subr_pool.c revision 1.122.2.1 1 /* $NetBSD: subr_pool.c,v 1.122.2.1 2006/09/11 00:12:01 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.122.2.1 2006/09/11 00:12:01 ad Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 #define PHPOOL_MAX 8
77 static struct pool phpool[PHPOOL_MAX];
78 #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
79
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84
85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
86 SLIST_HEAD_INITIALIZER(pa_deferinitq);
87
88 static void *pool_page_alloc_meta(struct pool *, int);
89 static void pool_page_free_meta(struct pool *, void *);
90
91 /* allocator for pool metadata */
92 static struct pool_allocator pool_allocator_meta = {
93 pool_page_alloc_meta, pool_page_free_meta,
94 .pa_backingmapptr = &kmem_map,
95 };
96
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
99
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool *drainpp;
102
103 /* This spin lock protects both pool_head and drainpp. */
104 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
105
106 typedef uint8_t pool_item_freelist_t;
107
108 struct pool_item_header {
109 /* Page headers */
110 LIST_ENTRY(pool_item_header)
111 ph_pagelist; /* pool page list */
112 SPLAY_ENTRY(pool_item_header)
113 ph_node; /* Off-page page headers */
114 caddr_t ph_page; /* this page's address */
115 struct timeval ph_time; /* last referenced */
116 union {
117 /* !PR_NOTOUCH */
118 struct {
119 LIST_HEAD(, pool_item)
120 phu_itemlist; /* chunk list for this page */
121 } phu_normal;
122 /* PR_NOTOUCH */
123 struct {
124 uint16_t
125 phu_off; /* start offset in page */
126 pool_item_freelist_t
127 phu_firstfree; /* first free item */
128 /*
129 * XXX it might be better to use
130 * a simple bitmap and ffs(3)
131 */
132 } phu_notouch;
133 } ph_u;
134 uint16_t ph_nmissing; /* # of chunks in use */
135 };
136 #define ph_itemlist ph_u.phu_normal.phu_itemlist
137 #define ph_off ph_u.phu_notouch.phu_off
138 #define ph_firstfree ph_u.phu_notouch.phu_firstfree
139
140 struct pool_item {
141 #ifdef DIAGNOSTIC
142 u_int pi_magic;
143 #endif
144 #define PI_MAGIC 0xdeadbeefU
145 /* Other entries use only this list entry */
146 LIST_ENTRY(pool_item) pi_list;
147 };
148
149 #define POOL_NEEDS_CATCHUP(pp) \
150 ((pp)->pr_nitems < (pp)->pr_minitems)
151
152 /*
153 * Pool cache management.
154 *
155 * Pool caches provide a way for constructed objects to be cached by the
156 * pool subsystem. This can lead to performance improvements by avoiding
157 * needless object construction/destruction; it is deferred until absolutely
158 * necessary.
159 *
160 * Caches are grouped into cache groups. Each cache group references
161 * up to 16 constructed objects. When a cache allocates an object
162 * from the pool, it calls the object's constructor and places it into
163 * a cache group. When a cache group frees an object back to the pool,
164 * it first calls the object's destructor. This allows the object to
165 * persist in constructed form while freed to the cache.
166 *
167 * Multiple caches may exist for each pool. This allows a single
168 * object type to have multiple constructed forms. The pool references
169 * each cache, so that when a pool is drained by the pagedaemon, it can
170 * drain each individual cache as well. Each time a cache is drained,
171 * the most idle cache group is freed to the pool in its entirety.
172 *
173 * Pool caches are layed on top of pools. By layering them, we can avoid
174 * the complexity of cache management for pools which would not benefit
175 * from it.
176 */
177
178 /* The cache group pool. */
179 static struct pool pcgpool;
180
181 static void pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
182 struct pool_cache_grouplist *);
183 static void pcg_grouplist_free(struct pool_cache_grouplist *);
184
185 static int pool_catchup(struct pool *);
186 static void pool_prime_page(struct pool *, caddr_t,
187 struct pool_item_header *);
188 static void pool_update_curpage(struct pool *);
189
190 static int pool_grow(struct pool *, int);
191 static void *pool_allocator_alloc(struct pool *, int);
192 static void pool_allocator_free(struct pool *, void *);
193
194 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
195 void (*)(const char *, ...));
196 static void pool_print1(struct pool *, const char *,
197 void (*)(const char *, ...));
198
199 static int pool_chk_page(struct pool *, const char *,
200 struct pool_item_header *);
201
202 /*
203 * Pool log entry. An array of these is allocated in pool_init().
204 */
205 struct pool_log {
206 const char *pl_file;
207 long pl_line;
208 int pl_action;
209 #define PRLOG_GET 1
210 #define PRLOG_PUT 2
211 void *pl_addr;
212 };
213
214 #ifdef POOL_DIAGNOSTIC
215 /* Number of entries in pool log buffers */
216 #ifndef POOL_LOGSIZE
217 #define POOL_LOGSIZE 10
218 #endif
219
220 int pool_logsize = POOL_LOGSIZE;
221
222 static inline void
223 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
224 {
225 int n = pp->pr_curlogentry;
226 struct pool_log *pl;
227
228 if ((pp->pr_roflags & PR_LOGGING) == 0)
229 return;
230
231 /*
232 * Fill in the current entry. Wrap around and overwrite
233 * the oldest entry if necessary.
234 */
235 pl = &pp->pr_log[n];
236 pl->pl_file = file;
237 pl->pl_line = line;
238 pl->pl_action = action;
239 pl->pl_addr = v;
240 if (++n >= pp->pr_logsize)
241 n = 0;
242 pp->pr_curlogentry = n;
243 }
244
245 static void
246 pr_printlog(struct pool *pp, struct pool_item *pi,
247 void (*pr)(const char *, ...))
248 {
249 int i = pp->pr_logsize;
250 int n = pp->pr_curlogentry;
251
252 if ((pp->pr_roflags & PR_LOGGING) == 0)
253 return;
254
255 /*
256 * Print all entries in this pool's log.
257 */
258 while (i-- > 0) {
259 struct pool_log *pl = &pp->pr_log[n];
260 if (pl->pl_action != 0) {
261 if (pi == NULL || pi == pl->pl_addr) {
262 (*pr)("\tlog entry %d:\n", i);
263 (*pr)("\t\taction = %s, addr = %p\n",
264 pl->pl_action == PRLOG_GET ? "get" : "put",
265 pl->pl_addr);
266 (*pr)("\t\tfile: %s at line %lu\n",
267 pl->pl_file, pl->pl_line);
268 }
269 }
270 if (++n >= pp->pr_logsize)
271 n = 0;
272 }
273 }
274
275 static inline void
276 pr_enter(struct pool *pp, const char *file, long line)
277 {
278
279 if (__predict_false(pp->pr_entered_file != NULL)) {
280 printf("pool %s: reentrancy at file %s line %ld\n",
281 pp->pr_wchan, file, line);
282 printf(" previous entry at file %s line %ld\n",
283 pp->pr_entered_file, pp->pr_entered_line);
284 panic("pr_enter");
285 }
286
287 pp->pr_entered_file = file;
288 pp->pr_entered_line = line;
289 }
290
291 static inline void
292 pr_leave(struct pool *pp)
293 {
294
295 if (__predict_false(pp->pr_entered_file == NULL)) {
296 printf("pool %s not entered?\n", pp->pr_wchan);
297 panic("pr_leave");
298 }
299
300 pp->pr_entered_file = NULL;
301 pp->pr_entered_line = 0;
302 }
303
304 static inline void
305 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
306 {
307
308 if (pp->pr_entered_file != NULL)
309 (*pr)("\n\tcurrently entered from file %s line %ld\n",
310 pp->pr_entered_file, pp->pr_entered_line);
311 }
312 #else
313 #define pr_log(pp, v, action, file, line)
314 #define pr_printlog(pp, pi, pr)
315 #define pr_enter(pp, file, line)
316 #define pr_leave(pp)
317 #define pr_enter_check(pp, pr)
318 #endif /* POOL_DIAGNOSTIC */
319
320 static inline int
321 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
322 const void *v)
323 {
324 const char *cp = v;
325 int idx;
326
327 KASSERT(pp->pr_roflags & PR_NOTOUCH);
328 idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
329 KASSERT(idx < pp->pr_itemsperpage);
330 return idx;
331 }
332
333 #define PR_FREELIST_ALIGN(p) \
334 roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
335 #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
336 #define PR_INDEX_USED ((pool_item_freelist_t)-1)
337 #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
338
339 static inline void
340 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
341 void *obj)
342 {
343 int idx = pr_item_notouch_index(pp, ph, obj);
344 pool_item_freelist_t *freelist = PR_FREELIST(ph);
345
346 KASSERT(freelist[idx] == PR_INDEX_USED);
347 freelist[idx] = ph->ph_firstfree;
348 ph->ph_firstfree = idx;
349 }
350
351 static inline void *
352 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
353 {
354 int idx = ph->ph_firstfree;
355 pool_item_freelist_t *freelist = PR_FREELIST(ph);
356
357 KASSERT(freelist[idx] != PR_INDEX_USED);
358 ph->ph_firstfree = freelist[idx];
359 freelist[idx] = PR_INDEX_USED;
360
361 return ph->ph_page + ph->ph_off + idx * pp->pr_size;
362 }
363
364 static inline int
365 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
366 {
367
368 /*
369 * we consider pool_item_header with smaller ph_page bigger.
