subr_pool.c revision 1.128.2.2 1 /* $NetBSD: subr_pool.c,v 1.128.2.2 2007/03/13 17:50:58 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.128.2.2 2007/03/13 17:50:58 ad Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56 #include <sys/debug.h>
57
58 #include <uvm/uvm.h>
59
60 /*
61 * Pool resource management utility.
62 *
63 * Memory is allocated in pages which are split into pieces according to
64 * the pool item size. Each page is kept on one of three lists in the
65 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
66 * for empty, full and partially-full pages respectively. The individual
67 * pool items are on a linked list headed by `ph_itemlist' in each page
68 * header. The memory for building the page list is either taken from
69 * the allocated pages themselves (for small pool items) or taken from
70 * an internal pool of page headers (`phpool').
71 */
72
73 /* List of all pools */
74 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
75
76 /* Private pool for page header structures */
77 #define PHPOOL_MAX 8
78 static struct pool phpool[PHPOOL_MAX];
79 #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
80
81 #ifdef POOL_SUBPAGE
82 /* Pool of subpages for use by normal pools. */
83 static struct pool psppool;
84 #endif
85
86 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
87 SLIST_HEAD_INITIALIZER(pa_deferinitq);
88
89 static void *pool_page_alloc_meta(struct pool *, int);
90 static void pool_page_free_meta(struct pool *, void *);
91
92 /* allocator for pool metadata */
93 static struct pool_allocator pool_allocator_meta = {
94 pool_page_alloc_meta, pool_page_free_meta,
95 .pa_backingmapptr = &kmem_map,
96 };
97
98 /* # of seconds to retain page after last use */
99 int pool_inactive_time = 10;
100
101 /* Next candidate for drainage (see pool_drain()) */
102 static struct pool *drainpp;
103
104 /* This lock protects both pool_head and drainpp. */
105 static kmutex_t pool_head_lock;
106
107 typedef uint8_t pool_item_freelist_t;
108
109 struct pool_item_header {
110 /* Page headers */
111 LIST_ENTRY(pool_item_header)
112 ph_pagelist; /* pool page list */
113 SPLAY_ENTRY(pool_item_header)
114 ph_node; /* Off-page page headers */
115 void * ph_page; /* this page's address */
116 struct timeval ph_time; /* last referenced */
117 union {
118 /* !PR_NOTOUCH */
119 struct {
120 LIST_HEAD(, pool_item)
121 phu_itemlist; /* chunk list for this page */
122 } phu_normal;
123 /* PR_NOTOUCH */
124 struct {
125 uint16_t
126 phu_off; /* start offset in page */
127 pool_item_freelist_t
128 phu_firstfree; /* first free item */
129 /*
130 * XXX it might be better to use
131 * a simple bitmap and ffs(3)
132 */
133 } phu_notouch;
134 } ph_u;
135 uint16_t ph_nmissing; /* # of chunks in use */
136 };
137 #define ph_itemlist ph_u.phu_normal.phu_itemlist
138 #define ph_off ph_u.phu_notouch.phu_off
139 #define ph_firstfree ph_u.phu_notouch.phu_firstfree
140
141 struct pool_item {
142 #ifdef DIAGNOSTIC
143 u_int pi_magic;
144 #endif
145 #define PI_MAGIC 0xdeadbeefU
146 /* Other entries use only this list entry */
147 LIST_ENTRY(pool_item) pi_list;
148 };
149
150 #define POOL_NEEDS_CATCHUP(pp) \
151 ((pp)->pr_nitems < (pp)->pr_minitems)
152
153 /*
154 * Pool cache management.
155 *
156 * Pool caches provide a way for constructed objects to be cached by the
157 * pool subsystem. This can lead to performance improvements by avoiding
158 * needless object construction/destruction; it is deferred until absolutely
159 * necessary.
160 *
161 * Caches are grouped into cache groups. Each cache group references
162 * up to 16 constructed objects. When a cache allocates an object
163 * from the pool, it calls the object's constructor and places it into
164 * a cache group. When a cache group frees an object back to the pool,
165 * it first calls the object's destructor. This allows the object to
166 * persist in constructed form while freed to the cache.
167 *
168 * Multiple caches may exist for each pool. This allows a single
169 * object type to have multiple constructed forms. The pool references
170 * each cache, so that when a pool is drained by the pagedaemon, it can
171 * drain each individual cache as well. Each time a cache is drained,
172 * the most idle cache group is freed to the pool in its entirety.
173 *
174 * Pool caches are layed on top of pools. By layering them, we can avoid
175 * the complexity of cache management for pools which would not benefit
176 * from it.
177 */
178
179 /* The cache group pool. */
180 static struct pool pcgpool;
181
182 static void pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
183 struct pool_cache_grouplist *);
184 static void pcg_grouplist_free(struct pool_cache_grouplist *);
185
186 static int pool_catchup(struct pool *);
187 static void pool_prime_page(struct pool *, void *,
188 struct pool_item_header *);
189 static void pool_update_curpage(struct pool *);
190
191 static int pool_grow(struct pool *, int);
192 static void *pool_allocator_alloc(struct pool *, int);
193 static void pool_allocator_free(struct pool *, void *);
194
195 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
196 void (*)(const char *, ...));
197 static void pool_print1(struct pool *, const char *,
198 void (*)(const char *, ...));
199
200 static int pool_chk_page(struct pool *, const char *,
201 struct pool_item_header *);
202
203 /*
204 * Pool log entry. An array of these is allocated in pool_init().
205 */
206 struct pool_log {
207 const char *pl_file;
208 long pl_line;
209 int pl_action;
210 #define PRLOG_GET 1
211 #define PRLOG_PUT 2
212 void *pl_addr;
213 };
214
215 #ifdef POOL_DIAGNOSTIC
216 /* Number of entries in pool log buffers */
217 #ifndef POOL_LOGSIZE
218 #define POOL_LOGSIZE 10
219 #endif
220
221 int pool_logsize = POOL_LOGSIZE;
222
223 static inline void
224 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
225 {
226 int n = pp->pr_curlogentry;
227 struct pool_log *pl;
228
229 if ((pp->pr_roflags & PR_LOGGING) == 0)
230 return;
231
232 /*
233 * Fill in the current entry. Wrap around and overwrite
234 * the oldest entry if necessary.
235 */
236 pl = &pp->pr_log[n];
237 pl->pl_file = file;
238 pl->pl_line = line;
239 pl->pl_action = action;
240 pl->pl_addr = v;
241 if (++n >= pp->pr_logsize)
242 n = 0;
243 pp->pr_curlogentry = n;
244 }
245
246 static void
247 pr_printlog(struct pool *pp, struct pool_item *pi,
248 void (*pr)(const char *, ...))
249 {
250 int i = pp->pr_logsize;
251 int n = pp->pr_curlogentry;
252
253 if ((pp->pr_roflags & PR_LOGGING) == 0)
254 return;
255
256 /*
257 * Print all entries in this pool's log.
258 */
259 while (i-- > 0) {
260 struct pool_log *pl = &pp->pr_log[n];
261 if (pl->pl_action != 0) {
262 if (pi == NULL || pi == pl->pl_addr) {
263 (*pr)("\tlog entry %d:\n", i);
264 (*pr)("\t\taction = %s, addr = %p\n",
265 pl->pl_action == PRLOG_GET ? "get" : "put",
266 pl->pl_addr);
267 (*pr)("\t\tfile: %s at line %lu\n",
268 pl->pl_file, pl->pl_line);
269 }
270 }
271 if (++n >= pp->pr_logsize)
272 n = 0;
273 }
274 }
275
276 static inline void
277 pr_enter(struct pool *pp, const char *file, long line)
278 {
279
280 if (__predict_false(pp->pr_entered_file != NULL)) {
281 printf("pool %s: reentrancy at file %s line %ld\n",
282 pp->pr_wchan, file, line);
283 printf(" previous entry at file %s line %ld\n",
284 pp->pr_entered_file, pp->pr_entered_line);
285 panic("pr_enter");
286 }
287
288 pp->pr_entered_file = file;
289 pp->pr_entered_line = line;
290 }
291
292 static inline void
293 pr_leave(struct pool *pp)
294 {
295
296 if (__predict_false(pp->pr_entered_file == NULL)) {
297 printf("pool %s not entered?\n", pp->pr_wchan);
298 panic("pr_leave");
299 }
300
301 pp->pr_entered_file = NULL;
302 pp->pr_entered_line = 0;
303 }
304
305 static inline void
306 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
307 {
308
309 if (pp->pr_entered_file != NULL)
310 (*pr)("\n\tcurrently entered from file %s line %ld\n",
311 pp->pr_entered_file, pp->pr_entered_line);
312 }
313 #else
314 #define pr_log(pp, v, action, file, line)
315 #define pr_printlog(pp, pi, pr)
316 #define pr_enter(pp, file, line)
317 #define pr_leave(pp)
318 #define pr_enter_check(pp, pr)
319 #endif /* POOL_DIAGNOSTIC */
320
321 static inline int
322 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
323 const void *v)
324 {
325 const char *cp = v;
326 int idx;
327
328 KASSERT(pp->pr_roflags & PR_NOTOUCH);
329 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
330 KASSERT(idx < pp->pr_itemsperpage);
331 return idx;
332 }
333
334 #define PR_FREELIST_ALIGN(p) \
335 roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
336 #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
337 #define PR_INDEX_USED ((pool_item_freelist_t)-1)
338 #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
339
340 static inline void
341 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
342 void *obj)
343 {
344 int idx = pr_item_notouch_index(pp, ph, obj);
345 pool_item_freelist_t *freelist = PR_FREELIST(ph);
346
347 KASSERT(freelist[idx] == PR_INDEX_USED);
348 freelist[idx] = ph->ph_firstfree;
349 ph->ph_firstfree = idx;
350 }
351
352 static inline void *
353 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
354 {
355 int idx = ph->ph_firstfree;
356 pool_item_freelist_t *freelist = PR_FREELIST(ph);
357
358 KASSERT(freelist[idx] != PR_INDEX_USED);
359 ph->ph_firstfree = freelist[idx];
360 freelist[idx] = PR_INDEX_USED;
361
362 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
363 }
364
365 static inline int
366 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
367 {
368
369 /*
370 * we consider pool_item_header with smaller ph_page bigger.
