Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.112
      1 /*	$NetBSD: subr_pool.c,v 1.112 2006/02/24 11:46:20 bjh21 Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.112 2006/02/24 11:46:20 bjh21 Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/lock.h>
     54 #include <sys/pool.h>
     55 #include <sys/syslog.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according to
     63  * the pool item size. Each page is kept on one of three lists in the
     64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     65  * for empty, full and partially-full pages respectively. The individual
     66  * pool items are on a linked list headed by `ph_itemlist' in each page
     67  * header. The memory for building the page list is either taken from
     68  * the allocated pages themselves (for small pool items) or taken from
     69  * an internal pool of page headers (`phpool').
     70  */
     71 
     72 /* List of all pools */
     73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     74 
     75 /* Private pool for page header structures */
     76 #define	PHPOOL_MAX	8
     77 static struct pool phpool[PHPOOL_MAX];
     78 #define	PHPOOL_FREELIST_NELEM(idx)	(((idx) == 0) ? 0 : (1 << (idx)))
     79 
     80 #ifdef POOL_SUBPAGE
     81 /* Pool of subpages for use by normal pools. */
     82 static struct pool psppool;
     83 #endif
     84 
     85 static void *pool_page_alloc_meta(struct pool *, int);
     86 static void pool_page_free_meta(struct pool *, void *);
     87 
     88 /* allocator for pool metadata */
     89 static struct pool_allocator pool_allocator_meta = {
     90 	pool_page_alloc_meta, pool_page_free_meta
     91 };
     92 
     93 /* # of seconds to retain page after last use */
     94 int pool_inactive_time = 10;
     95 
     96 /* Next candidate for drainage (see pool_drain()) */
     97 static struct pool	*drainpp;
     98 
     99 /* This spin lock protects both pool_head and drainpp. */
    100 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
    101 
    102 typedef uint8_t pool_item_freelist_t;
    103 
    104 struct pool_item_header {
    105 	/* Page headers */
    106 	LIST_ENTRY(pool_item_header)
    107 				ph_pagelist;	/* pool page list */
    108 	SPLAY_ENTRY(pool_item_header)
    109 				ph_node;	/* Off-page page headers */
    110 	caddr_t			ph_page;	/* this page's address */
    111 	struct timeval		ph_time;	/* last referenced */
    112 	union {
    113 		/* !PR_NOTOUCH */
    114 		struct {
    115 			LIST_HEAD(, pool_item)
    116 				phu_itemlist;	/* chunk list for this page */
    117 		} phu_normal;
    118 		/* PR_NOTOUCH */
    119 		struct {
    120 			uint16_t
    121 				phu_off;	/* start offset in page */
    122 			pool_item_freelist_t
    123 				phu_firstfree;	/* first free item */
    124 			/*
    125 			 * XXX it might be better to use
    126 			 * a simple bitmap and ffs(3)
    127 			 */
    128 		} phu_notouch;
    129 	} ph_u;
    130 	uint16_t		ph_nmissing;	/* # of chunks in use */
    131 };
    132 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    133 #define	ph_off		ph_u.phu_notouch.phu_off
    134 #define	ph_firstfree	ph_u.phu_notouch.phu_firstfree
    135 
    136 struct pool_item {
    137 #ifdef DIAGNOSTIC
    138 	u_int pi_magic;
    139 #endif
    140 #define	PI_MAGIC 0xdeadbeefU
    141 	/* Other entries use only this list entry */
    142 	LIST_ENTRY(pool_item)	pi_list;
    143 };
    144 
    145 #define	POOL_NEEDS_CATCHUP(pp)						\
    146 	((pp)->pr_nitems < (pp)->pr_minitems)
    147 
    148 /*
    149  * Pool cache management.
    150  *
    151  * Pool caches provide a way for constructed objects to be cached by the
    152  * pool subsystem.  This can lead to performance improvements by avoiding
    153  * needless object construction/destruction; it is deferred until absolutely
    154  * necessary.
    155  *
    156  * Caches are grouped into cache groups.  Each cache group references
    157  * up to 16 constructed objects.  When a cache allocates an object
    158  * from the pool, it calls the object's constructor and places it into
    159  * a cache group.  When a cache group frees an object back to the pool,
    160  * it first calls the object's destructor.  This allows the object to
    161  * persist in constructed form while freed to the cache.
    162  *
    163  * Multiple caches may exist for each pool.  This allows a single
    164  * object type to have multiple constructed forms.  The pool references
    165  * each cache, so that when a pool is drained by the pagedaemon, it can
    166  * drain each individual cache as well.  Each time a cache is drained,
    167  * the most idle cache group is freed to the pool in its entirety.
    168  *
    169  * Pool caches are layed on top of pools.  By layering them, we can avoid
    170  * the complexity of cache management for pools which would not benefit
    171  * from it.
    172  */
    173 
    174 /* The cache group pool. */
    175 static struct pool pcgpool;
    176 
    177 static void	pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
    178 				   struct pool_cache_grouplist *);
    179 static void	pcg_grouplist_free(struct pool_cache_grouplist *);
    180 
    181 static int	pool_catchup(struct pool *);
    182 static void	pool_prime_page(struct pool *, caddr_t,
    183 		    struct pool_item_header *);
    184 static void	pool_update_curpage(struct pool *);
    185 
    186 void		*pool_allocator_alloc(struct pool *, int);
    187 void		pool_allocator_free(struct pool *, void *);
    188 
    189 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    190 	void (*)(const char *, ...));
    191 static void pool_print1(struct pool *, const char *,
    192 	void (*)(const char *, ...));
    193 
    194 static int pool_chk_page(struct pool *, const char *,
    195 			 struct pool_item_header *);
    196 
    197 /*
    198  * Pool log entry. An array of these is allocated in pool_init().
    199  */
    200 struct pool_log {
    201 	const char	*pl_file;
    202 	long		pl_line;
    203 	int		pl_action;
    204 #define	PRLOG_GET	1
    205 #define	PRLOG_PUT	2
    206 	void		*pl_addr;
    207 };
    208 
    209 #ifdef POOL_DIAGNOSTIC
    210 /* Number of entries in pool log buffers */
    211 #ifndef POOL_LOGSIZE
    212 #define	POOL_LOGSIZE	10
    213 #endif
    214 
    215 int pool_logsize = POOL_LOGSIZE;
    216 
    217 static inline void
    218 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    219 {
    220 	int n = pp->pr_curlogentry;
    221 	struct pool_log *pl;
    222 
    223 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    224 		return;
    225 
    226 	/*
    227 	 * Fill in the current entry. Wrap around and overwrite
    228 	 * the oldest entry if necessary.
    229 	 */
    230 	pl = &pp->pr_log[n];
    231 	pl->pl_file = file;
    232 	pl->pl_line = line;
    233 	pl->pl_action = action;
    234 	pl->pl_addr = v;
    235 	if (++n >= pp->pr_logsize)
    236 		n = 0;
    237 	pp->pr_curlogentry = n;
    238 }
    239 
    240 static void
    241 pr_printlog(struct pool *pp, struct pool_item *pi,
    242     void (*pr)(const char *, ...))
    243 {
    244 	int i = pp->pr_logsize;
    245 	int n = pp->pr_curlogentry;
    246 
    247 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    248 		return;
    249 
    250 	/*
    251 	 * Print all entries in this pool's log.
    252 	 */
    253 	while (i-- > 0) {
    254 		struct pool_log *pl = &pp->pr_log[n];
    255 		if (pl->pl_action != 0) {
    256 			if (pi == NULL || pi == pl->pl_addr) {
    257 				(*pr)("\tlog entry %d:\n", i);
    258 				(*pr)("\t\taction = %s, addr = %p\n",
    259 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    260 				    pl->pl_addr);
    261 				(*pr)("\t\tfile: %s at line %lu\n",
    262 				    pl->pl_file, pl->pl_line);
    263 			}
    264 		}
    265 		if (++n >= pp->pr_logsize)
    266 			n = 0;
    267 	}
    268 }
    269 
    270 static inline void
    271 pr_enter(struct pool *pp, const char *file, long line)
    272 {
    273 
    274 	if (__predict_false(pp->pr_entered_file != NULL)) {
    275 		printf("pool %s: reentrancy at file %s line %ld\n",
    276 		    pp->pr_wchan, file, line);
    277 		printf("         previous entry at file %s line %ld\n",
    278 		    pp->pr_entered_file, pp->pr_entered_line);
    279 		panic("pr_enter");
    280 	}
    281 
    282 	pp->pr_entered_file = file;
    283 	pp->pr_entered_line = line;
    284 }
    285 
    286 static inline void
    287 pr_leave(struct pool *pp)
    288 {
    289 
    290 	if (__predict_false(pp->pr_entered_file == NULL)) {
    291 		printf("pool %s not entered?\n", pp->pr_wchan);
    292 		panic("pr_leave");
    293 	}
    294 
    295 	pp->pr_entered_file = NULL;
    296 	pp->pr_entered_line = 0;
    297 }
    298 
    299 static inline void
    300 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    301 {
    302 
    303 	if (pp->pr_entered_file != NULL)
    304 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    305 		    pp->pr_entered_file, pp->pr_entered_line);
    306 }
    307 #else
    308 #define	pr_log(pp, v, action, file, line)
    309 #define	pr_printlog(pp, pi, pr)
    310 #define	pr_enter(pp, file, line)
    311 #define	pr_leave(pp)
    312 #define	pr_enter_check(pp, pr)
    313 #endif /* POOL_DIAGNOSTIC */
    314 
    315 static inline int
    316 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    317     const void *v)
    318 {
    319 	const char *cp = v;
    320 	int idx;
    321 
    322 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    323 	idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
    324 	KASSERT(idx < pp->pr_itemsperpage);
    325 	return idx;
    326 }
    327 
    328 #define	PR_FREELIST_ALIGN(p) \
    329 	roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
    330 #define	PR_FREELIST(ph)	((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
    331 #define	PR_INDEX_USED	((pool_item_freelist_t)-1)
    332 #define	PR_INDEX_EOL	((pool_item_freelist_t)-2)
    333 
    334 static inline void
    335 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    336     void *obj)
    337 {
    338 	int idx = pr_item_notouch_index(pp, ph, obj);
    339 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    340 
    341 	KASSERT(freelist[idx] == PR_INDEX_USED);
    342 	freelist[idx] = ph->ph_firstfree;
    343 	ph->ph_firstfree = idx;
    344 }
    345 
    346 static inline void *
    347 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    348 {
    349 	int idx = ph->ph_firstfree;
    350 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    351 
    352 	KASSERT(freelist[idx] != PR_INDEX_USED);
    353 	ph->ph_firstfree = freelist[idx];
    354 	freelist[idx] = PR_INDEX_USED;
    355 
    356 	return ph->ph_page + ph->ph_off + idx * pp->pr_size;
    357 }
    358 
    359 static inline int
    360 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    361 {
    362 	if (a->ph_page < b->ph_page)
    363 		return (-1);
    364 	else if (a->ph_page > b->ph_page)
    365 		return (1);
    366 	else
    367 		return (0);
    368 }
    369 
    370 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    371 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    372 
    373 /*
    374  * Return the pool page header based on page address.
