Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.122.2.2
      1 /*	$NetBSD: subr_pool.c,v 1.122.2.2 2006/10/20 20:03:56 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.122.2.2 2006/10/20 20:03:56 ad Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/lock.h>
     54 #include <sys/pool.h>
     55 #include <sys/syslog.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according to
     63  * the pool item size. Each page is kept on one of three lists in the
     64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     65  * for empty, full and partially-full pages respectively. The individual
     66  * pool items are on a linked list headed by `ph_itemlist' in each page
     67  * header. The memory for building the page list is either taken from
     68  * the allocated pages themselves (for small pool items) or taken from
     69  * an internal pool of page headers (`phpool').
     70  */
     71 
     72 /* List of all pools */
     73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     74 
     75 /* Private pool for page header structures */
     76 #define	PHPOOL_MAX	8
     77 static struct pool phpool[PHPOOL_MAX];
     78 #define	PHPOOL_FREELIST_NELEM(idx)	(((idx) == 0) ? 0 : (1 << (idx)))
     79 
     80 #ifdef POOL_SUBPAGE
     81 /* Pool of subpages for use by normal pools. */
     82 static struct pool psppool;
     83 #endif
     84 
     85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     86     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     87 
     88 static void *pool_page_alloc_meta(struct pool *, int);
     89 static void pool_page_free_meta(struct pool *, void *);
     90 
     91 /* allocator for pool metadata */
     92 static struct pool_allocator pool_allocator_meta = {
     93 	pool_page_alloc_meta, pool_page_free_meta,
     94 	.pa_backingmapptr = &kmem_map,
     95 };
     96 
     97 /* # of seconds to retain page after last use */
     98 int pool_inactive_time = 10;
     99 
    100 /* Next candidate for drainage (see pool_drain()) */
    101 static struct pool	*drainpp;
    102 
    103 /* This spin lock protects both pool_head and drainpp. */
    104 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
    105 
    106 typedef uint8_t pool_item_freelist_t;
    107 
    108 struct pool_item_header {
    109 	/* Page headers */
    110 	LIST_ENTRY(pool_item_header)
    111 				ph_pagelist;	/* pool page list */
    112 	SPLAY_ENTRY(pool_item_header)
    113 				ph_node;	/* Off-page page headers */
    114 	caddr_t			ph_page;	/* this page's address */
    115 	struct timeval		ph_time;	/* last referenced */
    116 	union {
    117 		/* !PR_NOTOUCH */
    118 		struct {
    119 			LIST_HEAD(, pool_item)
    120 				phu_itemlist;	/* chunk list for this page */
    121 		} phu_normal;
    122 		/* PR_NOTOUCH */
    123 		struct {
    124 			uint16_t
    125 				phu_off;	/* start offset in page */
    126 			pool_item_freelist_t
    127 				phu_firstfree;	/* first free item */
    128 			/*
    129 			 * XXX it might be better to use
    130 			 * a simple bitmap and ffs(3)
    131 			 */
    132 		} phu_notouch;
    133 	} ph_u;
    134 	uint16_t		ph_nmissing;	/* # of chunks in use */
    135 };
    136 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    137 #define	ph_off		ph_u.phu_notouch.phu_off
    138 #define	ph_firstfree	ph_u.phu_notouch.phu_firstfree
    139 
    140 struct pool_item {
    141 #ifdef DIAGNOSTIC
    142 	u_int pi_magic;
    143 #endif
    144 #define	PI_MAGIC 0xdeadbeefU
    145 	/* Other entries use only this list entry */
    146 	LIST_ENTRY(pool_item)	pi_list;
    147 };
    148 
    149 #define	POOL_NEEDS_CATCHUP(pp)						\
    150 	((pp)->pr_nitems < (pp)->pr_minitems)
    151 
    152 /*
    153  * Pool cache management.
    154  *
    155  * Pool caches provide a way for constructed objects to be cached by the
    156  * pool subsystem.  This can lead to performance improvements by avoiding
    157  * needless object construction/destruction; it is deferred until absolutely
    158  * necessary.
    159  *
    160  * Caches are grouped into cache groups.  Each cache group references
    161  * up to 16 constructed objects.  When a cache allocates an object
    162  * from the pool, it calls the object's constructor and places it into
    163  * a cache group.  When a cache group frees an object back to the pool,
    164  * it first calls the object's destructor.  This allows the object to
    165  * persist in constructed form while freed to the cache.
    166  *
    167  * Multiple caches may exist for each pool.  This allows a single
    168  * object type to have multiple constructed forms.  The pool references
    169  * each cache, so that when a pool is drained by the pagedaemon, it can
    170  * drain each individual cache as well.  Each time a cache is drained,
    171  * the most idle cache group is freed to the pool in its entirety.
    172  *
    173  * Pool caches are layed on top of pools.  By layering them, we can avoid
    174  * the complexity of cache management for pools which would not benefit
    175  * from it.
    176  */
    177 
    178 /* The cache group pool. */
    179 static struct pool pcgpool;
    180 
    181 static void	pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
    182 				   struct pool_cache_grouplist *);
    183 static void	pcg_grouplist_free(struct pool_cache_grouplist *);
    184 
    185 static int	pool_catchup(struct pool *);
    186 static void	pool_prime_page(struct pool *, caddr_t,
    187 		    struct pool_item_header *);
    188 static void	pool_update_curpage(struct pool *);
    189 
    190 static int	pool_grow(struct pool *, int);
    191 static void	*pool_allocator_alloc(struct pool *, int);
    192 static void	pool_allocator_free(struct pool *, void *);
    193 
    194 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    195 	void (*)(const char *, ...));
    196 static void pool_print1(struct pool *, const char *,
    197 	void (*)(const char *, ...));
    198 
    199 static int pool_chk_page(struct pool *, const char *,
    200 			 struct pool_item_header *);
    201 
    202 /*
    203  * Pool log entry. An array of these is allocated in pool_init().
    204  */
    205 struct pool_log {
    206 	const char	*pl_file;
    207 	long		pl_line;
    208 	int		pl_action;
    209 #define	PRLOG_GET	1
    210 #define	PRLOG_PUT	2
    211 	void		*pl_addr;
    212 };
    213 
    214 #ifdef POOL_DIAGNOSTIC
    215 /* Number of entries in pool log buffers */
    216 #ifndef POOL_LOGSIZE
    217 #define	POOL_LOGSIZE	10
    218 #endif
    219 
    220 int pool_logsize = POOL_LOGSIZE;
    221 
    222 static inline void
    223 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    224 {
    225 	int n = pp->pr_curlogentry;
    226 	struct pool_log *pl;
    227 
    228 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    229 		return;
    230 
    231 	/*
    232 	 * Fill in the current entry. Wrap around and overwrite
    233 	 * the oldest entry if necessary.
    234 	 */
    235 	pl = &pp->pr_log[n];
    236 	pl->pl_file = file;
    237 	pl->pl_line = line;
    238 	pl->pl_action = action;
    239 	pl->pl_addr = v;
    240 	if (++n >= pp->pr_logsize)
    241 		n = 0;
    242 	pp->pr_curlogentry = n;
    243 }
    244 
    245 static void
    246 pr_printlog(struct pool *pp, struct pool_item *pi,
    247     void (*pr)(const char *, ...))
    248 {
    249 	int i = pp->pr_logsize;
    250 	int n = pp->pr_curlogentry;
    251 
    252 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    253 		return;
    254 
    255 	/*
    256 	 * Print all entries in this pool's log.
    257 	 */
    258 	while (i-- > 0) {
    259 		struct pool_log *pl = &pp->pr_log[n];
    260 		if (pl->pl_action != 0) {
    261 			if (pi == NULL || pi == pl->pl_addr) {
    262 				(*pr)("\tlog entry %d:\n", i);
    263 				(*pr)("\t\taction = %s, addr = %p\n",
    264 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    265 				    pl->pl_addr);
    266 				(*pr)("\t\tfile: %s at line %lu\n",
    267 				    pl->pl_file, pl->pl_line);
    268 			}
    269 		}
    270 		if (++n >= pp->pr_logsize)
    271 			n = 0;
    272 	}
    273 }
    274 
    275 static inline void
    276 pr_enter(struct pool *pp, const char *file, long line)
    277 {
    278 
    279 	if (__predict_false(pp->pr_entered_file != NULL)) {
    280 		printf("pool %s: reentrancy at file %s line %ld\n",
    281 		    pp->pr_wchan, file, line);
    282 		printf("         previous entry at file %s line %ld\n",
    283 		    pp->pr_entered_file, pp->pr_entered_line);
    284 		panic("pr_enter");
    285 	}
    286 
    287 	pp->pr_entered_file = file;
    288 	pp->pr_entered_line = line;
    289 }
    290 
    291 static inline void
    292 pr_leave(struct pool *pp)
    293 {
    294 
    295 	if (__predict_false(pp->pr_entered_file == NULL)) {
    296 		printf("pool %s not entered?\n", pp->pr_wchan);
    297 		panic("pr_leave");
    298 	}
    299 
    300 	pp->pr_entered_file = NULL;
    301 	pp->pr_entered_line = 0;
    302 }
    303 
    304 static inline void
    305 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    306 {
    307 
    308 	if (pp->pr_entered_file != NULL)
    309 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    310 		    pp->pr_entered_file, pp->pr_entered_line);
    311 }
    312 #else
    313 #define	pr_log(pp, v, action, file, line)
    314 #define	pr_printlog(pp, pi, pr)
    315 #define	pr_enter(pp, file, line)
    316 #define	pr_leave(pp)
    317 #define	pr_enter_check(pp, pr)
    318 #endif /* POOL_DIAGNOSTIC */
    319 
    320 static inline int
    321 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    322     const void *v)
    323 {
    324 	const char *cp = v;
    325 	int idx;
    326 
    327 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    328 	idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
    329 	KASSERT(idx < pp->pr_itemsperpage);
    330 	return idx;
    331 }
    332 
    333 #define	PR_FREELIST_ALIGN(p) \
    334 	roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
    335 #define	PR_FREELIST(ph)	((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
    336 #define	PR_INDEX_USED	((pool_item_freelist_t)-1)
    337 #define	PR_INDEX_EOL	((pool_item_freelist_t)-2)
    338 
    339 static inline void
    340 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    341     void *obj)
    342 {
    343 	int idx = pr_item_notouch_index(pp, ph, obj);
    344 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    345 
    346 	KASSERT(freelist[idx] == PR_INDEX_USED);
    347 	freelist[idx] = ph->ph_firstfree;
    348 	ph->ph_firstfree = idx;
    349 }
    350 
    351 static inline void *
    352 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    353 {
    354 	int idx = ph->ph_firstfree;
    355 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    356 
    357 	KASSERT(freelist[idx] != PR_INDEX_USED);
    358 	ph->ph_firstfree = freelist[idx];
    359 	freelist[idx] = PR_INDEX_USED;
    360 
    361 	return ph->ph_page + ph->ph_off + idx * pp->pr_size;
    362 }
    363 
    364 static inline int
    365 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    366 {
    367 
    368 	/*
    369 	 * we consider pool_item_header with smaller ph_page bigger.
