subr_pool.c revision 1.111.4.1 1 /* $NetBSD: subr_pool.c,v 1.111.4.1 2006/02/04 14:30:17 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.111.4.1 2006/02/04 14:30:17 simonb Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 #define PHPOOL_MAX 8
77 static struct pool phpool[PHPOOL_MAX];
78 #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
79
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84
85 static void *pool_page_alloc_meta(struct pool *, int);
86 static void pool_page_free_meta(struct pool *, void *);
87
88 /* allocator for pool metadata */
89 static struct pool_allocator pool_allocator_meta = {
90 pool_page_alloc_meta, pool_page_free_meta
91 };
92
93 /* # of seconds to retain page after last use */
94 int pool_inactive_time = 10;
95
96 /* Next candidate for drainage (see pool_drain()) */
97 static struct pool *drainpp;
98
99 /* This spin lock protects both pool_head and drainpp. */
100 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
101
102 typedef uint8_t pool_item_freelist_t;
103
104 struct pool_item_header {
105 /* Page headers */
106 LIST_ENTRY(pool_item_header)
107 ph_pagelist; /* pool page list */
108 SPLAY_ENTRY(pool_item_header)
109 ph_node; /* Off-page page headers */
110 caddr_t ph_page; /* this page's address */
111 struct timeval ph_time; /* last referenced */
112 union {
113 /* !PR_NOTOUCH */
114 struct {
115 LIST_HEAD(, pool_item)
116 phu_itemlist; /* chunk list for this page */
117 } phu_normal;
118 /* PR_NOTOUCH */
119 struct {
120 uint16_t
121 phu_off; /* start offset in page */
122 pool_item_freelist_t
123 phu_firstfree; /* first free item */
124 /*
125 * XXX it might be better to use
126 * a simple bitmap and ffs(3)
127 */
128 } phu_notouch;
129 } ph_u;
130 uint16_t ph_nmissing; /* # of chunks in use */
131 };
132 #define ph_itemlist ph_u.phu_normal.phu_itemlist
133 #define ph_off ph_u.phu_notouch.phu_off
134 #define ph_firstfree ph_u.phu_notouch.phu_firstfree
135
136 struct pool_item {
137 #ifdef DIAGNOSTIC
138 u_int pi_magic;
139 #endif
140 #define PI_MAGIC 0xdeadbeefU
141 /* Other entries use only this list entry */
142 LIST_ENTRY(pool_item) pi_list;
143 };
144
145 #define POOL_NEEDS_CATCHUP(pp) \
146 ((pp)->pr_nitems < (pp)->pr_minitems)
147
148 /*
149 * Pool cache management.
150 *
151 * Pool caches provide a way for constructed objects to be cached by the
152 * pool subsystem. This can lead to performance improvements by avoiding
153 * needless object construction/destruction; it is deferred until absolutely
154 * necessary.
155 *
156 * Caches are grouped into cache groups. Each cache group references
157 * up to 16 constructed objects. When a cache allocates an object
158 * from the pool, it calls the object's constructor and places it into
159 * a cache group. When a cache group frees an object back to the pool,
160 * it first calls the object's destructor. This allows the object to
161 * persist in constructed form while freed to the cache.
162 *
163 * Multiple caches may exist for each pool. This allows a single
164 * object type to have multiple constructed forms. The pool references
165 * each cache, so that when a pool is drained by the pagedaemon, it can
166 * drain each individual cache as well. Each time a cache is drained,
167 * the most idle cache group is freed to the pool in its entirety.
168 *
169 * Pool caches are layed on top of pools. By layering them, we can avoid
170 * the complexity of cache management for pools which would not benefit
171 * from it.
172 */
173
174 /* The cache group pool. */
175 static struct pool pcgpool;
176
177 static void pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
178 struct pool_cache_grouplist *);
179 static void pcg_grouplist_free(struct pool_cache_grouplist *);
180
181 static int pool_catchup(struct pool *);
182 static void pool_prime_page(struct pool *, caddr_t,
183 struct pool_item_header *);
184 static void pool_update_curpage(struct pool *);
185
186 void *pool_allocator_alloc(struct pool *, int);
187 void pool_allocator_free(struct pool *, void *);
188
189 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
190 void (*)(const char *, ...));
191 static void pool_print1(struct pool *, const char *,
192 void (*)(const char *, ...));
193
194 static int pool_chk_page(struct pool *, const char *,
195 struct pool_item_header *);
196
197 /*
198 * Pool log entry. An array of these is allocated in pool_init().
199 */
200 struct pool_log {
201 const char *pl_file;
202 long pl_line;
203 int pl_action;
204 #define PRLOG_GET 1
205 #define PRLOG_PUT 2
206 void *pl_addr;
207 };
208
209 #ifdef POOL_DIAGNOSTIC
210 /* Number of entries in pool log buffers */
211 #ifndef POOL_LOGSIZE
212 #define POOL_LOGSIZE 10
213 #endif
214
215 int pool_logsize = POOL_LOGSIZE;
216
217 static inline void
218 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
219 {
220 int n = pp->pr_curlogentry;
221 struct pool_log *pl;
222
223 if ((pp->pr_roflags & PR_LOGGING) == 0)
224 return;
225
226 /*
227 * Fill in the current entry. Wrap around and overwrite
228 * the oldest entry if necessary.
229 */
230 pl = &pp->pr_log[n];
231 pl->pl_file = file;
232 pl->pl_line = line;
233 pl->pl_action = action;
234 pl->pl_addr = v;
235 if (++n >= pp->pr_logsize)
236 n = 0;
237 pp->pr_curlogentry = n;
238 }
239
240 static void
241 pr_printlog(struct pool *pp, struct pool_item *pi,
242 void (*pr)(const char *, ...))
243 {
244 int i = pp->pr_logsize;
245 int n = pp->pr_curlogentry;
246
247 if ((pp->pr_roflags & PR_LOGGING) == 0)
248 return;
249
250 /*
251 * Print all entries in this pool's log.
252 */
253 while (i-- > 0) {
254 struct pool_log *pl = &pp->pr_log[n];
255 if (pl->pl_action != 0) {
256 if (pi == NULL || pi == pl->pl_addr) {
257 (*pr)("\tlog entry %d:\n", i);
258 (*pr)("\t\taction = %s, addr = %p\n",
259 pl->pl_action == PRLOG_GET ? "get" : "put",
260 pl->pl_addr);
261 (*pr)("\t\tfile: %s at line %lu\n",
262 pl->pl_file, pl->pl_line);
263 }
264 }
265 if (++n >= pp->pr_logsize)
266 n = 0;
267 }
268 }
269
270 static inline void
271 pr_enter(struct pool *pp, const char *file, long line)
272 {
273
274 if (__predict_false(pp->pr_entered_file != NULL)) {
275 printf("pool %s: reentrancy at file %s line %ld\n",
276 pp->pr_wchan, file, line);
277 printf(" previous entry at file %s line %ld\n",
278 pp->pr_entered_file, pp->pr_entered_line);
279 panic("pr_enter");
280 }
281
282 pp->pr_entered_file = file;
283 pp->pr_entered_line = line;
284 }
285
286 static inline void
287 pr_leave(struct pool *pp)
288 {
289
290 if (__predict_false(pp->pr_entered_file == NULL)) {
291 printf("pool %s not entered?\n", pp->pr_wchan);
292 panic("pr_leave");
293 }
294
295 pp->pr_entered_file = NULL;
296 pp->pr_entered_line = 0;
297 }
298
299 static inline void
300 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
301 {
302
303 if (pp->pr_entered_file != NULL)
304 (*pr)("\n\tcurrently entered from file %s line %ld\n",
305 pp->pr_entered_file, pp->pr_entered_line);
306 }
307 #else
308 #define pr_log(pp, v, action, file, line)
309 #define pr_printlog(pp, pi, pr)
310 #define pr_enter(pp, file, line)
311 #define pr_leave(pp)
312 #define pr_enter_check(pp, pr)
313 #endif /* POOL_DIAGNOSTIC */
314
315 static inline int
316 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
317 const void *v)
318 {
319 const char *cp = v;
320 int idx;
321
322 KASSERT(pp->pr_roflags & PR_NOTOUCH);
323 idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
324 KASSERT(idx < pp->pr_itemsperpage);
325 return idx;
326 }
327
328 #define PR_FREELIST_ALIGN(p) \
329 roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
330 #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
331 #define PR_INDEX_USED ((pool_item_freelist_t)-1)
332 #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
333
334 static inline void
335 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
336 void *obj)
337 {
338 int idx = pr_item_notouch_index(pp, ph, obj);
339 pool_item_freelist_t *freelist = PR_FREELIST(ph);
340
341 KASSERT(freelist[idx] == PR_INDEX_USED);
342 freelist[idx] = ph->ph_firstfree;
343 ph->ph_firstfree = idx;
344 }
345
346 static inline void *
347 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
348 {
349 int idx = ph->ph_firstfree;
350 pool_item_freelist_t *freelist = PR_FREELIST(ph);
351
352 KASSERT(freelist[idx] != PR_INDEX_USED);
353 ph->ph_firstfree = freelist[idx];
354 freelist[idx] = PR_INDEX_USED;
355
356 return ph->ph_page + ph->ph_off + idx * pp->pr_size;
357 }
358
359 static inline int
360 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
361 {
362 if (a->ph_page < b->ph_page)
363 return (-1);
364 else if (a->ph_page > b->ph_page)
365 return (1);
366 else
367 return (0);
368 }
369
370 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
371 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
372
373 /*
374 * Return the pool page header based on page address.
