subr_pool.c revision 1.126 1 /* $NetBSD: subr_pool.c,v 1.126 2007/02/21 23:00:05 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.126 2007/02/21 23:00:05 thorpej Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56 #include <sys/debug.h>
57
58 #include <uvm/uvm.h>
59
60 /*
61 * Pool resource management utility.
62 *
63 * Memory is allocated in pages which are split into pieces according to
64 * the pool item size. Each page is kept on one of three lists in the
65 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
66 * for empty, full and partially-full pages respectively. The individual
67 * pool items are on a linked list headed by `ph_itemlist' in each page
68 * header. The memory for building the page list is either taken from
69 * the allocated pages themselves (for small pool items) or taken from
70 * an internal pool of page headers (`phpool').
71 */
72
73 /* List of all pools */
74 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
75
76 /* Private pool for page header structures */
77 #define PHPOOL_MAX 8
78 static struct pool phpool[PHPOOL_MAX];
79 #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
80
81 #ifdef POOL_SUBPAGE
82 /* Pool of subpages for use by normal pools. */
83 static struct pool psppool;
84 #endif
85
86 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
87 SLIST_HEAD_INITIALIZER(pa_deferinitq);
88
89 static void *pool_page_alloc_meta(struct pool *, int);
90 static void pool_page_free_meta(struct pool *, void *);
91
92 /* allocator for pool metadata */
93 static struct pool_allocator pool_allocator_meta = {
94 pool_page_alloc_meta, pool_page_free_meta,
95 .pa_backingmapptr = &kmem_map,
96 };
97
98 /* # of seconds to retain page after last use */
99 int pool_inactive_time = 10;
100
101 /* Next candidate for drainage (see pool_drain()) */
102 static struct pool *drainpp;
103
104 /* This spin lock protects both pool_head and drainpp. */
105 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
106
107 typedef uint8_t pool_item_freelist_t;
108
109 struct pool_item_header {
110 /* Page headers */
111 LIST_ENTRY(pool_item_header)
112 ph_pagelist; /* pool page list */
113 SPLAY_ENTRY(pool_item_header)
114 ph_node; /* Off-page page headers */
115 caddr_t ph_page; /* this page's address */
116 struct timeval ph_time; /* last referenced */
117 union {
118 /* !PR_NOTOUCH */
119 struct {
120 LIST_HEAD(, pool_item)
121 phu_itemlist; /* chunk list for this page */
122 } phu_normal;
123 /* PR_NOTOUCH */
124 struct {
125 uint16_t
126 phu_off; /* start offset in page */
127 pool_item_freelist_t
128 phu_firstfree; /* first free item */
129 /*
130 * XXX it might be better to use
131 * a simple bitmap and ffs(3)
132 */
133 } phu_notouch;
134 } ph_u;
135 uint16_t ph_nmissing; /* # of chunks in use */
136 };
137 #define ph_itemlist ph_u.phu_normal.phu_itemlist
138 #define ph_off ph_u.phu_notouch.phu_off
139 #define ph_firstfree ph_u.phu_notouch.phu_firstfree
140
141 struct pool_item {
142 #ifdef DIAGNOSTIC
143 u_int pi_magic;
144 #endif
145 #define PI_MAGIC 0xdeadbeefU
146 /* Other entries use only this list entry */
147 LIST_ENTRY(pool_item) pi_list;
148 };
149
150 #define POOL_NEEDS_CATCHUP(pp) \
151 ((pp)->pr_nitems < (pp)->pr_minitems)
152
153 /*
154 * Pool cache management.
155 *
156 * Pool caches provide a way for constructed objects to be cached by the
157 * pool subsystem. This can lead to performance improvements by avoiding
158 * needless object construction/destruction; it is deferred until absolutely
159 * necessary.
160 *
161 * Caches are grouped into cache groups. Each cache group references
162 * up to 16 constructed objects. When a cache allocates an object
163 * from the pool, it calls the object's constructor and places it into
164 * a cache group. When a cache group frees an object back to the pool,
165 * it first calls the object's destructor. This allows the object to
166 * persist in constructed form while freed to the cache.
167 *
168 * Multiple caches may exist for each pool. This allows a single
169 * object type to have multiple constructed forms. The pool references
170 * each cache, so that when a pool is drained by the pagedaemon, it can
171 * drain each individual cache as well. Each time a cache is drained,
172 * the most idle cache group is freed to the pool in its entirety.
173 *
174 * Pool caches are layed on top of pools. By layering them, we can avoid
175 * the complexity of cache management for pools which would not benefit
176 * from it.
177 */
178
179 /* The cache group pool. */
180 static struct pool pcgpool;
181
182 static void pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
183 struct pool_cache_grouplist *);
184 static void pcg_grouplist_free(struct pool_cache_grouplist *);
185
186 static int pool_catchup(struct pool *);
187 static void pool_prime_page(struct pool *, caddr_t,
188 struct pool_item_header *);
189 static void pool_update_curpage(struct pool *);
190
191 static int pool_grow(struct pool *, int);
192 static void *pool_allocator_alloc(struct pool *, int);
193 static void pool_allocator_free(struct pool *, void *);
194
195 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
196 void (*)(const char *, ...));
197 static void pool_print1(struct pool *, const char *,
198 void (*)(const char *, ...));
199
200 static int pool_chk_page(struct pool *, const char *,
201 struct pool_item_header *);
202
203 /*
204 * Pool log entry. An array of these is allocated in pool_init().
205 */
206 struct pool_log {
207 const char *pl_file;
208 long pl_line;
209 int pl_action;
210 #define PRLOG_GET 1
211 #define PRLOG_PUT 2
212 void *pl_addr;
213 };
214
215 #ifdef POOL_DIAGNOSTIC
216 /* Number of entries in pool log buffers */
217 #ifndef POOL_LOGSIZE
218 #define POOL_LOGSIZE 10
219 #endif
220
221 int pool_logsize = POOL_LOGSIZE;
222
223 static inline void
224 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
225 {
226 int n = pp->pr_curlogentry;
227 struct pool_log *pl;
228
229 if ((pp->pr_roflags & PR_LOGGING) == 0)
230 return;
231
232 /*
233 * Fill in the current entry. Wrap around and overwrite
234 * the oldest entry if necessary.
235 */
236 pl = &pp->pr_log[n];
237 pl->pl_file = file;
238 pl->pl_line = line;
239 pl->pl_action = action;
240 pl->pl_addr = v;
241 if (++n >= pp->pr_logsize)
242 n = 0;
243 pp->pr_curlogentry = n;
244 }
245
246 static void
247 pr_printlog(struct pool *pp, struct pool_item *pi,
248 void (*pr)(const char *, ...))
249 {
250 int i = pp->pr_logsize;
251 int n = pp->pr_curlogentry;
252
253 if ((pp->pr_roflags & PR_LOGGING) == 0)
254 return;
255
256 /*
257 * Print all entries in this pool's log.
258 */
259 while (i-- > 0) {
260 struct pool_log *pl = &pp->pr_log[n];
261 if (pl->pl_action != 0) {
262 if (pi == NULL || pi == pl->pl_addr) {
263 (*pr)("\tlog entry %d:\n", i);
264 (*pr)("\t\taction = %s, addr = %p\n",
265 pl->pl_action == PRLOG_GET ? "get" : "put",
266 pl->pl_addr);
267 (*pr)("\t\tfile: %s at line %lu\n",
268 pl->pl_file, pl->pl_line);
269 }
270 }
271 if (++n >= pp->pr_logsize)
272 n = 0;
273 }
274 }
275
276 static inline void
277 pr_enter(struct pool *pp, const char *file, long line)
278 {
279
280 if (__predict_false(pp->pr_entered_file != NULL)) {
281 printf("pool %s: reentrancy at file %s line %ld\n",
282 pp->pr_wchan, file, line);
283 printf(" previous entry at file %s line %ld\n",
284 pp->pr_entered_file, pp->pr_entered_line);
285 panic("pr_enter");
286 }
287
288 pp->pr_entered_file = file;
289 pp->pr_entered_line = line;
290 }
291
292 static inline void
293 pr_leave(struct pool *pp)
294 {
295
296 if (__predict_false(pp->pr_entered_file == NULL)) {
297 printf("pool %s not entered?\n", pp->pr_wchan);
298 panic("pr_leave");
299 }
300
301 pp->pr_entered_file = NULL;
302 pp->pr_entered_line = 0;
303 }
304
305 static inline void
306 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
307 {
308
309 if (pp->pr_entered_file != NULL)
310 (*pr)("\n\tcurrently entered from file %s line %ld\n",
311 pp->pr_entered_file, pp->pr_entered_line);
312 }
313 #else
314 #define pr_log(pp, v, action, file, line)
315 #define pr_printlog(pp, pi, pr)
316 #define pr_enter(pp, file, line)
317 #define pr_leave(pp)
318 #define pr_enter_check(pp, pr)
319 #endif /* POOL_DIAGNOSTIC */
320
321 static inline int
322 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
323 const void *v)
324 {
325 const char *cp = v;
326 int idx;
327
328 KASSERT(pp->pr_roflags & PR_NOTOUCH);
329 idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
330 KASSERT(idx < pp->pr_itemsperpage);
331 return idx;
332 }
333
334 #define PR_FREELIST_ALIGN(p) \
335 roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
336 #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
337 #define PR_INDEX_USED ((pool_item_freelist_t)-1)
338 #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
339
340 static inline void
341 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
342 void *obj)
343 {
344 int idx = pr_item_notouch_index(pp, ph, obj);
345 pool_item_freelist_t *freelist = PR_FREELIST(ph);
346
347 KASSERT(freelist[idx] == PR_INDEX_USED);
348 freelist[idx] = ph->ph_firstfree;
349 ph->ph_firstfree = idx;
350 }
351
352 static inline void *
353 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
354 {
355 int idx = ph->ph_firstfree;
356 pool_item_freelist_t *freelist = PR_FREELIST(ph);
357
358 KASSERT(freelist[idx] != PR_INDEX_USED);
359 ph->ph_firstfree = freelist[idx];
360 freelist[idx] = PR_INDEX_USED;
361
362 return ph->ph_page + ph->ph_off + idx * pp->pr_size;
363 }
364
365 static inline int
366 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
367 {
368
369 /*
370 * we consider pool_item_header with smaller ph_page bigger.