    370 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    371 	 */
    372 
    373 	if (a->ph_page < b->ph_page)
    374 		return (1);
    375 	else if (a->ph_page > b->ph_page)
    376 		return (-1);
    377 	else
    378 		return (0);
    379 }
    380 
    381 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    382 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    383 
    384 /*
    385  * Return the pool page header based on item address.
    386  */
    387 static inline struct pool_item_header *
    388 pr_find_pagehead(struct pool *pp, void *v)
    389 {
    390 	struct pool_item_header *ph, tmp;
    391 
    392 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    393 		tmp.ph_page = (caddr_t)(uintptr_t)v;
    394 		ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    395 		if (ph == NULL) {
    396 			ph = SPLAY_ROOT(&pp->pr_phtree);
    397 			if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    398 				ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    399 			}
    400 			KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    401 		}
    402 	} else {
    403 		caddr_t page =
    404 		    (caddr_t)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    405 
    406 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    407 			ph = (void *)(page + pp->pr_phoffset);
    408 		} else {
    409 			tmp.ph_page = page;
    410 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    411 		}
    412 	}
    413 
    414 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    415 	    (ph->ph_page <= (char *)v &&
    416 	    (char *)v < ph->ph_page + pp->pr_alloc->pa_pagesz));
    417 	return ph;
    418 }
    419 
    420 static void
    421 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    422 {
    423 	struct pool_item_header *ph;
    424 	int s;
    425 
    426 	while ((ph = LIST_FIRST(pq)) != NULL) {
    427 		LIST_REMOVE(ph, ph_pagelist);
    428 		pool_allocator_free(pp, ph->ph_page);
    429 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    430 			s = splvm();
    431 			pool_put(pp->pr_phpool, ph);
    432 			splx(s);
    433 		}
    434 	}
    435 }
    436 
    437 /*
    438  * Remove a page from the pool.
    439  */
    440 static inline void
    441 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    442      struct pool_pagelist *pq)
    443 {
    444 
    445 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
    446 
    447 	/*
    448 	 * If the page was idle, decrement the idle page count.
    449 	 */
    450 	if (ph->ph_nmissing == 0) {
    451 #ifdef DIAGNOSTIC
    452 		if (pp->pr_nidle == 0)
    453 			panic("pr_rmpage: nidle inconsistent");
    454 		if (pp->pr_nitems < pp->pr_itemsperpage)
    455 			panic("pr_rmpage: nitems inconsistent");
    456 #endif
    457 		pp->pr_nidle--;
    458 	}
    459 
    460 	pp->pr_nitems -= pp->pr_itemsperpage;
    461 
    462 	/*
    463 	 * Unlink the page from the pool and queue it for release.
    464 	 */
    465 	LIST_REMOVE(ph, ph_pagelist);
    466 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    467 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    468 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    469 
    470 	pp->pr_npages--;
    471 	pp->pr_npagefree++;
    472 
    473 	pool_update_curpage(pp);
    474 }
    475 
    476 static boolean_t
    477 pa_starved_p(struct pool_allocator *pa)
    478 {
    479 
    480 	if (pa->pa_backingmap != NULL) {
    481 		return vm_map_starved_p(pa->pa_backingmap);
    482 	}
    483 	return FALSE;
    484 }
    485 
    486 static int
    487 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    488 {
    489 	struct pool *pp = obj;
    490 	struct pool_allocator *pa = pp->pr_alloc;
    491 
    492 	KASSERT(&pp->pr_reclaimerentry == ce);
    493 	pool_reclaim(pp);
    494 	if (!pa_starved_p(pa)) {
    495 		return CALLBACK_CHAIN_ABORT;
    496 	}
    497 	return CALLBACK_CHAIN_CONTINUE;
    498 }
    499 
    500 static void
    501 pool_reclaim_register(struct pool *pp)
    502 {
    503 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    504 	int s;
    505 
    506 	if (map == NULL) {
    507 		return;
    508 	}
    509 
    510 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    511 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    512 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    513 	splx(s);
    514 }
    515 
    516 static void
    517 pool_reclaim_unregister(struct pool *pp)
    518 {
    519 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    520 	int s;
    521 
    522 	if (map == NULL) {
    523 		return;
    524 	}
    525 
    526 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    527 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    528 	    &pp->pr_reclaimerentry);
    529 	splx(s);
    530 }
    531 
    532 static void
    533 pa_reclaim_register(struct pool_allocator *pa)
    534 {
    535 	struct vm_map *map = *pa->pa_backingmapptr;
    536 	struct pool *pp;
    537 
    538 	KASSERT(pa->pa_backingmap == NULL);
    539 	if (map == NULL) {
    540 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    541 		return;
    542 	}
    543 	pa->pa_backingmap = map;
    544 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    545 		pool_reclaim_register(pp);
    546 	}
    547 }
    548 
    549 /*
    550  * Initialize all the pools listed in the "pools" link set.
    551  */
    552 void
    553 pool_subsystem_init(void)
    554 {
    555 	struct pool_allocator *pa;
    556 	__link_set_decl(pools, struct link_pool_init);
    557 	struct link_pool_init * const *pi;
    558 
    559 	__link_set_foreach(pi, pools)
    560 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    561 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    562 		    (*pi)->palloc);
    563 
    564 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    565 		KASSERT(pa->pa_backingmapptr != NULL);
    566 		KASSERT(*pa->pa_backingmapptr != NULL);
    567 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    568 		pa_reclaim_register(pa);
    569 	}
    570 }
    571 
    572 /*
    573  * Initialize the given pool resource structure.
    574  *
    575  * We export this routine to allow other kernel parts to declare
    576  * static pools that must be initialized before malloc() is available.
    577  */
    578 void
    579 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    580     const char *wchan, struct pool_allocator *palloc)
    581 {
    582 #ifdef DEBUG
    583 	struct pool *pp1;
    584 #endif
    585 	size_t trysize, phsize;
    586 	int off, slack, s;
    587 
    588 	KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
    589 	    PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
    590 
    591 #ifdef DEBUG
    592 	/*
    593 	 * Check that the pool hasn't already been initialised and
    594 	 * added to the list of all pools.
    595 	 */
    596 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
    597 		if (pp == pp1)
    598 			panic("pool_init: pool %s already initialised",
    599 			    wchan);
    600 	}
    601 #endif
    602 
    603 #ifdef POOL_DIAGNOSTIC
    604 	/*
    605 	 * Always log if POOL_DIAGNOSTIC is defined.
    606 	 */
    607 	if (pool_logsize != 0)
    608 		flags |= PR_LOGGING;
    609 #endif
    610 
    611 	if (palloc == NULL)
    612 		palloc = &pool_allocator_kmem;
    613 #ifdef POOL_SUBPAGE
    614 	if (size > palloc->pa_pagesz) {
    615 		if (palloc == &pool_allocator_kmem)
    616 			palloc = &pool_allocator_kmem_fullpage;
    617 		else if (palloc == &pool_allocator_nointr)
    618 			palloc = &pool_allocator_nointr_fullpage;
    619 	}
    620 #endif /* POOL_SUBPAGE */
    621 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    622 		if (palloc->pa_pagesz == 0)
    623 			palloc->pa_pagesz = PAGE_SIZE;
    624 
    625 		TAILQ_INIT(&palloc->pa_list);
    626 
    627 		simple_lock_init(&palloc->pa_slock);
    628 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    629 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    630 
    631 		if (palloc->pa_backingmapptr != NULL) {
    632 			pa_reclaim_register(palloc);
    633 		}
    634 		palloc->pa_flags |= PA_INITIALIZED;
    635 	}
    636 
    637 	if (align == 0)
    638 		align = ALIGN(1);
    639 
    640 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    641 		size = sizeof(struct pool_item);
    642 
    643 	size = roundup(size, align);
    644 #ifdef DIAGNOSTIC
    645 	if (size > palloc->pa_pagesz)
    646 		panic("pool_init: pool item size (%zu) too large", size);
    647 #endif
    648 
    649 	/*
    650 	 * Initialize the pool structure.
