Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.112.6.2
      1 /*	$NetBSD: subr_pool.c,v 1.112.6.2 2006/05/24 15:50:41 tron Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.112.6.2 2006/05/24 15:50:41 tron Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/lock.h>
     54 #include <sys/pool.h>
     55 #include <sys/syslog.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according to
     63  * the pool item size. Each page is kept on one of three lists in the
     64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     65  * for empty, full and partially-full pages respectively. The individual
     66  * pool items are on a linked list headed by `ph_itemlist' in each page
     67  * header. The memory for building the page list is either taken from
     68  * the allocated pages themselves (for small pool items) or taken from
     69  * an internal pool of page headers (`phpool').
     70  */
     71 
     72 /* List of all pools */
     73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     74 
     75 /* Private pool for page header structures */
     76 #define	PHPOOL_MAX	8
     77 static struct pool phpool[PHPOOL_MAX];
     78 #define	PHPOOL_FREELIST_NELEM(idx)	(((idx) == 0) ? 0 : (1 << (idx)))
     79 
     80 #ifdef POOL_SUBPAGE
     81 /* Pool of subpages for use by normal pools. */
     82 static struct pool psppool;
     83 #endif
     84 
     85 static void *pool_page_alloc_meta(struct pool *, int);
     86 static void pool_page_free_meta(struct pool *, void *);
     87 
     88 /* allocator for pool metadata */
     89 static struct pool_allocator pool_allocator_meta = {
     90 	pool_page_alloc_meta, pool_page_free_meta
     91 };
     92 
     93 /* # of seconds to retain page after last use */
     94 int pool_inactive_time = 10;
     95 
     96 /* Next candidate for drainage (see pool_drain()) */
     97 static struct pool	*drainpp;
     98 
     99 /* This spin lock protects both pool_head and drainpp. */
    100 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
    101 
    102 typedef uint8_t pool_item_freelist_t;
    103 
    104 struct pool_item_header {
    105 	/* Page headers */
    106 	LIST_ENTRY(pool_item_header)
    107 				ph_pagelist;	/* pool page list */
    108 	SPLAY_ENTRY(pool_item_header)
    109 				ph_node;	/* Off-page page headers */
    110 	caddr_t			ph_page;	/* this page's address */
    111 	struct timeval		ph_time;	/* last referenced */
    112 	union {
    113 		/* !PR_NOTOUCH */
    114 		struct {
    115 			LIST_HEAD(, pool_item)
    116 				phu_itemlist;	/* chunk list for this page */
    117 		} phu_normal;
    118 		/* PR_NOTOUCH */
    119 		struct {
    120 			uint16_t
    121 				phu_off;	/* start offset in page */
    122 			pool_item_freelist_t
    123 				phu_firstfree;	/* first free item */
    124 			/*
    125 			 * XXX it might be better to use
    126 			 * a simple bitmap and ffs(3)
    127 			 */
    128 		} phu_notouch;
    129 	} ph_u;
    130 	uint16_t		ph_nmissing;	/* # of chunks in use */
    131 };
    132 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    133 #define	ph_off		ph_u.phu_notouch.phu_off
    134 #define	ph_firstfree	ph_u.phu_notouch.phu_firstfree
    135 
    136 struct pool_item {
    137 #ifdef DIAGNOSTIC
    138 	u_int pi_magic;
    139 #endif
    140 #define	PI_MAGIC 0xdeadbeefU
    141 	/* Other entries use only this list entry */
    142 	LIST_ENTRY(pool_item)	pi_list;
    143 };
    144 
    145 #define	POOL_NEEDS_CATCHUP(pp)						\
    146 	((pp)->pr_nitems < (pp)->pr_minitems)
    147 
    148 /*
    149  * Pool cache management.
    150  *
    151  * Pool caches provide a way for constructed objects to be cached by the
    152  * pool subsystem.  This can lead to performance improvements by avoiding
    153  * needless object construction/destruction; it is deferred until absolutely
    154  * necessary.
    155  *
    156  * Caches are grouped into cache groups.  Each cache group references
    157  * up to 16 constructed objects.  When a cache allocates an object
    158  * from the pool, it calls the object's constructor and places it into
    159  * a cache group.  When a cache group frees an object back to the pool,
    160  * it first calls the object's destructor.  This allows the object to
    161  * persist in constructed form while freed to the cache.
    162  *
    163  * Multiple caches may exist for each pool.  This allows a single
    164  * object type to have multiple constructed forms.  The pool references
    165  * each cache, so that when a pool is drained by the pagedaemon, it can
    166  * drain each individual cache as well.  Each time a cache is drained,
    167  * the most idle cache group is freed to the pool in its entirety.
    168  *
    169  * Pool caches are layed on top of pools.  By layering them, we can avoid
    170  * the complexity of cache management for pools which would not benefit
    171  * from it.
    172  */
    173 
    174 /* The cache group pool. */
    175 static struct pool pcgpool;
    176 
    177 static void	pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
    178 				   struct pool_cache_grouplist *);
    179 static void	pcg_grouplist_free(struct pool_cache_grouplist *);
    180 
    181 static int	pool_catchup(struct pool *);
    182 static void	pool_prime_page(struct pool *, caddr_t,
    183 		    struct pool_item_header *);
    184 static void	pool_update_curpage(struct pool *);
    185 
    186 static int	pool_grow(struct pool *, int);
    187 void		*pool_allocator_alloc(struct pool *, int);
    188 void		pool_allocator_free(struct pool *, void *);
    189 
    190 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    191 	void (*)(const char *, ...));
    192 static void pool_print1(struct pool *, const char *,
    193 	void (*)(const char *, ...));
    194 
    195 static int pool_chk_page(struct pool *, const char *,
    196 			 struct pool_item_header *);
    197 
    198 /*
    199  * Pool log entry. An array of these is allocated in pool_init().
    200  */
    201 struct pool_log {
    202 	const char	*pl_file;
    203 	long		pl_line;
    204 	int		pl_action;
    205 #define	PRLOG_GET	1
    206 #define	PRLOG_PUT	2
    207 	void		*pl_addr;
    208 };
    209 
    210 #ifdef POOL_DIAGNOSTIC
    211 /* Number of entries in pool log buffers */
    212 #ifndef POOL_LOGSIZE
    213 #define	POOL_LOGSIZE	10
    214 #endif
    215 
    216 int pool_logsize = POOL_LOGSIZE;
    217 
    218 static inline void
    219 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    220 {
    221 	int n = pp->pr_curlogentry;
    222 	struct pool_log *pl;
    223 
    224 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    225 		return;
    226 
    227 	/*
    228 	 * Fill in the current entry. Wrap around and overwrite
    229 	 * the oldest entry if necessary.
    230 	 */
    231 	pl = &pp->pr_log[n];
    232 	pl->pl_file = file;
    233 	pl->pl_line = line;
    234 	pl->pl_action = action;
    235 	pl->pl_addr = v;
    236 	if (++n >= pp->pr_logsize)
    237 		n = 0;
    238 	pp->pr_curlogentry = n;
    239 }
    240 
    241 static void
    242 pr_printlog(struct pool *pp, struct pool_item *pi,
    243     void (*pr)(const char *, ...))
    244 {
    245 	int i = pp->pr_logsize;
    246 	int n = pp->pr_curlogentry;
    247 
    248 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    249 		return;
    250 
    251 	/*
    252 	 * Print all entries in this pool's log.
    253 	 */
    254 	while (i-- > 0) {
    255 		struct pool_log *pl = &pp->pr_log[n];
    256 		if (pl->pl_action != 0) {
    257 			if (pi == NULL || pi == pl->pl_addr) {
    258 				(*pr)("\tlog entry %d:\n", i);
    259 				(*pr)("\t\taction = %s, addr = %p\n",
    260 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    261 				    pl->pl_addr);
    262 				(*pr)("\t\tfile: %s at line %lu\n",
    263 				    pl->pl_file, pl->pl_line);
    264 			}
    265 		}
    266 		if (++n >= pp->pr_logsize)
    267 			n = 0;
    268 	}
    269 }
    270 
    271 static inline void
    272 pr_enter(struct pool *pp, const char *file, long line)
    273 {
    274 
    275 	if (__predict_false(pp->pr_entered_file != NULL)) {
    276 		printf("pool %s: reentrancy at file %s line %ld\n",
    277 		    pp->pr_wchan, file, line);
    278 		printf("         previous entry at file %s line %ld\n",
    279 		    pp->pr_entered_file, pp->pr_entered_line);
    280 		panic("pr_enter");
    281 	}
    282 
    283 	pp->pr_entered_file = file;
    284 	pp->pr_entered_line = line;
    285 }
    286 
    287 static inline void
    288 pr_leave(struct pool *pp)
    289 {
    290 
    291 	if (__predict_false(pp->pr_entered_file == NULL)) {
    292 		printf("pool %s not entered?\n", pp->pr_wchan);
    293 		panic("pr_leave");
    294 	}
    295 
    296 	pp->pr_entered_file = NULL;
    297 	pp->pr_entered_line = 0;
    298 }
    299 
    300 static inline void
    301 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    302 {
    303 
    304 	if (pp->pr_entered_file != NULL)
    305 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    306 		    pp->pr_entered_file, pp->pr_entered_line);
    307 }
    308 #else
    309 #define	pr_log(pp, v, action, file, line)
    310 #define	pr_printlog(pp, pi, pr)
    311 #define	pr_enter(pp, file, line)
    312 #define	pr_leave(pp)
    313 #define	pr_enter_check(pp, pr)
    314 #endif /* POOL_DIAGNOSTIC */
    315 
    316 static inline int
    317 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    318     const void *v)
    319 {
    320 	const char *cp = v;
    321 	int idx;
    322 
    323 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    324 	idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
    325 	KASSERT(idx < pp->pr_itemsperpage);
    326 	return idx;
    327 }
    328 
    329 #define	PR_FREELIST_ALIGN(p) \
    330 	roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
    331 #define	PR_FREELIST(ph)	((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
    332 #define	PR_INDEX_USED	((pool_item_freelist_t)-1)
    333 #define	PR_INDEX_EOL	((pool_item_freelist_t)-2)
    334 
    335 static inline void
    336 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    337     void *obj)
    338 {
    339 	int idx = pr_item_notouch_index(pp, ph, obj);
    340 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    341 
    342 	KASSERT(freelist[idx] == PR_INDEX_USED);
    343 	freelist[idx] = ph->ph_firstfree;
    344 	ph->ph_firstfree = idx;
    345 }
    346 
    347 static inline void *
    348 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    349 {
    350 	int idx = ph->ph_firstfree;
    351 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    352 
    353 	KASSERT(freelist[idx] != PR_INDEX_USED);
    354 	ph->ph_firstfree = freelist[idx];
    355 	freelist[idx] = PR_INDEX_USED;
    356 
    357 	return ph->ph_page + ph->ph_off + idx * pp->pr_size;
    358 }
    359 
    360 static inline int
    361 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    362 {
    363 	if (a->ph_page < b->ph_page)
    364 		return (-1);
    365 	else if (a->ph_page > b->ph_page)
    366 		return (1);
    367 	else
    368 		return (0);
    369 }
    370 
    371 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    372 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    373 
    374 /*
    375  * Return the pool page header based on page address.