371 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
372 */
373
374 if (a->ph_page < b->ph_page)
375 return (1);
376 else if (a->ph_page > b->ph_page)
377 return (-1);
378 else
379 return (0);
380 }
381
382 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
383 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
384
385 /*
386 * Return the pool page header based on item address.
387 */
388 static inline struct pool_item_header *
389 pr_find_pagehead(struct pool *pp, void *v)
390 {
391 struct pool_item_header *ph, tmp;
392
393 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
394 tmp.ph_page = (caddr_t)(uintptr_t)v;
395 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
396 if (ph == NULL) {
397 ph = SPLAY_ROOT(&pp->pr_phtree);
398 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
399 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
400 }
401 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
402 }
403 } else {
404 caddr_t page =
405 (caddr_t)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
406
407 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
408 ph = (void *)(page + pp->pr_phoffset);
409 } else {
410 tmp.ph_page = page;
411 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
412 }
413 }
414
415 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
416 (ph->ph_page <= (char *)v &&
417 (char *)v < ph->ph_page + pp->pr_alloc->pa_pagesz));
418 return ph;
419 }
420
421 static void
422 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
423 {
424 struct pool_item_header *ph;
425 int s;
426
427 while ((ph = LIST_FIRST(pq)) != NULL) {
428 LIST_REMOVE(ph, ph_pagelist);
429 pool_allocator_free(pp, ph->ph_page);
430 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
431 s = splvm();
432 pool_put(pp->pr_phpool, ph);
433 splx(s);
434 }
435 }
436 }
437
438 /*
439 * Remove a page from the pool.
440 */
441 static inline void
442 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
443 struct pool_pagelist *pq)
444 {
445
446 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
447
448 /*
449 * If the page was idle, decrement the idle page count.
450 */
451 if (ph->ph_nmissing == 0) {
452 #ifdef DIAGNOSTIC
453 if (pp->pr_nidle == 0)
454 panic("pr_rmpage: nidle inconsistent");
455 if (pp->pr_nitems < pp->pr_itemsperpage)
456 panic("pr_rmpage: nitems inconsistent");
457 #endif
458 pp->pr_nidle--;
459 }
460
461 pp->pr_nitems -= pp->pr_itemsperpage;
462
463 /*
464 * Unlink the page from the pool and queue it for release.
465 */
466 LIST_REMOVE(ph, ph_pagelist);
467 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
468 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
469 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
470
471 pp->pr_npages--;
472 pp->pr_npagefree++;
473
474 pool_update_curpage(pp);
475 }
476
477 static bool
478 pa_starved_p(struct pool_allocator *pa)
479 {
480
481 if (pa->pa_backingmap != NULL) {
482 return vm_map_starved_p(pa->pa_backingmap);
483 }
484 return FALSE;
485 }
486
487 static int
488 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
489 {
490 struct pool *pp = obj;
491 struct pool_allocator *pa = pp->pr_alloc;
492
493 KASSERT(&pp->pr_reclaimerentry == ce);
494 pool_reclaim(pp);
495 if (!pa_starved_p(pa)) {
496 return CALLBACK_CHAIN_ABORT;
497 }
498 return CALLBACK_CHAIN_CONTINUE;
499 }
500
501 static void
502 pool_reclaim_register(struct pool *pp)
503 {
504 struct vm_map *map = pp->pr_alloc->pa_backingmap;
505 int s;
506
507 if (map == NULL) {
508 return;
509 }
510
511 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
512 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
513 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
514 splx(s);
515 }
516
517 static void
518 pool_reclaim_unregister(struct pool *pp)
519 {
520 struct vm_map *map = pp->pr_alloc->pa_backingmap;
521 int s;
522
523 if (map == NULL) {
524 return;
525 }
526
527 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
528 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
529 &pp->pr_reclaimerentry);
530 splx(s);
531 }
532
533 static void
534 pa_reclaim_register(struct pool_allocator *pa)
535 {
536 struct vm_map *map = *pa->pa_backingmapptr;
537 struct pool *pp;
538
539 KASSERT(pa->pa_backingmap == NULL);
540 if (map == NULL) {
541 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
542 return;
543 }
544 pa->pa_backingmap = map;
545 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
546 pool_reclaim_register(pp);
547 }
548 }
549
550 /*
551 * Initialize all the pools listed in the "pools" link set.
552 */
553 void
554 pool_subsystem_init(void)
555 {
556 struct pool_allocator *pa;
557 __link_set_decl(pools, struct link_pool_init);
558 struct link_pool_init * const *pi;
559
560 __link_set_foreach(pi, pools)
561 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
562 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
563 (*pi)->palloc);
564
565 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
566 KASSERT(pa->pa_backingmapptr != NULL);
567 KASSERT(*pa->pa_backingmapptr != NULL);
568 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
569 pa_reclaim_register(pa);
570 }
571 }
572
573 /*
574 * Initialize the given pool resource structure.
575 *
576 * We export this routine to allow other kernel parts to declare
577 * static pools that must be initialized before malloc() is available.
578 */
579 void
580 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
581 const char *wchan, struct pool_allocator *palloc)
582 {
583 #ifdef DEBUG
584 struct pool *pp1;
585 #endif
586 size_t trysize, phsize;
587 int off, slack, s;
588
589 KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
590 PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
591
592 #ifdef DEBUG
593 /*
594 * Check that the pool hasn't already been initialised and
595 * added to the list of all pools.
596 */
597 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
598 if (pp == pp1)
599 panic("pool_init: pool %s already initialised",
600 wchan);
601 }
602 #endif
603
604 #ifdef POOL_DIAGNOSTIC
605 /*
606 * Always log if POOL_DIAGNOSTIC is defined.
607 */
608 if (pool_logsize != 0)
609 flags |= PR_LOGGING;
610 #endif
611
612 if (palloc == NULL)
613 palloc = &pool_allocator_kmem;
614 #ifdef POOL_SUBPAGE
615 if (size > palloc->pa_pagesz) {
616 if (palloc == &pool_allocator_kmem)
617 palloc = &pool_allocator_kmem_fullpage;
618 else if (palloc == &pool_allocator_nointr)
619 palloc = &pool_allocator_nointr_fullpage;
620 }
621 #endif /* POOL_SUBPAGE */
622 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
623 if (palloc->pa_pagesz == 0)
624 palloc->pa_pagesz = PAGE_SIZE;
625
626 TAILQ_INIT(&palloc->pa_list);
627
628 simple_lock_init(&palloc->pa_slock);
629 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
630 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
631
632 if (palloc->pa_backingmapptr != NULL) {
633 pa_reclaim_register(palloc);
634 }
635 palloc->pa_flags |= PA_INITIALIZED;
636 }
637
638 if (align == 0)
639 align = ALIGN(1);
640
641 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
642 size = sizeof(struct pool_item);
643
644 size = roundup(size, align);
645 #ifdef DIAGNOSTIC
646 if (size > palloc->pa_pagesz)
647 panic("pool_init: pool item size (%zu) too large", size);
648 #endif
649
650 /*
651 * Initialize the pool structure.