    651 	 */
    652 	LIST_INIT(&pp->pr_emptypages);
    653 	LIST_INIT(&pp->pr_fullpages);
    654 	LIST_INIT(&pp->pr_partpages);
    655 	LIST_INIT(&pp->pr_cachelist);
    656 	pp->pr_curpage = NULL;
    657 	pp->pr_npages = 0;
    658 	pp->pr_minitems = 0;
    659 	pp->pr_minpages = 0;
    660 	pp->pr_maxpages = UINT_MAX;
    661 	pp->pr_roflags = flags;
    662 	pp->pr_flags = 0;
    663 	pp->pr_size = size;
    664 	pp->pr_align = align;
    665 	pp->pr_wchan = wchan;
    666 	pp->pr_alloc = palloc;
    667 	pp->pr_nitems = 0;
    668 	pp->pr_nout = 0;
    669 	pp->pr_hardlimit = UINT_MAX;
    670 	pp->pr_hardlimit_warning = NULL;
    671 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    672 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    673 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    674 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    675 	pp->pr_drain_hook = NULL;
    676 	pp->pr_drain_hook_arg = NULL;
    677 
    678 	/*
    679 	 * Decide whether to put the page header off page to avoid
    680 	 * wasting too large a part of the page or too big item.
    681 	 * Off-page page headers go on a hash table, so we can match
    682 	 * a returned item with its header based on the page address.
    683 	 * We use 1/16 of the page size and about 8 times of the item
    684 	 * size as the threshold (XXX: tune)
    685 	 *
    686 	 * However, we'll put the header into the page if we can put
    687 	 * it without wasting any items.
    688 	 *
    689 	 * Silently enforce `0 <= ioff < align'.
    690 	 */
    691 	pp->pr_itemoffset = ioff %= align;
    692 	/* See the comment below about reserved bytes. */
    693 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    694 	phsize = ALIGN(sizeof(struct pool_item_header));
    695 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    696 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    697 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    698 		/* Use the end of the page for the page header */
    699 		pp->pr_roflags |= PR_PHINPAGE;
    700 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    701 	} else {
    702 		/* The page header will be taken from our page header pool */
    703 		pp->pr_phoffset = 0;
    704 		off = palloc->pa_pagesz;
    705 		SPLAY_INIT(&pp->pr_phtree);
    706 	}
    707 
    708 	/*
    709 	 * Alignment is to take place at `ioff' within the item. This means
    710 	 * we must reserve up to `align - 1' bytes on the page to allow
    711 	 * appropriate positioning of each item.
    712 	 */
    713 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    714 	KASSERT(pp->pr_itemsperpage != 0);
    715 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    716 		int idx;
    717 
    718 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    719 		    idx++) {
    720 			/* nothing */
    721 		}
    722 		if (idx >= PHPOOL_MAX) {
    723 			/*
    724 			 * if you see this panic, consider to tweak
    725 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    726 			 */
    727 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    728 			    pp->pr_wchan, pp->pr_itemsperpage);
    729 		}
    730 		pp->pr_phpool = &phpool[idx];
    731 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    732 		pp->pr_phpool = &phpool[0];
    733 	}
    734 #if defined(DIAGNOSTIC)
    735 	else {
    736 		pp->pr_phpool = NULL;
    737 	}
    738 #endif
    739 
    740 	/*
    741 	 * Use the slack between the chunks and the page header
    742 	 * for "cache coloring".
    743 	 */
    744 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    745 	pp->pr_maxcolor = (slack / align) * align;
    746 	pp->pr_curcolor = 0;
    747 
    748 	pp->pr_nget = 0;
    749 	pp->pr_nfail = 0;
    750 	pp->pr_nput = 0;
    751 	pp->pr_npagealloc = 0;
    752 	pp->pr_npagefree = 0;
    753 	pp->pr_hiwat = 0;
    754 	pp->pr_nidle = 0;
    755 
    756 #ifdef POOL_DIAGNOSTIC
    757 	if (flags & PR_LOGGING) {
    758 		if (kmem_map == NULL ||
    759 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    760 		     M_TEMP, M_NOWAIT)) == NULL)
    761 			pp->pr_roflags &= ~PR_LOGGING;
    762 		pp->pr_curlogentry = 0;
    763 		pp->pr_logsize = pool_logsize;
    764 	}
    765 #endif
    766 
    767 	pp->pr_entered_file = NULL;
    768 	pp->pr_entered_line = 0;
    769 
    770 	simple_lock_init(&pp->pr_slock);
    771 
    772 	/*
    773 	 * Initialize private page header pool and cache magazine pool if we
    774 	 * haven't done so yet.
    775 	 * XXX LOCKING.
    776 	 */
    777 	if (phpool[0].pr_size == 0) {
    778 		int idx;
    779 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    780 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    781 			int nelem;
    782 			size_t sz;
    783 
    784 			nelem = PHPOOL_FREELIST_NELEM(idx);
    785 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    786 			    "phpool-%d", nelem);
    787 			sz = sizeof(struct pool_item_header);
    788 			if (nelem) {
    789 				sz = PR_FREELIST_ALIGN(sz)
    790 				    + nelem * sizeof(pool_item_freelist_t);
    791 			}
    792 			pool_init(&phpool[idx], sz, 0, 0, 0,
    793 			    phpool_names[idx], &pool_allocator_meta);
    794 		}
    795 #ifdef POOL_SUBPAGE
    796 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    797 		    PR_RECURSIVE, "psppool", &pool_allocator_meta);
    798 #endif
    799 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    800 		    0, "pcgpool", &pool_allocator_meta);
    801 	}
    802 
    803 	/* Insert into the list of all pools. */
    804 	simple_lock(&pool_head_slock);
    805 	LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    806 	simple_unlock(&pool_head_slock);
    807 
    808 	/* Insert this into the list of pools using this allocator. */
    809 	s = splvm();
    810 	simple_lock(&palloc->pa_slock);
    811 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    812 	simple_unlock(&palloc->pa_slock);
    813 	splx(s);
    814 	pool_reclaim_register(pp);
    815 }
    816 
    817 /*
    818  * De-commision a pool resource.
    819  */
    820 void
    821 pool_destroy(struct pool *pp)
    822 {
    823 	struct pool_pagelist pq;
    824 	struct pool_item_header *ph;
    825 	int s;
    826 
    827 	/* Remove from global pool list */
    828 	simple_lock(&pool_head_slock);
    829 	LIST_REMOVE(pp, pr_poollist);
    830 	if (drainpp == pp)
    831 		drainpp = NULL;
    832 	simple_unlock(&pool_head_slock);
    833 
    834 	/* Remove this pool from its allocator's list of pools. */
    835 	pool_reclaim_unregister(pp);
    836 	s = splvm();
    837 	simple_lock(&pp->pr_alloc->pa_slock);
    838 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    839 	simple_unlock(&pp->pr_alloc->pa_slock);
    840 	splx(s);
    841 
    842 	s = splvm();
    843 	simple_lock(&pp->pr_slock);
    844 
    845 	KASSERT(LIST_EMPTY(&pp->pr_cachelist));
    846 
    847 #ifdef DIAGNOSTIC
    848 	if (pp->pr_nout != 0) {
    849 		pr_printlog(pp, NULL, printf);
    850 		panic("pool_destroy: pool busy: still out: %u",
    851 		    pp->pr_nout);
    852 	}
    853 #endif
    854 
    855 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    856 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    857 
    858 	/* Remove all pages */
    859 	LIST_INIT(&pq);
    860 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    861 		pr_rmpage(pp, ph, &pq);
    862 
    863 	simple_unlock(&pp->pr_slock);
    864 	splx(s);
    865 
    866 	pr_pagelist_free(pp, &pq);
    867 
    868 #ifdef POOL_DIAGNOSTIC
    869 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    870 		free(pp->pr_log, M_TEMP);
    871 #endif
    872 }
    873 
    874 void
    875 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    876 {
    877 
    878 	/* XXX no locking -- must be used just after pool_init() */
    879 #ifdef DIAGNOSTIC
    880 	if (pp->pr_drain_hook != NULL)
    881 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    882 #endif
    883 	pp->pr_drain_hook = fn;
    884 	pp->pr_drain_hook_arg = arg;
    885 }
    886 
    887 static struct pool_item_header *
    888 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    889 {
    890 	struct pool_item_header *ph;
    891 	int s;
    892 
    893 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    894 
    895 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    896 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    897 	else {
    898 		s = splvm();
    899 		ph = pool_get(pp->pr_phpool, flags);
    900 		splx(s);
    901 	}
    902 
    903 	return (ph);
    904 }
    905 
    906 /*
    907  * Grab an item from the pool; must be called at appropriate spl level
    908  */
    909 void *
    910 #ifdef POOL_DIAGNOSTIC
    911 _pool_get(struct pool *pp, int flags, const char *file, long line)
    912 #else
    913 pool_get(struct pool *pp, int flags)
    914 #endif
    915 {
    916 	struct pool_item *pi;
    917 	struct pool_item_header *ph;
    918 	void *v;
    919 
    920 #ifdef DIAGNOSTIC
    921 	if (__predict_false(pp->pr_itemsperpage == 0))
    922 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    923 		    "pool not initialized?", pp);
    924 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    925 			    (flags & PR_WAITOK) != 0))
    926 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    927 
    928 #endif /* DIAGNOSTIC */
    929 #ifdef LOCKDEBUG
    930 	if (flags & PR_WAITOK)
    931 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
    932 #endif
    933 
    934 	simple_lock(&pp->pr_slock);
    935 	pr_enter(pp, file, line);
    936 
    937  startover:
    938 	/*
    939 	 * Check to see if we've reached the hard limit.  If we have,
    940 	 * and we can wait, then wait until an item has been returned to
    941 	 * the pool.