370 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
371 */
372
373 if (a->ph_page < b->ph_page)
374 return (1);
375 else if (a->ph_page > b->ph_page)
376 return (-1);
377 else
378 return (0);
379 }
380
381 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
382 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
383
384 /*
385 * Return the pool page header based on item address.
386 */
387 static inline struct pool_item_header *
388 pr_find_pagehead(struct pool *pp, void *v)
389 {
390 struct pool_item_header *ph, tmp;
391
392 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
393 tmp.ph_page = (caddr_t)(uintptr_t)v;
394 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
395 if (ph == NULL) {
396 ph = SPLAY_ROOT(&pp->pr_phtree);
397 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
398 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
399 }
400 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
401 }
402 } else {
403 caddr_t page =
404 (caddr_t)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
405
406 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
407 ph = (void *)(page + pp->pr_phoffset);
408 } else {
409 tmp.ph_page = page;
410 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
411 }
412 }
413
414 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
415 (ph->ph_page <= (char *)v &&
416 (char *)v < ph->ph_page + pp->pr_alloc->pa_pagesz));
417 return ph;
418 }
419
420 static void
421 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
422 {
423 struct pool_item_header *ph;
424 int s;
425
426 while ((ph = LIST_FIRST(pq)) != NULL) {
427 LIST_REMOVE(ph, ph_pagelist);
428 pool_allocator_free(pp, ph->ph_page);
429 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
430 s = splvm();
431 pool_put(pp->pr_phpool, ph);
432 splx(s);
433 }
434 }
435 }
436
437 /*
438 * Remove a page from the pool.
439 */
440 static inline void
441 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
442 struct pool_pagelist *pq)
443 {
444
445 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
446
447 /*
448 * If the page was idle, decrement the idle page count.
449 */
450 if (ph->ph_nmissing == 0) {
451 #ifdef DIAGNOSTIC
452 if (pp->pr_nidle == 0)
453 panic("pr_rmpage: nidle inconsistent");
454 if (pp->pr_nitems < pp->pr_itemsperpage)
455 panic("pr_rmpage: nitems inconsistent");
456 #endif
457 pp->pr_nidle--;
458 }
459
460 pp->pr_nitems -= pp->pr_itemsperpage;
461
462 /*
463 * Unlink the page from the pool and queue it for release.
464 */
465 LIST_REMOVE(ph, ph_pagelist);
466 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
467 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
468 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
469
470 pp->pr_npages--;
471 pp->pr_npagefree++;
472
473 pool_update_curpage(pp);
474 }
475
476 static boolean_t
477 pa_starved_p(struct pool_allocator *pa)
478 {
479
480 if (pa->pa_backingmap != NULL) {
481 return vm_map_starved_p(pa->pa_backingmap);
482 }
483 return FALSE;
484 }
485
486 static int
487 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
488 {
489 struct pool *pp = obj;
490 struct pool_allocator *pa = pp->pr_alloc;
491
492 KASSERT(&pp->pr_reclaimerentry == ce);
493 pool_reclaim(pp);
494 if (!pa_starved_p(pa)) {
495 return CALLBACK_CHAIN_ABORT;
496 }
497 return CALLBACK_CHAIN_CONTINUE;
498 }
499
500 static void
501 pool_reclaim_register(struct pool *pp)
502 {
503 struct vm_map *map = pp->pr_alloc->pa_backingmap;
504 int s;
505
506 if (map == NULL) {
507 return;
508 }
509
510 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
511 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
512 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
513 splx(s);
514 }
515
516 static void
517 pool_reclaim_unregister(struct pool *pp)
518 {
519 struct vm_map *map = pp->pr_alloc->pa_backingmap;
520 int s;
521
522 if (map == NULL) {
523 return;
524 }
525
526 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
527 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
528 &pp->pr_reclaimerentry);
529 splx(s);
530 }
531
532 static void
533 pa_reclaim_register(struct pool_allocator *pa)
534 {
535 struct vm_map *map = *pa->pa_backingmapptr;
536 struct pool *pp;
537
538 KASSERT(pa->pa_backingmap == NULL);
539 if (map == NULL) {
540 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
541 return;
542 }
543 pa->pa_backingmap = map;
544 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
545 pool_reclaim_register(pp);
546 }
547 }
548
549 /*
550 * Initialize all the pools listed in the "pools" link set.
551 */
552 void
553 pool_subsystem_init(void)
554 {
555 struct pool_allocator *pa;
556 __link_set_decl(pools, struct link_pool_init);
557 struct link_pool_init * const *pi;
558
559 __link_set_foreach(pi, pools)
560 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
561 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
562 (*pi)->palloc);
563
564 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
565 KASSERT(pa->pa_backingmapptr != NULL);
566 KASSERT(*pa->pa_backingmapptr != NULL);
567 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
568 pa_reclaim_register(pa);
569 }
570 }
571
572 /*
573 * Initialize the given pool resource structure.
574 *
575 * We export this routine to allow other kernel parts to declare
576 * static pools that must be initialized before malloc() is available.
577 */
578 void
579 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
580 const char *wchan, struct pool_allocator *palloc)
581 {
582 #ifdef DEBUG
583 struct pool *pp1;
584 #endif
585 size_t trysize, phsize;
586 int off, slack, s;
587
588 KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
589 PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
590
591 #ifdef DEBUG
592 /*
593 * Check that the pool hasn't already been initialised and
594 * added to the list of all pools.
595 */
596 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
597 if (pp == pp1)
598 panic("pool_init: pool %s already initialised",
599 wchan);
600 }
601 #endif
602
603 #ifdef POOL_DIAGNOSTIC
604 /*
605 * Always log if POOL_DIAGNOSTIC is defined.
606 */
607 if (pool_logsize != 0)
608 flags |= PR_LOGGING;
609 #endif
610
611 if (palloc == NULL)
612 palloc = &pool_allocator_kmem;
613 #ifdef POOL_SUBPAGE
614 if (size > palloc->pa_pagesz) {
615 if (palloc == &pool_allocator_kmem)
616 palloc = &pool_allocator_kmem_fullpage;
617 else if (palloc == &pool_allocator_nointr)
618 palloc = &pool_allocator_nointr_fullpage;
619 }
620 #endif /* POOL_SUBPAGE */
621 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
622 if (palloc->pa_pagesz == 0)
623 palloc->pa_pagesz = PAGE_SIZE;
624
625 TAILQ_INIT(&palloc->pa_list);
626
627 simple_lock_init(&palloc->pa_slock);
628 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
629 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
630
631 if (palloc->pa_backingmapptr != NULL) {
632 pa_reclaim_register(palloc);
633 }
634 palloc->pa_flags |= PA_INITIALIZED;
635 }
636
637 if (align == 0)
638 align = ALIGN(1);
639
640 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
641 size = sizeof(struct pool_item);
642
643 size = roundup(size, align);
644 #ifdef DIAGNOSTIC
645 if (size > palloc->pa_pagesz)
646 panic("pool_init: pool item size (%zu) too large", size);
647 #endif
648
649 /*
650 * Initialize the pool structure.
651 */
652 LIST_INIT(&pp->pr_emptypages);
653 LIST_INIT(&pp->pr_fullpages);
654 LIST_INIT(&pp->pr_partpages);
655 LIST_INIT(&pp->pr_cachelist);
656 pp->pr_curpage = NULL;
657 pp->pr_npages = 0;
658 pp->pr_minitems = 0;
659 pp->pr_minpages = 0;
660 pp->pr_maxpages = UINT_MAX;
661 pp->pr_roflags = flags;
662 pp->pr_flags = 0;
663 pp->pr_size = size;
664 pp->pr_align = align;
665 pp->pr_wchan = wchan;
666 pp->pr_alloc = palloc;
667 pp->pr_nitems = 0;
668 pp->pr_nout = 0;
669 pp->pr_hardlimit = UINT_MAX;
670 pp->pr_hardlimit_warning = NULL;
671 pp->pr_hardlimit_ratecap.tv_sec = 0;
672 pp->pr_hardlimit_ratecap.tv_usec = 0;
673 pp->pr_hardlimit_warning_last.tv_sec = 0;
674 pp->pr_hardlimit_warning_last.tv_usec = 0;
675 pp->pr_drain_hook = NULL;
676 pp->pr_drain_hook_arg = NULL;
677
678 /*
679 * Decide whether to put the page header off page to avoid
680 * wasting too large a part of the page or too big item.
