subr_pool.c revision 1.117 1 /* $NetBSD: subr_pool.c,v 1.117 2006/05/25 14:27:28 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.117 2006/05/25 14:27:28 yamt Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 #define PHPOOL_MAX 8
77 static struct pool phpool[PHPOOL_MAX];
78 #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
79
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84
85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
86 SLIST_HEAD_INITIALIZER(pa_deferinitq);
87
88 static void *pool_page_alloc_meta(struct pool *, int);
89 static void pool_page_free_meta(struct pool *, void *);
90
91 /* allocator for pool metadata */
92 static struct pool_allocator pool_allocator_meta = {
93 pool_page_alloc_meta, pool_page_free_meta,
94 .pa_backingmapptr = &kmem_map,
95 };
96
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
99
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool *drainpp;
102
103 /* This spin lock protects both pool_head and drainpp. */
104 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
105
106 typedef uint8_t pool_item_freelist_t;
107
108 struct pool_item_header {
109 /* Page headers */
110 LIST_ENTRY(pool_item_header)
111 ph_pagelist; /* pool page list */
112 SPLAY_ENTRY(pool_item_header)
113 ph_node; /* Off-page page headers */
114 caddr_t ph_page; /* this page's address */
115 struct timeval ph_time; /* last referenced */
116 union {
117 /* !PR_NOTOUCH */
118 struct {
119 LIST_HEAD(, pool_item)
120 phu_itemlist; /* chunk list for this page */
121 } phu_normal;
122 /* PR_NOTOUCH */
123 struct {
124 uint16_t
125 phu_off; /* start offset in page */
126 pool_item_freelist_t
127 phu_firstfree; /* first free item */
128 /*
129 * XXX it might be better to use
130 * a simple bitmap and ffs(3)
131 */
132 } phu_notouch;
133 } ph_u;
134 uint16_t ph_nmissing; /* # of chunks in use */
135 };
136 #define ph_itemlist ph_u.phu_normal.phu_itemlist
137 #define ph_off ph_u.phu_notouch.phu_off
138 #define ph_firstfree ph_u.phu_notouch.phu_firstfree
139
140 struct pool_item {
141 #ifdef DIAGNOSTIC
142 u_int pi_magic;
143 #endif
144 #define PI_MAGIC 0xdeadbeefU
145 /* Other entries use only this list entry */
146 LIST_ENTRY(pool_item) pi_list;
147 };
148
149 #define POOL_NEEDS_CATCHUP(pp) \
150 ((pp)->pr_nitems < (pp)->pr_minitems)
151
152 /*
153 * Pool cache management.
154 *
155 * Pool caches provide a way for constructed objects to be cached by the
156 * pool subsystem. This can lead to performance improvements by avoiding
157 * needless object construction/destruction; it is deferred until absolutely
158 * necessary.
159 *
160 * Caches are grouped into cache groups. Each cache group references
161 * up to 16 constructed objects. When a cache allocates an object
162 * from the pool, it calls the object's constructor and places it into
163 * a cache group. When a cache group frees an object back to the pool,
164 * it first calls the object's destructor. This allows the object to
165 * persist in constructed form while freed to the cache.
166 *
167 * Multiple caches may exist for each pool. This allows a single
168 * object type to have multiple constructed forms. The pool references
169 * each cache, so that when a pool is drained by the pagedaemon, it can
170 * drain each individual cache as well. Each time a cache is drained,
171 * the most idle cache group is freed to the pool in its entirety.
172 *
173 * Pool caches are layed on top of pools. By layering them, we can avoid
174 * the complexity of cache management for pools which would not benefit
175 * from it.
176 */
177
178 /* The cache group pool. */
179 static struct pool pcgpool;
180
181 static void pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
182 struct pool_cache_grouplist *);
183 static void pcg_grouplist_free(struct pool_cache_grouplist *);
184
185 static int pool_catchup(struct pool *);
186 static void pool_prime_page(struct pool *, caddr_t,
187 struct pool_item_header *);
188 static void pool_update_curpage(struct pool *);
189
190 static int pool_grow(struct pool *, int);
191 static void *pool_allocator_alloc(struct pool *, int);
192 static void pool_allocator_free(struct pool *, void *);
193
194 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
195 void (*)(const char *, ...));
196 static void pool_print1(struct pool *, const char *,
197 void (*)(const char *, ...));
198
199 static int pool_chk_page(struct pool *, const char *,
200 struct pool_item_header *);
201
202 /*
203 * Pool log entry. An array of these is allocated in pool_init().
204 */
205 struct pool_log {
206 const char *pl_file;
207 long pl_line;
208 int pl_action;
209 #define PRLOG_GET 1
210 #define PRLOG_PUT 2
211 void *pl_addr;
212 };
213
214 #ifdef POOL_DIAGNOSTIC
215 /* Number of entries in pool log buffers */
216 #ifndef POOL_LOGSIZE
217 #define POOL_LOGSIZE 10
218 #endif
219
220 int pool_logsize = POOL_LOGSIZE;
221
222 static inline void
223 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
224 {
225 int n = pp->pr_curlogentry;
226 struct pool_log *pl;
227
228 if ((pp->pr_roflags & PR_LOGGING) == 0)
229 return;
230
231 /*
232 * Fill in the current entry. Wrap around and overwrite
233 * the oldest entry if necessary.
234 */
235 pl = &pp->pr_log[n];
236 pl->pl_file = file;
237 pl->pl_line = line;
238 pl->pl_action = action;
239 pl->pl_addr = v;
240 if (++n >= pp->pr_logsize)
241 n = 0;
242 pp->pr_curlogentry = n;
243 }
244
245 static void
246 pr_printlog(struct pool *pp, struct pool_item *pi,
247 void (*pr)(const char *, ...))
248 {
249 int i = pp->pr_logsize;
250 int n = pp->pr_curlogentry;
251
252 if ((pp->pr_roflags & PR_LOGGING) == 0)
253 return;
254
255 /*
256 * Print all entries in this pool's log.
257 */
258 while (i-- > 0) {
259 struct pool_log *pl = &pp->pr_log[n];
260 if (pl->pl_action != 0) {
261 if (pi == NULL || pi == pl->pl_addr) {
262 (*pr)("\tlog entry %d:\n", i);
263 (*pr)("\t\taction = %s, addr = %p\n",
264 pl->pl_action == PRLOG_GET ? "get" : "put",
265 pl->pl_addr);
266 (*pr)("\t\tfile: %s at line %lu\n",
267 pl->pl_file, pl->pl_line);
268 }
269 }
270 if (++n >= pp->pr_logsize)
271 n = 0;
272 }
273 }
274
275 static inline void
276 pr_enter(struct pool *pp, const char *file, long line)
277 {
278
279 if (__predict_false(pp->pr_entered_file != NULL)) {
280 printf("pool %s: reentrancy at file %s line %ld\n",
281 pp->pr_wchan, file, line);
282 printf(" previous entry at file %s line %ld\n",
283 pp->pr_entered_file, pp->pr_entered_line);
284 panic("pr_enter");
285 }
286
287 pp->pr_entered_file = file;
288 pp->pr_entered_line = line;
289 }
290
291 static inline void
292 pr_leave(struct pool *pp)
293 {
294
295 if (__predict_false(pp->pr_entered_file == NULL)) {
296 printf("pool %s not entered?\n", pp->pr_wchan);
297 panic("pr_leave");
298 }
299
300 pp->pr_entered_file = NULL;
301 pp->pr_entered_line = 0;
302 }
303
304 static inline void
305 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
306 {
307
308 if (pp->pr_entered_file != NULL)
309 (*pr)("\n\tcurrently entered from file %s line %ld\n",
310 pp->pr_entered_file, pp->pr_entered_line);
311 }
312 #else
313 #define pr_log(pp, v, action, file, line)
314 #define pr_printlog(pp, pi, pr)
315 #define pr_enter(pp, file, line)
316 #define pr_leave(pp)
317 #define pr_enter_check(pp, pr)
318 #endif /* POOL_DIAGNOSTIC */
319
320 static inline int
321 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
322 const void *v)
323 {
324 const char *cp = v;
325 int idx;
326
327 KASSERT(pp->pr_roflags & PR_NOTOUCH);
328 idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
329 KASSERT(idx < pp->pr_itemsperpage);
330 return idx;
331 }
332
333 #define PR_FREELIST_ALIGN(p) \
334 roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
335 #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
336 #define PR_INDEX_USED ((pool_item_freelist_t)-1)
337 #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
338
339 static inline void
340 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
341 void *obj)
342 {
343 int idx = pr_item_notouch_index(pp, ph, obj);
344 pool_item_freelist_t *freelist = PR_FREELIST(ph);
345
346 KASSERT(freelist[idx] == PR_INDEX_USED);
347 freelist[idx] = ph->ph_firstfree;
348 ph->ph_firstfree = idx;
349 }
350
351 static inline void *
352 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
353 {
354 int idx = ph->ph_firstfree;
355 pool_item_freelist_t *freelist = PR_FREELIST(ph);
356
357 KASSERT(freelist[idx] != PR_INDEX_USED);
358 ph->ph_firstfree = freelist[idx];
359 freelist[idx] = PR_INDEX_USED;
360
361 return ph->ph_page + ph->ph_off + idx * pp->pr_size;
362 }
363
364 static inline int
365 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
366 {
367 if (a->ph_page < b->ph_page)
368 return (-1);
369 else if (a->ph_page > b->ph_page)
370 return (1);
371 else
372 return (0);
373 }
374
375 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
376 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
377
378 /*
379 * Return the pool page header based on page address.
