * The first CPU is 'free'.  This needs to be the case for
   2156 	 * bootstrap - we may not be able to allocate yet.
   2157 	 */
   2158 	if (pc->pc_ncpu == 0) {
   2159 		cc = &pc->pc_cpu0;
   2160 		pc->pc_ncpu = 1;
   2161 	} else {
   2162 		mutex_enter(&pc->pc_lock);
   2163 		pc->pc_ncpu++;
   2164 		mutex_exit(&pc->pc_lock);
   2165 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2166 	}
   2167 
   2168 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2169 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2170 	cc->cc_cache = pc;
   2171 	cc->cc_cpu = ci;
   2172 	cc->cc_hits = 0;
   2173 	cc->cc_misses = 0;
   2174 	cc->cc_current = NULL;
   2175 	cc->cc_previous = NULL;
   2176 
   2177 	pc->pc_cpus[ci->ci_index] = cc;
   2178 }
   2179 
   2180 /*
   2181  * pool_cache_cpu_init:
   2182  *
   2183  *	Called whenever a new CPU is attached.
   2184  */
   2185 void
   2186 pool_cache_cpu_init(struct cpu_info *ci)
   2187 {
   2188 	pool_cache_t pc;
   2189 
   2190 	mutex_enter(&pool_head_lock);
   2191 	LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2192 		pc->pc_refcnt++;
   2193 		mutex_exit(&pool_head_lock);
   2194 
   2195 		pool_cache_cpu_init1(ci, pc);
   2196 
   2197 		mutex_enter(&pool_head_lock);
   2198 		pc->pc_refcnt--;
   2199 		cv_broadcast(&pool_busy);
   2200 	}
   2201 	mutex_exit(&pool_head_lock);
   2202 }
   2203 
   2204 /*
   2205  * pool_cache_reclaim:
   2206  *
   2207  *	Reclaim memory from a pool cache.
   2208  */
   2209 bool
   2210 pool_cache_reclaim(pool_cache_t pc)
   2211 {
   2212 
   2213 	return pool_reclaim(&pc->pc_pool);
   2214 }
   2215 
   2216 static void
   2217 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2218 {
   2219 
   2220 	(*pc->pc_dtor)(pc->pc_arg, object);
   2221 	pool_put(&pc->pc_pool, object);
   2222 }
   2223 
   2224 /*
   2225  * pool_cache_destruct_object:
   2226  *
   2227  *	Force destruction of an object and its release back into
   2228  *	the pool.
   2229  */
   2230 void
   2231 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2232 {
   2233 
   2234 	FREECHECK_IN(&pc->pc_freecheck, object);
   2235 
   2236 	pool_cache_destruct_object1(pc, object);
   2237 }
   2238 
   2239 /*
   2240  * pool_cache_invalidate_groups:
   2241  *
   2242  *	Invalidate a chain of groups and destruct all objects.
   2243  */
   2244 static void
   2245 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2246 {
   2247 	void *object;
   2248 	pcg_t *next;
   2249 	int i;
   2250 
   2251 	for (; pcg != NULL; pcg = next) {
   2252 		next = pcg->pcg_next;
   2253 
   2254 		for (i = 0; i < pcg->pcg_avail; i++) {
   2255 			object = pcg->pcg_objects[i].pcgo_va;
   2256 			pool_cache_destruct_object1(pc, object);
   2257 		}
   2258 
   2259 		pool_put(&pcgpool, pcg);
   2260 	}
   2261 }
   2262 
   2263 /*
   2264  * pool_cache_invalidate:
   2265  *
   2266  *	Invalidate a pool cache (destruct and release all of the
   2267  *	cached objects).  Does not reclaim objects from the pool.
