Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.128.2.5
      1 /*	$NetBSD: subr_pool.c,v 1.128.2.5 2007/07/29 11:34:47 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.128.2.5 2007/07/29 11:34:47 ad Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/lock.h>
     54 #include <sys/pool.h>
     55 #include <sys/syslog.h>
     56 #include <sys/debug.h>
     57 #include <sys/lockdebug.h>
     58 
     59 #include <uvm/uvm.h>
     60 
     61 /*
     62  * Pool resource management utility.
     63  *
     64  * Memory is allocated in pages which are split into pieces according to
     65  * the pool item size. Each page is kept on one of three lists in the
     66  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     67  * for empty, full and partially-full pages respectively. The individual
     68  * pool items are on a linked list headed by `ph_itemlist' in each page
     69  * header. The memory for building the page list is either taken from
     70  * the allocated pages themselves (for small pool items) or taken from
     71  * an internal pool of page headers (`phpool').
     72  */
     73 
     74 /* List of all pools */
     75 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     76 
     77 /* Private pool for page header structures */
     78 #define	PHPOOL_MAX	8
     79 static struct pool phpool[PHPOOL_MAX];
     80 #define	PHPOOL_FREELIST_NELEM(idx)	(((idx) == 0) ? 0 : (1 << (idx)))
     81 
     82 #ifdef POOL_SUBPAGE
     83 /* Pool of subpages for use by normal pools. */
     84 static struct pool psppool;
     85 #endif
     86 
     87 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     88     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     89 
     90 static void *pool_page_alloc_meta(struct pool *, int);
     91 static void pool_page_free_meta(struct pool *, void *);
     92 
     93 /* allocator for pool metadata */
     94 static struct pool_allocator pool_allocator_meta = {
     95 	pool_page_alloc_meta, pool_page_free_meta,
     96 	.pa_backingmapptr = &kmem_map,
     97 };
     98 
     99 /* # of seconds to retain page after last use */
    100 int pool_inactive_time = 10;
    101 
    102 /* Next candidate for drainage (see pool_drain()) */
    103 static struct pool	*drainpp;
    104 
    105 /* This lock protects both pool_head and drainpp. */
    106 static kmutex_t pool_head_lock;
    107 
    108 typedef uint8_t pool_item_freelist_t;
    109 
    110 struct pool_item_header {
    111 	/* Page headers */
    112 	LIST_ENTRY(pool_item_header)
    113 				ph_pagelist;	/* pool page list */
    114 	SPLAY_ENTRY(pool_item_header)
    115 				ph_node;	/* Off-page page headers */
    116 	void *			ph_page;	/* this page's address */
    117 	struct timeval		ph_time;	/* last referenced */
    118 	union {
    119 		/* !PR_NOTOUCH */
    120 		struct {
    121 			LIST_HEAD(, pool_item)
    122 				phu_itemlist;	/* chunk list for this page */
    123 		} phu_normal;
    124 		/* PR_NOTOUCH */
    125 		struct {
    126 			uint16_t
    127 				phu_off;	/* start offset in page */
    128 			pool_item_freelist_t
    129 				phu_firstfree;	/* first free item */
    130 			/*
    131 			 * XXX it might be better to use
    132 			 * a simple bitmap and ffs(3)
    133 			 */
    134 		} phu_notouch;
    135 	} ph_u;
    136 	uint16_t		ph_nmissing;	/* # of chunks in use */
    137 };
    138 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    139 #define	ph_off		ph_u.phu_notouch.phu_off
    140 #define	ph_firstfree	ph_u.phu_notouch.phu_firstfree
    141 
    142 struct pool_item {
    143 #ifdef DIAGNOSTIC
    144 	u_int pi_magic;
    145 #endif
    146 #define	PI_MAGIC 0xdeadbeefU
    147 	/* Other entries use only this list entry */
    148 	LIST_ENTRY(pool_item)	pi_list;
    149 };
    150 
    151 #define	POOL_NEEDS_CATCHUP(pp)						\
    152 	((pp)->pr_nitems < (pp)->pr_minitems)
    153 
    154 /*
    155  * Pool cache management.
    156  *
    157  * Pool caches provide a way for constructed objects to be cached by the
    158  * pool subsystem.  This can lead to performance improvements by avoiding
    159  * needless object construction/destruction; it is deferred until absolutely
    160  * necessary.
    161  *
    162  * Caches are grouped into cache groups.  Each cache group references
    163  * up to 16 constructed objects.  When a cache allocates an object
    164  * from the pool, it calls the object's constructor and places it into
    165  * a cache group.  When a cache group frees an object back to the pool,
    166  * it first calls the object's destructor.  This allows the object to
    167  * persist in constructed form while freed to the cache.