681 * Off-page page headers go on a hash table, so we can match
682 * a returned item with its header based on the page address.
683 * We use 1/16 of the page size and about 8 times of the item
684 * size as the threshold (XXX: tune)
685 *
686 * However, we'll put the header into the page if we can put
687 * it without wasting any items.
688 *
689 * Silently enforce `0 <= ioff < align'.
690 */
691 pp->pr_itemoffset = ioff %= align;
692 /* See the comment below about reserved bytes. */
693 trysize = palloc->pa_pagesz - ((align - ioff) % align);
694 phsize = ALIGN(sizeof(struct pool_item_header));
695 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
696 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
697 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
698 /* Use the end of the page for the page header */
699 pp->pr_roflags |= PR_PHINPAGE;
700 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
701 } else {
702 /* The page header will be taken from our page header pool */
703 pp->pr_phoffset = 0;
704 off = palloc->pa_pagesz;
705 SPLAY_INIT(&pp->pr_phtree);
706 }
707
708 /*
709 * Alignment is to take place at `ioff' within the item. This means
710 * we must reserve up to `align - 1' bytes on the page to allow
711 * appropriate positioning of each item.
712 */
713 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
714 KASSERT(pp->pr_itemsperpage != 0);
715 if ((pp->pr_roflags & PR_NOTOUCH)) {
716 int idx;
717
718 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
719 idx++) {
720 /* nothing */
721 }
722 if (idx >= PHPOOL_MAX) {
723 /*
724 * if you see this panic, consider to tweak
725 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
726 */
727 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
728 pp->pr_wchan, pp->pr_itemsperpage);
729 }
730 pp->pr_phpool = &phpool[idx];
731 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
732 pp->pr_phpool = &phpool[0];
733 }
734 #if defined(DIAGNOSTIC)
735 else {
736 pp->pr_phpool = NULL;
737 }
738 #endif
739
740 /*
741 * Use the slack between the chunks and the page header
742 * for "cache coloring".
743 */
744 slack = off - pp->pr_itemsperpage * pp->pr_size;
745 pp->pr_maxcolor = (slack / align) * align;
746 pp->pr_curcolor = 0;
747
748 pp->pr_nget = 0;
749 pp->pr_nfail = 0;
750 pp->pr_nput = 0;
751 pp->pr_npagealloc = 0;
752 pp->pr_npagefree = 0;
753 pp->pr_hiwat = 0;
754 pp->pr_nidle = 0;
755
756 #ifdef POOL_DIAGNOSTIC
757 if (flags & PR_LOGGING) {
758 if (kmem_map == NULL ||
759 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
760 M_TEMP, M_NOWAIT)) == NULL)
761 pp->pr_roflags &= ~PR_LOGGING;
762 pp->pr_curlogentry = 0;
763 pp->pr_logsize = pool_logsize;
764 }
765 #endif
766
767 pp->pr_entered_file = NULL;
768 pp->pr_entered_line = 0;
769
770 simple_lock_init(&pp->pr_slock);
771
772 /*
773 * Initialize private page header pool and cache magazine pool if we
774 * haven't done so yet.
775 * XXX LOCKING.
776 */
777 if (phpool[0].pr_size == 0) {
778 int idx;
779 for (idx = 0; idx < PHPOOL_MAX; idx++) {
780 static char phpool_names[PHPOOL_MAX][6+1+6+1];
781 int nelem;
782 size_t sz;
783
784 nelem = PHPOOL_FREELIST_NELEM(idx);
785 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
786 "phpool-%d", nelem);
787 sz = sizeof(struct pool_item_header);
788 if (nelem) {
789 sz = PR_FREELIST_ALIGN(sz)
790 + nelem * sizeof(pool_item_freelist_t);
791 }
792 pool_init(&phpool[idx], sz, 0, 0, 0,
793 phpool_names[idx], &pool_allocator_meta);
794 }
795 #ifdef POOL_SUBPAGE
796 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
797 PR_RECURSIVE, "psppool", &pool_allocator_meta);
798 #endif
799 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
800 0, "pcgpool", &pool_allocator_meta);
801 }
802
803 /* Insert into the list of all pools. */
804 simple_lock(&pool_head_slock);
805 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
806 simple_unlock(&pool_head_slock);
807
808 /* Insert this into the list of pools using this allocator. */
809 s = splvm();
810 simple_lock(&palloc->pa_slock);
811 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
812 simple_unlock(&palloc->pa_slock);
813 splx(s);
814 pool_reclaim_register(pp);
815 }
816
817 /*
818 * De-commision a pool resource.
819 */
820 void
821 pool_destroy(struct pool *pp)
822 {
823 struct pool_pagelist pq;
824 struct pool_item_header *ph;
825 int s;
826
827 /* Remove from global pool list */
828 simple_lock(&pool_head_slock);
829 LIST_REMOVE(pp, pr_poollist);
830 if (drainpp == pp)
831 drainpp = NULL;
832 simple_unlock(&pool_head_slock);
833
834 /* Remove this pool from its allocator's list of pools. */
835 pool_reclaim_unregister(pp);
836 s = splvm();
837 simple_lock(&pp->pr_alloc->pa_slock);
838 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
839 simple_unlock(&pp->pr_alloc->pa_slock);
840 splx(s);
841
842 s = splvm();
843 simple_lock(&pp->pr_slock);
844
845 KASSERT(LIST_EMPTY(&pp->pr_cachelist));
846
847 #ifdef DIAGNOSTIC
848 if (pp->pr_nout != 0) {
849 pr_printlog(pp, NULL, printf);
850 panic("pool_destroy: pool busy: still out: %u",
851 pp->pr_nout);
852 }
853 #endif
854
855 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
856 KASSERT(LIST_EMPTY(&pp->pr_partpages));
857
858 /* Remove all pages */
859 LIST_INIT(&pq);
860 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
861 pr_rmpage(pp, ph, &pq);
862
863 simple_unlock(&pp->pr_slock);
864 splx(s);
865
866 pr_pagelist_free(pp, &pq);
867
868 #ifdef POOL_DIAGNOSTIC
869 if ((pp->pr_roflags & PR_LOGGING) != 0)
870 free(pp->pr_log, M_TEMP);
871 #endif
872 }
873
874 void
875 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
876 {
877
878 /* XXX no locking -- must be used just after pool_init() */
879 #ifdef DIAGNOSTIC
880 if (pp->pr_drain_hook != NULL)
881 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
882 #endif
883 pp->pr_drain_hook = fn;
884 pp->pr_drain_hook_arg = arg;
885 }
886
887 static struct pool_item_header *
888 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
889 {
890 struct pool_item_header *ph;
891 int s;
892
893 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
894
895 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
896 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
897 else {
898 s = splvm();
899 ph = pool_get(pp->pr_phpool, flags);
900 splx(s);
901 }
902
903 return (ph);
904 }
905
906 /*
907 * Grab an item from the pool; must be called at appropriate spl level
908 */
909 void *
910 #ifdef POOL_DIAGNOSTIC
911 _pool_get(struct pool *pp, int flags, const char *file, long line)
912 #else
913 pool_get(struct pool *pp, int flags)
914 #endif
915 {
916 struct pool_item *pi;
917 struct pool_item_header *ph;
918 void *v;
919
920 #ifdef DIAGNOSTIC
921 if (__predict_false(pp->pr_itemsperpage == 0))
922 panic("pool_get: pool %p: pr_itemsperpage is zero, "
923 "pool not initialized?", pp);
924 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
925 (flags & PR_WAITOK) != 0))
926 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
927
928 #endif /* DIAGNOSTIC */
929 #ifdef LOCKDEBUG
930 if (flags & PR_WAITOK)
931 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
932 SCHED_ASSERT_UNLOCKED();
933 #endif
934
935 simple_lock(&pp->pr_slock);
936 pr_enter(pp, file, line);
937
938 startover:
939 /*
940 * Check to see if we've reached the hard limit. If we have,
941 * and we can wait, then wait until an item has been returned to
942 * the pool.