375 */
376 static inline struct pool_item_header *
377 pr_find_pagehead(struct pool *pp, caddr_t page)
378 {
379 struct pool_item_header *ph, tmp;
380
381 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
382 return ((struct pool_item_header *)(page + pp->pr_phoffset));
383
384 tmp.ph_page = page;
385 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
386 return ph;
387 }
388
389 static void
390 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
391 {
392 struct pool_item_header *ph;
393 int s;
394
395 while ((ph = LIST_FIRST(pq)) != NULL) {
396 LIST_REMOVE(ph, ph_pagelist);
397 pool_allocator_free(pp, ph->ph_page);
398 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
399 s = splvm();
400 pool_put(pp->pr_phpool, ph);
401 splx(s);
402 }
403 }
404 }
405
406 /*
407 * Remove a page from the pool.
408 */
409 static inline void
410 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
411 struct pool_pagelist *pq)
412 {
413
414 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
415
416 /*
417 * If the page was idle, decrement the idle page count.
418 */
419 if (ph->ph_nmissing == 0) {
420 #ifdef DIAGNOSTIC
421 if (pp->pr_nidle == 0)
422 panic("pr_rmpage: nidle inconsistent");
423 if (pp->pr_nitems < pp->pr_itemsperpage)
424 panic("pr_rmpage: nitems inconsistent");
425 #endif
426 pp->pr_nidle--;
427 }
428
429 pp->pr_nitems -= pp->pr_itemsperpage;
430
431 /*
432 * Unlink the page from the pool and queue it for release.
433 */
434 LIST_REMOVE(ph, ph_pagelist);
435 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
436 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
437 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
438
439 pp->pr_npages--;
440 pp->pr_npagefree++;
441
442 pool_update_curpage(pp);
443 }
444
445 /*
446 * Initialize all the pools listed in the "pools" link set.
447 */
448 void
449 link_pool_init(void)
450 {
451 __link_set_decl(pools, struct link_pool_init);
452 struct link_pool_init * const *pi;
453
454 __link_set_foreach(pi, pools)
455 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
456 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
457 (*pi)->palloc);
458 }
459
460 /*
461 * Initialize the given pool resource structure.
462 *
463 * We export this routine to allow other kernel parts to declare
464 * static pools that must be initialized before malloc() is available.
465 */
466 void
467 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
468 const char *wchan, struct pool_allocator *palloc)
469 {
470 int off, slack;
471 size_t trysize, phsize;
472 int s;
473
474 KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
475 PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
476
477 #ifdef POOL_DIAGNOSTIC
478 /*
479 * Always log if POOL_DIAGNOSTIC is defined.
480 */
481 if (pool_logsize != 0)
482 flags |= PR_LOGGING;
483 #endif
484
485 #ifdef POOL_SUBPAGE
486 /*
487 * XXX We don't provide a real `nointr' back-end
488 * yet; all sub-pages come from a kmem back-end.
489 * maybe some day...
490 */
491 if (palloc == NULL) {
492 extern struct pool_allocator pool_allocator_kmem_subpage;
493 palloc = &pool_allocator_kmem_subpage;
494 }
495 /*
496 * We'll assume any user-specified back-end allocator
497 * will deal with sub-pages, or simply don't care.
498 */
499 #else
500 if (palloc == NULL)
501 palloc = &pool_allocator_kmem;
502 #endif /* POOL_SUBPAGE */
503 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
504 if (palloc->pa_pagesz == 0) {
505 #ifdef POOL_SUBPAGE
506 if (palloc == &pool_allocator_kmem)
507 palloc->pa_pagesz = PAGE_SIZE;
508 else
509 palloc->pa_pagesz = POOL_SUBPAGE;
510 #else
511 palloc->pa_pagesz = PAGE_SIZE;
512 #endif /* POOL_SUBPAGE */
513 }
514
515 TAILQ_INIT(&palloc->pa_list);
516
517 simple_lock_init(&palloc->pa_slock);
518 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
519 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
520 palloc->pa_flags |= PA_INITIALIZED;
521 }
522
523 if (align == 0)
524 align = ALIGN(1);
525
526 if (size < sizeof(struct pool_item))
527 size = sizeof(struct pool_item);
528
529 size = roundup(size, align);
530 #ifdef DIAGNOSTIC
531 if (size > palloc->pa_pagesz)
532 panic("pool_init: pool item size (%lu) too large",
533 (u_long)size);
534 #endif
535
536 /*
537 * Initialize the pool structure.
538 */
539 LIST_INIT(&pp->pr_emptypages);
540 LIST_INIT(&pp->pr_fullpages);
541 LIST_INIT(&pp->pr_partpages);
542 LIST_INIT(&pp->pr_cachelist);
543 pp->pr_curpage = NULL;
544 pp->pr_npages = 0;
545 pp->pr_minitems = 0;
546 pp->pr_minpages = 0;
547 pp->pr_maxpages = UINT_MAX;
548 pp->pr_roflags = flags;
549 pp->pr_flags = 0;
550 pp->pr_size = size;
551 pp->pr_align = align;
552 pp->pr_wchan = wchan;
553 pp->pr_alloc = palloc;
554 pp->pr_nitems = 0;
555 pp->pr_nout = 0;
556 pp->pr_hardlimit = UINT_MAX;
557 pp->pr_hardlimit_warning = NULL;
558 pp->pr_hardlimit_ratecap.tv_sec = 0;
559 pp->pr_hardlimit_ratecap.tv_usec = 0;
560 pp->pr_hardlimit_warning_last.tv_sec = 0;
561 pp->pr_hardlimit_warning_last.tv_usec = 0;
562 pp->pr_drain_hook = NULL;
563 pp->pr_drain_hook_arg = NULL;
564
565 /*
566 * Decide whether to put the page header off page to avoid
567 * wasting too large a part of the page or too big item.
568 * Off-page page headers go on a hash table, so we can match
569 * a returned item with its header based on the page address.
570 * We use 1/16 of the page size and about 8 times of the item
571 * size as the threshold (XXX: tune)
572 *
573 * However, we'll put the header into the page if we can put
574 * it without wasting any items.
575 *
576 * Silently enforce `0 <= ioff < align'.
577 */
578 pp->pr_itemoffset = ioff %= align;
579 /* See the comment below about reserved bytes. */
580 trysize = palloc->pa_pagesz - ((align - ioff) % align);
581 phsize = ALIGN(sizeof(struct pool_item_header));
582 if ((pp->pr_roflags & PR_NOTOUCH) == 0 &&
583 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
584 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
585 /* Use the end of the page for the page header */
586 pp->pr_roflags |= PR_PHINPAGE;
587 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
588 } else {
589 /* The page header will be taken from our page header pool */
590 pp->pr_phoffset = 0;
591 off = palloc->pa_pagesz;
592 SPLAY_INIT(&pp->pr_phtree);
593 }
594
595 /*
596 * Alignment is to take place at `ioff' within the item. This means
597 * we must reserve up to `align - 1' bytes on the page to allow
598 * appropriate positioning of each item.
599 */
600 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
601 KASSERT(pp->pr_itemsperpage != 0);
602 if ((pp->pr_roflags & PR_NOTOUCH)) {
603 int idx;
604
605 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
606 idx++) {
607 /* nothing */
608 }
609 if (idx >= PHPOOL_MAX) {
610 /*
611 * if you see this panic, consider to tweak
612 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
613 */
614 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
615 pp->pr_wchan, pp->pr_itemsperpage);
616 }
617 pp->pr_phpool = &phpool[idx];
618 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
619 pp->pr_phpool = &phpool[0];
620 }
621 #if defined(DIAGNOSTIC)
622 else {
623 pp->pr_phpool = NULL;
624 }
625 #endif
626
627 /*
628 * Use the slack between the chunks and the page header
629 * for "cache coloring".