    168  *
    169  * Multiple caches may exist for each pool.  This allows a single
    170  * object type to have multiple constructed forms.  The pool references
    171  * each cache, so that when a pool is drained by the pagedaemon, it can
    172  * drain each individual cache as well.  Each time a cache is drained,
    173  * the most idle cache group is freed to the pool in its entirety.
    174  *
    175  * Pool caches are layed on top of pools.  By layering them, we can avoid
    176  * the complexity of cache management for pools which would not benefit
    177  * from it.
    178  */
    179 
    180 /* The cache group pool. */
    181 static struct pool pcgpool;
    182 
    183 static void	pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
    184 				   struct pool_cache_grouplist *);
    185 static void	pcg_grouplist_free(struct pool_cache_grouplist *);
    186 
    187 static int	pool_catchup(struct pool *);
    188 static void	pool_prime_page(struct pool *, void *,
    189 		    struct pool_item_header *);
    190 static void	pool_update_curpage(struct pool *);
    191 
    192 static int	pool_grow(struct pool *, int);
    193 static void	*pool_allocator_alloc(struct pool *, int);
    194 static void	pool_allocator_free(struct pool *, void *);
    195 
    196 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    197 	void (*)(const char *, ...));
    198 static void pool_print1(struct pool *, const char *,
    199 	void (*)(const char *, ...));
    200 
    201 static int pool_chk_page(struct pool *, const char *,
    202 			 struct pool_item_header *);
    203 
    204 /*
    205  * Pool log entry. An array of these is allocated in pool_init().
    206  */
    207 struct pool_log {
    208 	const char	*pl_file;
    209 	long		pl_line;
    210 	int		pl_action;
    211 #define	PRLOG_GET	1
    212 #define	PRLOG_PUT	2
    213 	void		*pl_addr;
    214 };
    215 
    216 #ifdef POOL_DIAGNOSTIC
    217 /* Number of entries in pool log buffers */
    218 #ifndef POOL_LOGSIZE
    219 #define	POOL_LOGSIZE	10
    220 #endif
    221 
    222 int pool_logsize = POOL_LOGSIZE;
    223 
    224 static inline void
    225 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    226 {
    227 	int n = pp->pr_curlogentry;
    228 	struct pool_log *pl;
    229 
    230 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    231 		return;
    232 
    233 	/*
    234 	 * Fill in the current entry. Wrap around and overwrite
    235 	 * the oldest entry if necessary.
    236 	 */
    237 	pl = &pp->pr_log[n];
    238 	pl->pl_file = file;
    239 	pl->pl_line = line;
    240 	pl->pl_action = action;
    241 	pl->pl_addr = v;
    242 	if (++n >= pp->pr_logsize)
    243 		n = 0;
    244 	pp->pr_curlogentry = n;
    245 }
    246 
    247 static void
    248 pr_printlog(struct pool *pp, struct pool_item *pi,
    249     void (*pr)(const char *, ...))
    250 {
    251 	int i = pp->pr_logsize;
    252 	int n = pp->pr_curlogentry;
    253 
    254 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    255 		return;
    256 
    257 	/*
    258 	 * Print all entries in this pool's log.
    259 	 */
    260 	while (i-- > 0) {
    261 		struct pool_log *pl = &pp->pr_log[n];
    262 		if (pl->pl_action != 0) {
    263 			if (pi == NULL || pi == pl->pl_addr) {
    264 				(*pr)("\tlog entry %d:\n", i);
    265 				(*pr)("\t\taction = %s, addr = %p\n",
    266 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    267 				    pl->pl_addr);
    268 				(*pr)("\t\tfile: %s at line %lu\n",
    269 				    pl->pl_file, pl->pl_line);
    270 			}
    271 		}
    272 		if (++n >= pp->pr_logsize)
    273 			n = 0;
    274 	}
    275 }
    276 
    277 static inline void
    278 pr_enter(struct pool *pp, const char *file, long line)
    279 {
    280 
    281 	if (__predict_false(pp->pr_entered_file != NULL)) {
    282 		printf("pool %s: reentrancy at file %s line %ld\n",
    283 		    pp->pr_wchan, file, line);
    284 		printf("         previous entry at file %s line %ld\n",
    285 		    pp->pr_entered_file, pp->pr_entered_line);
    286 		panic("pr_enter");
    287 	}
    288 
    289 	pp->pr_entered_file = file;
    290 	pp->pr_entered_line = line;
    291 }
    292 
    293 static inline void
    294 pr_leave(struct pool *pp)
    295 {
    296 
    297 	if (__predict_false(pp->pr_entered_file == NULL)) {
    298 		printf("pool %s not entered?\n", pp->pr_wchan);
    299 		panic("pr_leave");
    300 	}
    301 
    302 	pp->pr_entered_file = NULL;
    303 	pp->pr_entered_line = 0;
    304 }
    305 
    306 static inline void
    307 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    308 {
    309 
    310 	if (pp->pr_entered_file != NULL)
    311 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    312 		    pp->pr_entered_file, pp->pr_entered_line);
    313 }