652 */
653 LIST_INIT(&pp->pr_emptypages);
654 LIST_INIT(&pp->pr_fullpages);
655 LIST_INIT(&pp->pr_partpages);
656 LIST_INIT(&pp->pr_cachelist);
657 pp->pr_curpage = NULL;
658 pp->pr_npages = 0;
659 pp->pr_minitems = 0;
660 pp->pr_minpages = 0;
661 pp->pr_maxpages = UINT_MAX;
662 pp->pr_roflags = flags;
663 pp->pr_flags = 0;
664 pp->pr_size = size;
665 pp->pr_align = align;
666 pp->pr_wchan = wchan;
667 pp->pr_alloc = palloc;
668 pp->pr_nitems = 0;
669 pp->pr_nout = 0;
670 pp->pr_hardlimit = UINT_MAX;
671 pp->pr_hardlimit_warning = NULL;
672 pp->pr_hardlimit_ratecap.tv_sec = 0;
673 pp->pr_hardlimit_ratecap.tv_usec = 0;
674 pp->pr_hardlimit_warning_last.tv_sec = 0;
675 pp->pr_hardlimit_warning_last.tv_usec = 0;
676 pp->pr_drain_hook = NULL;
677 pp->pr_drain_hook_arg = NULL;
678 pp->pr_freecheck = NULL;
679
680 /*
681 * Decide whether to put the page header off page to avoid
682 * wasting too large a part of the page or too big item.
683 * Off-page page headers go on a hash table, so we can match
684 * a returned item with its header based on the page address.
685 * We use 1/16 of the page size and about 8 times of the item
686 * size as the threshold (XXX: tune)
687 *
688 * However, we'll put the header into the page if we can put
689 * it without wasting any items.
690 *
691 * Silently enforce `0 <= ioff < align'.
692 */
693 pp->pr_itemoffset = ioff %= align;
694 /* See the comment below about reserved bytes. */
695 trysize = palloc->pa_pagesz - ((align - ioff) % align);
696 phsize = ALIGN(sizeof(struct pool_item_header));
697 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
698 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
699 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
700 /* Use the end of the page for the page header */
701 pp->pr_roflags |= PR_PHINPAGE;
702 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
703 } else {
704 /* The page header will be taken from our page header pool */
705 pp->pr_phoffset = 0;
706 off = palloc->pa_pagesz;
707 SPLAY_INIT(&pp->pr_phtree);
708 }
709
710 /*
711 * Alignment is to take place at `ioff' within the item. This means
712 * we must reserve up to `align - 1' bytes on the page to allow
713 * appropriate positioning of each item.
714 */
715 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
716 KASSERT(pp->pr_itemsperpage != 0);
717 if ((pp->pr_roflags & PR_NOTOUCH)) {
718 int idx;
719
720 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
721 idx++) {
722 /* nothing */
723 }
724 if (idx >= PHPOOL_MAX) {
725 /*
726 * if you see this panic, consider to tweak
727 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
728 */
729 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
730 pp->pr_wchan, pp->pr_itemsperpage);
731 }
732 pp->pr_phpool = &phpool[idx];
733 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
734 pp->pr_phpool = &phpool[0];
735 }
736 #if defined(DIAGNOSTIC)
737 else {
738 pp->pr_phpool = NULL;
739 }
740 #endif
741
742 /*
743 * Use the slack between the chunks and the page header
744 * for "cache coloring".
745 */
746 slack = off - pp->pr_itemsperpage * pp->pr_size;
747 pp->pr_maxcolor = (slack / align) * align;
748 pp->pr_curcolor = 0;
749
750 pp->pr_nget = 0;
751 pp->pr_nfail = 0;
752 pp->pr_nput = 0;
753 pp->pr_npagealloc = 0;
754 pp->pr_npagefree = 0;
755 pp->pr_hiwat = 0;
756 pp->pr_nidle = 0;
757
758 #ifdef POOL_DIAGNOSTIC
759 if (flags & PR_LOGGING) {
760 if (kmem_map == NULL ||
761 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
762 M_TEMP, M_NOWAIT)) == NULL)
763 pp->pr_roflags &= ~PR_LOGGING;
764 pp->pr_curlogentry = 0;
765 pp->pr_logsize = pool_logsize;
766 }
767 #endif
768
769 pp->pr_entered_file = NULL;
770 pp->pr_entered_line = 0;
771
772 simple_lock_init(&pp->pr_slock);
773
774 /*
775 * Initialize private page header pool and cache magazine pool if we
776 * haven't done so yet.
777 * XXX LOCKING.
778 */
779 if (phpool[0].pr_size == 0) {
780 int idx;
781 for (idx = 0; idx < PHPOOL_MAX; idx++) {
782 static char phpool_names[PHPOOL_MAX][6+1+6+1];
783 int nelem;
784 size_t sz;
785
786 nelem = PHPOOL_FREELIST_NELEM(idx);
787 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
788 "phpool-%d", nelem);
789 sz = sizeof(struct pool_item_header);
790 if (nelem) {
791 sz = PR_FREELIST_ALIGN(sz)
792 + nelem * sizeof(pool_item_freelist_t);
793 }
794 pool_init(&phpool[idx], sz, 0, 0, 0,
795 phpool_names[idx], &pool_allocator_meta);
796 }
797 #ifdef POOL_SUBPAGE
798 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
799 PR_RECURSIVE, "psppool", &pool_allocator_meta);
800 #endif
801 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
802 0, "pcgpool", &pool_allocator_meta);
803 }
804
805 /* Insert into the list of all pools. */
806 simple_lock(&pool_head_slock);
807 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
808 simple_unlock(&pool_head_slock);
809
810 /* Insert this into the list of pools using this allocator. */
811 s = splvm();
812 simple_lock(&palloc->pa_slock);
813 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
814 simple_unlock(&palloc->pa_slock);
815 splx(s);
816 pool_reclaim_register(pp);
817 }
818
819 /*
820 * De-commision a pool resource.
821 */
822 void
823 pool_destroy(struct pool *pp)
824 {
825 struct pool_pagelist pq;
826 struct pool_item_header *ph;
827 int s;
828
829 /* Remove from global pool list */
830 simple_lock(&pool_head_slock);
831 LIST_REMOVE(pp, pr_poollist);
832 if (drainpp == pp)
833 drainpp = NULL;
834 simple_unlock(&pool_head_slock);
835
836 /* Remove this pool from its allocator's list of pools. */
837 pool_reclaim_unregister(pp);
838 s = splvm();
839 simple_lock(&pp->pr_alloc->pa_slock);
840 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
841 simple_unlock(&pp->pr_alloc->pa_slock);
842 splx(s);
843
844 s = splvm();
845 simple_lock(&pp->pr_slock);
846
847 KASSERT(LIST_EMPTY(&pp->pr_cachelist));
848
849 #ifdef DIAGNOSTIC
850 if (pp->pr_nout != 0) {
851 pr_printlog(pp, NULL, printf);
852 panic("pool_destroy: pool busy: still out: %u",
853 pp->pr_nout);
854 }
855 #endif
856
857 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
858 KASSERT(LIST_EMPTY(&pp->pr_partpages));
859
860 /* Remove all pages */
861 LIST_INIT(&pq);
862 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
863 pr_rmpage(pp, ph, &pq);
864
865 simple_unlock(&pp->pr_slock);
866 splx(s);
867
868 pr_pagelist_free(pp, &pq);
869
870 #ifdef POOL_DIAGNOSTIC
871 if ((pp->pr_roflags & PR_LOGGING) != 0)
872 free(pp->pr_log, M_TEMP);
873 #endif
874 }
875
876 void
877 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
878 {
879
880 /* XXX no locking -- must be used just after pool_init() */
881 #ifdef DIAGNOSTIC
882 if (pp->pr_drain_hook != NULL)
883 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
884 #endif
885 pp->pr_drain_hook = fn;
886 pp->pr_drain_hook_arg = arg;
887 }
888
889 static struct pool_item_header *
890 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
891 {
892 struct pool_item_header *ph;
893 int s;
894
895 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
896
897 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
898 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
899 else {
900 s = splvm();
901 ph = pool_get(pp->pr_phpool, flags);
902 splx(s);
903 }
904
905 return (ph);
906 }
907
908 /*
909 * Grab an item from the pool; must be called at appropriate spl level
910 */
911 void *
912 #ifdef POOL_DIAGNOSTIC
913 _pool_get(struct pool *pp, int flags, const char *file, long line)
914 #else
915 pool_get(struct pool *pp, int flags)
916 #endif
917 {
918 struct pool_item *pi;
919 struct pool_item_header *ph;
920 void *v;
921
922 #ifdef DIAGNOSTIC
923 if (__predict_false(pp->pr_itemsperpage == 0))
924 panic("pool_get: pool %p: pr_itemsperpage is zero, "
925 "pool not initialized?", pp);
926 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
927 (flags & PR_WAITOK) != 0))
928 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
929
930 #endif /* DIAGNOSTIC */
931 #ifdef LOCKDEBUG
932 if (flags & PR_WAITOK)
933 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
934 #endif
935
936 simple_lock(&pp->pr_slock);
937 pr_enter(pp, file, line);
938
939 startover:
940 /*
941 * Check to see if we've reached the hard limit. If we have,
942 * and we can wait, then wait until an item has been returned to
943 * the pool.
