Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.103
      1 /*	$NetBSD: subr_pool.c,v 1.103 2005/10/15 21:22:46 chs Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.103 2005/10/15 21:22:46 chs Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/lock.h>
     54 #include <sys/pool.h>
     55 #include <sys/syslog.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according to
     63  * the pool item size. Each page is kept on one of three lists in the
     64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     65  * for empty, full and partially-full pages respectively. The individual
     66  * pool items are on a linked list headed by `ph_itemlist' in each page
     67  * header. The memory for building the page list is either taken from
     68  * the allocated pages themselves (for small pool items) or taken from
     69  * an internal pool of page headers (`phpool').
     70  */
     71 
     72 /* List of all pools */
     73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     74 
     75 /* Private pool for page header structures */
     76 #define	PHPOOL_MAX	8
     77 static struct pool phpool[PHPOOL_MAX];
     78 #define	PHPOOL_FREELIST_NELEM(idx)	(((idx) == 0) ? 0 : (1 << (idx)))
     79 
     80 #ifdef POOL_SUBPAGE
     81 /* Pool of subpages for use by normal pools. */
     82 static struct pool psppool;
     83 #endif
     84 
     85 static void *pool_page_alloc_meta(struct pool *, int);
     86 static void pool_page_free_meta(struct pool *, void *);
     87 
     88 /* allocator for pool metadata */
     89 static struct pool_allocator pool_allocator_meta = {
     90 	pool_page_alloc_meta, pool_page_free_meta
     91 };
     92 
     93 /* # of seconds to retain page after last use */
     94 int pool_inactive_time = 10;
     95 
     96 /* Next candidate for drainage (see pool_drain()) */
     97 static struct pool	*drainpp;
     98 
     99 /* This spin lock protects both pool_head and drainpp. */
    100 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
    101 
    102 typedef uint8_t pool_item_freelist_t;
    103 
    104 struct pool_item_header {
    105 	/* Page headers */
    106 	LIST_ENTRY(pool_item_header)
    107 				ph_pagelist;	/* pool page list */
    108 	SPLAY_ENTRY(pool_item_header)
    109 				ph_node;	/* Off-page page headers */
    110 	caddr_t			ph_page;	/* this page's address */
    111 	struct timeval		ph_time;	/* last referenced */
    112 	union {
    113 		/* !PR_NOTOUCH */
    114 		struct {
    115 			LIST_HEAD(, pool_item)
    116 				phu_itemlist;	/* chunk list for this page */
    117 		} phu_normal;
    118 		/* PR_NOTOUCH */
    119 		struct {
    120 			uint16_t
    121 				phu_off;	/* start offset in page */
    122 			pool_item_freelist_t
    123 				phu_firstfree;	/* first free item */
    124 			/*
    125 			 * XXX it might be better to use
    126 			 * a simple bitmap and ffs(3)
    127 			 */
    128 		} phu_notouch;
    129 	} ph_u;
    130 	uint16_t		ph_nmissing;	/* # of chunks in use */
    131 };
    132 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    133 #define	ph_off		ph_u.phu_notouch.phu_off
    134 #define	ph_firstfree	ph_u.phu_notouch.phu_firstfree
    135 
    136 struct pool_item {
    137 #ifdef DIAGNOSTIC
    138 	u_int pi_magic;
    139 #endif
    140 #define	PI_MAGIC 0xdeadbeefU
    141 	/* Other entries use only this list entry */
    142 	LIST_ENTRY(pool_item)	pi_list;
    143 };
    144 
    145 #define	POOL_NEEDS_CATCHUP(pp)						\
    146 	((pp)->pr_nitems < (pp)->pr_minitems)
    147 
    148 /*
    149  * Pool cache management.
    150  *
    151  * Pool caches provide a way for constructed objects to be cached by the
    152  * pool subsystem.  This can lead to performance improvements by avoiding
    153  * needless object construction/destruction; it is deferred until absolutely
    154  * necessary.
    155  *
    156  * Caches are grouped into cache groups.  Each cache group references
    157  * up to 16 constructed objects.  When a cache allocates an object
    158  * from the pool, it calls the object's constructor and places it into
    159  * a cache group.  When a cache group frees an object back to the pool,
    160  * it first calls the object's destructor.  This allows the object to
    161  * persist in constructed form while freed to the cache.
    162  *
    163  * Multiple caches may exist for each pool.  This allows a single
    164  * object type to have multiple constructed forms.  The pool references
    165  * each cache, so that when a pool is drained by the pagedaemon, it can
    166  * drain each individual cache as well.  Each time a cache is drained,
    167  * the most idle cache group is freed to the pool in its entirety.
    168  *
    169  * Pool caches are layed on top of pools.  By layering them, we can avoid
    170  * the complexity of cache management for pools which would not benefit
    171  * from it.
    172  */
    173 
    174 /* The cache group pool. */
    175 static struct pool pcgpool;
    176 
    177 static void	pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
    178 				   struct pool_cache_grouplist *);
    179 static void	pcg_grouplist_free(struct pool_cache_grouplist *);
    180 
    181 static int	pool_catchup(struct pool *);
    182 static void	pool_prime_page(struct pool *, caddr_t,
    183 		    struct pool_item_header *);
    184 static void	pool_update_curpage(struct pool *);
    185 
    186 void		*pool_allocator_alloc(struct pool *, int);
    187 void		pool_allocator_free(struct pool *, void *);
    188 
    189 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    190 	void (*)(const char *, ...));
    191 static void pool_print1(struct pool *, const char *,
    192 	void (*)(const char *, ...));
    193 
    194 static int pool_chk_page(struct pool *, const char *,
    195 			 struct pool_item_header *);
    196 
    197 /*
    198  * Pool log entry. An array of these is allocated in pool_init().
    199  */
    200 struct pool_log {
    201 	const char	*pl_file;
    202 	long		pl_line;
    203 	int		pl_action;
    204 #define	PRLOG_GET	1
    205 #define	PRLOG_PUT	2
    206 	void		*pl_addr;
    207 };
    208 
    209 #ifdef POOL_DIAGNOSTIC
    210 /* Number of entries in pool log buffers */
    211 #ifndef POOL_LOGSIZE
    212 #define	POOL_LOGSIZE	10
    213 #endif
    214 
    215 int pool_logsize = POOL_LOGSIZE;
    216 
    217 static __inline void
    218 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    219 {
    220 	int n = pp->pr_curlogentry;
    221 	struct pool_log *pl;
    222 
    223 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    224 		return;
    225 
    226 	/*
    227 	 * Fill in the current entry. Wrap around and overwrite
    228 	 * the oldest entry if necessary.
    229 	 */
    230 	pl = &pp->pr_log[n];
    231 	pl->pl_file = file;
    232 	pl->pl_line = line;
    233 	pl->pl_action = action;
    234 	pl->pl_addr = v;
    235 	if (++n >= pp->pr_logsize)
    236 		n = 0;
    237 	pp->pr_curlogentry = n;
    238 }
    239 
    240 static void
    241 pr_printlog(struct pool *pp, struct pool_item *pi,
    242     void (*pr)(const char *, ...))
    243 {
    244 	int i = pp->pr_logsize;
    245 	int n = pp->pr_curlogentry;
    246 
    247 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    248 		return;
    249 
    250 	/*
    251 	 * Print all entries in this pool's log.
    252 	 */
    253 	while (i-- > 0) {
    254 		struct pool_log *pl = &pp->pr_log[n];
    255 		if (pl->pl_action != 0) {
    256 			if (pi == NULL || pi == pl->pl_addr) {
    257 				(*pr)("\tlog entry %d:\n", i);
    258 				(*pr)("\t\taction = %s, addr = %p\n",
    259 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    260 				    pl->pl_addr);
    261 				(*pr)("\t\tfile: %s at line %lu\n",
    262 				    pl->pl_file, pl->pl_line);
    263 			}
    264 		}
    265 		if (++n >= pp->pr_logsize)
    266 			n = 0;
    267 	}
    268 }
    269 
    270 static __inline void
    271 pr_enter(struct pool *pp, const char *file, long line)
    272 {
    273 
    274 	if (__predict_false(pp->pr_entered_file != NULL)) {
    275 		printf("pool %s: reentrancy at file %s line %ld\n",
    276 		    pp->pr_wchan, file, line);
    277 		printf("         previous entry at file %s line %ld\n",
    278 		    pp->pr_entered_file, pp->pr_entered_line);
    279 		panic("pr_enter");
    280 	}
    281 
    282 	pp->pr_entered_file = file;
    283 	pp->pr_entered_line = line;
    284 }
    285 
    286 static __inline void
    287 pr_leave(struct pool *pp)
    288 {
    289 
    290 	if (__predict_false(pp->pr_entered_file == NULL)) {
    291 		printf("pool %s not entered?\n", pp->pr_wchan);
    292 		panic("pr_leave");
    293 	}
    294 
    295 	pp->pr_entered_file = NULL;
    296 	pp->pr_entered_line = 0;
    297 }
    298 
    299 static __inline void
    300 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    301 {
    302 
    303 	if (pp->pr_entered_file != NULL)
    304 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    305 		    pp->pr_entered_file, pp->pr_entered_line);
    306 }
    307 #else
    308 #define	pr_log(pp, v, action, file, line)
    309 #define	pr_printlog(pp, pi, pr)
    310 #define	pr_enter(pp, file, line)
    311 #define	pr_leave(pp)
    312 #define	pr_enter_check(pp, pr)
    313 #endif /* POOL_DIAGNOSTIC */
    314 
    315 static __inline int
    316 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    317     const void *v)
    318 {
    319 	const char *cp = v;
    320 	int idx;
    321 
    322 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    323 	idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
    324 	KASSERT(idx < pp->pr_itemsperpage);
    325 	return idx;
    326 }
    327 
    328 #define	PR_FREELIST_ALIGN(p) \
    329 	roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
    330 #define	PR_FREELIST(ph)	((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
    331 #define	PR_INDEX_USED	((pool_item_freelist_t)-1)
    332 #define	PR_INDEX_EOL	((pool_item_freelist_t)-2)
    333 
    334 static __inline void
    335 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    336     void *obj)
    337 {
    338 	int idx = pr_item_notouch_index(pp, ph, obj);
    339 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    340 
    341 	KASSERT(freelist[idx] == PR_INDEX_USED);
    342 	freelist[idx] = ph->ph_firstfree;
    343 	ph->ph_firstfree = idx;
    344 }
    345 
    346 static __inline void *
    347 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    348 {
    349 	int idx = ph->ph_firstfree;
    350 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    351 
    352 	KASSERT(freelist[idx] != PR_INDEX_USED);
    353 	ph->ph_firstfree = freelist[idx];
    354 	freelist[idx] = PR_INDEX_USED;
    355 
    356 	return ph->ph_page + ph->ph_off + idx * pp->pr_size;
    357 }
    358 
    359 static __inline int
    360 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    361 {
    362 	if (a->ph_page < b->ph_page)
    363 		return (-1);
    364 	else if (a->ph_page > b->ph_page)
    365 		return (1);
    366 	else
    367 		return (0);
    368 }
    369 
    370 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    371 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    372 
    373 /*
    374  * Return the pool page header based on page address.