    314 #else
    315 #define	pr_log(pp, v, action, file, line)
    316 #define	pr_printlog(pp, pi, pr)
    317 #define	pr_enter(pp, file, line)
    318 #define	pr_leave(pp)
    319 #define	pr_enter_check(pp, pr)
    320 #endif /* POOL_DIAGNOSTIC */
    321 
    322 static inline int
    323 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    324     const void *v)
    325 {
    326 	const char *cp = v;
    327 	int idx;
    328 
    329 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    330 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    331 	KASSERT(idx < pp->pr_itemsperpage);
    332 	return idx;
    333 }
    334 
    335 #define	PR_FREELIST_ALIGN(p) \
    336 	roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
    337 #define	PR_FREELIST(ph)	((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
    338 #define	PR_INDEX_USED	((pool_item_freelist_t)-1)
    339 #define	PR_INDEX_EOL	((pool_item_freelist_t)-2)
    340 
    341 static inline void
    342 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    343     void *obj)
    344 {
    345 	int idx = pr_item_notouch_index(pp, ph, obj);
    346 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    347 
    348 	KASSERT(freelist[idx] == PR_INDEX_USED);
    349 	freelist[idx] = ph->ph_firstfree;
    350 	ph->ph_firstfree = idx;
    351 }
    352 
    353 static inline void *
    354 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    355 {
    356 	int idx = ph->ph_firstfree;
    357 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    358 
    359 	KASSERT(freelist[idx] != PR_INDEX_USED);
    360 	ph->ph_firstfree = freelist[idx];
    361 	freelist[idx] = PR_INDEX_USED;
    362 
    363 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    364 }
    365 
    366 static inline int
    367 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    368 {
    369 
    370 	/*
    371 	 * we consider pool_item_header with smaller ph_page bigger.
    372 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    373 	 */
    374 
    375 	if (a->ph_page < b->ph_page)
    376 		return (1);
    377 	else if (a->ph_page > b->ph_page)
    378 		return (-1);
    379 	else
    380 		return (0);
    381 }
    382 
    383 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    384 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    385 
    386 /*
    387  * Return the pool page header based on item address.
    388  */
    389 static inline struct pool_item_header *
    390 pr_find_pagehead(struct pool *pp, void *v)
    391 {
    392 	struct pool_item_header *ph, tmp;
    393 
    394 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    395 		tmp.ph_page = (void *)(uintptr_t)v;
    396 		ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    397 		if (ph == NULL) {
    398 			ph = SPLAY_ROOT(&pp->pr_phtree);
    399 			if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    400 				ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    401 			}
    402 			KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    403 		}
    404 	} else {
    405 		void *page =
    406 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    407 
    408 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    409 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    410 		} else {
    411 			tmp.ph_page = page;
    412 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    413 		}
    414 	}
    415 
    416 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    417 	    ((char *)ph->ph_page <= (char *)v &&
    418 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    419 	return ph;
    420 }
    421 
    422 static void
    423 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    424 {
    425 	struct pool_item_header *ph;
    426 
    427 	while ((ph = LIST_FIRST(pq)) != NULL) {
    428 		LIST_REMOVE(ph, ph_pagelist);
    429 		pool_allocator_free(pp, ph->ph_page);
    430 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    431 			pool_put(pp->pr_phpool, ph);
    432 	}
    433 }
    434 
    435 /*
    436  * Remove a page from the pool.
    437  */
    438 static inline void
    439 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    440      struct pool_pagelist *pq)
    441 {
    442 
    443 	KASSERT(mutex_owned(&pp->pr_lock));
    444 
    445 	/*
    446 	 * If the page was idle, decrement the idle page count.
    447 	 */
    448 	if (ph->ph_nmissing == 0) {
    449 #ifdef DIAGNOSTIC
    450 		if (pp->pr_nidle == 0)
    451 			panic("pr_rmpage: nidle inconsistent");
    452 		if (pp->pr_nitems < pp->pr_itemsperpage)
    453 			panic("pr_rmpage: nitems inconsistent");
    454 #endif
    455 		pp->pr_nidle--;
    456 	}
    457 
    458 	pp->pr_nitems -= pp->pr_itemsperpage;
    459 
    460 	/*
    461 	 * Unlink the page from the pool and queue it for release.