630 */
631 slack = off - pp->pr_itemsperpage * pp->pr_size;
632 pp->pr_maxcolor = (slack / align) * align;
633 pp->pr_curcolor = 0;
634
635 pp->pr_nget = 0;
636 pp->pr_nfail = 0;
637 pp->pr_nput = 0;
638 pp->pr_npagealloc = 0;
639 pp->pr_npagefree = 0;
640 pp->pr_hiwat = 0;
641 pp->pr_nidle = 0;
642
643 #ifdef POOL_DIAGNOSTIC
644 if (flags & PR_LOGGING) {
645 if (kmem_map == NULL ||
646 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
647 M_TEMP, M_NOWAIT)) == NULL)
648 pp->pr_roflags &= ~PR_LOGGING;
649 pp->pr_curlogentry = 0;
650 pp->pr_logsize = pool_logsize;
651 }
652 #endif
653
654 pp->pr_entered_file = NULL;
655 pp->pr_entered_line = 0;
656
657 simple_lock_init(&pp->pr_slock);
658
659 /*
660 * Initialize private page header pool and cache magazine pool if we
661 * haven't done so yet.
662 * XXX LOCKING.
663 */
664 if (phpool[0].pr_size == 0) {
665 int idx;
666 for (idx = 0; idx < PHPOOL_MAX; idx++) {
667 static char phpool_names[PHPOOL_MAX][6+1+6+1];
668 int nelem;
669 size_t sz;
670
671 nelem = PHPOOL_FREELIST_NELEM(idx);
672 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
673 "phpool-%d", nelem);
674 sz = sizeof(struct pool_item_header);
675 if (nelem) {
676 sz = PR_FREELIST_ALIGN(sz)
677 + nelem * sizeof(pool_item_freelist_t);
678 }
679 pool_init(&phpool[idx], sz, 0, 0, 0,
680 phpool_names[idx], &pool_allocator_meta);
681 }
682 #ifdef POOL_SUBPAGE
683 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
684 PR_RECURSIVE, "psppool", &pool_allocator_meta);
685 #endif
686 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
687 0, "pcgpool", &pool_allocator_meta);
688 }
689
690 /* Insert into the list of all pools. */
691 simple_lock(&pool_head_slock);
692 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
693 simple_unlock(&pool_head_slock);
694
695 /* Insert this into the list of pools using this allocator. */
696 s = splvm();
697 simple_lock(&palloc->pa_slock);
698 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
699 simple_unlock(&palloc->pa_slock);
700 splx(s);
701 }
702
703 /*
704 * De-commision a pool resource.
705 */
706 void
707 pool_destroy(struct pool *pp)
708 {
709 struct pool_pagelist pq;
710 struct pool_item_header *ph;
711 int s;
712
713 /* Remove from global pool list */
714 simple_lock(&pool_head_slock);
715 LIST_REMOVE(pp, pr_poollist);
716 if (drainpp == pp)
717 drainpp = NULL;
718 simple_unlock(&pool_head_slock);
719
720 /* Remove this pool from its allocator's list of pools. */
721 s = splvm();
722 simple_lock(&pp->pr_alloc->pa_slock);
723 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
724 simple_unlock(&pp->pr_alloc->pa_slock);
725 splx(s);
726
727 s = splvm();
728 simple_lock(&pp->pr_slock);
729
730 KASSERT(LIST_EMPTY(&pp->pr_cachelist));
731
732 #ifdef DIAGNOSTIC
733 if (pp->pr_nout != 0) {
734 pr_printlog(pp, NULL, printf);
735 panic("pool_destroy: pool busy: still out: %u",
736 pp->pr_nout);
737 }
738 #endif
739
740 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
741 KASSERT(LIST_EMPTY(&pp->pr_partpages));
742
743 /* Remove all pages */
744 LIST_INIT(&pq);
745 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
746 pr_rmpage(pp, ph, &pq);
747
748 simple_unlock(&pp->pr_slock);
749 splx(s);
750
751 pr_pagelist_free(pp, &pq);
752
753 #ifdef POOL_DIAGNOSTIC
754 if ((pp->pr_roflags & PR_LOGGING) != 0)
755 free(pp->pr_log, M_TEMP);
756 #endif
757 }
758
759 void
760 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
761 {
762
763 /* XXX no locking -- must be used just after pool_init() */
764 #ifdef DIAGNOSTIC
765 if (pp->pr_drain_hook != NULL)
766 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
767 #endif
768 pp->pr_drain_hook = fn;
769 pp->pr_drain_hook_arg = arg;
770 }
771
772 static struct pool_item_header *
773 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
774 {
775 struct pool_item_header *ph;
776 int s;
777
778 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
779
780 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
781 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
782 else {
783 s = splvm();
784 ph = pool_get(pp->pr_phpool, flags);
785 splx(s);
786 }
787
788 return (ph);
789 }
790
791 /*
792 * Grab an item from the pool; must be called at appropriate spl level
793 */
794 void *
795 #ifdef POOL_DIAGNOSTIC
796 _pool_get(struct pool *pp, int flags, const char *file, long line)
797 #else
798 pool_get(struct pool *pp, int flags)
799 #endif
800 {
801 struct pool_item *pi;
802 struct pool_item_header *ph;
803 void *v;
804
805 #ifdef DIAGNOSTIC
806 if (__predict_false(pp->pr_itemsperpage == 0))
807 panic("pool_get: pool %p: pr_itemsperpage is zero, "
808 "pool not initialized?", pp);
809 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
810 (flags & PR_WAITOK) != 0))
811 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
812
813 #endif /* DIAGNOSTIC */
814 #ifdef LOCKDEBUG
815 if (flags & PR_WAITOK)
816 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
817 SCHED_ASSERT_UNLOCKED();
818 #endif
819
820 simple_lock(&pp->pr_slock);
821 pr_enter(pp, file, line);
822
823 startover:
824 /*
825 * Check to see if we've reached the hard limit. If we have,
826 * and we can wait, then wait until an item has been returned to
827 * the pool.
828 */
829 #ifdef DIAGNOSTIC
830 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
831 pr_leave(pp);
832 simple_unlock(&pp->pr_slock);
833 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
834 }
835 #endif
836 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
837 if (pp->pr_drain_hook != NULL) {
838 /*
839 * Since the drain hook is going to free things
840 * back to the pool, unlock, call the hook, re-lock,
841 * and check the hardlimit condition again.
842 */
843 pr_leave(pp);
844 simple_unlock(&pp->pr_slock);
845 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
846 simple_lock(&pp->pr_slock);
847 pr_enter(pp, file, line);
848 if (pp->pr_nout < pp->pr_hardlimit)
849 goto startover;
850 }
851
852 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
853 /*
854 * XXX: A warning isn't logged in this case. Should
855 * it be?
856 */
857 pp->pr_flags |= PR_WANTED;
858 pr_leave(pp);
859 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
860 pr_enter(pp, file, line);
861 goto startover;
862 }
863
864 /*
865 * Log a message that the hard limit has been hit.
866 */
867 if (pp->pr_hardlimit_warning != NULL &&
868 ratecheck(&pp->pr_hardlimit_warning_last,
869 &pp->pr_hardlimit_ratecap))
870 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
871
872 pp->pr_nfail++;
873
874 pr_leave(pp);
875 simple_unlock(&pp->pr_slock);
876 return (NULL);
877 }
878
879 /*
880 * The convention we use is that if `curpage' is not NULL, then
881 * it points at a non-empty bucket. In particular, `curpage'
882 * never points at a page header which has PR_PHINPAGE set and
883 * has no items in its bucket.
884 */
885 if ((ph = pp->pr_curpage) == NULL) {
886 #ifdef DIAGNOSTIC
887 if (pp->pr_nitems != 0) {
888 simple_unlock(&pp->pr_slock);
889 printf("pool_get: %s: curpage NULL, nitems %u\n",
890 pp->pr_wchan, pp->pr_nitems);
891 panic("pool_get: nitems inconsistent");
892 }
893 #endif
894
895 /*
896 * Call the back-end page allocator for more memory.
897 * Release the pool lock, as the back-end page allocator
898 * may block.
899 */
900 pr_leave(pp);
901 simple_unlock(&pp->pr_slock);
902 v = pool_allocator_alloc(pp, flags);
903 if (__predict_true(v != NULL))
904 ph = pool_alloc_item_header(pp, v, flags);
905
906 if (__predict_false(v == NULL || ph == NULL)) {
907 if (v != NULL)
908 pool_allocator_free(pp, v);
909
910 simple_lock(&pp->pr_slock);
911 pr_enter(pp, file, line);
912
913 /*
914 * We were unable to allocate a page or item
915 * header, but we released the lock during
916 * allocation, so perhaps items were freed
917 * back to the pool. Check for this case.
