Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.122.4.1
      1 /*	$NetBSD: subr_pool.c,v 1.122.4.1 2006/10/22 06:07:11 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.122.4.1 2006/10/22 06:07:11 yamt Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/lock.h>
     54 #include <sys/pool.h>
     55 #include <sys/syslog.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according to
     63  * the pool item size. Each page is kept on one of three lists in the
     64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     65  * for empty, full and partially-full pages respectively. The individual
     66  * pool items are on a linked list headed by `ph_itemlist' in each page
     67  * header. The memory for building the page list is either taken from
     68  * the allocated pages themselves (for small pool items) or taken from
     69  * an internal pool of page headers (`phpool').
     70  */
     71 
     72 /* List of all pools */
     73 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     74 
     75 /* Private pool for page header structures */
     76 #define	PHPOOL_MAX	8
     77 static struct pool phpool[PHPOOL_MAX];
     78 #define	PHPOOL_FREELIST_NELEM(idx)	(((idx) == 0) ? 0 : (1 << (idx)))
     79 
     80 #ifdef POOL_SUBPAGE
     81 /* Pool of subpages for use by normal pools. */
     82 static struct pool psppool;
     83 #endif
     84 
     85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     86     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     87 
     88 static void *pool_page_alloc_meta(struct pool *, int);
     89 static void pool_page_free_meta(struct pool *, void *);
     90 
     91 /* allocator for pool metadata */
     92 static struct pool_allocator pool_allocator_meta = {
     93 	pool_page_alloc_meta, pool_page_free_meta,
     94 	.pa_backingmapptr = &kmem_map,
     95 };
     96 
     97 /* # of seconds to retain page after last use */
     98 int pool_inactive_time = 10;
     99 
    100 /* Next candidate for drainage (see pool_drain()) */
    101 static struct pool	*drainpp;
    102 
    103 /* This spin lock protects both pool_head and drainpp. */
    104 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
    105 
    106 typedef uint8_t pool_item_freelist_t;
    107 
    108 struct pool_item_header {
    109 	/* Page headers */
    110 	LIST_ENTRY(pool_item_header)
    111 				ph_pagelist;	/* pool page list */
    112 	SPLAY_ENTRY(pool_item_header)
    113 				ph_node;	/* Off-page page headers */
    114 	caddr_t			ph_page;	/* this page's address */
    115 	struct timeval		ph_time;	/* last referenced */
    116 	union {
    117 		/* !PR_NOTOUCH */
    118 		struct {
    119 			LIST_HEAD(, pool_item)
    120 				phu_itemlist;	/* chunk list for this page */
    121 		} phu_normal;
    122 		/* PR_NOTOUCH */
    123 		struct {
    124 			uint16_t
    125 				phu_off;	/* start offset in page */
    126 			pool_item_freelist_t
    127 				phu_firstfree;	/* first free item */
    128 			/*
    129 			 * XXX it might be better to use
    130 			 * a simple bitmap and ffs(3)
    131 			 */
    132 		} phu_notouch;
    133 	} ph_u;
    134 	uint16_t		ph_nmissing;	/* # of chunks in use */
    135 };
    136 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    137 #define	ph_off		ph_u.phu_notouch.phu_off
    138 #define	ph_firstfree	ph_u.phu_notouch.phu_firstfree
    139 
    140 struct pool_item {
    141 #ifdef DIAGNOSTIC
    142 	u_int pi_magic;
    143 #endif
    144 #define	PI_MAGIC 0xdeadbeefU
    145 	/* Other entries use only this list entry */
    146 	LIST_ENTRY(pool_item)	pi_list;
    147 };
    148 
    149 #define	POOL_NEEDS_CATCHUP(pp)						\
    150 	((pp)->pr_nitems < (pp)->pr_minitems)
    151 
    152 /*
    153  * Pool cache management.
    154  *
    155  * Pool caches provide a way for constructed objects to be cached by the
    156  * pool subsystem.  This can lead to performance improvements by avoiding
    157  * needless object construction/destruction; it is deferred until absolutely
    158  * necessary.
    159  *
    160  * Caches are grouped into cache groups.  Each cache group references
    161  * up to 16 constructed objects.  When a cache allocates an object
    162  * from the pool, it calls the object's constructor and places it into
    163  * a cache group.  When a cache group frees an object back to the pool,
    164  * it first calls the object's destructor.  This allows the object to
    165  * persist in constructed form while freed to the cache.
    166  *
    167  * Multiple caches may exist for each pool.  This allows a single
    168  * object type to have multiple constructed forms.  The pool references
    169  * each cache, so that when a pool is drained by the pagedaemon, it can
    170  * drain each individual cache as well.  Each time a cache is drained,
    171  * the most idle cache group is freed to the pool in its entirety.
    172  *
    173  * Pool caches are layed on top of pools.  By layering them, we can avoid
    174  * the complexity of cache management for pools which would not benefit
    175  * from it.
    176  */
    177 
    178 /* The cache group pool. */
    179 static struct pool pcgpool;
    180 
    181 static void	pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
    182 				   struct pool_cache_grouplist *);
    183 static void	pcg_grouplist_free(struct pool_cache_grouplist *);
    184 
    185 static int	pool_catchup(struct pool *);
    186 static void	pool_prime_page(struct pool *, caddr_t,
    187 		    struct pool_item_header *);
    188 static void	pool_update_curpage(struct pool *);
    189 
    190 static int	pool_grow(struct pool *, int);
    191 static void	*pool_allocator_alloc(struct pool *, int);
    192 static void	pool_allocator_free(struct pool *, void *);
    193 
    194 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    195 	void (*)(const char *, ...));
    196 static void pool_print1(struct pool *, const char *,
    197 	void (*)(const char *, ...));
    198 
    199 static int pool_chk_page(struct pool *, const char *,
    200 			 struct pool_item_header *);
    201 
    202 /*
    203  * Pool log entry. An array of these is allocated in pool_init().
    204  */
    205 struct pool_log {
    206 	const char	*pl_file;
    207 	long		pl_line;
    208 	int		pl_action;
    209 #define	PRLOG_GET	1
    210 #define	PRLOG_PUT	2
    211 	void		*pl_addr;
    212 };
    213 
    214 #ifdef POOL_DIAGNOSTIC
    215 /* Number of entries in pool log buffers */
    216 #ifndef POOL_LOGSIZE
    217 #define	POOL_LOGSIZE	10
    218 #endif
    219 
    220 int pool_logsize = POOL_LOGSIZE;
    221 
    222 static inline void
    223 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    224 {
    225 	int n = pp->pr_curlogentry;
    226 	struct pool_log *pl;
    227 
    228 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    229 		return;
    230 
    231 	/*
    232 	 * Fill in the current entry. Wrap around and overwrite
    233 	 * the oldest entry if necessary.
    234 	 */
    235 	pl = &pp->pr_log[n];
    236 	pl->pl_file = file;
    237 	pl->pl_line = line;
    238 	pl->pl_action = action;
    239 	pl->pl_addr = v;
    240 	if (++n >= pp->pr_logsize)
    241 		n = 0;
    242 	pp->pr_curlogentry = n;
    243 }
    244 
    245 static void
    246 pr_printlog(struct pool *pp, struct pool_item *pi,
    247     void (*pr)(const char *, ...))
    248 {
    249 	int i = pp->pr_logsize;
    250 	int n = pp->pr_curlogentry;
    251 
    252 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    253 		return;
    254 
    255 	/*
    256 	 * Print all entries in this pool's log.
    257 	 */
    258 	while (i-- > 0) {
    259 		struct pool_log *pl = &pp->pr_log[n];
    260 		if (pl->pl_action != 0) {
    261 			if (pi == NULL || pi == pl->pl_addr) {
    262 				(*pr)("\tlog entry %d:\n", i);
    263 				(*pr)("\t\taction = %s, addr = %p\n",
    264 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    265 				    pl->pl_addr);
    266 				(*pr)("\t\tfile: %s at line %lu\n",
    267 				    pl->pl_file, pl->pl_line);
    268 			}
    269 		}
    270 		if (++n >= pp->pr_logsize)
    271 			n = 0;
    272 	}
    273 }
    274 
    275 static inline void
    276 pr_enter(struct pool *pp, const char *file, long line)
    277 {
    278 
    279 	if (__predict_false(pp->pr_entered_file != NULL)) {
    280 		printf("pool %s: reentrancy at file %s line %ld\n",
    281 		    pp->pr_wchan, file, line);
    282 		printf("         previous entry at file %s line %ld\n",
    283 		    pp->pr_entered_file, pp->pr_entered_line);
    284 		panic("pr_enter");
    285 	}
    286 
    287 	pp->pr_entered_file = file;
    288 	pp->pr_entered_line = line;
    289 }
    290 
    291 static inline void
    292 pr_leave(struct pool *pp)
    293 {
    294 
    295 	if (__predict_false(pp->pr_entered_file == NULL)) {
    296 		printf("pool %s not entered?\n", pp->pr_wchan);
    297 		panic("pr_leave");
    298 	}
    299 
    300 	pp->pr_entered_file = NULL;
    301 	pp->pr_entered_line = 0;
    302 }
    303 
    304 static inline void
    305 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    306 {
    307 
    308 	if (pp->pr_entered_file != NULL)
    309 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    310 		    pp->pr_entered_file, pp->pr_entered_line);
    311 }
    312 #else
    313 #define	pr_log(pp, v, action, file, line)
    314 #define	pr_printlog(pp, pi, pr)
    315 #define	pr_enter(pp, file, line)
    316 #define	pr_leave(pp)
    317 #define	pr_enter_check(pp, pr)
    318 #endif /* POOL_DIAGNOSTIC */
    319 
    320 static inline int
    321 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    322     const void *v)
    323 {
    324 	const char *cp = v;
    325 	int idx;
    326 
    327 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    328 	idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
    329 	KASSERT(idx < pp->pr_itemsperpage);
    330 	return idx;
    331 }
    332 
    333 #define	PR_FREELIST_ALIGN(p) \
    334 	roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
    335 #define	PR_FREELIST(ph)	((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
    336 #define	PR_INDEX_USED	((pool_item_freelist_t)-1)
    337 #define	PR_INDEX_EOL	((pool_item_freelist_t)-2)
    338 
    339 static inline void
    340 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    341     void *obj)
    342 {
    343 	int idx = pr_item_notouch_index(pp, ph, obj);
    344 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    345 
    346 	KASSERT(freelist[idx] == PR_INDEX_USED);
    347 	freelist[idx] = ph->ph_firstfree;
    348 	ph->ph_firstfree = idx;
    349 }
    350 
    351 static inline void *
    352 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    353 {
    354 	int idx = ph->ph_firstfree;
    355 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    356 
    357 	KASSERT(freelist[idx] != PR_INDEX_USED);
    358 	ph->ph_firstfree = freelist[idx];
    359 	freelist[idx] = PR_INDEX_USED;
    360 
    361 	return ph->ph_page + ph->ph_off + idx * pp->pr_size;
    362 }
    363 
    364 static inline int
    365 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    366 {
    367 
    368 	/*
    369 	 * we consider pool_item_header with smaller ph_page bigger.