    462 	 */
    463 	LIST_REMOVE(ph, ph_pagelist);
    464 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    465 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    466 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    467 
    468 	pp->pr_npages--;
    469 	pp->pr_npagefree++;
    470 
    471 	pool_update_curpage(pp);
    472 }
    473 
    474 static bool
    475 pa_starved_p(struct pool_allocator *pa)
    476 {
    477 
    478 	if (pa->pa_backingmap != NULL) {
    479 		return vm_map_starved_p(pa->pa_backingmap);
    480 	}
    481 	return false;
    482 }
    483 
    484 static int
    485 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    486 {
    487 	struct pool *pp = obj;
    488 	struct pool_allocator *pa = pp->pr_alloc;
    489 
    490 	KASSERT(&pp->pr_reclaimerentry == ce);
    491 	pool_reclaim(pp);
    492 	if (!pa_starved_p(pa)) {
    493 		return CALLBACK_CHAIN_ABORT;
    494 	}
    495 	return CALLBACK_CHAIN_CONTINUE;
    496 }
    497 
    498 static void
    499 pool_reclaim_register(struct pool *pp)
    500 {
    501 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    502 	int s;
    503 
    504 	if (map == NULL) {
    505 		return;
    506 	}
    507 
    508 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    509 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    510 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    511 	splx(s);
    512 }
    513 
    514 static void
    515 pool_reclaim_unregister(struct pool *pp)
    516 {
    517 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    518 	int s;
    519 
    520 	if (map == NULL) {
    521 		return;
    522 	}
    523 
    524 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    525 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    526 	    &pp->pr_reclaimerentry);
    527 	splx(s);
    528 }
    529 
    530 static void
    531 pa_reclaim_register(struct pool_allocator *pa)
    532 {
    533 	struct vm_map *map = *pa->pa_backingmapptr;
    534 	struct pool *pp;
    535 
    536 	KASSERT(pa->pa_backingmap == NULL);
    537 	if (map == NULL) {
    538 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    539 		return;
    540 	}
    541 	pa->pa_backingmap = map;
    542 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    543 		pool_reclaim_register(pp);
    544 	}
    545 }
    546 
    547 /*
    548  * Initialize all the pools listed in the "pools" link set.
    549  */
    550 void
    551 pool_subsystem_init(void)
    552 {
    553 	struct pool_allocator *pa;
    554 	__link_set_decl(pools, struct link_pool_init);
    555 	struct link_pool_init * const *pi;
    556 
    557 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    558 
    559 	__link_set_foreach(pi, pools)
    560 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    561 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    562 		    (*pi)->palloc, (*pi)->ipl);
    563 
    564 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    565 		KASSERT(pa->pa_backingmapptr != NULL);
    566 		KASSERT(*pa->pa_backingmapptr != NULL);
    567 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    568 		pa_reclaim_register(pa);
    569 	}
    570 }
    571 
    572 /*
    573  * Initialize the given pool resource structure.
    574  *
    575  * We export this routine to allow other kernel parts to declare
    576  * static pools that must be initialized before malloc() is available.
    577  */
    578 void
    579 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    580     const char *wchan, struct pool_allocator *palloc, int ipl)
    581 {
    582 #ifdef DEBUG
    583 	struct pool *pp1;
    584 #endif
    585 	size_t trysize, phsize;
    586 	int off, slack;
    587 
    588 	KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
    589 	    PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
    590 
    591 #ifdef DEBUG
    592 	/*
    593 	 * Check that the pool hasn't already been initialised and
    594 	 * added to the list of all pools.
    595 	 */
    596 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
    597 		if (pp == pp1)
    598 			panic("pool_init: pool %s already initialised",
    599 			    wchan);
    600 	}
    601 #endif
    602 
    603 #ifdef POOL_DIAGNOSTIC
    604 	/*
    605 	 * Always log if POOL_DIAGNOSTIC is defined.
    606 	 */
    607 	if (pool_logsize != 0)
    608 		flags |= PR_LOGGING;
    609 #endif
    610 
    611 	if (palloc == NULL)
    612 		palloc = &pool_allocator_kmem;
    613 #ifdef POOL_SUBPAGE
    614 	if (size > palloc->pa_pagesz) {
    615 		if (palloc == &pool_allocator_kmem)
    616 			palloc = &pool_allocator_kmem_fullpage;
    617 		else if (palloc == &pool_allocator_nointr)
    618 			palloc = &pool_allocator_nointr_fullpage;
    619 	}
    620 #endif /* POOL_SUBPAGE */
    621 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    622 		if (palloc->pa_pagesz == 0)
    623 			palloc->pa_pagesz = PAGE_SIZE;
    624 
    625 		TAILQ_INIT(&palloc->pa_list);
    626 
    627 		mutex_init(&palloc->pa_lock, MUTEX_DRIVER, IPL_VM);
    628 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    629 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    630 
    631 		if (palloc->pa_backingmapptr != NULL) {
    632 			pa_reclaim_register(palloc);
    633 		}
    634 		palloc->pa_flags |= PA_INITIALIZED;
    635 	}
    636 
    637 	if (align == 0)
    638 		align = ALIGN(1);
    639 
    640 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    641 		size = sizeof(struct pool_item);
    642 
    643 	size = roundup(size, align);
    644 #ifdef DIAGNOSTIC
    645 	if (size > palloc->pa_pagesz)
    646 		panic("pool_init: pool item size (%zu) too large", size);
    647 #endif
    648 
    649 	/*
    650 	 * Initialize the pool structure.