    376  */
    377 static inline struct pool_item_header *
    378 pr_find_pagehead(struct pool *pp, caddr_t page)
    379 {
    380 	struct pool_item_header *ph, tmp;
    381 
    382 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    383 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    384 
    385 	tmp.ph_page = page;
    386 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    387 	return ph;
    388 }
    389 
    390 static void
    391 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    392 {
    393 	struct pool_item_header *ph;
    394 	int s;
    395 
    396 	while ((ph = LIST_FIRST(pq)) != NULL) {
    397 		LIST_REMOVE(ph, ph_pagelist);
    398 		pool_allocator_free(pp, ph->ph_page);
    399 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    400 			s = splvm();
    401 			pool_put(pp->pr_phpool, ph);
    402 			splx(s);
    403 		}
    404 	}
    405 }
    406 
    407 /*
    408  * Remove a page from the pool.
    409  */
    410 static inline void
    411 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    412      struct pool_pagelist *pq)
    413 {
    414 
    415 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
    416 
    417 	/*
    418 	 * If the page was idle, decrement the idle page count.
    419 	 */
    420 	if (ph->ph_nmissing == 0) {
    421 #ifdef DIAGNOSTIC
    422 		if (pp->pr_nidle == 0)
    423 			panic("pr_rmpage: nidle inconsistent");
    424 		if (pp->pr_nitems < pp->pr_itemsperpage)
    425 			panic("pr_rmpage: nitems inconsistent");
    426 #endif
    427 		pp->pr_nidle--;
    428 	}
    429 
    430 	pp->pr_nitems -= pp->pr_itemsperpage;
    431 
    432 	/*
    433 	 * Unlink the page from the pool and queue it for release.
    434 	 */
    435 	LIST_REMOVE(ph, ph_pagelist);
    436 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    437 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    438 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    439 
    440 	pp->pr_npages--;
    441 	pp->pr_npagefree++;
    442 
    443 	pool_update_curpage(pp);
    444 }
    445 
    446 /*
    447  * Initialize all the pools listed in the "pools" link set.
    448  */
    449 void
    450 link_pool_init(void)
    451 {
    452 	__link_set_decl(pools, struct link_pool_init);
    453 	struct link_pool_init * const *pi;
    454 
    455 	__link_set_foreach(pi, pools)
    456 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    457 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    458 		    (*pi)->palloc);
    459 }
    460 
    461 /*
    462  * Initialize the given pool resource structure.
    463  *
    464  * We export this routine to allow other kernel parts to declare
    465  * static pools that must be initialized before malloc() is available.
    466  */
    467 void
    468 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    469     const char *wchan, struct pool_allocator *palloc)
    470 {
    471 #ifdef DEBUG
    472 	struct pool *pp1;
    473 #endif
    474 	size_t trysize, phsize;
    475 	int off, slack, s;
    476 
    477 	KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
    478 	    PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
    479 
    480 #ifdef DEBUG
    481 	/*
    482 	 * Check that the pool hasn't already been initialised and
    483 	 * added to the list of all pools.
    484 	 */
    485 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
    486 		if (pp == pp1)
    487 			panic("pool_init: pool %s already initialised",
    488 			    wchan);
    489 	}
    490 #endif
    491 
    492 #ifdef POOL_DIAGNOSTIC
    493 	/*
    494 	 * Always log if POOL_DIAGNOSTIC is defined.
    495 	 */
    496 	if (pool_logsize != 0)
    497 		flags |= PR_LOGGING;
    498 #endif
    499 
    500 	if (palloc == NULL)
    501 		palloc = &pool_allocator_kmem;
    502 #ifdef POOL_SUBPAGE
    503 	if (size > palloc->pa_pagesz) {
    504 		if (palloc == &pool_allocator_kmem)
    505 			palloc = &pool_allocator_kmem_fullpage;
    506 		else if (palloc == &pool_allocator_nointr)
    507 			palloc = &pool_allocator_nointr_fullpage;
    508 	}
    509 #endif /* POOL_SUBPAGE */
    510 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    511 		if (palloc->pa_pagesz == 0)
    512 			palloc->pa_pagesz = PAGE_SIZE;
    513 
    514 		TAILQ_INIT(&palloc->pa_list);
    515 
    516 		simple_lock_init(&palloc->pa_slock);
    517 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    518 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    519 		palloc->pa_flags |= PA_INITIALIZED;
    520 	}
    521 
    522 	if (align == 0)
    523 		align = ALIGN(1);
    524 
    525 	if (size < sizeof(struct pool_item))
    526 		size = sizeof(struct pool_item);
    527 
    528 	size = roundup(size, align);
    529 #ifdef DIAGNOSTIC
    530 	if (size > palloc->pa_pagesz)
    531 		panic("pool_init: pool item size (%lu) too large",
    532 		      (u_long)size);
    533 #endif
    534 
    535 	/*
    536 	 * Initialize the pool structure.
    537 	 */
    538 	LIST_INIT(&pp->pr_emptypages);
    539 	LIST_INIT(&pp->pr_fullpages);
    540 	LIST_INIT(&pp->pr_partpages);
    541 	LIST_INIT(&pp->pr_cachelist);
    542 	pp->pr_curpage = NULL;
    543 	pp->pr_npages = 0;
    544 	pp->pr_minitems = 0;
    545 	pp->pr_minpages = 0;
    546 	pp->pr_maxpages = UINT_MAX;
    547 	pp->pr_roflags = flags;
    548 	pp->pr_flags = 0;
    549 	pp->pr_size = size;
    550 	pp->pr_align = align;
    551 	pp->pr_wchan = wchan;
    552 	pp->pr_alloc = palloc;
    553 	pp->pr_nitems = 0;
    554 	pp->pr_nout = 0;
    555 	pp->pr_hardlimit = UINT_MAX;
    556 	pp->pr_hardlimit_warning = NULL;
    557 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    558 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    559 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    560 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    561 	pp->pr_drain_hook = NULL;
    562 	pp->pr_drain_hook_arg = NULL;
    563 
    564 	/*
    565 	 * Decide whether to put the page header off page to avoid
    566 	 * wasting too large a part of the page or too big item.
    567 	 * Off-page page headers go on a hash table, so we can match
    568 	 * a returned item with its header based on the page address.
    569 	 * We use 1/16 of the page size and about 8 times of the item
    570 	 * size as the threshold (XXX: tune)
    571 	 *
    572 	 * However, we'll put the header into the page if we can put
    573 	 * it without wasting any items.
    574 	 *
    575 	 * Silently enforce `0 <= ioff < align'.
    576 	 */
    577 	pp->pr_itemoffset = ioff %= align;
    578 	/* See the comment below about reserved bytes. */
    579 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    580 	phsize = ALIGN(sizeof(struct pool_item_header));
    581 	if ((pp->pr_roflags & PR_NOTOUCH) == 0 &&
    582 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    583 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    584 		/* Use the end of the page for the page header */
    585 		pp->pr_roflags |= PR_PHINPAGE;
    586 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    587 	} else {
    588 		/* The page header will be taken from our page header pool */
    589 		pp->pr_phoffset = 0;
    590 		off = palloc->pa_pagesz;
    591 		SPLAY_INIT(&pp->pr_phtree);
    592 	}
    593 
    594 	/*
    595 	 * Alignment is to take place at `ioff' within the item. This means
    596 	 * we must reserve up to `align - 1' bytes on the page to allow
    597 	 * appropriate positioning of each item.
    598 	 */
    599 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    600 	KASSERT(pp->pr_itemsperpage != 0);
    601 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    602 		int idx;
    603 
    604 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    605 		    idx++) {
    606 			/* nothing */
    607 		}
    608 		if (idx >= PHPOOL_MAX) {
    609 			/*
    610 			 * if you see this panic, consider to tweak
    611 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    612 			 */
    613 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    614 			    pp->pr_wchan, pp->pr_itemsperpage);
    615 		}
    616 		pp->pr_phpool = &phpool[idx];
    617 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    618 		pp->pr_phpool = &phpool[0];
    619 	}
    620 #if defined(DIAGNOSTIC)
    621 	else {
    622 		pp->pr_phpool = NULL;
    623 	}
    624 #endif
    625 
    626 	/*
    627 	 * Use the slack between the chunks and the page header
    628 	 * for "cache coloring".