918 */
919 if (pp->pr_curpage != NULL)
920 goto startover;
921
922 if ((flags & PR_WAITOK) == 0) {
923 pp->pr_nfail++;
924 pr_leave(pp);
925 simple_unlock(&pp->pr_slock);
926 return (NULL);
927 }
928
929 /*
930 * Wait for items to be returned to this pool.
931 *
932 * wake up once a second and try again,
933 * as the check in pool_cache_put_paddr() is racy.
934 */
935 pp->pr_flags |= PR_WANTED;
936 /* PA_WANTED is already set on the allocator. */
937 pr_leave(pp);
938 ltsleep(pp, PSWP, pp->pr_wchan, hz, &pp->pr_slock);
939 pr_enter(pp, file, line);
940 goto startover;
941 }
942
943 /* We have more memory; add it to the pool */
944 simple_lock(&pp->pr_slock);
945 pr_enter(pp, file, line);
946 pool_prime_page(pp, v, ph);
947 pp->pr_npagealloc++;
948
949 /* Start the allocation process over. */
950 goto startover;
951 }
952 if (pp->pr_roflags & PR_NOTOUCH) {
953 #ifdef DIAGNOSTIC
954 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
955 pr_leave(pp);
956 simple_unlock(&pp->pr_slock);
957 panic("pool_get: %s: page empty", pp->pr_wchan);
958 }
959 #endif
960 v = pr_item_notouch_get(pp, ph);
961 #ifdef POOL_DIAGNOSTIC
962 pr_log(pp, v, PRLOG_GET, file, line);
963 #endif
964 } else {
965 v = pi = LIST_FIRST(&ph->ph_itemlist);
966 if (__predict_false(v == NULL)) {
967 pr_leave(pp);
968 simple_unlock(&pp->pr_slock);
969 panic("pool_get: %s: page empty", pp->pr_wchan);
970 }
971 #ifdef DIAGNOSTIC
972 if (__predict_false(pp->pr_nitems == 0)) {
973 pr_leave(pp);
974 simple_unlock(&pp->pr_slock);
975 printf("pool_get: %s: items on itemlist, nitems %u\n",
976 pp->pr_wchan, pp->pr_nitems);
977 panic("pool_get: nitems inconsistent");
978 }
979 #endif
980
981 #ifdef POOL_DIAGNOSTIC
982 pr_log(pp, v, PRLOG_GET, file, line);
983 #endif
984
985 #ifdef DIAGNOSTIC
986 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
987 pr_printlog(pp, pi, printf);
988 panic("pool_get(%s): free list modified: "
989 "magic=%x; page %p; item addr %p\n",
990 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
991 }
992 #endif
993
994 /*
995 * Remove from item list.
996 */
997 LIST_REMOVE(pi, pi_list);
998 }
999 pp->pr_nitems--;
1000 pp->pr_nout++;
1001 if (ph->ph_nmissing == 0) {
1002 #ifdef DIAGNOSTIC
1003 if (__predict_false(pp->pr_nidle == 0))
1004 panic("pool_get: nidle inconsistent");
1005 #endif
1006 pp->pr_nidle--;
1007
1008 /*
1009 * This page was previously empty. Move it to the list of
1010 * partially-full pages. This page is already curpage.
1011 */
1012 LIST_REMOVE(ph, ph_pagelist);
1013 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1014 }
1015 ph->ph_nmissing++;
1016 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1017 #ifdef DIAGNOSTIC
1018 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1019 !LIST_EMPTY(&ph->ph_itemlist))) {
1020 pr_leave(pp);
1021 simple_unlock(&pp->pr_slock);
1022 panic("pool_get: %s: nmissing inconsistent",
1023 pp->pr_wchan);
1024 }
1025 #endif
1026 /*
1027 * This page is now full. Move it to the full list
1028 * and select a new current page.
1029 */
1030 LIST_REMOVE(ph, ph_pagelist);
1031 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1032 pool_update_curpage(pp);
1033 }
1034
1035 pp->pr_nget++;
1036 pr_leave(pp);
1037
1038 /*
1039 * If we have a low water mark and we are now below that low
1040 * water mark, add more items to the pool.
1041 */
1042 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1043 /*
1044 * XXX: Should we log a warning? Should we set up a timeout
1045 * to try again in a second or so? The latter could break
1046 * a caller's assumptions about interrupt protection, etc.
1047 */
1048 }
1049
1050 simple_unlock(&pp->pr_slock);
1051 return (v);
1052 }
1053
1054 /*
1055 * Internal version of pool_put(). Pool is already locked/entered.
1056 */
1057 static void
1058 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1059 {
1060 struct pool_item *pi = v;
1061 struct pool_item_header *ph;
1062 caddr_t page;
1063
1064 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1065 SCHED_ASSERT_UNLOCKED();
1066
1067 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
1068
1069 #ifdef DIAGNOSTIC
1070 if (__predict_false(pp->pr_nout == 0)) {
1071 printf("pool %s: putting with none out\n",
1072 pp->pr_wchan);
1073 panic("pool_put");
1074 }
1075 #endif
1076
1077 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
1078 pr_printlog(pp, NULL, printf);
1079 panic("pool_put: %s: page header missing", pp->pr_wchan);
1080 }
1081
1082 #ifdef LOCKDEBUG
1083 /*
1084 * Check if we're freeing a locked simple lock.
1085 */
1086 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
1087 #endif
1088
1089 /*
1090 * Return to item list.
1091 */
1092 if (pp->pr_roflags & PR_NOTOUCH) {
1093 pr_item_notouch_put(pp, ph, v);
1094 } else {
1095 #ifdef DIAGNOSTIC
1096 pi->pi_magic = PI_MAGIC;
1097 #endif
1098 #ifdef DEBUG
1099 {
1100 int i, *ip = v;
1101
1102 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1103 *ip++ = PI_MAGIC;
1104 }
1105 }
1106 #endif
1107
1108 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1109 }
1110 KDASSERT(ph->ph_nmissing != 0);
1111 ph->ph_nmissing--;
1112 pp->pr_nput++;
1113 pp->pr_nitems++;
1114 pp->pr_nout--;
1115
1116 /* Cancel "pool empty" condition if it exists */
1117 if (pp->pr_curpage == NULL)
1118 pp->pr_curpage = ph;
1119
1120 if (pp->pr_flags & PR_WANTED) {
1121 pp->pr_flags &= ~PR_WANTED;
1122 if (ph->ph_nmissing == 0)
1123 pp->pr_nidle++;
1124 wakeup((caddr_t)pp);
1125 return;
1126 }
1127
1128 /*
1129 * If this page is now empty, do one of two things:
1130 *
1131 * (1) If we have more pages than the page high water mark,
1132 * free the page back to the system. ONLY CONSIDER
1133 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1134 * CLAIM.
1135 *
1136 * (2) Otherwise, move the page to the empty page list.
1137 *
1138 * Either way, select a new current page (so we use a partially-full
1139 * page if one is available).
1140 */
1141 if (ph->ph_nmissing == 0) {
1142 pp->pr_nidle++;
1143 if (pp->pr_npages > pp->pr_minpages &&
1144 (pp->pr_npages > pp->pr_maxpages ||
1145 (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
1146 pr_rmpage(pp, ph, pq);
1147 } else {
1148 LIST_REMOVE(ph, ph_pagelist);
1149 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1150
1151 /*
1152 * Update the timestamp on the page. A page must
1153 * be idle for some period of time before it can
1154 * be reclaimed by the pagedaemon. This minimizes
1155 * ping-pong'ing for memory.
1156 */
1157 getmicrotime(&ph->ph_time);
1158 }
1159 pool_update_curpage(pp);
1160 }
1161
1162 /*
1163 * If the page was previously completely full, move it to the
1164 * partially-full list and make it the current page. The next
1165 * allocation will get the item from this page, instead of
1166 * further fragmenting the pool.
