subr_pool.c revision 1.128.2.3 1 /* $NetBSD: subr_pool.c,v 1.128.2.3 2007/03/21 20:10:22 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.128.2.3 2007/03/21 20:10:22 ad Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56 #include <sys/debug.h>
57
58 #include <uvm/uvm.h>
59
60 /*
61 * Pool resource management utility.
62 *
63 * Memory is allocated in pages which are split into pieces according to
64 * the pool item size. Each page is kept on one of three lists in the
65 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
66 * for empty, full and partially-full pages respectively. The individual
67 * pool items are on a linked list headed by `ph_itemlist' in each page
68 * header. The memory for building the page list is either taken from
69 * the allocated pages themselves (for small pool items) or taken from
70 * an internal pool of page headers (`phpool').
71 */
72
73 /* List of all pools */
74 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
75
76 /* Private pool for page header structures */
77 #define PHPOOL_MAX 8
78 static struct pool phpool[PHPOOL_MAX];
79 #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
80
81 #ifdef POOL_SUBPAGE
82 /* Pool of subpages for use by normal pools. */
83 static struct pool psppool;
84 #endif
85
86 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
87 SLIST_HEAD_INITIALIZER(pa_deferinitq);
88
89 static void *pool_page_alloc_meta(struct pool *, int);
90 static void pool_page_free_meta(struct pool *, void *);
91
92 /* allocator for pool metadata */
93 static struct pool_allocator pool_allocator_meta = {
94 pool_page_alloc_meta, pool_page_free_meta,
95 .pa_backingmapptr = &kmem_map,
96 };
97
98 /* # of seconds to retain page after last use */
99 int pool_inactive_time = 10;
100
101 /* Next candidate for drainage (see pool_drain()) */
102 static struct pool *drainpp;
103
104 /* This lock protects both pool_head and drainpp. */
105 static kmutex_t pool_head_lock;
106
107 typedef uint8_t pool_item_freelist_t;
108
109 struct pool_item_header {
110 /* Page headers */
111 LIST_ENTRY(pool_item_header)
112 ph_pagelist; /* pool page list */
113 SPLAY_ENTRY(pool_item_header)
114 ph_node; /* Off-page page headers */
115 void * ph_page; /* this page's address */
116 struct timeval ph_time; /* last referenced */
117 union {
118 /* !PR_NOTOUCH */
119 struct {
120 LIST_HEAD(, pool_item)
121 phu_itemlist; /* chunk list for this page */
122 } phu_normal;
123 /* PR_NOTOUCH */
124 struct {
125 uint16_t
126 phu_off; /* start offset in page */
127 pool_item_freelist_t
128 phu_firstfree; /* first free item */
129 /*
130 * XXX it might be better to use
131 * a simple bitmap and ffs(3)
132 */
133 } phu_notouch;
134 } ph_u;
135 uint16_t ph_nmissing; /* # of chunks in use */
136 };
137 #define ph_itemlist ph_u.phu_normal.phu_itemlist
138 #define ph_off ph_u.phu_notouch.phu_off
139 #define ph_firstfree ph_u.phu_notouch.phu_firstfree
140
141 struct pool_item {
142 #ifdef DIAGNOSTIC
143 u_int pi_magic;
144 #endif
145 #define PI_MAGIC 0xdeadbeefU
146 /* Other entries use only this list entry */
147 LIST_ENTRY(pool_item) pi_list;
148 };
149
150 #define POOL_NEEDS_CATCHUP(pp) \
151 ((pp)->pr_nitems < (pp)->pr_minitems)
152
153 /*
154 * Pool cache management.
155 *
156 * Pool caches provide a way for constructed objects to be cached by the
157 * pool subsystem. This can lead to performance improvements by avoiding
158 * needless object construction/destruction; it is deferred until absolutely
159 * necessary.
160 *
161 * Caches are grouped into cache groups. Each cache group references
162 * up to 16 constructed objects. When a cache allocates an object
163 * from the pool, it calls the object's constructor and places it into
164 * a cache group. When a cache group frees an object back to the pool,
165 * it first calls the object's destructor. This allows the object to
166 * persist in constructed form while freed to the cache.
167 *
168 * Multiple caches may exist for each pool. This allows a single
169 * object type to have multiple constructed forms. The pool references
170 * each cache, so that when a pool is drained by the pagedaemon, it can
171 * drain each individual cache as well. Each time a cache is drained,
172 * the most idle cache group is freed to the pool in its entirety.
173 *
174 * Pool caches are layed on top of pools. By layering them, we can avoid
175 * the complexity of cache management for pools which would not benefit
176 * from it.
177 */
178
179 /* The cache group pool. */
180 static struct pool pcgpool;
181
182 static void pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
183 struct pool_cache_grouplist *);
184 static void pcg_grouplist_free(struct pool_cache_grouplist *);
185
186 static int pool_catchup(struct pool *);
187 static void pool_prime_page(struct pool *, void *,
188 struct pool_item_header *);
189 static void pool_update_curpage(struct pool *);
190
191 static int pool_grow(struct pool *, int);
192 static void *pool_allocator_alloc(struct pool *, int);
193 static void pool_allocator_free(struct pool *, void *);
194
195 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
196 void (*)(const char *, ...));
197 static void pool_print1(struct pool *, const char *,
198 void (*)(const char *, ...));
199
200 static int pool_chk_page(struct pool *, const char *,
201 struct pool_item_header *);
202
203 /*
204 * Pool log entry. An array of these is allocated in pool_init().
205 */
206 struct pool_log {
207 const char *pl_file;
208 long pl_line;
209 int pl_action;
210 #define PRLOG_GET 1
211 #define PRLOG_PUT 2
212 void *pl_addr;
213 };
214
215 #ifdef POOL_DIAGNOSTIC
216 /* Number of entries in pool log buffers */
217 #ifndef POOL_LOGSIZE
218 #define POOL_LOGSIZE 10
219 #endif
220
221 int pool_logsize = POOL_LOGSIZE;
222
223 static inline void
224 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
225 {
226 int n = pp->pr_curlogentry;
227 struct pool_log *pl;
228
229 if ((pp->pr_roflags & PR_LOGGING) == 0)
230 return;
231
232 /*
233 * Fill in the current entry. Wrap around and overwrite
234 * the oldest entry if necessary.
235 */
236 pl = &pp->pr_log[n];
237 pl->pl_file = file;
238 pl->pl_line = line;
239 pl->pl_action = action;
240 pl->pl_addr = v;
241 if (++n >= pp->pr_logsize)
242 n = 0;
243 pp->pr_curlogentry = n;
244 }
245
246 static void
247 pr_printlog(struct pool *pp, struct pool_item *pi,
248 void (*pr)(const char *, ...))
249 {
250 int i = pp->pr_logsize;
251 int n = pp->pr_curlogentry;
252
253 if ((pp->pr_roflags & PR_LOGGING) == 0)
254 return;
255
256 /*
257 * Print all entries in this pool's log.
258 */
259 while (i-- > 0) {
260 struct pool_log *pl = &pp->pr_log[n];
261 if (pl->pl_action != 0) {
262 if (pi == NULL || pi == pl->pl_addr) {
263 (*pr)("\tlog entry %d:\n", i);
264 (*pr)("\t\taction = %s, addr = %p\n",
265 pl->pl_action == PRLOG_GET ? "get" : "put",
266 pl->pl_addr);
267 (*pr)("\t\tfile: %s at line %lu\n",
268 pl->pl_file, pl->pl_line);
269 }
270 }
271 if (++n >= pp->pr_logsize)
272 n = 0;
273 }
274 }
275
276 static inline void
277 pr_enter(struct pool *pp, const char *file, long line)
278 {
279
280 if (__predict_false(pp->pr_entered_file != NULL)) {
281 printf("pool %s: reentrancy at file %s line %ld\n",
282 pp->pr_wchan, file, line);
283 printf(" previous entry at file %s line %ld\n",
284 pp->pr_entered_file, pp->pr_entered_line);
285 panic("pr_enter");
286 }
287
288 pp->pr_entered_file = file;
289 pp->pr_entered_line = line;
290 }
291
292 static inline void
293 pr_leave(struct pool *pp)
294 {
295
296 if (__predict_false(pp->pr_entered_file == NULL)) {
297 printf("pool %s not entered?\n", pp->pr_wchan);
298 panic("pr_leave");
299 }
300
301 pp->pr_entered_file = NULL;
302 pp->pr_entered_line = 0;
303 }
304
305 static inline void
306 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
307 {
308
309 if (pp->pr_entered_file != NULL)
310 (*pr)("\n\tcurrently entered from file %s line %ld\n",
311 pp->pr_entered_file, pp->pr_entered_line);
312 }
313 #else
314 #define pr_log(pp, v, action, file, line)
315 #define pr_printlog(pp, pi, pr)
316 #define pr_enter(pp, file, line)
317 #define pr_leave(pp)
318 #define pr_enter_check(pp, pr)
319 #endif /* POOL_DIAGNOSTIC */
320
321 static inline int
322 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
323 const void *v)
324 {
325 const char *cp = v;
326 int idx;
327
328 KASSERT(pp->pr_roflags & PR_NOTOUCH);
329 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
330 KASSERT(idx < pp->pr_itemsperpage);
331 return idx;
332 }
333
334 #define PR_FREELIST_ALIGN(p) \
335 roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
336 #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
337 #define PR_INDEX_USED ((pool_item_freelist_t)-1)
338 #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
339
340 static inline void
341 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
342 void *obj)
343 {
344 int idx = pr_item_notouch_index(pp, ph, obj);
345 pool_item_freelist_t *freelist = PR_FREELIST(ph);
346
347 KASSERT(freelist[idx] == PR_INDEX_USED);
348 freelist[idx] = ph->ph_firstfree;
349 ph->ph_firstfree = idx;
350 }
351
352 static inline void *
353 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
354 {
355 int idx = ph->ph_firstfree;
356 pool_item_freelist_t *freelist = PR_FREELIST(ph);
357
358 KASSERT(freelist[idx] != PR_INDEX_USED);
359 ph->ph_firstfree = freelist[idx];
360 freelist[idx] = PR_INDEX_USED;
361
362 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
363 }
364
365 static inline int
366 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
367 {
368
369 /*
370 * we consider pool_item_header with smaller ph_page bigger.