371 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
372 */
373
374 if (a->ph_page < b->ph_page)
375 return (1);
376 else if (a->ph_page > b->ph_page)
377 return (-1);
378 else
379 return (0);
380 }
381
382 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
383 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
384
385 /*
386 * Return the pool page header based on item address.
387 */
388 static inline struct pool_item_header *
389 pr_find_pagehead(struct pool *pp, void *v)
390 {
391 struct pool_item_header *ph, tmp;
392
393 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
394 tmp.ph_page = (void *)(uintptr_t)v;
395 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
396 if (ph == NULL) {
397 ph = SPLAY_ROOT(&pp->pr_phtree);
398 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
399 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
400 }
401 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
402 }
403 } else {
404 void *page =
405 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
406
407 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
408 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
409 } else {
410 tmp.ph_page = page;
411 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
412 }
413 }
414
415 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
416 ((char *)ph->ph_page <= (char *)v &&
417 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
418 return ph;
419 }
420
421 static void
422 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
423 {
424 struct pool_item_header *ph;
425
426 while ((ph = LIST_FIRST(pq)) != NULL) {
427 LIST_REMOVE(ph, ph_pagelist);
428 pool_allocator_free(pp, ph->ph_page);
429 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
430 pool_put(pp->pr_phpool, ph);
431 }
432 }
433
434 /*
435 * Remove a page from the pool.
436 */
437 static inline void
438 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
439 struct pool_pagelist *pq)
440 {
441
442 KASSERT(mutex_owned(&pp->pr_lock));
443
444 /*
445 * If the page was idle, decrement the idle page count.
446 */
447 if (ph->ph_nmissing == 0) {
448 #ifdef DIAGNOSTIC
449 if (pp->pr_nidle == 0)
450 panic("pr_rmpage: nidle inconsistent");
451 if (pp->pr_nitems < pp->pr_itemsperpage)
452 panic("pr_rmpage: nitems inconsistent");
453 #endif
454 pp->pr_nidle--;
455 }
456
457 pp->pr_nitems -= pp->pr_itemsperpage;
458
459 /*
460 * Unlink the page from the pool and queue it for release.
461 */
462 LIST_REMOVE(ph, ph_pagelist);
463 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
464 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
465 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
466
467 pp->pr_npages--;
468 pp->pr_npagefree++;
469
470 pool_update_curpage(pp);
471 }
472
473 static bool
474 pa_starved_p(struct pool_allocator *pa)
475 {
476
477 if (pa->pa_backingmap != NULL) {
478 return vm_map_starved_p(pa->pa_backingmap);
479 }
480 return false;
481 }
482
483 static int
484 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
485 {
486 struct pool *pp = obj;
487 struct pool_allocator *pa = pp->pr_alloc;
488
489 KASSERT(&pp->pr_reclaimerentry == ce);
490 pool_reclaim(pp);
491 if (!pa_starved_p(pa)) {
492 return CALLBACK_CHAIN_ABORT;
493 }
494 return CALLBACK_CHAIN_CONTINUE;
495 }
496
497 static void
498 pool_reclaim_register(struct pool *pp)
499 {
500 struct vm_map *map = pp->pr_alloc->pa_backingmap;
501 int s;
502
503 if (map == NULL) {
504 return;
505 }
506
507 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
508 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
509 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
510 splx(s);
511 }
512
513 static void
514 pool_reclaim_unregister(struct pool *pp)
515 {
516 struct vm_map *map = pp->pr_alloc->pa_backingmap;
517 int s;
518
519 if (map == NULL) {
520 return;
521 }
522
523 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
524 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
525 &pp->pr_reclaimerentry);
526 splx(s);
527 }
528
529 static void
530 pa_reclaim_register(struct pool_allocator *pa)
531 {
532 struct vm_map *map = *pa->pa_backingmapptr;
533 struct pool *pp;
534
535 KASSERT(pa->pa_backingmap == NULL);
536 if (map == NULL) {
537 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
538 return;
539 }
540 pa->pa_backingmap = map;
541 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
542 pool_reclaim_register(pp);
543 }
544 }
545
546 /*
547 * Initialize all the pools listed in the "pools" link set.
548 */
549 void
550 pool_subsystem_init(void)
551 {
552 struct pool_allocator *pa;
553 __link_set_decl(pools, struct link_pool_init);
554 struct link_pool_init * const *pi;
555
556 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
557
558 __link_set_foreach(pi, pools)
559 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
560 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
561 (*pi)->palloc, (*pi)->ipl);
562
563 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
564 KASSERT(pa->pa_backingmapptr != NULL);
565 KASSERT(*pa->pa_backingmapptr != NULL);
566 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
567 pa_reclaim_register(pa);
568 }
569 }
570
571 /*
572 * Initialize the given pool resource structure.
573 *
574 * We export this routine to allow other kernel parts to declare
575 * static pools that must be initialized before malloc() is available.
576 */
577 void
578 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
579 const char *wchan, struct pool_allocator *palloc, int ipl)
580 {
581 #ifdef DEBUG
582 struct pool *pp1;
583 #endif
584 size_t trysize, phsize;
585 int off, slack;
586
587 KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
588 PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
589
590 #ifdef DEBUG
591 /*
592 * Check that the pool hasn't already been initialised and
593 * added to the list of all pools.
594 */
595 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
596 if (pp == pp1)
597 panic("pool_init: pool %s already initialised",
598 wchan);
599 }
600 #endif
601
602 #ifdef POOL_DIAGNOSTIC
603 /*
604 * Always log if POOL_DIAGNOSTIC is defined.
605 */
606 if (pool_logsize != 0)
607 flags |= PR_LOGGING;
608 #endif
609
610 if (palloc == NULL)
611 palloc = &pool_allocator_kmem;
612 #ifdef POOL_SUBPAGE
613 if (size > palloc->pa_pagesz) {
614 if (palloc == &pool_allocator_kmem)
615 palloc = &pool_allocator_kmem_fullpage;
616 else if (palloc == &pool_allocator_nointr)
617 palloc = &pool_allocator_nointr_fullpage;
618 }
619 #endif /* POOL_SUBPAGE */
620 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
621 if (palloc->pa_pagesz == 0)
622 palloc->pa_pagesz = PAGE_SIZE;
623
624 TAILQ_INIT(&palloc->pa_list);
625
626 mutex_init(&palloc->pa_lock, MUTEX_DRIVER, IPL_VM);
627 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
628 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
629
630 if (palloc->pa_backingmapptr != NULL) {
631 pa_reclaim_register(palloc);
632 }
633 palloc->pa_flags |= PA_INITIALIZED;
634 }
635
636 if (align == 0)
637 align = ALIGN(1);
638
639 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
640 size = sizeof(struct pool_item);
641
642 size = roundup(size, align);
643 #ifdef DIAGNOSTIC
644 if (size > palloc->pa_pagesz)
645 panic("pool_init: pool item size (%zu) too large", size);
646 #endif
647
648 /*
649 * Initialize the pool structure.
