subr_pool.c revision 1.122.4.1 1 /* $NetBSD: subr_pool.c,v 1.122.4.1 2006/10/22 06:07:11 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.122.4.1 2006/10/22 06:07:11 yamt Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 #define PHPOOL_MAX 8
77 static struct pool phpool[PHPOOL_MAX];
78 #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
79
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84
85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
86 SLIST_HEAD_INITIALIZER(pa_deferinitq);
87
88 static void *pool_page_alloc_meta(struct pool *, int);
89 static void pool_page_free_meta(struct pool *, void *);
90
91 /* allocator for pool metadata */
92 static struct pool_allocator pool_allocator_meta = {
93 pool_page_alloc_meta, pool_page_free_meta,
94 .pa_backingmapptr = &kmem_map,
95 };
96
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
99
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool *drainpp;
102
103 /* This spin lock protects both pool_head and drainpp. */
104 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
105
106 typedef uint8_t pool_item_freelist_t;
107
108 struct pool_item_header {
109 /* Page headers */
110 LIST_ENTRY(pool_item_header)
111 ph_pagelist; /* pool page list */
112 SPLAY_ENTRY(pool_item_header)
113 ph_node; /* Off-page page headers */
114 caddr_t ph_page; /* this page's address */
115 struct timeval ph_time; /* last referenced */
116 union {
117 /* !PR_NOTOUCH */
118 struct {
119 LIST_HEAD(, pool_item)
120 phu_itemlist; /* chunk list for this page */
121 } phu_normal;
122 /* PR_NOTOUCH */
123 struct {
124 uint16_t
125 phu_off; /* start offset in page */
126 pool_item_freelist_t
127 phu_firstfree; /* first free item */
128 /*
129 * XXX it might be better to use
130 * a simple bitmap and ffs(3)
131 */
132 } phu_notouch;
133 } ph_u;
134 uint16_t ph_nmissing; /* # of chunks in use */
135 };
136 #define ph_itemlist ph_u.phu_normal.phu_itemlist
137 #define ph_off ph_u.phu_notouch.phu_off
138 #define ph_firstfree ph_u.phu_notouch.phu_firstfree
139
140 struct pool_item {
141 #ifdef DIAGNOSTIC
142 u_int pi_magic;
143 #endif
144 #define PI_MAGIC 0xdeadbeefU
145 /* Other entries use only this list entry */
146 LIST_ENTRY(pool_item) pi_list;
147 };
148
149 #define POOL_NEEDS_CATCHUP(pp) \
150 ((pp)->pr_nitems < (pp)->pr_minitems)
151
152 /*
153 * Pool cache management.
154 *
155 * Pool caches provide a way for constructed objects to be cached by the
156 * pool subsystem. This can lead to performance improvements by avoiding
157 * needless object construction/destruction; it is deferred until absolutely
158 * necessary.
159 *
160 * Caches are grouped into cache groups. Each cache group references
161 * up to 16 constructed objects. When a cache allocates an object
162 * from the pool, it calls the object's constructor and places it into
163 * a cache group. When a cache group frees an object back to the pool,
164 * it first calls the object's destructor. This allows the object to
165 * persist in constructed form while freed to the cache.
166 *
167 * Multiple caches may exist for each pool. This allows a single
168 * object type to have multiple constructed forms. The pool references
169 * each cache, so that when a pool is drained by the pagedaemon, it can
170 * drain each individual cache as well. Each time a cache is drained,
171 * the most idle cache group is freed to the pool in its entirety.
172 *
173 * Pool caches are layed on top of pools. By layering them, we can avoid
174 * the complexity of cache management for pools which would not benefit
175 * from it.
176 */
177
178 /* The cache group pool. */
179 static struct pool pcgpool;
180
181 static void pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
182 struct pool_cache_grouplist *);
183 static void pcg_grouplist_free(struct pool_cache_grouplist *);
184
185 static int pool_catchup(struct pool *);
186 static void pool_prime_page(struct pool *, caddr_t,
187 struct pool_item_header *);
188 static void pool_update_curpage(struct pool *);
189
190 static int pool_grow(struct pool *, int);
191 static void *pool_allocator_alloc(struct pool *, int);
192 static void pool_allocator_free(struct pool *, void *);
193
194 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
195 void (*)(const char *, ...));
196 static void pool_print1(struct pool *, const char *,
197 void (*)(const char *, ...));
198
199 static int pool_chk_page(struct pool *, const char *,
200 struct pool_item_header *);
201
202 /*
203 * Pool log entry. An array of these is allocated in pool_init().
204 */
205 struct pool_log {
206 const char *pl_file;
207 long pl_line;
208 int pl_action;
209 #define PRLOG_GET 1
210 #define PRLOG_PUT 2
211 void *pl_addr;
212 };
213
214 #ifdef POOL_DIAGNOSTIC
215 /* Number of entries in pool log buffers */
216 #ifndef POOL_LOGSIZE
217 #define POOL_LOGSIZE 10
218 #endif
219
220 int pool_logsize = POOL_LOGSIZE;
221
222 static inline void
223 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
224 {
225 int n = pp->pr_curlogentry;
226 struct pool_log *pl;
227
228 if ((pp->pr_roflags & PR_LOGGING) == 0)
229 return;
230
231 /*
232 * Fill in the current entry. Wrap around and overwrite
233 * the oldest entry if necessary.
234 */
235 pl = &pp->pr_log[n];
236 pl->pl_file = file;
237 pl->pl_line = line;
238 pl->pl_action = action;
239 pl->pl_addr = v;
240 if (++n >= pp->pr_logsize)
241 n = 0;
242 pp->pr_curlogentry = n;
243 }
244
245 static void
246 pr_printlog(struct pool *pp, struct pool_item *pi,
247 void (*pr)(const char *, ...))
248 {
249 int i = pp->pr_logsize;
250 int n = pp->pr_curlogentry;
251
252 if ((pp->pr_roflags & PR_LOGGING) == 0)
253 return;
254
255 /*
256 * Print all entries in this pool's log.
257 */
258 while (i-- > 0) {
259 struct pool_log *pl = &pp->pr_log[n];
260 if (pl->pl_action != 0) {
261 if (pi == NULL || pi == pl->pl_addr) {
262 (*pr)("\tlog entry %d:\n", i);
263 (*pr)("\t\taction = %s, addr = %p\n",
264 pl->pl_action == PRLOG_GET ? "get" : "put",
265 pl->pl_addr);
266 (*pr)("\t\tfile: %s at line %lu\n",
267 pl->pl_file, pl->pl_line);
268 }
269 }
270 if (++n >= pp->pr_logsize)
271 n = 0;
272 }
273 }
274
275 static inline void
276 pr_enter(struct pool *pp, const char *file, long line)
277 {
278
279 if (__predict_false(pp->pr_entered_file != NULL)) {
280 printf("pool %s: reentrancy at file %s line %ld\n",
281 pp->pr_wchan, file, line);
282 printf(" previous entry at file %s line %ld\n",
283 pp->pr_entered_file, pp->pr_entered_line);
284 panic("pr_enter");
285 }
286
287 pp->pr_entered_file = file;
288 pp->pr_entered_line = line;
289 }
290
291 static inline void
292 pr_leave(struct pool *pp)
293 {
294
295 if (__predict_false(pp->pr_entered_file == NULL)) {
296 printf("pool %s not entered?\n", pp->pr_wchan);
297 panic("pr_leave");
298 }
299
300 pp->pr_entered_file = NULL;
301 pp->pr_entered_line = 0;
302 }
303
304 static inline void
305 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
306 {
307
308 if (pp->pr_entered_file != NULL)
309 (*pr)("\n\tcurrently entered from file %s line %ld\n",
310 pp->pr_entered_file, pp->pr_entered_line);
311 }
312 #else
313 #define pr_log(pp, v, action, file, line)
314 #define pr_printlog(pp, pi, pr)
315 #define pr_enter(pp, file, line)
316 #define pr_leave(pp)
317 #define pr_enter_check(pp, pr)
318 #endif /* POOL_DIAGNOSTIC */
319
320 static inline int
321 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
322 const void *v)
323 {
324 const char *cp = v;
325 int idx;
326
327 KASSERT(pp->pr_roflags & PR_NOTOUCH);
328 idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
329 KASSERT(idx < pp->pr_itemsperpage);
330 return idx;
331 }
332
333 #define PR_FREELIST_ALIGN(p) \
334 roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
335 #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
336 #define PR_INDEX_USED ((pool_item_freelist_t)-1)
337 #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
338
339 static inline void
340 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
341 void *obj)
342 {
343 int idx = pr_item_notouch_index(pp, ph, obj);
344 pool_item_freelist_t *freelist = PR_FREELIST(ph);
345
346 KASSERT(freelist[idx] == PR_INDEX_USED);
347 freelist[idx] = ph->ph_firstfree;
348 ph->ph_firstfree = idx;
349 }
350
351 static inline void *
352 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
353 {
354 int idx = ph->ph_firstfree;
355 pool_item_freelist_t *freelist = PR_FREELIST(ph);
356
357 KASSERT(freelist[idx] != PR_INDEX_USED);
358 ph->ph_firstfree = freelist[idx];
359 freelist[idx] = PR_INDEX_USED;
360
361 return ph->ph_page + ph->ph_off + idx * pp->pr_size;
362 }
363
364 static inline int
365 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
366 {
367
368 /*
369 * we consider pool_item_header with smaller ph_page bigger.