    370 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    371 	 */
    372 
    373 	if (a->ph_page < b->ph_page)
    374 		return (1);
    375 	else if (a->ph_page > b->ph_page)
    376 		return (-1);
    377 	else
    378 		return (0);
    379 }
    380 
    381 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    382 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    383 
    384 /*
    385  * Return the pool page header based on item address.
    386  */
    387 static inline struct pool_item_header *
    388 pr_find_pagehead(struct pool *pp, void *v)
    389 {
    390 	struct pool_item_header *ph, tmp;
    391 
    392 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    393 		tmp.ph_page = (caddr_t)(uintptr_t)v;
    394 		ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    395 		if (ph == NULL) {
    396 			ph = SPLAY_ROOT(&pp->pr_phtree);
    397 			if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    398 				ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    399 			}
    400 			KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    401 		}
    402 	} else {
    403 		caddr_t page =
    404 		    (caddr_t)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    405 
    406 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    407 			ph = (void *)(page + pp->pr_phoffset);
    408 		} else {
    409 			tmp.ph_page = page;
    410 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    411 		}
    412 	}
    413 
    414 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    415 	    (ph->ph_page <= (char *)v &&
    416 	    (char *)v < ph->ph_page + pp->pr_alloc->pa_pagesz));
    417 	return ph;
    418 }
    419 
    420 static void
    421 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    422 {
    423 	struct pool_item_header *ph;
    424 	int s;
    425 
    426 	while ((ph = LIST_FIRST(pq)) != NULL) {
    427 		LIST_REMOVE(ph, ph_pagelist);
    428 		pool_allocator_free(pp, ph->ph_page);
    429 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    430 			s = splvm();
    431 			pool_put(pp->pr_phpool, ph);
    432 			splx(s);
    433 		}
    434 	}
    435 }
    436 
    437 /*
    438  * Remove a page from the pool.
    439  */
    440 static inline void
    441 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    442      struct pool_pagelist *pq)
    443 {
    444 
    445 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
    446 
    447 	/*
    448 	 * If the page was idle, decrement the idle page count.
    449 	 */
    450 	if (ph->ph_nmissing == 0) {
    451 #ifdef DIAGNOSTIC
    452 		if (pp->pr_nidle == 0)
    453 			panic("pr_rmpage: nidle inconsistent");
    454 		if (pp->pr_nitems < pp->pr_itemsperpage)
    455 			panic("pr_rmpage: nitems inconsistent");
    456 #endif
    457 		pp->pr_nidle--;
    458 	}
    459 
    460 	pp->pr_nitems -= pp->pr_itemsperpage;
    461 
    462 	/*
    463 	 * Unlink the page from the pool and queue it for release.
    464 	 */
    465 	LIST_REMOVE(ph, ph_pagelist);
    466 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    467 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    468 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    469 
    470 	pp->pr_npages--;
    471 	pp->pr_npagefree++;
    472 
    473 	pool_update_curpage(pp);
    474 }
    475 
    476 static boolean_t
    477 pa_starved_p(struct pool_allocator *pa)
    478 {
    479 
    480 	if (pa->pa_backingmap != NULL) {
    481 		return vm_map_starved_p(pa->pa_backingmap);
    482 	}
    483 	return FALSE;
    484 }
    485 
    486 static int
    487 pool_reclaim_callback(struct callback_entry *ce __unused, void *obj,
    488     void *arg __unused)
    489 {
    490 	struct pool *pp = obj;
    491 	struct pool_allocator *pa = pp->pr_alloc;
    492 
    493 	KASSERT(&pp->pr_reclaimerentry == ce);
    494 	pool_reclaim(pp);
    495 	if (!pa_starved_p(pa)) {
    496 		return CALLBACK_CHAIN_ABORT;
    497 	}
    498 	return CALLBACK_CHAIN_CONTINUE;
    499 }
    500 
    501 static void
    502 pool_reclaim_register(struct pool *pp)
    503 {
    504 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    505 	int s;
    506 
    507 	if (map == NULL) {
    508 		return;
    509 	}
    510 
    511 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    512 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    513 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    514 	splx(s);
    515 }
    516 
    517 static void
    518 pool_reclaim_unregister(struct pool *pp)
    519 {
    520 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    521 	int s;
    522 
    523 	if (map == NULL) {
    524 		return;
    525 	}
    526 
    527 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    528 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    529 	    &pp->pr_reclaimerentry);
    530 	splx(s);
    531 }
    532 
    533 static void
    534 pa_reclaim_register(struct pool_allocator *pa)
    535 {
    536 	struct vm_map *map = *pa->pa_backingmapptr;
    537 	struct pool *pp;
    538 
    539 	KASSERT(pa->pa_backingmap == NULL);
    540 	if (map == NULL) {
    541 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    542 		return;
    543 	}
    544 	pa->pa_backingmap = map;
    545 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    546 		pool_reclaim_register(pp);
    547 	}
    548 }
    549 
    550 /*
    551  * Initialize all the pools listed in the "pools" link set.
    552  */
    553 void
    554 pool_subsystem_init(void)
    555 {
    556 	struct pool_allocator *pa;
    557 	__link_set_decl(pools, struct link_pool_init);
    558 	struct link_pool_init * const *pi;
    559 
    560 	__link_set_foreach(pi, pools)
    561 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    562 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    563 		    (*pi)->palloc);
    564 
    565 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    566 		KASSERT(pa->pa_backingmapptr != NULL);
    567 		KASSERT(*pa->pa_backingmapptr != NULL);
    568 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    569 		pa_reclaim_register(pa);
    570 	}
    571 }
    572 
    573 /*
    574  * Initialize the given pool resource structure.
    575  *
    576  * We export this routine to allow other kernel parts to declare
    577  * static pools that must be initialized before malloc() is available.
    578  */
    579 void
    580 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    581     const char *wchan, struct pool_allocator *palloc)
    582 {
    583 #ifdef DEBUG
    584 	struct pool *pp1;
    585 #endif
    586 	size_t trysize, phsize;
    587 	int off, slack, s;
    588 
    589 	KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
    590 	    PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
    591 
    592 #ifdef DEBUG
    593 	/*
    594 	 * Check that the pool hasn't already been initialised and
    595 	 * added to the list of all pools.
    596 	 */
    597 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
    598 		if (pp == pp1)
    599 			panic("pool_init: pool %s already initialised",
    600 			    wchan);
    601 	}
    602 #endif
    603 
    604 #ifdef POOL_DIAGNOSTIC
    605 	/*
    606 	 * Always log if POOL_DIAGNOSTIC is defined.
    607 	 */
    608 	if (pool_logsize != 0)
    609 		flags |= PR_LOGGING;
    610 #endif
    611 
    612 	if (palloc == NULL)
    613 		palloc = &pool_allocator_kmem;
    614 #ifdef POOL_SUBPAGE
    615 	if (size > palloc->pa_pagesz) {
    616 		if (palloc == &pool_allocator_kmem)
    617 			palloc = &pool_allocator_kmem_fullpage;
    618 		else if (palloc == &pool_allocator_nointr)
    619 			palloc = &pool_allocator_nointr_fullpage;
    620 	}
    621 #endif /* POOL_SUBPAGE */
    622 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    623 		if (palloc->pa_pagesz == 0)
    624 			palloc->pa_pagesz = PAGE_SIZE;
    625 
    626 		TAILQ_INIT(&palloc->pa_list);
    627 
    628 		simple_lock_init(&palloc->pa_slock);
    629 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    630 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    631 
    632 		if (palloc->pa_backingmapptr != NULL) {
    633 			pa_reclaim_register(palloc);
    634 		}
    635 		palloc->pa_flags |= PA_INITIALIZED;
    636 	}
    637 
    638 	if (align == 0)
    639 		align = ALIGN(1);
    640 
    641 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    642 		size = sizeof(struct pool_item);
    643 
    644 	size = roundup(size, align);
    645 #ifdef DIAGNOSTIC
    646 	if (size > palloc->pa_pagesz)
    647 		panic("pool_init: pool item size (%zu) too large", size);
    648 #endif
    649 
    650 	/*
    651 	 * Initialize the pool structure.