   2268  */
   2269 void
   2270 pool_cache_invalidate(pool_cache_t pc)
   2271 {
   2272 	pcg_t *full, *empty, *part;
   2273 
   2274 	mutex_enter(&pc->pc_lock);
   2275 	full = pc->pc_fullgroups;
   2276 	empty = pc->pc_emptygroups;
   2277 	part = pc->pc_partgroups;
   2278 	pc->pc_fullgroups = NULL;
   2279 	pc->pc_emptygroups = NULL;
   2280 	pc->pc_partgroups = NULL;
   2281 	pc->pc_nfull = 0;
   2282 	pc->pc_nempty = 0;
   2283 	pc->pc_npart = 0;
   2284 	mutex_exit(&pc->pc_lock);
   2285 
   2286 	pool_cache_invalidate_groups(pc, full);
   2287 	pool_cache_invalidate_groups(pc, empty);
   2288 	pool_cache_invalidate_groups(pc, part);
   2289 }
   2290 
   2291 void
   2292 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2293 {
   2294 
   2295 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2296 }
   2297 
   2298 void
   2299 pool_cache_setlowat(pool_cache_t pc, int n)
   2300 {
   2301 
   2302 	pool_setlowat(&pc->pc_pool, n);
   2303 }
   2304 
   2305 void
   2306 pool_cache_sethiwat(pool_cache_t pc, int n)
   2307 {
   2308 
   2309 	pool_sethiwat(&pc->pc_pool, n);
   2310 }
   2311 
   2312 void
   2313 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2314 {
   2315 
   2316 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2317 }
   2318 
   2319 static inline pool_cache_cpu_t *
   2320 pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2321 {
   2322 	pool_cache_cpu_t *cc;
   2323 	struct cpu_info *ci;
   2324 
   2325 	/*
   2326 	 * Prevent other users of the cache from accessing our
   2327 	 * CPU-local data.  To avoid touching shared state, we
   2328 	 * pull the neccessary information from CPU local data.
   2329 	 */
   2330 	ci = curcpu();
   2331 	KASSERT(ci->ci_data.cpu_index < MAXCPUS);
   2332 	cc = pc->pc_cpus[ci->ci_data.cpu_index];
   2333 	KASSERT(cc->cc_cache == pc);
   2334 	if (cc->cc_ipl == IPL_NONE) {
   2335 		crit_enter();
   2336 	} else {
   2337 		*s = splraiseipl(cc->cc_iplcookie);
   2338 	}
   2339 
   2340 	/* Moved to another CPU before disabling preemption? */
   2341 	if (__predict_false(ci != curcpu())) {
   2342 		ci = curcpu();
   2343 		cc = pc->pc_cpus[ci->ci_data.cpu_index];
   2344 	}
   2345 
   2346 #ifdef DIAGNOSTIC
   2347 	KASSERT(cc->cc_cpu == ci);
   2348 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
   2349 #endif
   2350 
   2351 	return cc;
   2352 }
   2353 
   2354 static inline void
   2355 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2356 {
   2357 
   2358 	/* No longer need exclusive access to the per-CPU data. */
   2359 	if (cc->cc_ipl == IPL_NONE) {
   2360 		crit_exit();
   2361 	} else {
   2362 		splx(*s);
   2363 	}
   2364 }
   2365 
   2366 #if __GNUC_PREREQ__(3, 0)
   2367 __attribute ((noinline))
   2368 #endif
   2369 pool_cache_cpu_t *
   2370 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2371 		    paddr_t *pap, int flags)
   2372 {
   2373 	pcg_t *pcg, *cur;
   2374 	uint64_t ncsw;
   2375 	pool_cache_t pc;
   2376 	void *object;
   2377 
   2378 	pc = cc->cc_cache;
   2379 	cc->cc_misses++;
   2380 
   2381 	/*
   2382 	 * Nothing was available locally.  Try and grab a group
   2383 	 * from the cache.
   2384 	 */
   2385 	if (!mutex_tryenter(&pc->pc_lock)) {
   2386 		ncsw = curlwp->l_ncsw;
   2387 		mutex_enter(&pc->pc_lock);
   2388 		pc->pc_contended++;
   2389 
   2390 		/*
   2391 		 * If we context switched while locking, then
   2392 		 * our view of the per-CPU data is invalid:
   2393 		 * retry.
   2394 		 */
   2395 		if (curlwp->l_ncsw != ncsw) {
   2396 			mutex_exit(&pc->pc_lock);
   2397 			pool_cache_cpu_exit(cc, s);
   2398 			return pool_cache_cpu_enter(pc, s);
   2399 		}
   2400 	}
   2401 
   2402 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2403 		/*
   2404 		 * If there's a full group, release our empty
   2405 		 * group back to the cache.  Install the full
   2406 		 * group as cc_current and return.