    375  */
    376 static inline struct pool_item_header *
    377 pr_find_pagehead(struct pool *pp, caddr_t page)
    378 {
    379 	struct pool_item_header *ph, tmp;
    380 
    381 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    382 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    383 
    384 	tmp.ph_page = page;
    385 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    386 	return ph;
    387 }
    388 
    389 static void
    390 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    391 {
    392 	struct pool_item_header *ph;
    393 	int s;
    394 
    395 	while ((ph = LIST_FIRST(pq)) != NULL) {
    396 		LIST_REMOVE(ph, ph_pagelist);
    397 		pool_allocator_free(pp, ph->ph_page);
    398 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    399 			s = splvm();
    400 			pool_put(pp->pr_phpool, ph);
    401 			splx(s);
    402 		}
    403 	}
    404 }
    405 
    406 /*
    407  * Remove a page from the pool.
    408  */
    409 static inline void
    410 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    411      struct pool_pagelist *pq)
    412 {
    413 
    414 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
    415 
    416 	/*
    417 	 * If the page was idle, decrement the idle page count.
    418 	 */
    419 	if (ph->ph_nmissing == 0) {
    420 #ifdef DIAGNOSTIC
    421 		if (pp->pr_nidle == 0)
    422 			panic("pr_rmpage: nidle inconsistent");
    423 		if (pp->pr_nitems < pp->pr_itemsperpage)
    424 			panic("pr_rmpage: nitems inconsistent");
    425 #endif
    426 		pp->pr_nidle--;
    427 	}
    428 
    429 	pp->pr_nitems -= pp->pr_itemsperpage;
    430 
    431 	/*
    432 	 * Unlink the page from the pool and queue it for release.
    433 	 */
    434 	LIST_REMOVE(ph, ph_pagelist);
    435 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    436 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    437 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    438 
    439 	pp->pr_npages--;
    440 	pp->pr_npagefree++;
    441 
    442 	pool_update_curpage(pp);
    443 }
    444 
    445 /*
    446  * Initialize all the pools listed in the "pools" link set.
    447  */
    448 void
    449 link_pool_init(void)
    450 {
    451 	__link_set_decl(pools, struct link_pool_init);
    452 	struct link_pool_init * const *pi;
    453 
    454 	__link_set_foreach(pi, pools)
    455 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    456 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    457 		    (*pi)->palloc);
    458 }
    459 
    460 /*
    461  * Initialize the given pool resource structure.
    462  *
    463  * We export this routine to allow other kernel parts to declare
    464  * static pools that must be initialized before malloc() is available.
    465  */
    466 void
    467 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    468     const char *wchan, struct pool_allocator *palloc)
    469 {
    470 	int off, slack;
    471 	size_t trysize, phsize;
    472 	int s;
    473 
    474 	KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
    475 	    PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
    476 
    477 #ifdef POOL_DIAGNOSTIC
    478 	/*
    479 	 * Always log if POOL_DIAGNOSTIC is defined.
    480 	 */
    481 	if (pool_logsize != 0)
    482 		flags |= PR_LOGGING;
    483 #endif
    484 
    485 	if (palloc == NULL)
    486 		palloc = &pool_allocator_kmem;
    487 #ifdef POOL_SUBPAGE
    488 	if (size > palloc->pa_pagesz) {
    489 		if (palloc == &pool_allocator_kmem)
    490 			palloc = &pool_allocator_kmem_fullpage;
    491 		else if (palloc == &pool_allocator_nointr)
    492 			palloc = &pool_allocator_nointr_fullpage;
    493 	}
    494 #endif /* POOL_SUBPAGE */
    495 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    496 		if (palloc->pa_pagesz == 0)
    497 			palloc->pa_pagesz = PAGE_SIZE;
    498 
    499 		TAILQ_INIT(&palloc->pa_list);
    500 
    501 		simple_lock_init(&palloc->pa_slock);
    502 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    503 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    504 		palloc->pa_flags |= PA_INITIALIZED;
    505 	}
    506 
    507 	if (align == 0)
    508 		align = ALIGN(1);
    509 
    510 	if (size < sizeof(struct pool_item))
    511 		size = sizeof(struct pool_item);
    512 
    513 	size = roundup(size, align);
    514 #ifdef DIAGNOSTIC
    515 	if (size > palloc->pa_pagesz)
    516 		panic("pool_init: pool item size (%lu) too large",
    517 		      (u_long)size);
    518 #endif
    519 
    520 	/*
    521 	 * Initialize the pool structure.
    522 	 */
    523 	LIST_INIT(&pp->pr_emptypages);
    524 	LIST_INIT(&pp->pr_fullpages);
    525 	LIST_INIT(&pp->pr_partpages);
    526 	LIST_INIT(&pp->pr_cachelist);
    527 	pp->pr_curpage = NULL;
    528 	pp->pr_npages = 0;
    529 	pp->pr_minitems = 0;
    530 	pp->pr_minpages = 0;
    531 	pp->pr_maxpages = UINT_MAX;
    532 	pp->pr_roflags = flags;
    533 	pp->pr_flags = 0;
    534 	pp->pr_size = size;
    535 	pp->pr_align = align;
    536 	pp->pr_wchan = wchan;
    537 	pp->pr_alloc = palloc;
    538 	pp->pr_nitems = 0;
    539 	pp->pr_nout = 0;
    540 	pp->pr_hardlimit = UINT_MAX;
    541 	pp->pr_hardlimit_warning = NULL;
    542 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    543 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    544 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    545 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    546 	pp->pr_drain_hook = NULL;
    547 	pp->pr_drain_hook_arg = NULL;
    548 
    549 	/*
    550 	 * Decide whether to put the page header off page to avoid
    551 	 * wasting too large a part of the page or too big item.
    552 	 * Off-page page headers go on a hash table, so we can match
    553 	 * a returned item with its header based on the page address.
    554 	 * We use 1/16 of the page size and about 8 times of the item
    555 	 * size as the threshold (XXX: tune)
    556 	 *
    557 	 * However, we'll put the header into the page if we can put
    558 	 * it without wasting any items.
    559 	 *
    560 	 * Silently enforce `0 <= ioff < align'.
    561 	 */
    562 	pp->pr_itemoffset = ioff %= align;
    563 	/* See the comment below about reserved bytes. */
    564 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    565 	phsize = ALIGN(sizeof(struct pool_item_header));
    566 	if ((pp->pr_roflags & PR_NOTOUCH) == 0 &&
    567 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    568 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    569 		/* Use the end of the page for the page header */
    570 		pp->pr_roflags |= PR_PHINPAGE;
    571 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    572 	} else {
    573 		/* The page header will be taken from our page header pool */
    574 		pp->pr_phoffset = 0;
    575 		off = palloc->pa_pagesz;
    576 		SPLAY_INIT(&pp->pr_phtree);
    577 	}
    578 
    579 	/*
    580 	 * Alignment is to take place at `ioff' within the item. This means
    581 	 * we must reserve up to `align - 1' bytes on the page to allow
    582 	 * appropriate positioning of each item.
    583 	 */
    584 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    585 	KASSERT(pp->pr_itemsperpage != 0);
    586 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    587 		int idx;
    588 
    589 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    590 		    idx++) {
    591 			/* nothing */
    592 		}
    593 		if (idx >= PHPOOL_MAX) {
    594 			/*
    595 			 * if you see this panic, consider to tweak
    596 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    597 			 */
    598 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    599 			    pp->pr_wchan, pp->pr_itemsperpage);
    600 		}
    601 		pp->pr_phpool = &phpool[idx];
    602 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    603 		pp->pr_phpool = &phpool[0];
    604 	}
    605 #if defined(DIAGNOSTIC)
    606 	else {
    607 		pp->pr_phpool = NULL;
    608 	}
    609 #endif
    610 
    611 	/*
    612 	 * Use the slack between the chunks and the page header
    613 	 * for "cache coloring".