    942 	 */
    943 #ifdef DIAGNOSTIC
    944 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    945 		pr_leave(pp);
    946 		simple_unlock(&pp->pr_slock);
    947 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    948 	}
    949 #endif
    950 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    951 		if (pp->pr_drain_hook != NULL) {
    952 			/*
    953 			 * Since the drain hook is going to free things
    954 			 * back to the pool, unlock, call the hook, re-lock,
    955 			 * and check the hardlimit condition again.
    956 			 */
    957 			pr_leave(pp);
    958 			simple_unlock(&pp->pr_slock);
    959 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    960 			simple_lock(&pp->pr_slock);
    961 			pr_enter(pp, file, line);
    962 			if (pp->pr_nout < pp->pr_hardlimit)
    963 				goto startover;
    964 		}
    965 
    966 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    967 			/*
    968 			 * XXX: A warning isn't logged in this case.  Should
    969 			 * it be?
    970 			 */
    971 			pp->pr_flags |= PR_WANTED;
    972 			pr_leave(pp);
    973 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    974 			pr_enter(pp, file, line);
    975 			goto startover;
    976 		}
    977 
    978 		/*
    979 		 * Log a message that the hard limit has been hit.
    980 		 */
    981 		if (pp->pr_hardlimit_warning != NULL &&
    982 		    ratecheck(&pp->pr_hardlimit_warning_last,
    983 			      &pp->pr_hardlimit_ratecap))
    984 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    985 
    986 		pp->pr_nfail++;
    987 
    988 		pr_leave(pp);
    989 		simple_unlock(&pp->pr_slock);
    990 		return (NULL);
    991 	}
    992 
    993 	/*
    994 	 * The convention we use is that if `curpage' is not NULL, then
    995 	 * it points at a non-empty bucket. In particular, `curpage'
    996 	 * never points at a page header which has PR_PHINPAGE set and
    997 	 * has no items in its bucket.
    998 	 */
    999 	if ((ph = pp->pr_curpage) == NULL) {
   1000 		int error;
   1001 
   1002 #ifdef DIAGNOSTIC
   1003 		if (pp->pr_nitems != 0) {
   1004 			simple_unlock(&pp->pr_slock);
   1005 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1006 			    pp->pr_wchan, pp->pr_nitems);
   1007 			panic("pool_get: nitems inconsistent");
   1008 		}
   1009 #endif
   1010 
   1011 		/*
   1012 		 * Call the back-end page allocator for more memory.
   1013 		 * Release the pool lock, as the back-end page allocator
   1014 		 * may block.
   1015 		 */
   1016 		pr_leave(pp);
   1017 		error = pool_grow(pp, flags);
   1018 		pr_enter(pp, file, line);
   1019 		if (error != 0) {
   1020 			/*
   1021 			 * We were unable to allocate a page or item
   1022 			 * header, but we released the lock during
   1023 			 * allocation, so perhaps items were freed
   1024 			 * back to the pool.  Check for this case.
   1025 			 */
   1026 			if (pp->pr_curpage != NULL)
   1027 				goto startover;
   1028 
   1029 			pp->pr_nfail++;
   1030 			pr_leave(pp);
   1031 			simple_unlock(&pp->pr_slock);
   1032 			return (NULL);
   1033 		}
   1034 
   1035 		/* Start the allocation process over. */
   1036 		goto startover;
   1037 	}
   1038 	if (pp->pr_roflags & PR_NOTOUCH) {
   1039 #ifdef DIAGNOSTIC
   1040 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1041 			pr_leave(pp);
   1042 			simple_unlock(&pp->pr_slock);
   1043 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1044 		}
   1045 #endif
   1046 		v = pr_item_notouch_get(pp, ph);
   1047 #ifdef POOL_DIAGNOSTIC
   1048 		pr_log(pp, v, PRLOG_GET, file, line);
   1049 #endif
   1050 	} else {
   1051 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1052 		if (__predict_false(v == NULL)) {
   1053 			pr_leave(pp);
   1054 			simple_unlock(&pp->pr_slock);
   1055 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1056 		}
   1057 #ifdef DIAGNOSTIC
   1058 		if (__predict_false(pp->pr_nitems == 0)) {
   1059 			pr_leave(pp);
   1060 			simple_unlock(&pp->pr_slock);
   1061 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1062 			    pp->pr_wchan, pp->pr_nitems);
   1063 			panic("pool_get: nitems inconsistent");
   1064 		}
   1065 #endif
   1066 
   1067 #ifdef POOL_DIAGNOSTIC
   1068 		pr_log(pp, v, PRLOG_GET, file, line);
   1069 #endif
   1070 
   1071 #ifdef DIAGNOSTIC
   1072 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1073 			pr_printlog(pp, pi, printf);
   1074 			panic("pool_get(%s): free list modified: "
   1075 			    "magic=%x; page %p; item addr %p\n",
   1076 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1077 		}
   1078 #endif
   1079 
   1080 		/*
   1081 		 * Remove from item list.
   1082 		 */
   1083 		LIST_REMOVE(pi, pi_list);
   1084 	}
   1085 	pp->pr_nitems--;
   1086 	pp->pr_nout++;
   1087 	if (ph->ph_nmissing == 0) {
   1088 #ifdef DIAGNOSTIC
   1089 		if (__predict_false(pp->pr_nidle == 0))
   1090 			panic("pool_get: nidle inconsistent");
   1091 #endif
   1092 		pp->pr_nidle--;
   1093 
   1094 		/*
   1095 		 * This page was previously empty.  Move it to the list of
   1096 		 * partially-full pages.  This page is already curpage.
   1097 		 */
   1098 		LIST_REMOVE(ph, ph_pagelist);
   1099 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1100 	}
   1101 	ph->ph_nmissing++;
   1102 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1103 #ifdef DIAGNOSTIC
   1104 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1105 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1106 			pr_leave(pp);
   1107 			simple_unlock(&pp->pr_slock);
   1108 			panic("pool_get: %s: nmissing inconsistent",
   1109 			    pp->pr_wchan);
   1110 		}
   1111 #endif
   1112 		/*
   1113 		 * This page is now full.  Move it to the full list
   1114 		 * and select a new current page.
   1115 		 */
   1116 		LIST_REMOVE(ph, ph_pagelist);
   1117 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1118 		pool_update_curpage(pp);
   1119 	}
   1120 
   1121 	pp->pr_nget++;
   1122 	pr_leave(pp);
   1123 
   1124 	/*
   1125 	 * If we have a low water mark and we are now below that low
   1126 	 * water mark, add more items to the pool.
   1127 	 */
   1128 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1129 		/*
   1130 		 * XXX: Should we log a warning?  Should we set up a timeout
   1131 		 * to try again in a second or so?  The latter could break
   1132 		 * a caller's assumptions about interrupt protection, etc.
   1133 		 */
   1134 	}
   1135 
   1136 	simple_unlock(&pp->pr_slock);
   1137 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1138 	return (v);
   1139 }
   1140 
   1141 /*
   1142  * Internal version of pool_put().  Pool is already locked/entered.
   1143  */
   1144 static void
   1145 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1146 {
   1147 	struct pool_item *pi = v;
   1148 	struct pool_item_header *ph;
   1149 
   1150 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
   1151 
   1152 #ifdef DIAGNOSTIC
   1153 	if (__predict_false(pp->pr_nout == 0)) {
   1154 		printf("pool %s: putting with none out\n",
   1155 		    pp->pr_wchan);
   1156 		panic("pool_put");
   1157 	}
   1158 #endif
   1159 
   1160 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1161 		pr_printlog(pp, NULL, printf);
   1162 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1163 	}
   1164 
   1165 #ifdef LOCKDEBUG
   1166 	/*
   1167 	 * Check if we're freeing a locked simple lock.
   1168 	 */
   1169 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
   1170 #endif
   1171 
   1172 	/*
   1173 	 * Return to item list.
   1174 	 */
   1175 	if (pp->pr_roflags & PR_NOTOUCH) {
   1176 		pr_item_notouch_put(pp, ph, v);
   1177 	} else {
   1178 #ifdef DIAGNOSTIC
   1179 		pi->pi_magic = PI_MAGIC;
   1180 #endif
   1181 #ifdef DEBUG
   1182 		{
   1183 			int i, *ip = v;
   1184 
   1185 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1186 				*ip++ = PI_MAGIC;
   1187 			}
   1188 		}
   1189 #endif
   1190 
   1191 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1192 	}
   1193 	KDASSERT(ph->ph_nmissing != 0);
   1194 	ph->ph_nmissing--;
   1195 	pp->pr_nput++;
   1196 	pp->pr_nitems++;
   1197 	pp->pr_nout--;
   1198 
   1199 	/* Cancel "pool empty" condition if it exists */
   1200 	if (pp->pr_curpage == NULL)
   1201 		pp->pr_curpage = ph;
   1202 
   1203 	if (pp->pr_flags & PR_WANTED) {
   1204 		pp->pr_flags &= ~PR_WANTED;
   1205 		if (ph->ph_nmissing == 0)
   1206 			pp->pr_nidle++;
   1207 		wakeup((caddr_t)pp);
   1208 		return;
   1209 	}
   1210 
   1211 	/*
   1212 	 * If this page is now empty, do one of two things:
   1213 	 *
   1214 	 *	(1) If we have more pages than the page high water mark,
   1215 	 *	    free the page back to the system.  ONLY CONSIDER
   1216 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1217 	 *	    CLAIM.
   1218 	 *
   1219 	 *	(2) Otherwise, move the page to the empty page list.