    375  */
    376 static __inline struct pool_item_header *
    377 pr_find_pagehead(struct pool *pp, caddr_t page)
    378 {
    379 	struct pool_item_header *ph, tmp;
    380 
    381 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    382 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    383 
    384 	tmp.ph_page = page;
    385 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    386 	return ph;
    387 }
    388 
    389 static void
    390 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    391 {
    392 	struct pool_item_header *ph;
    393 	int s;
    394 
    395 	while ((ph = LIST_FIRST(pq)) != NULL) {
    396 		LIST_REMOVE(ph, ph_pagelist);
    397 		pool_allocator_free(pp, ph->ph_page);
    398 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    399 			s = splvm();
    400 			pool_put(pp->pr_phpool, ph);
    401 			splx(s);
    402 		}
    403 	}
    404 }
    405 
    406 /*
    407  * Remove a page from the pool.
    408  */
    409 static __inline void
    410 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    411      struct pool_pagelist *pq)
    412 {
    413 
    414 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
    415 
    416 	/*
    417 	 * If the page was idle, decrement the idle page count.
    418 	 */
    419 	if (ph->ph_nmissing == 0) {
    420 #ifdef DIAGNOSTIC
    421 		if (pp->pr_nidle == 0)
    422 			panic("pr_rmpage: nidle inconsistent");
    423 		if (pp->pr_nitems < pp->pr_itemsperpage)
    424 			panic("pr_rmpage: nitems inconsistent");
    425 #endif
    426 		pp->pr_nidle--;
    427 	}
    428 
    429 	pp->pr_nitems -= pp->pr_itemsperpage;
    430 
    431 	/*
    432 	 * Unlink the page from the pool and queue it for release.
    433 	 */
    434 	LIST_REMOVE(ph, ph_pagelist);
    435 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    436 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    437 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    438 
    439 	pp->pr_npages--;
    440 	pp->pr_npagefree++;
    441 
    442 	pool_update_curpage(pp);
    443 }
    444 
    445 /*
    446  * Initialize all the pools listed in the "pools" link set.
    447  */
    448 void
    449 link_pool_init(void)
    450 {
    451 	__link_set_decl(pools, struct link_pool_init);
    452 	struct link_pool_init * const *pi;
    453 
    454 	__link_set_foreach(pi, pools)
    455 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    456 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    457 		    (*pi)->palloc);
    458 }
    459 
    460 /*
    461  * Initialize the given pool resource structure.
    462  *
    463  * We export this routine to allow other kernel parts to declare
    464  * static pools that must be initialized before malloc() is available.
    465  */
    466 void
    467 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    468     const char *wchan, struct pool_allocator *palloc)
    469 {
    470 	int off, slack;
    471 	size_t trysize, phsize;
    472 	int s;
    473 
    474 	KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
    475 	    PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
    476 
    477 #ifdef POOL_DIAGNOSTIC
    478 	/*
    479 	 * Always log if POOL_DIAGNOSTIC is defined.
    480 	 */
    481 	if (pool_logsize != 0)
    482 		flags |= PR_LOGGING;
    483 #endif
    484 
    485 #ifdef POOL_SUBPAGE
    486 	/*
    487 	 * XXX We don't provide a real `nointr' back-end
    488 	 * yet; all sub-pages come from a kmem back-end.
    489 	 * maybe some day...
    490 	 */
    491 	if (palloc == NULL) {
    492 		extern struct pool_allocator pool_allocator_kmem_subpage;
    493 		palloc = &pool_allocator_kmem_subpage;
    494 	}
    495 	/*
    496 	 * We'll assume any user-specified back-end allocator
    497 	 * will deal with sub-pages, or simply don't care.
    498 	 */
    499 #else
    500 	if (palloc == NULL)
    501 		palloc = &pool_allocator_kmem;
    502 #endif /* POOL_SUBPAGE */
    503 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    504 		if (palloc->pa_pagesz == 0) {
    505 #ifdef POOL_SUBPAGE
    506 			if (palloc == &pool_allocator_kmem)
    507 				palloc->pa_pagesz = PAGE_SIZE;
    508 			else
    509 				palloc->pa_pagesz = POOL_SUBPAGE;
    510 #else
    511 			palloc->pa_pagesz = PAGE_SIZE;
    512 #endif /* POOL_SUBPAGE */
    513 		}
    514 
    515 		TAILQ_INIT(&palloc->pa_list);
    516 
    517 		simple_lock_init(&palloc->pa_slock);
    518 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    519 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    520 		palloc->pa_flags |= PA_INITIALIZED;
    521 	}
    522 
    523 	if (align == 0)
    524 		align = ALIGN(1);
    525 
    526 	if (size < sizeof(struct pool_item))
    527 		size = sizeof(struct pool_item);
    528 
    529 	size = roundup(size, align);
    530 #ifdef DIAGNOSTIC
    531 	if (size > palloc->pa_pagesz)
    532 		panic("pool_init: pool item size (%lu) too large",
    533 		      (u_long)size);
    534 #endif
    535 
    536 	/*
    537 	 * Initialize the pool structure.
    538 	 */
    539 	LIST_INIT(&pp->pr_emptypages);
    540 	LIST_INIT(&pp->pr_fullpages);
    541 	LIST_INIT(&pp->pr_partpages);
    542 	LIST_INIT(&pp->pr_cachelist);
    543 	pp->pr_curpage = NULL;
    544 	pp->pr_npages = 0;
    545 	pp->pr_minitems = 0;
    546 	pp->pr_minpages = 0;
    547 	pp->pr_maxpages = UINT_MAX;
    548 	pp->pr_roflags = flags;
    549 	pp->pr_flags = 0;
    550 	pp->pr_size = size;
    551 	pp->pr_align = align;
    552 	pp->pr_wchan = wchan;
    553 	pp->pr_alloc = palloc;
    554 	pp->pr_nitems = 0;
    555 	pp->pr_nout = 0;
    556 	pp->pr_hardlimit = UINT_MAX;
    557 	pp->pr_hardlimit_warning = NULL;
    558 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    559 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    560 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    561 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    562 	pp->pr_drain_hook = NULL;
    563 	pp->pr_drain_hook_arg = NULL;
    564 
    565 	/*
    566 	 * Decide whether to put the page header off page to avoid
    567 	 * wasting too large a part of the page or too big item.
    568 	 * Off-page page headers go on a hash table, so we can match
    569 	 * a returned item with its header based on the page address.
    570 	 * We use 1/16 of the page size and about 8 times of the item
    571 	 * size as the threshold (XXX: tune)
    572 	 *
    573 	 * However, we'll put the header into the page if we can put
    574 	 * it without wasting any items.
    575 	 *
    576 	 * Silently enforce `0 <= ioff < align'.
    577 	 */
    578 	pp->pr_itemoffset = ioff %= align;
    579 	/* See the comment below about reserved bytes. */
    580 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    581 	phsize = ALIGN(sizeof(struct pool_item_header));
    582 	if ((pp->pr_roflags & PR_NOTOUCH) == 0 &&
    583 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    584 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    585 		/* Use the end of the page for the page header */
    586 		pp->pr_roflags |= PR_PHINPAGE;
    587 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    588 	} else {
    589 		/* The page header will be taken from our page header pool */
    590 		pp->pr_phoffset = 0;
    591 		off = palloc->pa_pagesz;
    592 		SPLAY_INIT(&pp->pr_phtree);
    593 	}
    594 
    595 	/*
    596 	 * Alignment is to take place at `ioff' within the item. This means
    597 	 * we must reserve up to `align - 1' bytes on the page to allow
    598 	 * appropriate positioning of each item.
    599 	 */
    600 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    601 	KASSERT(pp->pr_itemsperpage != 0);
    602 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    603 		int idx;
    604 
    605 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    606 		    idx++) {
    607 			/* nothing */
    608 		}
    609 		if (idx >= PHPOOL_MAX) {
    610 			/*
    611 			 * if you see this panic, consider to tweak
    612 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    613 			 */
    614 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    615 			    pp->pr_wchan, pp->pr_itemsperpage);
    616 		}
    617 		pp->pr_phpool = &phpool[idx];
    618 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    619 		pp->pr_phpool = &phpool[0];
    620 	}
    621 #if defined(DIAGNOSTIC)
    622 	else {
    623 		pp->pr_phpool = NULL;
    624 	}
    625 #endif
    626 
    627 	/*
    628 	 * Use the slack between the chunks and the page header
    629 	 * for "cache coloring".