    652 	 */
    653 	LIST_INIT(&pp->pr_emptypages);
    654 	LIST_INIT(&pp->pr_fullpages);
    655 	LIST_INIT(&pp->pr_partpages);
    656 	LIST_INIT(&pp->pr_cachelist);
    657 	pp->pr_curpage = NULL;
    658 	pp->pr_npages = 0;
    659 	pp->pr_minitems = 0;
    660 	pp->pr_minpages = 0;
    661 	pp->pr_maxpages = UINT_MAX;
    662 	pp->pr_roflags = flags;
    663 	pp->pr_flags = 0;
    664 	pp->pr_size = size;
    665 	pp->pr_align = align;
    666 	pp->pr_wchan = wchan;
    667 	pp->pr_alloc = palloc;
    668 	pp->pr_nitems = 0;
    669 	pp->pr_nout = 0;
    670 	pp->pr_hardlimit = UINT_MAX;
    671 	pp->pr_hardlimit_warning = NULL;
    672 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    673 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    674 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    675 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    676 	pp->pr_drain_hook = NULL;
    677 	pp->pr_drain_hook_arg = NULL;
    678 
    679 	/*
    680 	 * Decide whether to put the page header off page to avoid
    681 	 * wasting too large a part of the page or too big item.
    682 	 * Off-page page headers go on a hash table, so we can match
    683 	 * a returned item with its header based on the page address.
    684 	 * We use 1/16 of the page size and about 8 times of the item
    685 	 * size as the threshold (XXX: tune)
    686 	 *
    687 	 * However, we'll put the header into the page if we can put
    688 	 * it without wasting any items.
    689 	 *
    690 	 * Silently enforce `0 <= ioff < align'.
    691 	 */
    692 	pp->pr_itemoffset = ioff %= align;
    693 	/* See the comment below about reserved bytes. */
    694 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    695 	phsize = ALIGN(sizeof(struct pool_item_header));
    696 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    697 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    698 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    699 		/* Use the end of the page for the page header */
    700 		pp->pr_roflags |= PR_PHINPAGE;
    701 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    702 	} else {
    703 		/* The page header will be taken from our page header pool */
    704 		pp->pr_phoffset = 0;
    705 		off = palloc->pa_pagesz;
    706 		SPLAY_INIT(&pp->pr_phtree);
    707 	}
    708 
    709 	/*
    710 	 * Alignment is to take place at `ioff' within the item. This means
    711 	 * we must reserve up to `align - 1' bytes on the page to allow
    712 	 * appropriate positioning of each item.
    713 	 */
    714 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    715 	KASSERT(pp->pr_itemsperpage != 0);
    716 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    717 		int idx;
    718 
    719 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    720 		    idx++) {
    721 			/* nothing */
    722 		}
    723 		if (idx >= PHPOOL_MAX) {
    724 			/*
    725 			 * if you see this panic, consider to tweak
    726 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    727 			 */
    728 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    729 			    pp->pr_wchan, pp->pr_itemsperpage);
    730 		}
    731 		pp->pr_phpool = &phpool[idx];
    732 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    733 		pp->pr_phpool = &phpool[0];
    734 	}
    735 #if defined(DIAGNOSTIC)
    736 	else {
    737 		pp->pr_phpool = NULL;
    738 	}
    739 #endif
    740 
    741 	/*
    742 	 * Use the slack between the chunks and the page header
    743 	 * for "cache coloring".
    744 	 */
    745 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    746 	pp->pr_maxcolor = (slack / align) * align;
    747 	pp->pr_curcolor = 0;
    748 
    749 	pp->pr_nget = 0;
    750 	pp->pr_nfail = 0;
    751 	pp->pr_nput = 0;
    752 	pp->pr_npagealloc = 0;
    753 	pp->pr_npagefree = 0;
    754 	pp->pr_hiwat = 0;
    755 	pp->pr_nidle = 0;
    756 
    757 #ifdef POOL_DIAGNOSTIC
    758 	if (flags & PR_LOGGING) {
    759 		if (kmem_map == NULL ||
    760 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    761 		     M_TEMP, M_NOWAIT)) == NULL)
    762 			pp->pr_roflags &= ~PR_LOGGING;
    763 		pp->pr_curlogentry = 0;
    764 		pp->pr_logsize = pool_logsize;
    765 	}
    766 #endif
    767 
    768 	pp->pr_entered_file = NULL;
    769 	pp->pr_entered_line = 0;
    770 
    771 	simple_lock_init(&pp->pr_slock);
    772 
    773 	/*
    774 	 * Initialize private page header pool and cache magazine pool if we
    775 	 * haven't done so yet.
    776 	 * XXX LOCKING.
    777 	 */
    778 	if (phpool[0].pr_size == 0) {
    779 		int idx;
    780 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    781 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    782 			int nelem;
    783 			size_t sz;
    784 
    785 			nelem = PHPOOL_FREELIST_NELEM(idx);
    786 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    787 			    "phpool-%d", nelem);
    788 			sz = sizeof(struct pool_item_header);
    789 			if (nelem) {
    790 				sz = PR_FREELIST_ALIGN(sz)
    791 				    + nelem * sizeof(pool_item_freelist_t);
    792 			}
    793 			pool_init(&phpool[idx], sz, 0, 0, 0,
    794 			    phpool_names[idx], &pool_allocator_meta);
    795 		}
    796 #ifdef POOL_SUBPAGE
    797 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    798 		    PR_RECURSIVE, "psppool", &pool_allocator_meta);
    799 #endif
    800 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    801 		    0, "pcgpool", &pool_allocator_meta);
    802 	}
    803 
    804 	/* Insert into the list of all pools. */
    805 	simple_lock(&pool_head_slock);
    806 	LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    807 	simple_unlock(&pool_head_slock);
    808 
    809 	/* Insert this into the list of pools using this allocator. */
    810 	s = splvm();
    811 	simple_lock(&palloc->pa_slock);
    812 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    813 	simple_unlock(&palloc->pa_slock);
    814 	splx(s);
    815 	pool_reclaim_register(pp);
    816 }
    817 
    818 /*
    819  * De-commision a pool resource.
    820  */
    821 void
    822 pool_destroy(struct pool *pp)
    823 {
    824 	struct pool_pagelist pq;
    825 	struct pool_item_header *ph;
    826 	int s;
    827 
    828 	/* Remove from global pool list */
    829 	simple_lock(&pool_head_slock);
    830 	LIST_REMOVE(pp, pr_poollist);
    831 	if (drainpp == pp)
    832 		drainpp = NULL;
    833 	simple_unlock(&pool_head_slock);
    834 
    835 	/* Remove this pool from its allocator's list of pools. */
    836 	pool_reclaim_unregister(pp);
    837 	s = splvm();
    838 	simple_lock(&pp->pr_alloc->pa_slock);
    839 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    840 	simple_unlock(&pp->pr_alloc->pa_slock);
    841 	splx(s);
    842 
    843 	s = splvm();
    844 	simple_lock(&pp->pr_slock);
    845 
    846 	KASSERT(LIST_EMPTY(&pp->pr_cachelist));
    847 
    848 #ifdef DIAGNOSTIC
    849 	if (pp->pr_nout != 0) {
    850 		pr_printlog(pp, NULL, printf);
    851 		panic("pool_destroy: pool busy: still out: %u",
    852 		    pp->pr_nout);
    853 	}
    854 #endif
    855 
    856 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    857 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    858 
    859 	/* Remove all pages */
    860 	LIST_INIT(&pq);
    861 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    862 		pr_rmpage(pp, ph, &pq);
    863 
    864 	simple_unlock(&pp->pr_slock);
    865 	splx(s);
    866 
    867 	pr_pagelist_free(pp, &pq);
    868 
    869 #ifdef POOL_DIAGNOSTIC
    870 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    871 		free(pp->pr_log, M_TEMP);
    872 #endif
    873 }
    874 
    875 void
    876 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    877 {
    878 
    879 	/* XXX no locking -- must be used just after pool_init() */
    880 #ifdef DIAGNOSTIC
    881 	if (pp->pr_drain_hook != NULL)
    882 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    883 #endif
    884 	pp->pr_drain_hook = fn;
    885 	pp->pr_drain_hook_arg = arg;
    886 }
    887 
    888 static struct pool_item_header *
    889 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    890 {
    891 	struct pool_item_header *ph;
    892 	int s;
    893 
    894 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    895 
    896 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    897 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    898 	else {
    899 		s = splvm();
    900 		ph = pool_get(pp->pr_phpool, flags);
    901 		splx(s);
    902 	}
    903 
    904 	return (ph);
    905 }
    906 
    907 /*
    908  * Grab an item from the pool; must be called at appropriate spl level
    909  */
    910 void *
    911 #ifdef POOL_DIAGNOSTIC
    912 _pool_get(struct pool *pp, int flags, const char *file, long line)
    913 #else
    914 pool_get(struct pool *pp, int flags)
    915 #endif
    916 {
    917 	struct pool_item *pi;
    918 	struct pool_item_header *ph;
    919 	void *v;
    920 
    921 #ifdef DIAGNOSTIC
    922 	if (__predict_false(pp->pr_itemsperpage == 0))
    923 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    924 		    "pool not initialized?", pp);
    925 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    926 			    (flags & PR_WAITOK) != 0))
    927 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    928 
    929 #endif /* DIAGNOSTIC */
    930 #ifdef LOCKDEBUG
    931 	if (flags & PR_WAITOK)
    932 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
    933 	SCHED_ASSERT_UNLOCKED();
    934 #endif
    935 
    936 	simple_lock(&pp->pr_slock);
    937 	pr_enter(pp, file, line);
    938 
    939  startover:
    940 	/*
    941 	 * Check to see if we've reached the hard limit.  If we have,
    942 	 * and we can wait, then wait until an item has been returned to
    943 	 * the pool.