944 */
945 #ifdef DIAGNOSTIC
946 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
947 pr_leave(pp);
948 simple_unlock(&pp->pr_slock);
949 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
950 }
951 #endif
952 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
953 if (pp->pr_drain_hook != NULL) {
954 /*
955 * Since the drain hook is going to free things
956 * back to the pool, unlock, call the hook, re-lock,
957 * and check the hardlimit condition again.
958 */
959 pr_leave(pp);
960 simple_unlock(&pp->pr_slock);
961 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
962 simple_lock(&pp->pr_slock);
963 pr_enter(pp, file, line);
964 if (pp->pr_nout < pp->pr_hardlimit)
965 goto startover;
966 }
967
968 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
969 /*
970 * XXX: A warning isn't logged in this case. Should
971 * it be?
972 */
973 pp->pr_flags |= PR_WANTED;
974 pr_leave(pp);
975 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
976 pr_enter(pp, file, line);
977 goto startover;
978 }
979
980 /*
981 * Log a message that the hard limit has been hit.
982 */
983 if (pp->pr_hardlimit_warning != NULL &&
984 ratecheck(&pp->pr_hardlimit_warning_last,
985 &pp->pr_hardlimit_ratecap))
986 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
987
988 pp->pr_nfail++;
989
990 pr_leave(pp);
991 simple_unlock(&pp->pr_slock);
992 return (NULL);
993 }
994
995 /*
996 * The convention we use is that if `curpage' is not NULL, then
997 * it points at a non-empty bucket. In particular, `curpage'
998 * never points at a page header which has PR_PHINPAGE set and
999 * has no items in its bucket.
1000 */
1001 if ((ph = pp->pr_curpage) == NULL) {
1002 int error;
1003
1004 #ifdef DIAGNOSTIC
1005 if (pp->pr_nitems != 0) {
1006 simple_unlock(&pp->pr_slock);
1007 printf("pool_get: %s: curpage NULL, nitems %u\n",
1008 pp->pr_wchan, pp->pr_nitems);
1009 panic("pool_get: nitems inconsistent");
1010 }
1011 #endif
1012
1013 /*
1014 * Call the back-end page allocator for more memory.
1015 * Release the pool lock, as the back-end page allocator
1016 * may block.
1017 */
1018 pr_leave(pp);
1019 error = pool_grow(pp, flags);
1020 pr_enter(pp, file, line);
1021 if (error != 0) {
1022 /*
1023 * We were unable to allocate a page or item
1024 * header, but we released the lock during
1025 * allocation, so perhaps items were freed
1026 * back to the pool. Check for this case.
1027 */
1028 if (pp->pr_curpage != NULL)
1029 goto startover;
1030
1031 pp->pr_nfail++;
1032 pr_leave(pp);
1033 simple_unlock(&pp->pr_slock);
1034 return (NULL);
1035 }
1036
1037 /* Start the allocation process over. */
1038 goto startover;
1039 }
1040 if (pp->pr_roflags & PR_NOTOUCH) {
1041 #ifdef DIAGNOSTIC
1042 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1043 pr_leave(pp);
1044 simple_unlock(&pp->pr_slock);
1045 panic("pool_get: %s: page empty", pp->pr_wchan);
1046 }
1047 #endif
1048 v = pr_item_notouch_get(pp, ph);
1049 #ifdef POOL_DIAGNOSTIC
1050 pr_log(pp, v, PRLOG_GET, file, line);
1051 #endif
1052 } else {
1053 v = pi = LIST_FIRST(&ph->ph_itemlist);
1054 if (__predict_false(v == NULL)) {
1055 pr_leave(pp);
1056 simple_unlock(&pp->pr_slock);
1057 panic("pool_get: %s: page empty", pp->pr_wchan);
1058 }
1059 #ifdef DIAGNOSTIC
1060 if (__predict_false(pp->pr_nitems == 0)) {
1061 pr_leave(pp);
1062 simple_unlock(&pp->pr_slock);
1063 printf("pool_get: %s: items on itemlist, nitems %u\n",
1064 pp->pr_wchan, pp->pr_nitems);
1065 panic("pool_get: nitems inconsistent");
1066 }
1067 #endif
1068
1069 #ifdef POOL_DIAGNOSTIC
1070 pr_log(pp, v, PRLOG_GET, file, line);
1071 #endif
1072
1073 #ifdef DIAGNOSTIC
1074 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1075 pr_printlog(pp, pi, printf);
1076 panic("pool_get(%s): free list modified: "
1077 "magic=%x; page %p; item addr %p\n",
1078 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1079 }
1080 #endif
1081
1082 /*
1083 * Remove from item list.
1084 */
1085 LIST_REMOVE(pi, pi_list);
1086 }
1087 pp->pr_nitems--;
1088 pp->pr_nout++;
1089 if (ph->ph_nmissing == 0) {
1090 #ifdef DIAGNOSTIC
1091 if (__predict_false(pp->pr_nidle == 0))
1092 panic("pool_get: nidle inconsistent");
1093 #endif
1094 pp->pr_nidle--;
1095
1096 /*
1097 * This page was previously empty. Move it to the list of
1098 * partially-full pages. This page is already curpage.
1099 */
1100 LIST_REMOVE(ph, ph_pagelist);
1101 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1102 }
1103 ph->ph_nmissing++;
1104 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1105 #ifdef DIAGNOSTIC
1106 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1107 !LIST_EMPTY(&ph->ph_itemlist))) {
1108 pr_leave(pp);
1109 simple_unlock(&pp->pr_slock);
1110 panic("pool_get: %s: nmissing inconsistent",
1111 pp->pr_wchan);
1112 }
1113 #endif
1114 /*
1115 * This page is now full. Move it to the full list
1116 * and select a new current page.
1117 */
1118 LIST_REMOVE(ph, ph_pagelist);
1119 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1120 pool_update_curpage(pp);
1121 }
1122
1123 pp->pr_nget++;
1124 pr_leave(pp);
1125
1126 /*
1127 * If we have a low water mark and we are now below that low
1128 * water mark, add more items to the pool.
1129 */
1130 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1131 /*
1132 * XXX: Should we log a warning? Should we set up a timeout
1133 * to try again in a second or so? The latter could break
1134 * a caller's assumptions about interrupt protection, etc.
1135 */
1136 }
1137
1138 simple_unlock(&pp->pr_slock);
1139 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1140 FREECHECK_OUT(&pp->pr_freecheck, v);
1141 return (v);
1142 }
1143
1144 /*
1145 * Internal version of pool_put(). Pool is already locked/entered.
1146 */
1147 static void
1148 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1149 {
1150 struct pool_item *pi = v;
1151 struct pool_item_header *ph;
1152
1153 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1154 FREECHECK_IN(&pp->pr_freecheck, v);
1155
1156 #ifdef DIAGNOSTIC
1157 if (__predict_false(pp->pr_nout == 0)) {
1158 printf("pool %s: putting with none out\n",
1159 pp->pr_wchan);
1160 panic("pool_put");
1161 }
1162 #endif
1163
1164 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1165 pr_printlog(pp, NULL, printf);
1166 panic("pool_put: %s: page header missing", pp->pr_wchan);
1167 }
1168
1169 #ifdef LOCKDEBUG
1170 /*
1171 * Check if we're freeing a locked simple lock.
1172 */
1173 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
1174 #endif
1175
1176 /*
1177 * Return to item list.
1178 */
1179 if (pp->pr_roflags & PR_NOTOUCH) {
1180 pr_item_notouch_put(pp, ph, v);
1181 } else {
1182 #ifdef DIAGNOSTIC
1183 pi->pi_magic = PI_MAGIC;
1184 #endif
1185 #ifdef DEBUG
1186 {
1187 int i, *ip = v;
1188
1189 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1190 *ip++ = PI_MAGIC;
1191 }
1192 }
1193 #endif
1194
1195 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1196 }
1197 KDASSERT(ph->ph_nmissing != 0);
1198 ph->ph_nmissing--;
1199 pp->pr_nput++;
1200 pp->pr_nitems++;
1201 pp->pr_nout--;
1202
1203 /* Cancel "pool empty" condition if it exists */
1204 if (pp->pr_curpage == NULL)
1205 pp->pr_curpage = ph;
1206
1207 if (pp->pr_flags & PR_WANTED) {
1208 pp->pr_flags &= ~PR_WANTED;
1209 if (ph->ph_nmissing == 0)
1210 pp->pr_nidle++;
1211 wakeup((caddr_t)pp);
1212 return;
1213 }
1214
1215 /*
1216 * If this page is now empty, do one of two things:
1217 *
1218 * (1) If we have more pages than the page high water mark,
1219 * free the page back to the system. ONLY CONSIDER
1220 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1221 * CLAIM.