   1220 	 *
   1221 	 * Either way, select a new current page (so we use a partially-full
   1222 	 * page if one is available).
   1223 	 */
   1224 	if (ph->ph_nmissing == 0) {
   1225 		pp->pr_nidle++;
   1226 		if (pp->pr_npages > pp->pr_minpages &&
   1227 		    (pp->pr_npages > pp->pr_maxpages ||
   1228 		     pa_starved_p(pp->pr_alloc))) {
   1229 			pr_rmpage(pp, ph, pq);
   1230 		} else {
   1231 			LIST_REMOVE(ph, ph_pagelist);
   1232 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1233 
   1234 			/*
   1235 			 * Update the timestamp on the page.  A page must
   1236 			 * be idle for some period of time before it can
   1237 			 * be reclaimed by the pagedaemon.  This minimizes
   1238 			 * ping-pong'ing for memory.
   1239 			 */
   1240 			getmicrotime(&ph->ph_time);
   1241 		}
   1242 		pool_update_curpage(pp);
   1243 	}
   1244 
   1245 	/*
   1246 	 * If the page was previously completely full, move it to the
   1247 	 * partially-full list and make it the current page.  The next
   1248 	 * allocation will get the item from this page, instead of
   1249 	 * further fragmenting the pool.
   1250 	 */
   1251 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1252 		LIST_REMOVE(ph, ph_pagelist);
   1253 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1254 		pp->pr_curpage = ph;
   1255 	}
   1256 }
   1257 
   1258 /*
   1259  * Return resource to the pool; must be called at appropriate spl level
   1260  */
   1261 #ifdef POOL_DIAGNOSTIC
   1262 void
   1263 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1264 {
   1265 	struct pool_pagelist pq;
   1266 
   1267 	LIST_INIT(&pq);
   1268 
   1269 	simple_lock(&pp->pr_slock);
   1270 	pr_enter(pp, file, line);
   1271 
   1272 	pr_log(pp, v, PRLOG_PUT, file, line);
   1273 
   1274 	pool_do_put(pp, v, &pq);
   1275 
   1276 	pr_leave(pp);
   1277 	simple_unlock(&pp->pr_slock);
   1278 
   1279 	pr_pagelist_free(pp, &pq);
   1280 }
   1281 #undef pool_put
   1282 #endif /* POOL_DIAGNOSTIC */
   1283 
   1284 void
   1285 pool_put(struct pool *pp, void *v)
   1286 {
   1287 	struct pool_pagelist pq;
   1288 
   1289 	LIST_INIT(&pq);
   1290 
   1291 	simple_lock(&pp->pr_slock);
   1292 	pool_do_put(pp, v, &pq);
   1293 	simple_unlock(&pp->pr_slock);
   1294 
   1295 	pr_pagelist_free(pp, &pq);
   1296 }
   1297 
   1298 #ifdef POOL_DIAGNOSTIC
   1299 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1300 #endif
   1301 
   1302 /*
   1303  * pool_grow: grow a pool by a page.
   1304  *
   1305  * => called with pool locked.
   1306  * => unlock and relock the pool.
   1307  * => return with pool locked.
   1308  */
   1309 
   1310 static int
   1311 pool_grow(struct pool *pp, int flags)
   1312 {
   1313 	struct pool_item_header *ph = NULL;
   1314 	char *cp;
   1315 
   1316 	simple_unlock(&pp->pr_slock);
   1317 	cp = pool_allocator_alloc(pp, flags);
   1318 	if (__predict_true(cp != NULL)) {
   1319 		ph = pool_alloc_item_header(pp, cp, flags);
   1320 	}
   1321 	if (__predict_false(cp == NULL || ph == NULL)) {
   1322 		if (cp != NULL) {
   1323 			pool_allocator_free(pp, cp);
   1324 		}
   1325 		simple_lock(&pp->pr_slock);
   1326 		return ENOMEM;
   1327 	}
   1328 
   1329 	simple_lock(&pp->pr_slock);
   1330 	pool_prime_page(pp, cp, ph);
   1331 	pp->pr_npagealloc++;
   1332 	return 0;
   1333 }
   1334 
   1335 /*
   1336  * Add N items to the pool.
   1337  */
   1338 int
   1339 pool_prime(struct pool *pp, int n)
   1340 {
   1341 	int newpages;
   1342 	int error = 0;
   1343 
   1344 	simple_lock(&pp->pr_slock);
   1345 
   1346 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1347 
   1348 	while (newpages-- > 0) {
   1349 		error = pool_grow(pp, PR_NOWAIT);
   1350 		if (error) {
   1351 			break;
   1352 		}
   1353 		pp->pr_minpages++;
   1354 	}
   1355 
   1356 	if (pp->pr_minpages >= pp->pr_maxpages)
   1357 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1358 
   1359 	simple_unlock(&pp->pr_slock);
   1360 	return error;
   1361 }
   1362 
   1363 /*
   1364  * Add a page worth of items to the pool.
   1365  *
   1366  * Note, we must be called with the pool descriptor LOCKED.
   1367  */
   1368 static void
   1369 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1370 {
   1371 	struct pool_item *pi;
   1372 	caddr_t cp = storage;
   1373 	const unsigned int align = pp->pr_align;
   1374 	const unsigned int ioff = pp->pr_itemoffset;
   1375 	int n;
   1376 
   1377 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
   1378 
   1379 #ifdef DIAGNOSTIC
   1380 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1381 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1382 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1383 #endif
   1384 
   1385 	/*
   1386 	 * Insert page header.
   1387 	 */
   1388 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1389 	LIST_INIT(&ph->ph_itemlist);
   1390 	ph->ph_page = storage;
   1391 	ph->ph_nmissing = 0;
   1392 	getmicrotime(&ph->ph_time);
   1393 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1394 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1395 
   1396 	pp->pr_nidle++;
   1397 
   1398 	/*
   1399 	 * Color this page.
   1400 	 */
   1401 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1402 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1403 		pp->pr_curcolor = 0;
   1404 
   1405 	/*
   1406 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1407 	 */
   1408 	if (ioff != 0)
   1409 		cp = (caddr_t)(cp + (align - ioff));
   1410 
   1411 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1412 
   1413 	/*
   1414 	 * Insert remaining chunks on the bucket list.
   1415 	 */
   1416 	n = pp->pr_itemsperpage;
   1417 	pp->pr_nitems += n;
   1418 
   1419 	if (pp->pr_roflags & PR_NOTOUCH) {
   1420 		pool_item_freelist_t *freelist = PR_FREELIST(ph);
   1421 		int i;
   1422 
   1423 		ph->ph_off = cp - storage;
   1424 		ph->ph_firstfree = 0;
   1425 		for (i = 0; i < n - 1; i++)
   1426 			freelist[i] = i + 1;
   1427 		freelist[n - 1] = PR_INDEX_EOL;
   1428 	} else {
   1429 		while (n--) {
   1430 			pi = (struct pool_item *)cp;
   1431 
   1432 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1433 
   1434 			/* Insert on page list */
   1435 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1436 #ifdef DIAGNOSTIC
   1437 			pi->pi_magic = PI_MAGIC;
   1438 #endif
   1439 			cp = (caddr_t)(cp + pp->pr_size);
   1440 
   1441 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1442 		}
   1443 	}
   1444 
   1445 	/*
   1446 	 * If the pool was depleted, point at the new page.
   1447 	 */
   1448 	if (pp->pr_curpage == NULL)
   1449 		pp->pr_curpage = ph;
   1450 
   1451 	if (++pp->pr_npages > pp->pr_hiwat)
   1452 		pp->pr_hiwat = pp->pr_npages;
   1453 }
   1454 
   1455 /*
   1456  * Used by pool_get() when nitems drops below the low water mark.  This
   1457  * is used to catch up pr_nitems with the low water mark.
   1458  *
   1459  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1460  *
   1461  * Note 2, we must be called with the pool already locked, and we return
   1462  * with it locked.
   1463  */
   1464 static int
   1465 pool_catchup(struct pool *pp)
   1466 {
   1467 	int error = 0;
   1468 
   1469 	while (POOL_NEEDS_CATCHUP(pp)) {
   1470 		error = pool_grow(pp, PR_NOWAIT);
   1471 		if (error) {
   1472 			break;
   1473 		}
   1474 	}
   1475 	return error;
   1476 }
   1477 
   1478 static void
   1479 pool_update_curpage(struct pool *pp)
   1480 {
   1481 
   1482 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1483 	if (pp->pr_curpage == NULL) {
   1484 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1485 	}
   1486 }
   1487 
   1488 void
   1489 pool_setlowat(struct pool *pp, int n)
   1490 {
   1491 
   1492 	simple_lock(&pp->pr_slock);
   1493 
   1494 	pp->pr_minitems = n;
   1495 	pp->pr_minpages = (n == 0)
   1496 		? 0
   1497 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1498 
   1499 	/* Make sure we're caught up with the newly-set low water mark. */
   1500 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1501 		/*
   1502 		 * XXX: Should we log a warning?  Should we set up a timeout
   1503 		 * to try again in a second or so?  The latter could break
   1504 		 * a caller's assumptions about interrupt protection, etc.
   1505 		 */
   1506 	}
   1507 
   1508 	simple_unlock(&pp->pr_slock);
   1509 }
   1510 
   1511 void
   1512 pool_sethiwat(struct pool *pp, int n)
   1513 {
   1514 
   1515 	simple_lock(&pp->pr_slock);
   1516 
   1517 	pp->pr_maxpages = (n == 0)
   1518 		? 0
   1519 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1520 
   1521 	simple_unlock(&pp->pr_slock);
   1522 }
   1523 
   1524 void
   1525 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1526 {
   1527 
   1528 	simple_lock(&pp->pr_slock);
   1529 
   1530 	pp->pr_hardlimit = n;
   1531 	pp->pr_hardlimit_warning = warnmess;
   1532 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1533 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1534 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1535 
   1536 	/*
   1537 	 * In-line version of pool_sethiwat(), because we don't want to
   1538 	 * release the lock.