    629 	 */
    630 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    631 	pp->pr_maxcolor = (slack / align) * align;
    632 	pp->pr_curcolor = 0;
    633 
    634 	pp->pr_nget = 0;
    635 	pp->pr_nfail = 0;
    636 	pp->pr_nput = 0;
    637 	pp->pr_npagealloc = 0;
    638 	pp->pr_npagefree = 0;
    639 	pp->pr_hiwat = 0;
    640 	pp->pr_nidle = 0;
    641 
    642 #ifdef POOL_DIAGNOSTIC
    643 	if (flags & PR_LOGGING) {
    644 		if (kmem_map == NULL ||
    645 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    646 		     M_TEMP, M_NOWAIT)) == NULL)
    647 			pp->pr_roflags &= ~PR_LOGGING;
    648 		pp->pr_curlogentry = 0;
    649 		pp->pr_logsize = pool_logsize;
    650 	}
    651 #endif
    652 
    653 	pp->pr_entered_file = NULL;
    654 	pp->pr_entered_line = 0;
    655 
    656 	simple_lock_init(&pp->pr_slock);
    657 
    658 	/*
    659 	 * Initialize private page header pool and cache magazine pool if we
    660 	 * haven't done so yet.
    661 	 * XXX LOCKING.
    662 	 */
    663 	if (phpool[0].pr_size == 0) {
    664 		int idx;
    665 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    666 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    667 			int nelem;
    668 			size_t sz;
    669 
    670 			nelem = PHPOOL_FREELIST_NELEM(idx);
    671 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    672 			    "phpool-%d", nelem);
    673 			sz = sizeof(struct pool_item_header);
    674 			if (nelem) {
    675 				sz = PR_FREELIST_ALIGN(sz)
    676 				    + nelem * sizeof(pool_item_freelist_t);
    677 			}
    678 			pool_init(&phpool[idx], sz, 0, 0, 0,
    679 			    phpool_names[idx], &pool_allocator_meta);
    680 		}
    681 #ifdef POOL_SUBPAGE
    682 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    683 		    PR_RECURSIVE, "psppool", &pool_allocator_meta);
    684 #endif
    685 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    686 		    0, "pcgpool", &pool_allocator_meta);
    687 	}
    688 
    689 	/* Insert into the list of all pools. */
    690 	simple_lock(&pool_head_slock);
    691 	LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    692 	simple_unlock(&pool_head_slock);
    693 
    694 	/* Insert this into the list of pools using this allocator. */
    695 	s = splvm();
    696 	simple_lock(&palloc->pa_slock);
    697 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    698 	simple_unlock(&palloc->pa_slock);
    699 	splx(s);
    700 }
    701 
    702 /*
    703  * De-commision a pool resource.
    704  */
    705 void
    706 pool_destroy(struct pool *pp)
    707 {
    708 	struct pool_pagelist pq;
    709 	struct pool_item_header *ph;
    710 	int s;
    711 
    712 	/* Remove from global pool list */
    713 	simple_lock(&pool_head_slock);
    714 	LIST_REMOVE(pp, pr_poollist);
    715 	if (drainpp == pp)
    716 		drainpp = NULL;
    717 	simple_unlock(&pool_head_slock);
    718 
    719 	/* Remove this pool from its allocator's list of pools. */
    720 	s = splvm();
    721 	simple_lock(&pp->pr_alloc->pa_slock);
    722 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    723 	simple_unlock(&pp->pr_alloc->pa_slock);
    724 	splx(s);
    725 
    726 	s = splvm();
    727 	simple_lock(&pp->pr_slock);
    728 
    729 	KASSERT(LIST_EMPTY(&pp->pr_cachelist));
    730 
    731 #ifdef DIAGNOSTIC
    732 	if (pp->pr_nout != 0) {
    733 		pr_printlog(pp, NULL, printf);
    734 		panic("pool_destroy: pool busy: still out: %u",
    735 		    pp->pr_nout);
    736 	}
    737 #endif
    738 
    739 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    740 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    741 
    742 	/* Remove all pages */
    743 	LIST_INIT(&pq);
    744 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    745 		pr_rmpage(pp, ph, &pq);
    746 
    747 	simple_unlock(&pp->pr_slock);
    748 	splx(s);
    749 
    750 	pr_pagelist_free(pp, &pq);
    751 
    752 #ifdef POOL_DIAGNOSTIC
    753 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    754 		free(pp->pr_log, M_TEMP);
    755 #endif
    756 }
    757 
    758 void
    759 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    760 {
    761 
    762 	/* XXX no locking -- must be used just after pool_init() */
    763 #ifdef DIAGNOSTIC
    764 	if (pp->pr_drain_hook != NULL)
    765 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    766 #endif
    767 	pp->pr_drain_hook = fn;
    768 	pp->pr_drain_hook_arg = arg;
    769 }
    770 
    771 static struct pool_item_header *
    772 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    773 {
    774 	struct pool_item_header *ph;
    775 	int s;
    776 
    777 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    778 
    779 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    780 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    781 	else {
    782 		s = splvm();
    783 		ph = pool_get(pp->pr_phpool, flags);
    784 		splx(s);
    785 	}
    786 
    787 	return (ph);
    788 }
    789 
    790 /*
    791  * Grab an item from the pool; must be called at appropriate spl level
    792  */
    793 void *
    794 #ifdef POOL_DIAGNOSTIC
    795 _pool_get(struct pool *pp, int flags, const char *file, long line)
    796 #else
    797 pool_get(struct pool *pp, int flags)
    798 #endif
    799 {
    800 	struct pool_item *pi;
    801 	struct pool_item_header *ph;
    802 	void *v;
    803 
    804 #ifdef DIAGNOSTIC
    805 	if (__predict_false(pp->pr_itemsperpage == 0))
    806 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    807 		    "pool not initialized?", pp);
    808 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    809 			    (flags & PR_WAITOK) != 0))
    810 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    811 
    812 #endif /* DIAGNOSTIC */
    813 #ifdef LOCKDEBUG
    814 	if (flags & PR_WAITOK)
    815 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
    816 	SCHED_ASSERT_UNLOCKED();
    817 #endif
    818 
    819 	simple_lock(&pp->pr_slock);
    820 	pr_enter(pp, file, line);
    821 
    822  startover:
    823 	/*
    824 	 * Check to see if we've reached the hard limit.  If we have,
    825 	 * and we can wait, then wait until an item has been returned to
    826 	 * the pool.
    827 	 */
    828 #ifdef DIAGNOSTIC
    829 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    830 		pr_leave(pp);
    831 		simple_unlock(&pp->pr_slock);
    832 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    833 	}
    834 #endif
    835 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    836 		if (pp->pr_drain_hook != NULL) {
    837 			/*
    838 			 * Since the drain hook is going to free things
    839 			 * back to the pool, unlock, call the hook, re-lock,
    840 			 * and check the hardlimit condition again.
    841 			 */
    842 			pr_leave(pp);
    843 			simple_unlock(&pp->pr_slock);
    844 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    845 			simple_lock(&pp->pr_slock);
    846 			pr_enter(pp, file, line);
    847 			if (pp->pr_nout < pp->pr_hardlimit)
    848 				goto startover;
    849 		}
    850 
    851 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    852 			/*
    853 			 * XXX: A warning isn't logged in this case.  Should
    854 			 * it be?
    855 			 */
    856 			pp->pr_flags |= PR_WANTED;
    857 			pr_leave(pp);
    858 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    859 			pr_enter(pp, file, line);
    860 			goto startover;
    861 		}
    862 
    863 		/*
    864 		 * Log a message that the hard limit has been hit.
    865 		 */
    866 		if (pp->pr_hardlimit_warning != NULL &&
    867 		    ratecheck(&pp->pr_hardlimit_warning_last,
    868 			      &pp->pr_hardlimit_ratecap))
    869 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    870 
    871 		pp->pr_nfail++;
    872 
    873 		pr_leave(pp);
    874 		simple_unlock(&pp->pr_slock);
    875 		return (NULL);
    876 	}
    877 
    878 	/*
    879 	 * The convention we use is that if `curpage' is not NULL, then
    880 	 * it points at a non-empty bucket. In particular, `curpage'
    881 	 * never points at a page header which has PR_PHINPAGE set and
    882 	 * has no items in its bucket.
    883 	 */
    884 	if ((ph = pp->pr_curpage) == NULL) {
    885 		int error;
    886 
    887 #ifdef DIAGNOSTIC
    888 		if (pp->pr_nitems != 0) {
    889 			simple_unlock(&pp->pr_slock);
    890 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    891 			    pp->pr_wchan, pp->pr_nitems);
    892 			panic("pool_get: nitems inconsistent");
    893 		}
    894 #endif
    895 
    896 		/*
    897 		 * Call the back-end page allocator for more memory.
    898 		 * Release the pool lock, as the back-end page allocator
    899 		 * may block.
    900 		 */
    901 		pr_leave(pp);
    902 		error = pool_grow(pp, flags);
    903 		pr_enter(pp, file, line);
    904 		if (error != 0) {
    905 			/*
    906 			 * We were unable to allocate a page or item
    907 			 * header, but we released the lock during
    908 			 * allocation, so perhaps items were freed
    909 			 * back to the pool.  Check for this case.
    910 			 */
    911 			if (pp->pr_curpage != NULL)
    912 				goto startover;
    913 
    914 			if ((flags & PR_WAITOK) == 0) {
    915 				pp->pr_nfail++;
    916 				pr_leave(pp);
    917 				simple_unlock(&pp->pr_slock);
    918 				return (NULL);
    919 			}
    920 
    921 			/*
    922 			 * Wait for items to be returned to this pool.