1222 *
1223 * (2) Otherwise, move the page to the empty page list.
1224 *
1225 * Either way, select a new current page (so we use a partially-full
1226 * page if one is available).
1227 */
1228 if (ph->ph_nmissing == 0) {
1229 pp->pr_nidle++;
1230 if (pp->pr_npages > pp->pr_minpages &&
1231 (pp->pr_npages > pp->pr_maxpages ||
1232 pa_starved_p(pp->pr_alloc))) {
1233 pr_rmpage(pp, ph, pq);
1234 } else {
1235 LIST_REMOVE(ph, ph_pagelist);
1236 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1237
1238 /*
1239 * Update the timestamp on the page. A page must
1240 * be idle for some period of time before it can
1241 * be reclaimed by the pagedaemon. This minimizes
1242 * ping-pong'ing for memory.
1243 */
1244 getmicrotime(&ph->ph_time);
1245 }
1246 pool_update_curpage(pp);
1247 }
1248
1249 /*
1250 * If the page was previously completely full, move it to the
1251 * partially-full list and make it the current page. The next
1252 * allocation will get the item from this page, instead of
1253 * further fragmenting the pool.
1254 */
1255 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1256 LIST_REMOVE(ph, ph_pagelist);
1257 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1258 pp->pr_curpage = ph;
1259 }
1260 }
1261
1262 /*
1263 * Return resource to the pool; must be called at appropriate spl level
1264 */
1265 #ifdef POOL_DIAGNOSTIC
1266 void
1267 _pool_put(struct pool *pp, void *v, const char *file, long line)
1268 {
1269 struct pool_pagelist pq;
1270
1271 LIST_INIT(&pq);
1272
1273 simple_lock(&pp->pr_slock);
1274 pr_enter(pp, file, line);
1275
1276 pr_log(pp, v, PRLOG_PUT, file, line);
1277
1278 pool_do_put(pp, v, &pq);
1279
1280 pr_leave(pp);
1281 simple_unlock(&pp->pr_slock);
1282
1283 pr_pagelist_free(pp, &pq);
1284 }
1285 #undef pool_put
1286 #endif /* POOL_DIAGNOSTIC */
1287
1288 void
1289 pool_put(struct pool *pp, void *v)
1290 {
1291 struct pool_pagelist pq;
1292
1293 LIST_INIT(&pq);
1294
1295 simple_lock(&pp->pr_slock);
1296 pool_do_put(pp, v, &pq);
1297 simple_unlock(&pp->pr_slock);
1298
1299 pr_pagelist_free(pp, &pq);
1300 }
1301
1302 #ifdef POOL_DIAGNOSTIC
1303 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1304 #endif
1305
1306 /*
1307 * pool_grow: grow a pool by a page.
1308 *
1309 * => called with pool locked.
1310 * => unlock and relock the pool.
1311 * => return with pool locked.
1312 */
1313
1314 static int
1315 pool_grow(struct pool *pp, int flags)
1316 {
1317 struct pool_item_header *ph = NULL;
1318 char *cp;
1319
1320 simple_unlock(&pp->pr_slock);
1321 cp = pool_allocator_alloc(pp, flags);
1322 if (__predict_true(cp != NULL)) {
1323 ph = pool_alloc_item_header(pp, cp, flags);
1324 }
1325 if (__predict_false(cp == NULL || ph == NULL)) {
1326 if (cp != NULL) {
1327 pool_allocator_free(pp, cp);
1328 }
1329 simple_lock(&pp->pr_slock);
1330 return ENOMEM;
1331 }
1332
1333 simple_lock(&pp->pr_slock);
1334 pool_prime_page(pp, cp, ph);
1335 pp->pr_npagealloc++;
1336 return 0;
1337 }
1338
1339 /*
1340 * Add N items to the pool.
1341 */
1342 int
1343 pool_prime(struct pool *pp, int n)
1344 {
1345 int newpages;
1346 int error = 0;
1347
1348 simple_lock(&pp->pr_slock);
1349
1350 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1351
1352 while (newpages-- > 0) {
1353 error = pool_grow(pp, PR_NOWAIT);
1354 if (error) {
1355 break;
1356 }
1357 pp->pr_minpages++;
1358 }
1359
1360 if (pp->pr_minpages >= pp->pr_maxpages)
1361 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1362
1363 simple_unlock(&pp->pr_slock);
1364 return error;
1365 }
1366
1367 /*
1368 * Add a page worth of items to the pool.
1369 *
1370 * Note, we must be called with the pool descriptor LOCKED.
1371 */
1372 static void
1373 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1374 {
1375 struct pool_item *pi;
1376 caddr_t cp = storage;
1377 const unsigned int align = pp->pr_align;
1378 const unsigned int ioff = pp->pr_itemoffset;
1379 int n;
1380
1381 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1382
1383 #ifdef DIAGNOSTIC
1384 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1385 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1386 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1387 #endif
1388
1389 /*
1390 * Insert page header.
1391 */
1392 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1393 LIST_INIT(&ph->ph_itemlist);
1394 ph->ph_page = storage;
1395 ph->ph_nmissing = 0;
1396 getmicrotime(&ph->ph_time);
1397 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1398 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1399
1400 pp->pr_nidle++;
1401
1402 /*
1403 * Color this page.
1404 */
1405 cp = (caddr_t)(cp + pp->pr_curcolor);
1406 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1407 pp->pr_curcolor = 0;
1408
1409 /*
1410 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1411 */
1412 if (ioff != 0)
1413 cp = (caddr_t)(cp + (align - ioff));
1414
1415 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1416
1417 /*
1418 * Insert remaining chunks on the bucket list.
1419 */
1420 n = pp->pr_itemsperpage;
1421 pp->pr_nitems += n;
1422
1423 if (pp->pr_roflags & PR_NOTOUCH) {
1424 pool_item_freelist_t *freelist = PR_FREELIST(ph);
1425 int i;
1426
1427 ph->ph_off = cp - storage;
1428 ph->ph_firstfree = 0;
1429 for (i = 0; i < n - 1; i++)
1430 freelist[i] = i + 1;
1431 freelist[n - 1] = PR_INDEX_EOL;
1432 } else {
1433 while (n--) {
1434 pi = (struct pool_item *)cp;
1435
1436 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1437
1438 /* Insert on page list */
1439 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1440 #ifdef DIAGNOSTIC
1441 pi->pi_magic = PI_MAGIC;
1442 #endif
1443 cp = (caddr_t)(cp + pp->pr_size);
1444
1445 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1446 }
1447 }
1448
1449 /*
1450 * If the pool was depleted, point at the new page.
1451 */
1452 if (pp->pr_curpage == NULL)
1453 pp->pr_curpage = ph;
1454
1455 if (++pp->pr_npages > pp->pr_hiwat)
1456 pp->pr_hiwat = pp->pr_npages;
1457 }
1458
1459 /*
1460 * Used by pool_get() when nitems drops below the low water mark. This
1461 * is used to catch up pr_nitems with the low water mark.
1462 *
1463 * Note 1, we never wait for memory here, we let the caller decide what to do.
1464 *
1465 * Note 2, we must be called with the pool already locked, and we return
1466 * with it locked.
1467 */
1468 static int
1469 pool_catchup(struct pool *pp)
1470 {
1471 int error = 0;
1472
1473 while (POOL_NEEDS_CATCHUP(pp)) {
1474 error = pool_grow(pp, PR_NOWAIT);
1475 if (error) {
1476 break;
1477 }
1478 }
1479 return error;
1480 }
1481
1482 static void
1483 pool_update_curpage(struct pool *pp)
1484 {
1485
1486 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1487 if (pp->pr_curpage == NULL) {
1488 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1489 }
1490 }
1491
1492 void
1493 pool_setlowat(struct pool *pp, int n)
1494 {
1495
1496 simple_lock(&pp->pr_slock);
1497
1498 pp->pr_minitems = n;
1499 pp->pr_minpages = (n == 0)
1500 ? 0
1501 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1502
1503 /* Make sure we're caught up with the newly-set low water mark. */
1504 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1505 /*
1506 * XXX: Should we log a warning? Should we set up a timeout
1507 * to try again in a second or so? The latter could break
1508 * a caller's assumptions about interrupt protection, etc.