370 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
371 */
372
373 if (a->ph_page < b->ph_page)
374 return (1);
375 else if (a->ph_page > b->ph_page)
376 return (-1);
377 else
378 return (0);
379 }
380
381 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
382 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
383
384 /*
385 * Return the pool page header based on item address.
386 */
387 static inline struct pool_item_header *
388 pr_find_pagehead(struct pool *pp, void *v)
389 {
390 struct pool_item_header *ph, tmp;
391
392 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
393 tmp.ph_page = (caddr_t)(uintptr_t)v;
394 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
395 if (ph == NULL) {
396 ph = SPLAY_ROOT(&pp->pr_phtree);
397 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
398 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
399 }
400 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
401 }
402 } else {
403 caddr_t page =
404 (caddr_t)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
405
406 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
407 ph = (void *)(page + pp->pr_phoffset);
408 } else {
409 tmp.ph_page = page;
410 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
411 }
412 }
413
414 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
415 (ph->ph_page <= (char *)v &&
416 (char *)v < ph->ph_page + pp->pr_alloc->pa_pagesz));
417 return ph;
418 }
419
420 static void
421 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
422 {
423 struct pool_item_header *ph;
424 int s;
425
426 while ((ph = LIST_FIRST(pq)) != NULL) {
427 LIST_REMOVE(ph, ph_pagelist);
428 pool_allocator_free(pp, ph->ph_page);
429 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
430 s = splvm();
431 pool_put(pp->pr_phpool, ph);
432 splx(s);
433 }
434 }
435 }
436
437 /*
438 * Remove a page from the pool.
439 */
440 static inline void
441 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
442 struct pool_pagelist *pq)
443 {
444
445 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
446
447 /*
448 * If the page was idle, decrement the idle page count.
449 */
450 if (ph->ph_nmissing == 0) {
451 #ifdef DIAGNOSTIC
452 if (pp->pr_nidle == 0)
453 panic("pr_rmpage: nidle inconsistent");
454 if (pp->pr_nitems < pp->pr_itemsperpage)
455 panic("pr_rmpage: nitems inconsistent");
456 #endif
457 pp->pr_nidle--;
458 }
459
460 pp->pr_nitems -= pp->pr_itemsperpage;
461
462 /*
463 * Unlink the page from the pool and queue it for release.
464 */
465 LIST_REMOVE(ph, ph_pagelist);
466 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
467 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
468 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
469
470 pp->pr_npages--;
471 pp->pr_npagefree++;
472
473 pool_update_curpage(pp);
474 }
475
476 static boolean_t
477 pa_starved_p(struct pool_allocator *pa)
478 {
479
480 if (pa->pa_backingmap != NULL) {
481 return vm_map_starved_p(pa->pa_backingmap);
482 }
483 return FALSE;
484 }
485
486 static int
487 pool_reclaim_callback(struct callback_entry *ce __unused, void *obj,
488 void *arg __unused)
489 {
490 struct pool *pp = obj;
491 struct pool_allocator *pa = pp->pr_alloc;
492
493 KASSERT(&pp->pr_reclaimerentry == ce);
494 pool_reclaim(pp);
495 if (!pa_starved_p(pa)) {
496 return CALLBACK_CHAIN_ABORT;
497 }
498 return CALLBACK_CHAIN_CONTINUE;
499 }
500
501 static void
502 pool_reclaim_register(struct pool *pp)
503 {
504 struct vm_map *map = pp->pr_alloc->pa_backingmap;
505 int s;
506
507 if (map == NULL) {
508 return;
509 }
510
511 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
512 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
513 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
514 splx(s);
515 }
516
517 static void
518 pool_reclaim_unregister(struct pool *pp)
519 {
520 struct vm_map *map = pp->pr_alloc->pa_backingmap;
521 int s;
522
523 if (map == NULL) {
524 return;
525 }
526
527 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
528 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
529 &pp->pr_reclaimerentry);
530 splx(s);
531 }
532
533 static void
534 pa_reclaim_register(struct pool_allocator *pa)
535 {
536 struct vm_map *map = *pa->pa_backingmapptr;
537 struct pool *pp;
538
539 KASSERT(pa->pa_backingmap == NULL);
540 if (map == NULL) {
541 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
542 return;
543 }
544 pa->pa_backingmap = map;
545 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
546 pool_reclaim_register(pp);
547 }
548 }
549
550 /*
551 * Initialize all the pools listed in the "pools" link set.
552 */
553 void
554 pool_subsystem_init(void)
555 {
556 struct pool_allocator *pa;
557 __link_set_decl(pools, struct link_pool_init);
558 struct link_pool_init * const *pi;
559
560 __link_set_foreach(pi, pools)
561 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
562 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
563 (*pi)->palloc);
564
565 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
566 KASSERT(pa->pa_backingmapptr != NULL);
567 KASSERT(*pa->pa_backingmapptr != NULL);
568 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
569 pa_reclaim_register(pa);
570 }
571 }
572
573 /*
574 * Initialize the given pool resource structure.
575 *
576 * We export this routine to allow other kernel parts to declare
577 * static pools that must be initialized before malloc() is available.
578 */
579 void
580 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
581 const char *wchan, struct pool_allocator *palloc)
582 {
583 #ifdef DEBUG
584 struct pool *pp1;
585 #endif
586 size_t trysize, phsize;
587 int off, slack, s;
588
589 KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
590 PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
591
592 #ifdef DEBUG
593 /*
594 * Check that the pool hasn't already been initialised and
595 * added to the list of all pools.
596 */
597 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
598 if (pp == pp1)
599 panic("pool_init: pool %s already initialised",
600 wchan);
601 }
602 #endif
603
604 #ifdef POOL_DIAGNOSTIC
605 /*
606 * Always log if POOL_DIAGNOSTIC is defined.
607 */
608 if (pool_logsize != 0)
609 flags |= PR_LOGGING;
610 #endif
611
612 if (palloc == NULL)
613 palloc = &pool_allocator_kmem;
614 #ifdef POOL_SUBPAGE
615 if (size > palloc->pa_pagesz) {
616 if (palloc == &pool_allocator_kmem)
617 palloc = &pool_allocator_kmem_fullpage;
618 else if (palloc == &pool_allocator_nointr)
619 palloc = &pool_allocator_nointr_fullpage;
620 }
621 #endif /* POOL_SUBPAGE */
622 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
623 if (palloc->pa_pagesz == 0)
624 palloc->pa_pagesz = PAGE_SIZE;
625
626 TAILQ_INIT(&palloc->pa_list);
627
628 simple_lock_init(&palloc->pa_slock);
629 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
630 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
631
632 if (palloc->pa_backingmapptr != NULL) {
633 pa_reclaim_register(palloc);
634 }
635 palloc->pa_flags |= PA_INITIALIZED;
636 }
637
638 if (align == 0)
639 align = ALIGN(1);
640
641 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
642 size = sizeof(struct pool_item);
643
644 size = roundup(size, align);
645 #ifdef DIAGNOSTIC
646 if (size > palloc->pa_pagesz)
647 panic("pool_init: pool item size (%zu) too large", size);
648 #endif
649
650 /*
651 * Initialize the pool structure.
652 */
653 LIST_INIT(&pp->pr_emptypages);
654 LIST_INIT(&pp->pr_fullpages);
655 LIST_INIT(&pp->pr_partpages);
656 LIST_INIT(&pp->pr_cachelist);
657 pp->pr_curpage = NULL;
658 pp->pr_npages = 0;
659 pp->pr_minitems = 0;
660 pp->pr_minpages = 0;
661 pp->pr_maxpages = UINT_MAX;
662 pp->pr_roflags = flags;
663 pp->pr_flags = 0;
664 pp->pr_size = size;
665 pp->pr_align = align;
666 pp->pr_wchan = wchan;
667 pp->pr_alloc = palloc;
668 pp->pr_nitems = 0;
669 pp->pr_nout = 0;
670 pp->pr_hardlimit = UINT_MAX;
671 pp->pr_hardlimit_warning = NULL;
672 pp->pr_hardlimit_ratecap.tv_sec = 0;
673 pp->pr_hardlimit_ratecap.tv_usec = 0;
674 pp->pr_hardlimit_warning_last.tv_sec = 0;
675 pp->pr_hardlimit_warning_last.tv_usec = 0;
676 pp->pr_drain_hook = NULL;
677 pp->pr_drain_hook_arg = NULL;
678
679 /*
680 * Decide whether to put the page header off page to avoid
681 * wasting too large a part of the page or too big item.