    944 	 */
    945 #ifdef DIAGNOSTIC
    946 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    947 		pr_leave(pp);
    948 		simple_unlock(&pp->pr_slock);
    949 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    950 	}
    951 #endif
    952 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    953 		if (pp->pr_drain_hook != NULL) {
    954 			/*
    955 			 * Since the drain hook is going to free things
    956 			 * back to the pool, unlock, call the hook, re-lock,
    957 			 * and check the hardlimit condition again.
    958 			 */
    959 			pr_leave(pp);
    960 			simple_unlock(&pp->pr_slock);
    961 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    962 			simple_lock(&pp->pr_slock);
    963 			pr_enter(pp, file, line);
    964 			if (pp->pr_nout < pp->pr_hardlimit)
    965 				goto startover;
    966 		}
    967 
    968 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    969 			/*
    970 			 * XXX: A warning isn't logged in this case.  Should
    971 			 * it be?
    972 			 */
    973 			pp->pr_flags |= PR_WANTED;
    974 			pr_leave(pp);
    975 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    976 			pr_enter(pp, file, line);
    977 			goto startover;
    978 		}
    979 
    980 		/*
    981 		 * Log a message that the hard limit has been hit.
    982 		 */
    983 		if (pp->pr_hardlimit_warning != NULL &&
    984 		    ratecheck(&pp->pr_hardlimit_warning_last,
    985 			      &pp->pr_hardlimit_ratecap))
    986 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    987 
    988 		pp->pr_nfail++;
    989 
    990 		pr_leave(pp);
    991 		simple_unlock(&pp->pr_slock);
    992 		return (NULL);
    993 	}
    994 
    995 	/*
    996 	 * The convention we use is that if `curpage' is not NULL, then
    997 	 * it points at a non-empty bucket. In particular, `curpage'
    998 	 * never points at a page header which has PR_PHINPAGE set and
    999 	 * has no items in its bucket.
   1000 	 */
   1001 	if ((ph = pp->pr_curpage) == NULL) {
   1002 		int error;
   1003 
   1004 #ifdef DIAGNOSTIC
   1005 		if (pp->pr_nitems != 0) {
   1006 			simple_unlock(&pp->pr_slock);
   1007 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1008 			    pp->pr_wchan, pp->pr_nitems);
   1009 			panic("pool_get: nitems inconsistent");
   1010 		}
   1011 #endif
   1012 
   1013 		/*
   1014 		 * Call the back-end page allocator for more memory.
   1015 		 * Release the pool lock, as the back-end page allocator
   1016 		 * may block.
   1017 		 */
   1018 		pr_leave(pp);
   1019 		error = pool_grow(pp, flags);
   1020 		pr_enter(pp, file, line);
   1021 		if (error != 0) {
   1022 			/*
   1023 			 * We were unable to allocate a page or item
   1024 			 * header, but we released the lock during
   1025 			 * allocation, so perhaps items were freed
   1026 			 * back to the pool.  Check for this case.
   1027 			 */
   1028 			if (pp->pr_curpage != NULL)
   1029 				goto startover;
   1030 
   1031 			pp->pr_nfail++;
   1032 			pr_leave(pp);
   1033 			simple_unlock(&pp->pr_slock);
   1034 			return (NULL);
   1035 		}
   1036 
   1037 		/* Start the allocation process over. */
   1038 		goto startover;
   1039 	}
   1040 	if (pp->pr_roflags & PR_NOTOUCH) {
   1041 #ifdef DIAGNOSTIC
   1042 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1043 			pr_leave(pp);
   1044 			simple_unlock(&pp->pr_slock);
   1045 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1046 		}
   1047 #endif
   1048 		v = pr_item_notouch_get(pp, ph);
   1049 #ifdef POOL_DIAGNOSTIC
   1050 		pr_log(pp, v, PRLOG_GET, file, line);
   1051 #endif
   1052 	} else {
   1053 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1054 		if (__predict_false(v == NULL)) {
   1055 			pr_leave(pp);
   1056 			simple_unlock(&pp->pr_slock);
   1057 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1058 		}
   1059 #ifdef DIAGNOSTIC
   1060 		if (__predict_false(pp->pr_nitems == 0)) {
   1061 			pr_leave(pp);
   1062 			simple_unlock(&pp->pr_slock);
   1063 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1064 			    pp->pr_wchan, pp->pr_nitems);
   1065 			panic("pool_get: nitems inconsistent");
   1066 		}
   1067 #endif
   1068 
   1069 #ifdef POOL_DIAGNOSTIC
   1070 		pr_log(pp, v, PRLOG_GET, file, line);
   1071 #endif
   1072 
   1073 #ifdef DIAGNOSTIC
   1074 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1075 			pr_printlog(pp, pi, printf);
   1076 			panic("pool_get(%s): free list modified: "
   1077 			    "magic=%x; page %p; item addr %p\n",
   1078 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1079 		}
   1080 #endif
   1081 
   1082 		/*
   1083 		 * Remove from item list.
   1084 		 */
   1085 		LIST_REMOVE(pi, pi_list);
   1086 	}
   1087 	pp->pr_nitems--;
   1088 	pp->pr_nout++;
   1089 	if (ph->ph_nmissing == 0) {
   1090 #ifdef DIAGNOSTIC
   1091 		if (__predict_false(pp->pr_nidle == 0))
   1092 			panic("pool_get: nidle inconsistent");
   1093 #endif
   1094 		pp->pr_nidle--;
   1095 
   1096 		/*
   1097 		 * This page was previously empty.  Move it to the list of
   1098 		 * partially-full pages.  This page is already curpage.
   1099 		 */
   1100 		LIST_REMOVE(ph, ph_pagelist);
   1101 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1102 	}
   1103 	ph->ph_nmissing++;
   1104 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1105 #ifdef DIAGNOSTIC
   1106 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1107 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1108 			pr_leave(pp);
   1109 			simple_unlock(&pp->pr_slock);
   1110 			panic("pool_get: %s: nmissing inconsistent",
   1111 			    pp->pr_wchan);
   1112 		}
   1113 #endif
   1114 		/*
   1115 		 * This page is now full.  Move it to the full list
   1116 		 * and select a new current page.
   1117 		 */
   1118 		LIST_REMOVE(ph, ph_pagelist);
   1119 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1120 		pool_update_curpage(pp);
   1121 	}
   1122 
   1123 	pp->pr_nget++;
   1124 	pr_leave(pp);
   1125 
   1126 	/*
   1127 	 * If we have a low water mark and we are now below that low
   1128 	 * water mark, add more items to the pool.
   1129 	 */
   1130 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1131 		/*
   1132 		 * XXX: Should we log a warning?  Should we set up a timeout
   1133 		 * to try again in a second or so?  The latter could break
   1134 		 * a caller's assumptions about interrupt protection, etc.
   1135 		 */
   1136 	}
   1137 
   1138 	simple_unlock(&pp->pr_slock);
   1139 	return (v);
   1140 }
   1141 
   1142 /*
   1143  * Internal version of pool_put().  Pool is already locked/entered.
   1144  */
   1145 static void
   1146 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1147 {
   1148 	struct pool_item *pi = v;
   1149 	struct pool_item_header *ph;
   1150 
   1151 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
   1152 	SCHED_ASSERT_UNLOCKED();
   1153 
   1154 #ifdef DIAGNOSTIC
   1155 	if (__predict_false(pp->pr_nout == 0)) {
   1156 		printf("pool %s: putting with none out\n",
   1157 		    pp->pr_wchan);
   1158 		panic("pool_put");
   1159 	}
   1160 #endif
   1161 
   1162 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1163 		pr_printlog(pp, NULL, printf);
   1164 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1165 	}
   1166 
   1167 #ifdef LOCKDEBUG
   1168 	/*
   1169 	 * Check if we're freeing a locked simple lock.
   1170 	 */
   1171 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
   1172 #endif
   1173 
   1174 	/*
   1175 	 * Return to item list.
   1176 	 */
   1177 	if (pp->pr_roflags & PR_NOTOUCH) {
   1178 		pr_item_notouch_put(pp, ph, v);
   1179 	} else {
   1180 #ifdef DIAGNOSTIC
   1181 		pi->pi_magic = PI_MAGIC;
   1182 #endif
   1183 #ifdef DEBUG
   1184 		{
   1185 			int i, *ip = v;
   1186 
   1187 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1188 				*ip++ = PI_MAGIC;
   1189 			}
   1190 		}
   1191 #endif
   1192 
   1193 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1194 	}
   1195 	KDASSERT(ph->ph_nmissing != 0);
   1196 	ph->ph_nmissing--;
   1197 	pp->pr_nput++;
   1198 	pp->pr_nitems++;
   1199 	pp->pr_nout--;
   1200 
   1201 	/* Cancel "pool empty" condition if it exists */
   1202 	if (pp->pr_curpage == NULL)
   1203 		pp->pr_curpage = ph;
   1204 
   1205 	if (pp->pr_flags & PR_WANTED) {
   1206 		pp->pr_flags &= ~PR_WANTED;
   1207 		if (ph->ph_nmissing == 0)
   1208 			pp->pr_nidle++;
   1209 		wakeup((caddr_t)pp);
   1210 		return;
   1211 	}
   1212 
   1213 	/*
   1214 	 * If this page is now empty, do one of two things:
   1215 	 *
   1216 	 *	(1) If we have more pages than the page high water mark,
   1217 	 *	    free the page back to the system.  ONLY CONSIDER
   1218 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1219 	 *	    CLAIM.