380 */
381 static inline struct pool_item_header *
382 pr_find_pagehead(struct pool *pp, caddr_t page)
383 {
384 struct pool_item_header *ph, tmp;
385
386 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
387 return ((struct pool_item_header *)(page + pp->pr_phoffset));
388
389 tmp.ph_page = page;
390 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
391 return ph;
392 }
393
394 static void
395 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
396 {
397 struct pool_item_header *ph;
398 int s;
399
400 while ((ph = LIST_FIRST(pq)) != NULL) {
401 LIST_REMOVE(ph, ph_pagelist);
402 pool_allocator_free(pp, ph->ph_page);
403 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
404 s = splvm();
405 pool_put(pp->pr_phpool, ph);
406 splx(s);
407 }
408 }
409 }
410
411 /*
412 * Remove a page from the pool.
413 */
414 static inline void
415 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
416 struct pool_pagelist *pq)
417 {
418
419 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
420
421 /*
422 * If the page was idle, decrement the idle page count.
423 */
424 if (ph->ph_nmissing == 0) {
425 #ifdef DIAGNOSTIC
426 if (pp->pr_nidle == 0)
427 panic("pr_rmpage: nidle inconsistent");
428 if (pp->pr_nitems < pp->pr_itemsperpage)
429 panic("pr_rmpage: nitems inconsistent");
430 #endif
431 pp->pr_nidle--;
432 }
433
434 pp->pr_nitems -= pp->pr_itemsperpage;
435
436 /*
437 * Unlink the page from the pool and queue it for release.
438 */
439 LIST_REMOVE(ph, ph_pagelist);
440 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
441 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
442 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
443
444 pp->pr_npages--;
445 pp->pr_npagefree++;
446
447 pool_update_curpage(pp);
448 }
449
450 static boolean_t
451 pa_starved_p(struct pool_allocator *pa)
452 {
453
454 if (pa->pa_backingmap != NULL) {
455 return vm_map_starved_p(pa->pa_backingmap);
456 }
457 return FALSE;
458 }
459
460 static int
461 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
462 {
463 struct pool *pp = obj;
464 struct pool_allocator *pa = pp->pr_alloc;
465
466 KASSERT(&pp->pr_reclaimerentry == ce);
467 pool_reclaim(pp);
468 if (!pa_starved_p(pa)) {
469 return CALLBACK_CHAIN_ABORT;
470 }
471 return CALLBACK_CHAIN_CONTINUE;
472 }
473
474 static void
475 pool_reclaim_register(struct pool *pp)
476 {
477 struct vm_map *map = pp->pr_alloc->pa_backingmap;
478 int s;
479
480 if (map == NULL) {
481 return;
482 }
483
484 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
485 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
486 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
487 splx(s);
488 }
489
490 static void
491 pool_reclaim_unregister(struct pool *pp)
492 {
493 struct vm_map *map = pp->pr_alloc->pa_backingmap;
494 int s;
495
496 if (map == NULL) {
497 return;
498 }
499
500 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
501 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
502 &pp->pr_reclaimerentry);
503 splx(s);
504 }
505
506 static void
507 pa_reclaim_register(struct pool_allocator *pa)
508 {
509 struct vm_map *map = *pa->pa_backingmapptr;
510 struct pool *pp;
511
512 KASSERT(pa->pa_backingmap == NULL);
513 if (map == NULL) {
514 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
515 return;
516 }
517 pa->pa_backingmap = map;
518 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
519 pool_reclaim_register(pp);
520 }
521 }
522
523 /*
524 * Initialize all the pools listed in the "pools" link set.
525 */
526 void
527 pool_subsystem_init(void)
528 {
529 struct pool_allocator *pa;
530 __link_set_decl(pools, struct link_pool_init);
531 struct link_pool_init * const *pi;
532
533 __link_set_foreach(pi, pools)
534 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
535 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
536 (*pi)->palloc);
537
538 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
539 KASSERT(pa->pa_backingmapptr != NULL);
540 KASSERT(*pa->pa_backingmapptr != NULL);
541 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
542 pa_reclaim_register(pa);
543 }
544 }
545
546 /*
547 * Initialize the given pool resource structure.
548 *
549 * We export this routine to allow other kernel parts to declare
550 * static pools that must be initialized before malloc() is available.
551 */
552 void
553 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
554 const char *wchan, struct pool_allocator *palloc)
555 {
556 #ifdef DEBUG
557 struct pool *pp1;
558 #endif
559 size_t trysize, phsize;
560 int off, slack, s;
561
562 KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
563 PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
564
565 #ifdef DEBUG
566 /*
567 * Check that the pool hasn't already been initialised and
568 * added to the list of all pools.
569 */
570 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
571 if (pp == pp1)
572 panic("pool_init: pool %s already initialised",
573 wchan);
574 }
575 #endif
576
577 #ifdef POOL_DIAGNOSTIC
578 /*
579 * Always log if POOL_DIAGNOSTIC is defined.
580 */
581 if (pool_logsize != 0)
582 flags |= PR_LOGGING;
583 #endif
584
585 if (palloc == NULL)
586 palloc = &pool_allocator_kmem;
587 #ifdef POOL_SUBPAGE
588 if (size > palloc->pa_pagesz) {
589 if (palloc == &pool_allocator_kmem)
590 palloc = &pool_allocator_kmem_fullpage;
591 else if (palloc == &pool_allocator_nointr)
592 palloc = &pool_allocator_nointr_fullpage;
593 }
594 #endif /* POOL_SUBPAGE */
595 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
596 if (palloc->pa_pagesz == 0)
597 palloc->pa_pagesz = PAGE_SIZE;
598
599 TAILQ_INIT(&palloc->pa_list);
600
601 simple_lock_init(&palloc->pa_slock);
602 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
603 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
604
605 if (palloc->pa_backingmapptr != NULL) {
606 pa_reclaim_register(palloc);
607 }
608 palloc->pa_flags |= PA_INITIALIZED;
609 }
610
611 if (align == 0)
612 align = ALIGN(1);
613
614 if (size < sizeof(struct pool_item))
615 size = sizeof(struct pool_item);
616
617 size = roundup(size, align);
618 #ifdef DIAGNOSTIC
619 if (size > palloc->pa_pagesz)
620 panic("pool_init: pool item size (%lu) too large",
621 (u_long)size);
622 #endif
623
624 /*
625 * Initialize the pool structure.
626 */
627 LIST_INIT(&pp->pr_emptypages);
628 LIST_INIT(&pp->pr_fullpages);
629 LIST_INIT(&pp->pr_partpages);
630 LIST_INIT(&pp->pr_cachelist);
631 pp->pr_curpage = NULL;
632 pp->pr_npages = 0;
633 pp->pr_minitems = 0;
634 pp->pr_minpages = 0;
635 pp->pr_maxpages = UINT_MAX;
636 pp->pr_roflags = flags;
637 pp->pr_flags = 0;
638 pp->pr_size = size;
639 pp->pr_align = align;
640 pp->pr_wchan = wchan;
641 pp->pr_alloc = palloc;
642 pp->pr_nitems = 0;
643 pp->pr_nout = 0;
644 pp->pr_hardlimit = UINT_MAX;
645 pp->pr_hardlimit_warning = NULL;
646 pp->pr_hardlimit_ratecap.tv_sec = 0;
647 pp->pr_hardlimit_ratecap.tv_usec = 0;
648 pp->pr_hardlimit_warning_last.tv_sec = 0;
649 pp->pr_hardlimit_warning_last.tv_usec = 0;
650 pp->pr_drain_hook = NULL;
651 pp->pr_drain_hook_arg = NULL;
652
653 /*
654 * Decide whether to put the page header off page to avoid
655 * wasting too large a part of the page or too big item.