    651 	 */
    652 	LIST_INIT(&pp->pr_emptypages);
    653 	LIST_INIT(&pp->pr_fullpages);
    654 	LIST_INIT(&pp->pr_partpages);
    655 	LIST_INIT(&pp->pr_cachelist);
    656 	pp->pr_curpage = NULL;
    657 	pp->pr_npages = 0;
    658 	pp->pr_minitems = 0;
    659 	pp->pr_minpages = 0;
    660 	pp->pr_maxpages = UINT_MAX;
    661 	pp->pr_roflags = flags;
    662 	pp->pr_flags = 0;
    663 	pp->pr_size = size;
    664 	pp->pr_align = align;
    665 	pp->pr_wchan = wchan;
    666 	pp->pr_alloc = palloc;
    667 	pp->pr_nitems = 0;
    668 	pp->pr_nout = 0;
    669 	pp->pr_hardlimit = UINT_MAX;
    670 	pp->pr_hardlimit_warning = NULL;
    671 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    672 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    673 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    674 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    675 	pp->pr_drain_hook = NULL;
    676 	pp->pr_drain_hook_arg = NULL;
    677 	pp->pr_freecheck = NULL;
    678 
    679 	/*
    680 	 * Decide whether to put the page header off page to avoid
    681 	 * wasting too large a part of the page or too big item.
    682 	 * Off-page page headers go on a hash table, so we can match
    683 	 * a returned item with its header based on the page address.
    684 	 * We use 1/16 of the page size and about 8 times of the item
    685 	 * size as the threshold (XXX: tune)
    686 	 *
    687 	 * However, we'll put the header into the page if we can put
    688 	 * it without wasting any items.
    689 	 *
    690 	 * Silently enforce `0 <= ioff < align'.
    691 	 */
    692 	pp->pr_itemoffset = ioff %= align;
    693 	/* See the comment below about reserved bytes. */
    694 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    695 	phsize = ALIGN(sizeof(struct pool_item_header));
    696 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    697 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    698 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    699 		/* Use the end of the page for the page header */
    700 		pp->pr_roflags |= PR_PHINPAGE;
    701 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    702 	} else {
    703 		/* The page header will be taken from our page header pool */
    704 		pp->pr_phoffset = 0;
    705 		off = palloc->pa_pagesz;
    706 		SPLAY_INIT(&pp->pr_phtree);
    707 	}
    708 
    709 	/*
    710 	 * Alignment is to take place at `ioff' within the item. This means
    711 	 * we must reserve up to `align - 1' bytes on the page to allow
    712 	 * appropriate positioning of each item.
    713 	 */
    714 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    715 	KASSERT(pp->pr_itemsperpage != 0);
    716 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    717 		int idx;
    718 
    719 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    720 		    idx++) {
    721 			/* nothing */
    722 		}
    723 		if (idx >= PHPOOL_MAX) {
    724 			/*
    725 			 * if you see this panic, consider to tweak
    726 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    727 			 */
    728 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    729 			    pp->pr_wchan, pp->pr_itemsperpage);
    730 		}
    731 		pp->pr_phpool = &phpool[idx];
    732 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    733 		pp->pr_phpool = &phpool[0];
    734 	}
    735 #if defined(DIAGNOSTIC)
    736 	else {
    737 		pp->pr_phpool = NULL;
    738 	}
    739 #endif
    740 
    741 	/*
    742 	 * Use the slack between the chunks and the page header
    743 	 * for "cache coloring".
    744 	 */
    745 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    746 	pp->pr_maxcolor = (slack / align) * align;
    747 	pp->pr_curcolor = 0;
    748 
    749 	pp->pr_nget = 0;
    750 	pp->pr_nfail = 0;
    751 	pp->pr_nput = 0;
    752 	pp->pr_npagealloc = 0;
    753 	pp->pr_npagefree = 0;
    754 	pp->pr_hiwat = 0;
    755 	pp->pr_nidle = 0;
    756 
    757 #ifdef POOL_DIAGNOSTIC
    758 	if (flags & PR_LOGGING) {
    759 		if (kmem_map == NULL ||
    760 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    761 		     M_TEMP, M_NOWAIT)) == NULL)
    762 			pp->pr_roflags &= ~PR_LOGGING;
    763 		pp->pr_curlogentry = 0;
    764 		pp->pr_logsize = pool_logsize;
    765 	}
    766 #endif
    767 
    768 	pp->pr_entered_file = NULL;
    769 	pp->pr_entered_line = 0;
    770 
    771 	mutex_init(&pp->pr_lock, MUTEX_DRIVER, ipl);
    772 	cv_init(&pp->pr_cv, wchan);
    773 	pp->pr_ipl = ipl;
    774 
    775 	/*
    776 	 * Initialize private page header pool and cache magazine pool if we
    777 	 * haven't done so yet.