    630 	 */
    631 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    632 	pp->pr_maxcolor = (slack / align) * align;
    633 	pp->pr_curcolor = 0;
    634 
    635 	pp->pr_nget = 0;
    636 	pp->pr_nfail = 0;
    637 	pp->pr_nput = 0;
    638 	pp->pr_npagealloc = 0;
    639 	pp->pr_npagefree = 0;
    640 	pp->pr_hiwat = 0;
    641 	pp->pr_nidle = 0;
    642 
    643 #ifdef POOL_DIAGNOSTIC
    644 	if (flags & PR_LOGGING) {
    645 		if (kmem_map == NULL ||
    646 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    647 		     M_TEMP, M_NOWAIT)) == NULL)
    648 			pp->pr_roflags &= ~PR_LOGGING;
    649 		pp->pr_curlogentry = 0;
    650 		pp->pr_logsize = pool_logsize;
    651 	}
    652 #endif
    653 
    654 	pp->pr_entered_file = NULL;
    655 	pp->pr_entered_line = 0;
    656 
    657 	simple_lock_init(&pp->pr_slock);
    658 
    659 	/*
    660 	 * Initialize private page header pool and cache magazine pool if we
    661 	 * haven't done so yet.
    662 	 * XXX LOCKING.
    663 	 */
    664 	if (phpool[0].pr_size == 0) {
    665 		int idx;
    666 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    667 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    668 			int nelem;
    669 			size_t sz;
    670 
    671 			nelem = PHPOOL_FREELIST_NELEM(idx);
    672 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    673 			    "phpool-%d", nelem);
    674 			sz = sizeof(struct pool_item_header);
    675 			if (nelem) {
    676 				sz = PR_FREELIST_ALIGN(sz)
    677 				    + nelem * sizeof(pool_item_freelist_t);
    678 			}
    679 			pool_init(&phpool[idx], sz, 0, 0, 0,
    680 			    phpool_names[idx], &pool_allocator_meta);
    681 		}
    682 #ifdef POOL_SUBPAGE
    683 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    684 		    PR_RECURSIVE, "psppool", &pool_allocator_meta);
    685 #endif
    686 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    687 		    0, "pcgpool", &pool_allocator_meta);
    688 	}
    689 
    690 	/* Insert into the list of all pools. */
    691 	simple_lock(&pool_head_slock);
    692 	LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    693 	simple_unlock(&pool_head_slock);
    694 
    695 	/* Insert this into the list of pools using this allocator. */
    696 	s = splvm();
    697 	simple_lock(&palloc->pa_slock);
    698 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    699 	simple_unlock(&palloc->pa_slock);
    700 	splx(s);
    701 }
    702 
    703 /*
    704  * De-commision a pool resource.
    705  */
    706 void
    707 pool_destroy(struct pool *pp)
    708 {
    709 	struct pool_pagelist pq;
    710 	struct pool_item_header *ph;
    711 	int s;
    712 
    713 	/* Remove from global pool list */
    714 	simple_lock(&pool_head_slock);
    715 	LIST_REMOVE(pp, pr_poollist);
    716 	if (drainpp == pp)
    717 		drainpp = NULL;
    718 	simple_unlock(&pool_head_slock);
    719 
    720 	/* Remove this pool from its allocator's list of pools. */
    721 	s = splvm();
    722 	simple_lock(&pp->pr_alloc->pa_slock);
    723 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    724 	simple_unlock(&pp->pr_alloc->pa_slock);
    725 	splx(s);
    726 
    727 	s = splvm();
    728 	simple_lock(&pp->pr_slock);
    729 
    730 	KASSERT(LIST_EMPTY(&pp->pr_cachelist));
    731 
    732 #ifdef DIAGNOSTIC
    733 	if (pp->pr_nout != 0) {
    734 		pr_printlog(pp, NULL, printf);
    735 		panic("pool_destroy: pool busy: still out: %u",
    736 		    pp->pr_nout);
    737 	}
    738 #endif
    739 
    740 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    741 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    742 
    743 	/* Remove all pages */
    744 	LIST_INIT(&pq);
    745 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    746 		pr_rmpage(pp, ph, &pq);
    747 
    748 	simple_unlock(&pp->pr_slock);
    749 	splx(s);
    750 
    751 	pr_pagelist_free(pp, &pq);
    752 
    753 #ifdef POOL_DIAGNOSTIC
    754 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    755 		free(pp->pr_log, M_TEMP);
    756 #endif
    757 }
    758 
    759 void
    760 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    761 {
    762 
    763 	/* XXX no locking -- must be used just after pool_init() */
    764 #ifdef DIAGNOSTIC
    765 	if (pp->pr_drain_hook != NULL)
    766 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    767 #endif
    768 	pp->pr_drain_hook = fn;
    769 	pp->pr_drain_hook_arg = arg;
    770 }
    771 
    772 static struct pool_item_header *
    773 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    774 {
    775 	struct pool_item_header *ph;
    776 	int s;
    777 
    778 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    779 
    780 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    781 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    782 	else {
    783 		s = splvm();
    784 		ph = pool_get(pp->pr_phpool, flags);
    785 		splx(s);
    786 	}
    787 
    788 	return (ph);
    789 }
    790 
    791 /*
    792  * Grab an item from the pool; must be called at appropriate spl level
    793  */
    794 void *
    795 #ifdef POOL_DIAGNOSTIC
    796 _pool_get(struct pool *pp, int flags, const char *file, long line)
    797 #else
    798 pool_get(struct pool *pp, int flags)
    799 #endif
    800 {
    801 	struct pool_item *pi;
    802 	struct pool_item_header *ph;
    803 	void *v;
    804 
    805 #ifdef DIAGNOSTIC
    806 	if (__predict_false(pp->pr_itemsperpage == 0))
    807 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    808 		    "pool not initialized?", pp);
    809 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    810 			    (flags & PR_WAITOK) != 0))
    811 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    812 
    813 #endif /* DIAGNOSTIC */
    814 #ifdef LOCKDEBUG
    815 	if (flags & PR_WAITOK)
    816 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
    817 	SCHED_ASSERT_UNLOCKED();
    818 #endif
    819 
    820 	simple_lock(&pp->pr_slock);
    821 	pr_enter(pp, file, line);
    822 
    823  startover:
    824 	/*
    825 	 * Check to see if we've reached the hard limit.  If we have,
    826 	 * and we can wait, then wait until an item has been returned to
    827 	 * the pool.
    828 	 */
    829 #ifdef DIAGNOSTIC
    830 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    831 		pr_leave(pp);
    832 		simple_unlock(&pp->pr_slock);
    833 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    834 	}
    835 #endif
    836 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    837 		if (pp->pr_drain_hook != NULL) {
    838 			/*
    839 			 * Since the drain hook is going to free things
    840 			 * back to the pool, unlock, call the hook, re-lock,
    841 			 * and check the hardlimit condition again.
    842 			 */
    843 			pr_leave(pp);
    844 			simple_unlock(&pp->pr_slock);
    845 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    846 			simple_lock(&pp->pr_slock);
    847 			pr_enter(pp, file, line);
    848 			if (pp->pr_nout < pp->pr_hardlimit)
    849 				goto startover;
    850 		}
    851 
    852 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    853 			/*
    854 			 * XXX: A warning isn't logged in this case.  Should
    855 			 * it be?
    856 			 */
    857 			pp->pr_flags |= PR_WANTED;
    858 			pr_leave(pp);
    859 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    860 			pr_enter(pp, file, line);
    861 			goto startover;
    862 		}
    863 
    864 		/*
    865 		 * Log a message that the hard limit has been hit.
    866 		 */
    867 		if (pp->pr_hardlimit_warning != NULL &&
    868 		    ratecheck(&pp->pr_hardlimit_warning_last,
    869 			      &pp->pr_hardlimit_ratecap))
    870 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    871 
    872 		pp->pr_nfail++;
    873 
    874 		pr_leave(pp);
    875 		simple_unlock(&pp->pr_slock);
    876 		return (NULL);
    877 	}
    878 
    879 	/*
    880 	 * The convention we use is that if `curpage' is not NULL, then
    881 	 * it points at a non-empty bucket. In particular, `curpage'
    882 	 * never points at a page header which has PR_PHINPAGE set and
    883 	 * has no items in its bucket.
    884 	 */
    885 	if ((ph = pp->pr_curpage) == NULL) {
    886 #ifdef DIAGNOSTIC
    887 		if (pp->pr_nitems != 0) {
    888 			simple_unlock(&pp->pr_slock);
    889 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    890 			    pp->pr_wchan, pp->pr_nitems);
    891 			panic("pool_get: nitems inconsistent");
    892 		}
    893 #endif
    894 
    895 		/*
    896 		 * Call the back-end page allocator for more memory.
    897 		 * Release the pool lock, as the back-end page allocator
    898 		 * may block.
    899 		 */
    900 		pr_leave(pp);
    901 		simple_unlock(&pp->pr_slock);
    902 		v = pool_allocator_alloc(pp, flags);
    903 		if (__predict_true(v != NULL))
    904 			ph = pool_alloc_item_header(pp, v, flags);
    905 
    906 		if (__predict_false(v == NULL || ph == NULL)) {
    907 			if (v != NULL)
    908 				pool_allocator_free(pp, v);
    909 
    910 			simple_lock(&pp->pr_slock);
    911 			pr_enter(pp, file, line);
    912 
    913 			/*
    914 			 * We were unable to allocate a page or item
    915 			 * header, but we released the lock during
    916 			 * allocation, so perhaps items were freed
    917 			 * back to the pool.  Check for this case.