   1220 	 *
   1221 	 *	(2) Otherwise, move the page to the empty page list.
   1222 	 *
   1223 	 * Either way, select a new current page (so we use a partially-full
   1224 	 * page if one is available).
   1225 	 */
   1226 	if (ph->ph_nmissing == 0) {
   1227 		pp->pr_nidle++;
   1228 		if (pp->pr_npages > pp->pr_minpages &&
   1229 		    (pp->pr_npages > pp->pr_maxpages ||
   1230 		     pa_starved_p(pp->pr_alloc))) {
   1231 			pr_rmpage(pp, ph, pq);
   1232 		} else {
   1233 			LIST_REMOVE(ph, ph_pagelist);
   1234 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1235 
   1236 			/*
   1237 			 * Update the timestamp on the page.  A page must
   1238 			 * be idle for some period of time before it can
   1239 			 * be reclaimed by the pagedaemon.  This minimizes
   1240 			 * ping-pong'ing for memory.
   1241 			 */
   1242 			getmicrotime(&ph->ph_time);
   1243 		}
   1244 		pool_update_curpage(pp);
   1245 	}
   1246 
   1247 	/*
   1248 	 * If the page was previously completely full, move it to the
   1249 	 * partially-full list and make it the current page.  The next
   1250 	 * allocation will get the item from this page, instead of
   1251 	 * further fragmenting the pool.
   1252 	 */
   1253 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1254 		LIST_REMOVE(ph, ph_pagelist);
   1255 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1256 		pp->pr_curpage = ph;
   1257 	}
   1258 }
   1259 
   1260 /*
   1261  * Return resource to the pool; must be called at appropriate spl level
   1262  */
   1263 #ifdef POOL_DIAGNOSTIC
   1264 void
   1265 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1266 {
   1267 	struct pool_pagelist pq;
   1268 
   1269 	LIST_INIT(&pq);
   1270 
   1271 	simple_lock(&pp->pr_slock);
   1272 	pr_enter(pp, file, line);
   1273 
   1274 	pr_log(pp, v, PRLOG_PUT, file, line);
   1275 
   1276 	pool_do_put(pp, v, &pq);
   1277 
   1278 	pr_leave(pp);
   1279 	simple_unlock(&pp->pr_slock);
   1280 
   1281 	pr_pagelist_free(pp, &pq);
   1282 }
   1283 #undef pool_put
   1284 #endif /* POOL_DIAGNOSTIC */
   1285 
   1286 void
   1287 pool_put(struct pool *pp, void *v)
   1288 {
   1289 	struct pool_pagelist pq;
   1290 
   1291 	LIST_INIT(&pq);
   1292 
   1293 	simple_lock(&pp->pr_slock);
   1294 	pool_do_put(pp, v, &pq);
   1295 	simple_unlock(&pp->pr_slock);
   1296 
   1297 	pr_pagelist_free(pp, &pq);
   1298 }
   1299 
   1300 #ifdef POOL_DIAGNOSTIC
   1301 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1302 #endif
   1303 
   1304 /*
   1305  * pool_grow: grow a pool by a page.
   1306  *
   1307  * => called with pool locked.
   1308  * => unlock and relock the pool.
   1309  * => return with pool locked.
   1310  */
   1311 
   1312 static int
   1313 pool_grow(struct pool *pp, int flags)
   1314 {
   1315 	struct pool_item_header *ph = NULL;
   1316 	char *cp;
   1317 
   1318 	simple_unlock(&pp->pr_slock);
   1319 	cp = pool_allocator_alloc(pp, flags);
   1320 	if (__predict_true(cp != NULL)) {
   1321 		ph = pool_alloc_item_header(pp, cp, flags);
   1322 	}
   1323 	if (__predict_false(cp == NULL || ph == NULL)) {
   1324 		if (cp != NULL) {
   1325 			pool_allocator_free(pp, cp);
   1326 		}
   1327 		simple_lock(&pp->pr_slock);
   1328 		return ENOMEM;
   1329 	}
   1330 
   1331 	simple_lock(&pp->pr_slock);
   1332 	pool_prime_page(pp, cp, ph);
   1333 	pp->pr_npagealloc++;
   1334 	return 0;
   1335 }
   1336 
   1337 /*
   1338  * Add N items to the pool.
   1339  */
   1340 int
   1341 pool_prime(struct pool *pp, int n)
   1342 {
   1343 	int newpages;
   1344 	int error = 0;
   1345 
   1346 	simple_lock(&pp->pr_slock);
   1347 
   1348 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1349 
   1350 	while (newpages-- > 0) {
   1351 		error = pool_grow(pp, PR_NOWAIT);
   1352 		if (error) {
   1353 			break;
   1354 		}
   1355 		pp->pr_minpages++;
   1356 	}
   1357 
   1358 	if (pp->pr_minpages >= pp->pr_maxpages)
   1359 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1360 
   1361 	simple_unlock(&pp->pr_slock);
   1362 	return error;
   1363 }
   1364 
   1365 /*
   1366  * Add a page worth of items to the pool.
   1367  *
   1368  * Note, we must be called with the pool descriptor LOCKED.
   1369  */
   1370 static void
   1371 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1372 {
   1373 	struct pool_item *pi;
   1374 	caddr_t cp = storage;
   1375 	unsigned int align = pp->pr_align;
   1376 	unsigned int ioff = pp->pr_itemoffset;
   1377 	int n;
   1378 
   1379 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
   1380 
   1381 #ifdef DIAGNOSTIC
   1382 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1383 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1384 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1385 #endif
   1386 
   1387 	/*
   1388 	 * Insert page header.
   1389 	 */
   1390 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1391 	LIST_INIT(&ph->ph_itemlist);
   1392 	ph->ph_page = storage;
   1393 	ph->ph_nmissing = 0;
   1394 	getmicrotime(&ph->ph_time);
   1395 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1396 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1397 
   1398 	pp->pr_nidle++;
   1399 
   1400 	/*
   1401 	 * Color this page.
   1402 	 */
   1403 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1404 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1405 		pp->pr_curcolor = 0;
   1406 
   1407 	/*
   1408 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1409 	 */
   1410 	if (ioff != 0)
   1411 		cp = (caddr_t)(cp + (align - ioff));
   1412 
   1413 	/*
   1414 	 * Insert remaining chunks on the bucket list.
   1415 	 */
   1416 	n = pp->pr_itemsperpage;
   1417 	pp->pr_nitems += n;
   1418 
   1419 	if (pp->pr_roflags & PR_NOTOUCH) {
   1420 		pool_item_freelist_t *freelist = PR_FREELIST(ph);
   1421 		int i;
   1422 
   1423 		ph->ph_off = cp - storage;
   1424 		ph->ph_firstfree = 0;
   1425 		for (i = 0; i < n - 1; i++)
   1426 			freelist[i] = i + 1;
   1427 		freelist[n - 1] = PR_INDEX_EOL;
   1428 	} else {
   1429 		while (n--) {
   1430 			pi = (struct pool_item *)cp;
   1431 
   1432 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1433 
   1434 			/* Insert on page list */
   1435 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1436 #ifdef DIAGNOSTIC
   1437 			pi->pi_magic = PI_MAGIC;
   1438 #endif
   1439 			cp = (caddr_t)(cp + pp->pr_size);
   1440 		}
   1441 	}
   1442 
   1443 	/*
   1444 	 * If the pool was depleted, point at the new page.
   1445 	 */
   1446 	if (pp->pr_curpage == NULL)
   1447 		pp->pr_curpage = ph;
   1448 
   1449 	if (++pp->pr_npages > pp->pr_hiwat)
   1450 		pp->pr_hiwat = pp->pr_npages;
   1451 }
   1452 
   1453 /*
   1454  * Used by pool_get() when nitems drops below the low water mark.  This
   1455  * is used to catch up pr_nitems with the low water mark.
   1456  *
   1457  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1458  *
   1459  * Note 2, we must be called with the pool already locked, and we return
   1460  * with it locked.
   1461  */
   1462 static int
   1463 pool_catchup(struct pool *pp)
   1464 {
   1465 	int error = 0;
   1466 
   1467 	while (POOL_NEEDS_CATCHUP(pp)) {
   1468 		error = pool_grow(pp, PR_NOWAIT);
   1469 		if (error) {
   1470 			break;
   1471 		}
   1472 	}
   1473 	return error;
   1474 }
   1475 
   1476 static void
   1477 pool_update_curpage(struct pool *pp)
   1478 {
   1479 
   1480 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1481 	if (pp->pr_curpage == NULL) {
   1482 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1483 	}
   1484 }
   1485 
   1486 void
   1487 pool_setlowat(struct pool *pp, int n)
   1488 {
   1489 
   1490 	simple_lock(&pp->pr_slock);
   1491 
   1492 	pp->pr_minitems = n;
   1493 	pp->pr_minpages = (n == 0)
   1494 		? 0
   1495 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1496 
   1497 	/* Make sure we're caught up with the newly-set low water mark. */
   1498 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1499 		/*
   1500 		 * XXX: Should we log a warning?  Should we set up a timeout
   1501 		 * to try again in a second or so?  The latter could break
   1502 		 * a caller's assumptions about interrupt protection, etc.
