subr_pool.c revision 1.122.2.2 1 /* $NetBSD: subr_pool.c,v 1.122.2.2 2006/10/20 20:03:56 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.122.2.2 2006/10/20 20:03:56 ad Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 #define PHPOOL_MAX 8
77 static struct pool phpool[PHPOOL_MAX];
78 #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
79
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84
85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
86 SLIST_HEAD_INITIALIZER(pa_deferinitq);
87
88 static void *pool_page_alloc_meta(struct pool *, int);
89 static void pool_page_free_meta(struct pool *, void *);
90
91 /* allocator for pool metadata */
92 static struct pool_allocator pool_allocator_meta = {
93 pool_page_alloc_meta, pool_page_free_meta,
94 .pa_backingmapptr = &kmem_map,
95 };
96
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
99
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool *drainpp;
102
103 /* This spin lock protects both pool_head and drainpp. */
104 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
105
106 typedef uint8_t pool_item_freelist_t;
107
108 struct pool_item_header {
109 /* Page headers */
110 LIST_ENTRY(pool_item_header)
111 ph_pagelist; /* pool page list */
112 SPLAY_ENTRY(pool_item_header)
113 ph_node; /* Off-page page headers */
114 caddr_t ph_page; /* this page's address */
115 struct timeval ph_time; /* last referenced */
116 union {
117 /* !PR_NOTOUCH */
118 struct {
119 LIST_HEAD(, pool_item)
120 phu_itemlist; /* chunk list for this page */
121 } phu_normal;
122 /* PR_NOTOUCH */
123 struct {
124 uint16_t
125 phu_off; /* start offset in page */
126 pool_item_freelist_t
127 phu_firstfree; /* first free item */
128 /*
129 * XXX it might be better to use
130 * a simple bitmap and ffs(3)
131 */
132 } phu_notouch;
133 } ph_u;
134 uint16_t ph_nmissing; /* # of chunks in use */
135 };
136 #define ph_itemlist ph_u.phu_normal.phu_itemlist
137 #define ph_off ph_u.phu_notouch.phu_off
138 #define ph_firstfree ph_u.phu_notouch.phu_firstfree
139
140 struct pool_item {
141 #ifdef DIAGNOSTIC
142 u_int pi_magic;
143 #endif
144 #define PI_MAGIC 0xdeadbeefU
145 /* Other entries use only this list entry */
146 LIST_ENTRY(pool_item) pi_list;
147 };
148
149 #define POOL_NEEDS_CATCHUP(pp) \
150 ((pp)->pr_nitems < (pp)->pr_minitems)
151
152 /*
153 * Pool cache management.
154 *
155 * Pool caches provide a way for constructed objects to be cached by the
156 * pool subsystem. This can lead to performance improvements by avoiding
157 * needless object construction/destruction; it is deferred until absolutely
158 * necessary.
159 *
160 * Caches are grouped into cache groups. Each cache group references
161 * up to 16 constructed objects. When a cache allocates an object
162 * from the pool, it calls the object's constructor and places it into
163 * a cache group. When a cache group frees an object back to the pool,
164 * it first calls the object's destructor. This allows the object to
165 * persist in constructed form while freed to the cache.
166 *
167 * Multiple caches may exist for each pool. This allows a single
168 * object type to have multiple constructed forms. The pool references
169 * each cache, so that when a pool is drained by the pagedaemon, it can
170 * drain each individual cache as well. Each time a cache is drained,
171 * the most idle cache group is freed to the pool in its entirety.
172 *
173 * Pool caches are layed on top of pools. By layering them, we can avoid
174 * the complexity of cache management for pools which would not benefit
175 * from it.
176 */
177
178 /* The cache group pool. */
179 static struct pool pcgpool;
180
181 static void pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
182 struct pool_cache_grouplist *);
183 static void pcg_grouplist_free(struct pool_cache_grouplist *);
184
185 static int pool_catchup(struct pool *);
186 static void pool_prime_page(struct pool *, caddr_t,
187 struct pool_item_header *);
188 static void pool_update_curpage(struct pool *);
189
190 static int pool_grow(struct pool *, int);
191 static void *pool_allocator_alloc(struct pool *, int);
192 static void pool_allocator_free(struct pool *, void *);
193
194 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
195 void (*)(const char *, ...));
196 static void pool_print1(struct pool *, const char *,
197 void (*)(const char *, ...));
198
199 static int pool_chk_page(struct pool *, const char *,
200 struct pool_item_header *);
201
202 /*
203 * Pool log entry. An array of these is allocated in pool_init().
204 */
205 struct pool_log {
206 const char *pl_file;
207 long pl_line;
208 int pl_action;
209 #define PRLOG_GET 1
210 #define PRLOG_PUT 2
211 void *pl_addr;
212 };
213
214 #ifdef POOL_DIAGNOSTIC
215 /* Number of entries in pool log buffers */
216 #ifndef POOL_LOGSIZE
217 #define POOL_LOGSIZE 10
218 #endif
219
220 int pool_logsize = POOL_LOGSIZE;
221
222 static inline void
223 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
224 {
225 int n = pp->pr_curlogentry;
226 struct pool_log *pl;
227
228 if ((pp->pr_roflags & PR_LOGGING) == 0)
229 return;
230
231 /*
232 * Fill in the current entry. Wrap around and overwrite
233 * the oldest entry if necessary.
234 */
235 pl = &pp->pr_log[n];
236 pl->pl_file = file;
237 pl->pl_line = line;
238 pl->pl_action = action;
239 pl->pl_addr = v;
240 if (++n >= pp->pr_logsize)
241 n = 0;
242 pp->pr_curlogentry = n;
243 }
244
245 static void
246 pr_printlog(struct pool *pp, struct pool_item *pi,
247 void (*pr)(const char *, ...))
248 {
249 int i = pp->pr_logsize;
250 int n = pp->pr_curlogentry;
251
252 if ((pp->pr_roflags & PR_LOGGING) == 0)
253 return;
254
255 /*
256 * Print all entries in this pool's log.
257 */
258 while (i-- > 0) {
259 struct pool_log *pl = &pp->pr_log[n];
260 if (pl->pl_action != 0) {
261 if (pi == NULL || pi == pl->pl_addr) {
262 (*pr)("\tlog entry %d:\n", i);
263 (*pr)("\t\taction = %s, addr = %p\n",
264 pl->pl_action == PRLOG_GET ? "get" : "put",
265 pl->pl_addr);
266 (*pr)("\t\tfile: %s at line %lu\n",
267 pl->pl_file, pl->pl_line);
268 }
269 }
270 if (++n >= pp->pr_logsize)
271 n = 0;
272 }
273 }
274
275 static inline void
276 pr_enter(struct pool *pp, const char *file, long line)
277 {
278
279 if (__predict_false(pp->pr_entered_file != NULL)) {
280 printf("pool %s: reentrancy at file %s line %ld\n",
281 pp->pr_wchan, file, line);
282 printf(" previous entry at file %s line %ld\n",
283 pp->pr_entered_file, pp->pr_entered_line);
284 panic("pr_enter");
285 }
286
287 pp->pr_entered_file = file;
288 pp->pr_entered_line = line;
289 }
290
291 static inline void
292 pr_leave(struct pool *pp)
293 {
294
295 if (__predict_false(pp->pr_entered_file == NULL)) {
296 printf("pool %s not entered?\n", pp->pr_wchan);
297 panic("pr_leave");
298 }
299
300 pp->pr_entered_file = NULL;
301 pp->pr_entered_line = 0;
302 }
303
304 static inline void
305 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
306 {
307
308 if (pp->pr_entered_file != NULL)
309 (*pr)("\n\tcurrently entered from file %s line %ld\n",
310 pp->pr_entered_file, pp->pr_entered_line);
311 }
312 #else
313 #define pr_log(pp, v, action, file, line)
314 #define pr_printlog(pp, pi, pr)
315 #define pr_enter(pp, file, line)
316 #define pr_leave(pp)
317 #define pr_enter_check(pp, pr)
318 #endif /* POOL_DIAGNOSTIC */
319
320 static inline int
321 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
322 const void *v)
323 {
324 const char *cp = v;
325 int idx;
326
327 KASSERT(pp->pr_roflags & PR_NOTOUCH);
328 idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
329 KASSERT(idx < pp->pr_itemsperpage);
330 return idx;
331 }
332
333 #define PR_FREELIST_ALIGN(p) \
334 roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
335 #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
336 #define PR_INDEX_USED ((pool_item_freelist_t)-1)
337 #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
338
339 static inline void
340 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
341 void *obj)
342 {
343 int idx = pr_item_notouch_index(pp, ph, obj);
344 pool_item_freelist_t *freelist = PR_FREELIST(ph);
345
346 KASSERT(freelist[idx] == PR_INDEX_USED);
347 freelist[idx] = ph->ph_firstfree;
348 ph->ph_firstfree = idx;
349 }
350
351 static inline void *
352 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
353 {
354 int idx = ph->ph_firstfree;
355 pool_item_freelist_t *freelist = PR_FREELIST(ph);
356
357 KASSERT(freelist[idx] != PR_INDEX_USED);
358 ph->ph_firstfree = freelist[idx];
359 freelist[idx] = PR_INDEX_USED;
360
361 return ph->ph_page + ph->ph_off + idx * pp->pr_size;
362 }
363
364 static inline int
365 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
366 {
367
368 /*
369 * we consider pool_item_header with smaller ph_page bigger.