    918 			 */
    919 			if (pp->pr_curpage != NULL)
    920 				goto startover;
    921 
    922 			if ((flags & PR_WAITOK) == 0) {
    923 				pp->pr_nfail++;
    924 				pr_leave(pp);
    925 				simple_unlock(&pp->pr_slock);
    926 				return (NULL);
    927 			}
    928 
    929 			/*
    930 			 * Wait for items to be returned to this pool.
    931 			 *
    932 			 * XXX: maybe we should wake up once a second and
    933 			 * try again?
    934 			 */
    935 			pp->pr_flags |= PR_WANTED;
    936 			/* PA_WANTED is already set on the allocator. */
    937 			pr_leave(pp);
    938 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    939 			pr_enter(pp, file, line);
    940 			goto startover;
    941 		}
    942 
    943 		/* We have more memory; add it to the pool */
    944 		simple_lock(&pp->pr_slock);
    945 		pr_enter(pp, file, line);
    946 		pool_prime_page(pp, v, ph);
    947 		pp->pr_npagealloc++;
    948 
    949 		/* Start the allocation process over. */
    950 		goto startover;
    951 	}
    952 	if (pp->pr_roflags & PR_NOTOUCH) {
    953 #ifdef DIAGNOSTIC
    954 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
    955 			pr_leave(pp);
    956 			simple_unlock(&pp->pr_slock);
    957 			panic("pool_get: %s: page empty", pp->pr_wchan);
    958 		}
    959 #endif
    960 		v = pr_item_notouch_get(pp, ph);
    961 #ifdef POOL_DIAGNOSTIC
    962 		pr_log(pp, v, PRLOG_GET, file, line);
    963 #endif
    964 	} else {
    965 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    966 		if (__predict_false(v == NULL)) {
    967 			pr_leave(pp);
    968 			simple_unlock(&pp->pr_slock);
    969 			panic("pool_get: %s: page empty", pp->pr_wchan);
    970 		}
    971 #ifdef DIAGNOSTIC
    972 		if (__predict_false(pp->pr_nitems == 0)) {
    973 			pr_leave(pp);
    974 			simple_unlock(&pp->pr_slock);
    975 			printf("pool_get: %s: items on itemlist, nitems %u\n",
    976 			    pp->pr_wchan, pp->pr_nitems);
    977 			panic("pool_get: nitems inconsistent");
    978 		}
    979 #endif
    980 
    981 #ifdef POOL_DIAGNOSTIC
    982 		pr_log(pp, v, PRLOG_GET, file, line);
    983 #endif
    984 
    985 #ifdef DIAGNOSTIC
    986 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    987 			pr_printlog(pp, pi, printf);
    988 			panic("pool_get(%s): free list modified: "
    989 			    "magic=%x; page %p; item addr %p\n",
    990 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    991 		}
    992 #endif
    993 
    994 		/*
    995 		 * Remove from item list.
    996 		 */
    997 		LIST_REMOVE(pi, pi_list);
    998 	}
    999 	pp->pr_nitems--;
   1000 	pp->pr_nout++;
   1001 	if (ph->ph_nmissing == 0) {
   1002 #ifdef DIAGNOSTIC
   1003 		if (__predict_false(pp->pr_nidle == 0))
   1004 			panic("pool_get: nidle inconsistent");
   1005 #endif
   1006 		pp->pr_nidle--;
   1007 
   1008 		/*
   1009 		 * This page was previously empty.  Move it to the list of
   1010 		 * partially-full pages.  This page is already curpage.
   1011 		 */
   1012 		LIST_REMOVE(ph, ph_pagelist);
   1013 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1014 	}
   1015 	ph->ph_nmissing++;
   1016 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1017 #ifdef DIAGNOSTIC
   1018 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1019 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1020 			pr_leave(pp);
   1021 			simple_unlock(&pp->pr_slock);
   1022 			panic("pool_get: %s: nmissing inconsistent",
   1023 			    pp->pr_wchan);
   1024 		}
   1025 #endif
   1026 		/*
   1027 		 * This page is now full.  Move it to the full list
   1028 		 * and select a new current page.
   1029 		 */
   1030 		LIST_REMOVE(ph, ph_pagelist);
   1031 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1032 		pool_update_curpage(pp);
   1033 	}
   1034 
   1035 	pp->pr_nget++;
   1036 
   1037 	/*
   1038 	 * If we have a low water mark and we are now below that low
   1039 	 * water mark, add more items to the pool.
   1040 	 */
   1041 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1042 		/*
   1043 		 * XXX: Should we log a warning?  Should we set up a timeout
   1044 		 * to try again in a second or so?  The latter could break
   1045 		 * a caller's assumptions about interrupt protection, etc.
   1046 		 */
   1047 	}
   1048 
   1049 	pr_leave(pp);
   1050 	simple_unlock(&pp->pr_slock);
   1051 	return (v);
   1052 }
   1053 
   1054 /*
   1055  * Internal version of pool_put().  Pool is already locked/entered.
   1056  */
   1057 static void
   1058 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1059 {
   1060 	struct pool_item *pi = v;
   1061 	struct pool_item_header *ph;
   1062 	caddr_t page;
   1063 	int s;
   1064 
   1065 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
   1066 	SCHED_ASSERT_UNLOCKED();
   1067 
   1068 	page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
   1069 
   1070 #ifdef DIAGNOSTIC
   1071 	if (__predict_false(pp->pr_nout == 0)) {
   1072 		printf("pool %s: putting with none out\n",
   1073 		    pp->pr_wchan);
   1074 		panic("pool_put");
   1075 	}
   1076 #endif
   1077 
   1078 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
   1079 		pr_printlog(pp, NULL, printf);
   1080 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1081 	}
   1082 
   1083 #ifdef LOCKDEBUG
   1084 	/*
   1085 	 * Check if we're freeing a locked simple lock.
   1086 	 */
   1087 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
   1088 #endif
   1089 
   1090 	/*
   1091 	 * Return to item list.
   1092 	 */
   1093 	if (pp->pr_roflags & PR_NOTOUCH) {
   1094 		pr_item_notouch_put(pp, ph, v);
   1095 	} else {
   1096 #ifdef DIAGNOSTIC
   1097 		pi->pi_magic = PI_MAGIC;
   1098 #endif
   1099 #ifdef DEBUG
   1100 		{
   1101 			int i, *ip = v;
   1102 
   1103 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1104 				*ip++ = PI_MAGIC;
   1105 			}
   1106 		}
   1107 #endif
   1108 
   1109 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1110 	}
   1111 	KDASSERT(ph->ph_nmissing != 0);
   1112 	ph->ph_nmissing--;
   1113 	pp->pr_nput++;
   1114 	pp->pr_nitems++;
   1115 	pp->pr_nout--;
   1116 
   1117 	/* Cancel "pool empty" condition if it exists */
   1118 	if (pp->pr_curpage == NULL)
   1119 		pp->pr_curpage = ph;
   1120 
   1121 	if (pp->pr_flags & PR_WANTED) {
   1122 		pp->pr_flags &= ~PR_WANTED;
   1123 		if (ph->ph_nmissing == 0)
   1124 			pp->pr_nidle++;
   1125 		wakeup((caddr_t)pp);
   1126 		return;
   1127 	}
   1128 
   1129 	/*
   1130 	 * If this page is now empty, do one of two things:
   1131 	 *
   1132 	 *	(1) If we have more pages than the page high water mark,
   1133 	 *	    free the page back to the system.  ONLY CONSIDER
   1134 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1135 	 *	    CLAIM.
   1136 	 *
   1137 	 *	(2) Otherwise, move the page to the empty page list.
   1138 	 *
   1139 	 * Either way, select a new current page (so we use a partially-full
   1140 	 * page if one is available).
   1141 	 */
   1142 	if (ph->ph_nmissing == 0) {
   1143 		pp->pr_nidle++;
   1144 		if (pp->pr_npages > pp->pr_minpages &&
   1145 		    (pp->pr_npages > pp->pr_maxpages ||
   1146 		     (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
   1147 			pr_rmpage(pp, ph, pq);
   1148 		} else {
   1149 			LIST_REMOVE(ph, ph_pagelist);
   1150 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1151 
   1152 			/*
   1153 			 * Update the timestamp on the page.  A page must
   1154 			 * be idle for some period of time before it can
   1155 			 * be reclaimed by the pagedaemon.  This minimizes
   1156 			 * ping-pong'ing for memory.
   1157 			 */
   1158 			s = splclock();
   1159 			ph->ph_time = mono_time;
   1160 			splx(s);
   1161 		}
   1162 		pool_update_curpage(pp);
   1163 	}
   1164 
   1165 	/*
   1166 	 * If the page was previously completely full, move it to the
   1167 	 * partially-full list and make it the current page.  The next
   1168 	 * allocation will get the item from this page, instead of
   1169 	 * further fragmenting the pool.