656 * Off-page page headers go on a hash table, so we can match
657 * a returned item with its header based on the page address.
658 * We use 1/16 of the page size and about 8 times of the item
659 * size as the threshold (XXX: tune)
660 *
661 * However, we'll put the header into the page if we can put
662 * it without wasting any items.
663 *
664 * Silently enforce `0 <= ioff < align'.
665 */
666 pp->pr_itemoffset = ioff %= align;
667 /* See the comment below about reserved bytes. */
668 trysize = palloc->pa_pagesz - ((align - ioff) % align);
669 phsize = ALIGN(sizeof(struct pool_item_header));
670 if ((pp->pr_roflags & PR_NOTOUCH) == 0 &&
671 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
672 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
673 /* Use the end of the page for the page header */
674 pp->pr_roflags |= PR_PHINPAGE;
675 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
676 } else {
677 /* The page header will be taken from our page header pool */
678 pp->pr_phoffset = 0;
679 off = palloc->pa_pagesz;
680 SPLAY_INIT(&pp->pr_phtree);
681 }
682
683 /*
684 * Alignment is to take place at `ioff' within the item. This means
685 * we must reserve up to `align - 1' bytes on the page to allow
686 * appropriate positioning of each item.
687 */
688 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
689 KASSERT(pp->pr_itemsperpage != 0);
690 if ((pp->pr_roflags & PR_NOTOUCH)) {
691 int idx;
692
693 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
694 idx++) {
695 /* nothing */
696 }
697 if (idx >= PHPOOL_MAX) {
698 /*
699 * if you see this panic, consider to tweak
700 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
701 */
702 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
703 pp->pr_wchan, pp->pr_itemsperpage);
704 }
705 pp->pr_phpool = &phpool[idx];
706 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
707 pp->pr_phpool = &phpool[0];
708 }
709 #if defined(DIAGNOSTIC)
710 else {
711 pp->pr_phpool = NULL;
712 }
713 #endif
714
715 /*
716 * Use the slack between the chunks and the page header
717 * for "cache coloring".
718 */
719 slack = off - pp->pr_itemsperpage * pp->pr_size;
720 pp->pr_maxcolor = (slack / align) * align;
721 pp->pr_curcolor = 0;
722
723 pp->pr_nget = 0;
724 pp->pr_nfail = 0;
725 pp->pr_nput = 0;
726 pp->pr_npagealloc = 0;
727 pp->pr_npagefree = 0;
728 pp->pr_hiwat = 0;
729 pp->pr_nidle = 0;
730
731 #ifdef POOL_DIAGNOSTIC
732 if (flags & PR_LOGGING) {
733 if (kmem_map == NULL ||
734 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
735 M_TEMP, M_NOWAIT)) == NULL)
736 pp->pr_roflags &= ~PR_LOGGING;
737 pp->pr_curlogentry = 0;
738 pp->pr_logsize = pool_logsize;
739 }
740 #endif
741
742 pp->pr_entered_file = NULL;
743 pp->pr_entered_line = 0;
744
745 simple_lock_init(&pp->pr_slock);
746
747 /*
748 * Initialize private page header pool and cache magazine pool if we
749 * haven't done so yet.
750 * XXX LOCKING.
751 */
752 if (phpool[0].pr_size == 0) {
753 int idx;
754 for (idx = 0; idx < PHPOOL_MAX; idx++) {
755 static char phpool_names[PHPOOL_MAX][6+1+6+1];
756 int nelem;
757 size_t sz;
758
759 nelem = PHPOOL_FREELIST_NELEM(idx);
760 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
761 "phpool-%d", nelem);
762 sz = sizeof(struct pool_item_header);
763 if (nelem) {
764 sz = PR_FREELIST_ALIGN(sz)
765 + nelem * sizeof(pool_item_freelist_t);
766 }
767 pool_init(&phpool[idx], sz, 0, 0, 0,
768 phpool_names[idx], &pool_allocator_meta);
769 }
770 #ifdef POOL_SUBPAGE
771 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
772 PR_RECURSIVE, "psppool", &pool_allocator_meta);
773 #endif
774 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
775 0, "pcgpool", &pool_allocator_meta);
776 }
777
778 /* Insert into the list of all pools. */
779 simple_lock(&pool_head_slock);
780 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
781 simple_unlock(&pool_head_slock);
782
783 /* Insert this into the list of pools using this allocator. */
784 s = splvm();
785 simple_lock(&palloc->pa_slock);
786 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
787 simple_unlock(&palloc->pa_slock);
788 splx(s);
789 pool_reclaim_register(pp);
790 }
791
792 /*
793 * De-commision a pool resource.
794 */
795 void
796 pool_destroy(struct pool *pp)
797 {
798 struct pool_pagelist pq;
799 struct pool_item_header *ph;
800 int s;
801
802 /* Remove from global pool list */
803 simple_lock(&pool_head_slock);
804 LIST_REMOVE(pp, pr_poollist);
805 if (drainpp == pp)
806 drainpp = NULL;
807 simple_unlock(&pool_head_slock);
808
809 /* Remove this pool from its allocator's list of pools. */
810 pool_reclaim_unregister(pp);
811 s = splvm();
812 simple_lock(&pp->pr_alloc->pa_slock);
813 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
814 simple_unlock(&pp->pr_alloc->pa_slock);
815 splx(s);
816
817 s = splvm();
818 simple_lock(&pp->pr_slock);
819
820 KASSERT(LIST_EMPTY(&pp->pr_cachelist));
821
822 #ifdef DIAGNOSTIC
823 if (pp->pr_nout != 0) {
824 pr_printlog(pp, NULL, printf);
825 panic("pool_destroy: pool busy: still out: %u",
826 pp->pr_nout);
827 }
828 #endif
829
830 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
831 KASSERT(LIST_EMPTY(&pp->pr_partpages));
832
833 /* Remove all pages */
834 LIST_INIT(&pq);
835 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
836 pr_rmpage(pp, ph, &pq);
837
838 simple_unlock(&pp->pr_slock);
839 splx(s);
840
841 pr_pagelist_free(pp, &pq);
842
843 #ifdef POOL_DIAGNOSTIC
844 if ((pp->pr_roflags & PR_LOGGING) != 0)
845 free(pp->pr_log, M_TEMP);
846 #endif
847 }
848
849 void
850 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
851 {
852
853 /* XXX no locking -- must be used just after pool_init() */
854 #ifdef DIAGNOSTIC
855 if (pp->pr_drain_hook != NULL)
856 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
857 #endif
858 pp->pr_drain_hook = fn;
859 pp->pr_drain_hook_arg = arg;
860 }
861
862 static struct pool_item_header *
863 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
864 {
865 struct pool_item_header *ph;
866 int s;
867
868 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
869
870 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
871 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
872 else {
873 s = splvm();
874 ph = pool_get(pp->pr_phpool, flags);
875 splx(s);
876 }
877
878 return (ph);
879 }
880
881 /*
882 * Grab an item from the pool; must be called at appropriate spl level
883 */
884 void *
885 #ifdef POOL_DIAGNOSTIC
886 _pool_get(struct pool *pp, int flags, const char *file, long line)
887 #else
888 pool_get(struct pool *pp, int flags)
889 #endif
890 {
891 struct pool_item *pi;
892 struct pool_item_header *ph;
893 void *v;
894
895 #ifdef DIAGNOSTIC
896 if (__predict_false(pp->pr_itemsperpage == 0))
897 panic("pool_get: pool %p: pr_itemsperpage is zero, "
898 "pool not initialized?", pp);
899 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
900 (flags & PR_WAITOK) != 0))
901 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
902
903 #endif /* DIAGNOSTIC */
904 #ifdef LOCKDEBUG
905 if (flags & PR_WAITOK)
906 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
907 SCHED_ASSERT_UNLOCKED();
908 #endif
909
910 simple_lock(&pp->pr_slock);
911 pr_enter(pp, file, line);
912
913 startover:
914 /*
915 * Check to see if we've reached the hard limit. If we have,
916 * and we can wait, then wait until an item has been returned to
917 * the pool.
918 */
919 #ifdef DIAGNOSTIC
920 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
921 pr_leave(pp);
922 simple_unlock(&pp->pr_slock);
923 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
924 }
925 #endif
926 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
927 if (pp->pr_drain_hook != NULL) {
928 /*
929 * Since the drain hook is going to free things
930 * back to the pool, unlock, call the hook, re-lock,
931 * and check the hardlimit condition again.