    614 	 */
    615 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    616 	pp->pr_maxcolor = (slack / align) * align;
    617 	pp->pr_curcolor = 0;
    618 
    619 	pp->pr_nget = 0;
    620 	pp->pr_nfail = 0;
    621 	pp->pr_nput = 0;
    622 	pp->pr_npagealloc = 0;
    623 	pp->pr_npagefree = 0;
    624 	pp->pr_hiwat = 0;
    625 	pp->pr_nidle = 0;
    626 
    627 #ifdef POOL_DIAGNOSTIC
    628 	if (flags & PR_LOGGING) {
    629 		if (kmem_map == NULL ||
    630 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    631 		     M_TEMP, M_NOWAIT)) == NULL)
    632 			pp->pr_roflags &= ~PR_LOGGING;
    633 		pp->pr_curlogentry = 0;
    634 		pp->pr_logsize = pool_logsize;
    635 	}
    636 #endif
    637 
    638 	pp->pr_entered_file = NULL;
    639 	pp->pr_entered_line = 0;
    640 
    641 	simple_lock_init(&pp->pr_slock);
    642 
    643 	/*
    644 	 * Initialize private page header pool and cache magazine pool if we
    645 	 * haven't done so yet.
    646 	 * XXX LOCKING.
    647 	 */
    648 	if (phpool[0].pr_size == 0) {
    649 		int idx;
    650 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    651 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    652 			int nelem;
    653 			size_t sz;
    654 
    655 			nelem = PHPOOL_FREELIST_NELEM(idx);
    656 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    657 			    "phpool-%d", nelem);
    658 			sz = sizeof(struct pool_item_header);
    659 			if (nelem) {
    660 				sz = PR_FREELIST_ALIGN(sz)
    661 				    + nelem * sizeof(pool_item_freelist_t);
    662 			}
    663 			pool_init(&phpool[idx], sz, 0, 0, 0,
    664 			    phpool_names[idx], &pool_allocator_meta);
    665 		}
    666 #ifdef POOL_SUBPAGE
    667 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    668 		    PR_RECURSIVE, "psppool", &pool_allocator_meta);
    669 #endif
    670 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    671 		    0, "pcgpool", &pool_allocator_meta);
    672 	}
    673 
    674 	/* Insert into the list of all pools. */
    675 	simple_lock(&pool_head_slock);
    676 	LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    677 	simple_unlock(&pool_head_slock);
    678 
    679 	/* Insert this into the list of pools using this allocator. */
    680 	s = splvm();
    681 	simple_lock(&palloc->pa_slock);
    682 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    683 	simple_unlock(&palloc->pa_slock);
    684 	splx(s);
    685 }
    686 
    687 /*
    688  * De-commision a pool resource.
    689  */
    690 void
    691 pool_destroy(struct pool *pp)
    692 {
    693 	struct pool_pagelist pq;
    694 	struct pool_item_header *ph;
    695 	int s;
    696 
    697 	/* Remove from global pool list */
    698 	simple_lock(&pool_head_slock);
    699 	LIST_REMOVE(pp, pr_poollist);
    700 	if (drainpp == pp)
    701 		drainpp = NULL;
    702 	simple_unlock(&pool_head_slock);
    703 
    704 	/* Remove this pool from its allocator's list of pools. */
    705 	s = splvm();
    706 	simple_lock(&pp->pr_alloc->pa_slock);
    707 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    708 	simple_unlock(&pp->pr_alloc->pa_slock);
    709 	splx(s);
    710 
    711 	s = splvm();
    712 	simple_lock(&pp->pr_slock);
    713 
    714 	KASSERT(LIST_EMPTY(&pp->pr_cachelist));
    715 
    716 #ifdef DIAGNOSTIC
    717 	if (pp->pr_nout != 0) {
    718 		pr_printlog(pp, NULL, printf);
    719 		panic("pool_destroy: pool busy: still out: %u",
    720 		    pp->pr_nout);
    721 	}
    722 #endif
    723 
    724 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    725 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    726 
    727 	/* Remove all pages */
    728 	LIST_INIT(&pq);
    729 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    730 		pr_rmpage(pp, ph, &pq);
    731 
    732 	simple_unlock(&pp->pr_slock);
    733 	splx(s);
    734 
    735 	pr_pagelist_free(pp, &pq);
    736 
    737 #ifdef POOL_DIAGNOSTIC
    738 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    739 		free(pp->pr_log, M_TEMP);
    740 #endif
    741 }
    742 
    743 void
    744 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    745 {
    746 
    747 	/* XXX no locking -- must be used just after pool_init() */
    748 #ifdef DIAGNOSTIC
    749 	if (pp->pr_drain_hook != NULL)
    750 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    751 #endif
    752 	pp->pr_drain_hook = fn;
    753 	pp->pr_drain_hook_arg = arg;
    754 }
    755 
    756 static struct pool_item_header *
    757 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    758 {
    759 	struct pool_item_header *ph;
    760 	int s;
    761 
    762 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    763 
    764 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    765 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    766 	else {
    767 		s = splvm();
    768 		ph = pool_get(pp->pr_phpool, flags);
    769 		splx(s);
    770 	}
    771 
    772 	return (ph);
    773 }
    774 
    775 /*
    776  * Grab an item from the pool; must be called at appropriate spl level
    777  */
    778 void *
    779 #ifdef POOL_DIAGNOSTIC
    780 _pool_get(struct pool *pp, int flags, const char *file, long line)
    781 #else
    782 pool_get(struct pool *pp, int flags)
    783 #endif
    784 {
    785 	struct pool_item *pi;
    786 	struct pool_item_header *ph;
    787 	void *v;
    788 
    789 #ifdef DIAGNOSTIC
    790 	if (__predict_false(pp->pr_itemsperpage == 0))
    791 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    792 		    "pool not initialized?", pp);
    793 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    794 			    (flags & PR_WAITOK) != 0))
    795 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    796 
    797 #endif /* DIAGNOSTIC */
    798 #ifdef LOCKDEBUG
    799 	if (flags & PR_WAITOK)
    800 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
    801 	SCHED_ASSERT_UNLOCKED();
    802 #endif
    803 
    804 	simple_lock(&pp->pr_slock);
    805 	pr_enter(pp, file, line);
    806 
    807  startover:
    808 	/*
    809 	 * Check to see if we've reached the hard limit.  If we have,
    810 	 * and we can wait, then wait until an item has been returned to
    811 	 * the pool.
    812 	 */
    813 #ifdef DIAGNOSTIC
    814 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    815 		pr_leave(pp);
    816 		simple_unlock(&pp->pr_slock);
    817 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    818 	}
    819 #endif
    820 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    821 		if (pp->pr_drain_hook != NULL) {
    822 			/*
    823 			 * Since the drain hook is going to free things
    824 			 * back to the pool, unlock, call the hook, re-lock,
    825 			 * and check the hardlimit condition again.
    826 			 */
    827 			pr_leave(pp);
    828 			simple_unlock(&pp->pr_slock);
    829 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    830 			simple_lock(&pp->pr_slock);
    831 			pr_enter(pp, file, line);
    832 			if (pp->pr_nout < pp->pr_hardlimit)
    833 				goto startover;
    834 		}
    835 
    836 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    837 			/*
    838 			 * XXX: A warning isn't logged in this case.  Should
    839 			 * it be?
    840 			 */
    841 			pp->pr_flags |= PR_WANTED;
    842 			pr_leave(pp);
    843 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    844 			pr_enter(pp, file, line);
    845 			goto startover;
    846 		}
    847 
    848 		/*
    849 		 * Log a message that the hard limit has been hit.
    850 		 */
    851 		if (pp->pr_hardlimit_warning != NULL &&
    852 		    ratecheck(&pp->pr_hardlimit_warning_last,
    853 			      &pp->pr_hardlimit_ratecap))
    854 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    855 
    856 		pp->pr_nfail++;
    857 
    858 		pr_leave(pp);
    859 		simple_unlock(&pp->pr_slock);
    860 		return (NULL);
    861 	}
    862 
    863 	/*
    864 	 * The convention we use is that if `curpage' is not NULL, then
    865 	 * it points at a non-empty bucket. In particular, `curpage'
    866 	 * never points at a page header which has PR_PHINPAGE set and
    867 	 * has no items in its bucket.
    868 	 */
    869 	if ((ph = pp->pr_curpage) == NULL) {
    870 #ifdef DIAGNOSTIC
    871 		if (pp->pr_nitems != 0) {
    872 			simple_unlock(&pp->pr_slock);
    873 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    874 			    pp->pr_wchan, pp->pr_nitems);
    875 			panic("pool_get: nitems inconsistent");
    876 		}
    877 #endif
    878 
    879 		/*
    880 		 * Call the back-end page allocator for more memory.
    881 		 * Release the pool lock, as the back-end page allocator
    882 		 * may block.
    883 		 */
    884 		pr_leave(pp);
    885 		simple_unlock(&pp->pr_slock);
    886 		v = pool_allocator_alloc(pp, flags);
    887 		if (__predict_true(v != NULL))
    888 			ph = pool_alloc_item_header(pp, v, flags);
    889 
    890 		if (__predict_false(v == NULL || ph == NULL)) {
    891 			if (v != NULL)
    892 				pool_allocator_free(pp, v);
    893 
    894 			simple_lock(&pp->pr_slock);
    895 			pr_enter(pp, file, line);
    896 
    897 			/*
    898 			 * We were unable to allocate a page or item
    899 			 * header, but we released the lock during
    900 			 * allocation, so perhaps items were freed
    901 			 * back to the pool.  Check for this case.
    902 			 */
    903 			if (pp->pr_curpage != NULL)
    904 				goto startover;
    905 
    906 			if ((flags & PR_WAITOK) == 0) {
    907 				pp->pr_nfail++;
    908 				pr_leave(pp);
    909 				simple_unlock(&pp->pr_slock);
    910 				return (NULL);
    911 			}
    912 
    913 			/*
    914 			 * Wait for items to be returned to this pool.
    915 			 *
    916 			 * wake up once a second and try again,
    917 			 * as the check in pool_cache_put_paddr() is racy.