943 */
944 #ifdef DIAGNOSTIC
945 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
946 pr_leave(pp);
947 simple_unlock(&pp->pr_slock);
948 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
949 }
950 #endif
951 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
952 if (pp->pr_drain_hook != NULL) {
953 /*
954 * Since the drain hook is going to free things
955 * back to the pool, unlock, call the hook, re-lock,
956 * and check the hardlimit condition again.
957 */
958 pr_leave(pp);
959 simple_unlock(&pp->pr_slock);
960 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
961 simple_lock(&pp->pr_slock);
962 pr_enter(pp, file, line);
963 if (pp->pr_nout < pp->pr_hardlimit)
964 goto startover;
965 }
966
967 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
968 /*
969 * XXX: A warning isn't logged in this case. Should
970 * it be?
971 */
972 pp->pr_flags |= PR_WANTED;
973 pr_leave(pp);
974 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
975 pr_enter(pp, file, line);
976 goto startover;
977 }
978
979 /*
980 * Log a message that the hard limit has been hit.
981 */
982 if (pp->pr_hardlimit_warning != NULL &&
983 ratecheck(&pp->pr_hardlimit_warning_last,
984 &pp->pr_hardlimit_ratecap))
985 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
986
987 pp->pr_nfail++;
988
989 pr_leave(pp);
990 simple_unlock(&pp->pr_slock);
991 return (NULL);
992 }
993
994 /*
995 * The convention we use is that if `curpage' is not NULL, then
996 * it points at a non-empty bucket. In particular, `curpage'
997 * never points at a page header which has PR_PHINPAGE set and
998 * has no items in its bucket.
999 */
1000 if ((ph = pp->pr_curpage) == NULL) {
1001 int error;
1002
1003 #ifdef DIAGNOSTIC
1004 if (pp->pr_nitems != 0) {
1005 simple_unlock(&pp->pr_slock);
1006 printf("pool_get: %s: curpage NULL, nitems %u\n",
1007 pp->pr_wchan, pp->pr_nitems);
1008 panic("pool_get: nitems inconsistent");
1009 }
1010 #endif
1011
1012 /*
1013 * Call the back-end page allocator for more memory.
1014 * Release the pool lock, as the back-end page allocator
1015 * may block.
1016 */
1017 pr_leave(pp);
1018 error = pool_grow(pp, flags);
1019 pr_enter(pp, file, line);
1020 if (error != 0) {
1021 /*
1022 * We were unable to allocate a page or item
1023 * header, but we released the lock during
1024 * allocation, so perhaps items were freed
1025 * back to the pool. Check for this case.
1026 */
1027 if (pp->pr_curpage != NULL)
1028 goto startover;
1029
1030 pp->pr_nfail++;
1031 pr_leave(pp);
1032 simple_unlock(&pp->pr_slock);
1033 return (NULL);
1034 }
1035
1036 /* Start the allocation process over. */
1037 goto startover;
1038 }
1039 if (pp->pr_roflags & PR_NOTOUCH) {
1040 #ifdef DIAGNOSTIC
1041 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1042 pr_leave(pp);
1043 simple_unlock(&pp->pr_slock);
1044 panic("pool_get: %s: page empty", pp->pr_wchan);
1045 }
1046 #endif
1047 v = pr_item_notouch_get(pp, ph);
1048 #ifdef POOL_DIAGNOSTIC
1049 pr_log(pp, v, PRLOG_GET, file, line);
1050 #endif
1051 } else {
1052 v = pi = LIST_FIRST(&ph->ph_itemlist);
1053 if (__predict_false(v == NULL)) {
1054 pr_leave(pp);
1055 simple_unlock(&pp->pr_slock);
1056 panic("pool_get: %s: page empty", pp->pr_wchan);
1057 }
1058 #ifdef DIAGNOSTIC
1059 if (__predict_false(pp->pr_nitems == 0)) {
1060 pr_leave(pp);
1061 simple_unlock(&pp->pr_slock);
1062 printf("pool_get: %s: items on itemlist, nitems %u\n",
1063 pp->pr_wchan, pp->pr_nitems);
1064 panic("pool_get: nitems inconsistent");
1065 }
1066 #endif
1067
1068 #ifdef POOL_DIAGNOSTIC
1069 pr_log(pp, v, PRLOG_GET, file, line);
1070 #endif
1071
1072 #ifdef DIAGNOSTIC
1073 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1074 pr_printlog(pp, pi, printf);
1075 panic("pool_get(%s): free list modified: "
1076 "magic=%x; page %p; item addr %p\n",
1077 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1078 }
1079 #endif
1080
1081 /*
1082 * Remove from item list.
1083 */
1084 LIST_REMOVE(pi, pi_list);
1085 }
1086 pp->pr_nitems--;
1087 pp->pr_nout++;
1088 if (ph->ph_nmissing == 0) {
1089 #ifdef DIAGNOSTIC
1090 if (__predict_false(pp->pr_nidle == 0))
1091 panic("pool_get: nidle inconsistent");
1092 #endif
1093 pp->pr_nidle--;
1094
1095 /*
1096 * This page was previously empty. Move it to the list of
1097 * partially-full pages. This page is already curpage.
1098 */
1099 LIST_REMOVE(ph, ph_pagelist);
1100 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1101 }
1102 ph->ph_nmissing++;
1103 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1104 #ifdef DIAGNOSTIC
1105 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1106 !LIST_EMPTY(&ph->ph_itemlist))) {
1107 pr_leave(pp);
1108 simple_unlock(&pp->pr_slock);
1109 panic("pool_get: %s: nmissing inconsistent",
1110 pp->pr_wchan);
1111 }
1112 #endif
1113 /*
1114 * This page is now full. Move it to the full list
1115 * and select a new current page.
1116 */
1117 LIST_REMOVE(ph, ph_pagelist);
1118 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1119 pool_update_curpage(pp);
1120 }
1121
1122 pp->pr_nget++;
1123 pr_leave(pp);
1124
1125 /*
1126 * If we have a low water mark and we are now below that low
1127 * water mark, add more items to the pool.
1128 */
1129 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1130 /*
1131 * XXX: Should we log a warning? Should we set up a timeout
1132 * to try again in a second or so? The latter could break
1133 * a caller's assumptions about interrupt protection, etc.
1134 */
1135 }
1136
1137 simple_unlock(&pp->pr_slock);
1138 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1139 return (v);
1140 }
1141
1142 /*
1143 * Internal version of pool_put(). Pool is already locked/entered.
1144 */
1145 static void
1146 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1147 {
1148 struct pool_item *pi = v;
1149 struct pool_item_header *ph;
1150
1151 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1152 SCHED_ASSERT_UNLOCKED();
1153
1154 #ifdef DIAGNOSTIC
1155 if (__predict_false(pp->pr_nout == 0)) {
1156 printf("pool %s: putting with none out\n",
1157 pp->pr_wchan);
1158 panic("pool_put");
1159 }
1160 #endif
1161
1162 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1163 pr_printlog(pp, NULL, printf);
1164 panic("pool_put: %s: page header missing", pp->pr_wchan);
1165 }
1166
1167 #ifdef LOCKDEBUG
1168 /*
1169 * Check if we're freeing a locked simple lock.
1170 */
1171 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
1172 #endif
1173
1174 /*
1175 * Return to item list.
1176 */
1177 if (pp->pr_roflags & PR_NOTOUCH) {
1178 pr_item_notouch_put(pp, ph, v);
1179 } else {
1180 #ifdef DIAGNOSTIC
1181 pi->pi_magic = PI_MAGIC;
1182 #endif
1183 #ifdef DEBUG
1184 {
1185 int i, *ip = v;
1186
1187 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1188 *ip++ = PI_MAGIC;
1189 }
1190 }
1191 #endif
1192
1193 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1194 }
1195 KDASSERT(ph->ph_nmissing != 0);
1196 ph->ph_nmissing--;
1197 pp->pr_nput++;
1198 pp->pr_nitems++;
1199 pp->pr_nout--;
1200
1201 /* Cancel "pool empty" condition if it exists */
1202 if (pp->pr_curpage == NULL)
1203 pp->pr_curpage = ph;
1204
1205 if (pp->pr_flags & PR_WANTED) {
1206 pp->pr_flags &= ~PR_WANTED;
1207 if (ph->ph_nmissing == 0)
1208 pp->pr_nidle++;
1209 wakeup((caddr_t)pp);
1210 return;
1211 }
1212
1213 /*
1214 * If this page is now empty, do one of two things:
1215 *
1216 * (1) If we have more pages than the page high water mark,
1217 * free the page back to the system. ONLY CONSIDER
1218 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1219 * CLAIM.
1220 *
1221 * (2) Otherwise, move the page to the empty page list.
1222 *
1223 * Either way, select a new current page (so we use a partially-full
1224 * page if one is available).