    778 	 * XXX LOCKING.
    779 	 */
    780 	if (phpool[0].pr_size == 0) {
    781 		int idx;
    782 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    783 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    784 			int nelem;
    785 			size_t sz;
    786 
    787 			nelem = PHPOOL_FREELIST_NELEM(idx);
    788 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    789 			    "phpool-%d", nelem);
    790 			sz = sizeof(struct pool_item_header);
    791 			if (nelem) {
    792 				sz = PR_FREELIST_ALIGN(sz)
    793 				    + nelem * sizeof(pool_item_freelist_t);
    794 			}
    795 			pool_init(&phpool[idx], sz, 0, 0, 0,
    796 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    797 		}
    798 #ifdef POOL_SUBPAGE
    799 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    800 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    801 #endif
    802 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    803 		    0, "pcgpool", &pool_allocator_meta, IPL_VM);
    804 	}
    805 
    806 	if (__predict_true(!cold)) {
    807 		/* Insert into the list of all pools. */
    808 		mutex_enter(&pool_head_lock);
    809 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    810 		mutex_exit(&pool_head_lock);
    811 
    812 		/* Insert this into the list of pools using this allocator. */
    813 		mutex_enter(&palloc->pa_lock);
    814 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    815 		mutex_exit(&palloc->pa_lock);
    816 	} else {
    817 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    818 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    819 	}
    820 
    821 	pool_reclaim_register(pp);
    822 }
    823 
    824 /*
    825  * De-commision a pool resource.
    826  */
    827 void
    828 pool_destroy(struct pool *pp)
    829 {
    830 	struct pool_pagelist pq;
    831 	struct pool_item_header *ph;
    832 
    833 	/* Remove from global pool list */
    834 	mutex_enter(&pool_head_lock);
    835 	LIST_REMOVE(pp, pr_poollist);
    836 	if (drainpp == pp)
    837 		drainpp = NULL;
    838 	mutex_exit(&pool_head_lock);
    839 
    840 	/* Remove this pool from its allocator's list of pools. */
    841 	pool_reclaim_unregister(pp);
    842 	mutex_enter(&pp->pr_alloc->pa_lock);
    843 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    844 	mutex_exit(&pp->pr_alloc->pa_lock);
    845 
    846 	mutex_enter(&pp->pr_lock);
    847 
    848 	KASSERT(LIST_EMPTY(&pp->pr_cachelist));
    849 
    850 #ifdef DIAGNOSTIC
    851 	if (pp->pr_nout != 0) {
    852 		pr_printlog(pp, NULL, printf);
    853 		panic("pool_destroy: pool busy: still out: %u",
    854 		    pp->pr_nout);
    855 	}
    856 #endif
    857 
    858 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    859 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    860 
    861 	/* Remove all pages */
    862 	LIST_INIT(&pq);
    863 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    864 		pr_rmpage(pp, ph, &pq);
    865 
    866 	mutex_exit(&pp->pr_lock);
    867 
    868 	pr_pagelist_free(pp, &pq);
    869 
    870 #ifdef POOL_DIAGNOSTIC
    871 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    872 		free(pp->pr_log, M_TEMP);
    873 #endif
    874 
    875 	cv_destroy(&pp->pr_cv);
    876 	mutex_destroy(&pp->pr_lock);
    877 }
    878 
    879 void
    880 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    881 {
    882 
    883 	/* XXX no locking -- must be used just after pool_init() */
    884 #ifdef DIAGNOSTIC
    885 	if (pp->pr_drain_hook != NULL)
    886 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    887 #endif
    888 	pp->pr_drain_hook = fn;
    889 	pp->pr_drain_hook_arg = arg;
    890 }
    891 
    892 static struct pool_item_header *
    893 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    894 {
    895 	struct pool_item_header *ph;
    896 
    897 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    898 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    899 	else
    900 		ph = pool_get(pp->pr_phpool, flags);
    901 
    902 	return (ph);
    903 }
    904 
    905 /*
    906  * Grab an item from the pool; must be called at appropriate spl level
    907  */
    908 void *
    909 #ifdef POOL_DIAGNOSTIC
    910 _pool_get(struct pool *pp, int flags, const char *file, long line)
    911 #else
    912 pool_get(struct pool *pp, int flags)
    913 #endif
    914 {
    915 	struct pool_item *pi;
    916 	struct pool_item_header *ph;
    917 	void *v;
    918 
    919 #ifdef DIAGNOSTIC
    920 	if (__predict_false(pp->pr_itemsperpage == 0))
    921 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    922 		    "pool not initialized?", pp);
    923 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    924 			    (flags & PR_WAITOK) != 0))
    925 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    926 
    927 #endif /* DIAGNOSTIC */
    928 #ifdef LOCKDEBUG
    929 	if (flags & PR_WAITOK)
    930 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
    931 #endif
    932 
    933 	mutex_enter(&pp->pr_lock);
    934 	pr_enter(pp, file, line);
    935 
    936  startover:
    937 	/*
    938 	 * Check to see if we've reached the hard limit.  If we have,
    939 	 * and we can wait, then wait until an item has been returned to
    940 	 * the pool.