   1503 		 */
   1504 	}
   1505 
   1506 	simple_unlock(&pp->pr_slock);
   1507 }
   1508 
   1509 void
   1510 pool_sethiwat(struct pool *pp, int n)
   1511 {
   1512 
   1513 	simple_lock(&pp->pr_slock);
   1514 
   1515 	pp->pr_maxpages = (n == 0)
   1516 		? 0
   1517 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1518 
   1519 	simple_unlock(&pp->pr_slock);
   1520 }
   1521 
   1522 void
   1523 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1524 {
   1525 
   1526 	simple_lock(&pp->pr_slock);
   1527 
   1528 	pp->pr_hardlimit = n;
   1529 	pp->pr_hardlimit_warning = warnmess;
   1530 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1531 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1532 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1533 
   1534 	/*
   1535 	 * In-line version of pool_sethiwat(), because we don't want to
   1536 	 * release the lock.
   1537 	 */
   1538 	pp->pr_maxpages = (n == 0)
   1539 		? 0
   1540 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1541 
   1542 	simple_unlock(&pp->pr_slock);
   1543 }
   1544 
   1545 /*
   1546  * Release all complete pages that have not been used recently.
   1547  */
   1548 int
   1549 #ifdef POOL_DIAGNOSTIC
   1550 _pool_reclaim(struct pool *pp, const char *file, long line)
   1551 #else
   1552 pool_reclaim(struct pool *pp)
   1553 #endif
   1554 {
   1555 	struct pool_item_header *ph, *phnext;
   1556 	struct pool_cache *pc;
   1557 	struct pool_pagelist pq;
   1558 	struct pool_cache_grouplist pcgl;
   1559 	struct timeval curtime, diff;
   1560 
   1561 	if (pp->pr_drain_hook != NULL) {
   1562 		/*
   1563 		 * The drain hook must be called with the pool unlocked.
   1564 		 */
   1565 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1566 	}
   1567 
   1568 	if (simple_lock_try(&pp->pr_slock) == 0)
   1569 		return (0);
   1570 	pr_enter(pp, file, line);
   1571 
   1572 	LIST_INIT(&pq);
   1573 	LIST_INIT(&pcgl);
   1574 
   1575 	/*
   1576 	 * Reclaim items from the pool's caches.
   1577 	 */
   1578 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
   1579 		pool_cache_reclaim(pc, &pq, &pcgl);
   1580 
   1581 	getmicrotime(&curtime);
   1582 
   1583 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1584 		phnext = LIST_NEXT(ph, ph_pagelist);
   1585 
   1586 		/* Check our minimum page claim */
   1587 		if (pp->pr_npages <= pp->pr_minpages)
   1588 			break;
   1589 
   1590 		KASSERT(ph->ph_nmissing == 0);
   1591 		timersub(&curtime, &ph->ph_time, &diff);
   1592 		if (diff.tv_sec < pool_inactive_time
   1593 		    && !pa_starved_p(pp->pr_alloc))
   1594 			continue;
   1595 
   1596 		/*
   1597 		 * If freeing this page would put us below
   1598 		 * the low water mark, stop now.
   1599 		 */
   1600 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1601 		    pp->pr_minitems)
   1602 			break;
   1603 
   1604 		pr_rmpage(pp, ph, &pq);
   1605 	}
   1606 
   1607 	pr_leave(pp);
   1608 	simple_unlock(&pp->pr_slock);
   1609 	if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
   1610 		return 0;
   1611 
   1612 	pr_pagelist_free(pp, &pq);
   1613 	pcg_grouplist_free(&pcgl);
   1614 	return (1);
   1615 }
   1616 
   1617 /*
   1618  * Drain pools, one at a time.
   1619  *
   1620  * Note, we must never be called from an interrupt context.
   1621  */
   1622 void
   1623 pool_drain(void *arg __unused)
   1624 {
   1625 	struct pool *pp;
   1626 	int s;
   1627 
   1628 	pp = NULL;
   1629 	s = splvm();
   1630 	simple_lock(&pool_head_slock);
   1631 	if (drainpp == NULL) {
   1632 		drainpp = LIST_FIRST(&pool_head);
   1633 	}
   1634 	if (drainpp) {
   1635 		pp = drainpp;
   1636 		drainpp = LIST_NEXT(pp, pr_poollist);
   1637 	}
   1638 	simple_unlock(&pool_head_slock);
   1639 	if (pp)
   1640 		pool_reclaim(pp);
   1641 	splx(s);
   1642 }
   1643 
   1644 /*
   1645  * Diagnostic helpers.
   1646  */
   1647 void
   1648 pool_print(struct pool *pp, const char *modif)
   1649 {
   1650 	int s;
   1651 
   1652 	s = splvm();
   1653 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1654 		printf("pool %s is locked; try again later\n",
   1655 		    pp->pr_wchan);
   1656 		splx(s);
   1657 		return;
   1658 	}
   1659 	pool_print1(pp, modif, printf);
   1660 	simple_unlock(&pp->pr_slock);
   1661 	splx(s);
   1662 }
   1663 
   1664 void
   1665 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1666 {
   1667 	struct pool *pp;
   1668 
   1669 	if (simple_lock_try(&pool_head_slock) == 0) {
   1670 		(*pr)("WARNING: pool_head_slock is locked\n");
   1671 	} else {
   1672 		simple_unlock(&pool_head_slock);
   1673 	}
   1674 
   1675 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   1676 		pool_printit(pp, modif, pr);
   1677 	}
   1678 }
   1679 
   1680 void
   1681 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1682 {
   1683 
   1684 	if (pp == NULL) {
   1685 		(*pr)("Must specify a pool to print.\n");
   1686 		return;
   1687 	}
   1688 
   1689 	/*
   1690 	 * Called from DDB; interrupts should be blocked, and all
   1691 	 * other processors should be paused.  We can skip locking
   1692 	 * the pool in this case.
   1693 	 *
   1694 	 * We do a simple_lock_try() just to print the lock
   1695 	 * status, however.
   1696 	 */
   1697 
   1698 	if (simple_lock_try(&pp->pr_slock) == 0)
   1699 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1700 	else
   1701 		simple_unlock(&pp->pr_slock);
   1702 
   1703 	pool_print1(pp, modif, pr);
   1704 }
   1705 
   1706 static void
   1707 pool_print_pagelist(struct pool *pp __unused, struct pool_pagelist *pl,
   1708     void (*pr)(const char *, ...))
   1709 {
   1710 	struct pool_item_header *ph;
   1711 #ifdef DIAGNOSTIC
   1712 	struct pool_item *pi;
   1713 #endif
   1714 
   1715 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1716 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1717 		    ph->ph_page, ph->ph_nmissing,
   1718 		    (u_long)ph->ph_time.tv_sec,
   1719 		    (u_long)ph->ph_time.tv_usec);
   1720 #ifdef DIAGNOSTIC
   1721 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1722 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1723 				if (pi->pi_magic != PI_MAGIC) {
   1724 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1725 					    pi, pi->pi_magic);
   1726 				}
   1727 			}
   1728 		}
   1729 #endif
   1730 	}
   1731 }
   1732 
   1733 static void
   1734 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1735 {
   1736 	struct pool_item_header *ph;
   1737 	struct pool_cache *pc;
   1738 	struct pool_cache_group *pcg;
   1739 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1740 	char c;
   1741 
   1742 	while ((c = *modif++) != '\0') {
   1743 		if (c == 'l')
   1744 			print_log = 1;
   1745 		if (c == 'p')
   1746 			print_pagelist = 1;
   1747 		if (c == 'c')
   1748 			print_cache = 1;
   1749 	}
   1750 
   1751 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1752 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1753 	    pp->pr_roflags);
   1754 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1755 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1756 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1757 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1758 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1759 
   1760 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1761 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1762 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1763 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1764 
   1765 	if (print_pagelist == 0)
   1766 		goto skip_pagelist;
   1767 
   1768 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1769 		(*pr)("\n\tempty page list:\n");
   1770 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1771 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1772 		(*pr)("\n\tfull page list:\n");
   1773 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1774 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1775 		(*pr)("\n\tpartial-page list:\n");
   1776 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1777 
   1778 	if (pp->pr_curpage == NULL)
   1779 		(*pr)("\tno current page\n");
   1780 	else
   1781 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1782 
   1783  skip_pagelist:
   1784 	if (print_log == 0)
   1785 		goto skip_log;
   1786 
   1787 	(*pr)("\n");
   1788 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1789 		(*pr)("\tno log\n");
   1790 	else {
   1791 		pr_printlog(pp, NULL, pr);
   1792 	}
   1793 
   1794  skip_log:
   1795 	if (print_cache == 0)
   1796 		goto skip_cache;
   1797 
   1798 #define PR_GROUPLIST(pcg)						\
   1799 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1800 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1801 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1802 		    POOL_PADDR_INVALID) {				\
   1803 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1804 			    pcg->pcg_objects[i].pcgo_va,		\
   1805 			    (unsigned long long)			\
   1806 			    pcg->pcg_objects[i].pcgo_pa);		\
   1807 		} else {						\
   1808 			(*pr)("\t\t\t%p\n",				\
   1809 			    pcg->pcg_objects[i].pcgo_va);		\
   1810 		}							\
   1811 	}
   1812 
   1813 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
   1814 		(*pr)("\tcache %p\n", pc);
   1815 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1816 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1817 		(*pr)("\t    full groups:\n");
   1818 		LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
   1819 			PR_GROUPLIST(pcg);
   1820 		}
   1821 		(*pr)("\t    partial groups:\n");
   1822 		LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
   1823 			PR_GROUPLIST(pcg);
   1824 		}
   1825 		(*pr)("\t    empty groups:\n");
   1826 		LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
   1827 			PR_GROUPLIST(pcg);
   1828 		}
   1829 	}
   1830 #undef PR_GROUPLIST
   1831 
   1832  skip_cache:
   1833 	pr_enter_check(pp, pr);
   1834 }
   1835 
   1836 static int
   1837 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1838 {
   1839 	struct pool_item *pi;
   1840 	caddr_t page;
   1841 	int n;
   1842 
   1843 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1844 		page = (caddr_t)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1845 		if (page != ph->ph_page &&
   1846 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1847 			if (label != NULL)
   1848 				printf("%s: ", label);
   1849 			printf("pool(%p:%s): page inconsistency: page %p;"
   1850 			       " at page head addr %p (p %p)\n", pp,
   1851 				pp->pr_wchan, ph->ph_page,
   1852 				ph, page);
   1853 			return 1;
   1854 		}
   1855 	}
   1856 
   1857 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1858 		return 0;
   1859 
   1860 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1861 	     pi != NULL;
   1862 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1863 
   1864 #ifdef DIAGNOSTIC
   1865 		if (pi->pi_magic != PI_MAGIC) {
   1866 			if (label != NULL)
   1867 				printf("%s: ", label);
   1868 			printf("pool(%s): free list modified: magic=%x;"
   1869 			       " page %p; item ordinal %d; addr %p\n",
   1870 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1871 				n, pi);
   1872 			panic("pool");
   1873 		}
   1874 #endif
   1875 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1876 			continue;
   1877 		}
   1878 		page = (caddr_t)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1879 		if (page == ph->ph_page)
   1880 			continue;
   1881 
   1882 		if (label != NULL)
   1883 			printf("%s: ", label);
   1884 		printf("pool(%p:%s): page inconsistency: page %p;"
   1885 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1886 			pp->pr_wchan, ph->ph_page,
   1887 			n, pi, page);
   1888 		return 1;
   1889 	}
   1890 	return 0;
   1891 }
   1892 
   1893 
   1894 int
   1895 pool_chk(struct pool *pp, const char *label)
   1896 {
   1897 	struct pool_item_header *ph;
   1898 	int r = 0;
   1899 
   1900 	simple_lock(&pp->pr_slock);
   1901 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1902 		r = pool_chk_page(pp, label, ph);
   1903 		if (r) {
   1904 			goto out;
   1905 		}
   1906 	}
   1907 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1908 		r = pool_chk_page(pp, label, ph);
   1909 		if (r) {
   1910 			goto out;
   1911 		}
   1912 	}
   1913 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1914 		r = pool_chk_page(pp, label, ph);
   1915 		if (r) {
   1916 			goto out;
   1917 		}
   1918 	}
   1919 
   1920 out:
   1921 	simple_unlock(&pp->pr_slock);
   1922 	return (r);
   1923 }
   1924 
   1925 /*
   1926  * pool_cache_init:
   1927  *
   1928  *	Initialize a pool cache.