   2407 		 */
   2408 		if ((cur = cc->cc_current) != NULL) {
   2409 			KASSERT(cur->pcg_avail == 0);
   2410 			cur->pcg_next = pc->pc_emptygroups;
   2411 			pc->pc_emptygroups = cur;
   2412 			pc->pc_nempty++;
   2413 		}
   2414 		KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
   2415 		cc->cc_current = pcg;
   2416 		pc->pc_fullgroups = pcg->pcg_next;
   2417 		pc->pc_hits++;
   2418 		pc->pc_nfull--;
   2419 		mutex_exit(&pc->pc_lock);
   2420 		return cc;
   2421 	}
   2422 
   2423 	/*
   2424 	 * Nothing available locally or in cache.  Take the slow
   2425 	 * path: fetch a new object from the pool and construct
   2426 	 * it.
   2427 	 */
   2428 	pc->pc_misses++;
   2429 	mutex_exit(&pc->pc_lock);
   2430 	pool_cache_cpu_exit(cc, s);
   2431 
   2432 	object = pool_get(&pc->pc_pool, flags);
   2433 	*objectp = object;
   2434 	if (object == NULL)
   2435 		return NULL;
   2436 
   2437 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2438 		pool_put(&pc->pc_pool, object);
   2439 		*objectp = NULL;
   2440 		return NULL;
   2441 	}
   2442 
   2443 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2444 	    (pc->pc_pool.pr_align - 1)) == 0);
   2445 
   2446 	if (pap != NULL) {
   2447 #ifdef POOL_VTOPHYS
   2448 		*pap = POOL_VTOPHYS(object);
   2449 #else
   2450 		*pap = POOL_PADDR_INVALID;
   2451 #endif
   2452 	}
   2453 
   2454 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2455 	return NULL;
   2456 }
   2457 
   2458 /*
   2459  * pool_cache_get{,_paddr}:
   2460  *
   2461  *	Get an object from a pool cache (optionally returning
   2462  *	the physical address of the object).
   2463  */
   2464 void *
   2465 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2466 {
   2467 	pool_cache_cpu_t *cc;
   2468 	pcg_t *pcg;
   2469 	void *object;
   2470 	int s;
   2471 
   2472 #ifdef LOCKDEBUG
   2473 	if (flags & PR_WAITOK)
   2474 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2475 #endif
   2476 
   2477 	cc = pool_cache_cpu_enter(pc, &s);
   2478 	do {
   2479 		/* Try and allocate an object from the current group. */
   2480 	 	pcg = cc->cc_current;
   2481 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2482 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2483 			if (pap != NULL)
   2484 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2485 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2486 			KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   2487 			KASSERT(object != NULL);
   2488 			cc->cc_hits++;
   2489 			pool_cache_cpu_exit(cc, &s);
   2490 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2491 			return object;
   2492 		}
   2493 
   2494 		/*
   2495 		 * That failed.  If the previous group isn't empty, swap
   2496 		 * it with the current group and allocate from there.
   2497 		 */
   2498 		pcg = cc->cc_previous;
   2499 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2500 			cc->cc_previous = cc->cc_current;
   2501 			cc->cc_current = pcg;
   2502 			continue;
   2503 		}
   2504 
   2505 		/*
   2506 		 * Can't allocate from either group: try the slow path.
   2507 		 * If get_slow() allocated an object for us, or if
   2508 		 * no more objects are available, it will return NULL.
   2509 		 * Otherwise, we need to retry.
   2510 		 */
   2511 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2512 	} while (cc != NULL);
   2513 
   2514 	return object;
   2515 }
   2516 
   2517 #if __GNUC_PREREQ__(3, 0)
   2518 __attribute ((noinline))
   2519 #endif
   2520 pool_cache_cpu_t *
   2521 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2522 {
   2523 	pcg_t *pcg, *cur;
   2524 	uint64_t ncsw;
   2525 	pool_cache_t pc;
   2526 
   2527 	pc = cc->cc_cache;
   2528 	cc->cc_misses++;
   2529 
   2530 	/*
   2531 	 * No free slots locally.  Try to grab an empty, unused
   2532 	 * group from the cache.