    941 	 */
    942 #ifdef DIAGNOSTIC
    943 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    944 		pr_leave(pp);
    945 		mutex_exit(&pp->pr_lock);
    946 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    947 	}
    948 #endif
    949 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    950 		if (pp->pr_drain_hook != NULL) {
    951 			/*
    952 			 * Since the drain hook is going to free things
    953 			 * back to the pool, unlock, call the hook, re-lock,
    954 			 * and check the hardlimit condition again.
    955 			 */
    956 			pr_leave(pp);
    957 			mutex_exit(&pp->pr_lock);
    958 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    959 			mutex_enter(&pp->pr_lock);
    960 			pr_enter(pp, file, line);
    961 			if (pp->pr_nout < pp->pr_hardlimit)
    962 				goto startover;
    963 		}
    964 
    965 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    966 			/*
    967 			 * XXX: A warning isn't logged in this case.  Should
    968 			 * it be?
    969 			 */
    970 			pp->pr_flags |= PR_WANTED;
    971 			pr_leave(pp);
    972 			cv_wait(&pp->pr_cv, &pp->pr_lock);
    973 			pr_enter(pp, file, line);
    974 			goto startover;
    975 		}
    976 
    977 		/*
    978 		 * Log a message that the hard limit has been hit.
    979 		 */
    980 		if (pp->pr_hardlimit_warning != NULL &&
    981 		    ratecheck(&pp->pr_hardlimit_warning_last,
    982 			      &pp->pr_hardlimit_ratecap))
    983 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    984 
    985 		pp->pr_nfail++;
    986 
    987 		pr_leave(pp);
    988 		mutex_exit(&pp->pr_lock);
    989 		return (NULL);
    990 	}
    991 
    992 	/*
    993 	 * The convention we use is that if `curpage' is not NULL, then
    994 	 * it points at a non-empty bucket. In particular, `curpage'
    995 	 * never points at a page header which has PR_PHINPAGE set and
    996 	 * has no items in its bucket.
    997 	 */
    998 	if ((ph = pp->pr_curpage) == NULL) {
    999 		int error;
   1000 
   1001 #ifdef DIAGNOSTIC
   1002 		if (pp->pr_nitems != 0) {
   1003 			mutex_exit(&pp->pr_lock);
   1004 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1005 			    pp->pr_wchan, pp->pr_nitems);
   1006 			panic("pool_get: nitems inconsistent");
   1007 		}
   1008 #endif
   1009 
   1010 		/*
   1011 		 * Call the back-end page allocator for more memory.
   1012 		 * Release the pool lock, as the back-end page allocator
   1013 		 * may block.
   1014 		 */
   1015 		pr_leave(pp);
   1016 		error = pool_grow(pp, flags);
   1017 		pr_enter(pp, file, line);
   1018 		if (error != 0) {
   1019 			/*
   1020 			 * We were unable to allocate a page or item
   1021 			 * header, but we released the lock during
   1022 			 * allocation, so perhaps items were freed
   1023 			 * back to the pool.  Check for this case.