   1539 	 */
   1540 	pp->pr_maxpages = (n == 0)
   1541 		? 0
   1542 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1543 
   1544 	simple_unlock(&pp->pr_slock);
   1545 }
   1546 
   1547 /*
   1548  * Release all complete pages that have not been used recently.
   1549  */
   1550 int
   1551 #ifdef POOL_DIAGNOSTIC
   1552 _pool_reclaim(struct pool *pp, const char *file, long line)
   1553 #else
   1554 pool_reclaim(struct pool *pp)
   1555 #endif
   1556 {
   1557 	struct pool_item_header *ph, *phnext;
   1558 	struct pool_cache *pc;
   1559 	struct pool_pagelist pq;
   1560 	struct pool_cache_grouplist pcgl;
   1561 	struct timeval curtime, diff;
   1562 
   1563 	if (pp->pr_drain_hook != NULL) {
   1564 		/*
   1565 		 * The drain hook must be called with the pool unlocked.
   1566 		 */
   1567 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1568 	}
   1569 
   1570 	if (simple_lock_try(&pp->pr_slock) == 0)
   1571 		return (0);
   1572 	pr_enter(pp, file, line);
   1573 
   1574 	LIST_INIT(&pq);
   1575 	LIST_INIT(&pcgl);
   1576 
   1577 	/*
   1578 	 * Reclaim items from the pool's caches.
   1579 	 */
   1580 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
   1581 		pool_cache_reclaim(pc, &pq, &pcgl);
   1582 
   1583 	getmicrotime(&curtime);
   1584 
   1585 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1586 		phnext = LIST_NEXT(ph, ph_pagelist);
   1587 
   1588 		/* Check our minimum page claim */
   1589 		if (pp->pr_npages <= pp->pr_minpages)
   1590 			break;
   1591 
   1592 		KASSERT(ph->ph_nmissing == 0);
   1593 		timersub(&curtime, &ph->ph_time, &diff);
   1594 		if (diff.tv_sec < pool_inactive_time
   1595 		    && !pa_starved_p(pp->pr_alloc))
   1596 			continue;
   1597 
   1598 		/*
   1599 		 * If freeing this page would put us below
   1600 		 * the low water mark, stop now.
   1601 		 */
   1602 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1603 		    pp->pr_minitems)
   1604 			break;
   1605 
   1606 		pr_rmpage(pp, ph, &pq);
   1607 	}
   1608 
   1609 	pr_leave(pp);
   1610 	simple_unlock(&pp->pr_slock);
   1611 	if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
   1612 		return 0;
   1613 
   1614 	pr_pagelist_free(pp, &pq);
   1615 	pcg_grouplist_free(&pcgl);
   1616 	return (1);
   1617 }
   1618 
   1619 /*
   1620  * Drain pools, one at a time.
   1621  *
   1622  * Note, we must never be called from an interrupt context.
   1623  */
   1624 void
   1625 pool_drain(void *arg)
   1626 {
   1627 	struct pool *pp;
   1628 	int s;
   1629 
   1630 	pp = NULL;
   1631 	s = splvm();
   1632 	simple_lock(&pool_head_slock);
   1633 	if (drainpp == NULL) {
   1634 		drainpp = LIST_FIRST(&pool_head);
   1635 	}
   1636 	if (drainpp) {
   1637 		pp = drainpp;
   1638 		drainpp = LIST_NEXT(pp, pr_poollist);
   1639 	}
   1640 	simple_unlock(&pool_head_slock);
   1641 	if (pp)
   1642 		pool_reclaim(pp);
   1643 	splx(s);
   1644 }
   1645 
   1646 /*
   1647  * Diagnostic helpers.
   1648  */
   1649 void
   1650 pool_print(struct pool *pp, const char *modif)
   1651 {
   1652 	int s;
   1653 
   1654 	s = splvm();
   1655 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1656 		printf("pool %s is locked; try again later\n",
   1657 		    pp->pr_wchan);
   1658 		splx(s);
   1659 		return;
   1660 	}
   1661 	pool_print1(pp, modif, printf);
   1662 	simple_unlock(&pp->pr_slock);
   1663 	splx(s);
   1664 }
   1665 
   1666 void
   1667 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1668 {
   1669 	struct pool *pp;
   1670 
   1671 	if (simple_lock_try(&pool_head_slock) == 0) {
   1672 		(*pr)("WARNING: pool_head_slock is locked\n");
   1673 	} else {
   1674 		simple_unlock(&pool_head_slock);
   1675 	}
   1676 
   1677 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   1678 		pool_printit(pp, modif, pr);
   1679 	}
   1680 }
   1681 
   1682 void
   1683 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1684 {
   1685 
   1686 	if (pp == NULL) {
   1687 		(*pr)("Must specify a pool to print.\n");
   1688 		return;
   1689 	}
   1690 
   1691 	/*
   1692 	 * Called from DDB; interrupts should be blocked, and all
   1693 	 * other processors should be paused.  We can skip locking
   1694 	 * the pool in this case.
   1695 	 *
   1696 	 * We do a simple_lock_try() just to print the lock
   1697 	 * status, however.
   1698 	 */
   1699 
   1700 	if (simple_lock_try(&pp->pr_slock) == 0)
   1701 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1702 	else
   1703 		simple_unlock(&pp->pr_slock);
   1704 
   1705 	pool_print1(pp, modif, pr);
   1706 }
   1707 
   1708 static void
   1709 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1710     void (*pr)(const char *, ...))
   1711 {
   1712 	struct pool_item_header *ph;
   1713 #ifdef DIAGNOSTIC
   1714 	struct pool_item *pi;
   1715 #endif
   1716 
   1717 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1718 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1719 		    ph->ph_page, ph->ph_nmissing,
   1720 		    (u_long)ph->ph_time.tv_sec,
   1721 		    (u_long)ph->ph_time.tv_usec);
   1722 #ifdef DIAGNOSTIC
   1723 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1724 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1725 				if (pi->pi_magic != PI_MAGIC) {
   1726 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1727 					    pi, pi->pi_magic);
   1728 				}
   1729 			}
   1730 		}
   1731 #endif
   1732 	}
   1733 }
   1734 
   1735 static void
   1736 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1737 {
   1738 	struct pool_item_header *ph;
   1739 	struct pool_cache *pc;
   1740 	struct pool_cache_group *pcg;
   1741 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1742 	char c;
   1743 
   1744 	while ((c = *modif++) != '\0') {
   1745 		if (c == 'l')
   1746 			print_log = 1;
   1747 		if (c == 'p')
   1748 			print_pagelist = 1;
   1749 		if (c == 'c')
   1750 			print_cache = 1;
   1751 	}
   1752 
   1753 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1754 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1755 	    pp->pr_roflags);
   1756 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1757 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1758 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1759 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1760 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1761 
   1762 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1763 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1764 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1765 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1766 
   1767 	if (print_pagelist == 0)
   1768 		goto skip_pagelist;
   1769 
   1770 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1771 		(*pr)("\n\tempty page list:\n");
   1772 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1773 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1774 		(*pr)("\n\tfull page list:\n");
   1775 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1776 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1777 		(*pr)("\n\tpartial-page list:\n");
   1778 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1779 
   1780 	if (pp->pr_curpage == NULL)
   1781 		(*pr)("\tno current page\n");
   1782 	else
   1783 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1784 
   1785  skip_pagelist:
   1786 	if (print_log == 0)
   1787 		goto skip_log;
   1788 
   1789 	(*pr)("\n");
   1790 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1791 		(*pr)("\tno log\n");
   1792 	else {
   1793 		pr_printlog(pp, NULL, pr);
   1794 	}
   1795 
   1796  skip_log:
   1797 	if (print_cache == 0)
   1798 		goto skip_cache;
   1799 
   1800 #define PR_GROUPLIST(pcg)						\
   1801 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1802 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1803 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1804 		    POOL_PADDR_INVALID) {				\
   1805 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1806 			    pcg->pcg_objects[i].pcgo_va,		\
   1807 			    (unsigned long long)			\
   1808 			    pcg->pcg_objects[i].pcgo_pa);		\
   1809 		} else {						\
   1810 			(*pr)("\t\t\t%p\n",				\
   1811 			    pcg->pcg_objects[i].pcgo_va);		\
   1812 		}							\
   1813 	}
   1814 
   1815 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
   1816 		(*pr)("\tcache %p\n", pc);
   1817 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1818 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1819 		(*pr)("\t    full groups:\n");
   1820 		LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
   1821 			PR_GROUPLIST(pcg);
   1822 		}
   1823 		(*pr)("\t    partial groups:\n");
   1824 		LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
   1825 			PR_GROUPLIST(pcg);
   1826 		}
   1827 		(*pr)("\t    empty groups:\n");
   1828 		LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
   1829 			PR_GROUPLIST(pcg);
   1830 		}
   1831 	}
   1832 #undef PR_GROUPLIST
   1833 
   1834  skip_cache:
   1835 	pr_enter_check(pp, pr);
   1836 }
   1837 
   1838 static int
   1839 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1840 {
   1841 	struct pool_item *pi;
   1842 	caddr_t page;
   1843 	int n;
   1844 
   1845 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1846 		page = (caddr_t)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1847 		if (page != ph->ph_page &&
   1848 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1849 			if (label != NULL)
   1850 				printf("%s: ", label);
   1851 			printf("pool(%p:%s): page inconsistency: page %p;"
   1852 			       " at page head addr %p (p %p)\n", pp,
   1853 				pp->pr_wchan, ph->ph_page,
   1854 				ph, page);
   1855 			return 1;
   1856 		}
   1857 	}
   1858 
   1859 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1860 		return 0;
   1861 
   1862 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1863 	     pi != NULL;
   1864 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1865 
   1866 #ifdef DIAGNOSTIC
   1867 		if (pi->pi_magic != PI_MAGIC) {
   1868 			if (label != NULL)
   1869 				printf("%s: ", label);
   1870 			printf("pool(%s): free list modified: magic=%x;"
   1871 			       " page %p; item ordinal %d; addr %p\n",
   1872 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1873 				n, pi);
   1874 			panic("pool");
   1875 		}
   1876 #endif
   1877 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1878 			continue;
   1879 		}
   1880 		page = (caddr_t)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1881 		if (page == ph->ph_page)
   1882 			continue;
   1883 
   1884 		if (label != NULL)
   1885 			printf("%s: ", label);
   1886 		printf("pool(%p:%s): page inconsistency: page %p;"
   1887 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1888 			pp->pr_wchan, ph->ph_page,
   1889 			n, pi, page);
   1890 		return 1;
   1891 	}
   1892 	return 0;
   1893 }
   1894 
   1895 
   1896 int
   1897 pool_chk(struct pool *pp, const char *label)
   1898 {
   1899 	struct pool_item_header *ph;
   1900 	int r = 0;
   1901 
   1902 	simple_lock(&pp->pr_slock);
   1903 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1904 		r = pool_chk_page(pp, label, ph);
   1905 		if (r) {
   1906 			goto out;
   1907 		}
   1908 	}
   1909 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1910 		r = pool_chk_page(pp, label, ph);
   1911 		if (r) {
   1912 			goto out;
   1913 		}
   1914 	}
   1915 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1916 		r = pool_chk_page(pp, label, ph);
   1917 		if (r) {
   1918 			goto out;
   1919 		}
   1920 	}
   1921 
   1922 out:
   1923 	simple_unlock(&pp->pr_slock);
   1924 	return (r);
   1925 }
   1926 
   1927 /*
   1928  * pool_cache_init:
   1929  *
   1930  *	Initialize a pool cache.