371 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
372 */
373
374 if (a->ph_page < b->ph_page)
375 return (1);
376 else if (a->ph_page > b->ph_page)
377 return (-1);
378 else
379 return (0);
380 }
381
382 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
383 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
384
385 /*
386 * Return the pool page header based on item address.
387 */
388 static inline struct pool_item_header *
389 pr_find_pagehead(struct pool *pp, void *v)
390 {
391 struct pool_item_header *ph, tmp;
392
393 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
394 tmp.ph_page = (void *)(uintptr_t)v;
395 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
396 if (ph == NULL) {
397 ph = SPLAY_ROOT(&pp->pr_phtree);
398 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
399 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
400 }
401 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
402 }
403 } else {
404 void *page =
405 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
406
407 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
408 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
409 } else {
410 tmp.ph_page = page;
411 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
412 }
413 }
414
415 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
416 ((char *)ph->ph_page <= (char *)v &&
417 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
418 return ph;
419 }
420
421 static void
422 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
423 {
424 struct pool_item_header *ph;
425
426 while ((ph = LIST_FIRST(pq)) != NULL) {
427 LIST_REMOVE(ph, ph_pagelist);
428 pool_allocator_free(pp, ph->ph_page);
429 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
430 pool_put(pp->pr_phpool, ph);
431 }
432 }
433
434 /*
435 * Remove a page from the pool.
436 */
437 static inline void
438 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
439 struct pool_pagelist *pq)
440 {
441
442 KASSERT(mutex_owned(&pp->pr_lock));
443
444 /*
445 * If the page was idle, decrement the idle page count.
446 */
447 if (ph->ph_nmissing == 0) {
448 #ifdef DIAGNOSTIC
449 if (pp->pr_nidle == 0)
450 panic("pr_rmpage: nidle inconsistent");
451 if (pp->pr_nitems < pp->pr_itemsperpage)
452 panic("pr_rmpage: nitems inconsistent");
453 #endif
454 pp->pr_nidle--;
455 }
456
457 pp->pr_nitems -= pp->pr_itemsperpage;
458
459 /*
460 * Unlink the page from the pool and queue it for release.
461 */
462 LIST_REMOVE(ph, ph_pagelist);
463 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
464 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
465 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
466
467 pp->pr_npages--;
468 pp->pr_npagefree++;
469
470 pool_update_curpage(pp);
471 }
472
473 static bool
474 pa_starved_p(struct pool_allocator *pa)
475 {
476
477 if (pa->pa_backingmap != NULL) {
478 return vm_map_starved_p(pa->pa_backingmap);
479 }
480 return false;
481 }
482
483 static int
484 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
485 {
486 struct pool *pp = obj;
487 struct pool_allocator *pa = pp->pr_alloc;
488
489 KASSERT(&pp->pr_reclaimerentry == ce);
490 pool_reclaim(pp);
491 if (!pa_starved_p(pa)) {
492 return CALLBACK_CHAIN_ABORT;
493 }
494 return CALLBACK_CHAIN_CONTINUE;
495 }
496
497 static void
498 pool_reclaim_register(struct pool *pp)
499 {
500 struct vm_map *map = pp->pr_alloc->pa_backingmap;
501 int s;
502
503 if (map == NULL) {
504 return;
505 }
506
507 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
508 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
509 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
510 splx(s);
511 }
512
513 static void
514 pool_reclaim_unregister(struct pool *pp)
515 {
516 struct vm_map *map = pp->pr_alloc->pa_backingmap;
517 int s;
518
519 if (map == NULL) {
520 return;
521 }
522
523 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
524 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
525 &pp->pr_reclaimerentry);
526 splx(s);
527 }
528
529 static void
530 pa_reclaim_register(struct pool_allocator *pa)
531 {
532 struct vm_map *map = *pa->pa_backingmapptr;
533 struct pool *pp;
534
535 KASSERT(pa->pa_backingmap == NULL);
536 if (map == NULL) {
537 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
538 return;
539 }
540 pa->pa_backingmap = map;
541 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
542 pool_reclaim_register(pp);
543 }
544 }
545
546 /*
547 * Initialize all the pools listed in the "pools" link set.
548 */
549 void
550 pool_subsystem_init(void)
551 {
552 struct pool_allocator *pa;
553 __link_set_decl(pools, struct link_pool_init);
554 struct link_pool_init * const *pi;
555
556 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
557
558 __link_set_foreach(pi, pools)
559 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
560 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
561 (*pi)->palloc, (*pi)->ipl);
562
563 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
564 KASSERT(pa->pa_backingmapptr != NULL);
565 KASSERT(*pa->pa_backingmapptr != NULL);
566 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
567 pa_reclaim_register(pa);
568 }
569 }
570
571 /*
572 * Initialize the given pool resource structure.
573 *
574 * We export this routine to allow other kernel parts to declare
575 * static pools that must be initialized before malloc() is available.
576 */
577 void
578 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
579 const char *wchan, struct pool_allocator *palloc, int ipl)
580 {
581 #ifdef DEBUG
582 struct pool *pp1;
583 #endif
584 size_t trysize, phsize;
585 int off, slack;
586
587 KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
588 PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
589
590 #ifdef DEBUG
591 /*
592 * Check that the pool hasn't already been initialised and
593 * added to the list of all pools.
594 */
595 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
596 if (pp == pp1)
597 panic("pool_init: pool %s already initialised",
598 wchan);
599 }
600 #endif
601
602 #ifdef POOL_DIAGNOSTIC
603 /*
604 * Always log if POOL_DIAGNOSTIC is defined.
605 */
606 if (pool_logsize != 0)
607 flags |= PR_LOGGING;
608 #endif
609
610 if (palloc == NULL)
611 palloc = &pool_allocator_kmem;
612 #ifdef POOL_SUBPAGE
613 if (size > palloc->pa_pagesz) {
614 if (palloc == &pool_allocator_kmem)
615 palloc = &pool_allocator_kmem_fullpage;
616 else if (palloc == &pool_allocator_nointr)
617 palloc = &pool_allocator_nointr_fullpage;
618 }
619 #endif /* POOL_SUBPAGE */
620 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
621 if (palloc->pa_pagesz == 0)
622 palloc->pa_pagesz = PAGE_SIZE;
623
624 TAILQ_INIT(&palloc->pa_list);
625
626 mutex_init(&palloc->pa_lock, MUTEX_DRIVER, IPL_VM);
627 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
628 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
629
630 if (palloc->pa_backingmapptr != NULL) {
631 pa_reclaim_register(palloc);
632 }
633 palloc->pa_flags |= PA_INITIALIZED;
634 }
635
636 if (align == 0)
637 align = ALIGN(1);
638
639 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
640 size = sizeof(struct pool_item);
641
642 size = roundup(size, align);
643 #ifdef DIAGNOSTIC
644 if (size > palloc->pa_pagesz)
645 panic("pool_init: pool item size (%zu) too large", size);
646 #endif
647
648 /*
649 * Initialize the pool structure.