932 */
933 pr_leave(pp);
934 simple_unlock(&pp->pr_slock);
935 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
936 simple_lock(&pp->pr_slock);
937 pr_enter(pp, file, line);
938 if (pp->pr_nout < pp->pr_hardlimit)
939 goto startover;
940 }
941
942 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
943 /*
944 * XXX: A warning isn't logged in this case. Should
945 * it be?
946 */
947 pp->pr_flags |= PR_WANTED;
948 pr_leave(pp);
949 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
950 pr_enter(pp, file, line);
951 goto startover;
952 }
953
954 /*
955 * Log a message that the hard limit has been hit.
956 */
957 if (pp->pr_hardlimit_warning != NULL &&
958 ratecheck(&pp->pr_hardlimit_warning_last,
959 &pp->pr_hardlimit_ratecap))
960 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
961
962 pp->pr_nfail++;
963
964 pr_leave(pp);
965 simple_unlock(&pp->pr_slock);
966 return (NULL);
967 }
968
969 /*
970 * The convention we use is that if `curpage' is not NULL, then
971 * it points at a non-empty bucket. In particular, `curpage'
972 * never points at a page header which has PR_PHINPAGE set and
973 * has no items in its bucket.
974 */
975 if ((ph = pp->pr_curpage) == NULL) {
976 int error;
977
978 #ifdef DIAGNOSTIC
979 if (pp->pr_nitems != 0) {
980 simple_unlock(&pp->pr_slock);
981 printf("pool_get: %s: curpage NULL, nitems %u\n",
982 pp->pr_wchan, pp->pr_nitems);
983 panic("pool_get: nitems inconsistent");
984 }
985 #endif
986
987 /*
988 * Call the back-end page allocator for more memory.
989 * Release the pool lock, as the back-end page allocator
990 * may block.
991 */
992 pr_leave(pp);
993 error = pool_grow(pp, flags);
994 pr_enter(pp, file, line);
995 if (error != 0) {
996 /*
997 * We were unable to allocate a page or item
998 * header, but we released the lock during
999 * allocation, so perhaps items were freed
1000 * back to the pool. Check for this case.
1001 */
1002 if (pp->pr_curpage != NULL)
1003 goto startover;
1004
1005 pp->pr_nfail++;
1006 pr_leave(pp);
1007 simple_unlock(&pp->pr_slock);
1008 return (NULL);
1009 }
1010
1011 /* Start the allocation process over. */
1012 goto startover;
1013 }
1014 if (pp->pr_roflags & PR_NOTOUCH) {
1015 #ifdef DIAGNOSTIC
1016 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1017 pr_leave(pp);
1018 simple_unlock(&pp->pr_slock);
1019 panic("pool_get: %s: page empty", pp->pr_wchan);
1020 }
1021 #endif
1022 v = pr_item_notouch_get(pp, ph);
1023 #ifdef POOL_DIAGNOSTIC
1024 pr_log(pp, v, PRLOG_GET, file, line);
1025 #endif
1026 } else {
1027 v = pi = LIST_FIRST(&ph->ph_itemlist);
1028 if (__predict_false(v == NULL)) {
1029 pr_leave(pp);
1030 simple_unlock(&pp->pr_slock);
1031 panic("pool_get: %s: page empty", pp->pr_wchan);
1032 }
1033 #ifdef DIAGNOSTIC
1034 if (__predict_false(pp->pr_nitems == 0)) {
1035 pr_leave(pp);
1036 simple_unlock(&pp->pr_slock);
1037 printf("pool_get: %s: items on itemlist, nitems %u\n",
1038 pp->pr_wchan, pp->pr_nitems);
1039 panic("pool_get: nitems inconsistent");
1040 }
1041 #endif
1042
1043 #ifdef POOL_DIAGNOSTIC
1044 pr_log(pp, v, PRLOG_GET, file, line);
1045 #endif
1046
1047 #ifdef DIAGNOSTIC
1048 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1049 pr_printlog(pp, pi, printf);
1050 panic("pool_get(%s): free list modified: "
1051 "magic=%x; page %p; item addr %p\n",
1052 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1053 }
1054 #endif
1055
1056 /*
1057 * Remove from item list.
1058 */
1059 LIST_REMOVE(pi, pi_list);
1060 }
1061 pp->pr_nitems--;
1062 pp->pr_nout++;
1063 if (ph->ph_nmissing == 0) {
1064 #ifdef DIAGNOSTIC
1065 if (__predict_false(pp->pr_nidle == 0))
1066 panic("pool_get: nidle inconsistent");
1067 #endif
1068 pp->pr_nidle--;
1069
1070 /*
1071 * This page was previously empty. Move it to the list of
1072 * partially-full pages. This page is already curpage.
1073 */
1074 LIST_REMOVE(ph, ph_pagelist);
1075 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1076 }
1077 ph->ph_nmissing++;
1078 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1079 #ifdef DIAGNOSTIC
1080 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1081 !LIST_EMPTY(&ph->ph_itemlist))) {
1082 pr_leave(pp);
1083 simple_unlock(&pp->pr_slock);
1084 panic("pool_get: %s: nmissing inconsistent",
1085 pp->pr_wchan);
1086 }
1087 #endif
1088 /*
1089 * This page is now full. Move it to the full list
1090 * and select a new current page.
1091 */
1092 LIST_REMOVE(ph, ph_pagelist);
1093 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1094 pool_update_curpage(pp);
1095 }
1096
1097 pp->pr_nget++;
1098 pr_leave(pp);
1099
1100 /*
1101 * If we have a low water mark and we are now below that low
1102 * water mark, add more items to the pool.
1103 */
1104 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1105 /*
1106 * XXX: Should we log a warning? Should we set up a timeout
1107 * to try again in a second or so? The latter could break
1108 * a caller's assumptions about interrupt protection, etc.
1109 */
1110 }
1111
1112 simple_unlock(&pp->pr_slock);
1113 return (v);
1114 }
1115
1116 /*
1117 * Internal version of pool_put(). Pool is already locked/entered.
1118 */
1119 static void
1120 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1121 {
1122 struct pool_item *pi = v;
1123 struct pool_item_header *ph;
1124 caddr_t page;
1125 int s;
1126
1127 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1128 SCHED_ASSERT_UNLOCKED();
1129
1130 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
1131
1132 #ifdef DIAGNOSTIC
1133 if (__predict_false(pp->pr_nout == 0)) {
1134 printf("pool %s: putting with none out\n",
1135 pp->pr_wchan);
1136 panic("pool_put");
1137 }
1138 #endif
1139
1140 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
1141 pr_printlog(pp, NULL, printf);
1142 panic("pool_put: %s: page header missing", pp->pr_wchan);
1143 }
1144
1145 #ifdef LOCKDEBUG
1146 /*
1147 * Check if we're freeing a locked simple lock.
1148 */
1149 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
1150 #endif
1151
1152 /*
1153 * Return to item list.
1154 */
1155 if (pp->pr_roflags & PR_NOTOUCH) {
1156 pr_item_notouch_put(pp, ph, v);
1157 } else {
1158 #ifdef DIAGNOSTIC
1159 pi->pi_magic = PI_MAGIC;
1160 #endif
1161 #ifdef DEBUG
1162 {
1163 int i, *ip = v;
1164
1165 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1166 *ip++ = PI_MAGIC;
1167 }
1168 }
1169 #endif
1170
1171 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1172 }
1173 KDASSERT(ph->ph_nmissing != 0);
1174 ph->ph_nmissing--;
1175 pp->pr_nput++;
1176 pp->pr_nitems++;
1177 pp->pr_nout--;
1178
1179 /* Cancel "pool empty" condition if it exists */
1180 if (pp->pr_curpage == NULL)
1181 pp->pr_curpage = ph;
1182
1183 if (pp->pr_flags & PR_WANTED) {
1184 pp->pr_flags &= ~PR_WANTED;
1185 if (ph->ph_nmissing == 0)
1186 pp->pr_nidle++;
1187 wakeup((caddr_t)pp);
1188 return;
1189 }
1190
1191 /*
1192 * If this page is now empty, do one of two things:
1193 *
1194 * (1) If we have more pages than the page high water mark,
1195 * free the page back to the system. ONLY CONSIDER
1196 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1197 * CLAIM.
1198 *
1199 * (2) Otherwise, move the page to the empty page list.
1200 *
1201 * Either way, select a new current page (so we use a partially-full
1202 * page if one is available).