682 * Off-page page headers go on a hash table, so we can match
683 * a returned item with its header based on the page address.
684 * We use 1/16 of the page size and about 8 times of the item
685 * size as the threshold (XXX: tune)
686 *
687 * However, we'll put the header into the page if we can put
688 * it without wasting any items.
689 *
690 * Silently enforce `0 <= ioff < align'.
691 */
692 pp->pr_itemoffset = ioff %= align;
693 /* See the comment below about reserved bytes. */
694 trysize = palloc->pa_pagesz - ((align - ioff) % align);
695 phsize = ALIGN(sizeof(struct pool_item_header));
696 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
697 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
698 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
699 /* Use the end of the page for the page header */
700 pp->pr_roflags |= PR_PHINPAGE;
701 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
702 } else {
703 /* The page header will be taken from our page header pool */
704 pp->pr_phoffset = 0;
705 off = palloc->pa_pagesz;
706 SPLAY_INIT(&pp->pr_phtree);
707 }
708
709 /*
710 * Alignment is to take place at `ioff' within the item. This means
711 * we must reserve up to `align - 1' bytes on the page to allow
712 * appropriate positioning of each item.
713 */
714 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
715 KASSERT(pp->pr_itemsperpage != 0);
716 if ((pp->pr_roflags & PR_NOTOUCH)) {
717 int idx;
718
719 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
720 idx++) {
721 /* nothing */
722 }
723 if (idx >= PHPOOL_MAX) {
724 /*
725 * if you see this panic, consider to tweak
726 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
727 */
728 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
729 pp->pr_wchan, pp->pr_itemsperpage);
730 }
731 pp->pr_phpool = &phpool[idx];
732 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
733 pp->pr_phpool = &phpool[0];
734 }
735 #if defined(DIAGNOSTIC)
736 else {
737 pp->pr_phpool = NULL;
738 }
739 #endif
740
741 /*
742 * Use the slack between the chunks and the page header
743 * for "cache coloring".
744 */
745 slack = off - pp->pr_itemsperpage * pp->pr_size;
746 pp->pr_maxcolor = (slack / align) * align;
747 pp->pr_curcolor = 0;
748
749 pp->pr_nget = 0;
750 pp->pr_nfail = 0;
751 pp->pr_nput = 0;
752 pp->pr_npagealloc = 0;
753 pp->pr_npagefree = 0;
754 pp->pr_hiwat = 0;
755 pp->pr_nidle = 0;
756
757 #ifdef POOL_DIAGNOSTIC
758 if (flags & PR_LOGGING) {
759 if (kmem_map == NULL ||
760 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
761 M_TEMP, M_NOWAIT)) == NULL)
762 pp->pr_roflags &= ~PR_LOGGING;
763 pp->pr_curlogentry = 0;
764 pp->pr_logsize = pool_logsize;
765 }
766 #endif
767
768 pp->pr_entered_file = NULL;
769 pp->pr_entered_line = 0;
770
771 simple_lock_init(&pp->pr_slock);
772
773 /*
774 * Initialize private page header pool and cache magazine pool if we
775 * haven't done so yet.
776 * XXX LOCKING.
777 */
778 if (phpool[0].pr_size == 0) {
779 int idx;
780 for (idx = 0; idx < PHPOOL_MAX; idx++) {
781 static char phpool_names[PHPOOL_MAX][6+1+6+1];
782 int nelem;
783 size_t sz;
784
785 nelem = PHPOOL_FREELIST_NELEM(idx);
786 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
787 "phpool-%d", nelem);
788 sz = sizeof(struct pool_item_header);
789 if (nelem) {
790 sz = PR_FREELIST_ALIGN(sz)
791 + nelem * sizeof(pool_item_freelist_t);
792 }
793 pool_init(&phpool[idx], sz, 0, 0, 0,
794 phpool_names[idx], &pool_allocator_meta);
795 }
796 #ifdef POOL_SUBPAGE
797 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
798 PR_RECURSIVE, "psppool", &pool_allocator_meta);
799 #endif
800 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
801 0, "pcgpool", &pool_allocator_meta);
802 }
803
804 /* Insert into the list of all pools. */
805 simple_lock(&pool_head_slock);
806 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
807 simple_unlock(&pool_head_slock);
808
809 /* Insert this into the list of pools using this allocator. */
810 s = splvm();
811 simple_lock(&palloc->pa_slock);
812 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
813 simple_unlock(&palloc->pa_slock);
814 splx(s);
815 pool_reclaim_register(pp);
816 }
817
818 /*
819 * De-commision a pool resource.
820 */
821 void
822 pool_destroy(struct pool *pp)
823 {
824 struct pool_pagelist pq;
825 struct pool_item_header *ph;
826 int s;
827
828 /* Remove from global pool list */
829 simple_lock(&pool_head_slock);
830 LIST_REMOVE(pp, pr_poollist);
831 if (drainpp == pp)
832 drainpp = NULL;
833 simple_unlock(&pool_head_slock);
834
835 /* Remove this pool from its allocator's list of pools. */
836 pool_reclaim_unregister(pp);
837 s = splvm();
838 simple_lock(&pp->pr_alloc->pa_slock);
839 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
840 simple_unlock(&pp->pr_alloc->pa_slock);
841 splx(s);
842
843 s = splvm();
844 simple_lock(&pp->pr_slock);
845
846 KASSERT(LIST_EMPTY(&pp->pr_cachelist));
847
848 #ifdef DIAGNOSTIC
849 if (pp->pr_nout != 0) {
850 pr_printlog(pp, NULL, printf);
851 panic("pool_destroy: pool busy: still out: %u",
852 pp->pr_nout);
853 }
854 #endif
855
856 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
857 KASSERT(LIST_EMPTY(&pp->pr_partpages));
858
859 /* Remove all pages */
860 LIST_INIT(&pq);
861 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
862 pr_rmpage(pp, ph, &pq);
863
864 simple_unlock(&pp->pr_slock);
865 splx(s);
866
867 pr_pagelist_free(pp, &pq);
868
869 #ifdef POOL_DIAGNOSTIC
870 if ((pp->pr_roflags & PR_LOGGING) != 0)
871 free(pp->pr_log, M_TEMP);
872 #endif
873 }
874
875 void
876 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
877 {
878
879 /* XXX no locking -- must be used just after pool_init() */
880 #ifdef DIAGNOSTIC
881 if (pp->pr_drain_hook != NULL)
882 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
883 #endif
884 pp->pr_drain_hook = fn;
885 pp->pr_drain_hook_arg = arg;
886 }
887
888 static struct pool_item_header *
889 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
890 {
891 struct pool_item_header *ph;
892 int s;
893
894 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
895
896 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
897 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
898 else {
899 s = splvm();
900 ph = pool_get(pp->pr_phpool, flags);
901 splx(s);
902 }
903
904 return (ph);
905 }
906
907 /*
908 * Grab an item from the pool; must be called at appropriate spl level
909 */
910 void *
911 #ifdef POOL_DIAGNOSTIC
912 _pool_get(struct pool *pp, int flags, const char *file, long line)
913 #else
914 pool_get(struct pool *pp, int flags)
915 #endif
916 {
917 struct pool_item *pi;
918 struct pool_item_header *ph;
919 void *v;
920
921 #ifdef DIAGNOSTIC
922 if (__predict_false(pp->pr_itemsperpage == 0))
923 panic("pool_get: pool %p: pr_itemsperpage is zero, "
924 "pool not initialized?", pp);
925 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
926 (flags & PR_WAITOK) != 0))
927 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
928
929 #endif /* DIAGNOSTIC */
930 #ifdef LOCKDEBUG
931 if (flags & PR_WAITOK)
932 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
933 SCHED_ASSERT_UNLOCKED();
934 #endif
935
936 simple_lock(&pp->pr_slock);
937 pr_enter(pp, file, line);
938
939 startover:
940 /*
941 * Check to see if we've reached the hard limit. If we have,
942 * and we can wait, then wait until an item has been returned to
943 * the pool.