   1929  *
   1930  *	NOTE: If the pool must be protected from interrupts, we expect
   1931  *	to be called at the appropriate interrupt priority level.
   1932  */
   1933 void
   1934 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1935     int (*ctor)(void *, void *, int),
   1936     void (*dtor)(void *, void *),
   1937     void *arg)
   1938 {
   1939 
   1940 	LIST_INIT(&pc->pc_emptygroups);
   1941 	LIST_INIT(&pc->pc_fullgroups);
   1942 	LIST_INIT(&pc->pc_partgroups);
   1943 	simple_lock_init(&pc->pc_slock);
   1944 
   1945 	pc->pc_pool = pp;
   1946 
   1947 	pc->pc_ctor = ctor;
   1948 	pc->pc_dtor = dtor;
   1949 	pc->pc_arg  = arg;
   1950 
   1951 	pc->pc_hits   = 0;
   1952 	pc->pc_misses = 0;
   1953 
   1954 	pc->pc_ngroups = 0;
   1955 
   1956 	pc->pc_nitems = 0;
   1957 
   1958 	simple_lock(&pp->pr_slock);
   1959 	LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
   1960 	simple_unlock(&pp->pr_slock);
   1961 }
   1962 
   1963 /*
   1964  * pool_cache_destroy:
   1965  *
   1966  *	Destroy a pool cache.
   1967  */
   1968 void
   1969 pool_cache_destroy(struct pool_cache *pc)
   1970 {
   1971 	struct pool *pp = pc->pc_pool;
   1972 
   1973 	/* First, invalidate the entire cache. */
   1974 	pool_cache_invalidate(pc);
   1975 
   1976 	/* ...and remove it from the pool's cache list. */
   1977 	simple_lock(&pp->pr_slock);
   1978 	LIST_REMOVE(pc, pc_poollist);
   1979 	simple_unlock(&pp->pr_slock);
   1980 }
   1981 
   1982 static inline void *
   1983 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
   1984 {
   1985 	void *object;
   1986 	u_int idx;
   1987 
   1988 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1989 	KASSERT(pcg->pcg_avail != 0);
   1990 	idx = --pcg->pcg_avail;
   1991 
   1992 	KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
   1993 	object = pcg->pcg_objects[idx].pcgo_va;
   1994 	if (pap != NULL)
   1995 		*pap = pcg->pcg_objects[idx].pcgo_pa;
   1996 	pcg->pcg_objects[idx].pcgo_va = NULL;
   1997 
   1998 	return (object);
   1999 }
   2000 
   2001 static inline void
   2002 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
   2003 {
   2004 	u_int idx;
   2005 
   2006 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   2007 	idx = pcg->pcg_avail++;
   2008 
   2009 	KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
   2010 	pcg->pcg_objects[idx].pcgo_va = object;
   2011 	pcg->pcg_objects[idx].pcgo_pa = pa;
   2012 }
   2013 
   2014 static void
   2015 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
   2016 {
   2017 	struct pool_cache_group *pcg;
   2018 	int s;
   2019 
   2020 	s = splvm();
   2021 	while ((pcg = LIST_FIRST(pcgl)) != NULL) {
   2022 		LIST_REMOVE(pcg, pcg_list);
   2023 		pool_put(&pcgpool, pcg);
   2024 	}
   2025 	splx(s);
   2026 }
   2027 
   2028 /*
   2029  * pool_cache_get{,_paddr}:
   2030  *
   2031  *	Get an object from a pool cache (optionally returning
   2032  *	the physical address of the object).
   2033  */
   2034 void *
   2035 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
   2036 {
   2037 	struct pool_cache_group *pcg;
   2038 	void *object;
   2039 
   2040 #ifdef LOCKDEBUG
   2041 	if (flags & PR_WAITOK)
   2042 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2043 #endif
   2044 
   2045 	simple_lock(&pc->pc_slock);
   2046 
   2047 	pcg = LIST_FIRST(&pc->pc_partgroups);
   2048 	if (pcg == NULL) {
   2049 		pcg = LIST_FIRST(&pc->pc_fullgroups);
   2050 		if (pcg != NULL) {
   2051 			LIST_REMOVE(pcg, pcg_list);
   2052 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2053 		}
   2054 	}
   2055 	if (pcg == NULL) {
   2056 
   2057 		/*
   2058 		 * No groups with any available objects.  Allocate
   2059 		 * a new object, construct it, and return it to
   2060 		 * the caller.  We will allocate a group, if necessary,
   2061 		 * when the object is freed back to the cache.
   2062 		 */
   2063 		pc->pc_misses++;
   2064 		simple_unlock(&pc->pc_slock);
   2065 		object = pool_get(pc->pc_pool, flags);
   2066 		if (object != NULL && pc->pc_ctor != NULL) {
   2067 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2068 				pool_put(pc->pc_pool, object);
   2069 				return (NULL);
   2070 			}
   2071 		}
   2072 		if (object != NULL && pap != NULL) {
   2073 #ifdef POOL_VTOPHYS
   2074 			*pap = POOL_VTOPHYS(object);
   2075 #else
   2076 			*pap = POOL_PADDR_INVALID;
   2077 #endif
   2078 		}
   2079 		return (object);
   2080 	}
   2081 
   2082 	pc->pc_hits++;
   2083 	pc->pc_nitems--;
   2084 	object = pcg_get(pcg, pap);
   2085 
   2086 	if (pcg->pcg_avail == 0) {
   2087 		LIST_REMOVE(pcg, pcg_list);
   2088 		LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
   2089 	}
   2090 	simple_unlock(&pc->pc_slock);
   2091 
   2092 	return (object);
   2093 }
   2094 
   2095 /*
   2096  * pool_cache_put{,_paddr}:
   2097  *
   2098  *	Put an object back to the pool cache (optionally caching the
   2099  *	physical address of the object).
   2100  */
   2101 void
   2102 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
   2103 {
   2104 	struct pool_cache_group *pcg;
   2105 	int s;
   2106 
   2107 	if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
   2108 		goto destruct;
   2109 	}
   2110 
   2111 	simple_lock(&pc->pc_slock);
   2112 
   2113 	pcg = LIST_FIRST(&pc->pc_partgroups);
   2114 	if (pcg == NULL) {
   2115 		pcg = LIST_FIRST(&pc->pc_emptygroups);
   2116 		if (pcg != NULL) {
   2117 			LIST_REMOVE(pcg, pcg_list);
   2118 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2119 		}
   2120 	}
   2121 	if (pcg == NULL) {
   2122 
   2123 		/*
   2124 		 * No empty groups to free the object to.  Attempt to
   2125 		 * allocate one.
   2126 		 */
   2127 		simple_unlock(&pc->pc_slock);
   2128 		s = splvm();
   2129 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   2130 		splx(s);
   2131 		if (pcg == NULL) {
   2132 destruct:
   2133 
   2134 			/*
   2135 			 * Unable to allocate a cache group; destruct the object
   2136 			 * and free it back to the pool.