1509 */
1510 }
1511
1512 simple_unlock(&pp->pr_slock);
1513 }
1514
1515 void
1516 pool_sethiwat(struct pool *pp, int n)
1517 {
1518
1519 simple_lock(&pp->pr_slock);
1520
1521 pp->pr_maxpages = (n == 0)
1522 ? 0
1523 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1524
1525 simple_unlock(&pp->pr_slock);
1526 }
1527
1528 void
1529 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1530 {
1531
1532 simple_lock(&pp->pr_slock);
1533
1534 pp->pr_hardlimit = n;
1535 pp->pr_hardlimit_warning = warnmess;
1536 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1537 pp->pr_hardlimit_warning_last.tv_sec = 0;
1538 pp->pr_hardlimit_warning_last.tv_usec = 0;
1539
1540 /*
1541 * In-line version of pool_sethiwat(), because we don't want to
1542 * release the lock.
1543 */
1544 pp->pr_maxpages = (n == 0)
1545 ? 0
1546 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1547
1548 simple_unlock(&pp->pr_slock);
1549 }
1550
1551 /*
1552 * Release all complete pages that have not been used recently.
1553 */
1554 int
1555 #ifdef POOL_DIAGNOSTIC
1556 _pool_reclaim(struct pool *pp, const char *file, long line)
1557 #else
1558 pool_reclaim(struct pool *pp)
1559 #endif
1560 {
1561 struct pool_item_header *ph, *phnext;
1562 struct pool_cache *pc;
1563 struct pool_pagelist pq;
1564 struct pool_cache_grouplist pcgl;
1565 struct timeval curtime, diff;
1566
1567 if (pp->pr_drain_hook != NULL) {
1568 /*
1569 * The drain hook must be called with the pool unlocked.
1570 */
1571 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1572 }
1573
1574 if (simple_lock_try(&pp->pr_slock) == 0)
1575 return (0);
1576 pr_enter(pp, file, line);
1577
1578 LIST_INIT(&pq);
1579 LIST_INIT(&pcgl);
1580
1581 /*
1582 * Reclaim items from the pool's caches.
1583 */
1584 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1585 pool_cache_reclaim(pc, &pq, &pcgl);
1586
1587 getmicrotime(&curtime);
1588
1589 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1590 phnext = LIST_NEXT(ph, ph_pagelist);
1591
1592 /* Check our minimum page claim */
1593 if (pp->pr_npages <= pp->pr_minpages)
1594 break;
1595
1596 KASSERT(ph->ph_nmissing == 0);
1597 timersub(&curtime, &ph->ph_time, &diff);
1598 if (diff.tv_sec < pool_inactive_time
1599 && !pa_starved_p(pp->pr_alloc))
1600 continue;
1601
1602 /*
1603 * If freeing this page would put us below
1604 * the low water mark, stop now.
1605 */
1606 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1607 pp->pr_minitems)
1608 break;
1609
1610 pr_rmpage(pp, ph, &pq);
1611 }
1612
1613 pr_leave(pp);
1614 simple_unlock(&pp->pr_slock);
1615 if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
1616 return 0;
1617
1618 pr_pagelist_free(pp, &pq);
1619 pcg_grouplist_free(&pcgl);
1620 return (1);
1621 }
1622
1623 /*
1624 * Drain pools, one at a time.
1625 *
1626 * Note, we must never be called from an interrupt context.
1627 */
1628 void
1629 pool_drain(void *arg)
1630 {
1631 struct pool *pp;
1632 int s;
1633
1634 pp = NULL;
1635 s = splvm();
1636 simple_lock(&pool_head_slock);
1637 if (drainpp == NULL) {
1638 drainpp = LIST_FIRST(&pool_head);
1639 }
1640 if (drainpp) {
1641 pp = drainpp;
1642 drainpp = LIST_NEXT(pp, pr_poollist);
1643 }
1644 simple_unlock(&pool_head_slock);
1645 if (pp)
1646 pool_reclaim(pp);
1647 splx(s);
1648 }
1649
1650 /*
1651 * Diagnostic helpers.
1652 */
1653 void
1654 pool_print(struct pool *pp, const char *modif)
1655 {
1656 int s;
1657
1658 s = splvm();
1659 if (simple_lock_try(&pp->pr_slock) == 0) {
1660 printf("pool %s is locked; try again later\n",
1661 pp->pr_wchan);
1662 splx(s);
1663 return;
1664 }
1665 pool_print1(pp, modif, printf);
1666 simple_unlock(&pp->pr_slock);
1667 splx(s);
1668 }
1669
1670 void
1671 pool_printall(const char *modif, void (*pr)(const char *, ...))
1672 {
1673 struct pool *pp;
1674
1675 if (simple_lock_try(&pool_head_slock) == 0) {
1676 (*pr)("WARNING: pool_head_slock is locked\n");
1677 } else {
1678 simple_unlock(&pool_head_slock);
1679 }
1680
1681 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1682 pool_printit(pp, modif, pr);
1683 }
1684 }
1685
1686 void
1687 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1688 {
1689
1690 if (pp == NULL) {
1691 (*pr)("Must specify a pool to print.\n");
1692 return;
1693 }
1694
1695 /*
1696 * Called from DDB; interrupts should be blocked, and all
1697 * other processors should be paused. We can skip locking
1698 * the pool in this case.
1699 *
1700 * We do a simple_lock_try() just to print the lock
1701 * status, however.
1702 */
1703
1704 if (simple_lock_try(&pp->pr_slock) == 0)
1705 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1706 else
1707 simple_unlock(&pp->pr_slock);
1708
1709 pool_print1(pp, modif, pr);
1710 }
1711
1712 static void
1713 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1714 void (*pr)(const char *, ...))
1715 {
1716 struct pool_item_header *ph;
1717 #ifdef DIAGNOSTIC
1718 struct pool_item *pi;
1719 #endif
1720
1721 LIST_FOREACH(ph, pl, ph_pagelist) {
1722 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1723 ph->ph_page, ph->ph_nmissing,
1724 (u_long)ph->ph_time.tv_sec,
1725 (u_long)ph->ph_time.tv_usec);
1726 #ifdef DIAGNOSTIC
1727 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1728 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1729 if (pi->pi_magic != PI_MAGIC) {
1730 (*pr)("\t\t\titem %p, magic 0x%x\n",
1731 pi, pi->pi_magic);
1732 }
1733 }
1734 }
1735 #endif
1736 }
1737 }
1738
1739 static void
1740 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1741 {
1742 struct pool_item_header *ph;
1743 struct pool_cache *pc;
1744 struct pool_cache_group *pcg;
1745 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1746 char c;
1747
1748 while ((c = *modif++) != '\0') {
1749 if (c == 'l')
1750 print_log = 1;
1751 if (c == 'p')
1752 print_pagelist = 1;
1753 if (c == 'c')
1754 print_cache = 1;
1755 }
1756
1757 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1758 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1759 pp->pr_roflags);
1760 (*pr)("\talloc %p\n", pp->pr_alloc);
1761 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1762 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1763 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1764 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1765
1766 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1767 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1768 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1769 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1770
1771 if (print_pagelist == 0)
1772 goto skip_pagelist;
1773
1774 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1775 (*pr)("\n\tempty page list:\n");
1776 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1777 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1778 (*pr)("\n\tfull page list:\n");
1779 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1780 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1781 (*pr)("\n\tpartial-page list:\n");
1782 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1783
1784 if (pp->pr_curpage == NULL)
1785 (*pr)("\tno current page\n");
1786 else
1787 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1788
1789 skip_pagelist:
1790 if (print_log == 0)
1791 goto skip_log;
1792
1793 (*pr)("\n");
1794 if ((pp->pr_roflags & PR_LOGGING) == 0)
1795 (*pr)("\tno log\n");
1796 else {
1797 pr_printlog(pp, NULL, pr);
1798 }
1799
1800 skip_log:
1801 if (print_cache == 0)
1802 goto skip_cache;
1803
1804 #define PR_GROUPLIST(pcg) \
1805 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1806 for (i = 0; i < PCG_NOBJECTS; i++) { \
1807 if (pcg->pcg_objects[i].pcgo_pa != \
1808 POOL_PADDR_INVALID) { \
1809 (*pr)("\t\t\t%p, 0x%llx\n", \
1810 pcg->pcg_objects[i].pcgo_va, \
1811 (unsigned long long) \
1812 pcg->pcg_objects[i].pcgo_pa); \
1813 } else { \
1814 (*pr)("\t\t\t%p\n", \
1815 pcg->pcg_objects[i].pcgo_va); \
1816 } \
1817 }
1818
1819 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1820 (*pr)("\tcache %p\n", pc);
1821 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1822 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1823 (*pr)("\t full groups:\n");
1824 LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
1825 PR_GROUPLIST(pcg);
1826 }
1827 (*pr)("\t partial groups:\n");
1828 LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
1829 PR_GROUPLIST(pcg);
1830 }
1831 (*pr)("\t empty groups:\n");
1832 LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
1833 PR_GROUPLIST(pcg);
1834 }
1835 }
1836 #undef PR_GROUPLIST
1837
1838 skip_cache:
1839 pr_enter_check(pp, pr);
1840 }
1841
1842 static int
1843 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1844 {
1845 struct pool_item *pi;
1846 caddr_t page;
1847 int n;
1848
1849 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1850 page = (caddr_t)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1851 if (page != ph->ph_page &&
1852 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1853 if (label != NULL)
1854 printf("%s: ", label);
1855 printf("pool(%p:%s): page inconsistency: page %p;"
1856 " at page head addr %p (p %p)\n", pp,
1857 pp->pr_wchan, ph->ph_page,
1858 ph, page);
1859 return 1;
1860 }
1861 }
1862
1863 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1864 return 0;
1865
1866 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1867 pi != NULL;
1868 pi = LIST_NEXT(pi,pi_list), n++) {
1869
1870 #ifdef DIAGNOSTIC
1871 if (pi->pi_magic != PI_MAGIC) {
1872 if (label != NULL)
1873 printf("%s: ", label);
1874 printf("pool(%s): free list modified: magic=%x;"
1875 " page %p; item ordinal %d; addr %p\n",
1876 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1877 n, pi);
1878 panic("pool");
1879 }
1880 #endif
1881 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1882 continue;
1883 }
1884 page = (caddr_t)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1885 if (page == ph->ph_page)
1886 continue;
1887
1888 if (label != NULL)
1889 printf("%s: ", label);
1890 printf("pool(%p:%s): page inconsistency: page %p;"
1891 " item ordinal %d; addr %p (p %p)\n", pp,
1892 pp->pr_wchan, ph->ph_page,
1893 n, pi, page);
1894 return 1;
1895 }
1896 return 0;
1897 }
1898
1899
1900 int
1901 pool_chk(struct pool *pp, const char *label)
1902 {
1903 struct pool_item_header *ph;
1904 int r = 0;
1905
1906 simple_lock(&pp->pr_slock);
1907 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1908 r = pool_chk_page(pp, label, ph);
1909 if (r) {
1910 goto out;
1911 }
1912 }
1913 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1914 r = pool_chk_page(pp, label, ph);
1915 if (r) {
1916 goto out;
1917 }
1918 }
1919 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1920 r = pool_chk_page(pp, label, ph);
1921 if (r) {
1922 goto out;
1923 }
1924 }
1925
1926 out:
1927 simple_unlock(&pp->pr_slock);
1928 return (r);
1929 }
1930
1931 /*
1932 * pool_cache_init:
1933 *
1934 * Initialize a pool cache.