1167 */
1168 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1169 LIST_REMOVE(ph, ph_pagelist);
1170 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1171 pp->pr_curpage = ph;
1172 }
1173 }
1174
1175 /*
1176 * Return resource to the pool; must be called at appropriate spl level
1177 */
1178 #ifdef POOL_DIAGNOSTIC
1179 void
1180 _pool_put(struct pool *pp, void *v, const char *file, long line)
1181 {
1182 struct pool_pagelist pq;
1183
1184 LIST_INIT(&pq);
1185
1186 simple_lock(&pp->pr_slock);
1187 pr_enter(pp, file, line);
1188
1189 pr_log(pp, v, PRLOG_PUT, file, line);
1190
1191 pool_do_put(pp, v, &pq);
1192
1193 pr_leave(pp);
1194 simple_unlock(&pp->pr_slock);
1195
1196 pr_pagelist_free(pp, &pq);
1197 }
1198 #undef pool_put
1199 #endif /* POOL_DIAGNOSTIC */
1200
1201 void
1202 pool_put(struct pool *pp, void *v)
1203 {
1204 struct pool_pagelist pq;
1205
1206 LIST_INIT(&pq);
1207
1208 simple_lock(&pp->pr_slock);
1209 pool_do_put(pp, v, &pq);
1210 simple_unlock(&pp->pr_slock);
1211
1212 pr_pagelist_free(pp, &pq);
1213 }
1214
1215 #ifdef POOL_DIAGNOSTIC
1216 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1217 #endif
1218
1219 /*
1220 * Add N items to the pool.
1221 */
1222 int
1223 pool_prime(struct pool *pp, int n)
1224 {
1225 struct pool_item_header *ph = NULL;
1226 caddr_t cp;
1227 int newpages;
1228
1229 simple_lock(&pp->pr_slock);
1230
1231 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1232
1233 while (newpages-- > 0) {
1234 simple_unlock(&pp->pr_slock);
1235 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1236 if (__predict_true(cp != NULL))
1237 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1238
1239 if (__predict_false(cp == NULL || ph == NULL)) {
1240 if (cp != NULL)
1241 pool_allocator_free(pp, cp);
1242 simple_lock(&pp->pr_slock);
1243 break;
1244 }
1245
1246 simple_lock(&pp->pr_slock);
1247 pool_prime_page(pp, cp, ph);
1248 pp->pr_npagealloc++;
1249 pp->pr_minpages++;
1250 }
1251
1252 if (pp->pr_minpages >= pp->pr_maxpages)
1253 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1254
1255 simple_unlock(&pp->pr_slock);
1256 return (0);
1257 }
1258
1259 /*
1260 * Add a page worth of items to the pool.
1261 *
1262 * Note, we must be called with the pool descriptor LOCKED.
1263 */
1264 static void
1265 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1266 {
1267 struct pool_item *pi;
1268 caddr_t cp = storage;
1269 unsigned int align = pp->pr_align;
1270 unsigned int ioff = pp->pr_itemoffset;
1271 int n;
1272
1273 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1274
1275 #ifdef DIAGNOSTIC
1276 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1277 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1278 #endif
1279
1280 /*
1281 * Insert page header.
1282 */
1283 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1284 LIST_INIT(&ph->ph_itemlist);
1285 ph->ph_page = storage;
1286 ph->ph_nmissing = 0;
1287 getmicrotime(&ph->ph_time);
1288 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1289 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1290
1291 pp->pr_nidle++;
1292
1293 /*
1294 * Color this page.
1295 */
1296 cp = (caddr_t)(cp + pp->pr_curcolor);
1297 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1298 pp->pr_curcolor = 0;
1299
1300 /*
1301 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1302 */
1303 if (ioff != 0)
1304 cp = (caddr_t)(cp + (align - ioff));
1305
1306 /*
1307 * Insert remaining chunks on the bucket list.
1308 */
1309 n = pp->pr_itemsperpage;
1310 pp->pr_nitems += n;
1311
1312 if (pp->pr_roflags & PR_NOTOUCH) {
1313 pool_item_freelist_t *freelist = PR_FREELIST(ph);
1314 int i;
1315
1316 ph->ph_off = cp - storage;
1317 ph->ph_firstfree = 0;
1318 for (i = 0; i < n - 1; i++)
1319 freelist[i] = i + 1;
1320 freelist[n - 1] = PR_INDEX_EOL;
1321 } else {
1322 while (n--) {
1323 pi = (struct pool_item *)cp;
1324
1325 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1326
1327 /* Insert on page list */
1328 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1329 #ifdef DIAGNOSTIC
1330 pi->pi_magic = PI_MAGIC;
1331 #endif
1332 cp = (caddr_t)(cp + pp->pr_size);
1333 }
1334 }
1335
1336 /*
1337 * If the pool was depleted, point at the new page.
1338 */
1339 if (pp->pr_curpage == NULL)
1340 pp->pr_curpage = ph;
1341
1342 if (++pp->pr_npages > pp->pr_hiwat)
1343 pp->pr_hiwat = pp->pr_npages;
1344 }
1345
1346 /*
1347 * Used by pool_get() when nitems drops below the low water mark. This
1348 * is used to catch up pr_nitems with the low water mark.
1349 *
1350 * Note 1, we never wait for memory here, we let the caller decide what to do.
1351 *
1352 * Note 2, we must be called with the pool already locked, and we return
1353 * with it locked.
1354 */
1355 static int
1356 pool_catchup(struct pool *pp)
1357 {
1358 struct pool_item_header *ph = NULL;
1359 caddr_t cp;
1360 int error = 0;
1361
1362 while (POOL_NEEDS_CATCHUP(pp)) {
1363 /*
1364 * Call the page back-end allocator for more memory.
1365 *
1366 * XXX: We never wait, so should we bother unlocking
1367 * the pool descriptor?
1368 */
1369 simple_unlock(&pp->pr_slock);
1370 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1371 if (__predict_true(cp != NULL))
1372 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1373 if (__predict_false(cp == NULL || ph == NULL)) {
1374 if (cp != NULL)
1375 pool_allocator_free(pp, cp);
1376 error = ENOMEM;
1377 simple_lock(&pp->pr_slock);
1378 break;
1379 }
1380 simple_lock(&pp->pr_slock);
1381 pool_prime_page(pp, cp, ph);
1382 pp->pr_npagealloc++;
1383 }
1384
1385 return (error);
1386 }
1387
1388 static void
1389 pool_update_curpage(struct pool *pp)
1390 {
1391
1392 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1393 if (pp->pr_curpage == NULL) {
1394 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1395 }
1396 }
1397
1398 void
1399 pool_setlowat(struct pool *pp, int n)
1400 {
1401
1402 simple_lock(&pp->pr_slock);
1403
1404 pp->pr_minitems = n;
1405 pp->pr_minpages = (n == 0)
1406 ? 0
1407 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1408
1409 /* Make sure we're caught up with the newly-set low water mark. */
1410 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1411 /*
1412 * XXX: Should we log a warning? Should we set up a timeout
1413 * to try again in a second or so? The latter could break
1414 * a caller's assumptions about interrupt protection, etc.
1415 */
1416 }
1417
1418 simple_unlock(&pp->pr_slock);
1419 }
1420
1421 void
1422 pool_sethiwat(struct pool *pp, int n)
1423 {
1424
1425 simple_lock(&pp->pr_slock);
1426
1427 pp->pr_maxpages = (n == 0)
1428 ? 0
1429 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1430
1431 simple_unlock(&pp->pr_slock);
1432 }
1433
1434 void
1435 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1436 {
1437
1438 simple_lock(&pp->pr_slock);
1439
1440 pp->pr_hardlimit = n;
1441 pp->pr_hardlimit_warning = warnmess;
1442 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1443 pp->pr_hardlimit_warning_last.tv_sec = 0;
1444 pp->pr_hardlimit_warning_last.tv_usec = 0;
1445
1446 /*
1447 * In-line version of pool_sethiwat(), because we don't want to
1448 * release the lock.
1449 */
1450 pp->pr_maxpages = (n == 0)
1451 ? 0
1452 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1453
1454 simple_unlock(&pp->pr_slock);
1455 }
1456
1457 /*
1458 * Release all complete pages that have not been used recently.
1459 */
1460 int
1461 #ifdef POOL_DIAGNOSTIC
1462 _pool_reclaim(struct pool *pp, const char *file, long line)
1463 #else
1464 pool_reclaim(struct pool *pp)
1465 #endif
1466 {
1467 struct pool_item_header *ph, *phnext;
1468 struct pool_cache *pc;
1469 struct pool_pagelist pq;
1470 struct pool_cache_grouplist pcgl;
1471 struct timeval curtime, diff;
1472
1473 if (pp->pr_drain_hook != NULL) {
1474 /*
1475 * The drain hook must be called with the pool unlocked.
1476 */
1477 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1478 }
1479
1480 if (simple_lock_try(&pp->pr_slock) == 0)
1481 return (0);
1482 pr_enter(pp, file, line);
1483
1484 LIST_INIT(&pq);
1485 LIST_INIT(&pcgl);
1486
1487 /*
1488 * Reclaim items from the pool's caches.