370 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
371 */
372
373 if (a->ph_page < b->ph_page)
374 return (1);
375 else if (a->ph_page > b->ph_page)
376 return (-1);
377 else
378 return (0);
379 }
380
381 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
382 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
383
384 /*
385 * Return the pool page header based on item address.
386 */
387 static inline struct pool_item_header *
388 pr_find_pagehead(struct pool *pp, void *v)
389 {
390 struct pool_item_header *ph, tmp;
391
392 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
393 tmp.ph_page = (caddr_t)(uintptr_t)v;
394 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
395 if (ph == NULL) {
396 ph = SPLAY_ROOT(&pp->pr_phtree);
397 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
398 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
399 }
400 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
401 }
402 } else {
403 caddr_t page =
404 (caddr_t)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
405
406 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
407 ph = (void *)(page + pp->pr_phoffset);
408 } else {
409 tmp.ph_page = page;
410 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
411 }
412 }
413
414 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
415 (ph->ph_page <= (char *)v &&
416 (char *)v < ph->ph_page + pp->pr_alloc->pa_pagesz));
417 return ph;
418 }
419
420 static void
421 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
422 {
423 struct pool_item_header *ph;
424 int s;
425
426 while ((ph = LIST_FIRST(pq)) != NULL) {
427 LIST_REMOVE(ph, ph_pagelist);
428 pool_allocator_free(pp, ph->ph_page);
429 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
430 s = splvm();
431 pool_put(pp->pr_phpool, ph);
432 splx(s);
433 }
434 }
435 }
436
437 /*
438 * Remove a page from the pool.
439 */
440 static inline void
441 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
442 struct pool_pagelist *pq)
443 {
444
445 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
446
447 /*
448 * If the page was idle, decrement the idle page count.
449 */
450 if (ph->ph_nmissing == 0) {
451 #ifdef DIAGNOSTIC
452 if (pp->pr_nidle == 0)
453 panic("pr_rmpage: nidle inconsistent");
454 if (pp->pr_nitems < pp->pr_itemsperpage)
455 panic("pr_rmpage: nitems inconsistent");
456 #endif
457 pp->pr_nidle--;
458 }
459
460 pp->pr_nitems -= pp->pr_itemsperpage;
461
462 /*
463 * Unlink the page from the pool and queue it for release.
464 */
465 LIST_REMOVE(ph, ph_pagelist);
466 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
467 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
468 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
469
470 pp->pr_npages--;
471 pp->pr_npagefree++;
472
473 pool_update_curpage(pp);
474 }
475
476 static boolean_t
477 pa_starved_p(struct pool_allocator *pa)
478 {
479
480 if (pa->pa_backingmap != NULL) {
481 return vm_map_starved_p(pa->pa_backingmap);
482 }
483 return FALSE;
484 }
485
486 static int
487 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
488 {
489 struct pool *pp = obj;
490 struct pool_allocator *pa = pp->pr_alloc;
491
492 KASSERT(&pp->pr_reclaimerentry == ce);
493 pool_reclaim(pp);
494 if (!pa_starved_p(pa)) {
495 return CALLBACK_CHAIN_ABORT;
496 }
497 return CALLBACK_CHAIN_CONTINUE;
498 }
499
500 static void
501 pool_reclaim_register(struct pool *pp)
502 {
503 struct vm_map *map = pp->pr_alloc->pa_backingmap;
504 int s;
505
506 if (map == NULL) {
507 return;
508 }
509
510 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
511 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
512 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
513 splx(s);
514 }
515
516 static void
517 pool_reclaim_unregister(struct pool *pp)
518 {
519 struct vm_map *map = pp->pr_alloc->pa_backingmap;
520 int s;
521
522 if (map == NULL) {
523 return;
524 }
525
526 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
527 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
528 &pp->pr_reclaimerentry);
529 splx(s);
530 }
531
532 static void
533 pa_reclaim_register(struct pool_allocator *pa)
534 {
535 struct vm_map *map = *pa->pa_backingmapptr;
536 struct pool *pp;
537
538 KASSERT(pa->pa_backingmap == NULL);
539 if (map == NULL) {
540 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
541 return;
542 }
543 pa->pa_backingmap = map;
544 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
545 pool_reclaim_register(pp);
546 }
547 }
548
549 /*
550 * Initialize all the pools listed in the "pools" link set.
551 */
552 void
553 pool_subsystem_init(void)
554 {
555 struct pool_allocator *pa;
556 __link_set_decl(pools, struct link_pool_init);
557 struct link_pool_init * const *pi;
558
559 __link_set_foreach(pi, pools)
560 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
561 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
562 (*pi)->palloc);
563
564 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
565 KASSERT(pa->pa_backingmapptr != NULL);
566 KASSERT(*pa->pa_backingmapptr != NULL);
567 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
568 pa_reclaim_register(pa);
569 }
570 }
571
572 /*
573 * Initialize the given pool resource structure.
574 *
575 * We export this routine to allow other kernel parts to declare
576 * static pools that must be initialized before malloc() is available.
577 */
578 void
579 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
580 const char *wchan, struct pool_allocator *palloc)
581 {
582 #ifdef DEBUG
583 struct pool *pp1;
584 #endif
585 size_t trysize, phsize;
586 int off, slack, s;
587
588 KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
589 PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
590
591 #ifdef DEBUG
592 /*
593 * Check that the pool hasn't already been initialised and
594 * added to the list of all pools.
595 */
596 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
597 if (pp == pp1)
598 panic("pool_init: pool %s already initialised",
599 wchan);
600 }
601 #endif
602
603 #ifdef POOL_DIAGNOSTIC
604 /*
605 * Always log if POOL_DIAGNOSTIC is defined.
606 */
607 if (pool_logsize != 0)
608 flags |= PR_LOGGING;
609 #endif
610
611 if (palloc == NULL)
612 palloc = &pool_allocator_kmem;
613 #ifdef POOL_SUBPAGE
614 if (size > palloc->pa_pagesz) {
615 if (palloc == &pool_allocator_kmem)
616 palloc = &pool_allocator_kmem_fullpage;
617 else if (palloc == &pool_allocator_nointr)
618 palloc = &pool_allocator_nointr_fullpage;
619 }
620 #endif /* POOL_SUBPAGE */
621 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
622 if (palloc->pa_pagesz == 0)
623 palloc->pa_pagesz = PAGE_SIZE;
624
625 TAILQ_INIT(&palloc->pa_list);
626
627 simple_lock_init(&palloc->pa_slock);
628 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
629 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
630
631 if (palloc->pa_backingmapptr != NULL) {
632 pa_reclaim_register(palloc);
633 }
634 palloc->pa_flags |= PA_INITIALIZED;
635 }
636
637 if (align == 0)
638 align = ALIGN(1);
639
640 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
641 size = sizeof(struct pool_item);
642
643 size = roundup(size, align);
644 #ifdef DIAGNOSTIC
645 if (size > palloc->pa_pagesz)
646 panic("pool_init: pool item size (%zu) too large", size);
647 #endif
648
649 /*
650 * Initialize the pool structure.
651 */
652 LIST_INIT(&pp->pr_emptypages);
653 LIST_INIT(&pp->pr_fullpages);
654 LIST_INIT(&pp->pr_partpages);
655 LIST_INIT(&pp->pr_cachelist);
656 pp->pr_curpage = NULL;
657 pp->pr_npages = 0;
658 pp->pr_minitems = 0;
659 pp->pr_minpages = 0;
660 pp->pr_maxpages = UINT_MAX;
661 pp->pr_roflags = flags;
662 pp->pr_flags = 0;
663 pp->pr_size = size;
664 pp->pr_align = align;
665 pp->pr_wchan = wchan;
666 pp->pr_alloc = palloc;
667 pp->pr_nitems = 0;
668 pp->pr_nout = 0;
669 pp->pr_hardlimit = UINT_MAX;
670 pp->pr_hardlimit_warning = NULL;
671 pp->pr_hardlimit_ratecap.tv_sec = 0;
672 pp->pr_hardlimit_ratecap.tv_usec = 0;
673 pp->pr_hardlimit_warning_last.tv_sec = 0;
674 pp->pr_hardlimit_warning_last.tv_usec = 0;
675 pp->pr_drain_hook = NULL;
676 pp->pr_drain_hook_arg = NULL;
677
678 /*
679 * Decide whether to put the page header off page to avoid
680 * wasting too large a part of the page or too big item.