650 */
651 LIST_INIT(&pp->pr_emptypages);
652 LIST_INIT(&pp->pr_fullpages);
653 LIST_INIT(&pp->pr_partpages);
654 LIST_INIT(&pp->pr_cachelist);
655 pp->pr_curpage = NULL;
656 pp->pr_npages = 0;
657 pp->pr_minitems = 0;
658 pp->pr_minpages = 0;
659 pp->pr_maxpages = UINT_MAX;
660 pp->pr_roflags = flags;
661 pp->pr_flags = 0;
662 pp->pr_size = size;
663 pp->pr_align = align;
664 pp->pr_wchan = wchan;
665 pp->pr_alloc = palloc;
666 pp->pr_nitems = 0;
667 pp->pr_nout = 0;
668 pp->pr_hardlimit = UINT_MAX;
669 pp->pr_hardlimit_warning = NULL;
670 pp->pr_hardlimit_ratecap.tv_sec = 0;
671 pp->pr_hardlimit_ratecap.tv_usec = 0;
672 pp->pr_hardlimit_warning_last.tv_sec = 0;
673 pp->pr_hardlimit_warning_last.tv_usec = 0;
674 pp->pr_drain_hook = NULL;
675 pp->pr_drain_hook_arg = NULL;
676 pp->pr_freecheck = NULL;
677
678 /*
679 * Decide whether to put the page header off page to avoid
680 * wasting too large a part of the page or too big item.
681 * Off-page page headers go on a hash table, so we can match
682 * a returned item with its header based on the page address.
683 * We use 1/16 of the page size and about 8 times of the item
684 * size as the threshold (XXX: tune)
685 *
686 * However, we'll put the header into the page if we can put
687 * it without wasting any items.
688 *
689 * Silently enforce `0 <= ioff < align'.
690 */
691 pp->pr_itemoffset = ioff %= align;
692 /* See the comment below about reserved bytes. */
693 trysize = palloc->pa_pagesz - ((align - ioff) % align);
694 phsize = ALIGN(sizeof(struct pool_item_header));
695 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
696 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
697 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
698 /* Use the end of the page for the page header */
699 pp->pr_roflags |= PR_PHINPAGE;
700 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
701 } else {
702 /* The page header will be taken from our page header pool */
703 pp->pr_phoffset = 0;
704 off = palloc->pa_pagesz;
705 SPLAY_INIT(&pp->pr_phtree);
706 }
707
708 /*
709 * Alignment is to take place at `ioff' within the item. This means
710 * we must reserve up to `align - 1' bytes on the page to allow
711 * appropriate positioning of each item.
712 */
713 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
714 KASSERT(pp->pr_itemsperpage != 0);
715 if ((pp->pr_roflags & PR_NOTOUCH)) {
716 int idx;
717
718 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
719 idx++) {
720 /* nothing */
721 }
722 if (idx >= PHPOOL_MAX) {
723 /*
724 * if you see this panic, consider to tweak
725 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
726 */
727 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
728 pp->pr_wchan, pp->pr_itemsperpage);
729 }
730 pp->pr_phpool = &phpool[idx];
731 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
732 pp->pr_phpool = &phpool[0];
733 }
734 #if defined(DIAGNOSTIC)
735 else {
736 pp->pr_phpool = NULL;
737 }
738 #endif
739
740 /*
741 * Use the slack between the chunks and the page header
742 * for "cache coloring".
743 */
744 slack = off - pp->pr_itemsperpage * pp->pr_size;
745 pp->pr_maxcolor = (slack / align) * align;
746 pp->pr_curcolor = 0;
747
748 pp->pr_nget = 0;
749 pp->pr_nfail = 0;
750 pp->pr_nput = 0;
751 pp->pr_npagealloc = 0;
752 pp->pr_npagefree = 0;
753 pp->pr_hiwat = 0;
754 pp->pr_nidle = 0;
755
756 #ifdef POOL_DIAGNOSTIC
757 if (flags & PR_LOGGING) {
758 if (kmem_map == NULL ||
759 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
760 M_TEMP, M_NOWAIT)) == NULL)
761 pp->pr_roflags &= ~PR_LOGGING;
762 pp->pr_curlogentry = 0;
763 pp->pr_logsize = pool_logsize;
764 }
765 #endif
766
767 pp->pr_entered_file = NULL;
768 pp->pr_entered_line = 0;
769
770 mutex_init(&pp->pr_lock, MUTEX_DRIVER, ipl);
771 cv_init(&pp->pr_cv, wchan);
772 pp->pr_ipl = ipl;
773
774 if (strcmp(wchan, "kmem-52") == 0) {
775 printf("kmem-52 initted, mutex @ %p\n", &pp->pr_lock);
776 printf("=> %x %x %x %x\n",
777 ((uint32_t *)&pp->pr_lock)[0],
778 ((uint32_t *)&pp->pr_lock)[1],
779 ((uint32_t *)&pp->pr_lock)[2],
780 ((uint32_t *)&pp->pr_lock)[3]);
781 }
782
783 /*
784 * Initialize private page header pool and cache magazine pool if we
785 * haven't done so yet.
786 * XXX LOCKING.
787 */
788 if (phpool[0].pr_size == 0) {
789 int idx;
790 for (idx = 0; idx < PHPOOL_MAX; idx++) {
791 static char phpool_names[PHPOOL_MAX][6+1+6+1];
792 int nelem;
793 size_t sz;
794
795 nelem = PHPOOL_FREELIST_NELEM(idx);
796 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
797 "phpool-%d", nelem);
798 sz = sizeof(struct pool_item_header);
799 if (nelem) {
800 sz = PR_FREELIST_ALIGN(sz)
801 + nelem * sizeof(pool_item_freelist_t);
802 }
803 pool_init(&phpool[idx], sz, 0, 0, 0,
804 phpool_names[idx], &pool_allocator_meta, IPL_VM);
805 }
806 #ifdef POOL_SUBPAGE
807 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
808 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
809 #endif
810 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
811 0, "pcgpool", &pool_allocator_meta, IPL_VM);
812 }
813
814 if (__predict_true(!cold)) {
815 /* Insert into the list of all pools. */
816 mutex_enter(&pool_head_lock);
817 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
818 mutex_exit(&pool_head_lock);
819
820 /* Insert this into the list of pools using this allocator. */
821 mutex_enter(&palloc->pa_lock);
822 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
823 mutex_exit(&palloc->pa_lock);
824 } else {
825 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
826 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
827 }
828
829 pool_reclaim_register(pp);
830 }
831
832 /*
833 * De-commision a pool resource.
834 */
835 void
836 pool_destroy(struct pool *pp)
837 {
838 struct pool_pagelist pq;
839 struct pool_item_header *ph;
840
841 /* Remove from global pool list */
842 mutex_enter(&pool_head_lock);
843 LIST_REMOVE(pp, pr_poollist);
844 if (drainpp == pp)
845 drainpp = NULL;
846 mutex_exit(&pool_head_lock);
847
848 /* Remove this pool from its allocator's list of pools. */
849 pool_reclaim_unregister(pp);
850 mutex_enter(&pp->pr_alloc->pa_lock);
851 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
852 mutex_exit(&pp->pr_alloc->pa_lock);
853
854 mutex_enter(&pp->pr_lock);
855
856 KASSERT(LIST_EMPTY(&pp->pr_cachelist));
857
858 #ifdef DIAGNOSTIC
859 if (pp->pr_nout != 0) {
860 pr_printlog(pp, NULL, printf);
861 panic("pool_destroy: pool busy: still out: %u",
862 pp->pr_nout);
863 }
864 #endif
865
866 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
867 KASSERT(LIST_EMPTY(&pp->pr_partpages));
868
869 /* Remove all pages */
870 LIST_INIT(&pq);
871 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
872 pr_rmpage(pp, ph, &pq);
873
874 mutex_exit(&pp->pr_lock);
875
876 pr_pagelist_free(pp, &pq);
877
878 #ifdef POOL_DIAGNOSTIC
879 if ((pp->pr_roflags & PR_LOGGING) != 0)
880 free(pp->pr_log, M_TEMP);
881 #endif
882
883 cv_destroy(&pp->pr_cv);
884 mutex_destroy(&pp->pr_lock);
885 }
886
887 void
888 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
889 {
890
891 /* XXX no locking -- must be used just after pool_init() */
892 #ifdef DIAGNOSTIC
893 if (pp->pr_drain_hook != NULL)
894 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
895 #endif
896 pp->pr_drain_hook = fn;
897 pp->pr_drain_hook_arg = arg;
898 }
899
900 static struct pool_item_header *
901 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
902 {
903 struct pool_item_header *ph;
904
905 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
906 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
907 else
908 ph = pool_get(pp->pr_phpool, flags);
909
910 return (ph);
911 }
912
913 /*
914 * Grab an item from the pool; must be called at appropriate spl level
915 */
916 void *
917 #ifdef POOL_DIAGNOSTIC
918 _pool_get(struct pool *pp, int flags, const char *file, long line)
919 #else
920 pool_get(struct pool *pp, int flags)
921 #endif
922 {
923 struct pool_item *pi;
924 struct pool_item_header *ph;
925 void *v;
926
927 #ifdef DIAGNOSTIC
928 if (__predict_false(pp->pr_itemsperpage == 0))
929 panic("pool_get: pool %p: pr_itemsperpage is zero, "
930 "pool not initialized?", pp);
931 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
932 (flags & PR_WAITOK) != 0))
933 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
934
935 #endif /* DIAGNOSTIC */
936 #ifdef LOCKDEBUG
937 if (flags & PR_WAITOK)
938 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
939 #endif
940
941 mutex_enter(&pp->pr_lock);
942 pr_enter(pp, file, line);
943
944 startover:
945 /*
946 * Check to see if we've reached the hard limit. If we have,
947 * and we can wait, then wait until an item has been returned to
948 * the pool.