944 */
945 #ifdef DIAGNOSTIC
946 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
947 pr_leave(pp);
948 simple_unlock(&pp->pr_slock);
949 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
950 }
951 #endif
952 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
953 if (pp->pr_drain_hook != NULL) {
954 /*
955 * Since the drain hook is going to free things
956 * back to the pool, unlock, call the hook, re-lock,
957 * and check the hardlimit condition again.
958 */
959 pr_leave(pp);
960 simple_unlock(&pp->pr_slock);
961 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
962 simple_lock(&pp->pr_slock);
963 pr_enter(pp, file, line);
964 if (pp->pr_nout < pp->pr_hardlimit)
965 goto startover;
966 }
967
968 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
969 /*
970 * XXX: A warning isn't logged in this case. Should
971 * it be?
972 */
973 pp->pr_flags |= PR_WANTED;
974 pr_leave(pp);
975 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
976 pr_enter(pp, file, line);
977 goto startover;
978 }
979
980 /*
981 * Log a message that the hard limit has been hit.
982 */
983 if (pp->pr_hardlimit_warning != NULL &&
984 ratecheck(&pp->pr_hardlimit_warning_last,
985 &pp->pr_hardlimit_ratecap))
986 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
987
988 pp->pr_nfail++;
989
990 pr_leave(pp);
991 simple_unlock(&pp->pr_slock);
992 return (NULL);
993 }
994
995 /*
996 * The convention we use is that if `curpage' is not NULL, then
997 * it points at a non-empty bucket. In particular, `curpage'
998 * never points at a page header which has PR_PHINPAGE set and
999 * has no items in its bucket.
1000 */
1001 if ((ph = pp->pr_curpage) == NULL) {
1002 int error;
1003
1004 #ifdef DIAGNOSTIC
1005 if (pp->pr_nitems != 0) {
1006 simple_unlock(&pp->pr_slock);
1007 printf("pool_get: %s: curpage NULL, nitems %u\n",
1008 pp->pr_wchan, pp->pr_nitems);
1009 panic("pool_get: nitems inconsistent");
1010 }
1011 #endif
1012
1013 /*
1014 * Call the back-end page allocator for more memory.
1015 * Release the pool lock, as the back-end page allocator
1016 * may block.
1017 */
1018 pr_leave(pp);
1019 error = pool_grow(pp, flags);
1020 pr_enter(pp, file, line);
1021 if (error != 0) {
1022 /*
1023 * We were unable to allocate a page or item
1024 * header, but we released the lock during
1025 * allocation, so perhaps items were freed
1026 * back to the pool. Check for this case.
1027 */
1028 if (pp->pr_curpage != NULL)
1029 goto startover;
1030
1031 pp->pr_nfail++;
1032 pr_leave(pp);
1033 simple_unlock(&pp->pr_slock);
1034 return (NULL);
1035 }
1036
1037 /* Start the allocation process over. */
1038 goto startover;
1039 }
1040 if (pp->pr_roflags & PR_NOTOUCH) {
1041 #ifdef DIAGNOSTIC
1042 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1043 pr_leave(pp);
1044 simple_unlock(&pp->pr_slock);
1045 panic("pool_get: %s: page empty", pp->pr_wchan);
1046 }
1047 #endif
1048 v = pr_item_notouch_get(pp, ph);
1049 #ifdef POOL_DIAGNOSTIC
1050 pr_log(pp, v, PRLOG_GET, file, line);
1051 #endif
1052 } else {
1053 v = pi = LIST_FIRST(&ph->ph_itemlist);
1054 if (__predict_false(v == NULL)) {
1055 pr_leave(pp);
1056 simple_unlock(&pp->pr_slock);
1057 panic("pool_get: %s: page empty", pp->pr_wchan);
1058 }
1059 #ifdef DIAGNOSTIC
1060 if (__predict_false(pp->pr_nitems == 0)) {
1061 pr_leave(pp);
1062 simple_unlock(&pp->pr_slock);
1063 printf("pool_get: %s: items on itemlist, nitems %u\n",
1064 pp->pr_wchan, pp->pr_nitems);
1065 panic("pool_get: nitems inconsistent");
1066 }
1067 #endif
1068
1069 #ifdef POOL_DIAGNOSTIC
1070 pr_log(pp, v, PRLOG_GET, file, line);
1071 #endif
1072
1073 #ifdef DIAGNOSTIC
1074 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1075 pr_printlog(pp, pi, printf);
1076 panic("pool_get(%s): free list modified: "
1077 "magic=%x; page %p; item addr %p\n",
1078 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1079 }
1080 #endif
1081
1082 /*
1083 * Remove from item list.
1084 */
1085 LIST_REMOVE(pi, pi_list);
1086 }
1087 pp->pr_nitems--;
1088 pp->pr_nout++;
1089 if (ph->ph_nmissing == 0) {
1090 #ifdef DIAGNOSTIC
1091 if (__predict_false(pp->pr_nidle == 0))
1092 panic("pool_get: nidle inconsistent");
1093 #endif
1094 pp->pr_nidle--;
1095
1096 /*
1097 * This page was previously empty. Move it to the list of
1098 * partially-full pages. This page is already curpage.
1099 */
1100 LIST_REMOVE(ph, ph_pagelist);
1101 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1102 }
1103 ph->ph_nmissing++;
1104 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1105 #ifdef DIAGNOSTIC
1106 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1107 !LIST_EMPTY(&ph->ph_itemlist))) {
1108 pr_leave(pp);
1109 simple_unlock(&pp->pr_slock);
1110 panic("pool_get: %s: nmissing inconsistent",
1111 pp->pr_wchan);
1112 }
1113 #endif
1114 /*
1115 * This page is now full. Move it to the full list
1116 * and select a new current page.
1117 */
1118 LIST_REMOVE(ph, ph_pagelist);
1119 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1120 pool_update_curpage(pp);
1121 }
1122
1123 pp->pr_nget++;
1124 pr_leave(pp);
1125
1126 /*
1127 * If we have a low water mark and we are now below that low
1128 * water mark, add more items to the pool.
1129 */
1130 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1131 /*
1132 * XXX: Should we log a warning? Should we set up a timeout
1133 * to try again in a second or so? The latter could break
1134 * a caller's assumptions about interrupt protection, etc.
1135 */
1136 }
1137
1138 simple_unlock(&pp->pr_slock);
1139 return (v);
1140 }
1141
1142 /*
1143 * Internal version of pool_put(). Pool is already locked/entered.
1144 */
1145 static void
1146 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1147 {
1148 struct pool_item *pi = v;
1149 struct pool_item_header *ph;
1150
1151 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1152 SCHED_ASSERT_UNLOCKED();
1153
1154 #ifdef DIAGNOSTIC
1155 if (__predict_false(pp->pr_nout == 0)) {
1156 printf("pool %s: putting with none out\n",
1157 pp->pr_wchan);
1158 panic("pool_put");
1159 }
1160 #endif
1161
1162 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1163 pr_printlog(pp, NULL, printf);
1164 panic("pool_put: %s: page header missing", pp->pr_wchan);
1165 }
1166
1167 #ifdef LOCKDEBUG
1168 /*
1169 * Check if we're freeing a locked simple lock.
1170 */
1171 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
1172 #endif
1173
1174 /*
1175 * Return to item list.
1176 */
1177 if (pp->pr_roflags & PR_NOTOUCH) {
1178 pr_item_notouch_put(pp, ph, v);
1179 } else {
1180 #ifdef DIAGNOSTIC
1181 pi->pi_magic = PI_MAGIC;
1182 #endif
1183 #ifdef DEBUG
1184 {
1185 int i, *ip = v;
1186
1187 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1188 *ip++ = PI_MAGIC;
1189 }
1190 }
1191 #endif
1192
1193 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1194 }
1195 KDASSERT(ph->ph_nmissing != 0);
1196 ph->ph_nmissing--;
1197 pp->pr_nput++;
1198 pp->pr_nitems++;
1199 pp->pr_nout--;
1200
1201 /* Cancel "pool empty" condition if it exists */
1202 if (pp->pr_curpage == NULL)
1203 pp->pr_curpage = ph;
1204
1205 if (pp->pr_flags & PR_WANTED) {
1206 pp->pr_flags &= ~PR_WANTED;
1207 if (ph->ph_nmissing == 0)
1208 pp->pr_nidle++;
1209 wakeup((caddr_t)pp);
1210 return;
1211 }
1212
1213 /*
1214 * If this page is now empty, do one of two things:
1215 *
1216 * (1) If we have more pages than the page high water mark,
1217 * free the page back to the system. ONLY CONSIDER
1218 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1219 * CLAIM.
1220 *
1221 * (2) Otherwise, move the page to the empty page list.