    923 			 *
    924 			 * wake up once a second and try again,
    925 			 * as the check in pool_cache_put_paddr() is racy.
    926 			 */
    927 			pp->pr_flags |= PR_WANTED;
    928 			/* PA_WANTED is already set on the allocator. */
    929 			pr_leave(pp);
    930 			ltsleep(pp, PSWP, pp->pr_wchan, hz, &pp->pr_slock);
    931 			pr_enter(pp, file, line);
    932 		}
    933 
    934 		/* Start the allocation process over. */
    935 		goto startover;
    936 	}
    937 	if (pp->pr_roflags & PR_NOTOUCH) {
    938 #ifdef DIAGNOSTIC
    939 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
    940 			pr_leave(pp);
    941 			simple_unlock(&pp->pr_slock);
    942 			panic("pool_get: %s: page empty", pp->pr_wchan);
    943 		}
    944 #endif
    945 		v = pr_item_notouch_get(pp, ph);
    946 #ifdef POOL_DIAGNOSTIC
    947 		pr_log(pp, v, PRLOG_GET, file, line);
    948 #endif
    949 	} else {
    950 		v = pi = LIST_FIRST(&ph->ph_itemlist);
    951 		if (__predict_false(v == NULL)) {
    952 			pr_leave(pp);
    953 			simple_unlock(&pp->pr_slock);
    954 			panic("pool_get: %s: page empty", pp->pr_wchan);
    955 		}
    956 #ifdef DIAGNOSTIC
    957 		if (__predict_false(pp->pr_nitems == 0)) {
    958 			pr_leave(pp);
    959 			simple_unlock(&pp->pr_slock);
    960 			printf("pool_get: %s: items on itemlist, nitems %u\n",
    961 			    pp->pr_wchan, pp->pr_nitems);
    962 			panic("pool_get: nitems inconsistent");
    963 		}
    964 #endif
    965 
    966 #ifdef POOL_DIAGNOSTIC
    967 		pr_log(pp, v, PRLOG_GET, file, line);
    968 #endif
    969 
    970 #ifdef DIAGNOSTIC
    971 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    972 			pr_printlog(pp, pi, printf);
    973 			panic("pool_get(%s): free list modified: "
    974 			    "magic=%x; page %p; item addr %p\n",
    975 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    976 		}
    977 #endif
    978 
    979 		/*
    980 		 * Remove from item list.
    981 		 */
    982 		LIST_REMOVE(pi, pi_list);
    983 	}
    984 	pp->pr_nitems--;
    985 	pp->pr_nout++;
    986 	if (ph->ph_nmissing == 0) {
    987 #ifdef DIAGNOSTIC
    988 		if (__predict_false(pp->pr_nidle == 0))
    989 			panic("pool_get: nidle inconsistent");
    990 #endif
    991 		pp->pr_nidle--;
    992 
    993 		/*
    994 		 * This page was previously empty.  Move it to the list of
    995 		 * partially-full pages.  This page is already curpage.
    996 		 */
    997 		LIST_REMOVE(ph, ph_pagelist);
    998 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    999 	}
   1000 	ph->ph_nmissing++;
   1001 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1002 #ifdef DIAGNOSTIC
   1003 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1004 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1005 			pr_leave(pp);
   1006 			simple_unlock(&pp->pr_slock);
   1007 			panic("pool_get: %s: nmissing inconsistent",
   1008 			    pp->pr_wchan);
   1009 		}
   1010 #endif
   1011 		/*
   1012 		 * This page is now full.  Move it to the full list
   1013 		 * and select a new current page.
   1014 		 */
   1015 		LIST_REMOVE(ph, ph_pagelist);
   1016 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1017 		pool_update_curpage(pp);
   1018 	}
   1019 
   1020 	pp->pr_nget++;
   1021 	pr_leave(pp);
   1022 
   1023 	/*
   1024 	 * If we have a low water mark and we are now below that low
   1025 	 * water mark, add more items to the pool.
   1026 	 */
   1027 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1028 		/*
   1029 		 * XXX: Should we log a warning?  Should we set up a timeout
   1030 		 * to try again in a second or so?  The latter could break
   1031 		 * a caller's assumptions about interrupt protection, etc.
   1032 		 */
   1033 	}
   1034 
   1035 	simple_unlock(&pp->pr_slock);
   1036 	return (v);
   1037 }
   1038 
   1039 /*
   1040  * Internal version of pool_put().  Pool is already locked/entered.
   1041  */
   1042 static void
   1043 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1044 {
   1045 	struct pool_item *pi = v;
   1046 	struct pool_item_header *ph;
   1047 	caddr_t page;
   1048 	int s;
   1049 
   1050 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
   1051 	SCHED_ASSERT_UNLOCKED();
   1052 
   1053 	page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
   1054 
   1055 #ifdef DIAGNOSTIC
   1056 	if (__predict_false(pp->pr_nout == 0)) {
   1057 		printf("pool %s: putting with none out\n",
   1058 		    pp->pr_wchan);
   1059 		panic("pool_put");
   1060 	}
   1061 #endif
   1062 
   1063 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
   1064 		pr_printlog(pp, NULL, printf);
   1065 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1066 	}
   1067 
   1068 #ifdef LOCKDEBUG
   1069 	/*
   1070 	 * Check if we're freeing a locked simple lock.
   1071 	 */
   1072 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
   1073 #endif
   1074 
   1075 	/*
   1076 	 * Return to item list.
   1077 	 */
   1078 	if (pp->pr_roflags & PR_NOTOUCH) {
   1079 		pr_item_notouch_put(pp, ph, v);
   1080 	} else {
   1081 #ifdef DIAGNOSTIC
   1082 		pi->pi_magic = PI_MAGIC;
   1083 #endif
   1084 #ifdef DEBUG
   1085 		{
   1086 			int i, *ip = v;
   1087 
   1088 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1089 				*ip++ = PI_MAGIC;
   1090 			}
   1091 		}
   1092 #endif
   1093 
   1094 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1095 	}
   1096 	KDASSERT(ph->ph_nmissing != 0);
   1097 	ph->ph_nmissing--;
   1098 	pp->pr_nput++;
   1099 	pp->pr_nitems++;
   1100 	pp->pr_nout--;
   1101 
   1102 	/* Cancel "pool empty" condition if it exists */
   1103 	if (pp->pr_curpage == NULL)
   1104 		pp->pr_curpage = ph;
   1105 
   1106 	if (pp->pr_flags & PR_WANTED) {
   1107 		pp->pr_flags &= ~PR_WANTED;
   1108 		if (ph->ph_nmissing == 0)
   1109 			pp->pr_nidle++;
   1110 		wakeup((caddr_t)pp);
   1111 		return;
   1112 	}
   1113 
   1114 	/*
   1115 	 * If this page is now empty, do one of two things:
   1116 	 *
   1117 	 *	(1) If we have more pages than the page high water mark,
   1118 	 *	    free the page back to the system.  ONLY CONSIDER
   1119 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1120 	 *	    CLAIM.
   1121 	 *
   1122 	 *	(2) Otherwise, move the page to the empty page list.
   1123 	 *
   1124 	 * Either way, select a new current page (so we use a partially-full
   1125 	 * page if one is available).
   1126 	 */
   1127 	if (ph->ph_nmissing == 0) {
   1128 		pp->pr_nidle++;
   1129 		if (pp->pr_npages > pp->pr_minpages &&
   1130 		    (pp->pr_npages > pp->pr_maxpages ||
   1131 		     (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
   1132 			pr_rmpage(pp, ph, pq);
   1133 		} else {
   1134 			LIST_REMOVE(ph, ph_pagelist);
   1135 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1136 
   1137 			/*
   1138 			 * Update the timestamp on the page.  A page must
   1139 			 * be idle for some period of time before it can
   1140 			 * be reclaimed by the pagedaemon.  This minimizes
   1141 			 * ping-pong'ing for memory.
   1142 			 */
   1143 			s = splclock();
   1144 			ph->ph_time = mono_time;
   1145 			splx(s);
   1146 		}
   1147 		pool_update_curpage(pp);
   1148 	}
   1149 
   1150 	/*
   1151 	 * If the page was previously completely full, move it to the
   1152 	 * partially-full list and make it the current page.  The next
   1153 	 * allocation will get the item from this page, instead of
   1154 	 * further fragmenting the pool.
   1155 	 */
   1156 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1157 		LIST_REMOVE(ph, ph_pagelist);
   1158 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1159 		pp->pr_curpage = ph;
   1160 	}
   1161 }
   1162 
   1163 /*
   1164  * Return resource to the pool; must be called at appropriate spl level
   1165  */
   1166 #ifdef POOL_DIAGNOSTIC
   1167 void
   1168 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1169 {
   1170 	struct pool_pagelist pq;
   1171 
   1172 	LIST_INIT(&pq);
   1173 
   1174 	simple_lock(&pp->pr_slock);
   1175 	pr_enter(pp, file, line);
   1176 
   1177 	pr_log(pp, v, PRLOG_PUT, file, line);
   1178 
   1179 	pool_do_put(pp, v, &pq);
   1180 
   1181 	pr_leave(pp);
   1182 	simple_unlock(&pp->pr_slock);
   1183 
   1184 	pr_pagelist_free(pp, &pq);
   1185 }
   1186 #undef pool_put
   1187 #endif /* POOL_DIAGNOSTIC */
   1188 
   1189 void
   1190 pool_put(struct pool *pp, void *v)
   1191 {
   1192 	struct pool_pagelist pq;
   1193 
   1194 	LIST_INIT(&pq);
   1195 
   1196 	simple_lock(&pp->pr_slock);
   1197 	pool_do_put(pp, v, &pq);
   1198 	simple_unlock(&pp->pr_slock);
   1199 
   1200 	pr_pagelist_free(pp, &pq);
   1201 }
   1202 
   1203 #ifdef POOL_DIAGNOSTIC
   1204 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1205 #endif
   1206 
   1207 /*
   1208  * pool_grow: grow a pool by a page.