1489 */
1490 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1491 pool_cache_reclaim(pc, &pq, &pcgl);
1492
1493 getmicrotime(&curtime);
1494
1495 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1496 phnext = LIST_NEXT(ph, ph_pagelist);
1497
1498 /* Check our minimum page claim */
1499 if (pp->pr_npages <= pp->pr_minpages)
1500 break;
1501
1502 KASSERT(ph->ph_nmissing == 0);
1503 timersub(&curtime, &ph->ph_time, &diff);
1504 if (diff.tv_sec < pool_inactive_time)
1505 continue;
1506
1507 /*
1508 * If freeing this page would put us below
1509 * the low water mark, stop now.
1510 */
1511 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1512 pp->pr_minitems)
1513 break;
1514
1515 pr_rmpage(pp, ph, &pq);
1516 }
1517
1518 pr_leave(pp);
1519 simple_unlock(&pp->pr_slock);
1520 if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
1521 return 0;
1522
1523 pr_pagelist_free(pp, &pq);
1524 pcg_grouplist_free(&pcgl);
1525 return (1);
1526 }
1527
1528 /*
1529 * Drain pools, one at a time.
1530 *
1531 * Note, we must never be called from an interrupt context.
1532 */
1533 void
1534 pool_drain(void *arg)
1535 {
1536 struct pool *pp;
1537 int s;
1538
1539 pp = NULL;
1540 s = splvm();
1541 simple_lock(&pool_head_slock);
1542 if (drainpp == NULL) {
1543 drainpp = LIST_FIRST(&pool_head);
1544 }
1545 if (drainpp) {
1546 pp = drainpp;
1547 drainpp = LIST_NEXT(pp, pr_poollist);
1548 }
1549 simple_unlock(&pool_head_slock);
1550 pool_reclaim(pp);
1551 splx(s);
1552 }
1553
1554 /*
1555 * Diagnostic helpers.
1556 */
1557 void
1558 pool_print(struct pool *pp, const char *modif)
1559 {
1560 int s;
1561
1562 s = splvm();
1563 if (simple_lock_try(&pp->pr_slock) == 0) {
1564 printf("pool %s is locked; try again later\n",
1565 pp->pr_wchan);
1566 splx(s);
1567 return;
1568 }
1569 pool_print1(pp, modif, printf);
1570 simple_unlock(&pp->pr_slock);
1571 splx(s);
1572 }
1573
1574 void
1575 pool_printall(const char *modif, void (*pr)(const char *, ...))
1576 {
1577 struct pool *pp;
1578
1579 if (simple_lock_try(&pool_head_slock) == 0) {
1580 (*pr)("WARNING: pool_head_slock is locked\n");
1581 } else {
1582 simple_unlock(&pool_head_slock);
1583 }
1584
1585 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1586 pool_printit(pp, modif, pr);
1587 }
1588 }
1589
1590 void
1591 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1592 {
1593
1594 if (pp == NULL) {
1595 (*pr)("Must specify a pool to print.\n");
1596 return;
1597 }
1598
1599 /*
1600 * Called from DDB; interrupts should be blocked, and all
1601 * other processors should be paused. We can skip locking
1602 * the pool in this case.
1603 *
1604 * We do a simple_lock_try() just to print the lock
1605 * status, however.
1606 */
1607
1608 if (simple_lock_try(&pp->pr_slock) == 0)
1609 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1610 else
1611 simple_unlock(&pp->pr_slock);
1612
1613 pool_print1(pp, modif, pr);
1614 }
1615
1616 static void
1617 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1618 void (*pr)(const char *, ...))
1619 {
1620 struct pool_item_header *ph;
1621 #ifdef DIAGNOSTIC
1622 struct pool_item *pi;
1623 #endif
1624
1625 LIST_FOREACH(ph, pl, ph_pagelist) {
1626 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1627 ph->ph_page, ph->ph_nmissing,
1628 (u_long)ph->ph_time.tv_sec,
1629 (u_long)ph->ph_time.tv_usec);
1630 #ifdef DIAGNOSTIC
1631 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1632 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1633 if (pi->pi_magic != PI_MAGIC) {
1634 (*pr)("\t\t\titem %p, magic 0x%x\n",
1635 pi, pi->pi_magic);
1636 }
1637 }
1638 }
1639 #endif
1640 }
1641 }
1642
1643 static void
1644 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1645 {
1646 struct pool_item_header *ph;
1647 struct pool_cache *pc;
1648 struct pool_cache_group *pcg;
1649 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1650 char c;
1651
1652 while ((c = *modif++) != '\0') {
1653 if (c == 'l')
1654 print_log = 1;
1655 if (c == 'p')
1656 print_pagelist = 1;
1657 if (c == 'c')
1658 print_cache = 1;
1659 }
1660
1661 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1662 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1663 pp->pr_roflags);
1664 (*pr)("\talloc %p\n", pp->pr_alloc);
1665 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1666 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1667 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1668 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1669
1670 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1671 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1672 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1673 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1674
1675 if (print_pagelist == 0)
1676 goto skip_pagelist;
1677
1678 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1679 (*pr)("\n\tempty page list:\n");
1680 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1681 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1682 (*pr)("\n\tfull page list:\n");
1683 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1684 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1685 (*pr)("\n\tpartial-page list:\n");
1686 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1687
1688 if (pp->pr_curpage == NULL)
1689 (*pr)("\tno current page\n");
1690 else
1691 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1692
1693 skip_pagelist:
1694 if (print_log == 0)
1695 goto skip_log;
1696
1697 (*pr)("\n");
1698 if ((pp->pr_roflags & PR_LOGGING) == 0)
1699 (*pr)("\tno log\n");
1700 else
1701 pr_printlog(pp, NULL, pr);
1702
1703 skip_log:
1704 if (print_cache == 0)
1705 goto skip_cache;
1706
1707 #define PR_GROUPLIST(pcg) \
1708 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1709 for (i = 0; i < PCG_NOBJECTS; i++) { \
1710 if (pcg->pcg_objects[i].pcgo_pa != \
1711 POOL_PADDR_INVALID) { \
1712 (*pr)("\t\t\t%p, 0x%llx\n", \
1713 pcg->pcg_objects[i].pcgo_va, \
1714 (unsigned long long) \
1715 pcg->pcg_objects[i].pcgo_pa); \
1716 } else { \
1717 (*pr)("\t\t\t%p\n", \
1718 pcg->pcg_objects[i].pcgo_va); \
1719 } \
1720 }
1721
1722 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1723 (*pr)("\tcache %p\n", pc);
1724 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1725 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1726 (*pr)("\t full groups:\n");
1727 LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
1728 PR_GROUPLIST(pcg);
1729 }
1730 (*pr)("\t partial groups:\n");
1731 LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
1732 PR_GROUPLIST(pcg);
1733 }
1734 (*pr)("\t empty groups:\n");
1735 LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
1736 PR_GROUPLIST(pcg);
1737 }
1738 }
1739 #undef PR_GROUPLIST
1740
1741 skip_cache:
1742 pr_enter_check(pp, pr);
1743 }
1744
1745 static int
1746 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1747 {
1748 struct pool_item *pi;
1749 caddr_t page;
1750 int n;
1751
1752 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1753 if (page != ph->ph_page &&
1754 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1755 if (label != NULL)
1756 printf("%s: ", label);
1757 printf("pool(%p:%s): page inconsistency: page %p;"
1758 " at page head addr %p (p %p)\n", pp,
1759 pp->pr_wchan, ph->ph_page,
1760 ph, page);
1761 return 1;
1762 }
1763
1764 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1765 return 0;
1766
1767 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1768 pi != NULL;
1769 pi = LIST_NEXT(pi,pi_list), n++) {
1770
1771 #ifdef DIAGNOSTIC
1772 if (pi->pi_magic != PI_MAGIC) {
1773 if (label != NULL)
1774 printf("%s: ", label);
1775 printf("pool(%s): free list modified: magic=%x;"
1776 " page %p; item ordinal %d;"
1777 " addr %p (p %p)\n",
1778 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1779 n, pi, page);
1780 panic("pool");
1781 }
1782 #endif
1783 page =
1784 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1785 if (page == ph->ph_page)
1786 continue;
1787
1788 if (label != NULL)
1789 printf("%s: ", label);
1790 printf("pool(%p:%s): page inconsistency: page %p;"
1791 " item ordinal %d; addr %p (p %p)\n", pp,
1792 pp->pr_wchan, ph->ph_page,
1793 n, pi, page);
1794 return 1;
1795 }
1796 return 0;
1797 }
1798
1799
1800 int
1801 pool_chk(struct pool *pp, const char *label)
1802 {
1803 struct pool_item_header *ph;
1804 int r = 0;
1805
1806 simple_lock(&pp->pr_slock);
1807 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1808 r = pool_chk_page(pp, label, ph);
1809 if (r) {
1810 goto out;
1811 }
1812 }
1813 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1814 r = pool_chk_page(pp, label, ph);
1815 if (r) {
1816 goto out;
1817 }
1818 }
1819 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1820 r = pool_chk_page(pp, label, ph);
1821 if (r) {
1822 goto out;
1823 }
1824 }
1825
1826 out:
1827 simple_unlock(&pp->pr_slock);
1828 return (r);
1829 }
1830
1831 /*
1832 * pool_cache_init:
1833 *
1834 * Initialize a pool cache.