681 * Off-page page headers go on a hash table, so we can match
682 * a returned item with its header based on the page address.
683 * We use 1/16 of the page size and about 8 times of the item
684 * size as the threshold (XXX: tune)
685 *
686 * However, we'll put the header into the page if we can put
687 * it without wasting any items.
688 *
689 * Silently enforce `0 <= ioff < align'.
690 */
691 pp->pr_itemoffset = ioff %= align;
692 /* See the comment below about reserved bytes. */
693 trysize = palloc->pa_pagesz - ((align - ioff) % align);
694 phsize = ALIGN(sizeof(struct pool_item_header));
695 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
696 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
697 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
698 /* Use the end of the page for the page header */
699 pp->pr_roflags |= PR_PHINPAGE;
700 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
701 } else {
702 /* The page header will be taken from our page header pool */
703 pp->pr_phoffset = 0;
704 off = palloc->pa_pagesz;
705 SPLAY_INIT(&pp->pr_phtree);
706 }
707
708 /*
709 * Alignment is to take place at `ioff' within the item. This means
710 * we must reserve up to `align - 1' bytes on the page to allow
711 * appropriate positioning of each item.
712 */
713 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
714 KASSERT(pp->pr_itemsperpage != 0);
715 if ((pp->pr_roflags & PR_NOTOUCH)) {
716 int idx;
717
718 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
719 idx++) {
720 /* nothing */
721 }
722 if (idx >= PHPOOL_MAX) {
723 /*
724 * if you see this panic, consider to tweak
725 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
726 */
727 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
728 pp->pr_wchan, pp->pr_itemsperpage);
729 }
730 pp->pr_phpool = &phpool[idx];
731 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
732 pp->pr_phpool = &phpool[0];
733 }
734 #if defined(DIAGNOSTIC)
735 else {
736 pp->pr_phpool = NULL;
737 }
738 #endif
739
740 /*
741 * Use the slack between the chunks and the page header
742 * for "cache coloring".
743 */
744 slack = off - pp->pr_itemsperpage * pp->pr_size;
745 pp->pr_maxcolor = (slack / align) * align;
746 pp->pr_curcolor = 0;
747
748 pp->pr_nget = 0;
749 pp->pr_nfail = 0;
750 pp->pr_nput = 0;
751 pp->pr_npagealloc = 0;
752 pp->pr_npagefree = 0;
753 pp->pr_hiwat = 0;
754 pp->pr_nidle = 0;
755
756 #ifdef POOL_DIAGNOSTIC
757 if (flags & PR_LOGGING) {
758 if (kmem_map == NULL ||
759 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
760 M_TEMP, M_NOWAIT)) == NULL)
761 pp->pr_roflags &= ~PR_LOGGING;
762 pp->pr_curlogentry = 0;
763 pp->pr_logsize = pool_logsize;
764 }
765 #endif
766
767 pp->pr_entered_file = NULL;
768 pp->pr_entered_line = 0;
769
770 simple_lock_init(&pp->pr_slock);
771
772 /*
773 * Initialize private page header pool and cache magazine pool if we
774 * haven't done so yet.
775 * XXX LOCKING.
776 */
777 if (phpool[0].pr_size == 0) {
778 int idx;
779 for (idx = 0; idx < PHPOOL_MAX; idx++) {
780 static char phpool_names[PHPOOL_MAX][6+1+6+1];
781 int nelem;
782 size_t sz;
783
784 nelem = PHPOOL_FREELIST_NELEM(idx);
785 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
786 "phpool-%d", nelem);
787 sz = sizeof(struct pool_item_header);
788 if (nelem) {
789 sz = PR_FREELIST_ALIGN(sz)
790 + nelem * sizeof(pool_item_freelist_t);
791 }
792 pool_init(&phpool[idx], sz, 0, 0, 0,
793 phpool_names[idx], &pool_allocator_meta);
794 }
795 #ifdef POOL_SUBPAGE
796 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
797 PR_RECURSIVE, "psppool", &pool_allocator_meta);
798 #endif
799 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
800 0, "pcgpool", &pool_allocator_meta);
801 }
802
803 /* Insert into the list of all pools. */
804 simple_lock(&pool_head_slock);
805 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
806 simple_unlock(&pool_head_slock);
807
808 /* Insert this into the list of pools using this allocator. */
809 s = splvm();
810 simple_lock(&palloc->pa_slock);
811 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
812 simple_unlock(&palloc->pa_slock);
813 splx(s);
814 pool_reclaim_register(pp);
815 }
816
817 /*
818 * De-commision a pool resource.
819 */
820 void
821 pool_destroy(struct pool *pp)
822 {
823 struct pool_pagelist pq;
824 struct pool_item_header *ph;
825 int s;
826
827 /* Remove from global pool list */
828 simple_lock(&pool_head_slock);
829 LIST_REMOVE(pp, pr_poollist);
830 if (drainpp == pp)
831 drainpp = NULL;
832 simple_unlock(&pool_head_slock);
833
834 /* Remove this pool from its allocator's list of pools. */
835 pool_reclaim_unregister(pp);
836 s = splvm();
837 simple_lock(&pp->pr_alloc->pa_slock);
838 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
839 simple_unlock(&pp->pr_alloc->pa_slock);
840 splx(s);
841
842 s = splvm();
843 simple_lock(&pp->pr_slock);
844
845 KASSERT(LIST_EMPTY(&pp->pr_cachelist));
846
847 #ifdef DIAGNOSTIC
848 if (pp->pr_nout != 0) {
849 pr_printlog(pp, NULL, printf);
850 panic("pool_destroy: pool busy: still out: %u",
851 pp->pr_nout);
852 }
853 #endif
854
855 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
856 KASSERT(LIST_EMPTY(&pp->pr_partpages));
857
858 /* Remove all pages */
859 LIST_INIT(&pq);
860 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
861 pr_rmpage(pp, ph, &pq);
862
863 simple_unlock(&pp->pr_slock);
864 splx(s);
865
866 pr_pagelist_free(pp, &pq);
867
868 #ifdef POOL_DIAGNOSTIC
869 if ((pp->pr_roflags & PR_LOGGING) != 0)
870 free(pp->pr_log, M_TEMP);
871 #endif
872 }
873
874 void
875 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
876 {
877
878 /* XXX no locking -- must be used just after pool_init() */
879 #ifdef DIAGNOSTIC
880 if (pp->pr_drain_hook != NULL)
881 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
882 #endif
883 pp->pr_drain_hook = fn;
884 pp->pr_drain_hook_arg = arg;
885 }
886
887 static struct pool_item_header *
888 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
889 {
890 struct pool_item_header *ph;
891 int s;
892
893 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
894
895 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
896 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
897 else {
898 s = splvm();
899 ph = pool_get(pp->pr_phpool, flags);
900 splx(s);
901 }
902
903 return (ph);
904 }
905
906 /*
907 * Grab an item from the pool; must be called at appropriate spl level
908 */
909 void *
910 #ifdef POOL_DIAGNOSTIC
911 _pool_get(struct pool *pp, int flags, const char *file, long line)
912 #else
913 pool_get(struct pool *pp, int flags)
914 #endif
915 {
916 struct pool_item *pi;
917 struct pool_item_header *ph;
918 void *v;
919
920 #ifdef DIAGNOSTIC
921 if (__predict_false(pp->pr_itemsperpage == 0))
922 panic("pool_get: pool %p: pr_itemsperpage is zero, "
923 "pool not initialized?", pp);
924 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
925 (flags & PR_WAITOK) != 0))
926 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
927
928 #endif /* DIAGNOSTIC */
929 #ifdef LOCKDEBUG
930 if (flags & PR_WAITOK)
931 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
932 #endif
933
934 simple_lock(&pp->pr_slock);
935 pr_enter(pp, file, line);
936
937 startover:
938 /*
939 * Check to see if we've reached the hard limit. If we have,
940 * and we can wait, then wait until an item has been returned to
941 * the pool.