   1209  *
   1210  * => called with pool locked.
   1211  * => unlock and relock the pool.
   1212  * => return with pool locked.
   1213  */
   1214 
   1215 static int
   1216 pool_grow(struct pool *pp, int flags)
   1217 {
   1218 	struct pool_item_header *ph = NULL;
   1219 	char *cp;
   1220 
   1221 	simple_unlock(&pp->pr_slock);
   1222 	cp = pool_allocator_alloc(pp, flags);
   1223 	if (__predict_true(cp != NULL)) {
   1224 		ph = pool_alloc_item_header(pp, cp, flags);
   1225 	}
   1226 	if (__predict_false(cp == NULL || ph == NULL)) {
   1227 		if (cp != NULL) {
   1228 			pool_allocator_free(pp, cp);
   1229 		}
   1230 		simple_lock(&pp->pr_slock);
   1231 		return ENOMEM;
   1232 	}
   1233 
   1234 	simple_lock(&pp->pr_slock);
   1235 	pool_prime_page(pp, cp, ph);
   1236 	pp->pr_npagealloc++;
   1237 	return 0;
   1238 }
   1239 
   1240 /*
   1241  * Add N items to the pool.
   1242  */
   1243 int
   1244 pool_prime(struct pool *pp, int n)
   1245 {
   1246 	int newpages;
   1247 	int error = 0;
   1248 
   1249 	simple_lock(&pp->pr_slock);
   1250 
   1251 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1252 
   1253 	while (newpages-- > 0) {
   1254 		error = pool_grow(pp, PR_NOWAIT);
   1255 		if (error) {
   1256 			break;
   1257 		}
   1258 		pp->pr_minpages++;
   1259 	}
   1260 
   1261 	if (pp->pr_minpages >= pp->pr_maxpages)
   1262 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1263 
   1264 	simple_unlock(&pp->pr_slock);
   1265 	return error;
   1266 }
   1267 
   1268 /*
   1269  * Add a page worth of items to the pool.
   1270  *
   1271  * Note, we must be called with the pool descriptor LOCKED.
   1272  */
   1273 static void
   1274 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1275 {
   1276 	struct pool_item *pi;
   1277 	caddr_t cp = storage;
   1278 	unsigned int align = pp->pr_align;
   1279 	unsigned int ioff = pp->pr_itemoffset;
   1280 	int n;
   1281 	int s;
   1282 
   1283 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
   1284 
   1285 #ifdef DIAGNOSTIC
   1286 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1287 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1288 #endif
   1289 
   1290 	/*
   1291 	 * Insert page header.
   1292 	 */
   1293 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1294 	LIST_INIT(&ph->ph_itemlist);
   1295 	ph->ph_page = storage;
   1296 	ph->ph_nmissing = 0;
   1297 	s = splclock();
   1298 	ph->ph_time = mono_time;
   1299 	splx(s);
   1300 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1301 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1302 
   1303 	pp->pr_nidle++;
   1304 
   1305 	/*
   1306 	 * Color this page.
   1307 	 */
   1308 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1309 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1310 		pp->pr_curcolor = 0;
   1311 
   1312 	/*
   1313 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1314 	 */
   1315 	if (ioff != 0)
   1316 		cp = (caddr_t)(cp + (align - ioff));
   1317 
   1318 	/*
   1319 	 * Insert remaining chunks on the bucket list.
   1320 	 */
   1321 	n = pp->pr_itemsperpage;
   1322 	pp->pr_nitems += n;
   1323 
   1324 	if (pp->pr_roflags & PR_NOTOUCH) {
   1325 		pool_item_freelist_t *freelist = PR_FREELIST(ph);
   1326 		int i;
   1327 
   1328 		ph->ph_off = cp - storage;
   1329 		ph->ph_firstfree = 0;
   1330 		for (i = 0; i < n - 1; i++)
   1331 			freelist[i] = i + 1;
   1332 		freelist[n - 1] = PR_INDEX_EOL;
   1333 	} else {
   1334 		while (n--) {
   1335 			pi = (struct pool_item *)cp;
   1336 
   1337 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1338 
   1339 			/* Insert on page list */
   1340 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1341 #ifdef DIAGNOSTIC
   1342 			pi->pi_magic = PI_MAGIC;
   1343 #endif
   1344 			cp = (caddr_t)(cp + pp->pr_size);
   1345 		}
   1346 	}
   1347 
   1348 	/*
   1349 	 * If the pool was depleted, point at the new page.
   1350 	 */
   1351 	if (pp->pr_curpage == NULL)
   1352 		pp->pr_curpage = ph;
   1353 
   1354 	if (++pp->pr_npages > pp->pr_hiwat)
   1355 		pp->pr_hiwat = pp->pr_npages;
   1356 }
   1357 
   1358 /*
   1359  * Used by pool_get() when nitems drops below the low water mark.  This
   1360  * is used to catch up pr_nitems with the low water mark.
   1361  *
   1362  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1363  *
   1364  * Note 2, we must be called with the pool already locked, and we return
   1365  * with it locked.
   1366  */
   1367 static int
   1368 pool_catchup(struct pool *pp)
   1369 {
   1370 	int error = 0;
   1371 
   1372 	while (POOL_NEEDS_CATCHUP(pp)) {
   1373 		error = pool_grow(pp, PR_NOWAIT);
   1374 		if (error) {
   1375 			break;
   1376 		}
   1377 	}
   1378 	return error;
   1379 }
   1380 
   1381 static void
   1382 pool_update_curpage(struct pool *pp)
   1383 {
   1384 
   1385 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1386 	if (pp->pr_curpage == NULL) {
   1387 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1388 	}
   1389 }
   1390 
   1391 void
   1392 pool_setlowat(struct pool *pp, int n)
   1393 {
   1394 
   1395 	simple_lock(&pp->pr_slock);
   1396 
   1397 	pp->pr_minitems = n;
   1398 	pp->pr_minpages = (n == 0)
   1399 		? 0
   1400 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1401 
   1402 	/* Make sure we're caught up with the newly-set low water mark. */
   1403 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1404 		/*
   1405 		 * XXX: Should we log a warning?  Should we set up a timeout
   1406 		 * to try again in a second or so?  The latter could break
   1407 		 * a caller's assumptions about interrupt protection, etc.
   1408 		 */
   1409 	}
   1410 
   1411 	simple_unlock(&pp->pr_slock);
   1412 }
   1413 
   1414 void
   1415 pool_sethiwat(struct pool *pp, int n)
   1416 {
   1417 
   1418 	simple_lock(&pp->pr_slock);
   1419 
   1420 	pp->pr_maxpages = (n == 0)
   1421 		? 0
   1422 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1423 
   1424 	simple_unlock(&pp->pr_slock);
   1425 }
   1426 
   1427 void
   1428 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1429 {
   1430 
   1431 	simple_lock(&pp->pr_slock);
   1432 
   1433 	pp->pr_hardlimit = n;
   1434 	pp->pr_hardlimit_warning = warnmess;
   1435 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1436 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1437 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1438 
   1439 	/*
   1440 	 * In-line version of pool_sethiwat(), because we don't want to
   1441 	 * release the lock.
   1442 	 */
   1443 	pp->pr_maxpages = (n == 0)
   1444 		? 0
   1445 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1446 
   1447 	simple_unlock(&pp->pr_slock);
   1448 }
   1449 
   1450 /*
   1451  * Release all complete pages that have not been used recently.
   1452  */
   1453 int
   1454 #ifdef POOL_DIAGNOSTIC
   1455 _pool_reclaim(struct pool *pp, const char *file, long line)
   1456 #else
   1457 pool_reclaim(struct pool *pp)
   1458 #endif
   1459 {
   1460 	struct pool_item_header *ph, *phnext;
   1461 	struct pool_cache *pc;
   1462 	struct pool_pagelist pq;
   1463 	struct pool_cache_grouplist pcgl;
   1464 	struct timeval curtime, diff;
   1465 	int s;
   1466 
   1467 	if (pp->pr_drain_hook != NULL) {
   1468 		/*
   1469 		 * The drain hook must be called with the pool unlocked.
   1470 		 */
   1471 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1472 	}
   1473 
   1474 	if (simple_lock_try(&pp->pr_slock) == 0)
   1475 		return (0);
   1476 	pr_enter(pp, file, line);
   1477 
   1478 	LIST_INIT(&pq);
   1479 	LIST_INIT(&pcgl);
   1480 
   1481 	/*
   1482 	 * Reclaim items from the pool's caches.
   1483 	 */
   1484 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
   1485 		pool_cache_reclaim(pc, &pq, &pcgl);
   1486 
   1487 	s = splclock();
   1488 	curtime = mono_time;
   1489 	splx(s);
   1490 
   1491 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1492 		phnext = LIST_NEXT(ph, ph_pagelist);
   1493 
   1494 		/* Check our minimum page claim */
   1495 		if (pp->pr_npages <= pp->pr_minpages)
   1496 			break;
   1497 
   1498 		KASSERT(ph->ph_nmissing == 0);
   1499 		timersub(&curtime, &ph->ph_time, &diff);
   1500 		if (diff.tv_sec < pool_inactive_time)
   1501 			continue;
   1502 
   1503 		/*
   1504 		 * If freeing this page would put us below
   1505 		 * the low water mark, stop now.