1835 *
1836 * NOTE: If the pool must be protected from interrupts, we expect
1837 * to be called at the appropriate interrupt priority level.
1838 */
1839 void
1840 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1841 int (*ctor)(void *, void *, int),
1842 void (*dtor)(void *, void *),
1843 void *arg)
1844 {
1845
1846 LIST_INIT(&pc->pc_emptygroups);
1847 LIST_INIT(&pc->pc_fullgroups);
1848 LIST_INIT(&pc->pc_partgroups);
1849 simple_lock_init(&pc->pc_slock);
1850
1851 pc->pc_pool = pp;
1852
1853 pc->pc_ctor = ctor;
1854 pc->pc_dtor = dtor;
1855 pc->pc_arg = arg;
1856
1857 pc->pc_hits = 0;
1858 pc->pc_misses = 0;
1859
1860 pc->pc_ngroups = 0;
1861
1862 pc->pc_nitems = 0;
1863
1864 simple_lock(&pp->pr_slock);
1865 LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1866 simple_unlock(&pp->pr_slock);
1867 }
1868
1869 /*
1870 * pool_cache_destroy:
1871 *
1872 * Destroy a pool cache.
1873 */
1874 void
1875 pool_cache_destroy(struct pool_cache *pc)
1876 {
1877 struct pool *pp = pc->pc_pool;
1878
1879 /* First, invalidate the entire cache. */
1880 pool_cache_invalidate(pc);
1881
1882 /* ...and remove it from the pool's cache list. */
1883 simple_lock(&pp->pr_slock);
1884 LIST_REMOVE(pc, pc_poollist);
1885 simple_unlock(&pp->pr_slock);
1886 }
1887
1888 static inline void *
1889 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1890 {
1891 void *object;
1892 u_int idx;
1893
1894 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1895 KASSERT(pcg->pcg_avail != 0);
1896 idx = --pcg->pcg_avail;
1897
1898 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1899 object = pcg->pcg_objects[idx].pcgo_va;
1900 if (pap != NULL)
1901 *pap = pcg->pcg_objects[idx].pcgo_pa;
1902 pcg->pcg_objects[idx].pcgo_va = NULL;
1903
1904 return (object);
1905 }
1906
1907 static inline void
1908 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1909 {
1910 u_int idx;
1911
1912 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1913 idx = pcg->pcg_avail++;
1914
1915 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1916 pcg->pcg_objects[idx].pcgo_va = object;
1917 pcg->pcg_objects[idx].pcgo_pa = pa;
1918 }
1919
1920 static void
1921 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
1922 {
1923 struct pool_cache_group *pcg;
1924 int s;
1925
1926 s = splvm();
1927 while ((pcg = LIST_FIRST(pcgl)) != NULL) {
1928 LIST_REMOVE(pcg, pcg_list);
1929 pool_put(&pcgpool, pcg);
1930 }
1931 splx(s);
1932 }
1933
1934 /*
1935 * pool_cache_get{,_paddr}:
1936 *
1937 * Get an object from a pool cache (optionally returning
1938 * the physical address of the object).
1939 */
1940 void *
1941 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
1942 {
1943 struct pool_cache_group *pcg;
1944 void *object;
1945
1946 #ifdef LOCKDEBUG
1947 if (flags & PR_WAITOK)
1948 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1949 #endif
1950
1951 simple_lock(&pc->pc_slock);
1952
1953 pcg = LIST_FIRST(&pc->pc_partgroups);
1954 if (pcg == NULL) {
1955 pcg = LIST_FIRST(&pc->pc_fullgroups);
1956 if (pcg != NULL) {
1957 LIST_REMOVE(pcg, pcg_list);
1958 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
1959 }
1960 }
1961 if (pcg == NULL) {
1962
1963 /*
1964 * No groups with any available objects. Allocate
1965 * a new object, construct it, and return it to
1966 * the caller. We will allocate a group, if necessary,
1967 * when the object is freed back to the cache.
1968 */
1969 pc->pc_misses++;
1970 simple_unlock(&pc->pc_slock);
1971 object = pool_get(pc->pc_pool, flags);
1972 if (object != NULL && pc->pc_ctor != NULL) {
1973 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1974 pool_put(pc->pc_pool, object);
1975 return (NULL);
1976 }
1977 }
1978 if (object != NULL && pap != NULL) {
1979 #ifdef POOL_VTOPHYS
1980 *pap = POOL_VTOPHYS(object);
1981 #else
1982 *pap = POOL_PADDR_INVALID;
1983 #endif
1984 }
1985 return (object);
1986 }
1987
1988 pc->pc_hits++;
1989 pc->pc_nitems--;
1990 object = pcg_get(pcg, pap);
1991
1992 if (pcg->pcg_avail == 0) {
1993 LIST_REMOVE(pcg, pcg_list);
1994 LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
1995 }
1996 simple_unlock(&pc->pc_slock);
1997
1998 return (object);
1999 }
2000
2001 /*
2002 * pool_cache_put{,_paddr}:
2003 *
2004 * Put an object back to the pool cache (optionally caching the
2005 * physical address of the object).
2006 */
2007 void
2008 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
2009 {
2010 struct pool_cache_group *pcg;
2011 int s;
2012
2013 if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
2014 goto destruct;
2015 }
2016
2017 simple_lock(&pc->pc_slock);
2018
2019 pcg = LIST_FIRST(&pc->pc_partgroups);
2020 if (pcg == NULL) {
2021 pcg = LIST_FIRST(&pc->pc_emptygroups);
2022 if (pcg != NULL) {
2023 LIST_REMOVE(pcg, pcg_list);
2024 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2025 }
2026 }
2027 if (pcg == NULL) {
2028
2029 /*
2030 * No empty groups to free the object to. Attempt to
2031 * allocate one.
2032 */
2033 simple_unlock(&pc->pc_slock);
2034 s = splvm();
2035 pcg = pool_get(&pcgpool, PR_NOWAIT);
2036 splx(s);
2037 if (pcg == NULL) {
2038 destruct:
2039
2040 /*
2041 * Unable to allocate a cache group; destruct the object
2042 * and free it back to the pool.
2043 */
2044 pool_cache_destruct_object(pc, object);
2045 return;
2046 }
2047 memset(pcg, 0, sizeof(*pcg));
2048 simple_lock(&pc->pc_slock);
2049 pc->pc_ngroups++;
2050 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2051 }
2052
2053 pc->pc_nitems++;
2054 pcg_put(pcg, object, pa);
2055
2056 if (pcg->pcg_avail == PCG_NOBJECTS) {
2057 LIST_REMOVE(pcg, pcg_list);
2058 LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
2059 }
2060 simple_unlock(&pc->pc_slock);
2061 }
2062
2063 /*
2064 * pool_cache_destruct_object:
2065 *
2066 * Force destruction of an object and its release back into
2067 * the pool.
2068 */
2069 void
2070 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2071 {
2072
2073 if (pc->pc_dtor != NULL)
2074 (*pc->pc_dtor)(pc->pc_arg, object);
2075 pool_put(pc->pc_pool, object);
2076 }
2077
2078 static void
2079 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
2080 struct pool_cache *pc, struct pool_pagelist *pq,
2081 struct pool_cache_grouplist *pcgdl)
2082 {
2083 struct pool_cache_group *pcg, *npcg;
2084 void *object;
2085
2086 for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
2087 npcg = LIST_NEXT(pcg, pcg_list);
2088 while (pcg->pcg_avail != 0) {
2089 pc->pc_nitems--;
2090 object = pcg_get(pcg, NULL);
2091 if (pc->pc_dtor != NULL)
2092 (*pc->pc_dtor)(pc->pc_arg, object);
2093 pool_do_put(pc->pc_pool, object, pq);
2094 }
2095 pc->pc_ngroups--;
2096 LIST_REMOVE(pcg, pcg_list);
2097 LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
2098 }
2099 }
2100
2101 static void
2102 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
2103 struct pool_cache_grouplist *pcgl)
2104 {
2105
2106 LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
2107 LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
2108
2109 pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
2110 pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
2111
2112 KASSERT(LIST_EMPTY(&pc->pc_partgroups));
2113 KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
2114 KASSERT(pc->pc_nitems == 0);
2115 }
2116
2117 /*
2118 * pool_cache_invalidate:
2119 *
2120 * Invalidate a pool cache (destruct and release all of the
2121 * cached objects).