949 */
950 #ifdef DIAGNOSTIC
951 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
952 pr_leave(pp);
953 mutex_exit(&pp->pr_lock);
954 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
955 }
956 #endif
957 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
958 if (pp->pr_drain_hook != NULL) {
959 /*
960 * Since the drain hook is going to free things
961 * back to the pool, unlock, call the hook, re-lock,
962 * and check the hardlimit condition again.
963 */
964 pr_leave(pp);
965 mutex_exit(&pp->pr_lock);
966 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
967 mutex_enter(&pp->pr_lock);
968 pr_enter(pp, file, line);
969 if (pp->pr_nout < pp->pr_hardlimit)
970 goto startover;
971 }
972
973 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
974 /*
975 * XXX: A warning isn't logged in this case. Should
976 * it be?
977 */
978 pp->pr_flags |= PR_WANTED;
979 pr_leave(pp);
980 cv_wait(&pp->pr_cv, &pp->pr_lock);
981 pr_enter(pp, file, line);
982 goto startover;
983 }
984
985 /*
986 * Log a message that the hard limit has been hit.
987 */
988 if (pp->pr_hardlimit_warning != NULL &&
989 ratecheck(&pp->pr_hardlimit_warning_last,
990 &pp->pr_hardlimit_ratecap))
991 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
992
993 pp->pr_nfail++;
994
995 pr_leave(pp);
996 mutex_exit(&pp->pr_lock);
997 return (NULL);
998 }
999
1000 /*
1001 * The convention we use is that if `curpage' is not NULL, then
1002 * it points at a non-empty bucket. In particular, `curpage'
1003 * never points at a page header which has PR_PHINPAGE set and
1004 * has no items in its bucket.
1005 */
1006 if ((ph = pp->pr_curpage) == NULL) {
1007 int error;
1008
1009 #ifdef DIAGNOSTIC
1010 if (pp->pr_nitems != 0) {
1011 mutex_exit(&pp->pr_lock);
1012 printf("pool_get: %s: curpage NULL, nitems %u\n",
1013 pp->pr_wchan, pp->pr_nitems);
1014 panic("pool_get: nitems inconsistent");
1015 }
1016 #endif
1017
1018 /*
1019 * Call the back-end page allocator for more memory.
1020 * Release the pool lock, as the back-end page allocator
1021 * may block.
1022 */
1023 pr_leave(pp);
1024 error = pool_grow(pp, flags);
1025 pr_enter(pp, file, line);
1026 if (error != 0) {
1027 /*
1028 * We were unable to allocate a page or item
1029 * header, but we released the lock during
1030 * allocation, so perhaps items were freed
1031 * back to the pool. Check for this case.
1032 */
1033 if (pp->pr_curpage != NULL)
1034 goto startover;
1035
1036 pp->pr_nfail++;
1037 pr_leave(pp);
1038 mutex_exit(&pp->pr_lock);
1039 return (NULL);
1040 }
1041
1042 /* Start the allocation process over. */
1043 goto startover;
1044 }
1045 if (pp->pr_roflags & PR_NOTOUCH) {
1046 #ifdef DIAGNOSTIC
1047 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1048 pr_leave(pp);
1049 mutex_exit(&pp->pr_lock);
1050 panic("pool_get: %s: page empty", pp->pr_wchan);
1051 }
1052 #endif
1053 v = pr_item_notouch_get(pp, ph);
1054 #ifdef POOL_DIAGNOSTIC
1055 pr_log(pp, v, PRLOG_GET, file, line);
1056 #endif
1057 } else {
1058 v = pi = LIST_FIRST(&ph->ph_itemlist);
1059 if (__predict_false(v == NULL)) {
1060 pr_leave(pp);
1061 mutex_exit(&pp->pr_lock);
1062 panic("pool_get: %s: page empty", pp->pr_wchan);
1063 }
1064 #ifdef DIAGNOSTIC
1065 if (__predict_false(pp->pr_nitems == 0)) {
1066 pr_leave(pp);
1067 mutex_exit(&pp->pr_lock);
1068 printf("pool_get: %s: items on itemlist, nitems %u\n",
1069 pp->pr_wchan, pp->pr_nitems);
1070 panic("pool_get: nitems inconsistent");
1071 }
1072 #endif
1073
1074 #ifdef POOL_DIAGNOSTIC
1075 pr_log(pp, v, PRLOG_GET, file, line);
1076 #endif
1077
1078 #ifdef DIAGNOSTIC
1079 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1080 pr_printlog(pp, pi, printf);
1081 panic("pool_get(%s): free list modified: "
1082 "magic=%x; page %p; item addr %p\n",
1083 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1084 }
1085 #endif
1086
1087 /*
1088 * Remove from item list.
1089 */
1090 LIST_REMOVE(pi, pi_list);
1091 }
1092 pp->pr_nitems--;
1093 pp->pr_nout++;
1094 if (ph->ph_nmissing == 0) {
1095 #ifdef DIAGNOSTIC
1096 if (__predict_false(pp->pr_nidle == 0))
1097 panic("pool_get: nidle inconsistent");
1098 #endif
1099 pp->pr_nidle--;
1100
1101 /*
1102 * This page was previously empty. Move it to the list of
1103 * partially-full pages. This page is already curpage.
1104 */
1105 LIST_REMOVE(ph, ph_pagelist);
1106 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1107 }
1108 ph->ph_nmissing++;
1109 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1110 #ifdef DIAGNOSTIC
1111 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1112 !LIST_EMPTY(&ph->ph_itemlist))) {
1113 pr_leave(pp);
1114 mutex_exit(&pp->pr_lock);
1115 panic("pool_get: %s: nmissing inconsistent",
1116 pp->pr_wchan);
1117 }
1118 #endif
1119 /*
1120 * This page is now full. Move it to the full list
1121 * and select a new current page.
1122 */
1123 LIST_REMOVE(ph, ph_pagelist);
1124 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1125 pool_update_curpage(pp);
1126 }
1127
1128 pp->pr_nget++;
1129 pr_leave(pp);
1130
1131 /*
1132 * If we have a low water mark and we are now below that low
1133 * water mark, add more items to the pool.
1134 */
1135 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1136 /*
1137 * XXX: Should we log a warning? Should we set up a timeout
1138 * to try again in a second or so? The latter could break
1139 * a caller's assumptions about interrupt protection, etc.
1140 */
1141 }
1142
1143 mutex_exit(&pp->pr_lock);
1144 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1145 FREECHECK_OUT(&pp->pr_freecheck, v);
1146 return (v);
1147 }
1148
1149 /*
1150 * Internal version of pool_put(). Pool is already locked/entered.
1151 */
1152 static void
1153 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1154 {
1155 struct pool_item *pi = v;
1156 struct pool_item_header *ph;
1157
1158 KASSERT(mutex_owned(&pp->pr_lock));
1159 FREECHECK_IN(&pp->pr_freecheck, v);
1160
1161 #ifdef DIAGNOSTIC
1162 if (__predict_false(pp->pr_nout == 0)) {
1163 printf("pool %s: putting with none out\n",
1164 pp->pr_wchan);
1165 panic("pool_put");
1166 }
1167 #endif
1168
1169 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1170 pr_printlog(pp, NULL, printf);
1171 panic("pool_put: %s: page header missing", pp->pr_wchan);
1172 }
1173
1174 #ifdef LOCKDEBUG
1175 /*
1176 * Check if we're freeing a locked simple lock.
1177 */
1178 simple_lock_freecheck(pi, (char *)pi + pp->pr_size);
1179 #endif
1180
1181 /*
1182 * Return to item list.
1183 */
1184 if (pp->pr_roflags & PR_NOTOUCH) {
1185 pr_item_notouch_put(pp, ph, v);
1186 } else {
1187 #ifdef DIAGNOSTIC
1188 pi->pi_magic = PI_MAGIC;
1189 #endif
1190 #ifdef DEBUG
1191 {
1192 int i, *ip = v;
1193
1194 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1195 *ip++ = PI_MAGIC;
1196 }
1197 }
1198 #endif
1199
1200 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1201 }
1202 KDASSERT(ph->ph_nmissing != 0);
1203 ph->ph_nmissing--;
1204 pp->pr_nput++;
1205 pp->pr_nitems++;
1206 pp->pr_nout--;
1207
1208 /* Cancel "pool empty" condition if it exists */
1209 if (pp->pr_curpage == NULL)
1210 pp->pr_curpage = ph;
1211
1212 if (pp->pr_flags & PR_WANTED) {
1213 pp->pr_flags &= ~PR_WANTED;
1214 if (ph->ph_nmissing == 0)
1215 pp->pr_nidle++;
1216 wakeup((void *)pp);
1217 return;
1218 }
1219
1220 /*
1221 * If this page is now empty, do one of two things:
1222 *
1223 * (1) If we have more pages than the page high water mark,
1224 * free the page back to the system. ONLY CONSIDER
1225 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1226 * CLAIM.