1203 */
1204 if (ph->ph_nmissing == 0) {
1205 pp->pr_nidle++;
1206 if (pp->pr_npages > pp->pr_minpages &&
1207 (pp->pr_npages > pp->pr_maxpages ||
1208 pa_starved_p(pp->pr_alloc))) {
1209 pr_rmpage(pp, ph, pq);
1210 } else {
1211 LIST_REMOVE(ph, ph_pagelist);
1212 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1213
1214 /*
1215 * Update the timestamp on the page. A page must
1216 * be idle for some period of time before it can
1217 * be reclaimed by the pagedaemon. This minimizes
1218 * ping-pong'ing for memory.
1219 */
1220 s = splclock();
1221 ph->ph_time = mono_time;
1222 splx(s);
1223 }
1224 pool_update_curpage(pp);
1225 }
1226
1227 /*
1228 * If the page was previously completely full, move it to the
1229 * partially-full list and make it the current page. The next
1230 * allocation will get the item from this page, instead of
1231 * further fragmenting the pool.
1232 */
1233 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1234 LIST_REMOVE(ph, ph_pagelist);
1235 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1236 pp->pr_curpage = ph;
1237 }
1238 }
1239
1240 /*
1241 * Return resource to the pool; must be called at appropriate spl level
1242 */
1243 #ifdef POOL_DIAGNOSTIC
1244 void
1245 _pool_put(struct pool *pp, void *v, const char *file, long line)
1246 {
1247 struct pool_pagelist pq;
1248
1249 LIST_INIT(&pq);
1250
1251 simple_lock(&pp->pr_slock);
1252 pr_enter(pp, file, line);
1253
1254 pr_log(pp, v, PRLOG_PUT, file, line);
1255
1256 pool_do_put(pp, v, &pq);
1257
1258 pr_leave(pp);
1259 simple_unlock(&pp->pr_slock);
1260
1261 pr_pagelist_free(pp, &pq);
1262 }
1263 #undef pool_put
1264 #endif /* POOL_DIAGNOSTIC */
1265
1266 void
1267 pool_put(struct pool *pp, void *v)
1268 {
1269 struct pool_pagelist pq;
1270
1271 LIST_INIT(&pq);
1272
1273 simple_lock(&pp->pr_slock);
1274 pool_do_put(pp, v, &pq);
1275 simple_unlock(&pp->pr_slock);
1276
1277 pr_pagelist_free(pp, &pq);
1278 }
1279
1280 #ifdef POOL_DIAGNOSTIC
1281 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1282 #endif
1283
1284 /*
1285 * pool_grow: grow a pool by a page.
1286 *
1287 * => called with pool locked.
1288 * => unlock and relock the pool.
1289 * => return with pool locked.
1290 */
1291
1292 static int
1293 pool_grow(struct pool *pp, int flags)
1294 {
1295 struct pool_item_header *ph = NULL;
1296 char *cp;
1297
1298 simple_unlock(&pp->pr_slock);
1299 cp = pool_allocator_alloc(pp, flags);
1300 if (__predict_true(cp != NULL)) {
1301 ph = pool_alloc_item_header(pp, cp, flags);
1302 }
1303 if (__predict_false(cp == NULL || ph == NULL)) {
1304 if (cp != NULL) {
1305 pool_allocator_free(pp, cp);
1306 }
1307 simple_lock(&pp->pr_slock);
1308 return ENOMEM;
1309 }
1310
1311 simple_lock(&pp->pr_slock);
1312 pool_prime_page(pp, cp, ph);
1313 pp->pr_npagealloc++;
1314 return 0;
1315 }
1316
1317 /*
1318 * Add N items to the pool.
1319 */
1320 int
1321 pool_prime(struct pool *pp, int n)
1322 {
1323 int newpages;
1324 int error = 0;
1325
1326 simple_lock(&pp->pr_slock);
1327
1328 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1329
1330 while (newpages-- > 0) {
1331 error = pool_grow(pp, PR_NOWAIT);
1332 if (error) {
1333 break;
1334 }
1335 pp->pr_minpages++;
1336 }
1337
1338 if (pp->pr_minpages >= pp->pr_maxpages)
1339 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1340
1341 simple_unlock(&pp->pr_slock);
1342 return error;
1343 }
1344
1345 /*
1346 * Add a page worth of items to the pool.
1347 *
1348 * Note, we must be called with the pool descriptor LOCKED.
1349 */
1350 static void
1351 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1352 {
1353 struct pool_item *pi;
1354 caddr_t cp = storage;
1355 unsigned int align = pp->pr_align;
1356 unsigned int ioff = pp->pr_itemoffset;
1357 int n;
1358 int s;
1359
1360 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1361
1362 #ifdef DIAGNOSTIC
1363 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1364 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1365 #endif
1366
1367 /*
1368 * Insert page header.
1369 */
1370 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1371 LIST_INIT(&ph->ph_itemlist);
1372 ph->ph_page = storage;
1373 ph->ph_nmissing = 0;
1374 s = splclock();
1375 ph->ph_time = mono_time;
1376 splx(s);
1377 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1378 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1379
1380 pp->pr_nidle++;
1381
1382 /*
1383 * Color this page.
1384 */
1385 cp = (caddr_t)(cp + pp->pr_curcolor);
1386 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1387 pp->pr_curcolor = 0;
1388
1389 /*
1390 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1391 */
1392 if (ioff != 0)
1393 cp = (caddr_t)(cp + (align - ioff));
1394
1395 /*
1396 * Insert remaining chunks on the bucket list.
1397 */
1398 n = pp->pr_itemsperpage;
1399 pp->pr_nitems += n;
1400
1401 if (pp->pr_roflags & PR_NOTOUCH) {
1402 pool_item_freelist_t *freelist = PR_FREELIST(ph);
1403 int i;
1404
1405 ph->ph_off = cp - storage;
1406 ph->ph_firstfree = 0;
1407 for (i = 0; i < n - 1; i++)
1408 freelist[i] = i + 1;
1409 freelist[n - 1] = PR_INDEX_EOL;
1410 } else {
1411 while (n--) {
1412 pi = (struct pool_item *)cp;
1413
1414 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1415
1416 /* Insert on page list */
1417 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1418 #ifdef DIAGNOSTIC
1419 pi->pi_magic = PI_MAGIC;
1420 #endif
1421 cp = (caddr_t)(cp + pp->pr_size);
1422 }
1423 }
1424
1425 /*
1426 * If the pool was depleted, point at the new page.
1427 */
1428 if (pp->pr_curpage == NULL)
1429 pp->pr_curpage = ph;
1430
1431 if (++pp->pr_npages > pp->pr_hiwat)
1432 pp->pr_hiwat = pp->pr_npages;
1433 }
1434
1435 /*
1436 * Used by pool_get() when nitems drops below the low water mark. This
1437 * is used to catch up pr_nitems with the low water mark.
1438 *
1439 * Note 1, we never wait for memory here, we let the caller decide what to do.
1440 *
1441 * Note 2, we must be called with the pool already locked, and we return
1442 * with it locked.
1443 */
1444 static int
1445 pool_catchup(struct pool *pp)
1446 {
1447 int error = 0;
1448
1449 while (POOL_NEEDS_CATCHUP(pp)) {
1450 error = pool_grow(pp, PR_NOWAIT);
1451 if (error) {
1452 break;
1453 }
1454 }
1455 return error;
1456 }
1457
1458 static void
1459 pool_update_curpage(struct pool *pp)
1460 {
1461
1462 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1463 if (pp->pr_curpage == NULL) {
1464 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1465 }
1466 }
1467
1468 void
1469 pool_setlowat(struct pool *pp, int n)
1470 {
1471
1472 simple_lock(&pp->pr_slock);
1473
1474 pp->pr_minitems = n;
1475 pp->pr_minpages = (n == 0)
1476 ? 0
1477 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1478
1479 /* Make sure we're caught up with the newly-set low water mark. */
1480 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1481 /*
1482 * XXX: Should we log a warning? Should we set up a timeout
1483 * to try again in a second or so? The latter could break
1484 * a caller's assumptions about interrupt protection, etc.
1485 */
1486 }
1487
1488 simple_unlock(&pp->pr_slock);
1489 }
1490
1491 void
1492 pool_sethiwat(struct pool *pp, int n)
1493 {
1494
1495 simple_lock(&pp->pr_slock);
1496
1497 pp->pr_maxpages = (n == 0)
1498 ? 0
1499 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1500
1501 simple_unlock(&pp->pr_slock);
1502 }
1503
1504 void
1505 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1506 {
1507
1508 simple_lock(&pp->pr_slock);
1509
1510 pp->pr_hardlimit = n;
1511 pp->pr_hardlimit_warning = warnmess;
1512 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1513 pp->pr_hardlimit_warning_last.tv_sec = 0;
1514 pp->pr_hardlimit_warning_last.tv_usec = 0;
1515
1516 /*
1517 * In-line version of pool_sethiwat(), because we don't want to
1518 * release the lock.