1935 *
1936 * NOTE: If the pool must be protected from interrupts, we expect
1937 * to be called at the appropriate interrupt priority level.
1938 */
1939 void
1940 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1941 int (*ctor)(void *, void *, int),
1942 void (*dtor)(void *, void *),
1943 void *arg)
1944 {
1945
1946 LIST_INIT(&pc->pc_emptygroups);
1947 LIST_INIT(&pc->pc_fullgroups);
1948 LIST_INIT(&pc->pc_partgroups);
1949 simple_lock_init(&pc->pc_slock);
1950
1951 pc->pc_pool = pp;
1952
1953 pc->pc_ctor = ctor;
1954 pc->pc_dtor = dtor;
1955 pc->pc_arg = arg;
1956
1957 pc->pc_hits = 0;
1958 pc->pc_misses = 0;
1959
1960 pc->pc_ngroups = 0;
1961
1962 pc->pc_nitems = 0;
1963
1964 simple_lock(&pp->pr_slock);
1965 LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1966 simple_unlock(&pp->pr_slock);
1967 }
1968
1969 /*
1970 * pool_cache_destroy:
1971 *
1972 * Destroy a pool cache.
1973 */
1974 void
1975 pool_cache_destroy(struct pool_cache *pc)
1976 {
1977 struct pool *pp = pc->pc_pool;
1978
1979 /* First, invalidate the entire cache. */
1980 pool_cache_invalidate(pc);
1981
1982 /* ...and remove it from the pool's cache list. */
1983 simple_lock(&pp->pr_slock);
1984 LIST_REMOVE(pc, pc_poollist);
1985 simple_unlock(&pp->pr_slock);
1986 }
1987
1988 static inline void *
1989 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1990 {
1991 void *object;
1992 u_int idx;
1993
1994 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1995 KASSERT(pcg->pcg_avail != 0);
1996 idx = --pcg->pcg_avail;
1997
1998 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1999 object = pcg->pcg_objects[idx].pcgo_va;
2000 if (pap != NULL)
2001 *pap = pcg->pcg_objects[idx].pcgo_pa;
2002 pcg->pcg_objects[idx].pcgo_va = NULL;
2003
2004 return (object);
2005 }
2006
2007 static inline void
2008 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
2009 {
2010 u_int idx;
2011
2012 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
2013 idx = pcg->pcg_avail++;
2014
2015 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
2016 pcg->pcg_objects[idx].pcgo_va = object;
2017 pcg->pcg_objects[idx].pcgo_pa = pa;
2018 }
2019
2020 static void
2021 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
2022 {
2023 struct pool_cache_group *pcg;
2024 int s;
2025
2026 s = splvm();
2027 while ((pcg = LIST_FIRST(pcgl)) != NULL) {
2028 LIST_REMOVE(pcg, pcg_list);
2029 pool_put(&pcgpool, pcg);
2030 }
2031 splx(s);
2032 }
2033
2034 /*
2035 * pool_cache_get{,_paddr}:
2036 *
2037 * Get an object from a pool cache (optionally returning
2038 * the physical address of the object).
2039 */
2040 void *
2041 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
2042 {
2043 struct pool_cache_group *pcg;
2044 void *object;
2045
2046 #ifdef LOCKDEBUG
2047 if (flags & PR_WAITOK)
2048 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2049 #endif
2050
2051 simple_lock(&pc->pc_slock);
2052
2053 pcg = LIST_FIRST(&pc->pc_partgroups);
2054 if (pcg == NULL) {
2055 pcg = LIST_FIRST(&pc->pc_fullgroups);
2056 if (pcg != NULL) {
2057 LIST_REMOVE(pcg, pcg_list);
2058 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2059 }
2060 }
2061 if (pcg == NULL) {
2062
2063 /*
2064 * No groups with any available objects. Allocate
2065 * a new object, construct it, and return it to
2066 * the caller. We will allocate a group, if necessary,
2067 * when the object is freed back to the cache.
2068 */
2069 pc->pc_misses++;
2070 simple_unlock(&pc->pc_slock);
2071 object = pool_get(pc->pc_pool, flags);
2072 if (object != NULL && pc->pc_ctor != NULL) {
2073 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2074 pool_put(pc->pc_pool, object);
2075 return (NULL);
2076 }
2077 }
2078 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
2079 (pc->pc_pool->pr_align - 1)) == 0);
2080 if (object != NULL && pap != NULL) {
2081 #ifdef POOL_VTOPHYS
2082 *pap = POOL_VTOPHYS(object);
2083 #else
2084 *pap = POOL_PADDR_INVALID;
2085 #endif
2086 }
2087
2088 FREECHECK_OUT(&pc->pc_freecheck, object);
2089 return (object);
2090 }
2091
2092 pc->pc_hits++;
2093 pc->pc_nitems--;
2094 object = pcg_get(pcg, pap);
2095
2096 if (pcg->pcg_avail == 0) {
2097 LIST_REMOVE(pcg, pcg_list);
2098 LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
2099 }
2100 simple_unlock(&pc->pc_slock);
2101
2102 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
2103 (pc->pc_pool->pr_align - 1)) == 0);
2104 FREECHECK_OUT(&pc->pc_freecheck, object);
2105 return (object);
2106 }
2107
2108 /*
2109 * pool_cache_put{,_paddr}:
2110 *
2111 * Put an object back to the pool cache (optionally caching the
2112 * physical address of the object).
2113 */
2114 void
2115 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
2116 {
2117 struct pool_cache_group *pcg;
2118 int s;
2119
2120 FREECHECK_IN(&pc->pc_freecheck, object);
2121
2122 if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
2123 goto destruct;
2124 }
2125
2126 simple_lock(&pc->pc_slock);
2127
2128 pcg = LIST_FIRST(&pc->pc_partgroups);
2129 if (pcg == NULL) {
2130 pcg = LIST_FIRST(&pc->pc_emptygroups);
2131 if (pcg != NULL) {
2132 LIST_REMOVE(pcg, pcg_list);
2133 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2134 }
2135 }
2136 if (pcg == NULL) {
2137
2138 /*
2139 * No empty groups to free the object to. Attempt to
2140 * allocate one.
2141 */
2142 simple_unlock(&pc->pc_slock);
2143 s = splvm();
2144 pcg = pool_get(&pcgpool, PR_NOWAIT);
2145 splx(s);
2146 if (pcg == NULL) {
2147 destruct:
2148
2149 /*
2150 * Unable to allocate a cache group; destruct the object
2151 * and free it back to the pool.