    918 			 */
    919 			pp->pr_flags |= PR_WANTED;
    920 			/* PA_WANTED is already set on the allocator. */
    921 			pr_leave(pp);
    922 			ltsleep(pp, PSWP, pp->pr_wchan, hz, &pp->pr_slock);
    923 			pr_enter(pp, file, line);
    924 			goto startover;
    925 		}
    926 
    927 		/* We have more memory; add it to the pool */
    928 		simple_lock(&pp->pr_slock);
    929 		pr_enter(pp, file, line);
    930 		pool_prime_page(pp, v, ph);
    931 		pp->pr_npagealloc++;
    932 
    933 		/* Start the allocation process over. */
    934 		goto startover;
    935 	}
    936 	if (pp->pr_roflags & PR_NOTOUCH) {
    937 #ifdef DIAGNOSTIC
    938 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
    939 			pr_leave(pp);
    940 			simple_unlock(&pp->pr_slock);
    941 			panic("pool_get: %s: page empty", pp->pr_wchan);
    942 		}
    943 #endif
    944 		v = pr_item_notouch_get(pp, ph);
    945 #ifdef POOL_DIAGNOSTIC
    946 		pr_log(pp, v, PRLOG_GET, file, line);
    947 #endif
    948 	} else {
    949 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    950 		if (__predict_false(v == NULL)) {
    951 			pr_leave(pp);
    952 			simple_unlock(&pp->pr_slock);
    953 			panic("pool_get: %s: page empty", pp->pr_wchan);
    954 		}
    955 #ifdef DIAGNOSTIC
    956 		if (__predict_false(pp->pr_nitems == 0)) {
    957 			pr_leave(pp);
    958 			simple_unlock(&pp->pr_slock);
    959 			printf("pool_get: %s: items on itemlist, nitems %u\n",
    960 			    pp->pr_wchan, pp->pr_nitems);
    961 			panic("pool_get: nitems inconsistent");
    962 		}
    963 #endif
    964 
    965 #ifdef POOL_DIAGNOSTIC
    966 		pr_log(pp, v, PRLOG_GET, file, line);
    967 #endif
    968 
    969 #ifdef DIAGNOSTIC
    970 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    971 			pr_printlog(pp, pi, printf);
    972 			panic("pool_get(%s): free list modified: "
    973 			    "magic=%x; page %p; item addr %p\n",
    974 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    975 		}
    976 #endif
    977 
    978 		/*
    979 		 * Remove from item list.
    980 		 */
    981 		LIST_REMOVE(pi, pi_list);
    982 	}
    983 	pp->pr_nitems--;
    984 	pp->pr_nout++;
    985 	if (ph->ph_nmissing == 0) {
    986 #ifdef DIAGNOSTIC
    987 		if (__predict_false(pp->pr_nidle == 0))
    988 			panic("pool_get: nidle inconsistent");
    989 #endif
    990 		pp->pr_nidle--;
    991 
    992 		/*
    993 		 * This page was previously empty.  Move it to the list of
    994 		 * partially-full pages.  This page is already curpage.
    995 		 */
    996 		LIST_REMOVE(ph, ph_pagelist);
    997 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    998 	}
    999 	ph->ph_nmissing++;
   1000 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1001 #ifdef DIAGNOSTIC
   1002 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1003 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1004 			pr_leave(pp);
   1005 			simple_unlock(&pp->pr_slock);
   1006 			panic("pool_get: %s: nmissing inconsistent",
   1007 			    pp->pr_wchan);
   1008 		}
   1009 #endif
   1010 		/*
   1011 		 * This page is now full.  Move it to the full list
   1012 		 * and select a new current page.
   1013 		 */
   1014 		LIST_REMOVE(ph, ph_pagelist);
   1015 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1016 		pool_update_curpage(pp);
   1017 	}
   1018 
   1019 	pp->pr_nget++;
   1020 	pr_leave(pp);
   1021 
   1022 	/*
   1023 	 * If we have a low water mark and we are now below that low
   1024 	 * water mark, add more items to the pool.
   1025 	 */
   1026 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1027 		/*
   1028 		 * XXX: Should we log a warning?  Should we set up a timeout
   1029 		 * to try again in a second or so?  The latter could break
   1030 		 * a caller's assumptions about interrupt protection, etc.
   1031 		 */
   1032 	}
   1033 
   1034 	simple_unlock(&pp->pr_slock);
   1035 	return (v);
   1036 }
   1037 
   1038 /*
   1039  * Internal version of pool_put().  Pool is already locked/entered.
   1040  */
   1041 static void
   1042 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1043 {
   1044 	struct pool_item *pi = v;
   1045 	struct pool_item_header *ph;
   1046 	caddr_t page;
   1047 	int s;
   1048 
   1049 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
   1050 	SCHED_ASSERT_UNLOCKED();
   1051 
   1052 	page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
   1053 
   1054 #ifdef DIAGNOSTIC
   1055 	if (__predict_false(pp->pr_nout == 0)) {
   1056 		printf("pool %s: putting with none out\n",
   1057 		    pp->pr_wchan);
   1058 		panic("pool_put");
   1059 	}
   1060 #endif
   1061 
   1062 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
   1063 		pr_printlog(pp, NULL, printf);
   1064 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1065 	}
   1066 
   1067 #ifdef LOCKDEBUG
   1068 	/*
   1069 	 * Check if we're freeing a locked simple lock.
   1070 	 */
   1071 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
   1072 #endif
   1073 
   1074 	/*
   1075 	 * Return to item list.
   1076 	 */
   1077 	if (pp->pr_roflags & PR_NOTOUCH) {
   1078 		pr_item_notouch_put(pp, ph, v);
   1079 	} else {
   1080 #ifdef DIAGNOSTIC
   1081 		pi->pi_magic = PI_MAGIC;
   1082 #endif
   1083 #ifdef DEBUG
   1084 		{
   1085 			int i, *ip = v;
   1086 
   1087 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1088 				*ip++ = PI_MAGIC;
   1089 			}
   1090 		}
   1091 #endif
   1092 
   1093 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1094 	}
   1095 	KDASSERT(ph->ph_nmissing != 0);
   1096 	ph->ph_nmissing--;
   1097 	pp->pr_nput++;
   1098 	pp->pr_nitems++;
   1099 	pp->pr_nout--;
   1100 
   1101 	/* Cancel "pool empty" condition if it exists */
   1102 	if (pp->pr_curpage == NULL)
   1103 		pp->pr_curpage = ph;
   1104 
   1105 	if (pp->pr_flags & PR_WANTED) {
   1106 		pp->pr_flags &= ~PR_WANTED;
   1107 		if (ph->ph_nmissing == 0)
   1108 			pp->pr_nidle++;
   1109 		wakeup((caddr_t)pp);
   1110 		return;
   1111 	}
   1112 
   1113 	/*
   1114 	 * If this page is now empty, do one of two things:
   1115 	 *
   1116 	 *	(1) If we have more pages than the page high water mark,
   1117 	 *	    free the page back to the system.  ONLY CONSIDER
   1118 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1119 	 *	    CLAIM.
   1120 	 *
   1121 	 *	(2) Otherwise, move the page to the empty page list.
   1122 	 *
   1123 	 * Either way, select a new current page (so we use a partially-full
   1124 	 * page if one is available).
   1125 	 */
   1126 	if (ph->ph_nmissing == 0) {
   1127 		pp->pr_nidle++;
   1128 		if (pp->pr_npages > pp->pr_minpages &&
   1129 		    (pp->pr_npages > pp->pr_maxpages ||
   1130 		     (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
   1131 			pr_rmpage(pp, ph, pq);
   1132 		} else {
   1133 			LIST_REMOVE(ph, ph_pagelist);
   1134 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1135 
   1136 			/*
   1137 			 * Update the timestamp on the page.  A page must
   1138 			 * be idle for some period of time before it can
   1139 			 * be reclaimed by the pagedaemon.  This minimizes
   1140 			 * ping-pong'ing for memory.
   1141 			 */
   1142 			s = splclock();
   1143 			ph->ph_time = mono_time;
   1144 			splx(s);
   1145 		}
   1146 		pool_update_curpage(pp);
   1147 	}
   1148 
   1149 	/*
   1150 	 * If the page was previously completely full, move it to the
   1151 	 * partially-full list and make it the current page.  The next
   1152 	 * allocation will get the item from this page, instead of
   1153 	 * further fragmenting the pool.
   1154 	 */
   1155 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1156 		LIST_REMOVE(ph, ph_pagelist);
   1157 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1158 		pp->pr_curpage = ph;
   1159 	}
   1160 }
   1161 
   1162 /*
   1163  * Return resource to the pool; must be called at appropriate spl level
   1164  */
   1165 #ifdef POOL_DIAGNOSTIC
   1166 void
   1167 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1168 {
   1169 	struct pool_pagelist pq;
   1170 
   1171 	LIST_INIT(&pq);
   1172 
   1173 	simple_lock(&pp->pr_slock);
   1174 	pr_enter(pp, file, line);
   1175 
   1176 	pr_log(pp, v, PRLOG_PUT, file, line);
   1177 
   1178 	pool_do_put(pp, v, &pq);
   1179 
   1180 	pr_leave(pp);
   1181 	simple_unlock(&pp->pr_slock);
   1182 
   1183 	pr_pagelist_free(pp, &pq);
   1184 }
   1185 #undef pool_put
   1186 #endif /* POOL_DIAGNOSTIC */
   1187 
   1188 void
   1189 pool_put(struct pool *pp, void *v)
   1190 {
   1191 	struct pool_pagelist pq;
   1192 
   1193 	LIST_INIT(&pq);
   1194 
   1195 	simple_lock(&pp->pr_slock);
   1196 	pool_do_put(pp, v, &pq);
   1197 	simple_unlock(&pp->pr_slock);
   1198 
   1199 	pr_pagelist_free(pp, &pq);
   1200 }
   1201 
   1202 #ifdef POOL_DIAGNOSTIC
   1203 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1204 #endif
   1205 
   1206 /*
   1207  * Add N items to the pool.