1519 */
1520 pp->pr_maxpages = (n == 0)
1521 ? 0
1522 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1523
1524 simple_unlock(&pp->pr_slock);
1525 }
1526
1527 /*
1528 * Release all complete pages that have not been used recently.
1529 */
1530 int
1531 #ifdef POOL_DIAGNOSTIC
1532 _pool_reclaim(struct pool *pp, const char *file, long line)
1533 #else
1534 pool_reclaim(struct pool *pp)
1535 #endif
1536 {
1537 struct pool_item_header *ph, *phnext;
1538 struct pool_cache *pc;
1539 struct pool_pagelist pq;
1540 struct pool_cache_grouplist pcgl;
1541 struct timeval curtime, diff;
1542 int s;
1543
1544 if (pp->pr_drain_hook != NULL) {
1545 /*
1546 * The drain hook must be called with the pool unlocked.
1547 */
1548 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1549 }
1550
1551 if (simple_lock_try(&pp->pr_slock) == 0)
1552 return (0);
1553 pr_enter(pp, file, line);
1554
1555 LIST_INIT(&pq);
1556 LIST_INIT(&pcgl);
1557
1558 /*
1559 * Reclaim items from the pool's caches.
1560 */
1561 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1562 pool_cache_reclaim(pc, &pq, &pcgl);
1563
1564 s = splclock();
1565 curtime = mono_time;
1566 splx(s);
1567
1568 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1569 phnext = LIST_NEXT(ph, ph_pagelist);
1570
1571 /* Check our minimum page claim */
1572 if (pp->pr_npages <= pp->pr_minpages)
1573 break;
1574
1575 KASSERT(ph->ph_nmissing == 0);
1576 timersub(&curtime, &ph->ph_time, &diff);
1577 if (diff.tv_sec < pool_inactive_time
1578 && !pa_starved_p(pp->pr_alloc))
1579 continue;
1580
1581 /*
1582 * If freeing this page would put us below
1583 * the low water mark, stop now.
1584 */
1585 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1586 pp->pr_minitems)
1587 break;
1588
1589 pr_rmpage(pp, ph, &pq);
1590 }
1591
1592 pr_leave(pp);
1593 simple_unlock(&pp->pr_slock);
1594 if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
1595 return 0;
1596
1597 pr_pagelist_free(pp, &pq);
1598 pcg_grouplist_free(&pcgl);
1599 return (1);
1600 }
1601
1602 /*
1603 * Drain pools, one at a time.
1604 *
1605 * Note, we must never be called from an interrupt context.
1606 */
1607 void
1608 pool_drain(void *arg)
1609 {
1610 struct pool *pp;
1611 int s;
1612
1613 pp = NULL;
1614 s = splvm();
1615 simple_lock(&pool_head_slock);
1616 if (drainpp == NULL) {
1617 drainpp = LIST_FIRST(&pool_head);
1618 }
1619 if (drainpp) {
1620 pp = drainpp;
1621 drainpp = LIST_NEXT(pp, pr_poollist);
1622 }
1623 simple_unlock(&pool_head_slock);
1624 if (pp)
1625 pool_reclaim(pp);
1626 splx(s);
1627 }
1628
1629 /*
1630 * Diagnostic helpers.
1631 */
1632 void
1633 pool_print(struct pool *pp, const char *modif)
1634 {
1635 int s;
1636
1637 s = splvm();
1638 if (simple_lock_try(&pp->pr_slock) == 0) {
1639 printf("pool %s is locked; try again later\n",
1640 pp->pr_wchan);
1641 splx(s);
1642 return;
1643 }
1644 pool_print1(pp, modif, printf);
1645 simple_unlock(&pp->pr_slock);
1646 splx(s);
1647 }
1648
1649 void
1650 pool_printall(const char *modif, void (*pr)(const char *, ...))
1651 {
1652 struct pool *pp;
1653
1654 if (simple_lock_try(&pool_head_slock) == 0) {
1655 (*pr)("WARNING: pool_head_slock is locked\n");
1656 } else {
1657 simple_unlock(&pool_head_slock);
1658 }
1659
1660 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1661 pool_printit(pp, modif, pr);
1662 }
1663 }
1664
1665 void
1666 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1667 {
1668
1669 if (pp == NULL) {
1670 (*pr)("Must specify a pool to print.\n");
1671 return;
1672 }
1673
1674 /*
1675 * Called from DDB; interrupts should be blocked, and all
1676 * other processors should be paused. We can skip locking
1677 * the pool in this case.
1678 *
1679 * We do a simple_lock_try() just to print the lock
1680 * status, however.
1681 */
1682
1683 if (simple_lock_try(&pp->pr_slock) == 0)
1684 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1685 else
1686 simple_unlock(&pp->pr_slock);
1687
1688 pool_print1(pp, modif, pr);
1689 }
1690
1691 static void
1692 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1693 void (*pr)(const char *, ...))
1694 {
1695 struct pool_item_header *ph;
1696 #ifdef DIAGNOSTIC
1697 struct pool_item *pi;
1698 #endif
1699
1700 LIST_FOREACH(ph, pl, ph_pagelist) {
1701 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1702 ph->ph_page, ph->ph_nmissing,
1703 (u_long)ph->ph_time.tv_sec,
1704 (u_long)ph->ph_time.tv_usec);
1705 #ifdef DIAGNOSTIC
1706 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1707 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1708 if (pi->pi_magic != PI_MAGIC) {
1709 (*pr)("\t\t\titem %p, magic 0x%x\n",
1710 pi, pi->pi_magic);
1711 }
1712 }
1713 }
1714 #endif
1715 }
1716 }
1717
1718 static void
1719 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1720 {
1721 struct pool_item_header *ph;
1722 struct pool_cache *pc;
1723 struct pool_cache_group *pcg;
1724 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1725 char c;
1726
1727 while ((c = *modif++) != '\0') {
1728 if (c == 'l')
1729 print_log = 1;
1730 if (c == 'p')
1731 print_pagelist = 1;
1732 if (c == 'c')
1733 print_cache = 1;
1734 }
1735
1736 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1737 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1738 pp->pr_roflags);
1739 (*pr)("\talloc %p\n", pp->pr_alloc);
1740 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1741 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1742 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1743 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1744
1745 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1746 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1747 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1748 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1749
1750 if (print_pagelist == 0)
1751 goto skip_pagelist;
1752
1753 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1754 (*pr)("\n\tempty page list:\n");
1755 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1756 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1757 (*pr)("\n\tfull page list:\n");
1758 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1759 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1760 (*pr)("\n\tpartial-page list:\n");
1761 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1762
1763 if (pp->pr_curpage == NULL)
1764 (*pr)("\tno current page\n");
1765 else
1766 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1767
1768 skip_pagelist:
1769 if (print_log == 0)
1770 goto skip_log;
1771
1772 (*pr)("\n");
1773 if ((pp->pr_roflags & PR_LOGGING) == 0)
1774 (*pr)("\tno log\n");
1775 else
1776 pr_printlog(pp, NULL, pr);
1777
1778 skip_log:
1779 if (print_cache == 0)
1780 goto skip_cache;
1781
1782 #define PR_GROUPLIST(pcg) \
1783 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1784 for (i = 0; i < PCG_NOBJECTS; i++) { \
1785 if (pcg->pcg_objects[i].pcgo_pa != \
1786 POOL_PADDR_INVALID) { \
1787 (*pr)("\t\t\t%p, 0x%llx\n", \
1788 pcg->pcg_objects[i].pcgo_va, \
1789 (unsigned long long) \
1790 pcg->pcg_objects[i].pcgo_pa); \
1791 } else { \
1792 (*pr)("\t\t\t%p\n", \
1793 pcg->pcg_objects[i].pcgo_va); \
1794 } \
1795 }
1796
1797 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1798 (*pr)("\tcache %p\n", pc);
1799 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1800 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1801 (*pr)("\t full groups:\n");
1802 LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
1803 PR_GROUPLIST(pcg);
1804 }
1805 (*pr)("\t partial groups:\n");
1806 LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
1807 PR_GROUPLIST(pcg);
1808 }
1809 (*pr)("\t empty groups:\n");
1810 LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
1811 PR_GROUPLIST(pcg);
1812 }
1813 }
1814 #undef PR_GROUPLIST
1815
1816 skip_cache:
1817 pr_enter_check(pp, pr);
1818 }
1819
1820 static int
1821 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1822 {
1823 struct pool_item *pi;
1824 caddr_t page;
1825 int n;
1826
1827 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1828 if (page != ph->ph_page &&
1829 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1830 if (label != NULL)
1831 printf("%s: ", label);
1832 printf("pool(%p:%s): page inconsistency: page %p;"
1833 " at page head addr %p (p %p)\n", pp,
1834 pp->pr_wchan, ph->ph_page,
1835 ph, page);
1836 return 1;
1837 }
1838
1839 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1840 return 0;
1841
1842 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1843 pi != NULL;
1844 pi = LIST_NEXT(pi,pi_list), n++) {
1845
1846 #ifdef DIAGNOSTIC
1847 if (pi->pi_magic != PI_MAGIC) {
1848 if (label != NULL)
1849 printf("%s: ", label);
1850 printf("pool(%s): free list modified: magic=%x;"
1851 " page %p; item ordinal %d;"
1852 " addr %p (p %p)\n",
1853 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1854 n, pi, page);
1855 panic("pool");
1856 }
1857 #endif
1858 page =
1859 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1860 if (page == ph->ph_page)
1861 continue;
1862
1863 if (label != NULL)
1864 printf("%s: ", label);
1865 printf("pool(%p:%s): page inconsistency: page %p;"
1866 " item ordinal %d; addr %p (p %p)\n", pp,
1867 pp->pr_wchan, ph->ph_page,
1868 n, pi, page);
1869 return 1;
1870 }
1871 return 0;
1872 }
1873
1874
1875 int
1876 pool_chk(struct pool *pp, const char *label)
1877 {
1878 struct pool_item_header *ph;
1879 int r = 0;
1880
1881 simple_lock(&pp->pr_slock);
1882 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1883 r = pool_chk_page(pp, label, ph);
1884 if (r) {
1885 goto out;
1886 }
1887 }
1888 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1889 r = pool_chk_page(pp, label, ph);
1890 if (r) {
1891 goto out;
1892 }
1893 }
1894 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1895 r = pool_chk_page(pp, label, ph);
1896 if (r) {
1897 goto out;
1898 }
1899 }
1900
1901 out:
1902 simple_unlock(&pp->pr_slock);
1903 return (r);
1904 }
1905
1906 /*
1907 * pool_cache_init:
1908 *
1909 * Initialize a pool cache.