1225 */
1226 if (ph->ph_nmissing == 0) {
1227 pp->pr_nidle++;
1228 if (pp->pr_npages > pp->pr_minpages &&
1229 (pp->pr_npages > pp->pr_maxpages ||
1230 pa_starved_p(pp->pr_alloc))) {
1231 pr_rmpage(pp, ph, pq);
1232 } else {
1233 LIST_REMOVE(ph, ph_pagelist);
1234 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1235
1236 /*
1237 * Update the timestamp on the page. A page must
1238 * be idle for some period of time before it can
1239 * be reclaimed by the pagedaemon. This minimizes
1240 * ping-pong'ing for memory.
1241 */
1242 getmicrotime(&ph->ph_time);
1243 }
1244 pool_update_curpage(pp);
1245 }
1246
1247 /*
1248 * If the page was previously completely full, move it to the
1249 * partially-full list and make it the current page. The next
1250 * allocation will get the item from this page, instead of
1251 * further fragmenting the pool.
1252 */
1253 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1254 LIST_REMOVE(ph, ph_pagelist);
1255 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1256 pp->pr_curpage = ph;
1257 }
1258 }
1259
1260 /*
1261 * Return resource to the pool; must be called at appropriate spl level
1262 */
1263 #ifdef POOL_DIAGNOSTIC
1264 void
1265 _pool_put(struct pool *pp, void *v, const char *file, long line)
1266 {
1267 struct pool_pagelist pq;
1268
1269 LIST_INIT(&pq);
1270
1271 simple_lock(&pp->pr_slock);
1272 pr_enter(pp, file, line);
1273
1274 pr_log(pp, v, PRLOG_PUT, file, line);
1275
1276 pool_do_put(pp, v, &pq);
1277
1278 pr_leave(pp);
1279 simple_unlock(&pp->pr_slock);
1280
1281 pr_pagelist_free(pp, &pq);
1282 }
1283 #undef pool_put
1284 #endif /* POOL_DIAGNOSTIC */
1285
1286 void
1287 pool_put(struct pool *pp, void *v)
1288 {
1289 struct pool_pagelist pq;
1290
1291 LIST_INIT(&pq);
1292
1293 simple_lock(&pp->pr_slock);
1294 pool_do_put(pp, v, &pq);
1295 simple_unlock(&pp->pr_slock);
1296
1297 pr_pagelist_free(pp, &pq);
1298 }
1299
1300 #ifdef POOL_DIAGNOSTIC
1301 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1302 #endif
1303
1304 /*
1305 * pool_grow: grow a pool by a page.
1306 *
1307 * => called with pool locked.
1308 * => unlock and relock the pool.
1309 * => return with pool locked.
1310 */
1311
1312 static int
1313 pool_grow(struct pool *pp, int flags)
1314 {
1315 struct pool_item_header *ph = NULL;
1316 char *cp;
1317
1318 simple_unlock(&pp->pr_slock);
1319 cp = pool_allocator_alloc(pp, flags);
1320 if (__predict_true(cp != NULL)) {
1321 ph = pool_alloc_item_header(pp, cp, flags);
1322 }
1323 if (__predict_false(cp == NULL || ph == NULL)) {
1324 if (cp != NULL) {
1325 pool_allocator_free(pp, cp);
1326 }
1327 simple_lock(&pp->pr_slock);
1328 return ENOMEM;
1329 }
1330
1331 simple_lock(&pp->pr_slock);
1332 pool_prime_page(pp, cp, ph);
1333 pp->pr_npagealloc++;
1334 return 0;
1335 }
1336
1337 /*
1338 * Add N items to the pool.
1339 */
1340 int
1341 pool_prime(struct pool *pp, int n)
1342 {
1343 int newpages;
1344 int error = 0;
1345
1346 simple_lock(&pp->pr_slock);
1347
1348 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1349
1350 while (newpages-- > 0) {
1351 error = pool_grow(pp, PR_NOWAIT);
1352 if (error) {
1353 break;
1354 }
1355 pp->pr_minpages++;
1356 }
1357
1358 if (pp->pr_minpages >= pp->pr_maxpages)
1359 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1360
1361 simple_unlock(&pp->pr_slock);
1362 return error;
1363 }
1364
1365 /*
1366 * Add a page worth of items to the pool.
1367 *
1368 * Note, we must be called with the pool descriptor LOCKED.
1369 */
1370 static void
1371 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1372 {
1373 struct pool_item *pi;
1374 caddr_t cp = storage;
1375 const unsigned int align = pp->pr_align;
1376 const unsigned int ioff = pp->pr_itemoffset;
1377 int n;
1378
1379 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1380
1381 #ifdef DIAGNOSTIC
1382 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1383 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1384 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1385 #endif
1386
1387 /*
1388 * Insert page header.
1389 */
1390 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1391 LIST_INIT(&ph->ph_itemlist);
1392 ph->ph_page = storage;
1393 ph->ph_nmissing = 0;
1394 getmicrotime(&ph->ph_time);
1395 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1396 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1397
1398 pp->pr_nidle++;
1399
1400 /*
1401 * Color this page.
1402 */
1403 cp = (caddr_t)(cp + pp->pr_curcolor);
1404 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1405 pp->pr_curcolor = 0;
1406
1407 /*
1408 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1409 */
1410 if (ioff != 0)
1411 cp = (caddr_t)(cp + (align - ioff));
1412
1413 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1414
1415 /*
1416 * Insert remaining chunks on the bucket list.
1417 */
1418 n = pp->pr_itemsperpage;
1419 pp->pr_nitems += n;
1420
1421 if (pp->pr_roflags & PR_NOTOUCH) {
1422 pool_item_freelist_t *freelist = PR_FREELIST(ph);
1423 int i;
1424
1425 ph->ph_off = cp - storage;
1426 ph->ph_firstfree = 0;
1427 for (i = 0; i < n - 1; i++)
1428 freelist[i] = i + 1;
1429 freelist[n - 1] = PR_INDEX_EOL;
1430 } else {
1431 while (n--) {
1432 pi = (struct pool_item *)cp;
1433
1434 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1435
1436 /* Insert on page list */
1437 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1438 #ifdef DIAGNOSTIC
1439 pi->pi_magic = PI_MAGIC;
1440 #endif
1441 cp = (caddr_t)(cp + pp->pr_size);
1442
1443 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1444 }
1445 }
1446
1447 /*
1448 * If the pool was depleted, point at the new page.
1449 */
1450 if (pp->pr_curpage == NULL)
1451 pp->pr_curpage = ph;
1452
1453 if (++pp->pr_npages > pp->pr_hiwat)
1454 pp->pr_hiwat = pp->pr_npages;
1455 }
1456
1457 /*
1458 * Used by pool_get() when nitems drops below the low water mark. This
1459 * is used to catch up pr_nitems with the low water mark.
1460 *
1461 * Note 1, we never wait for memory here, we let the caller decide what to do.
1462 *
1463 * Note 2, we must be called with the pool already locked, and we return
1464 * with it locked.
1465 */
1466 static int
1467 pool_catchup(struct pool *pp)
1468 {
1469 int error = 0;
1470
1471 while (POOL_NEEDS_CATCHUP(pp)) {
1472 error = pool_grow(pp, PR_NOWAIT);
1473 if (error) {
1474 break;
1475 }
1476 }
1477 return error;
1478 }
1479
1480 static void
1481 pool_update_curpage(struct pool *pp)
1482 {
1483
1484 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1485 if (pp->pr_curpage == NULL) {
1486 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1487 }
1488 }
1489
1490 void
1491 pool_setlowat(struct pool *pp, int n)
1492 {
1493
1494 simple_lock(&pp->pr_slock);
1495
1496 pp->pr_minitems = n;
1497 pp->pr_minpages = (n == 0)
1498 ? 0
1499 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1500
1501 /* Make sure we're caught up with the newly-set low water mark. */
1502 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1503 /*
1504 * XXX: Should we log a warning? Should we set up a timeout
1505 * to try again in a second or so? The latter could break
1506 * a caller's assumptions about interrupt protection, etc.
1507 */
1508 }
1509
1510 simple_unlock(&pp->pr_slock);
1511 }
1512
1513 void
1514 pool_sethiwat(struct pool *pp, int n)
1515 {
1516
1517 simple_lock(&pp->pr_slock);
1518
1519 pp->pr_maxpages = (n == 0)
1520 ? 0
1521 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1522
1523 simple_unlock(&pp->pr_slock);
1524 }
1525
1526 void
1527 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1528 {
1529
1530 simple_lock(&pp->pr_slock);
1531
1532 pp->pr_hardlimit = n;
1533 pp->pr_hardlimit_warning = warnmess;
1534 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1535 pp->pr_hardlimit_warning_last.tv_sec = 0;
1536 pp->pr_hardlimit_warning_last.tv_usec = 0;
1537
1538 /*
1539 * In-line version of pool_sethiwat(), because we don't want to
1540 * release the lock.