   1208  */
   1209 int
   1210 pool_prime(struct pool *pp, int n)
   1211 {
   1212 	struct pool_item_header *ph = NULL;
   1213 	caddr_t cp;
   1214 	int newpages;
   1215 
   1216 	simple_lock(&pp->pr_slock);
   1217 
   1218 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1219 
   1220 	while (newpages-- > 0) {
   1221 		simple_unlock(&pp->pr_slock);
   1222 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
   1223 		if (__predict_true(cp != NULL))
   1224 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1225 
   1226 		if (__predict_false(cp == NULL || ph == NULL)) {
   1227 			if (cp != NULL)
   1228 				pool_allocator_free(pp, cp);
   1229 			simple_lock(&pp->pr_slock);
   1230 			break;
   1231 		}
   1232 
   1233 		simple_lock(&pp->pr_slock);
   1234 		pool_prime_page(pp, cp, ph);
   1235 		pp->pr_npagealloc++;
   1236 		pp->pr_minpages++;
   1237 	}
   1238 
   1239 	if (pp->pr_minpages >= pp->pr_maxpages)
   1240 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1241 
   1242 	simple_unlock(&pp->pr_slock);
   1243 	return (0);
   1244 }
   1245 
   1246 /*
   1247  * Add a page worth of items to the pool.
   1248  *
   1249  * Note, we must be called with the pool descriptor LOCKED.
   1250  */
   1251 static void
   1252 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1253 {
   1254 	struct pool_item *pi;
   1255 	caddr_t cp = storage;
   1256 	unsigned int align = pp->pr_align;
   1257 	unsigned int ioff = pp->pr_itemoffset;
   1258 	int n;
   1259 	int s;
   1260 
   1261 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
   1262 
   1263 #ifdef DIAGNOSTIC
   1264 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1265 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1266 #endif
   1267 
   1268 	/*
   1269 	 * Insert page header.
   1270 	 */
   1271 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1272 	LIST_INIT(&ph->ph_itemlist);
   1273 	ph->ph_page = storage;
   1274 	ph->ph_nmissing = 0;
   1275 	s = splclock();
   1276 	ph->ph_time = mono_time;
   1277 	splx(s);
   1278 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1279 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1280 
   1281 	pp->pr_nidle++;
   1282 
   1283 	/*
   1284 	 * Color this page.
   1285 	 */
   1286 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1287 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1288 		pp->pr_curcolor = 0;
   1289 
   1290 	/*
   1291 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1292 	 */
   1293 	if (ioff != 0)
   1294 		cp = (caddr_t)(cp + (align - ioff));
   1295 
   1296 	/*
   1297 	 * Insert remaining chunks on the bucket list.
   1298 	 */
   1299 	n = pp->pr_itemsperpage;
   1300 	pp->pr_nitems += n;
   1301 
   1302 	if (pp->pr_roflags & PR_NOTOUCH) {
   1303 		pool_item_freelist_t *freelist = PR_FREELIST(ph);
   1304 		int i;
   1305 
   1306 		ph->ph_off = cp - storage;
   1307 		ph->ph_firstfree = 0;
   1308 		for (i = 0; i < n - 1; i++)
   1309 			freelist[i] = i + 1;
   1310 		freelist[n - 1] = PR_INDEX_EOL;
   1311 	} else {
   1312 		while (n--) {
   1313 			pi = (struct pool_item *)cp;
   1314 
   1315 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1316 
   1317 			/* Insert on page list */
   1318 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1319 #ifdef DIAGNOSTIC
   1320 			pi->pi_magic = PI_MAGIC;
   1321 #endif
   1322 			cp = (caddr_t)(cp + pp->pr_size);
   1323 		}
   1324 	}
   1325 
   1326 	/*
   1327 	 * If the pool was depleted, point at the new page.
   1328 	 */
   1329 	if (pp->pr_curpage == NULL)
   1330 		pp->pr_curpage = ph;
   1331 
   1332 	if (++pp->pr_npages > pp->pr_hiwat)
   1333 		pp->pr_hiwat = pp->pr_npages;
   1334 }
   1335 
   1336 /*
   1337  * Used by pool_get() when nitems drops below the low water mark.  This
   1338  * is used to catch up pr_nitems with the low water mark.
   1339  *
   1340  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1341  *
   1342  * Note 2, we must be called with the pool already locked, and we return
   1343  * with it locked.
   1344  */
   1345 static int
   1346 pool_catchup(struct pool *pp)
   1347 {
   1348 	struct pool_item_header *ph = NULL;
   1349 	caddr_t cp;
   1350 	int error = 0;
   1351 
   1352 	while (POOL_NEEDS_CATCHUP(pp)) {
   1353 		/*
   1354 		 * Call the page back-end allocator for more memory.
   1355 		 *
   1356 		 * XXX: We never wait, so should we bother unlocking
   1357 		 * the pool descriptor?
   1358 		 */
   1359 		simple_unlock(&pp->pr_slock);
   1360 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
   1361 		if (__predict_true(cp != NULL))
   1362 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1363 		if (__predict_false(cp == NULL || ph == NULL)) {
   1364 			if (cp != NULL)
   1365 				pool_allocator_free(pp, cp);
   1366 			error = ENOMEM;
   1367 			simple_lock(&pp->pr_slock);
   1368 			break;
   1369 		}
   1370 		simple_lock(&pp->pr_slock);
   1371 		pool_prime_page(pp, cp, ph);
   1372 		pp->pr_npagealloc++;
   1373 	}
   1374 
   1375 	return (error);
   1376 }
   1377 
   1378 static void
   1379 pool_update_curpage(struct pool *pp)
   1380 {
   1381 
   1382 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1383 	if (pp->pr_curpage == NULL) {
   1384 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1385 	}
   1386 }
   1387 
   1388 void
   1389 pool_setlowat(struct pool *pp, int n)
   1390 {
   1391 
   1392 	simple_lock(&pp->pr_slock);
   1393 
   1394 	pp->pr_minitems = n;
   1395 	pp->pr_minpages = (n == 0)
   1396 		? 0
   1397 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1398 
   1399 	/* Make sure we're caught up with the newly-set low water mark. */
   1400 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1401 		/*
   1402 		 * XXX: Should we log a warning?  Should we set up a timeout
   1403 		 * to try again in a second or so?  The latter could break
   1404 		 * a caller's assumptions about interrupt protection, etc.
   1405 		 */
   1406 	}
   1407 
   1408 	simple_unlock(&pp->pr_slock);
   1409 }
   1410 
   1411 void
   1412 pool_sethiwat(struct pool *pp, int n)
   1413 {
   1414 
   1415 	simple_lock(&pp->pr_slock);
   1416 
   1417 	pp->pr_maxpages = (n == 0)
   1418 		? 0
   1419 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1420 
   1421 	simple_unlock(&pp->pr_slock);
   1422 }
   1423 
   1424 void
   1425 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1426 {
   1427 
   1428 	simple_lock(&pp->pr_slock);
   1429 
   1430 	pp->pr_hardlimit = n;
   1431 	pp->pr_hardlimit_warning = warnmess;
   1432 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1433 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1434 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1435 
   1436 	/*
   1437 	 * In-line version of pool_sethiwat(), because we don't want to
   1438 	 * release the lock.
   1439 	 */
   1440 	pp->pr_maxpages = (n == 0)
   1441 		? 0
   1442 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1443 
   1444 	simple_unlock(&pp->pr_slock);
   1445 }
   1446 
   1447 /*
   1448  * Release all complete pages that have not been used recently.
   1449  */
   1450 int
   1451 #ifdef POOL_DIAGNOSTIC
   1452 _pool_reclaim(struct pool *pp, const char *file, long line)
   1453 #else
   1454 pool_reclaim(struct pool *pp)
   1455 #endif
   1456 {
   1457 	struct pool_item_header *ph, *phnext;
   1458 	struct pool_cache *pc;
   1459 	struct pool_pagelist pq;
   1460 	struct pool_cache_grouplist pcgl;
   1461 	struct timeval curtime, diff;
   1462 	int s;
   1463 
   1464 	if (pp->pr_drain_hook != NULL) {
   1465 		/*
   1466 		 * The drain hook must be called with the pool unlocked.
   1467 		 */
   1468 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1469 	}
   1470 
   1471 	if (simple_lock_try(&pp->pr_slock) == 0)
   1472 		return (0);
   1473 	pr_enter(pp, file, line);
   1474 
   1475 	LIST_INIT(&pq);
   1476 	LIST_INIT(&pcgl);
   1477 
   1478 	/*
   1479 	 * Reclaim items from the pool's caches.
   1480 	 */
   1481 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
   1482 		pool_cache_reclaim(pc, &pq, &pcgl);
   1483 
   1484 	s = splclock();
   1485 	curtime = mono_time;
   1486 	splx(s);
   1487 
   1488 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1489 		phnext = LIST_NEXT(ph, ph_pagelist);
   1490 
   1491 		/* Check our minimum page claim */
   1492 		if (pp->pr_npages <= pp->pr_minpages)
   1493 			break;
   1494 
   1495 		KASSERT(ph->ph_nmissing == 0);
   1496 		timersub(&curtime, &ph->ph_time, &diff);
   1497 		if (diff.tv_sec < pool_inactive_time)
   1498 			continue;
   1499 
   1500 		/*
   1501 		 * If freeing this page would put us below
   1502 		 * the low water mark, stop now.