650 */
651 LIST_INIT(&pp->pr_emptypages);
652 LIST_INIT(&pp->pr_fullpages);
653 LIST_INIT(&pp->pr_partpages);
654 LIST_INIT(&pp->pr_cachelist);
655 pp->pr_curpage = NULL;
656 pp->pr_npages = 0;
657 pp->pr_minitems = 0;
658 pp->pr_minpages = 0;
659 pp->pr_maxpages = UINT_MAX;
660 pp->pr_roflags = flags;
661 pp->pr_flags = 0;
662 pp->pr_size = size;
663 pp->pr_align = align;
664 pp->pr_wchan = wchan;
665 pp->pr_alloc = palloc;
666 pp->pr_nitems = 0;
667 pp->pr_nout = 0;
668 pp->pr_hardlimit = UINT_MAX;
669 pp->pr_hardlimit_warning = NULL;
670 pp->pr_hardlimit_ratecap.tv_sec = 0;
671 pp->pr_hardlimit_ratecap.tv_usec = 0;
672 pp->pr_hardlimit_warning_last.tv_sec = 0;
673 pp->pr_hardlimit_warning_last.tv_usec = 0;
674 pp->pr_drain_hook = NULL;
675 pp->pr_drain_hook_arg = NULL;
676 pp->pr_freecheck = NULL;
677
678 /*
679 * Decide whether to put the page header off page to avoid
680 * wasting too large a part of the page or too big item.
681 * Off-page page headers go on a hash table, so we can match
682 * a returned item with its header based on the page address.
683 * We use 1/16 of the page size and about 8 times of the item
684 * size as the threshold (XXX: tune)
685 *
686 * However, we'll put the header into the page if we can put
687 * it without wasting any items.
688 *
689 * Silently enforce `0 <= ioff < align'.
690 */
691 pp->pr_itemoffset = ioff %= align;
692 /* See the comment below about reserved bytes. */
693 trysize = palloc->pa_pagesz - ((align - ioff) % align);
694 phsize = ALIGN(sizeof(struct pool_item_header));
695 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
696 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
697 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
698 /* Use the end of the page for the page header */
699 pp->pr_roflags |= PR_PHINPAGE;
700 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
701 } else {
702 /* The page header will be taken from our page header pool */
703 pp->pr_phoffset = 0;
704 off = palloc->pa_pagesz;
705 SPLAY_INIT(&pp->pr_phtree);
706 }
707
708 /*
709 * Alignment is to take place at `ioff' within the item. This means
710 * we must reserve up to `align - 1' bytes on the page to allow
711 * appropriate positioning of each item.
712 */
713 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
714 KASSERT(pp->pr_itemsperpage != 0);
715 if ((pp->pr_roflags & PR_NOTOUCH)) {
716 int idx;
717
718 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
719 idx++) {
720 /* nothing */
721 }
722 if (idx >= PHPOOL_MAX) {
723 /*
724 * if you see this panic, consider to tweak
725 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
726 */
727 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
728 pp->pr_wchan, pp->pr_itemsperpage);
729 }
730 pp->pr_phpool = &phpool[idx];
731 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
732 pp->pr_phpool = &phpool[0];
733 }
734 #if defined(DIAGNOSTIC)
735 else {
736 pp->pr_phpool = NULL;
737 }
738 #endif
739
740 /*
741 * Use the slack between the chunks and the page header
742 * for "cache coloring".
743 */
744 slack = off - pp->pr_itemsperpage * pp->pr_size;
745 pp->pr_maxcolor = (slack / align) * align;
746 pp->pr_curcolor = 0;
747
748 pp->pr_nget = 0;
749 pp->pr_nfail = 0;
750 pp->pr_nput = 0;
751 pp->pr_npagealloc = 0;
752 pp->pr_npagefree = 0;
753 pp->pr_hiwat = 0;
754 pp->pr_nidle = 0;
755
756 #ifdef POOL_DIAGNOSTIC
757 if (flags & PR_LOGGING) {
758 if (kmem_map == NULL ||
759 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
760 M_TEMP, M_NOWAIT)) == NULL)
761 pp->pr_roflags &= ~PR_LOGGING;
762 pp->pr_curlogentry = 0;
763 pp->pr_logsize = pool_logsize;
764 }
765 #endif
766
767 pp->pr_entered_file = NULL;
768 pp->pr_entered_line = 0;
769
770 mutex_init(&pp->pr_lock, MUTEX_DRIVER, ipl);
771 cv_init(&pp->pr_cv, wchan);
772 pp->pr_ipl = ipl;
773
774 if (strcmp(wchan, "kmem-52") == 0) {
775 printf("kmem-52 initted, mutex @ %p\n", &pp->pr_lock);
776 printf("=> %x %x %x %x\n",
777 ((uint32_t *)&pp->pr_lock)[0],
778 ((uint32_t *)&pp->pr_lock)[1],
779 ((uint32_t *)&pp->pr_lock)[2],
780 ((uint32_t *)&pp->pr_lock)[3]);
781 }
782
783 /*
784 * Initialize private page header pool and cache magazine pool if we
785 * haven't done so yet.
786 * XXX LOCKING.
787 */
788 if (phpool[0].pr_size == 0) {
789 int idx;
790 for (idx = 0; idx < PHPOOL_MAX; idx++) {
791 static char phpool_names[PHPOOL_MAX][6+1+6+1];
792 int nelem;
793 size_t sz;
794
795 nelem = PHPOOL_FREELIST_NELEM(idx);
796 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
797 "phpool-%d", nelem);
798 sz = sizeof(struct pool_item_header);
799 if (nelem) {
800 sz = PR_FREELIST_ALIGN(sz)
801 + nelem * sizeof(pool_item_freelist_t);
802 }
803 pool_init(&phpool[idx], sz, 0, 0, 0,
804 phpool_names[idx], &pool_allocator_meta, IPL_VM);
805 }
806 #ifdef POOL_SUBPAGE
807 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
808 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
809 #endif
810 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
811 0, "pcgpool", &pool_allocator_meta, IPL_VM);
812 }
813
814 if (__predict_true(!cold)) {
815 /* Insert into the list of all pools. */
816 mutex_enter(&pool_head_lock);
817 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
818 mutex_exit(&pool_head_lock);
819
820 /* Insert this into the list of pools using this allocator. */
821 mutex_enter(&palloc->pa_lock);
822 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
823 mutex_exit(&palloc->pa_lock);
824 } else {
825 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
826 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
827 }
828
829 pool_reclaim_register(pp);
830 }
831
832 /*
833 * De-commision a pool resource.
834 */
835 void
836 pool_destroy(struct pool *pp)
837 {
838 struct pool_pagelist pq;
839 struct pool_item_header *ph;
840
841 /* Remove from global pool list */
842 mutex_enter(&pool_head_lock);
843 LIST_REMOVE(pp, pr_poollist);
844 if (drainpp == pp)
845 drainpp = NULL;
846 mutex_exit(&pool_head_lock);
847
848 /* Remove this pool from its allocator's list of pools. */
849 pool_reclaim_unregister(pp);
850 mutex_enter(&pp->pr_alloc->pa_lock);
851 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
852 mutex_exit(&pp->pr_alloc->pa_lock);
853
854 mutex_enter(&pp->pr_lock);
855
856 KASSERT(LIST_EMPTY(&pp->pr_cachelist));
857
858 #ifdef DIAGNOSTIC
859 if (pp->pr_nout != 0) {
860 pr_printlog(pp, NULL, printf);
861 panic("pool_destroy: pool busy: still out: %u",
862 pp->pr_nout);
863 }
864 #endif
865
866 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
867 KASSERT(LIST_EMPTY(&pp->pr_partpages));
868
869 /* Remove all pages */
870 LIST_INIT(&pq);
871 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
872 pr_rmpage(pp, ph, &pq);
873
874 mutex_exit(&pp->pr_lock);
875
876 pr_pagelist_free(pp, &pq);
877
878 #ifdef POOL_DIAGNOSTIC
879 if ((pp->pr_roflags & PR_LOGGING) != 0)
880 free(pp->pr_log, M_TEMP);
881 #endif
882
883 cv_destroy(&pp->pr_cv);
884 mutex_destroy(&pp->pr_lock);
885 }
886
887 void
888 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
889 {
890
891 /* XXX no locking -- must be used just after pool_init() */
892 #ifdef DIAGNOSTIC
893 if (pp->pr_drain_hook != NULL)
894 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
895 #endif
896 pp->pr_drain_hook = fn;
897 pp->pr_drain_hook_arg = arg;
898 }
899
900 static struct pool_item_header *
901 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
902 {
903 struct pool_item_header *ph;
904
905 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
906 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
907 else
908 ph = pool_get(pp->pr_phpool, flags);
909
910 return (ph);
911 }
912
913 /*
914 * Grab an item from the pool; must be called at appropriate spl level
915 */
916 void *
917 #ifdef POOL_DIAGNOSTIC
918 _pool_get(struct pool *pp, int flags, const char *file, long line)
919 #else
920 pool_get(struct pool *pp, int flags)
921 #endif
922 {
923 struct pool_item *pi;
924 struct pool_item_header *ph;
925 void *v;
926
927 #ifdef DIAGNOSTIC
928 if (__predict_false(pp->pr_itemsperpage == 0))
929 panic("pool_get: pool %p: pr_itemsperpage is zero, "
930 "pool not initialized?", pp);
931 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
932 (flags & PR_WAITOK) != 0))
933 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
934
935 #endif /* DIAGNOSTIC */
936 #ifdef LOCKDEBUG
937 if (flags & PR_WAITOK)
938 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
939 #endif
940
941 mutex_enter(&pp->pr_lock);
942 pr_enter(pp, file, line);
943
944 startover:
945 /*
946 * Check to see if we've reached the hard limit. If we have,
947 * and we can wait, then wait until an item has been returned to
948 * the pool.