1227 *
1228 * (2) Otherwise, move the page to the empty page list.
1229 *
1230 * Either way, select a new current page (so we use a partially-full
1231 * page if one is available).
1232 */
1233 if (ph->ph_nmissing == 0) {
1234 pp->pr_nidle++;
1235 if (pp->pr_npages > pp->pr_minpages &&
1236 (pp->pr_npages > pp->pr_maxpages ||
1237 pa_starved_p(pp->pr_alloc))) {
1238 pr_rmpage(pp, ph, pq);
1239 } else {
1240 LIST_REMOVE(ph, ph_pagelist);
1241 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1242
1243 /*
1244 * Update the timestamp on the page. A page must
1245 * be idle for some period of time before it can
1246 * be reclaimed by the pagedaemon. This minimizes
1247 * ping-pong'ing for memory.
1248 */
1249 getmicrotime(&ph->ph_time);
1250 }
1251 pool_update_curpage(pp);
1252 }
1253
1254 /*
1255 * If the page was previously completely full, move it to the
1256 * partially-full list and make it the current page. The next
1257 * allocation will get the item from this page, instead of
1258 * further fragmenting the pool.
1259 */
1260 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1261 LIST_REMOVE(ph, ph_pagelist);
1262 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1263 pp->pr_curpage = ph;
1264 }
1265 }
1266
1267 /*
1268 * Return resource to the pool; must be called at appropriate spl level
1269 */
1270 #ifdef POOL_DIAGNOSTIC
1271 void
1272 _pool_put(struct pool *pp, void *v, const char *file, long line)
1273 {
1274 struct pool_pagelist pq;
1275
1276 LIST_INIT(&pq);
1277
1278 mutex_enter(&pp->pr_lock);
1279 pr_enter(pp, file, line);
1280
1281 pr_log(pp, v, PRLOG_PUT, file, line);
1282
1283 pool_do_put(pp, v, &pq);
1284
1285 pr_leave(pp);
1286 mutex_exit(&pp->pr_lock);
1287
1288 pr_pagelist_free(pp, &pq);
1289 }
1290 #undef pool_put
1291 #endif /* POOL_DIAGNOSTIC */
1292
1293 void
1294 pool_put(struct pool *pp, void *v)
1295 {
1296 struct pool_pagelist pq;
1297
1298 LIST_INIT(&pq);
1299
1300 mutex_enter(&pp->pr_lock);
1301 pool_do_put(pp, v, &pq);
1302 mutex_exit(&pp->pr_lock);
1303
1304 pr_pagelist_free(pp, &pq);
1305 }
1306
1307 #ifdef POOL_DIAGNOSTIC
1308 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1309 #endif
1310
1311 /*
1312 * pool_grow: grow a pool by a page.
1313 *
1314 * => called with pool locked.
1315 * => unlock and relock the pool.
1316 * => return with pool locked.
1317 */
1318
1319 static int
1320 pool_grow(struct pool *pp, int flags)
1321 {
1322 struct pool_item_header *ph = NULL;
1323 char *cp;
1324
1325 mutex_exit(&pp->pr_lock);
1326 cp = pool_allocator_alloc(pp, flags);
1327 if (__predict_true(cp != NULL)) {
1328 ph = pool_alloc_item_header(pp, cp, flags);
1329 }
1330 if (__predict_false(cp == NULL || ph == NULL)) {
1331 if (cp != NULL) {
1332 pool_allocator_free(pp, cp);
1333 }
1334 mutex_enter(&pp->pr_lock);
1335 return ENOMEM;
1336 }
1337
1338 mutex_enter(&pp->pr_lock);
1339 pool_prime_page(pp, cp, ph);
1340 pp->pr_npagealloc++;
1341 return 0;
1342 }
1343
1344 /*
1345 * Add N items to the pool.
1346 */
1347 int
1348 pool_prime(struct pool *pp, int n)
1349 {
1350 int newpages;
1351 int error = 0;
1352
1353 mutex_enter(&pp->pr_lock);
1354
1355 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1356
1357 while (newpages-- > 0) {
1358 error = pool_grow(pp, PR_NOWAIT);
1359 if (error) {
1360 break;
1361 }
1362 pp->pr_minpages++;
1363 }
1364
1365 if (pp->pr_minpages >= pp->pr_maxpages)
1366 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1367
1368 mutex_exit(&pp->pr_lock);
1369 return error;
1370 }
1371
1372 /*
1373 * Add a page worth of items to the pool.
1374 *
1375 * Note, we must be called with the pool descriptor LOCKED.
1376 */
1377 static void
1378 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1379 {
1380 struct pool_item *pi;
1381 void *cp = storage;
1382 const unsigned int align = pp->pr_align;
1383 const unsigned int ioff = pp->pr_itemoffset;
1384 int n;
1385
1386 KASSERT(mutex_owned(&pp->pr_lock));
1387
1388 #ifdef DIAGNOSTIC
1389 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1390 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1391 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1392 #endif
1393
1394 /*
1395 * Insert page header.
1396 */
1397 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1398 LIST_INIT(&ph->ph_itemlist);
1399 ph->ph_page = storage;
1400 ph->ph_nmissing = 0;
1401 getmicrotime(&ph->ph_time);
1402 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1403 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1404
1405 pp->pr_nidle++;
1406
1407 /*
1408 * Color this page.
1409 */
1410 cp = (char *)cp + pp->pr_curcolor;
1411 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1412 pp->pr_curcolor = 0;
1413
1414 /*
1415 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1416 */
1417 if (ioff != 0)
1418 cp = (char *)cp + align - ioff;
1419
1420 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1421
1422 /*
1423 * Insert remaining chunks on the bucket list.
1424 */
1425 n = pp->pr_itemsperpage;
1426 pp->pr_nitems += n;
1427
1428 if (pp->pr_roflags & PR_NOTOUCH) {
1429 pool_item_freelist_t *freelist = PR_FREELIST(ph);
1430 int i;
1431
1432 ph->ph_off = (char *)cp - (char *)storage;
1433 ph->ph_firstfree = 0;
1434 for (i = 0; i < n - 1; i++)
1435 freelist[i] = i + 1;
1436 freelist[n - 1] = PR_INDEX_EOL;
1437 } else {
1438 while (n--) {
1439 pi = (struct pool_item *)cp;
1440
1441 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1442
1443 /* Insert on page list */
1444 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1445 #ifdef DIAGNOSTIC
1446 pi->pi_magic = PI_MAGIC;
1447 #endif
1448 cp = (char *)cp + pp->pr_size;
1449
1450 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1451 }
1452 }
1453
1454 /*
1455 * If the pool was depleted, point at the new page.
1456 */
1457 if (pp->pr_curpage == NULL)
1458 pp->pr_curpage = ph;
1459
1460 if (++pp->pr_npages > pp->pr_hiwat)
1461 pp->pr_hiwat = pp->pr_npages;
1462 }
1463
1464 /*
1465 * Used by pool_get() when nitems drops below the low water mark. This
1466 * is used to catch up pr_nitems with the low water mark.
1467 *
1468 * Note 1, we never wait for memory here, we let the caller decide what to do.
1469 *
1470 * Note 2, we must be called with the pool already locked, and we return
1471 * with it locked.
1472 */
1473 static int
1474 pool_catchup(struct pool *pp)
1475 {
1476 int error = 0;
1477
1478 while (POOL_NEEDS_CATCHUP(pp)) {
1479 error = pool_grow(pp, PR_NOWAIT);
1480 if (error) {
1481 break;
1482 }
1483 }
1484 return error;
1485 }
1486
1487 static void
1488 pool_update_curpage(struct pool *pp)
1489 {
1490
1491 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1492 if (pp->pr_curpage == NULL) {
1493 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1494 }
1495 }
1496
1497 void
1498 pool_setlowat(struct pool *pp, int n)
1499 {
1500
1501 mutex_enter(&pp->pr_lock);
1502
1503 pp->pr_minitems = n;
1504 pp->pr_minpages = (n == 0)
1505 ? 0
1506 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1507
1508 /* Make sure we're caught up with the newly-set low water mark. */
1509 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1510 /*
1511 * XXX: Should we log a warning? Should we set up a timeout
1512 * to try again in a second or so? The latter could break
1513 * a caller's assumptions about interrupt protection, etc.