1222 *
1223 * Either way, select a new current page (so we use a partially-full
1224 * page if one is available).
1225 */
1226 if (ph->ph_nmissing == 0) {
1227 pp->pr_nidle++;
1228 if (pp->pr_npages > pp->pr_minpages &&
1229 (pp->pr_npages > pp->pr_maxpages ||
1230 pa_starved_p(pp->pr_alloc))) {
1231 pr_rmpage(pp, ph, pq);
1232 } else {
1233 LIST_REMOVE(ph, ph_pagelist);
1234 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1235
1236 /*
1237 * Update the timestamp on the page. A page must
1238 * be idle for some period of time before it can
1239 * be reclaimed by the pagedaemon. This minimizes
1240 * ping-pong'ing for memory.
1241 */
1242 getmicrotime(&ph->ph_time);
1243 }
1244 pool_update_curpage(pp);
1245 }
1246
1247 /*
1248 * If the page was previously completely full, move it to the
1249 * partially-full list and make it the current page. The next
1250 * allocation will get the item from this page, instead of
1251 * further fragmenting the pool.
1252 */
1253 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1254 LIST_REMOVE(ph, ph_pagelist);
1255 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1256 pp->pr_curpage = ph;
1257 }
1258 }
1259
1260 /*
1261 * Return resource to the pool; must be called at appropriate spl level
1262 */
1263 #ifdef POOL_DIAGNOSTIC
1264 void
1265 _pool_put(struct pool *pp, void *v, const char *file, long line)
1266 {
1267 struct pool_pagelist pq;
1268
1269 LIST_INIT(&pq);
1270
1271 simple_lock(&pp->pr_slock);
1272 pr_enter(pp, file, line);
1273
1274 pr_log(pp, v, PRLOG_PUT, file, line);
1275
1276 pool_do_put(pp, v, &pq);
1277
1278 pr_leave(pp);
1279 simple_unlock(&pp->pr_slock);
1280
1281 pr_pagelist_free(pp, &pq);
1282 }
1283 #undef pool_put
1284 #endif /* POOL_DIAGNOSTIC */
1285
1286 void
1287 pool_put(struct pool *pp, void *v)
1288 {
1289 struct pool_pagelist pq;
1290
1291 LIST_INIT(&pq);
1292
1293 simple_lock(&pp->pr_slock);
1294 pool_do_put(pp, v, &pq);
1295 simple_unlock(&pp->pr_slock);
1296
1297 pr_pagelist_free(pp, &pq);
1298 }
1299
1300 #ifdef POOL_DIAGNOSTIC
1301 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1302 #endif
1303
1304 /*
1305 * pool_grow: grow a pool by a page.
1306 *
1307 * => called with pool locked.
1308 * => unlock and relock the pool.
1309 * => return with pool locked.
1310 */
1311
1312 static int
1313 pool_grow(struct pool *pp, int flags)
1314 {
1315 struct pool_item_header *ph = NULL;
1316 char *cp;
1317
1318 simple_unlock(&pp->pr_slock);
1319 cp = pool_allocator_alloc(pp, flags);
1320 if (__predict_true(cp != NULL)) {
1321 ph = pool_alloc_item_header(pp, cp, flags);
1322 }
1323 if (__predict_false(cp == NULL || ph == NULL)) {
1324 if (cp != NULL) {
1325 pool_allocator_free(pp, cp);
1326 }
1327 simple_lock(&pp->pr_slock);
1328 return ENOMEM;
1329 }
1330
1331 simple_lock(&pp->pr_slock);
1332 pool_prime_page(pp, cp, ph);
1333 pp->pr_npagealloc++;
1334 return 0;
1335 }
1336
1337 /*
1338 * Add N items to the pool.
1339 */
1340 int
1341 pool_prime(struct pool *pp, int n)
1342 {
1343 int newpages;
1344 int error = 0;
1345
1346 simple_lock(&pp->pr_slock);
1347
1348 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1349
1350 while (newpages-- > 0) {
1351 error = pool_grow(pp, PR_NOWAIT);
1352 if (error) {
1353 break;
1354 }
1355 pp->pr_minpages++;
1356 }
1357
1358 if (pp->pr_minpages >= pp->pr_maxpages)
1359 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1360
1361 simple_unlock(&pp->pr_slock);
1362 return error;
1363 }
1364
1365 /*
1366 * Add a page worth of items to the pool.
1367 *
1368 * Note, we must be called with the pool descriptor LOCKED.
1369 */
1370 static void
1371 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1372 {
1373 struct pool_item *pi;
1374 caddr_t cp = storage;
1375 unsigned int align = pp->pr_align;
1376 unsigned int ioff = pp->pr_itemoffset;
1377 int n;
1378
1379 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1380
1381 #ifdef DIAGNOSTIC
1382 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1383 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1384 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1385 #endif
1386
1387 /*
1388 * Insert page header.
1389 */
1390 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1391 LIST_INIT(&ph->ph_itemlist);
1392 ph->ph_page = storage;
1393 ph->ph_nmissing = 0;
1394 getmicrotime(&ph->ph_time);
1395 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1396 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1397
1398 pp->pr_nidle++;
1399
1400 /*
1401 * Color this page.
1402 */
1403 cp = (caddr_t)(cp + pp->pr_curcolor);
1404 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1405 pp->pr_curcolor = 0;
1406
1407 /*
1408 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1409 */
1410 if (ioff != 0)
1411 cp = (caddr_t)(cp + (align - ioff));
1412
1413 /*
1414 * Insert remaining chunks on the bucket list.
1415 */
1416 n = pp->pr_itemsperpage;
1417 pp->pr_nitems += n;
1418
1419 if (pp->pr_roflags & PR_NOTOUCH) {
1420 pool_item_freelist_t *freelist = PR_FREELIST(ph);
1421 int i;
1422
1423 ph->ph_off = cp - storage;
1424 ph->ph_firstfree = 0;
1425 for (i = 0; i < n - 1; i++)
1426 freelist[i] = i + 1;
1427 freelist[n - 1] = PR_INDEX_EOL;
1428 } else {
1429 while (n--) {
1430 pi = (struct pool_item *)cp;
1431
1432 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1433
1434 /* Insert on page list */
1435 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1436 #ifdef DIAGNOSTIC
1437 pi->pi_magic = PI_MAGIC;
1438 #endif
1439 cp = (caddr_t)(cp + pp->pr_size);
1440 }
1441 }
1442
1443 /*
1444 * If the pool was depleted, point at the new page.
1445 */
1446 if (pp->pr_curpage == NULL)
1447 pp->pr_curpage = ph;
1448
1449 if (++pp->pr_npages > pp->pr_hiwat)
1450 pp->pr_hiwat = pp->pr_npages;
1451 }
1452
1453 /*
1454 * Used by pool_get() when nitems drops below the low water mark. This
1455 * is used to catch up pr_nitems with the low water mark.
1456 *
1457 * Note 1, we never wait for memory here, we let the caller decide what to do.
1458 *
1459 * Note 2, we must be called with the pool already locked, and we return
1460 * with it locked.
1461 */
1462 static int
1463 pool_catchup(struct pool *pp)
1464 {
1465 int error = 0;
1466
1467 while (POOL_NEEDS_CATCHUP(pp)) {
1468 error = pool_grow(pp, PR_NOWAIT);
1469 if (error) {
1470 break;
1471 }
1472 }
1473 return error;
1474 }
1475
1476 static void
1477 pool_update_curpage(struct pool *pp)
1478 {
1479
1480 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1481 if (pp->pr_curpage == NULL) {
1482 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1483 }
1484 }
1485
1486 void
1487 pool_setlowat(struct pool *pp, int n)
1488 {
1489
1490 simple_lock(&pp->pr_slock);
1491
1492 pp->pr_minitems = n;
1493 pp->pr_minpages = (n == 0)
1494 ? 0
1495 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1496
1497 /* Make sure we're caught up with the newly-set low water mark. */
1498 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1499 /*
1500 * XXX: Should we log a warning? Should we set up a timeout
1501 * to try again in a second or so? The latter could break
1502 * a caller's assumptions about interrupt protection, etc.
1503 */
1504 }
1505
1506 simple_unlock(&pp->pr_slock);
1507 }
1508
1509 void
1510 pool_sethiwat(struct pool *pp, int n)
1511 {
1512
1513 simple_lock(&pp->pr_slock);
1514
1515 pp->pr_maxpages = (n == 0)
1516 ? 0
1517 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1518
1519 simple_unlock(&pp->pr_slock);
1520 }
1521
1522 void
1523 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1524 {
1525
1526 simple_lock(&pp->pr_slock);
1527
1528 pp->pr_hardlimit = n;
1529 pp->pr_hardlimit_warning = warnmess;
1530 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1531 pp->pr_hardlimit_warning_last.tv_sec = 0;
1532 pp->pr_hardlimit_warning_last.tv_usec = 0;
1533
1534 /*
1535 * In-line version of pool_sethiwat(), because we don't want to
1536 * release the lock.