949 */
950 #ifdef DIAGNOSTIC
951 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
952 pr_leave(pp);
953 mutex_exit(&pp->pr_lock);
954 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
955 }
956 #endif
957 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
958 if (pp->pr_drain_hook != NULL) {
959 /*
960 * Since the drain hook is going to free things
961 * back to the pool, unlock, call the hook, re-lock,
962 * and check the hardlimit condition again.
963 */
964 pr_leave(pp);
965 mutex_exit(&pp->pr_lock);
966 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
967 mutex_enter(&pp->pr_lock);
968 pr_enter(pp, file, line);
969 if (pp->pr_nout < pp->pr_hardlimit)
970 goto startover;
971 }
972
973 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
974 /*
975 * XXX: A warning isn't logged in this case. Should
976 * it be?
977 */
978 pp->pr_flags |= PR_WANTED;
979 pr_leave(pp);
980 cv_wait(&pp->pr_cv, &pp->pr_lock);
981 pr_enter(pp, file, line);
982 goto startover;
983 }
984
985 /*
986 * Log a message that the hard limit has been hit.
987 */
988 if (pp->pr_hardlimit_warning != NULL &&
989 ratecheck(&pp->pr_hardlimit_warning_last,
990 &pp->pr_hardlimit_ratecap))
991 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
992
993 pp->pr_nfail++;
994
995 pr_leave(pp);
996 mutex_exit(&pp->pr_lock);
997 return (NULL);
998 }
999
1000 /*
1001 * The convention we use is that if `curpage' is not NULL, then
1002 * it points at a non-empty bucket. In particular, `curpage'
1003 * never points at a page header which has PR_PHINPAGE set and
1004 * has no items in its bucket.
1005 */
1006 if ((ph = pp->pr_curpage) == NULL) {
1007 int error;
1008
1009 #ifdef DIAGNOSTIC
1010 if (pp->pr_nitems != 0) {
1011 mutex_exit(&pp->pr_lock);
1012 printf("pool_get: %s: curpage NULL, nitems %u\n",
1013 pp->pr_wchan, pp->pr_nitems);
1014 panic("pool_get: nitems inconsistent");
1015 }
1016 #endif
1017
1018 /*
1019 * Call the back-end page allocator for more memory.
1020 * Release the pool lock, as the back-end page allocator
1021 * may block.
1022 */
1023 pr_leave(pp);
1024 error = pool_grow(pp, flags);
1025 pr_enter(pp, file, line);
1026 if (error != 0) {
1027 /*
1028 * We were unable to allocate a page or item
1029 * header, but we released the lock during
1030 * allocation, so perhaps items were freed
1031 * back to the pool. Check for this case.
1032 */
1033 if (pp->pr_curpage != NULL)
1034 goto startover;
1035
1036 pp->pr_nfail++;
1037 pr_leave(pp);
1038 mutex_exit(&pp->pr_lock);
1039 return (NULL);
1040 }
1041
1042 /* Start the allocation process over. */
1043 goto startover;
1044 }
1045 if (pp->pr_roflags & PR_NOTOUCH) {
1046 #ifdef DIAGNOSTIC
1047 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1048 pr_leave(pp);
1049 mutex_exit(&pp->pr_lock);
1050 panic("pool_get: %s: page empty", pp->pr_wchan);
1051 }
1052 #endif
1053 v = pr_item_notouch_get(pp, ph);
1054 #ifdef POOL_DIAGNOSTIC
1055 pr_log(pp, v, PRLOG_GET, file, line);
1056 #endif
1057 } else {
1058 v = pi = LIST_FIRST(&ph->ph_itemlist);
1059 if (__predict_false(v == NULL)) {
1060 pr_leave(pp);
1061 mutex_exit(&pp->pr_lock);
1062 panic("pool_get: %s: page empty", pp->pr_wchan);
1063 }
1064 #ifdef DIAGNOSTIC
1065 if (__predict_false(pp->pr_nitems == 0)) {
1066 pr_leave(pp);
1067 mutex_exit(&pp->pr_lock);
1068 printf("pool_get: %s: items on itemlist, nitems %u\n",
1069 pp->pr_wchan, pp->pr_nitems);
1070 panic("pool_get: nitems inconsistent");
1071 }
1072 #endif
1073
1074 #ifdef POOL_DIAGNOSTIC
1075 pr_log(pp, v, PRLOG_GET, file, line);
1076 #endif
1077
1078 #ifdef DIAGNOSTIC
1079 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1080 pr_printlog(pp, pi, printf);
1081 panic("pool_get(%s): free list modified: "
1082 "magic=%x; page %p; item addr %p\n",
1083 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1084 }
1085 #endif
1086
1087 /*
1088 * Remove from item list.
1089 */
1090 LIST_REMOVE(pi, pi_list);
1091 }
1092 pp->pr_nitems--;
1093 pp->pr_nout++;
1094 if (ph->ph_nmissing == 0) {
1095 #ifdef DIAGNOSTIC
1096 if (__predict_false(pp->pr_nidle == 0))
1097 panic("pool_get: nidle inconsistent");
1098 #endif
1099 pp->pr_nidle--;
1100
1101 /*
1102 * This page was previously empty. Move it to the list of
1103 * partially-full pages. This page is already curpage.
1104 */
1105 LIST_REMOVE(ph, ph_pagelist);
1106 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1107 }
1108 ph->ph_nmissing++;
1109 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1110 #ifdef DIAGNOSTIC
1111 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1112 !LIST_EMPTY(&ph->ph_itemlist))) {
1113 pr_leave(pp);
1114 mutex_exit(&pp->pr_lock);
1115 panic("pool_get: %s: nmissing inconsistent",
1116 pp->pr_wchan);
1117 }
1118 #endif
1119 /*
1120 * This page is now full. Move it to the full list
1121 * and select a new current page.
1122 */
1123 LIST_REMOVE(ph, ph_pagelist);
1124 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1125 pool_update_curpage(pp);
1126 }
1127
1128 pp->pr_nget++;
1129 pr_leave(pp);
1130
1131 /*
1132 * If we have a low water mark and we are now below that low
1133 * water mark, add more items to the pool.
1134 */
1135 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1136 /*
1137 * XXX: Should we log a warning? Should we set up a timeout
1138 * to try again in a second or so? The latter could break
1139 * a caller's assumptions about interrupt protection, etc.
1140 */
1141 }
1142
1143 mutex_exit(&pp->pr_lock);
1144 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1145 FREECHECK_OUT(&pp->pr_freecheck, v);
1146 return (v);
1147 }
1148
1149 /*
1150 * Internal version of pool_put(). Pool is already locked/entered.
1151 */
1152 static void
1153 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1154 {
1155 struct pool_item *pi = v;
1156 struct pool_item_header *ph;
1157
1158 KASSERT(mutex_owned(&pp->pr_lock));
1159 FREECHECK_IN(&pp->pr_freecheck, v);
1160
1161 #ifdef DIAGNOSTIC
1162 if (__predict_false(pp->pr_nout == 0)) {
1163 printf("pool %s: putting with none out\n",
1164 pp->pr_wchan);
1165 panic("pool_put");
1166 }
1167 #endif
1168
1169 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1170 pr_printlog(pp, NULL, printf);
1171 panic("pool_put: %s: page header missing", pp->pr_wchan);
1172 }
1173
1174 /*
1175 * Return to item list.
1176 */
1177 if (pp->pr_roflags & PR_NOTOUCH) {
1178 pr_item_notouch_put(pp, ph, v);
1179 } else {
1180 #ifdef DIAGNOSTIC
1181 pi->pi_magic = PI_MAGIC;
1182 #endif
1183 #ifdef DEBUG
1184 {
1185 int i, *ip = v;
1186
1187 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1188 *ip++ = PI_MAGIC;
1189 }
1190 }
1191 #endif
1192
1193 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1194 }
1195 KDASSERT(ph->ph_nmissing != 0);
1196 ph->ph_nmissing--;
1197 pp->pr_nput++;
1198 pp->pr_nitems++;
1199 pp->pr_nout--;
1200
1201 /* Cancel "pool empty" condition if it exists */
1202 if (pp->pr_curpage == NULL)
1203 pp->pr_curpage = ph;
1204
1205 if (pp->pr_flags & PR_WANTED) {
1206 pp->pr_flags &= ~PR_WANTED;
1207 if (ph->ph_nmissing == 0)
1208 pp->pr_nidle++;
1209 wakeup((void *)pp);
1210 return;
1211 }
1212
1213 /*
1214 * If this page is now empty, do one of two things:
1215 *
1216 * (1) If we have more pages than the page high water mark,
1217 * free the page back to the system. ONLY CONSIDER
1218 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1219 * CLAIM.