   1503 		 */
   1504 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1505 		    pp->pr_minitems)
   1506 			break;
   1507 
   1508 		pr_rmpage(pp, ph, &pq);
   1509 	}
   1510 
   1511 	pr_leave(pp);
   1512 	simple_unlock(&pp->pr_slock);
   1513 	if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
   1514 		return 0;
   1515 
   1516 	pr_pagelist_free(pp, &pq);
   1517 	pcg_grouplist_free(&pcgl);
   1518 	return (1);
   1519 }
   1520 
   1521 /*
   1522  * Drain pools, one at a time.
   1523  *
   1524  * Note, we must never be called from an interrupt context.
   1525  */
   1526 void
   1527 pool_drain(void *arg)
   1528 {
   1529 	struct pool *pp;
   1530 	int s;
   1531 
   1532 	pp = NULL;
   1533 	s = splvm();
   1534 	simple_lock(&pool_head_slock);
   1535 	if (drainpp == NULL) {
   1536 		drainpp = LIST_FIRST(&pool_head);
   1537 	}
   1538 	if (drainpp) {
   1539 		pp = drainpp;
   1540 		drainpp = LIST_NEXT(pp, pr_poollist);
   1541 	}
   1542 	simple_unlock(&pool_head_slock);
   1543 	pool_reclaim(pp);
   1544 	splx(s);
   1545 }
   1546 
   1547 /*
   1548  * Diagnostic helpers.
   1549  */
   1550 void
   1551 pool_print(struct pool *pp, const char *modif)
   1552 {
   1553 	int s;
   1554 
   1555 	s = splvm();
   1556 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1557 		printf("pool %s is locked; try again later\n",
   1558 		    pp->pr_wchan);
   1559 		splx(s);
   1560 		return;
   1561 	}
   1562 	pool_print1(pp, modif, printf);
   1563 	simple_unlock(&pp->pr_slock);
   1564 	splx(s);
   1565 }
   1566 
   1567 void
   1568 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1569 {
   1570 	struct pool *pp;
   1571 
   1572 	if (simple_lock_try(&pool_head_slock) == 0) {
   1573 		(*pr)("WARNING: pool_head_slock is locked\n");
   1574 	} else {
   1575 		simple_unlock(&pool_head_slock);
   1576 	}
   1577 
   1578 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   1579 		pool_printit(pp, modif, pr);
   1580 	}
   1581 }
   1582 
   1583 void
   1584 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1585 {
   1586 
   1587 	if (pp == NULL) {
   1588 		(*pr)("Must specify a pool to print.\n");
   1589 		return;
   1590 	}
   1591 
   1592 	/*
   1593 	 * Called from DDB; interrupts should be blocked, and all
   1594 	 * other processors should be paused.  We can skip locking
   1595 	 * the pool in this case.
   1596 	 *
   1597 	 * We do a simple_lock_try() just to print the lock
   1598 	 * status, however.
   1599 	 */
   1600 
   1601 	if (simple_lock_try(&pp->pr_slock) == 0)
   1602 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1603 	else
   1604 		simple_unlock(&pp->pr_slock);
   1605 
   1606 	pool_print1(pp, modif, pr);
   1607 }
   1608 
   1609 static void
   1610 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1611     void (*pr)(const char *, ...))
   1612 {
   1613 	struct pool_item_header *ph;
   1614 #ifdef DIAGNOSTIC
   1615 	struct pool_item *pi;
   1616 #endif
   1617 
   1618 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1619 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1620 		    ph->ph_page, ph->ph_nmissing,
   1621 		    (u_long)ph->ph_time.tv_sec,
   1622 		    (u_long)ph->ph_time.tv_usec);
   1623 #ifdef DIAGNOSTIC
   1624 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1625 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1626 				if (pi->pi_magic != PI_MAGIC) {
   1627 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1628 					    pi, pi->pi_magic);
   1629 				}
   1630 			}
   1631 		}
   1632 #endif
   1633 	}
   1634 }
   1635 
   1636 static void
   1637 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1638 {
   1639 	struct pool_item_header *ph;
   1640 	struct pool_cache *pc;
   1641 	struct pool_cache_group *pcg;
   1642 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1643 	char c;
   1644 
   1645 	while ((c = *modif++) != '\0') {
   1646 		if (c == 'l')
   1647 			print_log = 1;
   1648 		if (c == 'p')
   1649 			print_pagelist = 1;
   1650 		if (c == 'c')
   1651 			print_cache = 1;
   1652 	}
   1653 
   1654 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1655 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1656 	    pp->pr_roflags);
   1657 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1658 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1659 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1660 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1661 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1662 
   1663 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1664 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1665 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1666 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1667 
   1668 	if (print_pagelist == 0)
   1669 		goto skip_pagelist;
   1670 
   1671 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1672 		(*pr)("\n\tempty page list:\n");
   1673 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1674 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1675 		(*pr)("\n\tfull page list:\n");
   1676 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1677 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1678 		(*pr)("\n\tpartial-page list:\n");
   1679 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1680 
   1681 	if (pp->pr_curpage == NULL)
   1682 		(*pr)("\tno current page\n");
   1683 	else
   1684 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1685 
   1686  skip_pagelist:
   1687 	if (print_log == 0)
   1688 		goto skip_log;
   1689 
   1690 	(*pr)("\n");
   1691 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1692 		(*pr)("\tno log\n");
   1693 	else
   1694 		pr_printlog(pp, NULL, pr);
   1695 
   1696  skip_log:
   1697 	if (print_cache == 0)
   1698 		goto skip_cache;
   1699 
   1700 #define PR_GROUPLIST(pcg)						\
   1701 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1702 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1703 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1704 		    POOL_PADDR_INVALID) {				\
   1705 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1706 			    pcg->pcg_objects[i].pcgo_va,		\
   1707 			    (unsigned long long)			\
   1708 			    pcg->pcg_objects[i].pcgo_pa);		\
   1709 		} else {						\
   1710 			(*pr)("\t\t\t%p\n",				\
   1711 			    pcg->pcg_objects[i].pcgo_va);		\
   1712 		}							\
   1713 	}
   1714 
   1715 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
   1716 		(*pr)("\tcache %p\n", pc);
   1717 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1718 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1719 		(*pr)("\t    full groups:\n");
   1720 		LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
   1721 			PR_GROUPLIST(pcg);
   1722 		}
   1723 		(*pr)("\t    partial groups:\n");
   1724 		LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
   1725 			PR_GROUPLIST(pcg);
   1726 		}
   1727 		(*pr)("\t    empty groups:\n");
   1728 		LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
   1729 			PR_GROUPLIST(pcg);
   1730 		}
   1731 	}
   1732 #undef PR_GROUPLIST
   1733 
   1734  skip_cache:
   1735 	pr_enter_check(pp, pr);
   1736 }
   1737 
   1738 static int
   1739 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1740 {
   1741 	struct pool_item *pi;
   1742 	caddr_t page;
   1743 	int n;
   1744 
   1745 	page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
   1746 	if (page != ph->ph_page &&
   1747 	    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1748 		if (label != NULL)
   1749 			printf("%s: ", label);
   1750 		printf("pool(%p:%s): page inconsistency: page %p;"
   1751 		       " at page head addr %p (p %p)\n", pp,
   1752 			pp->pr_wchan, ph->ph_page,
   1753 			ph, page);
   1754 		return 1;
   1755 	}
   1756 
   1757 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1758 		return 0;
   1759 
   1760 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1761 	     pi != NULL;
   1762 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1763 
   1764 #ifdef DIAGNOSTIC
   1765 		if (pi->pi_magic != PI_MAGIC) {
   1766 			if (label != NULL)
   1767 				printf("%s: ", label);
   1768 			printf("pool(%s): free list modified: magic=%x;"
   1769 			       " page %p; item ordinal %d;"
   1770 			       " addr %p (p %p)\n",
   1771 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1772 				n, pi, page);
   1773 			panic("pool");
   1774 		}
   1775 #endif
   1776 		page =
   1777 		    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
   1778 		if (page == ph->ph_page)
   1779 			continue;
   1780 
   1781 		if (label != NULL)
   1782 			printf("%s: ", label);
   1783 		printf("pool(%p:%s): page inconsistency: page %p;"
   1784 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1785 			pp->pr_wchan, ph->ph_page,
   1786 			n, pi, page);
   1787 		return 1;
   1788 	}
   1789 	return 0;
   1790 }
   1791 
   1792 
   1793 int
   1794 pool_chk(struct pool *pp, const char *label)
   1795 {
   1796 	struct pool_item_header *ph;
   1797 	int r = 0;
   1798 
   1799 	simple_lock(&pp->pr_slock);
   1800 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1801 		r = pool_chk_page(pp, label, ph);
   1802 		if (r) {
   1803 			goto out;
   1804 		}
   1805 	}
   1806 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1807 		r = pool_chk_page(pp, label, ph);
   1808 		if (r) {
   1809 			goto out;
   1810 		}
   1811 	}
   1812 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1813 		r = pool_chk_page(pp, label, ph);
   1814 		if (r) {
   1815 			goto out;
   1816 		}
   1817 	}
   1818 
   1819 out:
   1820 	simple_unlock(&pp->pr_slock);
   1821 	return (r);
   1822 }
   1823 
   1824 /*
   1825  * pool_cache_init:
   1826  *
   1827  *	Initialize a pool cache.
   1828  *
   1829  *	NOTE: If the pool must be protected from interrupts, we expect
   1830  *	to be called at the appropriate interrupt priority level.