   2533 	 */
   2534 	if (!mutex_tryenter(&pc->pc_lock)) {
   2535 		ncsw = curlwp->l_ncsw;
   2536 		mutex_enter(&pc->pc_lock);
   2537 		pc->pc_contended++;
   2538 
   2539 		/*
   2540 		 * If we context switched while locking, then
   2541 		 * our view of the per-CPU data is invalid:
   2542 		 * retry.
   2543 		 */
   2544 		if (curlwp->l_ncsw != ncsw) {
   2545 			mutex_exit(&pc->pc_lock);
   2546 			pool_cache_cpu_exit(cc, s);
   2547 			return pool_cache_cpu_enter(pc, s);
   2548 		}
   2549 	}
   2550 
   2551 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2552 		/*
   2553 		 * If there's a empty group, release our full
   2554 		 * group back to the cache.  Install the empty
   2555 		 * group as cc_current and return.
   2556 		 */
   2557 		if ((cur = cc->cc_current) != NULL) {
   2558 			KASSERT(cur->pcg_avail == PCG_NOBJECTS);
   2559 			cur->pcg_next = pc->pc_fullgroups;
   2560 			pc->pc_fullgroups = cur;
   2561 			pc->pc_nfull++;
   2562 		}
   2563 		KASSERT(pcg->pcg_avail == 0);
   2564 		cc->cc_current = pcg;
   2565 		pc->pc_emptygroups = pcg->pcg_next;
   2566 		pc->pc_hits++;
   2567 		pc->pc_nempty--;
   2568 		mutex_exit(&pc->pc_lock);
   2569 		return cc;
   2570 	}
   2571 
   2572 	/*
   2573 	 * Nothing available locally or in cache.  Take the
   2574 	 * slow path and try to allocate a new group that we
   2575 	 * can release to.
   2576 	 */
   2577 	pc->pc_misses++;
   2578 	mutex_exit(&pc->pc_lock);
   2579 	pool_cache_cpu_exit(cc, s);
   2580 
   2581 	/*
   2582 	 * If we can't allocate a new group, just throw the
   2583 	 * object away.
   2584 	 */
   2585 	pcg = pool_get(&pcgpool, PR_NOWAIT);
   2586 	if (pcg == NULL) {
   2587 		pool_cache_destruct_object(pc, object);
   2588 		return NULL;
   2589 	}
   2590 #ifdef DIAGNOSTIC
   2591 	memset(pcg, 0, sizeof(*pcg));
   2592 #else
   2593 	pcg->pcg_avail = 0;
   2594 #endif
   2595 
   2596 	/*
   2597 	 * Add the empty group to the cache and try again.
   2598 	 */
   2599 	mutex_enter(&pc->pc_lock);
   2600 	pcg->pcg_next = pc->pc_emptygroups;
   2601 	pc->pc_emptygroups = pcg;
   2602 	pc->pc_nempty++;
   2603 	mutex_exit(&pc->pc_lock);
   2604 
   2605 	return pool_cache_cpu_enter(pc, s);
   2606 }
   2607 
   2608 /*
   2609  * pool_cache_put{,_paddr}:
   2610  *
   2611  *	Put an object back to the pool cache (optionally caching the
   2612  *	physical address of the object).
   2613  */
   2614 void
   2615 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2616 {
   2617 	pool_cache_cpu_t *cc;
   2618 	pcg_t *pcg;
   2619 	int s;
   2620 
   2621 	FREECHECK_IN(&pc->pc_freecheck, object);
   2622 
   2623 	cc = pool_cache_cpu_enter(pc, &s);
   2624 	do {
   2625 		/* If the current group isn't full, release it there. */
   2626 	 	pcg = cc->cc_current;
   2627 		if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
   2628 			KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
   2629 			    == NULL);
   2630 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2631 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2632 			pcg->pcg_avail++;
   2633 			cc->cc_hits++;
   2634 			pool_cache_cpu_exit(cc, &s);
   2635 			return;
   2636 		}
   2637 
   2638 		/*
   2639 		 * That failed.  If the previous group is empty, swap
   2640 		 * it with the current group and try again.