1220 *
1221 * (2) Otherwise, move the page to the empty page list.
1222 *
1223 * Either way, select a new current page (so we use a partially-full
1224 * page if one is available).
1225 */
1226 if (ph->ph_nmissing == 0) {
1227 pp->pr_nidle++;
1228 if (pp->pr_npages > pp->pr_minpages &&
1229 (pp->pr_npages > pp->pr_maxpages ||
1230 pa_starved_p(pp->pr_alloc))) {
1231 pr_rmpage(pp, ph, pq);
1232 } else {
1233 LIST_REMOVE(ph, ph_pagelist);
1234 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1235
1236 /*
1237 * Update the timestamp on the page. A page must
1238 * be idle for some period of time before it can
1239 * be reclaimed by the pagedaemon. This minimizes
1240 * ping-pong'ing for memory.
1241 */
1242 getmicrotime(&ph->ph_time);
1243 }
1244 pool_update_curpage(pp);
1245 }
1246
1247 /*
1248 * If the page was previously completely full, move it to the
1249 * partially-full list and make it the current page. The next
1250 * allocation will get the item from this page, instead of
1251 * further fragmenting the pool.
1252 */
1253 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1254 LIST_REMOVE(ph, ph_pagelist);
1255 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1256 pp->pr_curpage = ph;
1257 }
1258 }
1259
1260 /*
1261 * Return resource to the pool; must be called at appropriate spl level
1262 */
1263 #ifdef POOL_DIAGNOSTIC
1264 void
1265 _pool_put(struct pool *pp, void *v, const char *file, long line)
1266 {
1267 struct pool_pagelist pq;
1268
1269 LIST_INIT(&pq);
1270
1271 mutex_enter(&pp->pr_lock);
1272 pr_enter(pp, file, line);
1273
1274 pr_log(pp, v, PRLOG_PUT, file, line);
1275
1276 pool_do_put(pp, v, &pq);
1277
1278 pr_leave(pp);
1279 mutex_exit(&pp->pr_lock);
1280
1281 pr_pagelist_free(pp, &pq);
1282 }
1283 #undef pool_put
1284 #endif /* POOL_DIAGNOSTIC */
1285
1286 void
1287 pool_put(struct pool *pp, void *v)
1288 {
1289 struct pool_pagelist pq;
1290
1291 LIST_INIT(&pq);
1292
1293 mutex_enter(&pp->pr_lock);
1294 pool_do_put(pp, v, &pq);
1295 mutex_exit(&pp->pr_lock);
1296
1297 pr_pagelist_free(pp, &pq);
1298 }
1299
1300 #ifdef POOL_DIAGNOSTIC
1301 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1302 #endif
1303
1304 /*
1305 * pool_grow: grow a pool by a page.
1306 *
1307 * => called with pool locked.
1308 * => unlock and relock the pool.
1309 * => return with pool locked.
1310 */
1311
1312 static int
1313 pool_grow(struct pool *pp, int flags)
1314 {
1315 struct pool_item_header *ph = NULL;
1316 char *cp;
1317
1318 mutex_exit(&pp->pr_lock);
1319 cp = pool_allocator_alloc(pp, flags);
1320 if (__predict_true(cp != NULL)) {
1321 ph = pool_alloc_item_header(pp, cp, flags);
1322 }
1323 if (__predict_false(cp == NULL || ph == NULL)) {
1324 if (cp != NULL) {
1325 pool_allocator_free(pp, cp);
1326 }
1327 mutex_enter(&pp->pr_lock);
1328 return ENOMEM;
1329 }
1330
1331 mutex_enter(&pp->pr_lock);
1332 pool_prime_page(pp, cp, ph);
1333 pp->pr_npagealloc++;
1334 return 0;
1335 }
1336
1337 /*
1338 * Add N items to the pool.
1339 */
1340 int
1341 pool_prime(struct pool *pp, int n)
1342 {
1343 int newpages;
1344 int error = 0;
1345
1346 mutex_enter(&pp->pr_lock);
1347
1348 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1349
1350 while (newpages-- > 0) {
1351 error = pool_grow(pp, PR_NOWAIT);
1352 if (error) {
1353 break;
1354 }
1355 pp->pr_minpages++;
1356 }
1357
1358 if (pp->pr_minpages >= pp->pr_maxpages)
1359 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1360
1361 mutex_exit(&pp->pr_lock);
1362 return error;
1363 }
1364
1365 /*
1366 * Add a page worth of items to the pool.
1367 *
1368 * Note, we must be called with the pool descriptor LOCKED.
1369 */
1370 static void
1371 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1372 {
1373 struct pool_item *pi;
1374 void *cp = storage;
1375 const unsigned int align = pp->pr_align;
1376 const unsigned int ioff = pp->pr_itemoffset;
1377 int n;
1378
1379 KASSERT(mutex_owned(&pp->pr_lock));
1380
1381 #ifdef DIAGNOSTIC
1382 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1383 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1384 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1385 #endif
1386
1387 /*
1388 * Insert page header.
1389 */
1390 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1391 LIST_INIT(&ph->ph_itemlist);
1392 ph->ph_page = storage;
1393 ph->ph_nmissing = 0;
1394 getmicrotime(&ph->ph_time);
1395 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1396 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1397
1398 pp->pr_nidle++;
1399
1400 /*
1401 * Color this page.
1402 */
1403 cp = (char *)cp + pp->pr_curcolor;
1404 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1405 pp->pr_curcolor = 0;
1406
1407 /*
1408 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1409 */
1410 if (ioff != 0)
1411 cp = (char *)cp + align - ioff;
1412
1413 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1414
1415 /*
1416 * Insert remaining chunks on the bucket list.
1417 */
1418 n = pp->pr_itemsperpage;
1419 pp->pr_nitems += n;
1420
1421 if (pp->pr_roflags & PR_NOTOUCH) {
1422 pool_item_freelist_t *freelist = PR_FREELIST(ph);
1423 int i;
1424
1425 ph->ph_off = (char *)cp - (char *)storage;
1426 ph->ph_firstfree = 0;
1427 for (i = 0; i < n - 1; i++)
1428 freelist[i] = i + 1;
1429 freelist[n - 1] = PR_INDEX_EOL;
1430 } else {
1431 while (n--) {
1432 pi = (struct pool_item *)cp;
1433
1434 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1435
1436 /* Insert on page list */
1437 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1438 #ifdef DIAGNOSTIC
1439 pi->pi_magic = PI_MAGIC;
1440 #endif
1441 cp = (char *)cp + pp->pr_size;
1442
1443 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1444 }
1445 }
1446
1447 /*
1448 * If the pool was depleted, point at the new page.
1449 */
1450 if (pp->pr_curpage == NULL)
1451 pp->pr_curpage = ph;
1452
1453 if (++pp->pr_npages > pp->pr_hiwat)
1454 pp->pr_hiwat = pp->pr_npages;
1455 }
1456
1457 /*
1458 * Used by pool_get() when nitems drops below the low water mark. This
1459 * is used to catch up pr_nitems with the low water mark.
1460 *
1461 * Note 1, we never wait for memory here, we let the caller decide what to do.
1462 *
1463 * Note 2, we must be called with the pool already locked, and we return
1464 * with it locked.
1465 */
1466 static int
1467 pool_catchup(struct pool *pp)
1468 {
1469 int error = 0;
1470
1471 while (POOL_NEEDS_CATCHUP(pp)) {
1472 error = pool_grow(pp, PR_NOWAIT);
1473 if (error) {
1474 break;
1475 }
1476 }
1477 return error;
1478 }
1479
1480 static void
1481 pool_update_curpage(struct pool *pp)
1482 {
1483
1484 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1485 if (pp->pr_curpage == NULL) {
1486 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1487 }
1488 }
1489
1490 void
1491 pool_setlowat(struct pool *pp, int n)
1492 {
1493
1494 mutex_enter(&pp->pr_lock);
1495
1496 pp->pr_minitems = n;
1497 pp->pr_minpages = (n == 0)
1498 ? 0
1499 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1500
1501 /* Make sure we're caught up with the newly-set low water mark. */
1502 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1503 /*
1504 * XXX: Should we log a warning? Should we set up a timeout
1505 * to try again in a second or so? The latter could break
1506 * a caller's assumptions about interrupt protection, etc.