   1831  */
   1832 void
   1833 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1834     int (*ctor)(void *, void *, int),
   1835     void (*dtor)(void *, void *),
   1836     void *arg)
   1837 {
   1838 
   1839 	LIST_INIT(&pc->pc_emptygroups);
   1840 	LIST_INIT(&pc->pc_fullgroups);
   1841 	LIST_INIT(&pc->pc_partgroups);
   1842 	simple_lock_init(&pc->pc_slock);
   1843 
   1844 	pc->pc_pool = pp;
   1845 
   1846 	pc->pc_ctor = ctor;
   1847 	pc->pc_dtor = dtor;
   1848 	pc->pc_arg  = arg;
   1849 
   1850 	pc->pc_hits   = 0;
   1851 	pc->pc_misses = 0;
   1852 
   1853 	pc->pc_ngroups = 0;
   1854 
   1855 	pc->pc_nitems = 0;
   1856 
   1857 	simple_lock(&pp->pr_slock);
   1858 	LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
   1859 	simple_unlock(&pp->pr_slock);
   1860 }
   1861 
   1862 /*
   1863  * pool_cache_destroy:
   1864  *
   1865  *	Destroy a pool cache.
   1866  */
   1867 void
   1868 pool_cache_destroy(struct pool_cache *pc)
   1869 {
   1870 	struct pool *pp = pc->pc_pool;
   1871 
   1872 	/* First, invalidate the entire cache. */
   1873 	pool_cache_invalidate(pc);
   1874 
   1875 	/* ...and remove it from the pool's cache list. */
   1876 	simple_lock(&pp->pr_slock);
   1877 	LIST_REMOVE(pc, pc_poollist);
   1878 	simple_unlock(&pp->pr_slock);
   1879 }
   1880 
   1881 static inline void *
   1882 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
   1883 {
   1884 	void *object;
   1885 	u_int idx;
   1886 
   1887 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1888 	KASSERT(pcg->pcg_avail != 0);
   1889 	idx = --pcg->pcg_avail;
   1890 
   1891 	KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
   1892 	object = pcg->pcg_objects[idx].pcgo_va;
   1893 	if (pap != NULL)
   1894 		*pap = pcg->pcg_objects[idx].pcgo_pa;
   1895 	pcg->pcg_objects[idx].pcgo_va = NULL;
   1896 
   1897 	return (object);
   1898 }
   1899 
   1900 static inline void
   1901 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
   1902 {
   1903 	u_int idx;
   1904 
   1905 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   1906 	idx = pcg->pcg_avail++;
   1907 
   1908 	KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
   1909 	pcg->pcg_objects[idx].pcgo_va = object;
   1910 	pcg->pcg_objects[idx].pcgo_pa = pa;
   1911 }
   1912 
   1913 static void
   1914 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
   1915 {
   1916 	struct pool_cache_group *pcg;
   1917 	int s;
   1918 
   1919 	s = splvm();
   1920 	while ((pcg = LIST_FIRST(pcgl)) != NULL) {
   1921 		LIST_REMOVE(pcg, pcg_list);
   1922 		pool_put(&pcgpool, pcg);
   1923 	}
   1924 	splx(s);
   1925 }
   1926 
   1927 /*
   1928  * pool_cache_get{,_paddr}:
   1929  *
   1930  *	Get an object from a pool cache (optionally returning
   1931  *	the physical address of the object).
   1932  */
   1933 void *
   1934 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
   1935 {
   1936 	struct pool_cache_group *pcg;
   1937 	void *object;
   1938 
   1939 #ifdef LOCKDEBUG
   1940 	if (flags & PR_WAITOK)
   1941 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
   1942 #endif
   1943 
   1944 	simple_lock(&pc->pc_slock);
   1945 
   1946 	pcg = LIST_FIRST(&pc->pc_partgroups);
   1947 	if (pcg == NULL) {
   1948 		pcg = LIST_FIRST(&pc->pc_fullgroups);
   1949 		if (pcg != NULL) {
   1950 			LIST_REMOVE(pcg, pcg_list);
   1951 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   1952 		}
   1953 	}
   1954 	if (pcg == NULL) {
   1955 
   1956 		/*
   1957 		 * No groups with any available objects.  Allocate
   1958 		 * a new object, construct it, and return it to
   1959 		 * the caller.  We will allocate a group, if necessary,
   1960 		 * when the object is freed back to the cache.
   1961 		 */
   1962 		pc->pc_misses++;
   1963 		simple_unlock(&pc->pc_slock);
   1964 		object = pool_get(pc->pc_pool, flags);
   1965 		if (object != NULL && pc->pc_ctor != NULL) {
   1966 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   1967 				pool_put(pc->pc_pool, object);
   1968 				return (NULL);
   1969 			}
   1970 		}
   1971 		if (object != NULL && pap != NULL) {
   1972 #ifdef POOL_VTOPHYS
   1973 			*pap = POOL_VTOPHYS(object);
   1974 #else
   1975 			*pap = POOL_PADDR_INVALID;
   1976 #endif
   1977 		}
   1978 		return (object);
   1979 	}
   1980 
   1981 	pc->pc_hits++;
   1982 	pc->pc_nitems--;
   1983 	object = pcg_get(pcg, pap);
   1984 
   1985 	if (pcg->pcg_avail == 0) {
   1986 		LIST_REMOVE(pcg, pcg_list);
   1987 		LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
   1988 	}
   1989 	simple_unlock(&pc->pc_slock);
   1990 
   1991 	return (object);
   1992 }
   1993 
   1994 /*
   1995  * pool_cache_put{,_paddr}:
   1996  *
   1997  *	Put an object back to the pool cache (optionally caching the
   1998  *	physical address of the object).
   1999  */
   2000 void
   2001 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
   2002 {
   2003 	struct pool_cache_group *pcg;
   2004 	int s;
   2005 
   2006 	if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
   2007 		goto destruct;
   2008 	}
   2009 
   2010 	simple_lock(&pc->pc_slock);
   2011 
   2012 	pcg = LIST_FIRST(&pc->pc_partgroups);
   2013 	if (pcg == NULL) {
   2014 		pcg = LIST_FIRST(&pc->pc_emptygroups);
   2015 		if (pcg != NULL) {
   2016 			LIST_REMOVE(pcg, pcg_list);
   2017 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2018 		}
   2019 	}
   2020 	if (pcg == NULL) {
   2021 
   2022 		/*
   2023 		 * No empty groups to free the object to.  Attempt to
   2024 		 * allocate one.
   2025 		 */
   2026 		simple_unlock(&pc->pc_slock);
   2027 		s = splvm();
   2028 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   2029 		splx(s);
   2030 		if (pcg == NULL) {
   2031 destruct:
   2032 
   2033 			/*
   2034 			 * Unable to allocate a cache group; destruct the object
   2035 			 * and free it back to the pool.
   2036 			 */
   2037 			pool_cache_destruct_object(pc, object);
   2038 			return;
   2039 		}
   2040 		memset(pcg, 0, sizeof(*pcg));
   2041 		simple_lock(&pc->pc_slock);
   2042 		pc->pc_ngroups++;
   2043 		LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2044 	}
   2045 
   2046 	pc->pc_nitems++;
   2047 	pcg_put(pcg, object, pa);
   2048 
   2049 	if (pcg->pcg_avail == PCG_NOBJECTS) {
   2050 		LIST_REMOVE(pcg, pcg_list);
   2051 		LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
   2052 	}
   2053 	simple_unlock(&pc->pc_slock);
   2054 }
   2055 
   2056 /*
   2057  * pool_cache_destruct_object:
   2058  *
   2059  *	Force destruction of an object and its release back into
   2060  *	the pool.
   2061  */
   2062 void
   2063 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   2064 {
   2065 
   2066 	if (pc->pc_dtor != NULL)
   2067 		(*pc->pc_dtor)(pc->pc_arg, object);
   2068 	pool_put(pc->pc_pool, object);
   2069 }
   2070 
   2071 static void
   2072 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
   2073     struct pool_cache *pc, struct pool_pagelist *pq,
   2074     struct pool_cache_grouplist *pcgdl)
   2075 {
   2076 	struct pool_cache_group *pcg, *npcg;
   2077 	void *object;
   2078 
   2079 	for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
   2080 		npcg = LIST_NEXT(pcg, pcg_list);
   2081 		while (pcg->pcg_avail != 0) {
   2082 			pc->pc_nitems--;
   2083 			object = pcg_get(pcg, NULL);
   2084 			if (pc->pc_dtor != NULL)
   2085 				(*pc->pc_dtor)(pc->pc_arg, object);
   2086 			pool_do_put(pc->pc_pool, object, pq);
   2087 		}
   2088 		pc->pc_ngroups--;
   2089 		LIST_REMOVE(pcg, pcg_list);
   2090 		LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
   2091 	}
   2092 }
   2093 
   2094 static void
   2095 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
   2096     struct pool_cache_grouplist *pcgl)
   2097 {
   2098 
   2099 	LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
   2100 	LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
   2101 
   2102 	pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
   2103 	pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
   2104 
   2105 	KASSERT(LIST_EMPTY(&pc->pc_partgroups));
   2106 	KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
   2107 	KASSERT(pc->pc_nitems == 0);
   2108 }
   2109 
   2110 /*
   2111  * pool_cache_invalidate:
   2112  *
   2113  *	Invalidate a pool cache (destruct and release all of the
   2114  *	cached objects).