1514 */
1515 }
1516
1517 mutex_exit(&pp->pr_lock);
1518 }
1519
1520 void
1521 pool_sethiwat(struct pool *pp, int n)
1522 {
1523
1524 mutex_enter(&pp->pr_lock);
1525
1526 pp->pr_maxpages = (n == 0)
1527 ? 0
1528 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1529
1530 mutex_exit(&pp->pr_lock);
1531 }
1532
1533 void
1534 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1535 {
1536
1537 mutex_enter(&pp->pr_lock);
1538
1539 pp->pr_hardlimit = n;
1540 pp->pr_hardlimit_warning = warnmess;
1541 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1542 pp->pr_hardlimit_warning_last.tv_sec = 0;
1543 pp->pr_hardlimit_warning_last.tv_usec = 0;
1544
1545 /*
1546 * In-line version of pool_sethiwat(), because we don't want to
1547 * release the lock.
1548 */
1549 pp->pr_maxpages = (n == 0)
1550 ? 0
1551 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1552
1553 mutex_exit(&pp->pr_lock);
1554 }
1555
1556 /*
1557 * Release all complete pages that have not been used recently.
1558 */
1559 int
1560 #ifdef POOL_DIAGNOSTIC
1561 _pool_reclaim(struct pool *pp, const char *file, long line)
1562 #else
1563 pool_reclaim(struct pool *pp)
1564 #endif
1565 {
1566 struct pool_item_header *ph, *phnext;
1567 struct pool_cache *pc;
1568 struct pool_pagelist pq;
1569 struct pool_cache_grouplist pcgl;
1570 struct timeval curtime, diff;
1571
1572 if (pp->pr_drain_hook != NULL) {
1573 /*
1574 * The drain hook must be called with the pool unlocked.
1575 */
1576 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1577 }
1578
1579 if (mutex_tryenter(&pp->pr_lock) == 0)
1580 return (0);
1581 pr_enter(pp, file, line);
1582
1583 LIST_INIT(&pq);
1584 LIST_INIT(&pcgl);
1585
1586 /*
1587 * Reclaim items from the pool's caches.
1588 */
1589 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1590 pool_cache_reclaim(pc, &pq, &pcgl);
1591
1592 getmicrotime(&curtime);
1593
1594 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1595 phnext = LIST_NEXT(ph, ph_pagelist);
1596
1597 /* Check our minimum page claim */
1598 if (pp->pr_npages <= pp->pr_minpages)
1599 break;
1600
1601 KASSERT(ph->ph_nmissing == 0);
1602 timersub(&curtime, &ph->ph_time, &diff);
1603 if (diff.tv_sec < pool_inactive_time
1604 && !pa_starved_p(pp->pr_alloc))
1605 continue;
1606
1607 /*
1608 * If freeing this page would put us below
1609 * the low water mark, stop now.
1610 */
1611 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1612 pp->pr_minitems)
1613 break;
1614
1615 pr_rmpage(pp, ph, &pq);
1616 }
1617
1618 pr_leave(pp);
1619 mutex_exit(&pp->pr_lock);
1620 if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
1621 return 0;
1622
1623 pr_pagelist_free(pp, &pq);
1624 pcg_grouplist_free(&pcgl);
1625 return (1);
1626 }
1627
1628 /*
1629 * Drain pools, one at a time.
1630 *
1631 * Note, we must never be called from an interrupt context.
1632 */
1633 void
1634 pool_drain(void *arg)
1635 {
1636 struct pool *pp;
1637 int s;
1638
1639 pp = NULL;
1640 s = splvm(); /* XXX why? */
1641 mutex_enter(&pool_head_lock);
1642 if (drainpp == NULL) {
1643 drainpp = LIST_FIRST(&pool_head);
1644 }
1645 if (drainpp) {
1646 pp = drainpp;
1647 drainpp = LIST_NEXT(pp, pr_poollist);
1648 }
1649 mutex_exit(&pool_head_lock);
1650 if (pp)
1651 pool_reclaim(pp);
1652 splx(s);
1653 }
1654
1655 /*
1656 * Diagnostic helpers.
1657 */
1658 void
1659 pool_print(struct pool *pp, const char *modif)
1660 {
1661
1662 if (mutex_tryenter(&pp->pr_lock) == 0) {
1663 printf("pool %s is locked; try again later\n",
1664 pp->pr_wchan);
1665 return;
1666 }
1667 pool_print1(pp, modif, printf);
1668 mutex_exit(&pp->pr_lock);
1669 }
1670
1671 void
1672 pool_printall(const char *modif, void (*pr)(const char *, ...))
1673 {
1674 struct pool *pp;
1675
1676 if (mutex_tryenter(&pool_head_lock) == 0) {
1677 (*pr)("WARNING: pool_head_slock is locked\n");
1678 } else {
1679 mutex_exit(&pool_head_lock);
1680 }
1681
1682 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1683 pool_printit(pp, modif, pr);
1684 }
1685 }
1686
1687 void
1688 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1689 {
1690
1691 if (pp == NULL) {
1692 (*pr)("Must specify a pool to print.\n");
1693 return;
1694 }
1695
1696 /*
1697 * Called from DDB; interrupts should be blocked, and all
1698 * other processors should be paused. We can skip locking
1699 * the pool in this case.
1700 *
1701 * We do a mutex_tryenter() just to print the lock
1702 * status, however.
1703 */
1704
1705 if (mutex_tryenter(&pp->pr_lock) == 0)
1706 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1707 else
1708 mutex_exit(&pp->pr_lock);
1709
1710 pool_print1(pp, modif, pr);
1711 }
1712
1713 static void
1714 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1715 void (*pr)(const char *, ...))
1716 {
1717 struct pool_item_header *ph;
1718 #ifdef DIAGNOSTIC
1719 struct pool_item *pi;
1720 #endif
1721
1722 LIST_FOREACH(ph, pl, ph_pagelist) {
1723 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1724 ph->ph_page, ph->ph_nmissing,
1725 (u_long)ph->ph_time.tv_sec,
1726 (u_long)ph->ph_time.tv_usec);
1727 #ifdef DIAGNOSTIC
1728 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1729 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1730 if (pi->pi_magic != PI_MAGIC) {
1731 (*pr)("\t\t\titem %p, magic 0x%x\n",
1732 pi, pi->pi_magic);
1733 }
1734 }
1735 }
1736 #endif
1737 }
1738 }
1739
1740 static void
1741 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1742 {
1743 struct pool_item_header *ph;
1744 struct pool_cache *pc;
1745 struct pool_cache_group *pcg;
1746 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1747 char c;
1748
1749 while ((c = *modif++) != '\0') {
1750 if (c == 'l')
1751 print_log = 1;
1752 if (c == 'p')
1753 print_pagelist = 1;
1754 if (c == 'c')
1755 print_cache = 1;
1756 }
1757
1758 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1759 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1760 pp->pr_roflags);
1761 (*pr)("\talloc %p\n", pp->pr_alloc);
1762 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1763 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1764 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1765 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1766
1767 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1768 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1769 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1770 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1771
1772 if (print_pagelist == 0)
1773 goto skip_pagelist;
1774
1775 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1776 (*pr)("\n\tempty page list:\n");
1777 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1778 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1779 (*pr)("\n\tfull page list:\n");
1780 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1781 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1782 (*pr)("\n\tpartial-page list:\n");
1783 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1784
1785 if (pp->pr_curpage == NULL)
1786 (*pr)("\tno current page\n");
1787 else
1788 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1789
1790 skip_pagelist:
1791 if (print_log == 0)
1792 goto skip_log;
1793
1794 (*pr)("\n");
1795 if ((pp->pr_roflags & PR_LOGGING) == 0)
1796 (*pr)("\tno log\n");
1797 else {
1798 pr_printlog(pp, NULL, pr);
1799 }
1800
1801 skip_log:
1802 if (print_cache == 0)
1803 goto skip_cache;
1804
1805 #define PR_GROUPLIST(pcg) \
1806 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1807 for (i = 0; i < PCG_NOBJECTS; i++) { \
1808 if (pcg->pcg_objects[i].pcgo_pa != \
1809 POOL_PADDR_INVALID) { \
1810 (*pr)("\t\t\t%p, 0x%llx\n", \
1811 pcg->pcg_objects[i].pcgo_va, \
1812 (unsigned long long) \
1813 pcg->pcg_objects[i].pcgo_pa); \
1814 } else { \
1815 (*pr)("\t\t\t%p\n", \
1816 pcg->pcg_objects[i].pcgo_va); \
1817 } \
1818 }
1819
1820 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1821 (*pr)("\tcache %p\n", pc);
1822 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1823 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1824 (*pr)("\t full groups:\n");
1825 LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
1826 PR_GROUPLIST(pcg);
1827 }
1828 (*pr)("\t partial groups:\n");
1829 LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
1830 PR_GROUPLIST(pcg);
1831 }
1832 (*pr)("\t empty groups:\n");
1833 LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
1834 PR_GROUPLIST(pcg);
1835 }
1836 }
1837 #undef PR_GROUPLIST
1838
1839 skip_cache:
1840 pr_enter_check(pp, pr);
1841 }
1842
1843 static int
1844 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1845 {
1846 struct pool_item *pi;
1847 void *page;
1848 int n;
1849
1850 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1851 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1852 if (page != ph->ph_page &&
1853 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1854 if (label != NULL)
1855 printf("%s: ", label);
1856 printf("pool(%p:%s): page inconsistency: page %p;"
1857 " at page head addr %p (p %p)\n", pp,
1858 pp->pr_wchan, ph->ph_page,
1859 ph, page);
1860 return 1;
1861 }
1862 }
1863
1864 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1865 return 0;
1866
1867 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1868 pi != NULL;
1869 pi = LIST_NEXT(pi,pi_list), n++) {
1870
1871 #ifdef DIAGNOSTIC
1872 if (pi->pi_magic != PI_MAGIC) {
1873 if (label != NULL)
1874 printf("%s: ", label);
1875 printf("pool(%s): free list modified: magic=%x;"
1876 " page %p; item ordinal %d; addr %p\n",
1877 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1878 n, pi);
1879 panic("pool");
1880 }
1881 #endif
1882 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1883 continue;
1884 }
1885 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1886 if (page == ph->ph_page)
1887 continue;
1888
1889 if (label != NULL)
1890 printf("%s: ", label);
1891 printf("pool(%p:%s): page inconsistency: page %p;"
1892 " item ordinal %d; addr %p (p %p)\n", pp,
1893 pp->pr_wchan, ph->ph_page,
1894 n, pi, page);
1895 return 1;
1896 }
1897 return 0;
1898 }
1899
1900
1901 int
1902 pool_chk(struct pool *pp, const char *label)
1903 {
1904 struct pool_item_header *ph;
1905 int r = 0;
1906
1907 mutex_enter(&pp->pr_lock);
1908 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1909 r = pool_chk_page(pp, label, ph);
1910 if (r) {
1911 goto out;
1912 }
1913 }
1914 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1915 r = pool_chk_page(pp, label, ph);
1916 if (r) {
1917 goto out;
1918 }
1919 }
1920 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1921 r = pool_chk_page(pp, label, ph);
1922 if (r) {
1923 goto out;
1924 }
1925 }
1926
1927 out:
1928 mutex_exit(&pp->pr_lock);
1929 return (r);
1930 }
1931
1932 /*
1933 * pool_cache_init:
1934 *
1935 * Initialize a pool cache.