1910 *
1911 * NOTE: If the pool must be protected from interrupts, we expect
1912 * to be called at the appropriate interrupt priority level.
1913 */
1914 void
1915 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1916 int (*ctor)(void *, void *, int),
1917 void (*dtor)(void *, void *),
1918 void *arg)
1919 {
1920
1921 LIST_INIT(&pc->pc_emptygroups);
1922 LIST_INIT(&pc->pc_fullgroups);
1923 LIST_INIT(&pc->pc_partgroups);
1924 simple_lock_init(&pc->pc_slock);
1925
1926 pc->pc_pool = pp;
1927
1928 pc->pc_ctor = ctor;
1929 pc->pc_dtor = dtor;
1930 pc->pc_arg = arg;
1931
1932 pc->pc_hits = 0;
1933 pc->pc_misses = 0;
1934
1935 pc->pc_ngroups = 0;
1936
1937 pc->pc_nitems = 0;
1938
1939 simple_lock(&pp->pr_slock);
1940 LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1941 simple_unlock(&pp->pr_slock);
1942 }
1943
1944 /*
1945 * pool_cache_destroy:
1946 *
1947 * Destroy a pool cache.
1948 */
1949 void
1950 pool_cache_destroy(struct pool_cache *pc)
1951 {
1952 struct pool *pp = pc->pc_pool;
1953
1954 /* First, invalidate the entire cache. */
1955 pool_cache_invalidate(pc);
1956
1957 /* ...and remove it from the pool's cache list. */
1958 simple_lock(&pp->pr_slock);
1959 LIST_REMOVE(pc, pc_poollist);
1960 simple_unlock(&pp->pr_slock);
1961 }
1962
1963 static inline void *
1964 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1965 {
1966 void *object;
1967 u_int idx;
1968
1969 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1970 KASSERT(pcg->pcg_avail != 0);
1971 idx = --pcg->pcg_avail;
1972
1973 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1974 object = pcg->pcg_objects[idx].pcgo_va;
1975 if (pap != NULL)
1976 *pap = pcg->pcg_objects[idx].pcgo_pa;
1977 pcg->pcg_objects[idx].pcgo_va = NULL;
1978
1979 return (object);
1980 }
1981
1982 static inline void
1983 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1984 {
1985 u_int idx;
1986
1987 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1988 idx = pcg->pcg_avail++;
1989
1990 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1991 pcg->pcg_objects[idx].pcgo_va = object;
1992 pcg->pcg_objects[idx].pcgo_pa = pa;
1993 }
1994
1995 static void
1996 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
1997 {
1998 struct pool_cache_group *pcg;
1999 int s;
2000
2001 s = splvm();
2002 while ((pcg = LIST_FIRST(pcgl)) != NULL) {
2003 LIST_REMOVE(pcg, pcg_list);
2004 pool_put(&pcgpool, pcg);
2005 }
2006 splx(s);
2007 }
2008
2009 /*
2010 * pool_cache_get{,_paddr}:
2011 *
2012 * Get an object from a pool cache (optionally returning
2013 * the physical address of the object).
2014 */
2015 void *
2016 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
2017 {
2018 struct pool_cache_group *pcg;
2019 void *object;
2020
2021 #ifdef LOCKDEBUG
2022 if (flags & PR_WAITOK)
2023 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
2024 #endif
2025
2026 simple_lock(&pc->pc_slock);
2027
2028 pcg = LIST_FIRST(&pc->pc_partgroups);
2029 if (pcg == NULL) {
2030 pcg = LIST_FIRST(&pc->pc_fullgroups);
2031 if (pcg != NULL) {
2032 LIST_REMOVE(pcg, pcg_list);
2033 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2034 }
2035 }
2036 if (pcg == NULL) {
2037
2038 /*
2039 * No groups with any available objects. Allocate
2040 * a new object, construct it, and return it to
2041 * the caller. We will allocate a group, if necessary,
2042 * when the object is freed back to the cache.
2043 */
2044 pc->pc_misses++;
2045 simple_unlock(&pc->pc_slock);
2046 object = pool_get(pc->pc_pool, flags);
2047 if (object != NULL && pc->pc_ctor != NULL) {
2048 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2049 pool_put(pc->pc_pool, object);
2050 return (NULL);
2051 }
2052 }
2053 if (object != NULL && pap != NULL) {
2054 #ifdef POOL_VTOPHYS
2055 *pap = POOL_VTOPHYS(object);
2056 #else
2057 *pap = POOL_PADDR_INVALID;
2058 #endif
2059 }
2060 return (object);
2061 }
2062
2063 pc->pc_hits++;
2064 pc->pc_nitems--;
2065 object = pcg_get(pcg, pap);
2066
2067 if (pcg->pcg_avail == 0) {
2068 LIST_REMOVE(pcg, pcg_list);
2069 LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
2070 }
2071 simple_unlock(&pc->pc_slock);
2072
2073 return (object);
2074 }
2075
2076 /*
2077 * pool_cache_put{,_paddr}:
2078 *
2079 * Put an object back to the pool cache (optionally caching the
2080 * physical address of the object).
2081 */
2082 void
2083 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
2084 {
2085 struct pool_cache_group *pcg;
2086 int s;
2087
2088 if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
2089 goto destruct;
2090 }
2091
2092 simple_lock(&pc->pc_slock);
2093
2094 pcg = LIST_FIRST(&pc->pc_partgroups);
2095 if (pcg == NULL) {
2096 pcg = LIST_FIRST(&pc->pc_emptygroups);
2097 if (pcg != NULL) {
2098 LIST_REMOVE(pcg, pcg_list);
2099 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2100 }
2101 }
2102 if (pcg == NULL) {
2103
2104 /*
2105 * No empty groups to free the object to. Attempt to
2106 * allocate one.
2107 */
2108 simple_unlock(&pc->pc_slock);
2109 s = splvm();
2110 pcg = pool_get(&pcgpool, PR_NOWAIT);
2111 splx(s);
2112 if (pcg == NULL) {
2113 destruct:
2114
2115 /*
2116 * Unable to allocate a cache group; destruct the object
2117 * and free it back to the pool.