942 */
943 #ifdef DIAGNOSTIC
944 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
945 pr_leave(pp);
946 simple_unlock(&pp->pr_slock);
947 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
948 }
949 #endif
950 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
951 if (pp->pr_drain_hook != NULL) {
952 /*
953 * Since the drain hook is going to free things
954 * back to the pool, unlock, call the hook, re-lock,
955 * and check the hardlimit condition again.
956 */
957 pr_leave(pp);
958 simple_unlock(&pp->pr_slock);
959 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
960 simple_lock(&pp->pr_slock);
961 pr_enter(pp, file, line);
962 if (pp->pr_nout < pp->pr_hardlimit)
963 goto startover;
964 }
965
966 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
967 /*
968 * XXX: A warning isn't logged in this case. Should
969 * it be?
970 */
971 pp->pr_flags |= PR_WANTED;
972 pr_leave(pp);
973 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
974 pr_enter(pp, file, line);
975 goto startover;
976 }
977
978 /*
979 * Log a message that the hard limit has been hit.
980 */
981 if (pp->pr_hardlimit_warning != NULL &&
982 ratecheck(&pp->pr_hardlimit_warning_last,
983 &pp->pr_hardlimit_ratecap))
984 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
985
986 pp->pr_nfail++;
987
988 pr_leave(pp);
989 simple_unlock(&pp->pr_slock);
990 return (NULL);
991 }
992
993 /*
994 * The convention we use is that if `curpage' is not NULL, then
995 * it points at a non-empty bucket. In particular, `curpage'
996 * never points at a page header which has PR_PHINPAGE set and
997 * has no items in its bucket.
998 */
999 if ((ph = pp->pr_curpage) == NULL) {
1000 int error;
1001
1002 #ifdef DIAGNOSTIC
1003 if (pp->pr_nitems != 0) {
1004 simple_unlock(&pp->pr_slock);
1005 printf("pool_get: %s: curpage NULL, nitems %u\n",
1006 pp->pr_wchan, pp->pr_nitems);
1007 panic("pool_get: nitems inconsistent");
1008 }
1009 #endif
1010
1011 /*
1012 * Call the back-end page allocator for more memory.
1013 * Release the pool lock, as the back-end page allocator
1014 * may block.
1015 */
1016 pr_leave(pp);
1017 error = pool_grow(pp, flags);
1018 pr_enter(pp, file, line);
1019 if (error != 0) {
1020 /*
1021 * We were unable to allocate a page or item
1022 * header, but we released the lock during
1023 * allocation, so perhaps items were freed
1024 * back to the pool. Check for this case.
1025 */
1026 if (pp->pr_curpage != NULL)
1027 goto startover;
1028
1029 pp->pr_nfail++;
1030 pr_leave(pp);
1031 simple_unlock(&pp->pr_slock);
1032 return (NULL);
1033 }
1034
1035 /* Start the allocation process over. */
1036 goto startover;
1037 }
1038 if (pp->pr_roflags & PR_NOTOUCH) {
1039 #ifdef DIAGNOSTIC
1040 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1041 pr_leave(pp);
1042 simple_unlock(&pp->pr_slock);
1043 panic("pool_get: %s: page empty", pp->pr_wchan);
1044 }
1045 #endif
1046 v = pr_item_notouch_get(pp, ph);
1047 #ifdef POOL_DIAGNOSTIC
1048 pr_log(pp, v, PRLOG_GET, file, line);
1049 #endif
1050 } else {
1051 v = pi = LIST_FIRST(&ph->ph_itemlist);
1052 if (__predict_false(v == NULL)) {
1053 pr_leave(pp);
1054 simple_unlock(&pp->pr_slock);
1055 panic("pool_get: %s: page empty", pp->pr_wchan);
1056 }
1057 #ifdef DIAGNOSTIC
1058 if (__predict_false(pp->pr_nitems == 0)) {
1059 pr_leave(pp);
1060 simple_unlock(&pp->pr_slock);
1061 printf("pool_get: %s: items on itemlist, nitems %u\n",
1062 pp->pr_wchan, pp->pr_nitems);
1063 panic("pool_get: nitems inconsistent");
1064 }
1065 #endif
1066
1067 #ifdef POOL_DIAGNOSTIC
1068 pr_log(pp, v, PRLOG_GET, file, line);
1069 #endif
1070
1071 #ifdef DIAGNOSTIC
1072 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1073 pr_printlog(pp, pi, printf);
1074 panic("pool_get(%s): free list modified: "
1075 "magic=%x; page %p; item addr %p\n",
1076 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1077 }
1078 #endif
1079
1080 /*
1081 * Remove from item list.
1082 */
1083 LIST_REMOVE(pi, pi_list);
1084 }
1085 pp->pr_nitems--;
1086 pp->pr_nout++;
1087 if (ph->ph_nmissing == 0) {
1088 #ifdef DIAGNOSTIC
1089 if (__predict_false(pp->pr_nidle == 0))
1090 panic("pool_get: nidle inconsistent");
1091 #endif
1092 pp->pr_nidle--;
1093
1094 /*
1095 * This page was previously empty. Move it to the list of
1096 * partially-full pages. This page is already curpage.
1097 */
1098 LIST_REMOVE(ph, ph_pagelist);
1099 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1100 }
1101 ph->ph_nmissing++;
1102 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1103 #ifdef DIAGNOSTIC
1104 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1105 !LIST_EMPTY(&ph->ph_itemlist))) {
1106 pr_leave(pp);
1107 simple_unlock(&pp->pr_slock);
1108 panic("pool_get: %s: nmissing inconsistent",
1109 pp->pr_wchan);
1110 }
1111 #endif
1112 /*
1113 * This page is now full. Move it to the full list
1114 * and select a new current page.
1115 */
1116 LIST_REMOVE(ph, ph_pagelist);
1117 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1118 pool_update_curpage(pp);
1119 }
1120
1121 pp->pr_nget++;
1122 pr_leave(pp);
1123
1124 /*
1125 * If we have a low water mark and we are now below that low
1126 * water mark, add more items to the pool.
1127 */
1128 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1129 /*
1130 * XXX: Should we log a warning? Should we set up a timeout
1131 * to try again in a second or so? The latter could break
1132 * a caller's assumptions about interrupt protection, etc.
1133 */
1134 }
1135
1136 simple_unlock(&pp->pr_slock);
1137 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1138 return (v);
1139 }
1140
1141 /*
1142 * Internal version of pool_put(). Pool is already locked/entered.
1143 */
1144 static void
1145 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1146 {
1147 struct pool_item *pi = v;
1148 struct pool_item_header *ph;
1149
1150 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1151
1152 #ifdef DIAGNOSTIC
1153 if (__predict_false(pp->pr_nout == 0)) {
1154 printf("pool %s: putting with none out\n",
1155 pp->pr_wchan);
1156 panic("pool_put");
1157 }
1158 #endif
1159
1160 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1161 pr_printlog(pp, NULL, printf);
1162 panic("pool_put: %s: page header missing", pp->pr_wchan);
1163 }
1164
1165 #ifdef LOCKDEBUG
1166 /*
1167 * Check if we're freeing a locked simple lock.
1168 */
1169 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
1170 #endif
1171
1172 /*
1173 * Return to item list.
1174 */
1175 if (pp->pr_roflags & PR_NOTOUCH) {
1176 pr_item_notouch_put(pp, ph, v);
1177 } else {
1178 #ifdef DIAGNOSTIC
1179 pi->pi_magic = PI_MAGIC;
1180 #endif
1181 #ifdef DEBUG
1182 {
1183 int i, *ip = v;
1184
1185 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1186 *ip++ = PI_MAGIC;
1187 }
1188 }
1189 #endif
1190
1191 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1192 }
1193 KDASSERT(ph->ph_nmissing != 0);
1194 ph->ph_nmissing--;
1195 pp->pr_nput++;
1196 pp->pr_nitems++;
1197 pp->pr_nout--;
1198
1199 /* Cancel "pool empty" condition if it exists */
1200 if (pp->pr_curpage == NULL)
1201 pp->pr_curpage = ph;
1202
1203 if (pp->pr_flags & PR_WANTED) {
1204 pp->pr_flags &= ~PR_WANTED;
1205 if (ph->ph_nmissing == 0)
1206 pp->pr_nidle++;
1207 wakeup((caddr_t)pp);
1208 return;
1209 }
1210
1211 /*
1212 * If this page is now empty, do one of two things:
1213 *
1214 * (1) If we have more pages than the page high water mark,
1215 * free the page back to the system. ONLY CONSIDER
1216 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1217 * CLAIM.
1218 *
1219 * (2) Otherwise, move the page to the empty page list.
1220 *
1221 * Either way, select a new current page (so we use a partially-full
1222 * page if one is available).