1541 */
1542 pp->pr_maxpages = (n == 0)
1543 ? 0
1544 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1545
1546 simple_unlock(&pp->pr_slock);
1547 }
1548
1549 /*
1550 * Release all complete pages that have not been used recently.
1551 */
1552 int
1553 #ifdef POOL_DIAGNOSTIC
1554 _pool_reclaim(struct pool *pp, const char *file, long line)
1555 #else
1556 pool_reclaim(struct pool *pp)
1557 #endif
1558 {
1559 struct pool_item_header *ph, *phnext;
1560 struct pool_cache *pc;
1561 struct pool_pagelist pq;
1562 struct pool_cache_grouplist pcgl;
1563 struct timeval curtime, diff;
1564
1565 if (pp->pr_drain_hook != NULL) {
1566 /*
1567 * The drain hook must be called with the pool unlocked.
1568 */
1569 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1570 }
1571
1572 if (simple_lock_try(&pp->pr_slock) == 0)
1573 return (0);
1574 pr_enter(pp, file, line);
1575
1576 LIST_INIT(&pq);
1577 LIST_INIT(&pcgl);
1578
1579 /*
1580 * Reclaim items from the pool's caches.
1581 */
1582 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1583 pool_cache_reclaim(pc, &pq, &pcgl);
1584
1585 getmicrotime(&curtime);
1586
1587 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1588 phnext = LIST_NEXT(ph, ph_pagelist);
1589
1590 /* Check our minimum page claim */
1591 if (pp->pr_npages <= pp->pr_minpages)
1592 break;
1593
1594 KASSERT(ph->ph_nmissing == 0);
1595 timersub(&curtime, &ph->ph_time, &diff);
1596 if (diff.tv_sec < pool_inactive_time
1597 && !pa_starved_p(pp->pr_alloc))
1598 continue;
1599
1600 /*
1601 * If freeing this page would put us below
1602 * the low water mark, stop now.
1603 */
1604 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1605 pp->pr_minitems)
1606 break;
1607
1608 pr_rmpage(pp, ph, &pq);
1609 }
1610
1611 pr_leave(pp);
1612 simple_unlock(&pp->pr_slock);
1613 if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
1614 return 0;
1615
1616 pr_pagelist_free(pp, &pq);
1617 pcg_grouplist_free(&pcgl);
1618 return (1);
1619 }
1620
1621 /*
1622 * Drain pools, one at a time.
1623 *
1624 * Note, we must never be called from an interrupt context.
1625 */
1626 void
1627 pool_drain(void *arg)
1628 {
1629 struct pool *pp;
1630 int s;
1631
1632 pp = NULL;
1633 s = splvm();
1634 simple_lock(&pool_head_slock);
1635 if (drainpp == NULL) {
1636 drainpp = LIST_FIRST(&pool_head);
1637 }
1638 if (drainpp) {
1639 pp = drainpp;
1640 drainpp = LIST_NEXT(pp, pr_poollist);
1641 }
1642 simple_unlock(&pool_head_slock);
1643 if (pp)
1644 pool_reclaim(pp);
1645 splx(s);
1646 }
1647
1648 /*
1649 * Diagnostic helpers.
1650 */
1651 void
1652 pool_print(struct pool *pp, const char *modif)
1653 {
1654 int s;
1655
1656 s = splvm();
1657 if (simple_lock_try(&pp->pr_slock) == 0) {
1658 printf("pool %s is locked; try again later\n",
1659 pp->pr_wchan);
1660 splx(s);
1661 return;
1662 }
1663 pool_print1(pp, modif, printf);
1664 simple_unlock(&pp->pr_slock);
1665 splx(s);
1666 }
1667
1668 void
1669 pool_printall(const char *modif, void (*pr)(const char *, ...))
1670 {
1671 struct pool *pp;
1672
1673 if (simple_lock_try(&pool_head_slock) == 0) {
1674 (*pr)("WARNING: pool_head_slock is locked\n");
1675 } else {
1676 simple_unlock(&pool_head_slock);
1677 }
1678
1679 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1680 pool_printit(pp, modif, pr);
1681 }
1682 }
1683
1684 void
1685 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1686 {
1687
1688 if (pp == NULL) {
1689 (*pr)("Must specify a pool to print.\n");
1690 return;
1691 }
1692
1693 /*
1694 * Called from DDB; interrupts should be blocked, and all
1695 * other processors should be paused. We can skip locking
1696 * the pool in this case.
1697 *
1698 * We do a simple_lock_try() just to print the lock
1699 * status, however.
1700 */
1701
1702 if (simple_lock_try(&pp->pr_slock) == 0)
1703 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1704 else
1705 simple_unlock(&pp->pr_slock);
1706
1707 pool_print1(pp, modif, pr);
1708 }
1709
1710 static void
1711 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1712 void (*pr)(const char *, ...))
1713 {
1714 struct pool_item_header *ph;
1715 #ifdef DIAGNOSTIC
1716 struct pool_item *pi;
1717 #endif
1718
1719 LIST_FOREACH(ph, pl, ph_pagelist) {
1720 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1721 ph->ph_page, ph->ph_nmissing,
1722 (u_long)ph->ph_time.tv_sec,
1723 (u_long)ph->ph_time.tv_usec);
1724 #ifdef DIAGNOSTIC
1725 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1726 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1727 if (pi->pi_magic != PI_MAGIC) {
1728 (*pr)("\t\t\titem %p, magic 0x%x\n",
1729 pi, pi->pi_magic);
1730 }
1731 }
1732 }
1733 #endif
1734 }
1735 }
1736
1737 static void
1738 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1739 {
1740 struct pool_item_header *ph;
1741 struct pool_cache *pc;
1742 struct pool_cache_group *pcg;
1743 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1744 char c;
1745
1746 while ((c = *modif++) != '\0') {
1747 if (c == 'l')
1748 print_log = 1;
1749 if (c == 'p')
1750 print_pagelist = 1;
1751 if (c == 'c')
1752 print_cache = 1;
1753 }
1754
1755 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1756 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1757 pp->pr_roflags);
1758 (*pr)("\talloc %p\n", pp->pr_alloc);
1759 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1760 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1761 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1762 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1763
1764 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1765 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1766 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1767 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1768
1769 if (print_pagelist == 0)
1770 goto skip_pagelist;
1771
1772 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1773 (*pr)("\n\tempty page list:\n");
1774 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1775 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1776 (*pr)("\n\tfull page list:\n");
1777 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1778 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1779 (*pr)("\n\tpartial-page list:\n");
1780 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1781
1782 if (pp->pr_curpage == NULL)
1783 (*pr)("\tno current page\n");
1784 else
1785 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1786
1787 skip_pagelist:
1788 if (print_log == 0)
1789 goto skip_log;
1790
1791 (*pr)("\n");
1792 if ((pp->pr_roflags & PR_LOGGING) == 0)
1793 (*pr)("\tno log\n");
1794 else {
1795 pr_printlog(pp, NULL, pr);
1796 }
1797
1798 skip_log:
1799 if (print_cache == 0)
1800 goto skip_cache;
1801
1802 #define PR_GROUPLIST(pcg) \
1803 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1804 for (i = 0; i < PCG_NOBJECTS; i++) { \
1805 if (pcg->pcg_objects[i].pcgo_pa != \
1806 POOL_PADDR_INVALID) { \
1807 (*pr)("\t\t\t%p, 0x%llx\n", \
1808 pcg->pcg_objects[i].pcgo_va, \
1809 (unsigned long long) \
1810 pcg->pcg_objects[i].pcgo_pa); \
1811 } else { \
1812 (*pr)("\t\t\t%p\n", \
1813 pcg->pcg_objects[i].pcgo_va); \
1814 } \
1815 }
1816
1817 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1818 (*pr)("\tcache %p\n", pc);
1819 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1820 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1821 (*pr)("\t full groups:\n");
1822 LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
1823 PR_GROUPLIST(pcg);
1824 }
1825 (*pr)("\t partial groups:\n");
1826 LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
1827 PR_GROUPLIST(pcg);
1828 }
1829 (*pr)("\t empty groups:\n");
1830 LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
1831 PR_GROUPLIST(pcg);
1832 }
1833 }
1834 #undef PR_GROUPLIST
1835
1836 skip_cache:
1837 pr_enter_check(pp, pr);
1838 }
1839
1840 static int
1841 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1842 {
1843 struct pool_item *pi;
1844 caddr_t page;
1845 int n;
1846
1847 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1848 page = (caddr_t)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1849 if (page != ph->ph_page &&
1850 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1851 if (label != NULL)
1852 printf("%s: ", label);
1853 printf("pool(%p:%s): page inconsistency: page %p;"
1854 " at page head addr %p (p %p)\n", pp,
1855 pp->pr_wchan, ph->ph_page,
1856 ph, page);
1857 return 1;
1858 }
1859 }
1860
1861 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1862 return 0;
1863
1864 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1865 pi != NULL;
1866 pi = LIST_NEXT(pi,pi_list), n++) {
1867
1868 #ifdef DIAGNOSTIC
1869 if (pi->pi_magic != PI_MAGIC) {
1870 if (label != NULL)
1871 printf("%s: ", label);
1872 printf("pool(%s): free list modified: magic=%x;"
1873 " page %p; item ordinal %d; addr %p\n",
1874 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1875 n, pi);
1876 panic("pool");
1877 }
1878 #endif
1879 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1880 continue;
1881 }
1882 page = (caddr_t)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1883 if (page == ph->ph_page)
1884 continue;
1885
1886 if (label != NULL)
1887 printf("%s: ", label);
1888 printf("pool(%p:%s): page inconsistency: page %p;"
1889 " item ordinal %d; addr %p (p %p)\n", pp,
1890 pp->pr_wchan, ph->ph_page,
1891 n, pi, page);
1892 return 1;
1893 }
1894 return 0;
1895 }
1896
1897
1898 int
1899 pool_chk(struct pool *pp, const char *label)
1900 {
1901 struct pool_item_header *ph;
1902 int r = 0;
1903
1904 simple_lock(&pp->pr_slock);
1905 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1906 r = pool_chk_page(pp, label, ph);
1907 if (r) {
1908 goto out;
1909 }
1910 }
1911 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1912 r = pool_chk_page(pp, label, ph);
1913 if (r) {
1914 goto out;
1915 }
1916 }
1917 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1918 r = pool_chk_page(pp, label, ph);
1919 if (r) {
1920 goto out;
1921 }
1922 }
1923
1924 out:
1925 simple_unlock(&pp->pr_slock);
1926 return (r);
1927 }
1928
1929 /*
1930 * pool_cache_init:
1931 *
1932 * Initialize a pool cache.