1936 *
1937 * NOTE: If the pool must be protected from interrupts, we expect
1938 * to be called at the appropriate interrupt priority level.
1939 */
1940 void
1941 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1942 int (*ctor)(void *, void *, int),
1943 void (*dtor)(void *, void *),
1944 void *arg)
1945 {
1946
1947 LIST_INIT(&pc->pc_emptygroups);
1948 LIST_INIT(&pc->pc_fullgroups);
1949 LIST_INIT(&pc->pc_partgroups);
1950 mutex_init(&pc->pc_lock, MUTEX_DRIVER, pp->pr_ipl);
1951
1952 pc->pc_pool = pp;
1953
1954 pc->pc_ctor = ctor;
1955 pc->pc_dtor = dtor;
1956 pc->pc_arg = arg;
1957
1958 pc->pc_hits = 0;
1959 pc->pc_misses = 0;
1960
1961 pc->pc_ngroups = 0;
1962
1963 pc->pc_nitems = 0;
1964
1965 if (__predict_true(!cold)) {
1966 mutex_enter(&pp->pr_lock);
1967 LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1968 mutex_exit(&pp->pr_lock);
1969 } else
1970 LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1971 }
1972
1973 /*
1974 * pool_cache_destroy:
1975 *
1976 * Destroy a pool cache.
1977 */
1978 void
1979 pool_cache_destroy(struct pool_cache *pc)
1980 {
1981 struct pool *pp = pc->pc_pool;
1982
1983 /* First, invalidate the entire cache. */
1984 pool_cache_invalidate(pc);
1985
1986 /* ...and remove it from the pool's cache list. */
1987 mutex_enter(&pp->pr_lock);
1988 LIST_REMOVE(pc, pc_poollist);
1989 mutex_exit(&pp->pr_lock);
1990
1991 mutex_destroy(&pc->pc_lock);
1992 }
1993
1994 static inline void *
1995 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1996 {
1997 void *object;
1998 u_int idx;
1999
2000 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2001 KASSERT(pcg->pcg_avail != 0);
2002 idx = --pcg->pcg_avail;
2003
2004 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
2005 object = pcg->pcg_objects[idx].pcgo_va;
2006 if (pap != NULL)
2007 *pap = pcg->pcg_objects[idx].pcgo_pa;
2008 pcg->pcg_objects[idx].pcgo_va = NULL;
2009
2010 return (object);
2011 }
2012
2013 static inline void
2014 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
2015 {
2016 u_int idx;
2017
2018 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
2019 idx = pcg->pcg_avail++;
2020
2021 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
2022 pcg->pcg_objects[idx].pcgo_va = object;
2023 pcg->pcg_objects[idx].pcgo_pa = pa;
2024 }
2025
2026 static void
2027 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
2028 {
2029 struct pool_cache_group *pcg;
2030
2031 while ((pcg = LIST_FIRST(pcgl)) != NULL) {
2032 LIST_REMOVE(pcg, pcg_list);
2033 pool_put(&pcgpool, pcg);
2034 }
2035 }
2036
2037 /*
2038 * pool_cache_get{,_paddr}:
2039 *
2040 * Get an object from a pool cache (optionally returning
2041 * the physical address of the object).
2042 */
2043 void *
2044 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
2045 {
2046 struct pool_cache_group *pcg;
2047 void *object;
2048
2049 #ifdef LOCKDEBUG
2050 if (flags & PR_WAITOK)
2051 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2052 #endif
2053
2054 mutex_enter(&pc->pc_lock);
2055
2056 pcg = LIST_FIRST(&pc->pc_partgroups);
2057 if (pcg == NULL) {
2058 pcg = LIST_FIRST(&pc->pc_fullgroups);
2059 if (pcg != NULL) {
2060 LIST_REMOVE(pcg, pcg_list);
2061 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2062 }
2063 }
2064 if (pcg == NULL) {
2065
2066 /*
2067 * No groups with any available objects. Allocate
2068 * a new object, construct it, and return it to
2069 * the caller. We will allocate a group, if necessary,
2070 * when the object is freed back to the cache.
2071 */
2072 pc->pc_misses++;
2073 mutex_exit(&pc->pc_lock);
2074 object = pool_get(pc->pc_pool, flags);
2075 if (object != NULL && pc->pc_ctor != NULL) {
2076 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2077 pool_put(pc->pc_pool, object);
2078 return (NULL);
2079 }
2080 }
2081 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
2082 (pc->pc_pool->pr_align - 1)) == 0);
2083 if (object != NULL && pap != NULL) {
2084 #ifdef POOL_VTOPHYS
2085 *pap = POOL_VTOPHYS(object);
2086 #else
2087 *pap = POOL_PADDR_INVALID;
2088 #endif
2089 }
2090
2091 FREECHECK_OUT(&pc->pc_freecheck, object);
2092 return (object);
2093 }
2094
2095 pc->pc_hits++;
2096 pc->pc_nitems--;
2097 object = pcg_get(pcg, pap);
2098
2099 if (pcg->pcg_avail == 0) {
2100 LIST_REMOVE(pcg, pcg_list);
2101 LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
2102 }
2103 mutex_exit(&pc->pc_lock);
2104
2105 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
2106 (pc->pc_pool->pr_align - 1)) == 0);
2107 FREECHECK_OUT(&pc->pc_freecheck, object);
2108 return (object);
2109 }
2110
2111 /*
2112 * pool_cache_put{,_paddr}:
2113 *
2114 * Put an object back to the pool cache (optionally caching the
2115 * physical address of the object).
2116 */
2117 void
2118 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
2119 {
2120 struct pool_cache_group *pcg;
2121
2122 FREECHECK_IN(&pc->pc_freecheck, object);
2123
2124 if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
2125 goto destruct;
2126 }
2127
2128 mutex_enter(&pc->pc_lock);
2129
2130 pcg = LIST_FIRST(&pc->pc_partgroups);
2131 if (pcg == NULL) {
2132 pcg = LIST_FIRST(&pc->pc_emptygroups);
2133 if (pcg != NULL) {
2134 LIST_REMOVE(pcg, pcg_list);
2135 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2136 }
2137 }
2138 if (pcg == NULL) {
2139
2140 /*
2141 * No empty groups to free the object to. Attempt to
2142 * allocate one.
2143 */
2144 mutex_exit(&pc->pc_lock);
2145 pcg = pool_get(&pcgpool, PR_NOWAIT);
2146 if (pcg == NULL) {
2147 destruct:
2148
2149 /*
2150 * Unable to allocate a cache group; destruct the object
2151 * and free it back to the pool.