1223 */
1224 if (ph->ph_nmissing == 0) {
1225 pp->pr_nidle++;
1226 if (pp->pr_npages > pp->pr_minpages &&
1227 (pp->pr_npages > pp->pr_maxpages ||
1228 pa_starved_p(pp->pr_alloc))) {
1229 pr_rmpage(pp, ph, pq);
1230 } else {
1231 LIST_REMOVE(ph, ph_pagelist);
1232 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1233
1234 /*
1235 * Update the timestamp on the page. A page must
1236 * be idle for some period of time before it can
1237 * be reclaimed by the pagedaemon. This minimizes
1238 * ping-pong'ing for memory.
1239 */
1240 getmicrotime(&ph->ph_time);
1241 }
1242 pool_update_curpage(pp);
1243 }
1244
1245 /*
1246 * If the page was previously completely full, move it to the
1247 * partially-full list and make it the current page. The next
1248 * allocation will get the item from this page, instead of
1249 * further fragmenting the pool.
1250 */
1251 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1252 LIST_REMOVE(ph, ph_pagelist);
1253 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1254 pp->pr_curpage = ph;
1255 }
1256 }
1257
1258 /*
1259 * Return resource to the pool; must be called at appropriate spl level
1260 */
1261 #ifdef POOL_DIAGNOSTIC
1262 void
1263 _pool_put(struct pool *pp, void *v, const char *file, long line)
1264 {
1265 struct pool_pagelist pq;
1266
1267 LIST_INIT(&pq);
1268
1269 simple_lock(&pp->pr_slock);
1270 pr_enter(pp, file, line);
1271
1272 pr_log(pp, v, PRLOG_PUT, file, line);
1273
1274 pool_do_put(pp, v, &pq);
1275
1276 pr_leave(pp);
1277 simple_unlock(&pp->pr_slock);
1278
1279 pr_pagelist_free(pp, &pq);
1280 }
1281 #undef pool_put
1282 #endif /* POOL_DIAGNOSTIC */
1283
1284 void
1285 pool_put(struct pool *pp, void *v)
1286 {
1287 struct pool_pagelist pq;
1288
1289 LIST_INIT(&pq);
1290
1291 simple_lock(&pp->pr_slock);
1292 pool_do_put(pp, v, &pq);
1293 simple_unlock(&pp->pr_slock);
1294
1295 pr_pagelist_free(pp, &pq);
1296 }
1297
1298 #ifdef POOL_DIAGNOSTIC
1299 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1300 #endif
1301
1302 /*
1303 * pool_grow: grow a pool by a page.
1304 *
1305 * => called with pool locked.
1306 * => unlock and relock the pool.
1307 * => return with pool locked.
1308 */
1309
1310 static int
1311 pool_grow(struct pool *pp, int flags)
1312 {
1313 struct pool_item_header *ph = NULL;
1314 char *cp;
1315
1316 simple_unlock(&pp->pr_slock);
1317 cp = pool_allocator_alloc(pp, flags);
1318 if (__predict_true(cp != NULL)) {
1319 ph = pool_alloc_item_header(pp, cp, flags);
1320 }
1321 if (__predict_false(cp == NULL || ph == NULL)) {
1322 if (cp != NULL) {
1323 pool_allocator_free(pp, cp);
1324 }
1325 simple_lock(&pp->pr_slock);
1326 return ENOMEM;
1327 }
1328
1329 simple_lock(&pp->pr_slock);
1330 pool_prime_page(pp, cp, ph);
1331 pp->pr_npagealloc++;
1332 return 0;
1333 }
1334
1335 /*
1336 * Add N items to the pool.
1337 */
1338 int
1339 pool_prime(struct pool *pp, int n)
1340 {
1341 int newpages;
1342 int error = 0;
1343
1344 simple_lock(&pp->pr_slock);
1345
1346 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1347
1348 while (newpages-- > 0) {
1349 error = pool_grow(pp, PR_NOWAIT);
1350 if (error) {
1351 break;
1352 }
1353 pp->pr_minpages++;
1354 }
1355
1356 if (pp->pr_minpages >= pp->pr_maxpages)
1357 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1358
1359 simple_unlock(&pp->pr_slock);
1360 return error;
1361 }
1362
1363 /*
1364 * Add a page worth of items to the pool.
1365 *
1366 * Note, we must be called with the pool descriptor LOCKED.
1367 */
1368 static void
1369 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1370 {
1371 struct pool_item *pi;
1372 caddr_t cp = storage;
1373 const unsigned int align = pp->pr_align;
1374 const unsigned int ioff = pp->pr_itemoffset;
1375 int n;
1376
1377 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1378
1379 #ifdef DIAGNOSTIC
1380 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1381 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1382 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1383 #endif
1384
1385 /*
1386 * Insert page header.
1387 */
1388 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1389 LIST_INIT(&ph->ph_itemlist);
1390 ph->ph_page = storage;
1391 ph->ph_nmissing = 0;
1392 getmicrotime(&ph->ph_time);
1393 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1394 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1395
1396 pp->pr_nidle++;
1397
1398 /*
1399 * Color this page.
1400 */
1401 cp = (caddr_t)(cp + pp->pr_curcolor);
1402 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1403 pp->pr_curcolor = 0;
1404
1405 /*
1406 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1407 */
1408 if (ioff != 0)
1409 cp = (caddr_t)(cp + (align - ioff));
1410
1411 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1412
1413 /*
1414 * Insert remaining chunks on the bucket list.
1415 */
1416 n = pp->pr_itemsperpage;
1417 pp->pr_nitems += n;
1418
1419 if (pp->pr_roflags & PR_NOTOUCH) {
1420 pool_item_freelist_t *freelist = PR_FREELIST(ph);
1421 int i;
1422
1423 ph->ph_off = cp - storage;
1424 ph->ph_firstfree = 0;
1425 for (i = 0; i < n - 1; i++)
1426 freelist[i] = i + 1;
1427 freelist[n - 1] = PR_INDEX_EOL;
1428 } else {
1429 while (n--) {
1430 pi = (struct pool_item *)cp;
1431
1432 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1433
1434 /* Insert on page list */
1435 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1436 #ifdef DIAGNOSTIC
1437 pi->pi_magic = PI_MAGIC;
1438 #endif
1439 cp = (caddr_t)(cp + pp->pr_size);
1440
1441 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1442 }
1443 }
1444
1445 /*
1446 * If the pool was depleted, point at the new page.
1447 */
1448 if (pp->pr_curpage == NULL)
1449 pp->pr_curpage = ph;
1450
1451 if (++pp->pr_npages > pp->pr_hiwat)
1452 pp->pr_hiwat = pp->pr_npages;
1453 }
1454
1455 /*
1456 * Used by pool_get() when nitems drops below the low water mark. This
1457 * is used to catch up pr_nitems with the low water mark.
1458 *
1459 * Note 1, we never wait for memory here, we let the caller decide what to do.
1460 *
1461 * Note 2, we must be called with the pool already locked, and we return
1462 * with it locked.
1463 */
1464 static int
1465 pool_catchup(struct pool *pp)
1466 {
1467 int error = 0;
1468
1469 while (POOL_NEEDS_CATCHUP(pp)) {
1470 error = pool_grow(pp, PR_NOWAIT);
1471 if (error) {
1472 break;
1473 }
1474 }
1475 return error;
1476 }
1477
1478 static void
1479 pool_update_curpage(struct pool *pp)
1480 {
1481
1482 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1483 if (pp->pr_curpage == NULL) {
1484 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1485 }
1486 }
1487
1488 void
1489 pool_setlowat(struct pool *pp, int n)
1490 {
1491
1492 simple_lock(&pp->pr_slock);
1493
1494 pp->pr_minitems = n;
1495 pp->pr_minpages = (n == 0)
1496 ? 0
1497 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1498
1499 /* Make sure we're caught up with the newly-set low water mark. */
1500 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1501 /*
1502 * XXX: Should we log a warning? Should we set up a timeout
1503 * to try again in a second or so? The latter could break
1504 * a caller's assumptions about interrupt protection, etc.
1505 */
1506 }
1507
1508 simple_unlock(&pp->pr_slock);
1509 }
1510
1511 void
1512 pool_sethiwat(struct pool *pp, int n)
1513 {
1514
1515 simple_lock(&pp->pr_slock);
1516
1517 pp->pr_maxpages = (n == 0)
1518 ? 0
1519 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1520
1521 simple_unlock(&pp->pr_slock);
1522 }
1523
1524 void
1525 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1526 {
1527
1528 simple_lock(&pp->pr_slock);
1529
1530 pp->pr_hardlimit = n;
1531 pp->pr_hardlimit_warning = warnmess;
1532 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1533 pp->pr_hardlimit_warning_last.tv_sec = 0;
1534 pp->pr_hardlimit_warning_last.tv_usec = 0;
1535
1536 /*
1537 * In-line version of pool_sethiwat(), because we don't want to
1538 * release the lock.