   1506 		 */
   1507 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1508 		    pp->pr_minitems)
   1509 			break;
   1510 
   1511 		pr_rmpage(pp, ph, &pq);
   1512 	}
   1513 
   1514 	pr_leave(pp);
   1515 	simple_unlock(&pp->pr_slock);
   1516 	if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
   1517 		return 0;
   1518 
   1519 	pr_pagelist_free(pp, &pq);
   1520 	pcg_grouplist_free(&pcgl);
   1521 	return (1);
   1522 }
   1523 
   1524 /*
   1525  * Drain pools, one at a time.
   1526  *
   1527  * Note, we must never be called from an interrupt context.
   1528  */
   1529 void
   1530 pool_drain(void *arg)
   1531 {
   1532 	struct pool *pp;
   1533 	int s;
   1534 
   1535 	pp = NULL;
   1536 	s = splvm();
   1537 	simple_lock(&pool_head_slock);
   1538 	if (drainpp == NULL) {
   1539 		drainpp = LIST_FIRST(&pool_head);
   1540 	}
   1541 	if (drainpp) {
   1542 		pp = drainpp;
   1543 		drainpp = LIST_NEXT(pp, pr_poollist);
   1544 	}
   1545 	simple_unlock(&pool_head_slock);
   1546 	if (pp)
   1547 		pool_reclaim(pp);
   1548 	splx(s);
   1549 }
   1550 
   1551 /*
   1552  * Diagnostic helpers.
   1553  */
   1554 void
   1555 pool_print(struct pool *pp, const char *modif)
   1556 {
   1557 	int s;
   1558 
   1559 	s = splvm();
   1560 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1561 		printf("pool %s is locked; try again later\n",
   1562 		    pp->pr_wchan);
   1563 		splx(s);
   1564 		return;
   1565 	}
   1566 	pool_print1(pp, modif, printf);
   1567 	simple_unlock(&pp->pr_slock);
   1568 	splx(s);
   1569 }
   1570 
   1571 void
   1572 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1573 {
   1574 	struct pool *pp;
   1575 
   1576 	if (simple_lock_try(&pool_head_slock) == 0) {
   1577 		(*pr)("WARNING: pool_head_slock is locked\n");
   1578 	} else {
   1579 		simple_unlock(&pool_head_slock);
   1580 	}
   1581 
   1582 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   1583 		pool_printit(pp, modif, pr);
   1584 	}
   1585 }
   1586 
   1587 void
   1588 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1589 {
   1590 
   1591 	if (pp == NULL) {
   1592 		(*pr)("Must specify a pool to print.\n");
   1593 		return;
   1594 	}
   1595 
   1596 	/*
   1597 	 * Called from DDB; interrupts should be blocked, and all
   1598 	 * other processors should be paused.  We can skip locking
   1599 	 * the pool in this case.
   1600 	 *
   1601 	 * We do a simple_lock_try() just to print the lock
   1602 	 * status, however.
   1603 	 */
   1604 
   1605 	if (simple_lock_try(&pp->pr_slock) == 0)
   1606 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1607 	else
   1608 		simple_unlock(&pp->pr_slock);
   1609 
   1610 	pool_print1(pp, modif, pr);
   1611 }
   1612 
   1613 static void
   1614 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1615     void (*pr)(const char *, ...))
   1616 {
   1617 	struct pool_item_header *ph;
   1618 #ifdef DIAGNOSTIC
   1619 	struct pool_item *pi;
   1620 #endif
   1621 
   1622 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1623 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1624 		    ph->ph_page, ph->ph_nmissing,
   1625 		    (u_long)ph->ph_time.tv_sec,
   1626 		    (u_long)ph->ph_time.tv_usec);
   1627 #ifdef DIAGNOSTIC
   1628 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1629 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1630 				if (pi->pi_magic != PI_MAGIC) {
   1631 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1632 					    pi, pi->pi_magic);
   1633 				}
   1634 			}
   1635 		}
   1636 #endif
   1637 	}
   1638 }
   1639 
   1640 static void
   1641 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1642 {
   1643 	struct pool_item_header *ph;
   1644 	struct pool_cache *pc;
   1645 	struct pool_cache_group *pcg;
   1646 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1647 	char c;
   1648 
   1649 	while ((c = *modif++) != '\0') {
   1650 		if (c == 'l')
   1651 			print_log = 1;
   1652 		if (c == 'p')
   1653 			print_pagelist = 1;
   1654 		if (c == 'c')
   1655 			print_cache = 1;
   1656 	}
   1657 
   1658 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1659 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1660 	    pp->pr_roflags);
   1661 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1662 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1663 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1664 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1665 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1666 
   1667 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1668 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1669 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1670 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1671 
   1672 	if (print_pagelist == 0)
   1673 		goto skip_pagelist;
   1674 
   1675 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1676 		(*pr)("\n\tempty page list:\n");
   1677 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1678 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1679 		(*pr)("\n\tfull page list:\n");
   1680 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1681 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1682 		(*pr)("\n\tpartial-page list:\n");
   1683 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1684 
   1685 	if (pp->pr_curpage == NULL)
   1686 		(*pr)("\tno current page\n");
   1687 	else
   1688 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1689 
   1690  skip_pagelist:
   1691 	if (print_log == 0)
   1692 		goto skip_log;
   1693 
   1694 	(*pr)("\n");
   1695 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1696 		(*pr)("\tno log\n");
   1697 	else
   1698 		pr_printlog(pp, NULL, pr);
   1699 
   1700  skip_log:
   1701 	if (print_cache == 0)
   1702 		goto skip_cache;
   1703 
   1704 #define PR_GROUPLIST(pcg)						\
   1705 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1706 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1707 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1708 		    POOL_PADDR_INVALID) {				\
   1709 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1710 			    pcg->pcg_objects[i].pcgo_va,		\
   1711 			    (unsigned long long)			\
   1712 			    pcg->pcg_objects[i].pcgo_pa);		\
   1713 		} else {						\
   1714 			(*pr)("\t\t\t%p\n",				\
   1715 			    pcg->pcg_objects[i].pcgo_va);		\
   1716 		}							\
   1717 	}
   1718 
   1719 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
   1720 		(*pr)("\tcache %p\n", pc);
   1721 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1722 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1723 		(*pr)("\t    full groups:\n");
   1724 		LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
   1725 			PR_GROUPLIST(pcg);
   1726 		}
   1727 		(*pr)("\t    partial groups:\n");
   1728 		LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
   1729 			PR_GROUPLIST(pcg);
   1730 		}
   1731 		(*pr)("\t    empty groups:\n");
   1732 		LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
   1733 			PR_GROUPLIST(pcg);
   1734 		}
   1735 	}
   1736 #undef PR_GROUPLIST
   1737 
   1738  skip_cache:
   1739 	pr_enter_check(pp, pr);
   1740 }
   1741 
   1742 static int
   1743 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1744 {
   1745 	struct pool_item *pi;
   1746 	caddr_t page;
   1747 	int n;
   1748 
   1749 	page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
   1750 	if (page != ph->ph_page &&
   1751 	    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1752 		if (label != NULL)
   1753 			printf("%s: ", label);
   1754 		printf("pool(%p:%s): page inconsistency: page %p;"
   1755 		       " at page head addr %p (p %p)\n", pp,
   1756 			pp->pr_wchan, ph->ph_page,
   1757 			ph, page);
   1758 		return 1;
   1759 	}
   1760 
   1761 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1762 		return 0;
   1763 
   1764 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1765 	     pi != NULL;
   1766 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1767 
   1768 #ifdef DIAGNOSTIC
   1769 		if (pi->pi_magic != PI_MAGIC) {
   1770 			if (label != NULL)
   1771 				printf("%s: ", label);
   1772 			printf("pool(%s): free list modified: magic=%x;"
   1773 			       " page %p; item ordinal %d;"
   1774 			       " addr %p (p %p)\n",
   1775 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1776 				n, pi, page);
   1777 			panic("pool");
   1778 		}
   1779 #endif
   1780 		page =
   1781 		    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
   1782 		if (page == ph->ph_page)
   1783 			continue;
   1784 
   1785 		if (label != NULL)
   1786 			printf("%s: ", label);
   1787 		printf("pool(%p:%s): page inconsistency: page %p;"
   1788 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1789 			pp->pr_wchan, ph->ph_page,
   1790 			n, pi, page);
   1791 		return 1;
   1792 	}
   1793 	return 0;
   1794 }
   1795 
   1796 
   1797 int
   1798 pool_chk(struct pool *pp, const char *label)
   1799 {
   1800 	struct pool_item_header *ph;
   1801 	int r = 0;
   1802 
   1803 	simple_lock(&pp->pr_slock);
   1804 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1805 		r = pool_chk_page(pp, label, ph);
   1806 		if (r) {
   1807 			goto out;
   1808 		}
   1809 	}
   1810 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1811 		r = pool_chk_page(pp, label, ph);
   1812 		if (r) {
   1813 			goto out;
   1814 		}
   1815 	}
   1816 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1817 		r = pool_chk_page(pp, label, ph);
   1818 		if (r) {
   1819 			goto out;
   1820 		}
   1821 	}
   1822 
   1823 out:
   1824 	simple_unlock(&pp->pr_slock);
   1825 	return (r);
   1826 }
   1827 
   1828 /*
   1829  * pool_cache_init:
   1830  *
   1831  *	Initialize a pool cache.
   1832  *
   1833  *	NOTE: If the pool must be protected from interrupts, we expect
   1834  *	to be called at the appropriate interrupt priority level.