1933 *
1934 * NOTE: If the pool must be protected from interrupts, we expect
1935 * to be called at the appropriate interrupt priority level.
1936 */
1937 void
1938 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1939 int (*ctor)(void *, void *, int),
1940 void (*dtor)(void *, void *),
1941 void *arg)
1942 {
1943
1944 LIST_INIT(&pc->pc_emptygroups);
1945 LIST_INIT(&pc->pc_fullgroups);
1946 LIST_INIT(&pc->pc_partgroups);
1947 simple_lock_init(&pc->pc_slock);
1948
1949 pc->pc_pool = pp;
1950
1951 pc->pc_ctor = ctor;
1952 pc->pc_dtor = dtor;
1953 pc->pc_arg = arg;
1954
1955 pc->pc_hits = 0;
1956 pc->pc_misses = 0;
1957
1958 pc->pc_ngroups = 0;
1959
1960 pc->pc_nitems = 0;
1961
1962 simple_lock(&pp->pr_slock);
1963 LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1964 simple_unlock(&pp->pr_slock);
1965 }
1966
1967 /*
1968 * pool_cache_destroy:
1969 *
1970 * Destroy a pool cache.
1971 */
1972 void
1973 pool_cache_destroy(struct pool_cache *pc)
1974 {
1975 struct pool *pp = pc->pc_pool;
1976
1977 /* First, invalidate the entire cache. */
1978 pool_cache_invalidate(pc);
1979
1980 /* ...and remove it from the pool's cache list. */
1981 simple_lock(&pp->pr_slock);
1982 LIST_REMOVE(pc, pc_poollist);
1983 simple_unlock(&pp->pr_slock);
1984 }
1985
1986 static inline void *
1987 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1988 {
1989 void *object;
1990 u_int idx;
1991
1992 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1993 KASSERT(pcg->pcg_avail != 0);
1994 idx = --pcg->pcg_avail;
1995
1996 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1997 object = pcg->pcg_objects[idx].pcgo_va;
1998 if (pap != NULL)
1999 *pap = pcg->pcg_objects[idx].pcgo_pa;
2000 pcg->pcg_objects[idx].pcgo_va = NULL;
2001
2002 return (object);
2003 }
2004
2005 static inline void
2006 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
2007 {
2008 u_int idx;
2009
2010 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
2011 idx = pcg->pcg_avail++;
2012
2013 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
2014 pcg->pcg_objects[idx].pcgo_va = object;
2015 pcg->pcg_objects[idx].pcgo_pa = pa;
2016 }
2017
2018 static void
2019 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
2020 {
2021 struct pool_cache_group *pcg;
2022 int s;
2023
2024 s = splvm();
2025 while ((pcg = LIST_FIRST(pcgl)) != NULL) {
2026 LIST_REMOVE(pcg, pcg_list);
2027 pool_put(&pcgpool, pcg);
2028 }
2029 splx(s);
2030 }
2031
2032 /*
2033 * pool_cache_get{,_paddr}:
2034 *
2035 * Get an object from a pool cache (optionally returning
2036 * the physical address of the object).
2037 */
2038 void *
2039 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
2040 {
2041 struct pool_cache_group *pcg;
2042 void *object;
2043
2044 #ifdef LOCKDEBUG
2045 if (flags & PR_WAITOK)
2046 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2047 #endif
2048
2049 simple_lock(&pc->pc_slock);
2050
2051 pcg = LIST_FIRST(&pc->pc_partgroups);
2052 if (pcg == NULL) {
2053 pcg = LIST_FIRST(&pc->pc_fullgroups);
2054 if (pcg != NULL) {
2055 LIST_REMOVE(pcg, pcg_list);
2056 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2057 }
2058 }
2059 if (pcg == NULL) {
2060
2061 /*
2062 * No groups with any available objects. Allocate
2063 * a new object, construct it, and return it to
2064 * the caller. We will allocate a group, if necessary,
2065 * when the object is freed back to the cache.
2066 */
2067 pc->pc_misses++;
2068 simple_unlock(&pc->pc_slock);
2069 object = pool_get(pc->pc_pool, flags);
2070 if (object != NULL && pc->pc_ctor != NULL) {
2071 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2072 pool_put(pc->pc_pool, object);
2073 return (NULL);
2074 }
2075 }
2076 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
2077 (pc->pc_pool->pr_align - 1)) == 0);
2078 if (object != NULL && pap != NULL) {
2079 #ifdef POOL_VTOPHYS
2080 *pap = POOL_VTOPHYS(object);
2081 #else
2082 *pap = POOL_PADDR_INVALID;
2083 #endif
2084 }
2085 return (object);
2086 }
2087
2088 pc->pc_hits++;
2089 pc->pc_nitems--;
2090 object = pcg_get(pcg, pap);
2091
2092 if (pcg->pcg_avail == 0) {
2093 LIST_REMOVE(pcg, pcg_list);
2094 LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
2095 }
2096 simple_unlock(&pc->pc_slock);
2097
2098 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
2099 (pc->pc_pool->pr_align - 1)) == 0);
2100 return (object);
2101 }
2102
2103 /*
2104 * pool_cache_put{,_paddr}:
2105 *
2106 * Put an object back to the pool cache (optionally caching the
2107 * physical address of the object).
2108 */
2109 void
2110 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
2111 {
2112 struct pool_cache_group *pcg;
2113 int s;
2114
2115 if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
2116 goto destruct;
2117 }
2118
2119 simple_lock(&pc->pc_slock);
2120
2121 pcg = LIST_FIRST(&pc->pc_partgroups);
2122 if (pcg == NULL) {
2123 pcg = LIST_FIRST(&pc->pc_emptygroups);
2124 if (pcg != NULL) {
2125 LIST_REMOVE(pcg, pcg_list);
2126 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2127 }
2128 }
2129 if (pcg == NULL) {
2130
2131 /*
2132 * No empty groups to free the object to. Attempt to
2133 * allocate one.
2134 */
2135 simple_unlock(&pc->pc_slock);
2136 s = splvm();
2137 pcg = pool_get(&pcgpool, PR_NOWAIT);
2138 splx(s);
2139 if (pcg == NULL) {
2140 destruct:
2141
2142 /*
2143 * Unable to allocate a cache group; destruct the object
2144 * and free it back to the pool.