   1931  *
   1932  *	NOTE: If the pool must be protected from interrupts, we expect
   1933  *	to be called at the appropriate interrupt priority level.
   1934  */
   1935 void
   1936 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1937     int (*ctor)(void *, void *, int),
   1938     void (*dtor)(void *, void *),
   1939     void *arg)
   1940 {
   1941 
   1942 	LIST_INIT(&pc->pc_emptygroups);
   1943 	LIST_INIT(&pc->pc_fullgroups);
   1944 	LIST_INIT(&pc->pc_partgroups);
   1945 	simple_lock_init(&pc->pc_slock);
   1946 
   1947 	pc->pc_pool = pp;
   1948 
   1949 	pc->pc_ctor = ctor;
   1950 	pc->pc_dtor = dtor;
   1951 	pc->pc_arg  = arg;
   1952 
   1953 	pc->pc_hits   = 0;
   1954 	pc->pc_misses = 0;
   1955 
   1956 	pc->pc_ngroups = 0;
   1957 
   1958 	pc->pc_nitems = 0;
   1959 
   1960 	simple_lock(&pp->pr_slock);
   1961 	LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
   1962 	simple_unlock(&pp->pr_slock);
   1963 }
   1964 
   1965 /*
   1966  * pool_cache_destroy:
   1967  *
   1968  *	Destroy a pool cache.
   1969  */
   1970 void
   1971 pool_cache_destroy(struct pool_cache *pc)
   1972 {
   1973 	struct pool *pp = pc->pc_pool;
   1974 
   1975 	/* First, invalidate the entire cache. */
   1976 	pool_cache_invalidate(pc);
   1977 
   1978 	/* ...and remove it from the pool's cache list. */
   1979 	simple_lock(&pp->pr_slock);
   1980 	LIST_REMOVE(pc, pc_poollist);
   1981 	simple_unlock(&pp->pr_slock);
   1982 }
   1983 
   1984 static inline void *
   1985 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
   1986 {
   1987 	void *object;
   1988 	u_int idx;
   1989 
   1990 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1991 	KASSERT(pcg->pcg_avail != 0);
   1992 	idx = --pcg->pcg_avail;
   1993 
   1994 	KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
   1995 	object = pcg->pcg_objects[idx].pcgo_va;
   1996 	if (pap != NULL)
   1997 		*pap = pcg->pcg_objects[idx].pcgo_pa;
   1998 	pcg->pcg_objects[idx].pcgo_va = NULL;
   1999 
   2000 	return (object);
   2001 }
   2002 
   2003 static inline void
   2004 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
   2005 {
   2006 	u_int idx;
   2007 
   2008 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   2009 	idx = pcg->pcg_avail++;
   2010 
   2011 	KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
   2012 	pcg->pcg_objects[idx].pcgo_va = object;
   2013 	pcg->pcg_objects[idx].pcgo_pa = pa;
   2014 }
   2015 
   2016 static void
   2017 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
   2018 {
   2019 	struct pool_cache_group *pcg;
   2020 	int s;
   2021 
   2022 	s = splvm();
   2023 	while ((pcg = LIST_FIRST(pcgl)) != NULL) {
   2024 		LIST_REMOVE(pcg, pcg_list);
   2025 		pool_put(&pcgpool, pcg);
   2026 	}
   2027 	splx(s);
   2028 }
   2029 
   2030 /*
   2031  * pool_cache_get{,_paddr}:
   2032  *
   2033  *	Get an object from a pool cache (optionally returning
   2034  *	the physical address of the object).
   2035  */
   2036 void *
   2037 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
   2038 {
   2039 	struct pool_cache_group *pcg;
   2040 	void *object;
   2041 
   2042 #ifdef LOCKDEBUG
   2043 	if (flags & PR_WAITOK)
   2044 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2045 #endif
   2046 
   2047 	simple_lock(&pc->pc_slock);
   2048 
   2049 	pcg = LIST_FIRST(&pc->pc_partgroups);
   2050 	if (pcg == NULL) {
   2051 		pcg = LIST_FIRST(&pc->pc_fullgroups);
   2052 		if (pcg != NULL) {
   2053 			LIST_REMOVE(pcg, pcg_list);
   2054 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2055 		}
   2056 	}
   2057 	if (pcg == NULL) {
   2058 
   2059 		/*
   2060 		 * No groups with any available objects.  Allocate
   2061 		 * a new object, construct it, and return it to
   2062 		 * the caller.  We will allocate a group, if necessary,
   2063 		 * when the object is freed back to the cache.
   2064 		 */
   2065 		pc->pc_misses++;
   2066 		simple_unlock(&pc->pc_slock);
   2067 		object = pool_get(pc->pc_pool, flags);
   2068 		if (object != NULL && pc->pc_ctor != NULL) {
   2069 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2070 				pool_put(pc->pc_pool, object);
   2071 				return (NULL);
   2072 			}
   2073 		}
   2074 		KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
   2075 		    (pc->pc_pool->pr_align - 1)) == 0);
   2076 		if (object != NULL && pap != NULL) {
   2077 #ifdef POOL_VTOPHYS
   2078 			*pap = POOL_VTOPHYS(object);
   2079 #else
   2080 			*pap = POOL_PADDR_INVALID;
   2081 #endif
   2082 		}
   2083 		return (object);
   2084 	}
   2085 
   2086 	pc->pc_hits++;
   2087 	pc->pc_nitems--;
   2088 	object = pcg_get(pcg, pap);
   2089 
   2090 	if (pcg->pcg_avail == 0) {
   2091 		LIST_REMOVE(pcg, pcg_list);
   2092 		LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
   2093 	}
   2094 	simple_unlock(&pc->pc_slock);
   2095 
   2096 	KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
   2097 	    (pc->pc_pool->pr_align - 1)) == 0);
   2098 	return (object);
   2099 }
   2100 
   2101 /*
   2102  * pool_cache_put{,_paddr}:
   2103  *
   2104  *	Put an object back to the pool cache (optionally caching the
   2105  *	physical address of the object).
   2106  */
   2107 void
   2108 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
   2109 {
   2110 	struct pool_cache_group *pcg;
   2111 	int s;
   2112 
   2113 	if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
   2114 		goto destruct;
   2115 	}
   2116 
   2117 	simple_lock(&pc->pc_slock);
   2118 
   2119 	pcg = LIST_FIRST(&pc->pc_partgroups);
   2120 	if (pcg == NULL) {
   2121 		pcg = LIST_FIRST(&pc->pc_emptygroups);
   2122 		if (pcg != NULL) {
   2123 			LIST_REMOVE(pcg, pcg_list);
   2124 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2125 		}
   2126 	}
   2127 	if (pcg == NULL) {
   2128 
   2129 		/*
   2130 		 * No empty groups to free the object to.  Attempt to
   2131 		 * allocate one.
   2132 		 */
   2133 		simple_unlock(&pc->pc_slock);
   2134 		s = splvm();
   2135 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   2136 		splx(s);
   2137 		if (pcg == NULL) {
   2138 destruct:
   2139 
   2140 			/*
   2141 			 * Unable to allocate a cache group; destruct the object
   2142 			 * and free it back to the pool.