1539 */
1540 pp->pr_maxpages = (n == 0)
1541 ? 0
1542 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1543
1544 simple_unlock(&pp->pr_slock);
1545 }
1546
1547 /*
1548 * Release all complete pages that have not been used recently.
1549 */
1550 int
1551 #ifdef POOL_DIAGNOSTIC
1552 _pool_reclaim(struct pool *pp, const char *file, long line)
1553 #else
1554 pool_reclaim(struct pool *pp)
1555 #endif
1556 {
1557 struct pool_item_header *ph, *phnext;
1558 struct pool_cache *pc;
1559 struct pool_pagelist pq;
1560 struct pool_cache_grouplist pcgl;
1561 struct timeval curtime, diff;
1562
1563 if (pp->pr_drain_hook != NULL) {
1564 /*
1565 * The drain hook must be called with the pool unlocked.
1566 */
1567 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1568 }
1569
1570 if (simple_lock_try(&pp->pr_slock) == 0)
1571 return (0);
1572 pr_enter(pp, file, line);
1573
1574 LIST_INIT(&pq);
1575 LIST_INIT(&pcgl);
1576
1577 /*
1578 * Reclaim items from the pool's caches.
1579 */
1580 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1581 pool_cache_reclaim(pc, &pq, &pcgl);
1582
1583 getmicrotime(&curtime);
1584
1585 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1586 phnext = LIST_NEXT(ph, ph_pagelist);
1587
1588 /* Check our minimum page claim */
1589 if (pp->pr_npages <= pp->pr_minpages)
1590 break;
1591
1592 KASSERT(ph->ph_nmissing == 0);
1593 timersub(&curtime, &ph->ph_time, &diff);
1594 if (diff.tv_sec < pool_inactive_time
1595 && !pa_starved_p(pp->pr_alloc))
1596 continue;
1597
1598 /*
1599 * If freeing this page would put us below
1600 * the low water mark, stop now.
1601 */
1602 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1603 pp->pr_minitems)
1604 break;
1605
1606 pr_rmpage(pp, ph, &pq);
1607 }
1608
1609 pr_leave(pp);
1610 simple_unlock(&pp->pr_slock);
1611 if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
1612 return 0;
1613
1614 pr_pagelist_free(pp, &pq);
1615 pcg_grouplist_free(&pcgl);
1616 return (1);
1617 }
1618
1619 /*
1620 * Drain pools, one at a time.
1621 *
1622 * Note, we must never be called from an interrupt context.
1623 */
1624 void
1625 pool_drain(void *arg)
1626 {
1627 struct pool *pp;
1628 int s;
1629
1630 pp = NULL;
1631 s = splvm();
1632 simple_lock(&pool_head_slock);
1633 if (drainpp == NULL) {
1634 drainpp = LIST_FIRST(&pool_head);
1635 }
1636 if (drainpp) {
1637 pp = drainpp;
1638 drainpp = LIST_NEXT(pp, pr_poollist);
1639 }
1640 simple_unlock(&pool_head_slock);
1641 if (pp)
1642 pool_reclaim(pp);
1643 splx(s);
1644 }
1645
1646 /*
1647 * Diagnostic helpers.
1648 */
1649 void
1650 pool_print(struct pool *pp, const char *modif)
1651 {
1652 int s;
1653
1654 s = splvm();
1655 if (simple_lock_try(&pp->pr_slock) == 0) {
1656 printf("pool %s is locked; try again later\n",
1657 pp->pr_wchan);
1658 splx(s);
1659 return;
1660 }
1661 pool_print1(pp, modif, printf);
1662 simple_unlock(&pp->pr_slock);
1663 splx(s);
1664 }
1665
1666 void
1667 pool_printall(const char *modif, void (*pr)(const char *, ...))
1668 {
1669 struct pool *pp;
1670
1671 if (simple_lock_try(&pool_head_slock) == 0) {
1672 (*pr)("WARNING: pool_head_slock is locked\n");
1673 } else {
1674 simple_unlock(&pool_head_slock);
1675 }
1676
1677 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1678 pool_printit(pp, modif, pr);
1679 }
1680 }
1681
1682 void
1683 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1684 {
1685
1686 if (pp == NULL) {
1687 (*pr)("Must specify a pool to print.\n");
1688 return;
1689 }
1690
1691 /*
1692 * Called from DDB; interrupts should be blocked, and all
1693 * other processors should be paused. We can skip locking
1694 * the pool in this case.
1695 *
1696 * We do a simple_lock_try() just to print the lock
1697 * status, however.
1698 */
1699
1700 if (simple_lock_try(&pp->pr_slock) == 0)
1701 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1702 else
1703 simple_unlock(&pp->pr_slock);
1704
1705 pool_print1(pp, modif, pr);
1706 }
1707
1708 static void
1709 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1710 void (*pr)(const char *, ...))
1711 {
1712 struct pool_item_header *ph;
1713 #ifdef DIAGNOSTIC
1714 struct pool_item *pi;
1715 #endif
1716
1717 LIST_FOREACH(ph, pl, ph_pagelist) {
1718 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1719 ph->ph_page, ph->ph_nmissing,
1720 (u_long)ph->ph_time.tv_sec,
1721 (u_long)ph->ph_time.tv_usec);
1722 #ifdef DIAGNOSTIC
1723 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1724 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1725 if (pi->pi_magic != PI_MAGIC) {
1726 (*pr)("\t\t\titem %p, magic 0x%x\n",
1727 pi, pi->pi_magic);
1728 }
1729 }
1730 }
1731 #endif
1732 }
1733 }
1734
1735 static void
1736 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1737 {
1738 struct pool_item_header *ph;
1739 struct pool_cache *pc;
1740 struct pool_cache_group *pcg;
1741 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1742 char c;
1743
1744 while ((c = *modif++) != '\0') {
1745 if (c == 'l')
1746 print_log = 1;
1747 if (c == 'p')
1748 print_pagelist = 1;
1749 if (c == 'c')
1750 print_cache = 1;
1751 }
1752
1753 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1754 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1755 pp->pr_roflags);
1756 (*pr)("\talloc %p\n", pp->pr_alloc);
1757 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1758 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1759 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1760 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1761
1762 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1763 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1764 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1765 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1766
1767 if (print_pagelist == 0)
1768 goto skip_pagelist;
1769
1770 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1771 (*pr)("\n\tempty page list:\n");
1772 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1773 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1774 (*pr)("\n\tfull page list:\n");
1775 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1776 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1777 (*pr)("\n\tpartial-page list:\n");
1778 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1779
1780 if (pp->pr_curpage == NULL)
1781 (*pr)("\tno current page\n");
1782 else
1783 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1784
1785 skip_pagelist:
1786 if (print_log == 0)
1787 goto skip_log;
1788
1789 (*pr)("\n");
1790 if ((pp->pr_roflags & PR_LOGGING) == 0)
1791 (*pr)("\tno log\n");
1792 else {
1793 pr_printlog(pp, NULL, pr);
1794 }
1795
1796 skip_log:
1797 if (print_cache == 0)
1798 goto skip_cache;
1799
1800 #define PR_GROUPLIST(pcg) \
1801 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1802 for (i = 0; i < PCG_NOBJECTS; i++) { \
1803 if (pcg->pcg_objects[i].pcgo_pa != \
1804 POOL_PADDR_INVALID) { \
1805 (*pr)("\t\t\t%p, 0x%llx\n", \
1806 pcg->pcg_objects[i].pcgo_va, \
1807 (unsigned long long) \
1808 pcg->pcg_objects[i].pcgo_pa); \
1809 } else { \
1810 (*pr)("\t\t\t%p\n", \
1811 pcg->pcg_objects[i].pcgo_va); \
1812 } \
1813 }
1814
1815 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1816 (*pr)("\tcache %p\n", pc);
1817 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1818 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1819 (*pr)("\t full groups:\n");
1820 LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
1821 PR_GROUPLIST(pcg);
1822 }
1823 (*pr)("\t partial groups:\n");
1824 LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
1825 PR_GROUPLIST(pcg);
1826 }
1827 (*pr)("\t empty groups:\n");
1828 LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
1829 PR_GROUPLIST(pcg);
1830 }
1831 }
1832 #undef PR_GROUPLIST
1833
1834 skip_cache:
1835 pr_enter_check(pp, pr);
1836 }
1837
1838 static int
1839 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1840 {
1841 struct pool_item *pi;
1842 caddr_t page;
1843 int n;
1844
1845 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1846 page = (caddr_t)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1847 if (page != ph->ph_page &&
1848 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1849 if (label != NULL)
1850 printf("%s: ", label);
1851 printf("pool(%p:%s): page inconsistency: page %p;"
1852 " at page head addr %p (p %p)\n", pp,
1853 pp->pr_wchan, ph->ph_page,
1854 ph, page);
1855 return 1;
1856 }
1857 }
1858
1859 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1860 return 0;
1861
1862 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1863 pi != NULL;
1864 pi = LIST_NEXT(pi,pi_list), n++) {
1865
1866 #ifdef DIAGNOSTIC
1867 if (pi->pi_magic != PI_MAGIC) {
1868 if (label != NULL)
1869 printf("%s: ", label);
1870 printf("pool(%s): free list modified: magic=%x;"
1871 " page %p; item ordinal %d; addr %p\n",
1872 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1873 n, pi);
1874 panic("pool");
1875 }
1876 #endif
1877 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1878 continue;
1879 }
1880 page = (caddr_t)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1881 if (page == ph->ph_page)
1882 continue;
1883
1884 if (label != NULL)
1885 printf("%s: ", label);
1886 printf("pool(%p:%s): page inconsistency: page %p;"
1887 " item ordinal %d; addr %p (p %p)\n", pp,
1888 pp->pr_wchan, ph->ph_page,
1889 n, pi, page);
1890 return 1;
1891 }
1892 return 0;
1893 }
1894
1895
1896 int
1897 pool_chk(struct pool *pp, const char *label)
1898 {
1899 struct pool_item_header *ph;
1900 int r = 0;
1901
1902 simple_lock(&pp->pr_slock);
1903 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1904 r = pool_chk_page(pp, label, ph);
1905 if (r) {
1906 goto out;
1907 }
1908 }
1909 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1910 r = pool_chk_page(pp, label, ph);
1911 if (r) {
1912 goto out;
1913 }
1914 }
1915 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1916 r = pool_chk_page(pp, label, ph);
1917 if (r) {
1918 goto out;
1919 }
1920 }
1921
1922 out:
1923 simple_unlock(&pp->pr_slock);
1924 return (r);
1925 }
1926
1927 /*
1928 * pool_cache_init:
1929 *
1930 * Initialize a pool cache.