   1835  */
   1836 void
   1837 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1838     int (*ctor)(void *, void *, int),
   1839     void (*dtor)(void *, void *),
   1840     void *arg)
   1841 {
   1842 
   1843 	LIST_INIT(&pc->pc_emptygroups);
   1844 	LIST_INIT(&pc->pc_fullgroups);
   1845 	LIST_INIT(&pc->pc_partgroups);
   1846 	simple_lock_init(&pc->pc_slock);
   1847 
   1848 	pc->pc_pool = pp;
   1849 
   1850 	pc->pc_ctor = ctor;
   1851 	pc->pc_dtor = dtor;
   1852 	pc->pc_arg  = arg;
   1853 
   1854 	pc->pc_hits   = 0;
   1855 	pc->pc_misses = 0;
   1856 
   1857 	pc->pc_ngroups = 0;
   1858 
   1859 	pc->pc_nitems = 0;
   1860 
   1861 	simple_lock(&pp->pr_slock);
   1862 	LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
   1863 	simple_unlock(&pp->pr_slock);
   1864 }
   1865 
   1866 /*
   1867  * pool_cache_destroy:
   1868  *
   1869  *	Destroy a pool cache.
   1870  */
   1871 void
   1872 pool_cache_destroy(struct pool_cache *pc)
   1873 {
   1874 	struct pool *pp = pc->pc_pool;
   1875 
   1876 	/* First, invalidate the entire cache. */
   1877 	pool_cache_invalidate(pc);
   1878 
   1879 	/* ...and remove it from the pool's cache list. */
   1880 	simple_lock(&pp->pr_slock);
   1881 	LIST_REMOVE(pc, pc_poollist);
   1882 	simple_unlock(&pp->pr_slock);
   1883 }
   1884 
   1885 static inline void *
   1886 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
   1887 {
   1888 	void *object;
   1889 	u_int idx;
   1890 
   1891 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1892 	KASSERT(pcg->pcg_avail != 0);
   1893 	idx = --pcg->pcg_avail;
   1894 
   1895 	KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
   1896 	object = pcg->pcg_objects[idx].pcgo_va;
   1897 	if (pap != NULL)
   1898 		*pap = pcg->pcg_objects[idx].pcgo_pa;
   1899 	pcg->pcg_objects[idx].pcgo_va = NULL;
   1900 
   1901 	return (object);
   1902 }
   1903 
   1904 static inline void
   1905 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
   1906 {
   1907 	u_int idx;
   1908 
   1909 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   1910 	idx = pcg->pcg_avail++;
   1911 
   1912 	KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
   1913 	pcg->pcg_objects[idx].pcgo_va = object;
   1914 	pcg->pcg_objects[idx].pcgo_pa = pa;
   1915 }
   1916 
   1917 static void
   1918 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
   1919 {
   1920 	struct pool_cache_group *pcg;
   1921 	int s;
   1922 
   1923 	s = splvm();
   1924 	while ((pcg = LIST_FIRST(pcgl)) != NULL) {
   1925 		LIST_REMOVE(pcg, pcg_list);
   1926 		pool_put(&pcgpool, pcg);
   1927 	}
   1928 	splx(s);
   1929 }
   1930 
   1931 /*
   1932  * pool_cache_get{,_paddr}:
   1933  *
   1934  *	Get an object from a pool cache (optionally returning
   1935  *	the physical address of the object).
   1936  */
   1937 void *
   1938 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
   1939 {
   1940 	struct pool_cache_group *pcg;
   1941 	void *object;
   1942 
   1943 #ifdef LOCKDEBUG
   1944 	if (flags & PR_WAITOK)
   1945 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
   1946 #endif
   1947 
   1948 	simple_lock(&pc->pc_slock);
   1949 
   1950 	pcg = LIST_FIRST(&pc->pc_partgroups);
   1951 	if (pcg == NULL) {
   1952 		pcg = LIST_FIRST(&pc->pc_fullgroups);
   1953 		if (pcg != NULL) {
   1954 			LIST_REMOVE(pcg, pcg_list);
   1955 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   1956 		}
   1957 	}
   1958 	if (pcg == NULL) {
   1959 
   1960 		/*
   1961 		 * No groups with any available objects.  Allocate
   1962 		 * a new object, construct it, and return it to
   1963 		 * the caller.  We will allocate a group, if necessary,
   1964 		 * when the object is freed back to the cache.
   1965 		 */
   1966 		pc->pc_misses++;
   1967 		simple_unlock(&pc->pc_slock);
   1968 		object = pool_get(pc->pc_pool, flags);
   1969 		if (object != NULL && pc->pc_ctor != NULL) {
   1970 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   1971 				pool_put(pc->pc_pool, object);
   1972 				return (NULL);
   1973 			}
   1974 		}
   1975 		if (object != NULL && pap != NULL) {
   1976 #ifdef POOL_VTOPHYS
   1977 			*pap = POOL_VTOPHYS(object);
   1978 #else
   1979 			*pap = POOL_PADDR_INVALID;
   1980 #endif
   1981 		}
   1982 		return (object);
   1983 	}
   1984 
   1985 	pc->pc_hits++;
   1986 	pc->pc_nitems--;
   1987 	object = pcg_get(pcg, pap);
   1988 
   1989 	if (pcg->pcg_avail == 0) {
   1990 		LIST_REMOVE(pcg, pcg_list);
   1991 		LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
   1992 	}
   1993 	simple_unlock(&pc->pc_slock);
   1994 
   1995 	return (object);
   1996 }
   1997 
   1998 /*
   1999  * pool_cache_put{,_paddr}:
   2000  *
   2001  *	Put an object back to the pool cache (optionally caching the
   2002  *	physical address of the object).
   2003  */
   2004 void
   2005 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
   2006 {
   2007 	struct pool_cache_group *pcg;
   2008 	int s;
   2009 
   2010 	if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
   2011 		goto destruct;
   2012 	}
   2013 
   2014 	simple_lock(&pc->pc_slock);
   2015 
   2016 	pcg = LIST_FIRST(&pc->pc_partgroups);
   2017 	if (pcg == NULL) {
   2018 		pcg = LIST_FIRST(&pc->pc_emptygroups);
   2019 		if (pcg != NULL) {
   2020 			LIST_REMOVE(pcg, pcg_list);
   2021 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2022 		}
   2023 	}
   2024 	if (pcg == NULL) {
   2025 
   2026 		/*
   2027 		 * No empty groups to free the object to.  Attempt to
   2028 		 * allocate one.
   2029 		 */
   2030 		simple_unlock(&pc->pc_slock);
   2031 		s = splvm();
   2032 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   2033 		splx(s);
   2034 		if (pcg == NULL) {
   2035 destruct:
   2036 
   2037 			/*
   2038 			 * Unable to allocate a cache group; destruct the object
   2039 			 * and free it back to the pool.
   2040 			 */
   2041 			pool_cache_destruct_object(pc, object);
   2042 			return;
   2043 		}
   2044 		memset(pcg, 0, sizeof(*pcg));
   2045 		simple_lock(&pc->pc_slock);
   2046 		pc->pc_ngroups++;
   2047 		LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2048 	}
   2049 
   2050 	pc->pc_nitems++;
   2051 	pcg_put(pcg, object, pa);
   2052 
   2053 	if (pcg->pcg_avail == PCG_NOBJECTS) {
   2054 		LIST_REMOVE(pcg, pcg_list);
   2055 		LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
   2056 	}
   2057 	simple_unlock(&pc->pc_slock);
   2058 }
   2059 
   2060 /*
   2061  * pool_cache_destruct_object:
   2062  *
   2063  *	Force destruction of an object and its release back into
   2064  *	the pool.
   2065  */
   2066 void
   2067 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   2068 {
   2069 
   2070 	if (pc->pc_dtor != NULL)
   2071 		(*pc->pc_dtor)(pc->pc_arg, object);
   2072 	pool_put(pc->pc_pool, object);
   2073 }
   2074 
   2075 static void
   2076 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
   2077     struct pool_cache *pc, struct pool_pagelist *pq,
   2078     struct pool_cache_grouplist *pcgdl)
   2079 {
   2080 	struct pool_cache_group *pcg, *npcg;
   2081 	void *object;
   2082 
   2083 	for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
   2084 		npcg = LIST_NEXT(pcg, pcg_list);
   2085 		while (pcg->pcg_avail != 0) {
   2086 			pc->pc_nitems--;
   2087 			object = pcg_get(pcg, NULL);
   2088 			if (pc->pc_dtor != NULL)
   2089 				(*pc->pc_dtor)(pc->pc_arg, object);
   2090 			pool_do_put(pc->pc_pool, object, pq);
   2091 		}
   2092 		pc->pc_ngroups--;
   2093 		LIST_REMOVE(pcg, pcg_list);
   2094 		LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
   2095 	}
   2096 }
   2097 
   2098 static void
   2099 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
   2100     struct pool_cache_grouplist *pcgl)
   2101 {
   2102 
   2103 	LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
   2104 	LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
   2105 
   2106 	pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
   2107 	pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
   2108 
   2109 	KASSERT(LIST_EMPTY(&pc->pc_partgroups));
   2110 	KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
   2111 	KASSERT(pc->pc_nitems == 0);
   2112 }
   2113 
   2114 /*
   2115  * pool_cache_invalidate:
   2116  *
   2117  *	Invalidate a pool cache (destruct and release all of the
   2118  *	cached objects).