2122 */
2123 void
2124 pool_cache_invalidate(struct pool_cache *pc)
2125 {
2126 struct pool_pagelist pq;
2127 struct pool_cache_grouplist pcgl;
2128
2129 LIST_INIT(&pq);
2130 LIST_INIT(&pcgl);
2131
2132 simple_lock(&pc->pc_slock);
2133 simple_lock(&pc->pc_pool->pr_slock);
2134
2135 pool_do_cache_invalidate(pc, &pq, &pcgl);
2136
2137 simple_unlock(&pc->pc_pool->pr_slock);
2138 simple_unlock(&pc->pc_slock);
2139
2140 pr_pagelist_free(pc->pc_pool, &pq);
2141 pcg_grouplist_free(&pcgl);
2142 }
2143
2144 /*
2145 * pool_cache_reclaim:
2146 *
2147 * Reclaim a pool cache for pool_reclaim().
2148 */
2149 static void
2150 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
2151 struct pool_cache_grouplist *pcgl)
2152 {
2153
2154 /*
2155 * We're locking in the wrong order (normally pool_cache -> pool,
2156 * but the pool is already locked when we get here), so we have
2157 * to use trylock. If we can't lock the pool_cache, it's not really
2158 * a big deal here.
2159 */
2160 if (simple_lock_try(&pc->pc_slock) == 0)
2161 return;
2162
2163 pool_do_cache_invalidate(pc, pq, pcgl);
2164
2165 simple_unlock(&pc->pc_slock);
2166 }
2167
2168 /*
2169 * Pool backend allocators.
2170 *
2171 * Each pool has a backend allocator that handles allocation, deallocation,
2172 * and any additional draining that might be needed.
2173 *
2174 * We provide two standard allocators:
2175 *
2176 * pool_allocator_kmem - the default when no allocator is specified
2177 *
2178 * pool_allocator_nointr - used for pools that will not be accessed
2179 * in interrupt context.
2180 */
2181 void *pool_page_alloc(struct pool *, int);
2182 void pool_page_free(struct pool *, void *);
2183
2184 struct pool_allocator pool_allocator_kmem = {
2185 pool_page_alloc, pool_page_free, 0,
2186 };
2187
2188 void *pool_page_alloc_nointr(struct pool *, int);
2189 void pool_page_free_nointr(struct pool *, void *);
2190
2191 struct pool_allocator pool_allocator_nointr = {
2192 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2193 };
2194
2195 #ifdef POOL_SUBPAGE
2196 void *pool_subpage_alloc(struct pool *, int);
2197 void pool_subpage_free(struct pool *, void *);
2198
2199 struct pool_allocator pool_allocator_kmem_subpage = {
2200 pool_subpage_alloc, pool_subpage_free, 0,
2201 };
2202 #endif /* POOL_SUBPAGE */
2203
2204 /*
2205 * We have at least three different resources for the same allocation and
2206 * each resource can be depleted. First, we have the ready elements in the
2207 * pool. Then we have the resource (typically a vm_map) for this allocator.
2208 * Finally, we have physical memory. Waiting for any of these can be
2209 * unnecessary when any other is freed, but the kernel doesn't support
2210 * sleeping on multiple wait channels, so we have to employ another strategy.
2211 *
2212 * The caller sleeps on the pool (so that it can be awakened when an item
2213 * is returned to the pool), but we set PA_WANT on the allocator. When a
2214 * page is returned to the allocator and PA_WANT is set, pool_allocator_free
2215 * will wake up all sleeping pools belonging to this allocator.
2216 *
2217 * XXX Thundering herd.
2218 */
2219 void *
2220 pool_allocator_alloc(struct pool *org, int flags)
2221 {
2222 struct pool_allocator *pa = org->pr_alloc;
2223 struct pool *pp, *start;
2224 int s, freed;
2225 void *res;
2226
2227 LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
2228
2229 do {
2230 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2231 return (res);
2232 if ((flags & PR_WAITOK) == 0) {
2233 /*
2234 * We only run the drain hookhere if PR_NOWAIT.
2235 * In other cases, the hook will be run in
2236 * pool_reclaim().
2237 */
2238 if (org->pr_drain_hook != NULL) {
2239 (*org->pr_drain_hook)(org->pr_drain_hook_arg,
2240 flags);
2241 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2242 return (res);
2243 }
2244 break;
2245 }
2246
2247 /*
2248 * Drain all pools, that use this allocator.
2249 * We do this to reclaim VA space.
2250 * pa_alloc is responsible for waiting for
2251 * physical memory.
2252 *
2253 * XXX We risk looping forever if start if someone
2254 * calls pool_destroy on "start". But there is no
2255 * other way to have potentially sleeping pool_reclaim,
2256 * non-sleeping locks on pool_allocator, and some
2257 * stirring of drained pools in the allocator.
2258 *
2259 * XXX Maybe we should use pool_head_slock for locking
2260 * the allocators?
2261 */
2262 freed = 0;
2263
2264 s = splvm();
2265 simple_lock(&pa->pa_slock);
2266 pp = start = TAILQ_FIRST(&pa->pa_list);
2267 do {
2268 TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
2269 TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
2270 simple_unlock(&pa->pa_slock);
2271 freed = pool_reclaim(pp);
2272 simple_lock(&pa->pa_slock);
2273 } while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
2274 freed == 0);
2275
2276 if (freed == 0) {
2277 /*
2278 * We set PA_WANT here, the caller will most likely
2279 * sleep waiting for pages (if not, this won't hurt
2280 * that much), and there is no way to set this in
2281 * the caller without violating locking order.
2282 */
2283 pa->pa_flags |= PA_WANT;
2284 }
2285 simple_unlock(&pa->pa_slock);
2286 splx(s);
2287 } while (freed);
2288 return (NULL);
2289 }
2290
2291 void
2292 pool_allocator_free(struct pool *pp, void *v)
2293 {
2294 struct pool_allocator *pa = pp->pr_alloc;
2295 int s;
2296
2297 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2298
2299 (*pa->pa_free)(pp, v);
2300
2301 s = splvm();
2302 simple_lock(&pa->pa_slock);
2303 if ((pa->pa_flags & PA_WANT) == 0) {
2304 simple_unlock(&pa->pa_slock);
2305 splx(s);
2306 return;
2307 }
2308
2309 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2310 simple_lock(&pp->pr_slock);
2311 if ((pp->pr_flags & PR_WANTED) != 0) {
2312 pp->pr_flags &= ~PR_WANTED;
2313 wakeup(pp);
2314 }
2315 simple_unlock(&pp->pr_slock);
2316 }
2317 pa->pa_flags &= ~PA_WANT;
2318 simple_unlock(&pa->pa_slock);
2319 splx(s);
2320 }
2321
2322 void *
2323 pool_page_alloc(struct pool *pp, int flags)
2324 {
2325 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2326
2327 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2328 }
2329
2330 void
2331 pool_page_free(struct pool *pp, void *v)
2332 {
2333
2334 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2335 }
2336
2337 static void *
2338 pool_page_alloc_meta(struct pool *pp, int flags)
2339 {
2340 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2341
2342 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2343 }
2344
2345 static void
2346 pool_page_free_meta(struct pool *pp, void *v)
2347 {
2348
2349 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2350 }
2351
2352 #ifdef POOL_SUBPAGE
2353 /* Sub-page allocator, for machines with large hardware pages. */
2354 void *
2355 pool_subpage_alloc(struct pool *pp, int flags)
2356 {
2357 void *v;
2358 int s;
2359 s = splvm();
2360 v = pool_get(&psppool, flags);
2361 splx(s);
2362 return v;
2363 }
2364
2365 void
2366 pool_subpage_free(struct pool *pp, void *v)
2367 {
2368 int s;
2369 s = splvm();
2370 pool_put(&psppool, v);
2371 splx(s);
2372 }
2373
2374 /* We don't provide a real nointr allocator. Maybe later. */
2375 void *
2376 pool_page_alloc_nointr(struct pool *pp, int flags)
2377 {
2378
2379 return (pool_subpage_alloc(pp, flags));
2380 }
2381
2382 void
2383 pool_page_free_nointr(struct pool *pp, void *v)
2384 {
2385
2386 pool_subpage_free(pp, v);
2387 }
2388 #else
2389 void *
2390 pool_page_alloc_nointr(struct pool *pp, int flags)
2391 {
2392 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2393
2394 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2395 }
2396
2397 void
2398 pool_page_free_nointr(struct pool *pp, void *v)
2399 {
2400
2401 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2402 }
2403 #endif /* POOL_SUBPAGE */
2404