2152 */
2153 pool_cache_destruct_object(pc, object);
2154 return;
2155 }
2156 memset(pcg, 0, sizeof(*pcg));
2157 simple_lock(&pc->pc_slock);
2158 pc->pc_ngroups++;
2159 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2160 }
2161
2162 pc->pc_nitems++;
2163 pcg_put(pcg, object, pa);
2164
2165 if (pcg->pcg_avail == PCG_NOBJECTS) {
2166 LIST_REMOVE(pcg, pcg_list);
2167 LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
2168 }
2169 simple_unlock(&pc->pc_slock);
2170 }
2171
2172 /*
2173 * pool_cache_destruct_object:
2174 *
2175 * Force destruction of an object and its release back into
2176 * the pool.
2177 */
2178 void
2179 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2180 {
2181
2182 if (pc->pc_dtor != NULL)
2183 (*pc->pc_dtor)(pc->pc_arg, object);
2184 pool_put(pc->pc_pool, object);
2185 }
2186
2187 static void
2188 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
2189 struct pool_cache *pc, struct pool_pagelist *pq,
2190 struct pool_cache_grouplist *pcgdl)
2191 {
2192 struct pool_cache_group *pcg, *npcg;
2193 void *object;
2194
2195 for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
2196 npcg = LIST_NEXT(pcg, pcg_list);
2197 while (pcg->pcg_avail != 0) {
2198 pc->pc_nitems--;
2199 object = pcg_get(pcg, NULL);
2200 if (pc->pc_dtor != NULL)
2201 (*pc->pc_dtor)(pc->pc_arg, object);
2202 pool_do_put(pc->pc_pool, object, pq);
2203 }
2204 pc->pc_ngroups--;
2205 LIST_REMOVE(pcg, pcg_list);
2206 LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
2207 }
2208 }
2209
2210 static void
2211 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
2212 struct pool_cache_grouplist *pcgl)
2213 {
2214
2215 LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
2216 LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
2217
2218 pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
2219 pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
2220
2221 KASSERT(LIST_EMPTY(&pc->pc_partgroups));
2222 KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
2223 KASSERT(pc->pc_nitems == 0);
2224 }
2225
2226 /*
2227 * pool_cache_invalidate:
2228 *
2229 * Invalidate a pool cache (destruct and release all of the
2230 * cached objects).
2231 */
2232 void
2233 pool_cache_invalidate(struct pool_cache *pc)
2234 {
2235 struct pool_pagelist pq;
2236 struct pool_cache_grouplist pcgl;
2237
2238 LIST_INIT(&pq);
2239 LIST_INIT(&pcgl);
2240
2241 simple_lock(&pc->pc_slock);
2242 simple_lock(&pc->pc_pool->pr_slock);
2243
2244 pool_do_cache_invalidate(pc, &pq, &pcgl);
2245
2246 simple_unlock(&pc->pc_pool->pr_slock);
2247 simple_unlock(&pc->pc_slock);
2248
2249 pr_pagelist_free(pc->pc_pool, &pq);
2250 pcg_grouplist_free(&pcgl);
2251 }
2252
2253 /*
2254 * pool_cache_reclaim:
2255 *
2256 * Reclaim a pool cache for pool_reclaim().
2257 */
2258 static void
2259 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
2260 struct pool_cache_grouplist *pcgl)
2261 {
2262
2263 /*
2264 * We're locking in the wrong order (normally pool_cache -> pool,
2265 * but the pool is already locked when we get here), so we have
2266 * to use trylock. If we can't lock the pool_cache, it's not really
2267 * a big deal here.
2268 */
2269 if (simple_lock_try(&pc->pc_slock) == 0)
2270 return;
2271
2272 pool_do_cache_invalidate(pc, pq, pcgl);
2273
2274 simple_unlock(&pc->pc_slock);
2275 }
2276
2277 /*
2278 * Pool backend allocators.
2279 *
2280 * Each pool has a backend allocator that handles allocation, deallocation,
2281 * and any additional draining that might be needed.
2282 *
2283 * We provide two standard allocators:
2284 *
2285 * pool_allocator_kmem - the default when no allocator is specified
2286 *
2287 * pool_allocator_nointr - used for pools that will not be accessed
2288 * in interrupt context.
2289 */
2290 void *pool_page_alloc(struct pool *, int);
2291 void pool_page_free(struct pool *, void *);
2292
2293 #ifdef POOL_SUBPAGE
2294 struct pool_allocator pool_allocator_kmem_fullpage = {
2295 pool_page_alloc, pool_page_free, 0,
2296 .pa_backingmapptr = &kmem_map,
2297 };
2298 #else
2299 struct pool_allocator pool_allocator_kmem = {
2300 pool_page_alloc, pool_page_free, 0,
2301 .pa_backingmapptr = &kmem_map,
2302 };
2303 #endif
2304
2305 void *pool_page_alloc_nointr(struct pool *, int);
2306 void pool_page_free_nointr(struct pool *, void *);
2307
2308 #ifdef POOL_SUBPAGE
2309 struct pool_allocator pool_allocator_nointr_fullpage = {
2310 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2311 .pa_backingmapptr = &kernel_map,
2312 };
2313 #else
2314 struct pool_allocator pool_allocator_nointr = {
2315 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2316 .pa_backingmapptr = &kernel_map,
2317 };
2318 #endif
2319
2320 #ifdef POOL_SUBPAGE
2321 void *pool_subpage_alloc(struct pool *, int);
2322 void pool_subpage_free(struct pool *, void *);
2323
2324 struct pool_allocator pool_allocator_kmem = {
2325 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2326 .pa_backingmapptr = &kmem_map,
2327 };
2328
2329 void *pool_subpage_alloc_nointr(struct pool *, int);
2330 void pool_subpage_free_nointr(struct pool *, void *);
2331
2332 struct pool_allocator pool_allocator_nointr = {
2333 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2334 .pa_backingmapptr = &kmem_map,
2335 };
2336 #endif /* POOL_SUBPAGE */
2337
2338 static void *
2339 pool_allocator_alloc(struct pool *pp, int flags)
2340 {
2341 struct pool_allocator *pa = pp->pr_alloc;
2342 void *res;
2343
2344 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2345
2346 res = (*pa->pa_alloc)(pp, flags);
2347 if (res == NULL && (flags & PR_WAITOK) == 0) {
2348 /*
2349 * We only run the drain hook here if PR_NOWAIT.
2350 * In other cases, the hook will be run in
2351 * pool_reclaim().
2352 */
2353 if (pp->pr_drain_hook != NULL) {
2354 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2355 res = (*pa->pa_alloc)(pp, flags);
2356 }
2357 }
2358 return res;
2359 }
2360
2361 static void
2362 pool_allocator_free(struct pool *pp, void *v)
2363 {
2364 struct pool_allocator *pa = pp->pr_alloc;
2365
2366 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2367
2368 (*pa->pa_free)(pp, v);
2369 }
2370
2371 void *
2372 pool_page_alloc(struct pool *pp, int flags)
2373 {
2374 bool waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2375
2376 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2377 }
2378
2379 void
2380 pool_page_free(struct pool *pp, void *v)
2381 {
2382
2383 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2384 }
2385
2386 static void *
2387 pool_page_alloc_meta(struct pool *pp, int flags)
2388 {
2389 bool waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2390
2391 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2392 }
2393
2394 static void
2395 pool_page_free_meta(struct pool *pp, void *v)
2396 {
2397
2398 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2399 }
2400
2401 #ifdef POOL_SUBPAGE
2402 /* Sub-page allocator, for machines with large hardware pages. */
2403 void *
2404 pool_subpage_alloc(struct pool *pp, int flags)
2405 {
2406 void *v;
2407 int s;
2408 s = splvm();
2409 v = pool_get(&psppool, flags);
2410 splx(s);
2411 return v;
2412 }
2413
2414 void
2415 pool_subpage_free(struct pool *pp, void *v)
2416 {
2417 int s;
2418 s = splvm();
2419 pool_put(&psppool, v);
2420 splx(s);
2421 }
2422
2423 /* We don't provide a real nointr allocator. Maybe later. */
2424 void *
2425 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2426 {
2427
2428 return (pool_subpage_alloc(pp, flags));
2429 }
2430
2431 void
2432 pool_subpage_free_nointr(struct pool *pp, void *v)
2433 {
2434
2435 pool_subpage_free(pp, v);
2436 }
2437 #endif /* POOL_SUBPAGE */
2438 void *
2439 pool_page_alloc_nointr(struct pool *pp, int flags)
2440 {
2441 bool waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2442
2443 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2444 }
2445
2446 void
2447 pool_page_free_nointr(struct pool *pp, void *v)
2448 {
2449
2450 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2451 }
2452