   1170 	 */
   1171 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1172 		LIST_REMOVE(ph, ph_pagelist);
   1173 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1174 		pp->pr_curpage = ph;
   1175 	}
   1176 }
   1177 
   1178 /*
   1179  * Return resource to the pool; must be called at appropriate spl level
   1180  */
   1181 #ifdef POOL_DIAGNOSTIC
   1182 void
   1183 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1184 {
   1185 	struct pool_pagelist pq;
   1186 
   1187 	LIST_INIT(&pq);
   1188 
   1189 	simple_lock(&pp->pr_slock);
   1190 	pr_enter(pp, file, line);
   1191 
   1192 	pr_log(pp, v, PRLOG_PUT, file, line);
   1193 
   1194 	pool_do_put(pp, v, &pq);
   1195 
   1196 	pr_leave(pp);
   1197 	simple_unlock(&pp->pr_slock);
   1198 
   1199 	pr_pagelist_free(pp, &pq);
   1200 }
   1201 #undef pool_put
   1202 #endif /* POOL_DIAGNOSTIC */
   1203 
   1204 void
   1205 pool_put(struct pool *pp, void *v)
   1206 {
   1207 	struct pool_pagelist pq;
   1208 
   1209 	LIST_INIT(&pq);
   1210 
   1211 	simple_lock(&pp->pr_slock);
   1212 	pool_do_put(pp, v, &pq);
   1213 	simple_unlock(&pp->pr_slock);
   1214 
   1215 	pr_pagelist_free(pp, &pq);
   1216 }
   1217 
   1218 #ifdef POOL_DIAGNOSTIC
   1219 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1220 #endif
   1221 
   1222 /*
   1223  * Add N items to the pool.
   1224  */
   1225 int
   1226 pool_prime(struct pool *pp, int n)
   1227 {
   1228 	struct pool_item_header *ph = NULL;
   1229 	caddr_t cp;
   1230 	int newpages;
   1231 
   1232 	simple_lock(&pp->pr_slock);
   1233 
   1234 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1235 
   1236 	while (newpages-- > 0) {
   1237 		simple_unlock(&pp->pr_slock);
   1238 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
   1239 		if (__predict_true(cp != NULL))
   1240 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1241 
   1242 		if (__predict_false(cp == NULL || ph == NULL)) {
   1243 			if (cp != NULL)
   1244 				pool_allocator_free(pp, cp);
   1245 			simple_lock(&pp->pr_slock);
   1246 			break;
   1247 		}
   1248 
   1249 		simple_lock(&pp->pr_slock);
   1250 		pool_prime_page(pp, cp, ph);
   1251 		pp->pr_npagealloc++;
   1252 		pp->pr_minpages++;
   1253 	}
   1254 
   1255 	if (pp->pr_minpages >= pp->pr_maxpages)
   1256 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1257 
   1258 	simple_unlock(&pp->pr_slock);
   1259 	return (0);
   1260 }
   1261 
   1262 /*
   1263  * Add a page worth of items to the pool.
   1264  *
   1265  * Note, we must be called with the pool descriptor LOCKED.
   1266  */
   1267 static void
   1268 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1269 {
   1270 	struct pool_item *pi;
   1271 	caddr_t cp = storage;
   1272 	unsigned int align = pp->pr_align;
   1273 	unsigned int ioff = pp->pr_itemoffset;
   1274 	int n;
   1275 	int s;
   1276 
   1277 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
   1278 
   1279 #ifdef DIAGNOSTIC
   1280 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1281 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1282 #endif
   1283 
   1284 	/*
   1285 	 * Insert page header.
   1286 	 */
   1287 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1288 	LIST_INIT(&ph->ph_itemlist);
   1289 	ph->ph_page = storage;
   1290 	ph->ph_nmissing = 0;
   1291 	s = splclock();
   1292 	ph->ph_time = mono_time;
   1293 	splx(s);
   1294 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1295 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1296 
   1297 	pp->pr_nidle++;
   1298 
   1299 	/*
   1300 	 * Color this page.
   1301 	 */
   1302 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1303 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1304 		pp->pr_curcolor = 0;
   1305 
   1306 	/*
   1307 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1308 	 */
   1309 	if (ioff != 0)
   1310 		cp = (caddr_t)(cp + (align - ioff));
   1311 
   1312 	/*
   1313 	 * Insert remaining chunks on the bucket list.
   1314 	 */
   1315 	n = pp->pr_itemsperpage;
   1316 	pp->pr_nitems += n;
   1317 
   1318 	if (pp->pr_roflags & PR_NOTOUCH) {
   1319 		pool_item_freelist_t *freelist = PR_FREELIST(ph);
   1320 		int i;
   1321 
   1322 		ph->ph_off = cp - storage;
   1323 		ph->ph_firstfree = 0;
   1324 		for (i = 0; i < n - 1; i++)
   1325 			freelist[i] = i + 1;
   1326 		freelist[n - 1] = PR_INDEX_EOL;
   1327 	} else {
   1328 		while (n--) {
   1329 			pi = (struct pool_item *)cp;
   1330 
   1331 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1332 
   1333 			/* Insert on page list */
   1334 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1335 #ifdef DIAGNOSTIC
   1336 			pi->pi_magic = PI_MAGIC;
   1337 #endif
   1338 			cp = (caddr_t)(cp + pp->pr_size);
   1339 		}
   1340 	}
   1341 
   1342 	/*
   1343 	 * If the pool was depleted, point at the new page.
   1344 	 */
   1345 	if (pp->pr_curpage == NULL)
   1346 		pp->pr_curpage = ph;
   1347 
   1348 	if (++pp->pr_npages > pp->pr_hiwat)
   1349 		pp->pr_hiwat = pp->pr_npages;
   1350 }
   1351 
   1352 /*
   1353  * Used by pool_get() when nitems drops below the low water mark.  This
   1354  * is used to catch up pr_nitems with the low water mark.
   1355  *
   1356  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1357  *
   1358  * Note 2, we must be called with the pool already locked, and we return
   1359  * with it locked.
   1360  */
   1361 static int
   1362 pool_catchup(struct pool *pp)
   1363 {
   1364 	struct pool_item_header *ph = NULL;
   1365 	caddr_t cp;
   1366 	int error = 0;
   1367 
   1368 	while (POOL_NEEDS_CATCHUP(pp)) {
   1369 		/*
   1370 		 * Call the page back-end allocator for more memory.
   1371 		 *
   1372 		 * XXX: We never wait, so should we bother unlocking
   1373 		 * the pool descriptor?
   1374 		 */
   1375 		simple_unlock(&pp->pr_slock);
   1376 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
   1377 		if (__predict_true(cp != NULL))
   1378 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1379 		if (__predict_false(cp == NULL || ph == NULL)) {
   1380 			if (cp != NULL)
   1381 				pool_allocator_free(pp, cp);
   1382 			error = ENOMEM;
   1383 			simple_lock(&pp->pr_slock);
   1384 			break;
   1385 		}
   1386 		simple_lock(&pp->pr_slock);
   1387 		pool_prime_page(pp, cp, ph);
   1388 		pp->pr_npagealloc++;
   1389 	}
   1390 
   1391 	return (error);
   1392 }
   1393 
   1394 static void
   1395 pool_update_curpage(struct pool *pp)
   1396 {
   1397 
   1398 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1399 	if (pp->pr_curpage == NULL) {
   1400 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1401 	}
   1402 }
   1403 
   1404 void
   1405 pool_setlowat(struct pool *pp, int n)
   1406 {
   1407 
   1408 	simple_lock(&pp->pr_slock);
   1409 
   1410 	pp->pr_minitems = n;
   1411 	pp->pr_minpages = (n == 0)
   1412 		? 0
   1413 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1414 
   1415 	/* Make sure we're caught up with the newly-set low water mark. */
   1416 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1417 		/*
   1418 		 * XXX: Should we log a warning?  Should we set up a timeout
   1419 		 * to try again in a second or so?  The latter could break
   1420 		 * a caller's assumptions about interrupt protection, etc.
   1421 		 */
   1422 	}
   1423 
   1424 	simple_unlock(&pp->pr_slock);
   1425 }
   1426 
   1427 void
   1428 pool_sethiwat(struct pool *pp, int n)
   1429 {
   1430 
   1431 	simple_lock(&pp->pr_slock);
   1432 
   1433 	pp->pr_maxpages = (n == 0)
   1434 		? 0
   1435 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1436 
   1437 	simple_unlock(&pp->pr_slock);
   1438 }
   1439 
   1440 void
   1441 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1442 {
   1443 
   1444 	simple_lock(&pp->pr_slock);
   1445 
   1446 	pp->pr_hardlimit = n;
   1447 	pp->pr_hardlimit_warning = warnmess;
   1448 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1449 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1450 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1451 
   1452 	/*
   1453 	 * In-line version of pool_sethiwat(), because we don't want to
   1454 	 * release the lock.
   1455 	 */
   1456 	pp->pr_maxpages = (n == 0)
   1457 		? 0
   1458 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1459 
   1460 	simple_unlock(&pp->pr_slock);
   1461 }
   1462 
   1463 /*
   1464  * Release all complete pages that have not been used recently.
   1465  */
   1466 int
   1467 #ifdef POOL_DIAGNOSTIC
   1468 _pool_reclaim(struct pool *pp, const char *file, long line)
   1469 #else
   1470 pool_reclaim(struct pool *pp)
   1471 #endif
   1472 {
   1473 	struct pool_item_header *ph, *phnext;
   1474 	struct pool_cache *pc;
   1475 	struct pool_pagelist pq;
   1476 	struct pool_cache_grouplist pcgl;
   1477 	struct timeval curtime, diff;
   1478 	int s;
   1479 
   1480 	if (pp->pr_drain_hook != NULL) {
   1481 		/*
   1482 		 * The drain hook must be called with the pool unlocked.
   1483 		 */
   1484 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1485 	}
   1486 
   1487 	if (simple_lock_try(&pp->pr_slock) == 0)
   1488 		return (0);
   1489 	pr_enter(pp, file, line);
   1490 
   1491 	LIST_INIT(&pq);
   1492 	LIST_INIT(&pcgl);
   1493 
   1494 	/*
   1495 	 * Reclaim items from the pool's caches.