   2641 		 */
   2642 		pcg = cc->cc_previous;
   2643 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2644 			cc->cc_previous = cc->cc_current;
   2645 			cc->cc_current = pcg;
   2646 			continue;
   2647 		}
   2648 
   2649 		/*
   2650 		 * Can't free to either group: try the slow path.
   2651 		 * If put_slow() releases the object for us, it
   2652 		 * will return NULL.  Otherwise we need to retry.
   2653 		 */
   2654 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2655 	} while (cc != NULL);
   2656 }
   2657 
   2658 /*
   2659  * pool_cache_xcall:
   2660  *
   2661  *	Transfer objects from the per-CPU cache to the global cache.
   2662  *	Run within a cross-call thread.
   2663  */
   2664 static void
   2665 pool_cache_xcall(pool_cache_t pc)
   2666 {
   2667 	pool_cache_cpu_t *cc;
   2668 	pcg_t *prev, *cur, **list;
   2669 	int s = 0; /* XXXgcc */
   2670 
   2671 	cc = pool_cache_cpu_enter(pc, &s);
   2672 	cur = cc->cc_current;
   2673 	cc->cc_current = NULL;
   2674 	prev = cc->cc_previous;
   2675 	cc->cc_previous = NULL;
   2676 	pool_cache_cpu_exit(cc, &s);
   2677 
   2678 	/*
   2679 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2680 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2681 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2682 	 * kernel_lock.
   2683 	 */
   2684 	s = splvm();
   2685 	mutex_enter(&pc->pc_lock);
   2686 	if (cur != NULL) {
   2687 		if (cur->pcg_avail == PCG_NOBJECTS) {
   2688 			list = &pc->pc_fullgroups;
   2689 			pc->pc_nfull++;
   2690 		} else if (cur->pcg_avail == 0) {
   2691 			list = &pc->pc_emptygroups;
   2692 			pc->pc_nempty++;
   2693 		} else {
   2694 			list = &pc->pc_partgroups;
   2695 			pc->pc_npart++;
   2696 		}
   2697 		cur->pcg_next = *list;
   2698 		*list = cur;
   2699 	}
   2700 	if (prev != NULL) {
   2701 		if (prev->pcg_avail == PCG_NOBJECTS) {
   2702 			list = &pc->pc_fullgroups;
   2703 			pc->pc_nfull++;
   2704 		} else if (prev->pcg_avail == 0) {
   2705 			list = &pc->pc_emptygroups;
   2706 			pc->pc_nempty++;
   2707 		} else {
   2708 			list = &pc->pc_partgroups;
   2709 			pc->pc_npart++;
   2710 		}
   2711 		prev->pcg_next = *list;
   2712 		*list = prev;
   2713 	}
   2714 	mutex_exit(&pc->pc_lock);
   2715 	splx(s);
   2716 }
   2717 
   2718 /*
   2719  * Pool backend allocators.
   2720  *
   2721  * Each pool has a backend allocator that handles allocation, deallocation,
   2722  * and any additional draining that might be needed.
   2723  *
   2724  * We provide two standard allocators:
   2725  *
   2726  *	pool_allocator_kmem - the default when no allocator is specified
   2727  *
   2728  *	pool_allocator_nointr - used for pools that will not be accessed
   2729  *	in interrupt context.