1931 *
1932 * NOTE: If the pool must be protected from interrupts, we expect
1933 * to be called at the appropriate interrupt priority level.
1934 */
1935 void
1936 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1937 int (*ctor)(void *, void *, int),
1938 void (*dtor)(void *, void *),
1939 void *arg)
1940 {
1941
1942 LIST_INIT(&pc->pc_emptygroups);
1943 LIST_INIT(&pc->pc_fullgroups);
1944 LIST_INIT(&pc->pc_partgroups);
1945 simple_lock_init(&pc->pc_slock);
1946
1947 pc->pc_pool = pp;
1948
1949 pc->pc_ctor = ctor;
1950 pc->pc_dtor = dtor;
1951 pc->pc_arg = arg;
1952
1953 pc->pc_hits = 0;
1954 pc->pc_misses = 0;
1955
1956 pc->pc_ngroups = 0;
1957
1958 pc->pc_nitems = 0;
1959
1960 simple_lock(&pp->pr_slock);
1961 LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1962 simple_unlock(&pp->pr_slock);
1963 }
1964
1965 /*
1966 * pool_cache_destroy:
1967 *
1968 * Destroy a pool cache.
1969 */
1970 void
1971 pool_cache_destroy(struct pool_cache *pc)
1972 {
1973 struct pool *pp = pc->pc_pool;
1974
1975 /* First, invalidate the entire cache. */
1976 pool_cache_invalidate(pc);
1977
1978 /* ...and remove it from the pool's cache list. */
1979 simple_lock(&pp->pr_slock);
1980 LIST_REMOVE(pc, pc_poollist);
1981 simple_unlock(&pp->pr_slock);
1982 }
1983
1984 static inline void *
1985 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1986 {
1987 void *object;
1988 u_int idx;
1989
1990 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1991 KASSERT(pcg->pcg_avail != 0);
1992 idx = --pcg->pcg_avail;
1993
1994 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1995 object = pcg->pcg_objects[idx].pcgo_va;
1996 if (pap != NULL)
1997 *pap = pcg->pcg_objects[idx].pcgo_pa;
1998 pcg->pcg_objects[idx].pcgo_va = NULL;
1999
2000 return (object);
2001 }
2002
2003 static inline void
2004 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
2005 {
2006 u_int idx;
2007
2008 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
2009 idx = pcg->pcg_avail++;
2010
2011 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
2012 pcg->pcg_objects[idx].pcgo_va = object;
2013 pcg->pcg_objects[idx].pcgo_pa = pa;
2014 }
2015
2016 static void
2017 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
2018 {
2019 struct pool_cache_group *pcg;
2020 int s;
2021
2022 s = splvm();
2023 while ((pcg = LIST_FIRST(pcgl)) != NULL) {
2024 LIST_REMOVE(pcg, pcg_list);
2025 pool_put(&pcgpool, pcg);
2026 }
2027 splx(s);
2028 }
2029
2030 /*
2031 * pool_cache_get{,_paddr}:
2032 *
2033 * Get an object from a pool cache (optionally returning
2034 * the physical address of the object).
2035 */
2036 void *
2037 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
2038 {
2039 struct pool_cache_group *pcg;
2040 void *object;
2041
2042 #ifdef LOCKDEBUG
2043 if (flags & PR_WAITOK)
2044 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2045 #endif
2046
2047 simple_lock(&pc->pc_slock);
2048
2049 pcg = LIST_FIRST(&pc->pc_partgroups);
2050 if (pcg == NULL) {
2051 pcg = LIST_FIRST(&pc->pc_fullgroups);
2052 if (pcg != NULL) {
2053 LIST_REMOVE(pcg, pcg_list);
2054 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2055 }
2056 }
2057 if (pcg == NULL) {
2058
2059 /*
2060 * No groups with any available objects. Allocate
2061 * a new object, construct it, and return it to
2062 * the caller. We will allocate a group, if necessary,
2063 * when the object is freed back to the cache.
2064 */
2065 pc->pc_misses++;
2066 simple_unlock(&pc->pc_slock);
2067 object = pool_get(pc->pc_pool, flags);
2068 if (object != NULL && pc->pc_ctor != NULL) {
2069 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2070 pool_put(pc->pc_pool, object);
2071 return (NULL);
2072 }
2073 }
2074 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
2075 (pc->pc_pool->pr_align - 1)) == 0);
2076 if (object != NULL && pap != NULL) {
2077 #ifdef POOL_VTOPHYS
2078 *pap = POOL_VTOPHYS(object);
2079 #else
2080 *pap = POOL_PADDR_INVALID;
2081 #endif
2082 }
2083 return (object);
2084 }
2085
2086 pc->pc_hits++;
2087 pc->pc_nitems--;
2088 object = pcg_get(pcg, pap);
2089
2090 if (pcg->pcg_avail == 0) {
2091 LIST_REMOVE(pcg, pcg_list);
2092 LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
2093 }
2094 simple_unlock(&pc->pc_slock);
2095
2096 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
2097 (pc->pc_pool->pr_align - 1)) == 0);
2098 return (object);
2099 }
2100
2101 /*
2102 * pool_cache_put{,_paddr}:
2103 *
2104 * Put an object back to the pool cache (optionally caching the
2105 * physical address of the object).
2106 */
2107 void
2108 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
2109 {
2110 struct pool_cache_group *pcg;
2111 int s;
2112
2113 if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
2114 goto destruct;
2115 }
2116
2117 simple_lock(&pc->pc_slock);
2118
2119 pcg = LIST_FIRST(&pc->pc_partgroups);
2120 if (pcg == NULL) {
2121 pcg = LIST_FIRST(&pc->pc_emptygroups);
2122 if (pcg != NULL) {
2123 LIST_REMOVE(pcg, pcg_list);
2124 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2125 }
2126 }
2127 if (pcg == NULL) {
2128
2129 /*
2130 * No empty groups to free the object to. Attempt to
2131 * allocate one.
2132 */
2133 simple_unlock(&pc->pc_slock);
2134 s = splvm();
2135 pcg = pool_get(&pcgpool, PR_NOWAIT);
2136 splx(s);
2137 if (pcg == NULL) {
2138 destruct:
2139
2140 /*
2141 * Unable to allocate a cache group; destruct the object
2142 * and free it back to the pool.