   1496 	 */
   1497 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
   1498 		pool_cache_reclaim(pc, &pq, &pcgl);
   1499 
   1500 	s = splclock();
   1501 	curtime = mono_time;
   1502 	splx(s);
   1503 
   1504 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1505 		phnext = LIST_NEXT(ph, ph_pagelist);
   1506 
   1507 		/* Check our minimum page claim */
   1508 		if (pp->pr_npages <= pp->pr_minpages)
   1509 			break;
   1510 
   1511 		KASSERT(ph->ph_nmissing == 0);
   1512 		timersub(&curtime, &ph->ph_time, &diff);
   1513 		if (diff.tv_sec < pool_inactive_time)
   1514 			continue;
   1515 
   1516 		/*
   1517 		 * If freeing this page would put us below
   1518 		 * the low water mark, stop now.
   1519 		 */
   1520 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1521 		    pp->pr_minitems)
   1522 			break;
   1523 
   1524 		pr_rmpage(pp, ph, &pq);
   1525 	}
   1526 
   1527 	pr_leave(pp);
   1528 	simple_unlock(&pp->pr_slock);
   1529 	if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
   1530 		return 0;
   1531 
   1532 	pr_pagelist_free(pp, &pq);
   1533 	pcg_grouplist_free(&pcgl);
   1534 	return (1);
   1535 }
   1536 
   1537 /*
   1538  * Drain pools, one at a time.
   1539  *
   1540  * Note, we must never be called from an interrupt context.
   1541  */
   1542 void
   1543 pool_drain(void *arg)
   1544 {
   1545 	struct pool *pp;
   1546 	int s;
   1547 
   1548 	pp = NULL;
   1549 	s = splvm();
   1550 	simple_lock(&pool_head_slock);
   1551 	if (drainpp == NULL) {
   1552 		drainpp = LIST_FIRST(&pool_head);
   1553 	}
   1554 	if (drainpp) {
   1555 		pp = drainpp;
   1556 		drainpp = LIST_NEXT(pp, pr_poollist);
   1557 	}
   1558 	simple_unlock(&pool_head_slock);
   1559 	pool_reclaim(pp);
   1560 	splx(s);
   1561 }
   1562 
   1563 /*
   1564  * Diagnostic helpers.
   1565  */
   1566 void
   1567 pool_print(struct pool *pp, const char *modif)
   1568 {
   1569 	int s;
   1570 
   1571 	s = splvm();
   1572 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1573 		printf("pool %s is locked; try again later\n",
   1574 		    pp->pr_wchan);
   1575 		splx(s);
   1576 		return;
   1577 	}
   1578 	pool_print1(pp, modif, printf);
   1579 	simple_unlock(&pp->pr_slock);
   1580 	splx(s);
   1581 }
   1582 
   1583 void
   1584 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1585 {
   1586 	int didlock = 0;
   1587 
   1588 	if (pp == NULL) {
   1589 		(*pr)("Must specify a pool to print.\n");
   1590 		return;
   1591 	}
   1592 
   1593 	/*
   1594 	 * Called from DDB; interrupts should be blocked, and all
   1595 	 * other processors should be paused.  We can skip locking
   1596 	 * the pool in this case.
   1597 	 *
   1598 	 * We do a simple_lock_try() just to print the lock
   1599 	 * status, however.
   1600 	 */
   1601 
   1602 	if (simple_lock_try(&pp->pr_slock) == 0)
   1603 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1604 	else
   1605 		didlock = 1;
   1606 
   1607 	pool_print1(pp, modif, pr);
   1608 
   1609 	if (didlock)
   1610 		simple_unlock(&pp->pr_slock);
   1611 }
   1612 
   1613 static void
   1614 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1615     void (*pr)(const char *, ...))
   1616 {
   1617 	struct pool_item_header *ph;
   1618 #ifdef DIAGNOSTIC
   1619 	struct pool_item *pi;
   1620 #endif
   1621 
   1622 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1623 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1624 		    ph->ph_page, ph->ph_nmissing,
   1625 		    (u_long)ph->ph_time.tv_sec,
   1626 		    (u_long)ph->ph_time.tv_usec);
   1627 #ifdef DIAGNOSTIC
   1628 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1629 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1630 				if (pi->pi_magic != PI_MAGIC) {
   1631 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1632 					    pi, pi->pi_magic);
   1633 				}
   1634 			}
   1635 		}
   1636 #endif
   1637 	}
   1638 }
   1639 
   1640 static void
   1641 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1642 {
   1643 	struct pool_item_header *ph;
   1644 	struct pool_cache *pc;
   1645 	struct pool_cache_group *pcg;
   1646 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1647 	char c;
   1648 
   1649 	while ((c = *modif++) != '\0') {
   1650 		if (c == 'l')
   1651 			print_log = 1;
   1652 		if (c == 'p')
   1653 			print_pagelist = 1;
   1654 		if (c == 'c')
   1655 			print_cache = 1;
   1656 	}
   1657 
   1658 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1659 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1660 	    pp->pr_roflags);
   1661 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1662 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1663 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1664 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1665 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1666 
   1667 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1668 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1669 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1670 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1671 
   1672 	if (print_pagelist == 0)
   1673 		goto skip_pagelist;
   1674 
   1675 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1676 		(*pr)("\n\tempty page list:\n");
   1677 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1678 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1679 		(*pr)("\n\tfull page list:\n");
   1680 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1681 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1682 		(*pr)("\n\tpartial-page list:\n");
   1683 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1684 
   1685 	if (pp->pr_curpage == NULL)
   1686 		(*pr)("\tno current page\n");
   1687 	else
   1688 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1689 
   1690  skip_pagelist:
   1691 	if (print_log == 0)
   1692 		goto skip_log;
   1693 
   1694 	(*pr)("\n");
   1695 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1696 		(*pr)("\tno log\n");
   1697 	else
   1698 		pr_printlog(pp, NULL, pr);
   1699 
   1700  skip_log:
   1701 	if (print_cache == 0)
   1702 		goto skip_cache;
   1703 
   1704 #define PR_GROUPLIST(pcg)						\
   1705 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1706 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1707 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1708 		    POOL_PADDR_INVALID) {				\
   1709 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1710 			    pcg->pcg_objects[i].pcgo_va,		\
   1711 			    (unsigned long long)			\
   1712 			    pcg->pcg_objects[i].pcgo_pa);		\
   1713 		} else {						\
   1714 			(*pr)("\t\t\t%p\n",				\
   1715 			    pcg->pcg_objects[i].pcgo_va);		\
   1716 		}							\
   1717 	}
   1718 
   1719 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
   1720 		(*pr)("\tcache %p\n", pc);
   1721 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1722 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1723 		(*pr)("\t    full groups:\n");
   1724 		LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
   1725 			PR_GROUPLIST(pcg);
   1726 		}
   1727 		(*pr)("\t    partial groups:\n");
   1728 		LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
   1729 			PR_GROUPLIST(pcg);
   1730 		}
   1731 		(*pr)("\t    empty groups:\n");
   1732 		LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
   1733 			PR_GROUPLIST(pcg);
   1734 		}
   1735 	}
   1736 #undef PR_GROUPLIST
   1737 
   1738  skip_cache:
   1739 	pr_enter_check(pp, pr);
   1740 }
   1741 
   1742 static int
   1743 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1744 {
   1745 	struct pool_item *pi;
   1746 	caddr_t page;
   1747 	int n;
   1748 
   1749 	page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
   1750 	if (page != ph->ph_page &&
   1751 	    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1752 		if (label != NULL)
   1753 			printf("%s: ", label);
   1754 		printf("pool(%p:%s): page inconsistency: page %p;"
   1755 		       " at page head addr %p (p %p)\n", pp,
   1756 			pp->pr_wchan, ph->ph_page,
   1757 			ph, page);
   1758 		return 1;
   1759 	}
   1760 
   1761 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1762 		return 0;
   1763 
   1764 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1765 	     pi != NULL;
   1766 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1767 
   1768 #ifdef DIAGNOSTIC
   1769 		if (pi->pi_magic != PI_MAGIC) {
   1770 			if (label != NULL)
   1771 				printf("%s: ", label);
   1772 			printf("pool(%s): free list modified: magic=%x;"
   1773 			       " page %p; item ordinal %d;"
   1774 			       " addr %p (p %p)\n",
   1775 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1776 				n, pi, page);
   1777 			panic("pool");
   1778 		}
   1779 #endif
   1780 		page =
   1781 		    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
   1782 		if (page == ph->ph_page)
   1783 			continue;
   1784 
   1785 		if (label != NULL)
   1786 			printf("%s: ", label);
   1787 		printf("pool(%p:%s): page inconsistency: page %p;"
   1788 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1789 			pp->pr_wchan, ph->ph_page,
   1790 			n, pi, page);
   1791 		return 1;
   1792 	}
   1793 	return 0;
   1794 }
   1795 
   1796 
   1797 int
   1798 pool_chk(struct pool *pp, const char *label)
   1799 {
   1800 	struct pool_item_header *ph;
   1801 	int r = 0;
   1802 
   1803 	simple_lock(&pp->pr_slock);
   1804 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1805 		r = pool_chk_page(pp, label, ph);
   1806 		if (r) {
   1807 			goto out;
   1808 		}
   1809 	}
   1810 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1811 		r = pool_chk_page(pp, label, ph);
   1812 		if (r) {
   1813 			goto out;
   1814 		}
   1815 	}
   1816 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1817 		r = pool_chk_page(pp, label, ph);
   1818 		if (r) {
   1819 			goto out;
   1820 		}
   1821 	}
   1822 
   1823 out:
   1824 	simple_unlock(&pp->pr_slock);
   1825 	return (r);
   1826 }
   1827 
   1828 /*
   1829  * pool_cache_init:
   1830  *
   1831  *	Initialize a pool cache.