1537 */
1538 pp->pr_maxpages = (n == 0)
1539 ? 0
1540 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1541
1542 simple_unlock(&pp->pr_slock);
1543 }
1544
1545 /*
1546 * Release all complete pages that have not been used recently.
1547 */
1548 int
1549 #ifdef POOL_DIAGNOSTIC
1550 _pool_reclaim(struct pool *pp, const char *file, long line)
1551 #else
1552 pool_reclaim(struct pool *pp)
1553 #endif
1554 {
1555 struct pool_item_header *ph, *phnext;
1556 struct pool_cache *pc;
1557 struct pool_pagelist pq;
1558 struct pool_cache_grouplist pcgl;
1559 struct timeval curtime, diff;
1560
1561 if (pp->pr_drain_hook != NULL) {
1562 /*
1563 * The drain hook must be called with the pool unlocked.
1564 */
1565 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1566 }
1567
1568 if (simple_lock_try(&pp->pr_slock) == 0)
1569 return (0);
1570 pr_enter(pp, file, line);
1571
1572 LIST_INIT(&pq);
1573 LIST_INIT(&pcgl);
1574
1575 /*
1576 * Reclaim items from the pool's caches.
1577 */
1578 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1579 pool_cache_reclaim(pc, &pq, &pcgl);
1580
1581 getmicrotime(&curtime);
1582
1583 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1584 phnext = LIST_NEXT(ph, ph_pagelist);
1585
1586 /* Check our minimum page claim */
1587 if (pp->pr_npages <= pp->pr_minpages)
1588 break;
1589
1590 KASSERT(ph->ph_nmissing == 0);
1591 timersub(&curtime, &ph->ph_time, &diff);
1592 if (diff.tv_sec < pool_inactive_time
1593 && !pa_starved_p(pp->pr_alloc))
1594 continue;
1595
1596 /*
1597 * If freeing this page would put us below
1598 * the low water mark, stop now.
1599 */
1600 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1601 pp->pr_minitems)
1602 break;
1603
1604 pr_rmpage(pp, ph, &pq);
1605 }
1606
1607 pr_leave(pp);
1608 simple_unlock(&pp->pr_slock);
1609 if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
1610 return 0;
1611
1612 pr_pagelist_free(pp, &pq);
1613 pcg_grouplist_free(&pcgl);
1614 return (1);
1615 }
1616
1617 /*
1618 * Drain pools, one at a time.
1619 *
1620 * Note, we must never be called from an interrupt context.
1621 */
1622 void
1623 pool_drain(void *arg __unused)
1624 {
1625 struct pool *pp;
1626 int s;
1627
1628 pp = NULL;
1629 s = splvm();
1630 simple_lock(&pool_head_slock);
1631 if (drainpp == NULL) {
1632 drainpp = LIST_FIRST(&pool_head);
1633 }
1634 if (drainpp) {
1635 pp = drainpp;
1636 drainpp = LIST_NEXT(pp, pr_poollist);
1637 }
1638 simple_unlock(&pool_head_slock);
1639 if (pp)
1640 pool_reclaim(pp);
1641 splx(s);
1642 }
1643
1644 /*
1645 * Diagnostic helpers.
1646 */
1647 void
1648 pool_print(struct pool *pp, const char *modif)
1649 {
1650 int s;
1651
1652 s = splvm();
1653 if (simple_lock_try(&pp->pr_slock) == 0) {
1654 printf("pool %s is locked; try again later\n",
1655 pp->pr_wchan);
1656 splx(s);
1657 return;
1658 }
1659 pool_print1(pp, modif, printf);
1660 simple_unlock(&pp->pr_slock);
1661 splx(s);
1662 }
1663
1664 void
1665 pool_printall(const char *modif, void (*pr)(const char *, ...))
1666 {
1667 struct pool *pp;
1668
1669 if (simple_lock_try(&pool_head_slock) == 0) {
1670 (*pr)("WARNING: pool_head_slock is locked\n");
1671 } else {
1672 simple_unlock(&pool_head_slock);
1673 }
1674
1675 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1676 pool_printit(pp, modif, pr);
1677 }
1678 }
1679
1680 void
1681 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1682 {
1683
1684 if (pp == NULL) {
1685 (*pr)("Must specify a pool to print.\n");
1686 return;
1687 }
1688
1689 /*
1690 * Called from DDB; interrupts should be blocked, and all
1691 * other processors should be paused. We can skip locking
1692 * the pool in this case.
1693 *
1694 * We do a simple_lock_try() just to print the lock
1695 * status, however.
1696 */
1697
1698 if (simple_lock_try(&pp->pr_slock) == 0)
1699 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1700 else
1701 simple_unlock(&pp->pr_slock);
1702
1703 pool_print1(pp, modif, pr);
1704 }
1705
1706 static void
1707 pool_print_pagelist(struct pool *pp __unused, struct pool_pagelist *pl,
1708 void (*pr)(const char *, ...))
1709 {
1710 struct pool_item_header *ph;
1711 #ifdef DIAGNOSTIC
1712 struct pool_item *pi;
1713 #endif
1714
1715 LIST_FOREACH(ph, pl, ph_pagelist) {
1716 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1717 ph->ph_page, ph->ph_nmissing,
1718 (u_long)ph->ph_time.tv_sec,
1719 (u_long)ph->ph_time.tv_usec);
1720 #ifdef DIAGNOSTIC
1721 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1722 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1723 if (pi->pi_magic != PI_MAGIC) {
1724 (*pr)("\t\t\titem %p, magic 0x%x\n",
1725 pi, pi->pi_magic);
1726 }
1727 }
1728 }
1729 #endif
1730 }
1731 }
1732
1733 static void
1734 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1735 {
1736 struct pool_item_header *ph;
1737 struct pool_cache *pc;
1738 struct pool_cache_group *pcg;
1739 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1740 char c;
1741
1742 while ((c = *modif++) != '\0') {
1743 if (c == 'l')
1744 print_log = 1;
1745 if (c == 'p')
1746 print_pagelist = 1;
1747 if (c == 'c')
1748 print_cache = 1;
1749 }
1750
1751 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1752 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1753 pp->pr_roflags);
1754 (*pr)("\talloc %p\n", pp->pr_alloc);
1755 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1756 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1757 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1758 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1759
1760 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1761 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1762 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1763 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1764
1765 if (print_pagelist == 0)
1766 goto skip_pagelist;
1767
1768 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1769 (*pr)("\n\tempty page list:\n");
1770 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1771 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1772 (*pr)("\n\tfull page list:\n");
1773 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1774 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1775 (*pr)("\n\tpartial-page list:\n");
1776 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1777
1778 if (pp->pr_curpage == NULL)
1779 (*pr)("\tno current page\n");
1780 else
1781 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1782
1783 skip_pagelist:
1784 if (print_log == 0)
1785 goto skip_log;
1786
1787 (*pr)("\n");
1788 if ((pp->pr_roflags & PR_LOGGING) == 0)
1789 (*pr)("\tno log\n");
1790 else {
1791 pr_printlog(pp, NULL, pr);
1792 }
1793
1794 skip_log:
1795 if (print_cache == 0)
1796 goto skip_cache;
1797
1798 #define PR_GROUPLIST(pcg) \
1799 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1800 for (i = 0; i < PCG_NOBJECTS; i++) { \
1801 if (pcg->pcg_objects[i].pcgo_pa != \
1802 POOL_PADDR_INVALID) { \
1803 (*pr)("\t\t\t%p, 0x%llx\n", \
1804 pcg->pcg_objects[i].pcgo_va, \
1805 (unsigned long long) \
1806 pcg->pcg_objects[i].pcgo_pa); \
1807 } else { \
1808 (*pr)("\t\t\t%p\n", \
1809 pcg->pcg_objects[i].pcgo_va); \
1810 } \
1811 }
1812
1813 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1814 (*pr)("\tcache %p\n", pc);
1815 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1816 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1817 (*pr)("\t full groups:\n");
1818 LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
1819 PR_GROUPLIST(pcg);
1820 }
1821 (*pr)("\t partial groups:\n");
1822 LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
1823 PR_GROUPLIST(pcg);
1824 }
1825 (*pr)("\t empty groups:\n");
1826 LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
1827 PR_GROUPLIST(pcg);
1828 }
1829 }
1830 #undef PR_GROUPLIST
1831
1832 skip_cache:
1833 pr_enter_check(pp, pr);
1834 }
1835
1836 static int
1837 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1838 {
1839 struct pool_item *pi;
1840 caddr_t page;
1841 int n;
1842
1843 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1844 page = (caddr_t)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1845 if (page != ph->ph_page &&
1846 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1847 if (label != NULL)
1848 printf("%s: ", label);
1849 printf("pool(%p:%s): page inconsistency: page %p;"
1850 " at page head addr %p (p %p)\n", pp,
1851 pp->pr_wchan, ph->ph_page,
1852 ph, page);
1853 return 1;
1854 }
1855 }
1856
1857 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1858 return 0;
1859
1860 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1861 pi != NULL;
1862 pi = LIST_NEXT(pi,pi_list), n++) {
1863
1864 #ifdef DIAGNOSTIC
1865 if (pi->pi_magic != PI_MAGIC) {
1866 if (label != NULL)
1867 printf("%s: ", label);
1868 printf("pool(%s): free list modified: magic=%x;"
1869 " page %p; item ordinal %d; addr %p\n",
1870 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1871 n, pi);
1872 panic("pool");
1873 }
1874 #endif
1875 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1876 continue;
1877 }
1878 page = (caddr_t)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1879 if (page == ph->ph_page)
1880 continue;
1881
1882 if (label != NULL)
1883 printf("%s: ", label);
1884 printf("pool(%p:%s): page inconsistency: page %p;"
1885 " item ordinal %d; addr %p (p %p)\n", pp,
1886 pp->pr_wchan, ph->ph_page,
1887 n, pi, page);
1888 return 1;
1889 }
1890 return 0;
1891 }
1892
1893
1894 int
1895 pool_chk(struct pool *pp, const char *label)
1896 {
1897 struct pool_item_header *ph;
1898 int r = 0;
1899
1900 simple_lock(&pp->pr_slock);
1901 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1902 r = pool_chk_page(pp, label, ph);
1903 if (r) {
1904 goto out;
1905 }
1906 }
1907 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1908 r = pool_chk_page(pp, label, ph);
1909 if (r) {
1910 goto out;
1911 }
1912 }
1913 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1914 r = pool_chk_page(pp, label, ph);
1915 if (r) {
1916 goto out;
1917 }
1918 }
1919
1920 out:
1921 simple_unlock(&pp->pr_slock);
1922 return (r);
1923 }
1924
1925 /*
1926 * pool_cache_init:
1927 *
1928 * Initialize a pool cache.