   2137 			 */
   2138 			pool_cache_destruct_object(pc, object);
   2139 			return;
   2140 		}
   2141 		memset(pcg, 0, sizeof(*pcg));
   2142 		simple_lock(&pc->pc_slock);
   2143 		pc->pc_ngroups++;
   2144 		LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2145 	}
   2146 
   2147 	pc->pc_nitems++;
   2148 	pcg_put(pcg, object, pa);
   2149 
   2150 	if (pcg->pcg_avail == PCG_NOBJECTS) {
   2151 		LIST_REMOVE(pcg, pcg_list);
   2152 		LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
   2153 	}
   2154 	simple_unlock(&pc->pc_slock);
   2155 }
   2156 
   2157 /*
   2158  * pool_cache_destruct_object:
   2159  *
   2160  *	Force destruction of an object and its release back into
   2161  *	the pool.
   2162  */
   2163 void
   2164 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   2165 {
   2166 
   2167 	if (pc->pc_dtor != NULL)
   2168 		(*pc->pc_dtor)(pc->pc_arg, object);
   2169 	pool_put(pc->pc_pool, object);
   2170 }
   2171 
   2172 static void
   2173 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
   2174     struct pool_cache *pc, struct pool_pagelist *pq,
   2175     struct pool_cache_grouplist *pcgdl)
   2176 {
   2177 	struct pool_cache_group *pcg, *npcg;
   2178 	void *object;
   2179 
   2180 	for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
   2181 		npcg = LIST_NEXT(pcg, pcg_list);
   2182 		while (pcg->pcg_avail != 0) {
   2183 			pc->pc_nitems--;
   2184 			object = pcg_get(pcg, NULL);
   2185 			if (pc->pc_dtor != NULL)
   2186 				(*pc->pc_dtor)(pc->pc_arg, object);
   2187 			pool_do_put(pc->pc_pool, object, pq);
   2188 		}
   2189 		pc->pc_ngroups--;
   2190 		LIST_REMOVE(pcg, pcg_list);
   2191 		LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
   2192 	}
   2193 }
   2194 
   2195 static void
   2196 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
   2197     struct pool_cache_grouplist *pcgl)
   2198 {
   2199 
   2200 	LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
   2201 	LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
   2202 
   2203 	pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
   2204 	pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
   2205 
   2206 	KASSERT(LIST_EMPTY(&pc->pc_partgroups));
   2207 	KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
   2208 	KASSERT(pc->pc_nitems == 0);
   2209 }
   2210 
   2211 /*
   2212  * pool_cache_invalidate:
   2213  *
   2214  *	Invalidate a pool cache (destruct and release all of the
   2215  *	cached objects).
   2216  */
   2217 void
   2218 pool_cache_invalidate(struct pool_cache *pc)
   2219 {
   2220 	struct pool_pagelist pq;
   2221 	struct pool_cache_grouplist pcgl;
   2222 
   2223 	LIST_INIT(&pq);
   2224 	LIST_INIT(&pcgl);
   2225 
   2226 	simple_lock(&pc->pc_slock);
   2227 	simple_lock(&pc->pc_pool->pr_slock);
   2228 
   2229 	pool_do_cache_invalidate(pc, &pq, &pcgl);
   2230 
   2231 	simple_unlock(&pc->pc_pool->pr_slock);
   2232 	simple_unlock(&pc->pc_slock);
   2233 
   2234 	pr_pagelist_free(pc->pc_pool, &pq);
   2235 	pcg_grouplist_free(&pcgl);
   2236 }
   2237 
   2238 /*
   2239  * pool_cache_reclaim:
   2240  *
   2241  *	Reclaim a pool cache for pool_reclaim().
   2242  */
   2243 static void
   2244 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
   2245     struct pool_cache_grouplist *pcgl)
   2246 {
   2247 
   2248 	/*
   2249 	 * We're locking in the wrong order (normally pool_cache -> pool,
   2250 	 * but the pool is already locked when we get here), so we have
   2251 	 * to use trylock.  If we can't lock the pool_cache, it's not really
   2252 	 * a big deal here.
   2253 	 */
   2254 	if (simple_lock_try(&pc->pc_slock) == 0)
   2255 		return;
   2256 
   2257 	pool_do_cache_invalidate(pc, pq, pcgl);
   2258 
   2259 	simple_unlock(&pc->pc_slock);
   2260 }
   2261 
   2262 /*
   2263  * Pool backend allocators.
   2264  *
   2265  * Each pool has a backend allocator that handles allocation, deallocation,
   2266  * and any additional draining that might be needed.
   2267  *
   2268  * We provide two standard allocators:
   2269  *
   2270  *	pool_allocator_kmem - the default when no allocator is specified
   2271  *
   2272  *	pool_allocator_nointr - used for pools that will not be accessed
   2273  *	in interrupt context.
   2274  */
   2275 void	*pool_page_alloc(struct pool *, int);
   2276 void	pool_page_free(struct pool *, void *);
   2277 
   2278 #ifdef POOL_SUBPAGE
   2279 struct pool_allocator pool_allocator_kmem_fullpage = {
   2280 	pool_page_alloc, pool_page_free, 0,
   2281 	.pa_backingmapptr = &kmem_map,
   2282 };
   2283 #else
   2284 struct pool_allocator pool_allocator_kmem = {
   2285 	pool_page_alloc, pool_page_free, 0,
   2286 	.pa_backingmapptr = &kmem_map,
   2287 };
   2288 #endif
   2289 
   2290 void	*pool_page_alloc_nointr(struct pool *, int);
   2291 void	pool_page_free_nointr(struct pool *, void *);
   2292 
   2293 #ifdef POOL_SUBPAGE
   2294 struct pool_allocator pool_allocator_nointr_fullpage = {
   2295 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2296 	.pa_backingmapptr = &kernel_map,
   2297 };
   2298 #else
   2299 struct pool_allocator pool_allocator_nointr = {
   2300 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2301 	.pa_backingmapptr = &kernel_map,
   2302 };
   2303 #endif
   2304 
   2305 #ifdef POOL_SUBPAGE
   2306 void	*pool_subpage_alloc(struct pool *, int);
   2307 void	pool_subpage_free(struct pool *, void *);
   2308 
   2309 struct pool_allocator pool_allocator_kmem = {
   2310 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2311 	.pa_backingmapptr = &kmem_map,
   2312 };
   2313 
   2314 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2315 void	pool_subpage_free_nointr(struct pool *, void *);
   2316 
   2317 struct pool_allocator pool_allocator_nointr = {
   2318 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2319 	.pa_backingmapptr = &kmem_map,
   2320 };
   2321 #endif /* POOL_SUBPAGE */
   2322 
   2323 static void *
   2324 pool_allocator_alloc(struct pool *pp, int flags)
   2325 {
   2326 	struct pool_allocator *pa = pp->pr_alloc;
   2327 	void *res;
   2328 
   2329 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
   2330 
   2331 	res = (*pa->pa_alloc)(pp, flags);
   2332 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2333 		/*
   2334 		 * We only run the drain hook here if PR_NOWAIT.
   2335 		 * In other cases, the hook will be run in
   2336 		 * pool_reclaim().
   2337 		 */
   2338 		if (pp->pr_drain_hook != NULL) {
   2339 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2340 			res = (*pa->pa_alloc)(pp, flags);
   2341 		}
   2342 	}
   2343 	return res;
   2344 }
   2345 
   2346 static void
   2347 pool_allocator_free(struct pool *pp, void *v)
   2348 {
   2349 	struct pool_allocator *pa = pp->pr_alloc;
   2350 
   2351 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
   2352 
   2353 	(*pa->pa_free)(pp, v);
   2354 }
   2355 
   2356 void *
   2357 pool_page_alloc(struct pool *pp __unused, int flags)
   2358 {
   2359 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2360 
   2361 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2362 }
   2363 
   2364 void
   2365 pool_page_free(struct pool *pp __unused, void *v)
   2366 {
   2367 
   2368 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2369 }
   2370 
   2371 static void *
   2372 pool_page_alloc_meta(struct pool *pp __unused, int flags)
   2373 {
   2374 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2375 
   2376 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2377 }
   2378 
   2379 static void
   2380 pool_page_free_meta(struct pool *pp __unused, void *v)
   2381 {
   2382 
   2383 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2384 }
   2385 
   2386 #ifdef POOL_SUBPAGE
   2387 /* Sub-page allocator, for machines with large hardware pages. */
   2388 void *
   2389 pool_subpage_alloc(struct pool *pp, int flags)
   2390 {
   2391 	void *v;
   2392 	int s;
   2393 	s = splvm();
   2394 	v = pool_get(&psppool, flags);
   2395 	splx(s);
   2396 	return v;
   2397 }
   2398 
   2399 void
   2400 pool_subpage_free(struct pool *pp, void *v)
   2401 {
   2402 	int s;
   2403 	s = splvm();
   2404 	pool_put(&psppool, v);
   2405 	splx(s);
   2406 }
   2407 
   2408 /* We don't provide a real nointr allocator.  Maybe later. */
   2409 void *
   2410 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2411 {
   2412 
   2413 	return (pool_subpage_alloc(pp, flags));
   2414 }
   2415 
   2416 void
   2417 pool_subpage_free_nointr(struct pool *pp, void *v)
   2418 {
   2419 
   2420 	pool_subpage_free(pp, v);
   2421 }
   2422 #endif /* POOL_SUBPAGE */
   2423 void *
   2424 pool_page_alloc_nointr(struct pool *pp __unused, int flags)
   2425 {
   2426 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2427 
   2428 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2429 }
   2430 
   2431 void
   2432 pool_page_free_nointr(struct pool *pp __unused, void *v)
   2433 {
   2434 
   2435 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2436 }
   2437