   1832  *
   1833  *	NOTE: If the pool must be protected from interrupts, we expect
   1834  *	to be called at the appropriate interrupt priority level.
   1835  */
   1836 void
   1837 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1838     int (*ctor)(void *, void *, int),
   1839     void (*dtor)(void *, void *),
   1840     void *arg)
   1841 {
   1842 
   1843 	LIST_INIT(&pc->pc_emptygroups);
   1844 	LIST_INIT(&pc->pc_fullgroups);
   1845 	LIST_INIT(&pc->pc_partgroups);
   1846 	simple_lock_init(&pc->pc_slock);
   1847 
   1848 	pc->pc_pool = pp;
   1849 
   1850 	pc->pc_ctor = ctor;
   1851 	pc->pc_dtor = dtor;
   1852 	pc->pc_arg  = arg;
   1853 
   1854 	pc->pc_hits   = 0;
   1855 	pc->pc_misses = 0;
   1856 
   1857 	pc->pc_ngroups = 0;
   1858 
   1859 	pc->pc_nitems = 0;
   1860 
   1861 	simple_lock(&pp->pr_slock);
   1862 	LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
   1863 	simple_unlock(&pp->pr_slock);
   1864 }
   1865 
   1866 /*
   1867  * pool_cache_destroy:
   1868  *
   1869  *	Destroy a pool cache.
   1870  */
   1871 void
   1872 pool_cache_destroy(struct pool_cache *pc)
   1873 {
   1874 	struct pool *pp = pc->pc_pool;
   1875 
   1876 	/* First, invalidate the entire cache. */
   1877 	pool_cache_invalidate(pc);
   1878 
   1879 	/* ...and remove it from the pool's cache list. */
   1880 	simple_lock(&pp->pr_slock);
   1881 	LIST_REMOVE(pc, pc_poollist);
   1882 	simple_unlock(&pp->pr_slock);
   1883 }
   1884 
   1885 static __inline void *
   1886 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
   1887 {
   1888 	void *object;
   1889 	u_int idx;
   1890 
   1891 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1892 	KASSERT(pcg->pcg_avail != 0);
   1893 	idx = --pcg->pcg_avail;
   1894 
   1895 	KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
   1896 	object = pcg->pcg_objects[idx].pcgo_va;
   1897 	if (pap != NULL)
   1898 		*pap = pcg->pcg_objects[idx].pcgo_pa;
   1899 	pcg->pcg_objects[idx].pcgo_va = NULL;
   1900 
   1901 	return (object);
   1902 }
   1903 
   1904 static __inline void
   1905 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
   1906 {
   1907 	u_int idx;
   1908 
   1909 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   1910 	idx = pcg->pcg_avail++;
   1911 
   1912 	KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
   1913 	pcg->pcg_objects[idx].pcgo_va = object;
   1914 	pcg->pcg_objects[idx].pcgo_pa = pa;
   1915 }
   1916 
   1917 static void
   1918 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
   1919 {
   1920 	struct pool_cache_group *pcg;
   1921 	int s;
   1922 
   1923 	s = splvm();
   1924 	while ((pcg = LIST_FIRST(pcgl)) != NULL) {
   1925 		LIST_REMOVE(pcg, pcg_list);
   1926 		pool_put(&pcgpool, pcg);
   1927 	}
   1928 	splx(s);
   1929 }
   1930 
   1931 /*
   1932  * pool_cache_get{,_paddr}:
   1933  *
   1934  *	Get an object from a pool cache (optionally returning
   1935  *	the physical address of the object).
   1936  */
   1937 void *
   1938 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
   1939 {
   1940 	struct pool_cache_group *pcg;
   1941 	void *object;
   1942 
   1943 #ifdef LOCKDEBUG
   1944 	if (flags & PR_WAITOK)
   1945 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
   1946 #endif
   1947 
   1948 	simple_lock(&pc->pc_slock);
   1949 
   1950 	pcg = LIST_FIRST(&pc->pc_partgroups);
   1951 	if (pcg == NULL) {
   1952 		pcg = LIST_FIRST(&pc->pc_fullgroups);
   1953 		if (pcg != NULL) {
   1954 			LIST_REMOVE(pcg, pcg_list);
   1955 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   1956 		}
   1957 	}
   1958 	if (pcg == NULL) {
   1959 
   1960 		/*
   1961 		 * No groups with any available objects.  Allocate
   1962 		 * a new object, construct it, and return it to
   1963 		 * the caller.  We will allocate a group, if necessary,
   1964 		 * when the object is freed back to the cache.
   1965 		 */
   1966 		pc->pc_misses++;
   1967 		simple_unlock(&pc->pc_slock);
   1968 		object = pool_get(pc->pc_pool, flags);
   1969 		if (object != NULL && pc->pc_ctor != NULL) {
   1970 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   1971 				pool_put(pc->pc_pool, object);
   1972 				return (NULL);
   1973 			}
   1974 		}
   1975 		if (object != NULL && pap != NULL) {
   1976 #ifdef POOL_VTOPHYS
   1977 			*pap = POOL_VTOPHYS(object);
   1978 #else
   1979 			*pap = POOL_PADDR_INVALID;
   1980 #endif
   1981 		}
   1982 		return (object);
   1983 	}
   1984 
   1985 	pc->pc_hits++;
   1986 	pc->pc_nitems--;
   1987 	object = pcg_get(pcg, pap);
   1988 
   1989 	if (pcg->pcg_avail == 0) {
   1990 		LIST_REMOVE(pcg, pcg_list);
   1991 		LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
   1992 	}
   1993 	simple_unlock(&pc->pc_slock);
   1994 
   1995 	return (object);
   1996 }
   1997 
   1998 /*
   1999  * pool_cache_put{,_paddr}:
   2000  *
   2001  *	Put an object back to the pool cache (optionally caching the
   2002  *	physical address of the object).
   2003  */
   2004 void
   2005 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
   2006 {
   2007 	struct pool_cache_group *pcg;
   2008 	int s;
   2009 
   2010 	simple_lock(&pc->pc_slock);
   2011 
   2012 	pcg = LIST_FIRST(&pc->pc_partgroups);
   2013 	if (pcg == NULL) {
   2014 		pcg = LIST_FIRST(&pc->pc_emptygroups);
   2015 		if (pcg != NULL) {
   2016 			LIST_REMOVE(pcg, pcg_list);
   2017 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2018 		}
   2019 	}
   2020 	if (pcg == NULL) {
   2021 
   2022 		/*
   2023 		 * No empty groups to free the object to.  Attempt to
   2024 		 * allocate one.
   2025 		 */
   2026 		simple_unlock(&pc->pc_slock);
   2027 		s = splvm();
   2028 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   2029 		splx(s);
   2030 		if (pcg == NULL) {
   2031 
   2032 			/*
   2033 			 * Unable to allocate a cache group; destruct the object
   2034 			 * and free it back to the pool.
   2035 			 */
   2036 			pool_cache_destruct_object(pc, object);
   2037 			return;
   2038 		}
   2039 		memset(pcg, 0, sizeof(*pcg));
   2040 		simple_lock(&pc->pc_slock);
   2041 		pc->pc_ngroups++;
   2042 		LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2043 	}
   2044 
   2045 	pc->pc_nitems++;
   2046 	pcg_put(pcg, object, pa);
   2047 
   2048 	if (pcg->pcg_avail == PCG_NOBJECTS) {
   2049 		LIST_REMOVE(pcg, pcg_list);
   2050 		LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
   2051 	}
   2052 	simple_unlock(&pc->pc_slock);
   2053 }
   2054 
   2055 /*
   2056  * pool_cache_destruct_object:
   2057  *
   2058  *	Force destruction of an object and its release back into
   2059  *	the pool.
   2060  */
   2061 void
   2062 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   2063 {
   2064 
   2065 	if (pc->pc_dtor != NULL)
   2066 		(*pc->pc_dtor)(pc->pc_arg, object);
   2067 	pool_put(pc->pc_pool, object);
   2068 }
   2069 
   2070 static void
   2071 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
   2072     struct pool_cache_grouplist *pcgl)
   2073 {
   2074 	struct pool_cache_group *pcg, *npcg;
   2075 	void *object;
   2076 
   2077 	LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
   2078 	LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
   2079 
   2080 	for (pcg = LIST_FIRST(&pc->pc_fullgroups); pcg != NULL; pcg = npcg) {
   2081 
   2082 loop:
   2083 		npcg = LIST_NEXT(pcg, pcg_list);
   2084 		while (pcg->pcg_avail != 0) {
   2085 			pc->pc_nitems--;
   2086 			object = pcg_get(pcg, NULL);
   2087 			if (pc->pc_dtor != NULL)
   2088 				(*pc->pc_dtor)(pc->pc_arg, object);
   2089 			pool_do_put(pc->pc_pool, object, pq);
   2090 		}
   2091 		pc->pc_ngroups--;
   2092 		LIST_REMOVE(pcg, pcg_list);
   2093 		LIST_INSERT_HEAD(pcgl, pcg, pcg_list);
   2094 	}
   2095 	pcg = LIST_FIRST(&pc->pc_partgroups);
   2096 	if (pcg != NULL) {
   2097 		goto loop;
   2098 	}
   2099 
   2100 	KASSERT(LIST_EMPTY(&pc->pc_partgroups));
   2101 	KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
   2102 	KASSERT(pc->pc_nitems == 0);
   2103 }
   2104 
   2105 /*
   2106  * pool_cache_invalidate:
   2107  *
   2108  *	Invalidate a pool cache (destruct and release all of the
   2109  *	cached objects).