1507 */
1508 }
1509
1510 mutex_exit(&pp->pr_lock);
1511 }
1512
1513 void
1514 pool_sethiwat(struct pool *pp, int n)
1515 {
1516
1517 mutex_enter(&pp->pr_lock);
1518
1519 pp->pr_maxpages = (n == 0)
1520 ? 0
1521 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1522
1523 mutex_exit(&pp->pr_lock);
1524 }
1525
1526 void
1527 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1528 {
1529
1530 mutex_enter(&pp->pr_lock);
1531
1532 pp->pr_hardlimit = n;
1533 pp->pr_hardlimit_warning = warnmess;
1534 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1535 pp->pr_hardlimit_warning_last.tv_sec = 0;
1536 pp->pr_hardlimit_warning_last.tv_usec = 0;
1537
1538 /*
1539 * In-line version of pool_sethiwat(), because we don't want to
1540 * release the lock.
1541 */
1542 pp->pr_maxpages = (n == 0)
1543 ? 0
1544 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1545
1546 mutex_exit(&pp->pr_lock);
1547 }
1548
1549 /*
1550 * Release all complete pages that have not been used recently.
1551 */
1552 int
1553 #ifdef POOL_DIAGNOSTIC
1554 _pool_reclaim(struct pool *pp, const char *file, long line)
1555 #else
1556 pool_reclaim(struct pool *pp)
1557 #endif
1558 {
1559 struct pool_item_header *ph, *phnext;
1560 struct pool_cache *pc;
1561 struct pool_pagelist pq;
1562 struct pool_cache_grouplist pcgl;
1563 struct timeval curtime, diff;
1564
1565 if (pp->pr_drain_hook != NULL) {
1566 /*
1567 * The drain hook must be called with the pool unlocked.
1568 */
1569 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1570 }
1571
1572 if (mutex_tryenter(&pp->pr_lock) == 0)
1573 return (0);
1574 pr_enter(pp, file, line);
1575
1576 LIST_INIT(&pq);
1577 LIST_INIT(&pcgl);
1578
1579 /*
1580 * Reclaim items from the pool's caches.
1581 */
1582 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1583 pool_cache_reclaim(pc, &pq, &pcgl);
1584
1585 getmicrotime(&curtime);
1586
1587 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1588 phnext = LIST_NEXT(ph, ph_pagelist);
1589
1590 /* Check our minimum page claim */
1591 if (pp->pr_npages <= pp->pr_minpages)
1592 break;
1593
1594 KASSERT(ph->ph_nmissing == 0);
1595 timersub(&curtime, &ph->ph_time, &diff);
1596 if (diff.tv_sec < pool_inactive_time
1597 && !pa_starved_p(pp->pr_alloc))
1598 continue;
1599
1600 /*
1601 * If freeing this page would put us below
1602 * the low water mark, stop now.
1603 */
1604 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1605 pp->pr_minitems)
1606 break;
1607
1608 pr_rmpage(pp, ph, &pq);
1609 }
1610
1611 pr_leave(pp);
1612 mutex_exit(&pp->pr_lock);
1613 if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
1614 return 0;
1615
1616 pr_pagelist_free(pp, &pq);
1617 pcg_grouplist_free(&pcgl);
1618 return (1);
1619 }
1620
1621 /*
1622 * Drain pools, one at a time.
1623 *
1624 * Note, we must never be called from an interrupt context.
1625 */
1626 void
1627 pool_drain(void *arg)
1628 {
1629 struct pool *pp;
1630 int s;
1631
1632 pp = NULL;
1633 s = splvm(); /* XXX why? */
1634 mutex_enter(&pool_head_lock);
1635 if (drainpp == NULL) {
1636 drainpp = LIST_FIRST(&pool_head);
1637 }
1638 if (drainpp) {
1639 pp = drainpp;
1640 drainpp = LIST_NEXT(pp, pr_poollist);
1641 }
1642 mutex_exit(&pool_head_lock);
1643 if (pp)
1644 pool_reclaim(pp);
1645 splx(s);
1646 }
1647
1648 /*
1649 * Diagnostic helpers.
1650 */
1651 void
1652 pool_print(struct pool *pp, const char *modif)
1653 {
1654
1655 if (mutex_tryenter(&pp->pr_lock) == 0) {
1656 printf("pool %s is locked; try again later\n",
1657 pp->pr_wchan);
1658 return;
1659 }
1660 pool_print1(pp, modif, printf);
1661 mutex_exit(&pp->pr_lock);
1662 }
1663
1664 void
1665 pool_printall(const char *modif, void (*pr)(const char *, ...))
1666 {
1667 struct pool *pp;
1668
1669 if (mutex_tryenter(&pool_head_lock) == 0) {
1670 (*pr)("WARNING: pool_head_slock is locked\n");
1671 } else {
1672 mutex_exit(&pool_head_lock);
1673 }
1674
1675 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1676 pool_printit(pp, modif, pr);
1677 }
1678 }
1679
1680 void
1681 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1682 {
1683
1684 if (pp == NULL) {
1685 (*pr)("Must specify a pool to print.\n");
1686 return;
1687 }
1688
1689 /*
1690 * Called from DDB; interrupts should be blocked, and all
1691 * other processors should be paused. We can skip locking
1692 * the pool in this case.
1693 *
1694 * We do a mutex_tryenter() just to print the lock
1695 * status, however.
1696 */
1697
1698 if (mutex_tryenter(&pp->pr_lock) == 0)
1699 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1700 else
1701 mutex_exit(&pp->pr_lock);
1702
1703 pool_print1(pp, modif, pr);
1704 }
1705
1706 static void
1707 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1708 void (*pr)(const char *, ...))
1709 {
1710 struct pool_item_header *ph;
1711 #ifdef DIAGNOSTIC
1712 struct pool_item *pi;
1713 #endif
1714
1715 LIST_FOREACH(ph, pl, ph_pagelist) {
1716 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1717 ph->ph_page, ph->ph_nmissing,
1718 (u_long)ph->ph_time.tv_sec,
1719 (u_long)ph->ph_time.tv_usec);
1720 #ifdef DIAGNOSTIC
1721 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1722 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1723 if (pi->pi_magic != PI_MAGIC) {
1724 (*pr)("\t\t\titem %p, magic 0x%x\n",
1725 pi, pi->pi_magic);
1726 }
1727 }
1728 }
1729 #endif
1730 }
1731 }
1732
1733 static void
1734 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1735 {
1736 struct pool_item_header *ph;
1737 struct pool_cache *pc;
1738 struct pool_cache_group *pcg;
1739 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1740 char c;
1741
1742 while ((c = *modif++) != '\0') {
1743 if (c == 'l')
1744 print_log = 1;
1745 if (c == 'p')
1746 print_pagelist = 1;
1747 if (c == 'c')
1748 print_cache = 1;
1749 }
1750
1751 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1752 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1753 pp->pr_roflags);
1754 (*pr)("\talloc %p\n", pp->pr_alloc);
1755 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1756 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1757 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1758 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1759
1760 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1761 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1762 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1763 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1764
1765 if (print_pagelist == 0)
1766 goto skip_pagelist;
1767
1768 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1769 (*pr)("\n\tempty page list:\n");
1770 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1771 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1772 (*pr)("\n\tfull page list:\n");
1773 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1774 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1775 (*pr)("\n\tpartial-page list:\n");
1776 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1777
1778 if (pp->pr_curpage == NULL)
1779 (*pr)("\tno current page\n");
1780 else
1781 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1782
1783 skip_pagelist:
1784 if (print_log == 0)
1785 goto skip_log;
1786
1787 (*pr)("\n");
1788 if ((pp->pr_roflags & PR_LOGGING) == 0)
1789 (*pr)("\tno log\n");
1790 else {
1791 pr_printlog(pp, NULL, pr);
1792 }
1793
1794 skip_log:
1795 if (print_cache == 0)
1796 goto skip_cache;
1797
1798 #define PR_GROUPLIST(pcg) \
1799 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1800 for (i = 0; i < PCG_NOBJECTS; i++) { \
1801 if (pcg->pcg_objects[i].pcgo_pa != \
1802 POOL_PADDR_INVALID) { \
1803 (*pr)("\t\t\t%p, 0x%llx\n", \
1804 pcg->pcg_objects[i].pcgo_va, \
1805 (unsigned long long) \
1806 pcg->pcg_objects[i].pcgo_pa); \
1807 } else { \
1808 (*pr)("\t\t\t%p\n", \
1809 pcg->pcg_objects[i].pcgo_va); \
1810 } \
1811 }
1812
1813 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1814 (*pr)("\tcache %p\n", pc);
1815 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1816 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1817 (*pr)("\t full groups:\n");
1818 LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
1819 PR_GROUPLIST(pcg);
1820 }
1821 (*pr)("\t partial groups:\n");
1822 LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
1823 PR_GROUPLIST(pcg);
1824 }
1825 (*pr)("\t empty groups:\n");
1826 LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
1827 PR_GROUPLIST(pcg);
1828 }
1829 }
1830 #undef PR_GROUPLIST
1831
1832 skip_cache:
1833 pr_enter_check(pp, pr);
1834 }
1835
1836 static int
1837 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1838 {
1839 struct pool_item *pi;
1840 void *page;
1841 int n;
1842
1843 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1844 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1845 if (page != ph->ph_page &&
1846 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1847 if (label != NULL)
1848 printf("%s: ", label);
1849 printf("pool(%p:%s): page inconsistency: page %p;"
1850 " at page head addr %p (p %p)\n", pp,
1851 pp->pr_wchan, ph->ph_page,
1852 ph, page);
1853 return 1;
1854 }
1855 }
1856
1857 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1858 return 0;
1859
1860 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1861 pi != NULL;
1862 pi = LIST_NEXT(pi,pi_list), n++) {
1863
1864 #ifdef DIAGNOSTIC
1865 if (pi->pi_magic != PI_MAGIC) {
1866 if (label != NULL)
1867 printf("%s: ", label);
1868 printf("pool(%s): free list modified: magic=%x;"
1869 " page %p; item ordinal %d; addr %p\n",
1870 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1871 n, pi);
1872 panic("pool");
1873 }
1874 #endif
1875 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1876 continue;
1877 }
1878 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1879 if (page == ph->ph_page)
1880 continue;
1881
1882 if (label != NULL)
1883 printf("%s: ", label);
1884 printf("pool(%p:%s): page inconsistency: page %p;"
1885 " item ordinal %d; addr %p (p %p)\n", pp,
1886 pp->pr_wchan, ph->ph_page,
1887 n, pi, page);
1888 return 1;
1889 }
1890 return 0;
1891 }
1892
1893
1894 int
1895 pool_chk(struct pool *pp, const char *label)
1896 {
1897 struct pool_item_header *ph;
1898 int r = 0;
1899
1900 mutex_enter(&pp->pr_lock);
1901 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1902 r = pool_chk_page(pp, label, ph);
1903 if (r) {
1904 goto out;
1905 }
1906 }
1907 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1908 r = pool_chk_page(pp, label, ph);
1909 if (r) {
1910 goto out;
1911 }
1912 }
1913 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1914 r = pool_chk_page(pp, label, ph);
1915 if (r) {
1916 goto out;
1917 }
1918 }
1919
1920 out:
1921 mutex_exit(&pp->pr_lock);
1922 return (r);
1923 }
1924
1925 /*
1926 * pool_cache_init:
1927 *
1928 * Initialize a pool cache.