1929 *
1930 * NOTE: If the pool must be protected from interrupts, we expect
1931 * to be called at the appropriate interrupt priority level.
1932 */
1933 void
1934 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1935 int (*ctor)(void *, void *, int),
1936 void (*dtor)(void *, void *),
1937 void *arg)
1938 {
1939
1940 LIST_INIT(&pc->pc_emptygroups);
1941 LIST_INIT(&pc->pc_fullgroups);
1942 LIST_INIT(&pc->pc_partgroups);
1943 simple_lock_init(&pc->pc_slock);
1944
1945 pc->pc_pool = pp;
1946
1947 pc->pc_ctor = ctor;
1948 pc->pc_dtor = dtor;
1949 pc->pc_arg = arg;
1950
1951 pc->pc_hits = 0;
1952 pc->pc_misses = 0;
1953
1954 pc->pc_ngroups = 0;
1955
1956 pc->pc_nitems = 0;
1957
1958 simple_lock(&pp->pr_slock);
1959 LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1960 simple_unlock(&pp->pr_slock);
1961 }
1962
1963 /*
1964 * pool_cache_destroy:
1965 *
1966 * Destroy a pool cache.
1967 */
1968 void
1969 pool_cache_destroy(struct pool_cache *pc)
1970 {
1971 struct pool *pp = pc->pc_pool;
1972
1973 /* First, invalidate the entire cache. */
1974 pool_cache_invalidate(pc);
1975
1976 /* ...and remove it from the pool's cache list. */
1977 simple_lock(&pp->pr_slock);
1978 LIST_REMOVE(pc, pc_poollist);
1979 simple_unlock(&pp->pr_slock);
1980 }
1981
1982 static inline void *
1983 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1984 {
1985 void *object;
1986 u_int idx;
1987
1988 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1989 KASSERT(pcg->pcg_avail != 0);
1990 idx = --pcg->pcg_avail;
1991
1992 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1993 object = pcg->pcg_objects[idx].pcgo_va;
1994 if (pap != NULL)
1995 *pap = pcg->pcg_objects[idx].pcgo_pa;
1996 pcg->pcg_objects[idx].pcgo_va = NULL;
1997
1998 return (object);
1999 }
2000
2001 static inline void
2002 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
2003 {
2004 u_int idx;
2005
2006 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
2007 idx = pcg->pcg_avail++;
2008
2009 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
2010 pcg->pcg_objects[idx].pcgo_va = object;
2011 pcg->pcg_objects[idx].pcgo_pa = pa;
2012 }
2013
2014 static void
2015 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
2016 {
2017 struct pool_cache_group *pcg;
2018 int s;
2019
2020 s = splvm();
2021 while ((pcg = LIST_FIRST(pcgl)) != NULL) {
2022 LIST_REMOVE(pcg, pcg_list);
2023 pool_put(&pcgpool, pcg);
2024 }
2025 splx(s);
2026 }
2027
2028 /*
2029 * pool_cache_get{,_paddr}:
2030 *
2031 * Get an object from a pool cache (optionally returning
2032 * the physical address of the object).
2033 */
2034 void *
2035 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
2036 {
2037 struct pool_cache_group *pcg;
2038 void *object;
2039
2040 #ifdef LOCKDEBUG
2041 if (flags & PR_WAITOK)
2042 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2043 #endif
2044
2045 simple_lock(&pc->pc_slock);
2046
2047 pcg = LIST_FIRST(&pc->pc_partgroups);
2048 if (pcg == NULL) {
2049 pcg = LIST_FIRST(&pc->pc_fullgroups);
2050 if (pcg != NULL) {
2051 LIST_REMOVE(pcg, pcg_list);
2052 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2053 }
2054 }
2055 if (pcg == NULL) {
2056
2057 /*
2058 * No groups with any available objects. Allocate
2059 * a new object, construct it, and return it to
2060 * the caller. We will allocate a group, if necessary,
2061 * when the object is freed back to the cache.
2062 */
2063 pc->pc_misses++;
2064 simple_unlock(&pc->pc_slock);
2065 object = pool_get(pc->pc_pool, flags);
2066 if (object != NULL && pc->pc_ctor != NULL) {
2067 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2068 pool_put(pc->pc_pool, object);
2069 return (NULL);
2070 }
2071 }
2072 if (object != NULL && pap != NULL) {
2073 #ifdef POOL_VTOPHYS
2074 *pap = POOL_VTOPHYS(object);
2075 #else
2076 *pap = POOL_PADDR_INVALID;
2077 #endif
2078 }
2079 return (object);
2080 }
2081
2082 pc->pc_hits++;
2083 pc->pc_nitems--;
2084 object = pcg_get(pcg, pap);
2085
2086 if (pcg->pcg_avail == 0) {
2087 LIST_REMOVE(pcg, pcg_list);
2088 LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
2089 }
2090 simple_unlock(&pc->pc_slock);
2091
2092 return (object);
2093 }
2094
2095 /*
2096 * pool_cache_put{,_paddr}:
2097 *
2098 * Put an object back to the pool cache (optionally caching the
2099 * physical address of the object).
2100 */
2101 void
2102 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
2103 {
2104 struct pool_cache_group *pcg;
2105 int s;
2106
2107 if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
2108 goto destruct;
2109 }
2110
2111 simple_lock(&pc->pc_slock);
2112
2113 pcg = LIST_FIRST(&pc->pc_partgroups);
2114 if (pcg == NULL) {
2115 pcg = LIST_FIRST(&pc->pc_emptygroups);
2116 if (pcg != NULL) {
2117 LIST_REMOVE(pcg, pcg_list);
2118 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2119 }
2120 }
2121 if (pcg == NULL) {
2122
2123 /*
2124 * No empty groups to free the object to. Attempt to
2125 * allocate one.
2126 */
2127 simple_unlock(&pc->pc_slock);
2128 s = splvm();
2129 pcg = pool_get(&pcgpool, PR_NOWAIT);
2130 splx(s);
2131 if (pcg == NULL) {
2132 destruct:
2133
2134 /*
2135 * Unable to allocate a cache group; destruct the object
2136 * and free it back to the pool.