   2110  */
   2111 void
   2112 pool_cache_invalidate(struct pool_cache *pc)
   2113 {
   2114 	struct pool_pagelist pq;
   2115 	struct pool_cache_grouplist pcgl;
   2116 
   2117 	LIST_INIT(&pq);
   2118 	LIST_INIT(&pcgl);
   2119 
   2120 	simple_lock(&pc->pc_slock);
   2121 	simple_lock(&pc->pc_pool->pr_slock);
   2122 
   2123 	pool_do_cache_invalidate(pc, &pq, &pcgl);
   2124 
   2125 	simple_unlock(&pc->pc_pool->pr_slock);
   2126 	simple_unlock(&pc->pc_slock);
   2127 
   2128 	pr_pagelist_free(pc->pc_pool, &pq);
   2129 	pcg_grouplist_free(&pcgl);
   2130 }
   2131 
   2132 /*
   2133  * pool_cache_reclaim:
   2134  *
   2135  *	Reclaim a pool cache for pool_reclaim().
   2136  */
   2137 static void
   2138 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
   2139     struct pool_cache_grouplist *pcgl)
   2140 {
   2141 
   2142 	/*
   2143 	 * We're locking in the wrong order (normally pool_cache -> pool,
   2144 	 * but the pool is already locked when we get here), so we have
   2145 	 * to use trylock.  If we can't lock the pool_cache, it's not really
   2146 	 * a big deal here.
   2147 	 */
   2148 	if (simple_lock_try(&pc->pc_slock) == 0)
   2149 		return;
   2150 
   2151 	pool_do_cache_invalidate(pc, pq, pcgl);
   2152 
   2153 	simple_unlock(&pc->pc_slock);
   2154 }
   2155 
   2156 /*
   2157  * Pool backend allocators.
   2158  *
   2159  * Each pool has a backend allocator that handles allocation, deallocation,
   2160  * and any additional draining that might be needed.
   2161  *
   2162  * We provide two standard allocators:
   2163  *
   2164  *	pool_allocator_kmem - the default when no allocator is specified
   2165  *
   2166  *	pool_allocator_nointr - used for pools that will not be accessed
   2167  *	in interrupt context.
   2168  */
   2169 void	*pool_page_alloc(struct pool *, int);
   2170 void	pool_page_free(struct pool *, void *);
   2171 
   2172 struct pool_allocator pool_allocator_kmem = {
   2173 	pool_page_alloc, pool_page_free, 0,
   2174 };
   2175 
   2176 void	*pool_page_alloc_nointr(struct pool *, int);
   2177 void	pool_page_free_nointr(struct pool *, void *);
   2178 
   2179 struct pool_allocator pool_allocator_nointr = {
   2180 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2181 };
   2182 
   2183 #ifdef POOL_SUBPAGE
   2184 void	*pool_subpage_alloc(struct pool *, int);
   2185 void	pool_subpage_free(struct pool *, void *);
   2186 
   2187 struct pool_allocator pool_allocator_kmem_subpage = {
   2188 	pool_subpage_alloc, pool_subpage_free, 0,
   2189 };
   2190 #endif /* POOL_SUBPAGE */
   2191 
   2192 /*
   2193  * We have at least three different resources for the same allocation and
   2194  * each resource can be depleted.  First, we have the ready elements in the
   2195  * pool.  Then we have the resource (typically a vm_map) for this allocator.
   2196  * Finally, we have physical memory.  Waiting for any of these can be
   2197  * unnecessary when any other is freed, but the kernel doesn't support
   2198  * sleeping on multiple wait channels, so we have to employ another strategy.
   2199  *
   2200  * The caller sleeps on the pool (so that it can be awakened when an item
   2201  * is returned to the pool), but we set PA_WANT on the allocator.  When a
   2202  * page is returned to the allocator and PA_WANT is set, pool_allocator_free
   2203  * will wake up all sleeping pools belonging to this allocator.
   2204  *
   2205  * XXX Thundering herd.
   2206  */
   2207 void *
   2208 pool_allocator_alloc(struct pool *org, int flags)
   2209 {
   2210 	struct pool_allocator *pa = org->pr_alloc;
   2211 	struct pool *pp, *start;
   2212 	int s, freed;
   2213 	void *res;
   2214 
   2215 	LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
   2216 
   2217 	do {
   2218 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   2219 			return (res);
   2220 		if ((flags & PR_WAITOK) == 0) {
   2221 			/*
   2222 			 * We only run the drain hookhere if PR_NOWAIT.
   2223 			 * In other cases, the hook will be run in
   2224 			 * pool_reclaim().
   2225 			 */
   2226 			if (org->pr_drain_hook != NULL) {
   2227 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
   2228 				    flags);
   2229 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   2230 					return (res);
   2231 			}
   2232 			break;
   2233 		}
   2234 
   2235 		/*
   2236 		 * Drain all pools, except "org", that use this
   2237 		 * allocator.  We do this to reclaim VA space.
   2238 		 * pa_alloc is responsible for waiting for
   2239 		 * physical memory.
   2240 		 *
   2241 		 * XXX We risk looping forever if start if someone
   2242 		 * calls pool_destroy on "start".  But there is no
   2243 		 * other way to have potentially sleeping pool_reclaim,
   2244 		 * non-sleeping locks on pool_allocator, and some
   2245 		 * stirring of drained pools in the allocator.
   2246 		 *
   2247 		 * XXX Maybe we should use pool_head_slock for locking
   2248 		 * the allocators?
   2249 		 */
   2250 		freed = 0;
   2251 
   2252 		s = splvm();
   2253 		simple_lock(&pa->pa_slock);
   2254 		pp = start = TAILQ_FIRST(&pa->pa_list);
   2255 		do {
   2256 			TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
   2257 			TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
   2258 			if (pp == org)
   2259 				continue;
   2260 			simple_unlock(&pa->pa_slock);
   2261 			freed = pool_reclaim(pp);
   2262 			simple_lock(&pa->pa_slock);
   2263 		} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
   2264 			 freed == 0);
   2265 
   2266 		if (freed == 0) {
   2267 			/*
   2268 			 * We set PA_WANT here, the caller will most likely
   2269 			 * sleep waiting for pages (if not, this won't hurt
   2270 			 * that much), and there is no way to set this in
   2271 			 * the caller without violating locking order.
   2272 			 */
   2273 			pa->pa_flags |= PA_WANT;
   2274 		}
   2275 		simple_unlock(&pa->pa_slock);
   2276 		splx(s);
   2277 	} while (freed);
   2278 	return (NULL);
   2279 }
   2280 
   2281 void
   2282 pool_allocator_free(struct pool *pp, void *v)
   2283 {
   2284 	struct pool_allocator *pa = pp->pr_alloc;
   2285 	int s;
   2286 
   2287 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
   2288 
   2289 	(*pa->pa_free)(pp, v);
   2290 
   2291 	s = splvm();
   2292 	simple_lock(&pa->pa_slock);
   2293 	if ((pa->pa_flags & PA_WANT) == 0) {
   2294 		simple_unlock(&pa->pa_slock);
   2295 		splx(s);
   2296 		return;
   2297 	}
   2298 
   2299 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
   2300 		simple_lock(&pp->pr_slock);
   2301 		if ((pp->pr_flags & PR_WANTED) != 0) {
   2302 			pp->pr_flags &= ~PR_WANTED;
   2303 			wakeup(pp);
   2304 		}
   2305 		simple_unlock(&pp->pr_slock);
   2306 	}
   2307 	pa->pa_flags &= ~PA_WANT;
   2308 	simple_unlock(&pa->pa_slock);
   2309 	splx(s);
   2310 }
   2311 
   2312 void *
   2313 pool_page_alloc(struct pool *pp, int flags)
   2314 {
   2315 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2316 
   2317 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2318 }
   2319 
   2320 void
   2321 pool_page_free(struct pool *pp, void *v)
   2322 {
   2323 
   2324 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2325 }
   2326 
   2327 static void *
   2328 pool_page_alloc_meta(struct pool *pp, int flags)
   2329 {
   2330 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2331 
   2332 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2333 }
   2334 
   2335 static void
   2336 pool_page_free_meta(struct pool *pp, void *v)
   2337 {
   2338 
   2339 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2340 }
   2341 
   2342 #ifdef POOL_SUBPAGE
   2343 /* Sub-page allocator, for machines with large hardware pages. */
   2344 void *
   2345 pool_subpage_alloc(struct pool *pp, int flags)
   2346 {
   2347 	void *v;
   2348 	int s;
   2349 	s = splvm();
   2350 	v = pool_get(&psppool, flags);
   2351 	splx(s);
   2352 	return v;
   2353 }
   2354 
   2355 void
   2356 pool_subpage_free(struct pool *pp, void *v)
   2357 {
   2358 	int s;
   2359 	s = splvm();
   2360 	pool_put(&psppool, v);
   2361 	splx(s);
   2362 }
   2363 
   2364 /* We don't provide a real nointr allocator.  Maybe later. */
   2365 void *
   2366 pool_page_alloc_nointr(struct pool *pp, int flags)
   2367 {
   2368 
   2369 	return (pool_subpage_alloc(pp, flags));
   2370 }
   2371 
   2372 void
   2373 pool_page_free_nointr(struct pool *pp, void *v)
   2374 {
   2375 
   2376 	pool_subpage_free(pp, v);
   2377 }
   2378 #else
   2379 void *
   2380 pool_page_alloc_nointr(struct pool *pp, int flags)
   2381 {
   2382 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2383 
   2384 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2385 }
   2386 
   2387 void
   2388 pool_page_free_nointr(struct pool *pp, void *v)
   2389 {
   2390 
   2391 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2392 }
   2393 #endif /* POOL_SUBPAGE */
   2394