1929 *
1930 * NOTE: If the pool must be protected from interrupts, we expect
1931 * to be called at the appropriate interrupt priority level.
1932 */
1933 void
1934 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1935 int (*ctor)(void *, void *, int),
1936 void (*dtor)(void *, void *),
1937 void *arg)
1938 {
1939
1940 LIST_INIT(&pc->pc_emptygroups);
1941 LIST_INIT(&pc->pc_fullgroups);
1942 LIST_INIT(&pc->pc_partgroups);
1943 mutex_init(&pc->pc_lock, MUTEX_DRIVER, pp->pr_ipl);
1944
1945 pc->pc_pool = pp;
1946
1947 pc->pc_ctor = ctor;
1948 pc->pc_dtor = dtor;
1949 pc->pc_arg = arg;
1950
1951 pc->pc_hits = 0;
1952 pc->pc_misses = 0;
1953
1954 pc->pc_ngroups = 0;
1955
1956 pc->pc_nitems = 0;
1957
1958 if (__predict_true(!cold)) {
1959 mutex_enter(&pp->pr_lock);
1960 LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1961 mutex_exit(&pp->pr_lock);
1962 } else
1963 LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1964 }
1965
1966 /*
1967 * pool_cache_destroy:
1968 *
1969 * Destroy a pool cache.
1970 */
1971 void
1972 pool_cache_destroy(struct pool_cache *pc)
1973 {
1974 struct pool *pp = pc->pc_pool;
1975
1976 /* First, invalidate the entire cache. */
1977 pool_cache_invalidate(pc);
1978
1979 /* ...and remove it from the pool's cache list. */
1980 mutex_enter(&pp->pr_lock);
1981 LIST_REMOVE(pc, pc_poollist);
1982 mutex_exit(&pp->pr_lock);
1983
1984 mutex_destroy(&pc->pc_lock);
1985 }
1986
1987 static inline void *
1988 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1989 {
1990 void *object;
1991 u_int idx;
1992
1993 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1994 KASSERT(pcg->pcg_avail != 0);
1995 idx = --pcg->pcg_avail;
1996
1997 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1998 object = pcg->pcg_objects[idx].pcgo_va;
1999 if (pap != NULL)
2000 *pap = pcg->pcg_objects[idx].pcgo_pa;
2001 pcg->pcg_objects[idx].pcgo_va = NULL;
2002
2003 return (object);
2004 }
2005
2006 static inline void
2007 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
2008 {
2009 u_int idx;
2010
2011 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
2012 idx = pcg->pcg_avail++;
2013
2014 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
2015 pcg->pcg_objects[idx].pcgo_va = object;
2016 pcg->pcg_objects[idx].pcgo_pa = pa;
2017 }
2018
2019 static void
2020 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
2021 {
2022 struct pool_cache_group *pcg;
2023
2024 while ((pcg = LIST_FIRST(pcgl)) != NULL) {
2025 LIST_REMOVE(pcg, pcg_list);
2026 pool_put(&pcgpool, pcg);
2027 }
2028 }
2029
2030 /*
2031 * pool_cache_get{,_paddr}:
2032 *
2033 * Get an object from a pool cache (optionally returning
2034 * the physical address of the object).
2035 */
2036 void *
2037 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
2038 {
2039 struct pool_cache_group *pcg;
2040 void *object;
2041
2042 #ifdef LOCKDEBUG
2043 if (flags & PR_WAITOK)
2044 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2045 #endif
2046
2047 mutex_enter(&pc->pc_lock);
2048
2049 pcg = LIST_FIRST(&pc->pc_partgroups);
2050 if (pcg == NULL) {
2051 pcg = LIST_FIRST(&pc->pc_fullgroups);
2052 if (pcg != NULL) {
2053 LIST_REMOVE(pcg, pcg_list);
2054 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2055 }
2056 }
2057 if (pcg == NULL) {
2058
2059 /*
2060 * No groups with any available objects. Allocate
2061 * a new object, construct it, and return it to
2062 * the caller. We will allocate a group, if necessary,
2063 * when the object is freed back to the cache.
2064 */
2065 pc->pc_misses++;
2066 mutex_exit(&pc->pc_lock);
2067 object = pool_get(pc->pc_pool, flags);
2068 if (object != NULL && pc->pc_ctor != NULL) {
2069 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2070 pool_put(pc->pc_pool, object);
2071 return (NULL);
2072 }
2073 }
2074 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
2075 (pc->pc_pool->pr_align - 1)) == 0);
2076 if (object != NULL && pap != NULL) {
2077 #ifdef POOL_VTOPHYS
2078 *pap = POOL_VTOPHYS(object);
2079 #else
2080 *pap = POOL_PADDR_INVALID;
2081 #endif
2082 }
2083
2084 FREECHECK_OUT(&pc->pc_freecheck, object);
2085 return (object);
2086 }
2087
2088 pc->pc_hits++;
2089 pc->pc_nitems--;
2090 object = pcg_get(pcg, pap);
2091
2092 if (pcg->pcg_avail == 0) {
2093 LIST_REMOVE(pcg, pcg_list);
2094 LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
2095 }
2096 mutex_exit(&pc->pc_lock);
2097
2098 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
2099 (pc->pc_pool->pr_align - 1)) == 0);
2100 FREECHECK_OUT(&pc->pc_freecheck, object);
2101 return (object);
2102 }
2103
2104 /*
2105 * pool_cache_put{,_paddr}:
2106 *
2107 * Put an object back to the pool cache (optionally caching the
2108 * physical address of the object).
2109 */
2110 void
2111 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
2112 {
2113 struct pool_cache_group *pcg;
2114
2115 FREECHECK_IN(&pc->pc_freecheck, object);
2116
2117 if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
2118 goto destruct;
2119 }
2120
2121 mutex_enter(&pc->pc_lock);
2122
2123 pcg = LIST_FIRST(&pc->pc_partgroups);
2124 if (pcg == NULL) {
2125 pcg = LIST_FIRST(&pc->pc_emptygroups);
2126 if (pcg != NULL) {
2127 LIST_REMOVE(pcg, pcg_list);
2128 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2129 }
2130 }
2131 if (pcg == NULL) {
2132
2133 /*
2134 * No empty groups to free the object to. Attempt to
2135 * allocate one.
2136 */
2137 mutex_exit(&pc->pc_lock);
2138 pcg = pool_get(&pcgpool, PR_NOWAIT);
2139 if (pcg == NULL) {
2140 destruct:
2141
2142 /*
2143 * Unable to allocate a cache group; destruct the object
2144 * and free it back to the pool.