2143 */
2144 pool_cache_destruct_object(pc, object);
2145 return;
2146 }
2147 memset(pcg, 0, sizeof(*pcg));
2148 simple_lock(&pc->pc_slock);
2149 pc->pc_ngroups++;
2150 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2151 }
2152
2153 pc->pc_nitems++;
2154 pcg_put(pcg, object, pa);
2155
2156 if (pcg->pcg_avail == PCG_NOBJECTS) {
2157 LIST_REMOVE(pcg, pcg_list);
2158 LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
2159 }
2160 simple_unlock(&pc->pc_slock);
2161 }
2162
2163 /*
2164 * pool_cache_destruct_object:
2165 *
2166 * Force destruction of an object and its release back into
2167 * the pool.
2168 */
2169 void
2170 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2171 {
2172
2173 if (pc->pc_dtor != NULL)
2174 (*pc->pc_dtor)(pc->pc_arg, object);
2175 pool_put(pc->pc_pool, object);
2176 }
2177
2178 static void
2179 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
2180 struct pool_cache *pc, struct pool_pagelist *pq,
2181 struct pool_cache_grouplist *pcgdl)
2182 {
2183 struct pool_cache_group *pcg, *npcg;
2184 void *object;
2185
2186 for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
2187 npcg = LIST_NEXT(pcg, pcg_list);
2188 while (pcg->pcg_avail != 0) {
2189 pc->pc_nitems--;
2190 object = pcg_get(pcg, NULL);
2191 if (pc->pc_dtor != NULL)
2192 (*pc->pc_dtor)(pc->pc_arg, object);
2193 pool_do_put(pc->pc_pool, object, pq);
2194 }
2195 pc->pc_ngroups--;
2196 LIST_REMOVE(pcg, pcg_list);
2197 LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
2198 }
2199 }
2200
2201 static void
2202 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
2203 struct pool_cache_grouplist *pcgl)
2204 {
2205
2206 LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
2207 LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
2208
2209 pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
2210 pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
2211
2212 KASSERT(LIST_EMPTY(&pc->pc_partgroups));
2213 KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
2214 KASSERT(pc->pc_nitems == 0);
2215 }
2216
2217 /*
2218 * pool_cache_invalidate:
2219 *
2220 * Invalidate a pool cache (destruct and release all of the
2221 * cached objects).
2222 */
2223 void
2224 pool_cache_invalidate(struct pool_cache *pc)
2225 {
2226 struct pool_pagelist pq;
2227 struct pool_cache_grouplist pcgl;
2228
2229 LIST_INIT(&pq);
2230 LIST_INIT(&pcgl);
2231
2232 simple_lock(&pc->pc_slock);
2233 simple_lock(&pc->pc_pool->pr_slock);
2234
2235 pool_do_cache_invalidate(pc, &pq, &pcgl);
2236
2237 simple_unlock(&pc->pc_pool->pr_slock);
2238 simple_unlock(&pc->pc_slock);
2239
2240 pr_pagelist_free(pc->pc_pool, &pq);
2241 pcg_grouplist_free(&pcgl);
2242 }
2243
2244 /*
2245 * pool_cache_reclaim:
2246 *
2247 * Reclaim a pool cache for pool_reclaim().
2248 */
2249 static void
2250 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
2251 struct pool_cache_grouplist *pcgl)
2252 {
2253
2254 /*
2255 * We're locking in the wrong order (normally pool_cache -> pool,
2256 * but the pool is already locked when we get here), so we have
2257 * to use trylock. If we can't lock the pool_cache, it's not really
2258 * a big deal here.
2259 */
2260 if (simple_lock_try(&pc->pc_slock) == 0)
2261 return;
2262
2263 pool_do_cache_invalidate(pc, pq, pcgl);
2264
2265 simple_unlock(&pc->pc_slock);
2266 }
2267
2268 /*
2269 * Pool backend allocators.
2270 *
2271 * Each pool has a backend allocator that handles allocation, deallocation,
2272 * and any additional draining that might be needed.
2273 *
2274 * We provide two standard allocators:
2275 *
2276 * pool_allocator_kmem - the default when no allocator is specified
2277 *
2278 * pool_allocator_nointr - used for pools that will not be accessed
2279 * in interrupt context.
2280 */
2281 void *pool_page_alloc(struct pool *, int);
2282 void pool_page_free(struct pool *, void *);
2283
2284 #ifdef POOL_SUBPAGE
2285 struct pool_allocator pool_allocator_kmem_fullpage = {
2286 pool_page_alloc, pool_page_free, 0,
2287 .pa_backingmapptr = &kmem_map,
2288 };
2289 #else
2290 struct pool_allocator pool_allocator_kmem = {
2291 pool_page_alloc, pool_page_free, 0,
2292 .pa_backingmapptr = &kmem_map,
2293 };
2294 #endif
2295
2296 void *pool_page_alloc_nointr(struct pool *, int);
2297 void pool_page_free_nointr(struct pool *, void *);
2298
2299 #ifdef POOL_SUBPAGE
2300 struct pool_allocator pool_allocator_nointr_fullpage = {
2301 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2302 .pa_backingmapptr = &kernel_map,
2303 };
2304 #else
2305 struct pool_allocator pool_allocator_nointr = {
2306 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2307 .pa_backingmapptr = &kernel_map,
2308 };
2309 #endif
2310
2311 #ifdef POOL_SUBPAGE
2312 void *pool_subpage_alloc(struct pool *, int);
2313 void pool_subpage_free(struct pool *, void *);
2314
2315 struct pool_allocator pool_allocator_kmem = {
2316 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2317 .pa_backingmapptr = &kmem_map,
2318 };
2319
2320 void *pool_subpage_alloc_nointr(struct pool *, int);
2321 void pool_subpage_free_nointr(struct pool *, void *);
2322
2323 struct pool_allocator pool_allocator_nointr = {
2324 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2325 .pa_backingmapptr = &kmem_map,
2326 };
2327 #endif /* POOL_SUBPAGE */
2328
2329 static void *
2330 pool_allocator_alloc(struct pool *pp, int flags)
2331 {
2332 struct pool_allocator *pa = pp->pr_alloc;
2333 void *res;
2334
2335 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2336
2337 res = (*pa->pa_alloc)(pp, flags);
2338 if (res == NULL && (flags & PR_WAITOK) == 0) {
2339 /*
2340 * We only run the drain hook here if PR_NOWAIT.
2341 * In other cases, the hook will be run in
2342 * pool_reclaim().
2343 */
2344 if (pp->pr_drain_hook != NULL) {
2345 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2346 res = (*pa->pa_alloc)(pp, flags);
2347 }
2348 }
2349 return res;
2350 }
2351
2352 static void
2353 pool_allocator_free(struct pool *pp, void *v)
2354 {
2355 struct pool_allocator *pa = pp->pr_alloc;
2356
2357 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2358
2359 (*pa->pa_free)(pp, v);
2360 }
2361
2362 void *
2363 pool_page_alloc(struct pool *pp, int flags)
2364 {
2365 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2366
2367 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2368 }
2369
2370 void
2371 pool_page_free(struct pool *pp, void *v)
2372 {
2373
2374 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2375 }
2376
2377 static void *
2378 pool_page_alloc_meta(struct pool *pp, int flags)
2379 {
2380 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2381
2382 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2383 }
2384
2385 static void
2386 pool_page_free_meta(struct pool *pp, void *v)
2387 {
2388
2389 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2390 }
2391
2392 #ifdef POOL_SUBPAGE
2393 /* Sub-page allocator, for machines with large hardware pages. */
2394 void *
2395 pool_subpage_alloc(struct pool *pp, int flags)
2396 {
2397 void *v;
2398 int s;
2399 s = splvm();
2400 v = pool_get(&psppool, flags);
2401 splx(s);
2402 return v;
2403 }
2404
2405 void
2406 pool_subpage_free(struct pool *pp, void *v)
2407 {
2408 int s;
2409 s = splvm();
2410 pool_put(&psppool, v);
2411 splx(s);
2412 }
2413
2414 /* We don't provide a real nointr allocator. Maybe later. */
2415 void *
2416 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2417 {
2418
2419 return (pool_subpage_alloc(pp, flags));
2420 }
2421
2422 void
2423 pool_subpage_free_nointr(struct pool *pp, void *v)
2424 {
2425
2426 pool_subpage_free(pp, v);
2427 }
2428 #endif /* POOL_SUBPAGE */
2429 void *
2430 pool_page_alloc_nointr(struct pool *pp, int flags)
2431 {
2432 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2433
2434 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2435 }
2436
2437 void
2438 pool_page_free_nointr(struct pool *pp, void *v)
2439 {
2440
2441 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2442 }
2443