2145 */
2146 pool_cache_destruct_object(pc, object);
2147 return;
2148 }
2149 memset(pcg, 0, sizeof(*pcg));
2150 simple_lock(&pc->pc_slock);
2151 pc->pc_ngroups++;
2152 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2153 }
2154
2155 pc->pc_nitems++;
2156 pcg_put(pcg, object, pa);
2157
2158 if (pcg->pcg_avail == PCG_NOBJECTS) {
2159 LIST_REMOVE(pcg, pcg_list);
2160 LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
2161 }
2162 simple_unlock(&pc->pc_slock);
2163 }
2164
2165 /*
2166 * pool_cache_destruct_object:
2167 *
2168 * Force destruction of an object and its release back into
2169 * the pool.
2170 */
2171 void
2172 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2173 {
2174
2175 if (pc->pc_dtor != NULL)
2176 (*pc->pc_dtor)(pc->pc_arg, object);
2177 pool_put(pc->pc_pool, object);
2178 }
2179
2180 static void
2181 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
2182 struct pool_cache *pc, struct pool_pagelist *pq,
2183 struct pool_cache_grouplist *pcgdl)
2184 {
2185 struct pool_cache_group *pcg, *npcg;
2186 void *object;
2187
2188 for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
2189 npcg = LIST_NEXT(pcg, pcg_list);
2190 while (pcg->pcg_avail != 0) {
2191 pc->pc_nitems--;
2192 object = pcg_get(pcg, NULL);
2193 if (pc->pc_dtor != NULL)
2194 (*pc->pc_dtor)(pc->pc_arg, object);
2195 pool_do_put(pc->pc_pool, object, pq);
2196 }
2197 pc->pc_ngroups--;
2198 LIST_REMOVE(pcg, pcg_list);
2199 LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
2200 }
2201 }
2202
2203 static void
2204 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
2205 struct pool_cache_grouplist *pcgl)
2206 {
2207
2208 LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
2209 LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
2210
2211 pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
2212 pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
2213
2214 KASSERT(LIST_EMPTY(&pc->pc_partgroups));
2215 KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
2216 KASSERT(pc->pc_nitems == 0);
2217 }
2218
2219 /*
2220 * pool_cache_invalidate:
2221 *
2222 * Invalidate a pool cache (destruct and release all of the
2223 * cached objects).
2224 */
2225 void
2226 pool_cache_invalidate(struct pool_cache *pc)
2227 {
2228 struct pool_pagelist pq;
2229 struct pool_cache_grouplist pcgl;
2230
2231 LIST_INIT(&pq);
2232 LIST_INIT(&pcgl);
2233
2234 simple_lock(&pc->pc_slock);
2235 simple_lock(&pc->pc_pool->pr_slock);
2236
2237 pool_do_cache_invalidate(pc, &pq, &pcgl);
2238
2239 simple_unlock(&pc->pc_pool->pr_slock);
2240 simple_unlock(&pc->pc_slock);
2241
2242 pr_pagelist_free(pc->pc_pool, &pq);
2243 pcg_grouplist_free(&pcgl);
2244 }
2245
2246 /*
2247 * pool_cache_reclaim:
2248 *
2249 * Reclaim a pool cache for pool_reclaim().
2250 */
2251 static void
2252 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
2253 struct pool_cache_grouplist *pcgl)
2254 {
2255
2256 /*
2257 * We're locking in the wrong order (normally pool_cache -> pool,
2258 * but the pool is already locked when we get here), so we have
2259 * to use trylock. If we can't lock the pool_cache, it's not really
2260 * a big deal here.
2261 */
2262 if (simple_lock_try(&pc->pc_slock) == 0)
2263 return;
2264
2265 pool_do_cache_invalidate(pc, pq, pcgl);
2266
2267 simple_unlock(&pc->pc_slock);
2268 }
2269
2270 /*
2271 * Pool backend allocators.
2272 *
2273 * Each pool has a backend allocator that handles allocation, deallocation,
2274 * and any additional draining that might be needed.
2275 *
2276 * We provide two standard allocators:
2277 *
2278 * pool_allocator_kmem - the default when no allocator is specified
2279 *
2280 * pool_allocator_nointr - used for pools that will not be accessed
2281 * in interrupt context.
2282 */
2283 void *pool_page_alloc(struct pool *, int);
2284 void pool_page_free(struct pool *, void *);
2285
2286 #ifdef POOL_SUBPAGE
2287 struct pool_allocator pool_allocator_kmem_fullpage = {
2288 pool_page_alloc, pool_page_free, 0,
2289 .pa_backingmapptr = &kmem_map,
2290 };
2291 #else
2292 struct pool_allocator pool_allocator_kmem = {
2293 pool_page_alloc, pool_page_free, 0,
2294 .pa_backingmapptr = &kmem_map,
2295 };
2296 #endif
2297
2298 void *pool_page_alloc_nointr(struct pool *, int);
2299 void pool_page_free_nointr(struct pool *, void *);
2300
2301 #ifdef POOL_SUBPAGE
2302 struct pool_allocator pool_allocator_nointr_fullpage = {
2303 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2304 .pa_backingmapptr = &kernel_map,
2305 };
2306 #else
2307 struct pool_allocator pool_allocator_nointr = {
2308 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2309 .pa_backingmapptr = &kernel_map,
2310 };
2311 #endif
2312
2313 #ifdef POOL_SUBPAGE
2314 void *pool_subpage_alloc(struct pool *, int);
2315 void pool_subpage_free(struct pool *, void *);
2316
2317 struct pool_allocator pool_allocator_kmem = {
2318 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2319 .pa_backingmapptr = &kmem_map,
2320 };
2321
2322 void *pool_subpage_alloc_nointr(struct pool *, int);
2323 void pool_subpage_free_nointr(struct pool *, void *);
2324
2325 struct pool_allocator pool_allocator_nointr = {
2326 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2327 .pa_backingmapptr = &kmem_map,
2328 };
2329 #endif /* POOL_SUBPAGE */
2330
2331 static void *
2332 pool_allocator_alloc(struct pool *pp, int flags)
2333 {
2334 struct pool_allocator *pa = pp->pr_alloc;
2335 void *res;
2336
2337 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2338
2339 res = (*pa->pa_alloc)(pp, flags);
2340 if (res == NULL && (flags & PR_WAITOK) == 0) {
2341 /*
2342 * We only run the drain hook here if PR_NOWAIT.
2343 * In other cases, the hook will be run in
2344 * pool_reclaim().
2345 */
2346 if (pp->pr_drain_hook != NULL) {
2347 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2348 res = (*pa->pa_alloc)(pp, flags);
2349 }
2350 }
2351 return res;
2352 }
2353
2354 static void
2355 pool_allocator_free(struct pool *pp, void *v)
2356 {
2357 struct pool_allocator *pa = pp->pr_alloc;
2358
2359 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2360
2361 (*pa->pa_free)(pp, v);
2362 }
2363
2364 void *
2365 pool_page_alloc(struct pool *pp, int flags)
2366 {
2367 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2368
2369 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2370 }
2371
2372 void
2373 pool_page_free(struct pool *pp, void *v)
2374 {
2375
2376 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2377 }
2378
2379 static void *
2380 pool_page_alloc_meta(struct pool *pp, int flags)
2381 {
2382 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2383
2384 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2385 }
2386
2387 static void
2388 pool_page_free_meta(struct pool *pp, void *v)
2389 {
2390
2391 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2392 }
2393
2394 #ifdef POOL_SUBPAGE
2395 /* Sub-page allocator, for machines with large hardware pages. */
2396 void *
2397 pool_subpage_alloc(struct pool *pp, int flags)
2398 {
2399 void *v;
2400 int s;
2401 s = splvm();
2402 v = pool_get(&psppool, flags);
2403 splx(s);
2404 return v;
2405 }
2406
2407 void
2408 pool_subpage_free(struct pool *pp, void *v)
2409 {
2410 int s;
2411 s = splvm();
2412 pool_put(&psppool, v);
2413 splx(s);
2414 }
2415
2416 /* We don't provide a real nointr allocator. Maybe later. */
2417 void *
2418 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2419 {
2420
2421 return (pool_subpage_alloc(pp, flags));
2422 }
2423
2424 void
2425 pool_subpage_free_nointr(struct pool *pp, void *v)
2426 {
2427
2428 pool_subpage_free(pp, v);
2429 }
2430 #endif /* POOL_SUBPAGE */
2431 void *
2432 pool_page_alloc_nointr(struct pool *pp, int flags)
2433 {
2434 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2435
2436 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2437 }
2438
2439 void
2440 pool_page_free_nointr(struct pool *pp, void *v)
2441 {
2442
2443 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2444 }
2445