2145 */
2146 pool_cache_destruct_object(pc, object);
2147 return;
2148 }
2149 memset(pcg, 0, sizeof(*pcg));
2150 mutex_enter(&pc->pc_lock);
2151 pc->pc_ngroups++;
2152 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2153 }
2154
2155 pc->pc_nitems++;
2156 pcg_put(pcg, object, pa);
2157
2158 if (pcg->pcg_avail == PCG_NOBJECTS) {
2159 LIST_REMOVE(pcg, pcg_list);
2160 LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
2161 }
2162 mutex_exit(&pc->pc_lock);
2163 }
2164
2165 /*
2166 * pool_cache_destruct_object:
2167 *
2168 * Force destruction of an object and its release back into
2169 * the pool.
2170 */
2171 void
2172 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2173 {
2174
2175 if (pc->pc_dtor != NULL)
2176 (*pc->pc_dtor)(pc->pc_arg, object);
2177 pool_put(pc->pc_pool, object);
2178 }
2179
2180 static void
2181 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
2182 struct pool_cache *pc, struct pool_pagelist *pq,
2183 struct pool_cache_grouplist *pcgdl)
2184 {
2185 struct pool_cache_group *pcg, *npcg;
2186 void *object;
2187
2188 for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
2189 npcg = LIST_NEXT(pcg, pcg_list);
2190 while (pcg->pcg_avail != 0) {
2191 pc->pc_nitems--;
2192 object = pcg_get(pcg, NULL);
2193 if (pc->pc_dtor != NULL)
2194 (*pc->pc_dtor)(pc->pc_arg, object);
2195 pool_do_put(pc->pc_pool, object, pq);
2196 }
2197 pc->pc_ngroups--;
2198 LIST_REMOVE(pcg, pcg_list);
2199 LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
2200 }
2201 }
2202
2203 static void
2204 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
2205 struct pool_cache_grouplist *pcgl)
2206 {
2207
2208 KASSERT(mutex_owned(&pc->pc_lock));
2209 KASSERT(mutex_owned(&pc->pc_pool->pr_lock));
2210
2211 pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
2212 pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
2213
2214 KASSERT(LIST_EMPTY(&pc->pc_partgroups));
2215 KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
2216 KASSERT(pc->pc_nitems == 0);
2217 }
2218
2219 /*
2220 * pool_cache_invalidate:
2221 *
2222 * Invalidate a pool cache (destruct and release all of the
2223 * cached objects).
2224 */
2225 void
2226 pool_cache_invalidate(struct pool_cache *pc)
2227 {
2228 struct pool_pagelist pq;
2229 struct pool_cache_grouplist pcgl;
2230
2231 LIST_INIT(&pq);
2232 LIST_INIT(&pcgl);
2233
2234 mutex_enter(&pc->pc_lock);
2235 mutex_enter(&pc->pc_pool->pr_lock);
2236
2237 pool_do_cache_invalidate(pc, &pq, &pcgl);
2238
2239 mutex_exit(&pc->pc_pool->pr_lock);
2240 mutex_exit(&pc->pc_lock);
2241
2242 pr_pagelist_free(pc->pc_pool, &pq);
2243 pcg_grouplist_free(&pcgl);
2244 }
2245
2246 /*
2247 * pool_cache_reclaim:
2248 *
2249 * Reclaim a pool cache for pool_reclaim().
2250 */
2251 static void
2252 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
2253 struct pool_cache_grouplist *pcgl)
2254 {
2255
2256 /*
2257 * We're locking in the wrong order (normally pool_cache -> pool,
2258 * but the pool is already locked when we get here), so we have
2259 * to use trylock. If we can't lock the pool_cache, it's not really
2260 * a big deal here.
2261 */
2262 if (mutex_tryenter(&pc->pc_lock) == 0)
2263 return;
2264
2265 pool_do_cache_invalidate(pc, pq, pcgl);
2266
2267 mutex_exit(&pc->pc_lock);
2268 }
2269
2270 /*
2271 * Pool backend allocators.
2272 *
2273 * Each pool has a backend allocator that handles allocation, deallocation,
2274 * and any additional draining that might be needed.
2275 *
2276 * We provide two standard allocators:
2277 *
2278 * pool_allocator_kmem - the default when no allocator is specified
2279 *
2280 * pool_allocator_nointr - used for pools that will not be accessed
2281 * in interrupt context.
2282 */
2283 void *pool_page_alloc(struct pool *, int);
2284 void pool_page_free(struct pool *, void *);
2285
2286 #ifdef POOL_SUBPAGE
2287 struct pool_allocator pool_allocator_kmem_fullpage = {
2288 pool_page_alloc, pool_page_free, 0,
2289 .pa_backingmapptr = &kmem_map,
2290 };
2291 #else
2292 struct pool_allocator pool_allocator_kmem = {
2293 pool_page_alloc, pool_page_free, 0,
2294 .pa_backingmapptr = &kmem_map,
2295 };
2296 #endif
2297
2298 void *pool_page_alloc_nointr(struct pool *, int);
2299 void pool_page_free_nointr(struct pool *, void *);
2300
2301 #ifdef POOL_SUBPAGE
2302 struct pool_allocator pool_allocator_nointr_fullpage = {
2303 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2304 .pa_backingmapptr = &kernel_map,
2305 };
2306 #else
2307 struct pool_allocator pool_allocator_nointr = {
2308 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2309 .pa_backingmapptr = &kernel_map,
2310 };
2311 #endif
2312
2313 #ifdef POOL_SUBPAGE
2314 void *pool_subpage_alloc(struct pool *, int);
2315 void pool_subpage_free(struct pool *, void *);
2316
2317 struct pool_allocator pool_allocator_kmem = {
2318 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2319 .pa_backingmapptr = &kmem_map,
2320 };
2321
2322 void *pool_subpage_alloc_nointr(struct pool *, int);
2323 void pool_subpage_free_nointr(struct pool *, void *);
2324
2325 struct pool_allocator pool_allocator_nointr = {
2326 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2327 .pa_backingmapptr = &kmem_map,
2328 };
2329 #endif /* POOL_SUBPAGE */
2330
2331 static void *
2332 pool_allocator_alloc(struct pool *pp, int flags)
2333 {
2334 struct pool_allocator *pa = pp->pr_alloc;
2335 void *res;
2336
2337 res = (*pa->pa_alloc)(pp, flags);
2338 if (res == NULL && (flags & PR_WAITOK) == 0) {
2339 /*
2340 * We only run the drain hook here if PR_NOWAIT.
2341 * In other cases, the hook will be run in
2342 * pool_reclaim().
2343 */
2344 if (pp->pr_drain_hook != NULL) {
2345 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2346 res = (*pa->pa_alloc)(pp, flags);
2347 }
2348 }
2349 return res;
2350 }
2351
2352 static void
2353 pool_allocator_free(struct pool *pp, void *v)
2354 {
2355 struct pool_allocator *pa = pp->pr_alloc;
2356
2357 (*pa->pa_free)(pp, v);
2358 }
2359
2360 void *
2361 pool_page_alloc(struct pool *pp, int flags)
2362 {
2363 bool waitok = (flags & PR_WAITOK) ? true : false;
2364
2365 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2366 }
2367
2368 void
2369 pool_page_free(struct pool *pp, void *v)
2370 {
2371
2372 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2373 }
2374
2375 static void *
2376 pool_page_alloc_meta(struct pool *pp, int flags)
2377 {
2378 bool waitok = (flags & PR_WAITOK) ? true : false;
2379
2380 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2381 }
2382
2383 static void
2384 pool_page_free_meta(struct pool *pp, void *v)
2385 {
2386
2387 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2388 }
2389
2390 #ifdef POOL_SUBPAGE
2391 /* Sub-page allocator, for machines with large hardware pages. */
2392 void *
2393 pool_subpage_alloc(struct pool *pp, int flags)
2394 {
2395 return pool_get(&psppool, flags);
2396 }
2397
2398 void
2399 pool_subpage_free(struct pool *pp, void *v)
2400 {
2401 pool_put(&psppool, v);
2402 }
2403
2404 /* We don't provide a real nointr allocator. Maybe later. */
2405 void *
2406 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2407 {
2408
2409 return (pool_subpage_alloc(pp, flags));
2410 }
2411
2412 void
2413 pool_subpage_free_nointr(struct pool *pp, void *v)
2414 {
2415
2416 pool_subpage_free(pp, v);
2417 }
2418 #endif /* POOL_SUBPAGE */
2419 void *
2420 pool_page_alloc_nointr(struct pool *pp, int flags)
2421 {
2422 bool waitok = (flags & PR_WAITOK) ? true : false;
2423
2424 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2425 }
2426
2427 void
2428 pool_page_free_nointr(struct pool *pp, void *v)
2429 {
2430
2431 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2432 }
2433