   2119  */
   2120 void
   2121 pool_cache_invalidate(struct pool_cache *pc)
   2122 {
   2123 	struct pool_pagelist pq;
   2124 	struct pool_cache_grouplist pcgl;
   2125 
   2126 	LIST_INIT(&pq);
   2127 	LIST_INIT(&pcgl);
   2128 
   2129 	simple_lock(&pc->pc_slock);
   2130 	simple_lock(&pc->pc_pool->pr_slock);
   2131 
   2132 	pool_do_cache_invalidate(pc, &pq, &pcgl);
   2133 
   2134 	simple_unlock(&pc->pc_pool->pr_slock);
   2135 	simple_unlock(&pc->pc_slock);
   2136 
   2137 	pr_pagelist_free(pc->pc_pool, &pq);
   2138 	pcg_grouplist_free(&pcgl);
   2139 }
   2140 
   2141 /*
   2142  * pool_cache_reclaim:
   2143  *
   2144  *	Reclaim a pool cache for pool_reclaim().
   2145  */
   2146 static void
   2147 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
   2148     struct pool_cache_grouplist *pcgl)
   2149 {
   2150 
   2151 	/*
   2152 	 * We're locking in the wrong order (normally pool_cache -> pool,
   2153 	 * but the pool is already locked when we get here), so we have
   2154 	 * to use trylock.  If we can't lock the pool_cache, it's not really
   2155 	 * a big deal here.
   2156 	 */
   2157 	if (simple_lock_try(&pc->pc_slock) == 0)
   2158 		return;
   2159 
   2160 	pool_do_cache_invalidate(pc, pq, pcgl);
   2161 
   2162 	simple_unlock(&pc->pc_slock);
   2163 }
   2164 
   2165 /*
   2166  * Pool backend allocators.
   2167  *
   2168  * Each pool has a backend allocator that handles allocation, deallocation,
   2169  * and any additional draining that might be needed.
   2170  *
   2171  * We provide two standard allocators:
   2172  *
   2173  *	pool_allocator_kmem - the default when no allocator is specified
   2174  *
   2175  *	pool_allocator_nointr - used for pools that will not be accessed
   2176  *	in interrupt context.
   2177  */
   2178 void	*pool_page_alloc(struct pool *, int);
   2179 void	pool_page_free(struct pool *, void *);
   2180 
   2181 #ifdef POOL_SUBPAGE
   2182 struct pool_allocator pool_allocator_kmem_fullpage = {
   2183 	pool_page_alloc, pool_page_free, 0,
   2184 };
   2185 #else
   2186 struct pool_allocator pool_allocator_kmem = {
   2187 	pool_page_alloc, pool_page_free, 0,
   2188 };
   2189 #endif
   2190 
   2191 void	*pool_page_alloc_nointr(struct pool *, int);
   2192 void	pool_page_free_nointr(struct pool *, void *);
   2193 
   2194 #ifdef POOL_SUBPAGE
   2195 struct pool_allocator pool_allocator_nointr_fullpage = {
   2196 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2197 };
   2198 #else
   2199 struct pool_allocator pool_allocator_nointr = {
   2200 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2201 };
   2202 #endif
   2203 
   2204 #ifdef POOL_SUBPAGE
   2205 void	*pool_subpage_alloc(struct pool *, int);
   2206 void	pool_subpage_free(struct pool *, void *);
   2207 
   2208 struct pool_allocator pool_allocator_kmem = {
   2209 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2210 };
   2211 
   2212 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2213 void	pool_subpage_free_nointr(struct pool *, void *);
   2214 
   2215 struct pool_allocator pool_allocator_nointr = {
   2216 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2217 };
   2218 #endif /* POOL_SUBPAGE */
   2219 
   2220 /*
   2221  * We have at least three different resources for the same allocation and
   2222  * each resource can be depleted.  First, we have the ready elements in the
   2223  * pool.  Then we have the resource (typically a vm_map) for this allocator.
   2224  * Finally, we have physical memory.  Waiting for any of these can be
   2225  * unnecessary when any other is freed, but the kernel doesn't support
   2226  * sleeping on multiple wait channels, so we have to employ another strategy.
   2227  *
   2228  * The caller sleeps on the pool (so that it can be awakened when an item
   2229  * is returned to the pool), but we set PA_WANT on the allocator.  When a
   2230  * page is returned to the allocator and PA_WANT is set, pool_allocator_free
   2231  * will wake up all sleeping pools belonging to this allocator.
   2232  *
   2233  * XXX Thundering herd.
   2234  */
   2235 void *
   2236 pool_allocator_alloc(struct pool *org, int flags)
   2237 {
   2238 	struct pool_allocator *pa = org->pr_alloc;
   2239 	struct pool *pp, *start;
   2240 	int s, freed;
   2241 	void *res;
   2242 
   2243 	LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
   2244 
   2245 	do {
   2246 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   2247 			return (res);
   2248 		if ((flags & PR_WAITOK) == 0) {
   2249 			/*
   2250 			 * We only run the drain hookhere if PR_NOWAIT.
   2251 			 * In other cases, the hook will be run in
   2252 			 * pool_reclaim().
   2253 			 */
   2254 			if (org->pr_drain_hook != NULL) {
   2255 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
   2256 				    flags);
   2257 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   2258 					return (res);
   2259 			}
   2260 			break;
   2261 		}
   2262 
   2263 		/*
   2264 		 * Drain all pools, that use this allocator.
   2265 		 * We do this to reclaim VA space.
   2266 		 * pa_alloc is responsible for waiting for
   2267 		 * physical memory.
   2268 		 *
   2269 		 * XXX We risk looping forever if start if someone
   2270 		 * calls pool_destroy on "start".  But there is no
   2271 		 * other way to have potentially sleeping pool_reclaim,
   2272 		 * non-sleeping locks on pool_allocator, and some
   2273 		 * stirring of drained pools in the allocator.
   2274 		 *
   2275 		 * XXX Maybe we should use pool_head_slock for locking
   2276 		 * the allocators?
   2277 		 */
   2278 		freed = 0;
   2279 
   2280 		s = splvm();
   2281 		simple_lock(&pa->pa_slock);
   2282 		pp = start = TAILQ_FIRST(&pa->pa_list);
   2283 		do {
   2284 			TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
   2285 			TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
   2286 			simple_unlock(&pa->pa_slock);
   2287 			freed = pool_reclaim(pp);
   2288 			simple_lock(&pa->pa_slock);
   2289 		} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
   2290 			 freed == 0);
   2291 
   2292 		if (freed == 0) {
   2293 			/*
   2294 			 * We set PA_WANT here, the caller will most likely
   2295 			 * sleep waiting for pages (if not, this won't hurt
   2296 			 * that much), and there is no way to set this in
   2297 			 * the caller without violating locking order.
   2298 			 */
   2299 			pa->pa_flags |= PA_WANT;
   2300 		}
   2301 		simple_unlock(&pa->pa_slock);
   2302 		splx(s);
   2303 	} while (freed);
   2304 	return (NULL);
   2305 }
   2306 
   2307 void
   2308 pool_allocator_free(struct pool *pp, void *v)
   2309 {
   2310 	struct pool_allocator *pa = pp->pr_alloc;
   2311 	int s;
   2312 
   2313 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
   2314 
   2315 	(*pa->pa_free)(pp, v);
   2316 
   2317 	s = splvm();
   2318 	simple_lock(&pa->pa_slock);
   2319 	if ((pa->pa_flags & PA_WANT) == 0) {
   2320 		simple_unlock(&pa->pa_slock);
   2321 		splx(s);
   2322 		return;
   2323 	}
   2324 
   2325 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
   2326 		simple_lock(&pp->pr_slock);
   2327 		if ((pp->pr_flags & PR_WANTED) != 0) {
   2328 			pp->pr_flags &= ~PR_WANTED;
   2329 			wakeup(pp);
   2330 		}
   2331 		simple_unlock(&pp->pr_slock);
   2332 	}
   2333 	pa->pa_flags &= ~PA_WANT;
   2334 	simple_unlock(&pa->pa_slock);
   2335 	splx(s);
   2336 }
   2337 
   2338 void *
   2339 pool_page_alloc(struct pool *pp, int flags)
   2340 {
   2341 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2342 
   2343 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2344 }
   2345 
   2346 void
   2347 pool_page_free(struct pool *pp, void *v)
   2348 {
   2349 
   2350 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2351 }
   2352 
   2353 static void *
   2354 pool_page_alloc_meta(struct pool *pp, int flags)
   2355 {
   2356 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2357 
   2358 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2359 }
   2360 
   2361 static void
   2362 pool_page_free_meta(struct pool *pp, void *v)
   2363 {
   2364 
   2365 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2366 }
   2367 
   2368 #ifdef POOL_SUBPAGE
   2369 /* Sub-page allocator, for machines with large hardware pages. */
   2370 void *
   2371 pool_subpage_alloc(struct pool *pp, int flags)
   2372 {
   2373 	void *v;
   2374 	int s;
   2375 	s = splvm();
   2376 	v = pool_get(&psppool, flags);
   2377 	splx(s);
   2378 	return v;
   2379 }
   2380 
   2381 void
   2382 pool_subpage_free(struct pool *pp, void *v)
   2383 {
   2384 	int s;
   2385 	s = splvm();
   2386 	pool_put(&psppool, v);
   2387 	splx(s);
   2388 }
   2389 
   2390 /* We don't provide a real nointr allocator.  Maybe later. */
   2391 void *
   2392 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2393 {
   2394 
   2395 	return (pool_subpage_alloc(pp, flags));
   2396 }
   2397 
   2398 void
   2399 pool_subpage_free_nointr(struct pool *pp, void *v)
   2400 {
   2401 
   2402 	pool_subpage_free(pp, v);
   2403 }
   2404 #endif /* POOL_SUBPAGE */
   2405 void *
   2406 pool_page_alloc_nointr(struct pool *pp, int flags)
   2407 {
   2408 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2409 
   2410 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2411 }
   2412 
   2413 void
   2414 pool_page_free_nointr(struct pool *pp, void *v)
   2415 {
   2416 
   2417 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2418 }
   2419