   2115  */
   2116 void
   2117 pool_cache_invalidate(struct pool_cache *pc)
   2118 {
   2119 	struct pool_pagelist pq;
   2120 	struct pool_cache_grouplist pcgl;
   2121 
   2122 	LIST_INIT(&pq);
   2123 	LIST_INIT(&pcgl);
   2124 
   2125 	simple_lock(&pc->pc_slock);
   2126 	simple_lock(&pc->pc_pool->pr_slock);
   2127 
   2128 	pool_do_cache_invalidate(pc, &pq, &pcgl);
   2129 
   2130 	simple_unlock(&pc->pc_pool->pr_slock);
   2131 	simple_unlock(&pc->pc_slock);
   2132 
   2133 	pr_pagelist_free(pc->pc_pool, &pq);
   2134 	pcg_grouplist_free(&pcgl);
   2135 }
   2136 
   2137 /*
   2138  * pool_cache_reclaim:
   2139  *
   2140  *	Reclaim a pool cache for pool_reclaim().
   2141  */
   2142 static void
   2143 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
   2144     struct pool_cache_grouplist *pcgl)
   2145 {
   2146 
   2147 	/*
   2148 	 * We're locking in the wrong order (normally pool_cache -> pool,
   2149 	 * but the pool is already locked when we get here), so we have
   2150 	 * to use trylock.  If we can't lock the pool_cache, it's not really
   2151 	 * a big deal here.
   2152 	 */
   2153 	if (simple_lock_try(&pc->pc_slock) == 0)
   2154 		return;
   2155 
   2156 	pool_do_cache_invalidate(pc, pq, pcgl);
   2157 
   2158 	simple_unlock(&pc->pc_slock);
   2159 }
   2160 
   2161 /*
   2162  * Pool backend allocators.
   2163  *
   2164  * Each pool has a backend allocator that handles allocation, deallocation,
   2165  * and any additional draining that might be needed.
   2166  *
   2167  * We provide two standard allocators:
   2168  *
   2169  *	pool_allocator_kmem - the default when no allocator is specified
   2170  *
   2171  *	pool_allocator_nointr - used for pools that will not be accessed
   2172  *	in interrupt context.
   2173  */
   2174 void	*pool_page_alloc(struct pool *, int);
   2175 void	pool_page_free(struct pool *, void *);
   2176 
   2177 #ifdef POOL_SUBPAGE
   2178 struct pool_allocator pool_allocator_kmem_fullpage = {
   2179 	pool_page_alloc, pool_page_free, 0,
   2180 };
   2181 #else
   2182 struct pool_allocator pool_allocator_kmem = {
   2183 	pool_page_alloc, pool_page_free, 0,
   2184 };
   2185 #endif
   2186 
   2187 void	*pool_page_alloc_nointr(struct pool *, int);
   2188 void	pool_page_free_nointr(struct pool *, void *);
   2189 
   2190 #ifdef POOL_SUBPAGE
   2191 struct pool_allocator pool_allocator_nointr_fullpage = {
   2192 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2193 };
   2194 #else
   2195 struct pool_allocator pool_allocator_nointr = {
   2196 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2197 };
   2198 #endif
   2199 
   2200 #ifdef POOL_SUBPAGE
   2201 void	*pool_subpage_alloc(struct pool *, int);
   2202 void	pool_subpage_free(struct pool *, void *);
   2203 
   2204 struct pool_allocator pool_allocator_kmem = {
   2205 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2206 };
   2207 
   2208 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2209 void	pool_subpage_free_nointr(struct pool *, void *);
   2210 
   2211 struct pool_allocator pool_allocator_nointr = {
   2212 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2213 };
   2214 #endif /* POOL_SUBPAGE */
   2215 
   2216 /*
   2217  * We have at least three different resources for the same allocation and
   2218  * each resource can be depleted.  First, we have the ready elements in the
   2219  * pool.  Then we have the resource (typically a vm_map) for this allocator.
   2220  * Finally, we have physical memory.  Waiting for any of these can be
   2221  * unnecessary when any other is freed, but the kernel doesn't support
   2222  * sleeping on multiple wait channels, so we have to employ another strategy.
   2223  *
   2224  * The caller sleeps on the pool (so that it can be awakened when an item
   2225  * is returned to the pool), but we set PA_WANT on the allocator.  When a
   2226  * page is returned to the allocator and PA_WANT is set, pool_allocator_free
   2227  * will wake up all sleeping pools belonging to this allocator.
   2228  *
   2229  * XXX Thundering herd.
   2230  */
   2231 void *
   2232 pool_allocator_alloc(struct pool *org, int flags)
   2233 {
   2234 	struct pool_allocator *pa = org->pr_alloc;
   2235 	struct pool *pp, *start;
   2236 	int s, freed;
   2237 	void *res;
   2238 
   2239 	LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
   2240 
   2241 	do {
   2242 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   2243 			return (res);
   2244 		if ((flags & PR_WAITOK) == 0) {
   2245 			/*
   2246 			 * We only run the drain hookhere if PR_NOWAIT.
   2247 			 * In other cases, the hook will be run in
   2248 			 * pool_reclaim().
   2249 			 */
   2250 			if (org->pr_drain_hook != NULL) {
   2251 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
   2252 				    flags);
   2253 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   2254 					return (res);
   2255 			}
   2256 			break;
   2257 		}
   2258 
   2259 		/*
   2260 		 * Drain all pools, that use this allocator.
   2261 		 * We do this to reclaim VA space.
   2262 		 * pa_alloc is responsible for waiting for
   2263 		 * physical memory.
   2264 		 *
   2265 		 * XXX We risk looping forever if start if someone
   2266 		 * calls pool_destroy on "start".  But there is no
   2267 		 * other way to have potentially sleeping pool_reclaim,
   2268 		 * non-sleeping locks on pool_allocator, and some
   2269 		 * stirring of drained pools in the allocator.
   2270 		 *
   2271 		 * XXX Maybe we should use pool_head_slock for locking
   2272 		 * the allocators?
   2273 		 */
   2274 		freed = 0;
   2275 
   2276 		s = splvm();
   2277 		simple_lock(&pa->pa_slock);
   2278 		pp = start = TAILQ_FIRST(&pa->pa_list);
   2279 		do {
   2280 			TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
   2281 			TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
   2282 			simple_unlock(&pa->pa_slock);
   2283 			freed = pool_reclaim(pp);
   2284 			simple_lock(&pa->pa_slock);
   2285 		} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
   2286 			 freed == 0);
   2287 
   2288 		if (freed == 0) {
   2289 			/*
   2290 			 * We set PA_WANT here, the caller will most likely
   2291 			 * sleep waiting for pages (if not, this won't hurt
   2292 			 * that much), and there is no way to set this in
   2293 			 * the caller without violating locking order.
   2294 			 */
   2295 			pa->pa_flags |= PA_WANT;
   2296 		}
   2297 		simple_unlock(&pa->pa_slock);
   2298 		splx(s);
   2299 	} while (freed);
   2300 	return (NULL);
   2301 }
   2302 
   2303 void
   2304 pool_allocator_free(struct pool *pp, void *v)
   2305 {
   2306 	struct pool_allocator *pa = pp->pr_alloc;
   2307 	int s;
   2308 
   2309 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
   2310 
   2311 	(*pa->pa_free)(pp, v);
   2312 
   2313 	s = splvm();
   2314 	simple_lock(&pa->pa_slock);
   2315 	if ((pa->pa_flags & PA_WANT) == 0) {
   2316 		simple_unlock(&pa->pa_slock);
   2317 		splx(s);
   2318 		return;
   2319 	}
   2320 
   2321 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
   2322 		simple_lock(&pp->pr_slock);
   2323 		if ((pp->pr_flags & PR_WANTED) != 0) {
   2324 			pp->pr_flags &= ~PR_WANTED;
   2325 			wakeup(pp);
   2326 		}
   2327 		simple_unlock(&pp->pr_slock);
   2328 	}
   2329 	pa->pa_flags &= ~PA_WANT;
   2330 	simple_unlock(&pa->pa_slock);
   2331 	splx(s);
   2332 }
   2333 
   2334 void *
   2335 pool_page_alloc(struct pool *pp, int flags)
   2336 {
   2337 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2338 
   2339 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2340 }
   2341 
   2342 void
   2343 pool_page_free(struct pool *pp, void *v)
   2344 {
   2345 
   2346 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2347 }
   2348 
   2349 static void *
   2350 pool_page_alloc_meta(struct pool *pp, int flags)
   2351 {
   2352 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2353 
   2354 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2355 }
   2356 
   2357 static void
   2358 pool_page_free_meta(struct pool *pp, void *v)
   2359 {
   2360 
   2361 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2362 }
   2363 
   2364 #ifdef POOL_SUBPAGE
   2365 /* Sub-page allocator, for machines with large hardware pages. */
   2366 void *
   2367 pool_subpage_alloc(struct pool *pp, int flags)
   2368 {
   2369 	void *v;
   2370 	int s;
   2371 	s = splvm();
   2372 	v = pool_get(&psppool, flags);
   2373 	splx(s);
   2374 	return v;
   2375 }
   2376 
   2377 void
   2378 pool_subpage_free(struct pool *pp, void *v)
   2379 {
   2380 	int s;
   2381 	s = splvm();
   2382 	pool_put(&psppool, v);
   2383 	splx(s);
   2384 }
   2385 
   2386 /* We don't provide a real nointr allocator.  Maybe later. */
   2387 void *
   2388 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2389 {
   2390 
   2391 	return (pool_subpage_alloc(pp, flags));
   2392 }
   2393 
   2394 void
   2395 pool_subpage_free_nointr(struct pool *pp, void *v)
   2396 {
   2397 
   2398 	pool_subpage_free(pp, v);
   2399 }
   2400 #endif /* POOL_SUBPAGE */
   2401 void *
   2402 pool_page_alloc_nointr(struct pool *pp, int flags)
   2403 {
   2404 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2405 
   2406 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2407 }
   2408 
   2409 void
   2410 pool_page_free_nointr(struct pool *pp, void *v)
   2411 {
   2412 
   2413 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2414 }
   2415