2137 */
2138 pool_cache_destruct_object(pc, object);
2139 return;
2140 }
2141 memset(pcg, 0, sizeof(*pcg));
2142 simple_lock(&pc->pc_slock);
2143 pc->pc_ngroups++;
2144 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2145 }
2146
2147 pc->pc_nitems++;
2148 pcg_put(pcg, object, pa);
2149
2150 if (pcg->pcg_avail == PCG_NOBJECTS) {
2151 LIST_REMOVE(pcg, pcg_list);
2152 LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
2153 }
2154 simple_unlock(&pc->pc_slock);
2155 }
2156
2157 /*
2158 * pool_cache_destruct_object:
2159 *
2160 * Force destruction of an object and its release back into
2161 * the pool.
2162 */
2163 void
2164 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2165 {
2166
2167 if (pc->pc_dtor != NULL)
2168 (*pc->pc_dtor)(pc->pc_arg, object);
2169 pool_put(pc->pc_pool, object);
2170 }
2171
2172 static void
2173 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
2174 struct pool_cache *pc, struct pool_pagelist *pq,
2175 struct pool_cache_grouplist *pcgdl)
2176 {
2177 struct pool_cache_group *pcg, *npcg;
2178 void *object;
2179
2180 for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
2181 npcg = LIST_NEXT(pcg, pcg_list);
2182 while (pcg->pcg_avail != 0) {
2183 pc->pc_nitems--;
2184 object = pcg_get(pcg, NULL);
2185 if (pc->pc_dtor != NULL)
2186 (*pc->pc_dtor)(pc->pc_arg, object);
2187 pool_do_put(pc->pc_pool, object, pq);
2188 }
2189 pc->pc_ngroups--;
2190 LIST_REMOVE(pcg, pcg_list);
2191 LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
2192 }
2193 }
2194
2195 static void
2196 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
2197 struct pool_cache_grouplist *pcgl)
2198 {
2199
2200 LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
2201 LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
2202
2203 pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
2204 pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
2205
2206 KASSERT(LIST_EMPTY(&pc->pc_partgroups));
2207 KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
2208 KASSERT(pc->pc_nitems == 0);
2209 }
2210
2211 /*
2212 * pool_cache_invalidate:
2213 *
2214 * Invalidate a pool cache (destruct and release all of the
2215 * cached objects).
2216 */
2217 void
2218 pool_cache_invalidate(struct pool_cache *pc)
2219 {
2220 struct pool_pagelist pq;
2221 struct pool_cache_grouplist pcgl;
2222
2223 LIST_INIT(&pq);
2224 LIST_INIT(&pcgl);
2225
2226 simple_lock(&pc->pc_slock);
2227 simple_lock(&pc->pc_pool->pr_slock);
2228
2229 pool_do_cache_invalidate(pc, &pq, &pcgl);
2230
2231 simple_unlock(&pc->pc_pool->pr_slock);
2232 simple_unlock(&pc->pc_slock);
2233
2234 pr_pagelist_free(pc->pc_pool, &pq);
2235 pcg_grouplist_free(&pcgl);
2236 }
2237
2238 /*
2239 * pool_cache_reclaim:
2240 *
2241 * Reclaim a pool cache for pool_reclaim().
2242 */
2243 static void
2244 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
2245 struct pool_cache_grouplist *pcgl)
2246 {
2247
2248 /*
2249 * We're locking in the wrong order (normally pool_cache -> pool,
2250 * but the pool is already locked when we get here), so we have
2251 * to use trylock. If we can't lock the pool_cache, it's not really
2252 * a big deal here.
2253 */
2254 if (simple_lock_try(&pc->pc_slock) == 0)
2255 return;
2256
2257 pool_do_cache_invalidate(pc, pq, pcgl);
2258
2259 simple_unlock(&pc->pc_slock);
2260 }
2261
2262 /*
2263 * Pool backend allocators.
2264 *
2265 * Each pool has a backend allocator that handles allocation, deallocation,
2266 * and any additional draining that might be needed.
2267 *
2268 * We provide two standard allocators:
2269 *
2270 * pool_allocator_kmem - the default when no allocator is specified
2271 *
2272 * pool_allocator_nointr - used for pools that will not be accessed
2273 * in interrupt context.
2274 */
2275 void *pool_page_alloc(struct pool *, int);
2276 void pool_page_free(struct pool *, void *);
2277
2278 #ifdef POOL_SUBPAGE
2279 struct pool_allocator pool_allocator_kmem_fullpage = {
2280 pool_page_alloc, pool_page_free, 0,
2281 .pa_backingmapptr = &kmem_map,
2282 };
2283 #else
2284 struct pool_allocator pool_allocator_kmem = {
2285 pool_page_alloc, pool_page_free, 0,
2286 .pa_backingmapptr = &kmem_map,
2287 };
2288 #endif
2289
2290 void *pool_page_alloc_nointr(struct pool *, int);
2291 void pool_page_free_nointr(struct pool *, void *);
2292
2293 #ifdef POOL_SUBPAGE
2294 struct pool_allocator pool_allocator_nointr_fullpage = {
2295 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2296 .pa_backingmapptr = &kernel_map,
2297 };
2298 #else
2299 struct pool_allocator pool_allocator_nointr = {
2300 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2301 .pa_backingmapptr = &kernel_map,
2302 };
2303 #endif
2304
2305 #ifdef POOL_SUBPAGE
2306 void *pool_subpage_alloc(struct pool *, int);
2307 void pool_subpage_free(struct pool *, void *);
2308
2309 struct pool_allocator pool_allocator_kmem = {
2310 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2311 .pa_backingmapptr = &kmem_map,
2312 };
2313
2314 void *pool_subpage_alloc_nointr(struct pool *, int);
2315 void pool_subpage_free_nointr(struct pool *, void *);
2316
2317 struct pool_allocator pool_allocator_nointr = {
2318 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2319 .pa_backingmapptr = &kmem_map,
2320 };
2321 #endif /* POOL_SUBPAGE */
2322
2323 static void *
2324 pool_allocator_alloc(struct pool *pp, int flags)
2325 {
2326 struct pool_allocator *pa = pp->pr_alloc;
2327 void *res;
2328
2329 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2330
2331 res = (*pa->pa_alloc)(pp, flags);
2332 if (res == NULL && (flags & PR_WAITOK) == 0) {
2333 /*
2334 * We only run the drain hook here if PR_NOWAIT.
2335 * In other cases, the hook will be run in
2336 * pool_reclaim().
2337 */
2338 if (pp->pr_drain_hook != NULL) {
2339 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2340 res = (*pa->pa_alloc)(pp, flags);
2341 }
2342 }
2343 return res;
2344 }
2345
2346 static void
2347 pool_allocator_free(struct pool *pp, void *v)
2348 {
2349 struct pool_allocator *pa = pp->pr_alloc;
2350
2351 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2352
2353 (*pa->pa_free)(pp, v);
2354 }
2355
2356 void *
2357 pool_page_alloc(struct pool *pp __unused, int flags)
2358 {
2359 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2360
2361 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2362 }
2363
2364 void
2365 pool_page_free(struct pool *pp __unused, void *v)
2366 {
2367
2368 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2369 }
2370
2371 static void *
2372 pool_page_alloc_meta(struct pool *pp __unused, int flags)
2373 {
2374 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2375
2376 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2377 }
2378
2379 static void
2380 pool_page_free_meta(struct pool *pp __unused, void *v)
2381 {
2382
2383 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2384 }
2385
2386 #ifdef POOL_SUBPAGE
2387 /* Sub-page allocator, for machines with large hardware pages. */
2388 void *
2389 pool_subpage_alloc(struct pool *pp, int flags)
2390 {
2391 void *v;
2392 int s;
2393 s = splvm();
2394 v = pool_get(&psppool, flags);
2395 splx(s);
2396 return v;
2397 }
2398
2399 void
2400 pool_subpage_free(struct pool *pp, void *v)
2401 {
2402 int s;
2403 s = splvm();
2404 pool_put(&psppool, v);
2405 splx(s);
2406 }
2407
2408 /* We don't provide a real nointr allocator. Maybe later. */
2409 void *
2410 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2411 {
2412
2413 return (pool_subpage_alloc(pp, flags));
2414 }
2415
2416 void
2417 pool_subpage_free_nointr(struct pool *pp, void *v)
2418 {
2419
2420 pool_subpage_free(pp, v);
2421 }
2422 #endif /* POOL_SUBPAGE */
2423 void *
2424 pool_page_alloc_nointr(struct pool *pp __unused, int flags)
2425 {
2426 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2427
2428 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2429 }
2430
2431 void
2432 pool_page_free_nointr(struct pool *pp __unused, void *v)
2433 {
2434
2435 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2436 }
2437