2118 */
2119 pool_cache_destruct_object(pc, object);
2120 return;
2121 }
2122 memset(pcg, 0, sizeof(*pcg));
2123 simple_lock(&pc->pc_slock);
2124 pc->pc_ngroups++;
2125 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2126 }
2127
2128 pc->pc_nitems++;
2129 pcg_put(pcg, object, pa);
2130
2131 if (pcg->pcg_avail == PCG_NOBJECTS) {
2132 LIST_REMOVE(pcg, pcg_list);
2133 LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
2134 }
2135 simple_unlock(&pc->pc_slock);
2136 }
2137
2138 /*
2139 * pool_cache_destruct_object:
2140 *
2141 * Force destruction of an object and its release back into
2142 * the pool.
2143 */
2144 void
2145 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2146 {
2147
2148 if (pc->pc_dtor != NULL)
2149 (*pc->pc_dtor)(pc->pc_arg, object);
2150 pool_put(pc->pc_pool, object);
2151 }
2152
2153 static void
2154 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
2155 struct pool_cache *pc, struct pool_pagelist *pq,
2156 struct pool_cache_grouplist *pcgdl)
2157 {
2158 struct pool_cache_group *pcg, *npcg;
2159 void *object;
2160
2161 for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
2162 npcg = LIST_NEXT(pcg, pcg_list);
2163 while (pcg->pcg_avail != 0) {
2164 pc->pc_nitems--;
2165 object = pcg_get(pcg, NULL);
2166 if (pc->pc_dtor != NULL)
2167 (*pc->pc_dtor)(pc->pc_arg, object);
2168 pool_do_put(pc->pc_pool, object, pq);
2169 }
2170 pc->pc_ngroups--;
2171 LIST_REMOVE(pcg, pcg_list);
2172 LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
2173 }
2174 }
2175
2176 static void
2177 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
2178 struct pool_cache_grouplist *pcgl)
2179 {
2180
2181 LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
2182 LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
2183
2184 pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
2185 pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
2186
2187 KASSERT(LIST_EMPTY(&pc->pc_partgroups));
2188 KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
2189 KASSERT(pc->pc_nitems == 0);
2190 }
2191
2192 /*
2193 * pool_cache_invalidate:
2194 *
2195 * Invalidate a pool cache (destruct and release all of the
2196 * cached objects).
2197 */
2198 void
2199 pool_cache_invalidate(struct pool_cache *pc)
2200 {
2201 struct pool_pagelist pq;
2202 struct pool_cache_grouplist pcgl;
2203
2204 LIST_INIT(&pq);
2205 LIST_INIT(&pcgl);
2206
2207 simple_lock(&pc->pc_slock);
2208 simple_lock(&pc->pc_pool->pr_slock);
2209
2210 pool_do_cache_invalidate(pc, &pq, &pcgl);
2211
2212 simple_unlock(&pc->pc_pool->pr_slock);
2213 simple_unlock(&pc->pc_slock);
2214
2215 pr_pagelist_free(pc->pc_pool, &pq);
2216 pcg_grouplist_free(&pcgl);
2217 }
2218
2219 /*
2220 * pool_cache_reclaim:
2221 *
2222 * Reclaim a pool cache for pool_reclaim().
2223 */
2224 static void
2225 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
2226 struct pool_cache_grouplist *pcgl)
2227 {
2228
2229 /*
2230 * We're locking in the wrong order (normally pool_cache -> pool,
2231 * but the pool is already locked when we get here), so we have
2232 * to use trylock. If we can't lock the pool_cache, it's not really
2233 * a big deal here.
2234 */
2235 if (simple_lock_try(&pc->pc_slock) == 0)
2236 return;
2237
2238 pool_do_cache_invalidate(pc, pq, pcgl);
2239
2240 simple_unlock(&pc->pc_slock);
2241 }
2242
2243 /*
2244 * Pool backend allocators.
2245 *
2246 * Each pool has a backend allocator that handles allocation, deallocation,
2247 * and any additional draining that might be needed.
2248 *
2249 * We provide two standard allocators:
2250 *
2251 * pool_allocator_kmem - the default when no allocator is specified
2252 *
2253 * pool_allocator_nointr - used for pools that will not be accessed
2254 * in interrupt context.
2255 */
2256 void *pool_page_alloc(struct pool *, int);
2257 void pool_page_free(struct pool *, void *);
2258
2259 #ifdef POOL_SUBPAGE
2260 struct pool_allocator pool_allocator_kmem_fullpage = {
2261 pool_page_alloc, pool_page_free, 0,
2262 .pa_backingmapptr = &kmem_map,
2263 };
2264 #else
2265 struct pool_allocator pool_allocator_kmem = {
2266 pool_page_alloc, pool_page_free, 0,
2267 .pa_backingmapptr = &kmem_map,
2268 };
2269 #endif
2270
2271 void *pool_page_alloc_nointr(struct pool *, int);
2272 void pool_page_free_nointr(struct pool *, void *);
2273
2274 #ifdef POOL_SUBPAGE
2275 struct pool_allocator pool_allocator_nointr_fullpage = {
2276 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2277 .pa_backingmapptr = &kernel_map,
2278 };
2279 #else
2280 struct pool_allocator pool_allocator_nointr = {
2281 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2282 .pa_backingmapptr = &kernel_map,
2283 };
2284 #endif
2285
2286 #ifdef POOL_SUBPAGE
2287 void *pool_subpage_alloc(struct pool *, int);
2288 void pool_subpage_free(struct pool *, void *);
2289
2290 struct pool_allocator pool_allocator_kmem = {
2291 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2292 .pa_backingmapptr = &kmem_map,
2293 };
2294
2295 void *pool_subpage_alloc_nointr(struct pool *, int);
2296 void pool_subpage_free_nointr(struct pool *, void *);
2297
2298 struct pool_allocator pool_allocator_nointr = {
2299 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2300 .pa_backingmapptr = &kmem_map,
2301 };
2302 #endif /* POOL_SUBPAGE */
2303
2304 static void *
2305 pool_allocator_alloc(struct pool *pp, int flags)
2306 {
2307 struct pool_allocator *pa = pp->pr_alloc;
2308 void *res;
2309
2310 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2311
2312 res = (*pa->pa_alloc)(pp, flags);
2313 if (res == NULL && (flags & PR_WAITOK) == 0) {
2314 /*
2315 * We only run the drain hook here if PR_NOWAIT.
2316 * In other cases, the hook will be run in
2317 * pool_reclaim().
2318 */
2319 if (pp->pr_drain_hook != NULL) {
2320 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2321 res = (*pa->pa_alloc)(pp, flags);
2322 }
2323 }
2324 return res;
2325 }
2326
2327 static void
2328 pool_allocator_free(struct pool *pp, void *v)
2329 {
2330 struct pool_allocator *pa = pp->pr_alloc;
2331
2332 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2333
2334 (*pa->pa_free)(pp, v);
2335 }
2336
2337 void *
2338 pool_page_alloc(struct pool *pp, int flags)
2339 {
2340 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2341
2342 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2343 }
2344
2345 void
2346 pool_page_free(struct pool *pp, void *v)
2347 {
2348
2349 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2350 }
2351
2352 static void *
2353 pool_page_alloc_meta(struct pool *pp, int flags)
2354 {
2355 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2356
2357 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2358 }
2359
2360 static void
2361 pool_page_free_meta(struct pool *pp, void *v)
2362 {
2363
2364 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2365 }
2366
2367 #ifdef POOL_SUBPAGE
2368 /* Sub-page allocator, for machines with large hardware pages. */
2369 void *
2370 pool_subpage_alloc(struct pool *pp, int flags)
2371 {
2372 void *v;
2373 int s;
2374 s = splvm();
2375 v = pool_get(&psppool, flags);
2376 splx(s);
2377 return v;
2378 }
2379
2380 void
2381 pool_subpage_free(struct pool *pp, void *v)
2382 {
2383 int s;
2384 s = splvm();
2385 pool_put(&psppool, v);
2386 splx(s);
2387 }
2388
2389 /* We don't provide a real nointr allocator. Maybe later. */
2390 void *
2391 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2392 {
2393
2394 return (pool_subpage_alloc(pp, flags));
2395 }
2396
2397 void
2398 pool_subpage_free_nointr(struct pool *pp, void *v)
2399 {
2400
2401 pool_subpage_free(pp, v);
2402 }
2403 #endif /* POOL_SUBPAGE */
2404 void *
2405 pool_page_alloc_nointr(struct pool *pp, int flags)
2406 {
2407 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2408
2409 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2410 }
2411
2412 void
2413 pool_page_free_nointr(struct pool *pp, void *v)
2414 {
2415
2416 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2417 }
2418