   2143 			 */
   2144 			pool_cache_destruct_object(pc, object);
   2145 			return;
   2146 		}
   2147 		memset(pcg, 0, sizeof(*pcg));
   2148 		simple_lock(&pc->pc_slock);
   2149 		pc->pc_ngroups++;
   2150 		LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2151 	}
   2152 
   2153 	pc->pc_nitems++;
   2154 	pcg_put(pcg, object, pa);
   2155 
   2156 	if (pcg->pcg_avail == PCG_NOBJECTS) {
   2157 		LIST_REMOVE(pcg, pcg_list);
   2158 		LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
   2159 	}
   2160 	simple_unlock(&pc->pc_slock);
   2161 }
   2162 
   2163 /*
   2164  * pool_cache_destruct_object:
   2165  *
   2166  *	Force destruction of an object and its release back into
   2167  *	the pool.
   2168  */
   2169 void
   2170 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   2171 {
   2172 
   2173 	if (pc->pc_dtor != NULL)
   2174 		(*pc->pc_dtor)(pc->pc_arg, object);
   2175 	pool_put(pc->pc_pool, object);
   2176 }
   2177 
   2178 static void
   2179 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
   2180     struct pool_cache *pc, struct pool_pagelist *pq,
   2181     struct pool_cache_grouplist *pcgdl)
   2182 {
   2183 	struct pool_cache_group *pcg, *npcg;
   2184 	void *object;
   2185 
   2186 	for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
   2187 		npcg = LIST_NEXT(pcg, pcg_list);
   2188 		while (pcg->pcg_avail != 0) {
   2189 			pc->pc_nitems--;
   2190 			object = pcg_get(pcg, NULL);
   2191 			if (pc->pc_dtor != NULL)
   2192 				(*pc->pc_dtor)(pc->pc_arg, object);
   2193 			pool_do_put(pc->pc_pool, object, pq);
   2194 		}
   2195 		pc->pc_ngroups--;
   2196 		LIST_REMOVE(pcg, pcg_list);
   2197 		LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
   2198 	}
   2199 }
   2200 
   2201 static void
   2202 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
   2203     struct pool_cache_grouplist *pcgl)
   2204 {
   2205 
   2206 	LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
   2207 	LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
   2208 
   2209 	pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
   2210 	pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
   2211 
   2212 	KASSERT(LIST_EMPTY(&pc->pc_partgroups));
   2213 	KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
   2214 	KASSERT(pc->pc_nitems == 0);
   2215 }
   2216 
   2217 /*
   2218  * pool_cache_invalidate:
   2219  *
   2220  *	Invalidate a pool cache (destruct and release all of the
   2221  *	cached objects).
   2222  */
   2223 void
   2224 pool_cache_invalidate(struct pool_cache *pc)
   2225 {
   2226 	struct pool_pagelist pq;
   2227 	struct pool_cache_grouplist pcgl;
   2228 
   2229 	LIST_INIT(&pq);
   2230 	LIST_INIT(&pcgl);
   2231 
   2232 	simple_lock(&pc->pc_slock);
   2233 	simple_lock(&pc->pc_pool->pr_slock);
   2234 
   2235 	pool_do_cache_invalidate(pc, &pq, &pcgl);
   2236 
   2237 	simple_unlock(&pc->pc_pool->pr_slock);
   2238 	simple_unlock(&pc->pc_slock);
   2239 
   2240 	pr_pagelist_free(pc->pc_pool, &pq);
   2241 	pcg_grouplist_free(&pcgl);
   2242 }
   2243 
   2244 /*
   2245  * pool_cache_reclaim:
   2246  *
   2247  *	Reclaim a pool cache for pool_reclaim().
   2248  */
   2249 static void
   2250 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
   2251     struct pool_cache_grouplist *pcgl)
   2252 {
   2253 
   2254 	/*
   2255 	 * We're locking in the wrong order (normally pool_cache -> pool,
   2256 	 * but the pool is already locked when we get here), so we have
   2257 	 * to use trylock.  If we can't lock the pool_cache, it's not really
   2258 	 * a big deal here.
   2259 	 */
   2260 	if (simple_lock_try(&pc->pc_slock) == 0)
   2261 		return;
   2262 
   2263 	pool_do_cache_invalidate(pc, pq, pcgl);
   2264 
   2265 	simple_unlock(&pc->pc_slock);
   2266 }
   2267 
   2268 /*
   2269  * Pool backend allocators.
   2270  *
   2271  * Each pool has a backend allocator that handles allocation, deallocation,
   2272  * and any additional draining that might be needed.
   2273  *
   2274  * We provide two standard allocators:
   2275  *
   2276  *	pool_allocator_kmem - the default when no allocator is specified
   2277  *
   2278  *	pool_allocator_nointr - used for pools that will not be accessed
   2279  *	in interrupt context.
   2280  */
   2281 void	*pool_page_alloc(struct pool *, int);
   2282 void	pool_page_free(struct pool *, void *);
   2283 
   2284 #ifdef POOL_SUBPAGE
   2285 struct pool_allocator pool_allocator_kmem_fullpage = {
   2286 	pool_page_alloc, pool_page_free, 0,
   2287 	.pa_backingmapptr = &kmem_map,
   2288 };
   2289 #else
   2290 struct pool_allocator pool_allocator_kmem = {
   2291 	pool_page_alloc, pool_page_free, 0,
   2292 	.pa_backingmapptr = &kmem_map,
   2293 };
   2294 #endif
   2295 
   2296 void	*pool_page_alloc_nointr(struct pool *, int);
   2297 void	pool_page_free_nointr(struct pool *, void *);
   2298 
   2299 #ifdef POOL_SUBPAGE
   2300 struct pool_allocator pool_allocator_nointr_fullpage = {
   2301 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2302 	.pa_backingmapptr = &kernel_map,
   2303 };
   2304 #else
   2305 struct pool_allocator pool_allocator_nointr = {
   2306 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2307 	.pa_backingmapptr = &kernel_map,
   2308 };
   2309 #endif
   2310 
   2311 #ifdef POOL_SUBPAGE
   2312 void	*pool_subpage_alloc(struct pool *, int);
   2313 void	pool_subpage_free(struct pool *, void *);
   2314 
   2315 struct pool_allocator pool_allocator_kmem = {
   2316 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2317 	.pa_backingmapptr = &kmem_map,
   2318 };
   2319 
   2320 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2321 void	pool_subpage_free_nointr(struct pool *, void *);
   2322 
   2323 struct pool_allocator pool_allocator_nointr = {
   2324 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2325 	.pa_backingmapptr = &kmem_map,
   2326 };
   2327 #endif /* POOL_SUBPAGE */
   2328 
   2329 static void *
   2330 pool_allocator_alloc(struct pool *pp, int flags)
   2331 {
   2332 	struct pool_allocator *pa = pp->pr_alloc;
   2333 	void *res;
   2334 
   2335 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
   2336 
   2337 	res = (*pa->pa_alloc)(pp, flags);
   2338 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2339 		/*
   2340 		 * We only run the drain hook here if PR_NOWAIT.
   2341 		 * In other cases, the hook will be run in
   2342 		 * pool_reclaim().
   2343 		 */
   2344 		if (pp->pr_drain_hook != NULL) {
   2345 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2346 			res = (*pa->pa_alloc)(pp, flags);
   2347 		}
   2348 	}
   2349 	return res;
   2350 }
   2351 
   2352 static void
   2353 pool_allocator_free(struct pool *pp, void *v)
   2354 {
   2355 	struct pool_allocator *pa = pp->pr_alloc;
   2356 
   2357 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
   2358 
   2359 	(*pa->pa_free)(pp, v);
   2360 }
   2361 
   2362 void *
   2363 pool_page_alloc(struct pool *pp, int flags)
   2364 {
   2365 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2366 
   2367 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2368 }
   2369 
   2370 void
   2371 pool_page_free(struct pool *pp, void *v)
   2372 {
   2373 
   2374 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2375 }
   2376 
   2377 static void *
   2378 pool_page_alloc_meta(struct pool *pp, int flags)
   2379 {
   2380 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2381 
   2382 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2383 }
   2384 
   2385 static void
   2386 pool_page_free_meta(struct pool *pp, void *v)
   2387 {
   2388 
   2389 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2390 }
   2391 
   2392 #ifdef POOL_SUBPAGE
   2393 /* Sub-page allocator, for machines with large hardware pages. */
   2394 void *
   2395 pool_subpage_alloc(struct pool *pp, int flags)
   2396 {
   2397 	void *v;
   2398 	int s;
   2399 	s = splvm();
   2400 	v = pool_get(&psppool, flags);
   2401 	splx(s);
   2402 	return v;
   2403 }
   2404 
   2405 void
   2406 pool_subpage_free(struct pool *pp, void *v)
   2407 {
   2408 	int s;
   2409 	s = splvm();
   2410 	pool_put(&psppool, v);
   2411 	splx(s);
   2412 }
   2413 
   2414 /* We don't provide a real nointr allocator.  Maybe later. */
   2415 void *
   2416 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2417 {
   2418 
   2419 	return (pool_subpage_alloc(pp, flags));
   2420 }
   2421 
   2422 void
   2423 pool_subpage_free_nointr(struct pool *pp, void *v)
   2424 {
   2425 
   2426 	pool_subpage_free(pp, v);
   2427 }
   2428 #endif /* POOL_SUBPAGE */
   2429 void *
   2430 pool_page_alloc_nointr(struct pool *pp, int flags)
   2431 {
   2432 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2433 
   2434 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2435 }
   2436 
   2437 void
   2438 pool_page_free_nointr(struct pool *pp, void *v)
   2439 {
   2440 
   2441 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2442 }
   2443