   2730  */
   2731 void	*pool_page_alloc(struct pool *, int);
   2732 void	pool_page_free(struct pool *, void *);
   2733 
   2734 #ifdef POOL_SUBPAGE
   2735 struct pool_allocator pool_allocator_kmem_fullpage = {
   2736 	pool_page_alloc, pool_page_free, 0,
   2737 	.pa_backingmapptr = &kmem_map,
   2738 };
   2739 #else
   2740 struct pool_allocator pool_allocator_kmem = {
   2741 	pool_page_alloc, pool_page_free, 0,
   2742 	.pa_backingmapptr = &kmem_map,
   2743 };
   2744 #endif
   2745 
   2746 void	*pool_page_alloc_nointr(struct pool *, int);
   2747 void	pool_page_free_nointr(struct pool *, void *);
   2748 
   2749 #ifdef POOL_SUBPAGE
   2750 struct pool_allocator pool_allocator_nointr_fullpage = {
   2751 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2752 	.pa_backingmapptr = &kernel_map,
   2753 };
   2754 #else
   2755 struct pool_allocator pool_allocator_nointr = {
   2756 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2757 	.pa_backingmapptr = &kernel_map,
   2758 };
   2759 #endif
   2760 
   2761 #ifdef POOL_SUBPAGE
   2762 void	*pool_subpage_alloc(struct pool *, int);
   2763 void	pool_subpage_free(struct pool *, void *);
   2764 
   2765 struct pool_allocator pool_allocator_kmem = {
   2766 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2767 	.pa_backingmapptr = &kmem_map,
   2768 };
   2769 
   2770 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2771 void	pool_subpage_free_nointr(struct pool *, void *);
   2772 
   2773 struct pool_allocator pool_allocator_nointr = {
   2774 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2775 	.pa_backingmapptr = &kmem_map,
   2776 };
   2777 #endif /* POOL_SUBPAGE */
   2778 
   2779 static void *
   2780 pool_allocator_alloc(struct pool *pp, int flags)
   2781 {
   2782 	struct pool_allocator *pa = pp->pr_alloc;
   2783 	void *res;
   2784 
   2785 	res = (*pa->pa_alloc)(pp, flags);
   2786 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2787 		/*
   2788 		 * We only run the drain hook here if PR_NOWAIT.
   2789 		 * In other cases, the hook will be run in
   2790 		 * pool_reclaim().
   2791 		 */
   2792 		if (pp->pr_drain_hook != NULL) {
   2793 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2794 			res = (*pa->pa_alloc)(pp, flags);
   2795 		}
   2796 	}
   2797 	return res;
   2798 }
   2799 
   2800 static void
   2801 pool_allocator_free(struct pool *pp, void *v)
   2802 {
   2803 	struct pool_allocator *pa = pp->pr_alloc;
   2804 
   2805 	(*pa->pa_free)(pp, v);
   2806 }
   2807 
   2808 void *
   2809 pool_page_alloc(struct pool *pp, int flags)
   2810 {
   2811 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2812 
   2813 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2814 }
   2815 
   2816 void
   2817 pool_page_free(struct pool *pp, void *v)
   2818 {
   2819 
   2820 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2821 }
   2822 
   2823 static void *
   2824 pool_page_alloc_meta(struct pool *pp, int flags)
   2825 {
   2826 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2827 
   2828 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2829 }
   2830 
   2831 static void
   2832 pool_page_free_meta(struct pool *pp, void *v)
   2833 {
   2834 
   2835 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2836 }
   2837 
   2838 #ifdef POOL_SUBPAGE
   2839 /* Sub-page allocator, for machines with large hardware pages. */
   2840 void *
   2841 pool_subpage_alloc(struct pool *pp, int flags)
   2842 {
   2843 	return pool_get(&psppool, flags);
   2844 }
   2845 
   2846 void
   2847 pool_subpage_free(struct pool *pp, void *v)
   2848 {
   2849 	pool_put(&psppool, v);
   2850 }
   2851 
   2852 /* We don't provide a real nointr allocator.  Maybe later. */
   2853 void *
   2854 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2855 {
   2856 
   2857 	return (pool_subpage_alloc(pp, flags));
   2858 }
   2859 
   2860 void
   2861 pool_subpage_free_nointr(struct pool *pp, void *v)
   2862 {
   2863 
   2864 	pool_subpage_free(pp, v);
   2865 }
   2866 #endif /* POOL_SUBPAGE */
   2867 void *
   2868 pool_page_alloc_nointr(struct pool *pp, int flags)
   2869 {
   2870 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2871 
   2872 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2873 }
   2874 
   2875 void
   2876 pool_page_free_nointr(struct pool *pp, void *v)
   2877 {
   2878 
   2879 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2880 }
   2881