2152 */
2153 pool_cache_destruct_object(pc, object);
2154 return;
2155 }
2156 memset(pcg, 0, sizeof(*pcg));
2157 mutex_enter(&pc->pc_lock);
2158 pc->pc_ngroups++;
2159 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2160 }
2161
2162 pc->pc_nitems++;
2163 pcg_put(pcg, object, pa);
2164
2165 if (pcg->pcg_avail == PCG_NOBJECTS) {
2166 LIST_REMOVE(pcg, pcg_list);
2167 LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
2168 }
2169 mutex_exit(&pc->pc_lock);
2170 }
2171
2172 /*
2173 * pool_cache_destruct_object:
2174 *
2175 * Force destruction of an object and its release back into
2176 * the pool.
2177 */
2178 void
2179 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2180 {
2181
2182 if (pc->pc_dtor != NULL)
2183 (*pc->pc_dtor)(pc->pc_arg, object);
2184 pool_put(pc->pc_pool, object);
2185 }
2186
2187 static void
2188 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
2189 struct pool_cache *pc, struct pool_pagelist *pq,
2190 struct pool_cache_grouplist *pcgdl)
2191 {
2192 struct pool_cache_group *pcg, *npcg;
2193 void *object;
2194
2195 for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
2196 npcg = LIST_NEXT(pcg, pcg_list);
2197 while (pcg->pcg_avail != 0) {
2198 pc->pc_nitems--;
2199 object = pcg_get(pcg, NULL);
2200 if (pc->pc_dtor != NULL)
2201 (*pc->pc_dtor)(pc->pc_arg, object);
2202 pool_do_put(pc->pc_pool, object, pq);
2203 }
2204 pc->pc_ngroups--;
2205 LIST_REMOVE(pcg, pcg_list);
2206 LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
2207 }
2208 }
2209
2210 static void
2211 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
2212 struct pool_cache_grouplist *pcgl)
2213 {
2214
2215 KASSERT(mutex_owned(&pc->pc_lock));
2216 KASSERT(mutex_owned(&pc->pc_pool->pr_lock));
2217
2218 pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
2219 pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
2220
2221 KASSERT(LIST_EMPTY(&pc->pc_partgroups));
2222 KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
2223 KASSERT(pc->pc_nitems == 0);
2224 }
2225
2226 /*
2227 * pool_cache_invalidate:
2228 *
2229 * Invalidate a pool cache (destruct and release all of the
2230 * cached objects).
2231 */
2232 void
2233 pool_cache_invalidate(struct pool_cache *pc)
2234 {
2235 struct pool_pagelist pq;
2236 struct pool_cache_grouplist pcgl;
2237
2238 LIST_INIT(&pq);
2239 LIST_INIT(&pcgl);
2240
2241 mutex_enter(&pc->pc_lock);
2242 mutex_enter(&pc->pc_pool->pr_lock);
2243
2244 pool_do_cache_invalidate(pc, &pq, &pcgl);
2245
2246 mutex_exit(&pc->pc_pool->pr_lock);
2247 mutex_exit(&pc->pc_lock);
2248
2249 pr_pagelist_free(pc->pc_pool, &pq);
2250 pcg_grouplist_free(&pcgl);
2251 }
2252
2253 /*
2254 * pool_cache_reclaim:
2255 *
2256 * Reclaim a pool cache for pool_reclaim().
2257 */
2258 static void
2259 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
2260 struct pool_cache_grouplist *pcgl)
2261 {
2262
2263 /*
2264 * We're locking in the wrong order (normally pool_cache -> pool,
2265 * but the pool is already locked when we get here), so we have
2266 * to use trylock. If we can't lock the pool_cache, it's not really
2267 * a big deal here.
2268 */
2269 if (mutex_tryenter(&pc->pc_lock) == 0)
2270 return;
2271
2272 pool_do_cache_invalidate(pc, pq, pcgl);
2273
2274 mutex_exit(&pc->pc_lock);
2275 }
2276
2277 /*
2278 * Pool backend allocators.
2279 *
2280 * Each pool has a backend allocator that handles allocation, deallocation,
2281 * and any additional draining that might be needed.
2282 *
2283 * We provide two standard allocators:
2284 *
2285 * pool_allocator_kmem - the default when no allocator is specified
2286 *
2287 * pool_allocator_nointr - used for pools that will not be accessed
2288 * in interrupt context.
2289 */
2290 void *pool_page_alloc(struct pool *, int);
2291 void pool_page_free(struct pool *, void *);
2292
2293 #ifdef POOL_SUBPAGE
2294 struct pool_allocator pool_allocator_kmem_fullpage = {
2295 pool_page_alloc, pool_page_free, 0,
2296 .pa_backingmapptr = &kmem_map,
2297 };
2298 #else
2299 struct pool_allocator pool_allocator_kmem = {
2300 pool_page_alloc, pool_page_free, 0,
2301 .pa_backingmapptr = &kmem_map,
2302 };
2303 #endif
2304
2305 void *pool_page_alloc_nointr(struct pool *, int);
2306 void pool_page_free_nointr(struct pool *, void *);
2307
2308 #ifdef POOL_SUBPAGE
2309 struct pool_allocator pool_allocator_nointr_fullpage = {
2310 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2311 .pa_backingmapptr = &kernel_map,
2312 };
2313 #else
2314 struct pool_allocator pool_allocator_nointr = {
2315 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2316 .pa_backingmapptr = &kernel_map,
2317 };
2318 #endif
2319
2320 #ifdef POOL_SUBPAGE
2321 void *pool_subpage_alloc(struct pool *, int);
2322 void pool_subpage_free(struct pool *, void *);
2323
2324 struct pool_allocator pool_allocator_kmem = {
2325 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2326 .pa_backingmapptr = &kmem_map,
2327 };
2328
2329 void *pool_subpage_alloc_nointr(struct pool *, int);
2330 void pool_subpage_free_nointr(struct pool *, void *);
2331
2332 struct pool_allocator pool_allocator_nointr = {
2333 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2334 .pa_backingmapptr = &kmem_map,
2335 };
2336 #endif /* POOL_SUBPAGE */
2337
2338 static void *
2339 pool_allocator_alloc(struct pool *pp, int flags)
2340 {
2341 struct pool_allocator *pa = pp->pr_alloc;
2342 void *res;
2343
2344 res = (*pa->pa_alloc)(pp, flags);
2345 if (res == NULL && (flags & PR_WAITOK) == 0) {
2346 /*
2347 * We only run the drain hook here if PR_NOWAIT.
2348 * In other cases, the hook will be run in
2349 * pool_reclaim().
2350 */
2351 if (pp->pr_drain_hook != NULL) {
2352 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2353 res = (*pa->pa_alloc)(pp, flags);
2354 }
2355 }
2356 return res;
2357 }
2358
2359 static void
2360 pool_allocator_free(struct pool *pp, void *v)
2361 {
2362 struct pool_allocator *pa = pp->pr_alloc;
2363
2364 (*pa->pa_free)(pp, v);
2365 }
2366
2367 void *
2368 pool_page_alloc(struct pool *pp, int flags)
2369 {
2370 bool waitok = (flags & PR_WAITOK) ? true : false;
2371
2372 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2373 }
2374
2375 void
2376 pool_page_free(struct pool *pp, void *v)
2377 {
2378
2379 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2380 }
2381
2382 static void *
2383 pool_page_alloc_meta(struct pool *pp, int flags)
2384 {
2385 bool waitok = (flags & PR_WAITOK) ? true : false;
2386
2387 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2388 }
2389
2390 static void
2391 pool_page_free_meta(struct pool *pp, void *v)
2392 {
2393
2394 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2395 }
2396
2397 #ifdef POOL_SUBPAGE
2398 /* Sub-page allocator, for machines with large hardware pages. */
2399 void *
2400 pool_subpage_alloc(struct pool *pp, int flags)
2401 {
2402 return pool_get(&psppool, flags);
2403 }
2404
2405 void
2406 pool_subpage_free(struct pool *pp, void *v)
2407 {
2408 pool_put(&psppool, v);
2409 }
2410
2411 /* We don't provide a real nointr allocator. Maybe later. */
2412 void *
2413 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2414 {
2415
2416 return (pool_subpage_alloc(pp, flags));
2417 }
2418
2419 void
2420 pool_subpage_free_nointr(struct pool *pp, void *v)
2421 {
2422
2423 pool_subpage_free(pp, v);
2424 }
2425 #endif /* POOL_SUBPAGE */
2426 void *
2427 pool_page_alloc_nointr(struct pool *pp, int flags)
2428 {
2429 bool waitok = (flags & PR_WAITOK) ? true : false;
2430
2431 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2432 }
2433
2434 void
2435 pool_page_free_nointr(struct pool *pp, void *v)
2436 {
2437
2438 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2439 }
2440