   1024 			 */
   1025 			if (pp->pr_curpage != NULL)
   1026 				goto startover;
   1027 
   1028 			pp->pr_nfail++;
   1029 			pr_leave(pp);
   1030 			mutex_exit(&pp->pr_lock);
   1031 			return (NULL);
   1032 		}
   1033 
   1034 		/* Start the allocation process over. */
   1035 		goto startover;
   1036 	}
   1037 	if (pp->pr_roflags & PR_NOTOUCH) {
   1038 #ifdef DIAGNOSTIC
   1039 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1040 			pr_leave(pp);
   1041 			mutex_exit(&pp->pr_lock);
   1042 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1043 		}
   1044 #endif
   1045 		v = pr_item_notouch_get(pp, ph);
   1046 #ifdef POOL_DIAGNOSTIC
   1047 		pr_log(pp, v, PRLOG_GET, file, line);
   1048 #endif
   1049 	} else {
   1050 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1051 		if (__predict_false(v == NULL)) {
   1052 			pr_leave(pp);
   1053 			mutex_exit(&pp->pr_lock);
   1054 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1055 		}
   1056 #ifdef DIAGNOSTIC
   1057 		if (__predict_false(pp->pr_nitems == 0)) {
   1058 			pr_leave(pp);
   1059 			mutex_exit(&pp->pr_lock);
   1060 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1061 			    pp->pr_wchan, pp->pr_nitems);
   1062 			panic("pool_get: nitems inconsistent");
   1063 		}
   1064 #endif
   1065 
   1066 #ifdef POOL_DIAGNOSTIC
   1067 		pr_log(pp, v, PRLOG_GET, file, line);
   1068 #endif
   1069 
   1070 #ifdef DIAGNOSTIC
   1071 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1072 			pr_printlog(pp, pi, printf);
   1073 			panic("pool_get(%s): free list modified: "
   1074 			    "magic=%x; page %p; item addr %p\n",
   1075 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1076 		}
   1077 #endif
   1078 
   1079 		/*
   1080 		 * Remove from item list.
   1081 		 */
   1082 		LIST_REMOVE(pi, pi_list);
   1083 	}
   1084 	pp->pr_nitems--;
   1085 	pp->pr_nout++;
   1086 	if (ph->ph_nmissing == 0) {
   1087 #ifdef DIAGNOSTIC
   1088 		if (__predict_false(pp->pr_nidle == 0))
   1089 			panic("pool_get: nidle inconsistent");
   1090 #endif
   1091 		pp->pr_nidle--;
   1092 
   1093 		/*
   1094 		 * This page was previously empty.  Move it to the list of
   1095 		 * partially-full pages.  This page is already curpage.
   1096 		 */
   1097 		LIST_REMOVE(ph, ph_pagelist);
   1098 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1099 	}
   1100 	ph->ph_nmissing++;
   1101 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1102 #ifdef DIAGNOSTIC
   1103 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1104 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1105 			pr_leave(pp);
   1106 			mutex_exit(&pp->pr_lock);
   1107 			panic("pool_get: %s: nmissing inconsistent",
   1108 			    pp->pr_wchan);
   1109 		}
   1110 #endif
   1111 		/*
   1112 		 * This page is now full.  Move it to the full list
   1113 		 * and select a new current page.
   1114 		 */
   1115 		LIST_REMOVE(ph, ph_pagelist);
   1116 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1117 		pool_update_curpage(pp);
   1118 	}
   1119 
   1120 	pp->pr_nget++;
   1121 	pr_leave(pp);
   1122 
   1123 	/*
   1124 	 * If we have a low water mark and we are now below that low
   1125 	 * water mark, add more items to the pool.
   1126 	 */
   1127 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1128 		/*
   1129 		 * XXX: Should we log a warning?  Should we set up a timeout
   1130 		 * to try again in a second or so?  The latter could break
   1131 		 * a caller's assumptions about interrupt protection, etc.
   1132 		 */
   1133 	}
   1134 
   1135 	mutex_exit(&pp->pr_lock);
   1136 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1137 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1138 	return (v);
   1139 }
   1140 
   1141 /*
   1142  * Internal version of pool_put().  Pool is already locked/entered.
   1143  */
   1144 static void
   1145 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1146 {
   1147 	struct pool_item *pi = v;
   1148 	struct pool_item_header *ph;
   1149 
   1150 	KASSERT(mutex_owned(&pp->pr_lock));
   1151 	FREECHECK_IN(&pp->pr_freecheck, v);
   1152 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1153 
   1154 #ifdef DIAGNOSTIC
   1155 	if (__predict_false(pp->pr_nout == 0)) {
   1156 		printf("pool %s: putting with none out\n",
   1157 		    pp->pr_wchan);
   1158 		panic("pool_put");
   1159 	}
   1160 #endif
   1161 
   1162 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1163 		pr_printlog(pp, NULL, printf);
   1164 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1165 	}
   1166 
   1167 	/*
   1168 	 * Return to item list.
   1169 	 */
   1170 	if (pp->pr_roflags & PR_NOTOUCH) {
   1171 		pr_item_notouch_put(pp, ph, v);
   1172 	} else {
   1173 #ifdef DIAGNOSTIC
   1174 		pi->pi_magic = PI_MAGIC;
   1175 #endif
   1176 #ifdef DEBUG
   1177 		{
   1178 			int i, *ip = v;
   1179 
   1180 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1181 				*ip++ = PI_MAGIC;
   1182 			}
   1183 		}
   1184 #endif
   1185 
   1186 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1187 	}
   1188 	KDASSERT(ph->ph_nmissing != 0);
   1189 	ph->ph_nmissing--;
   1190 	pp->pr_nput++;
   1191 	pp->pr_nitems++;
   1192 	pp->pr_nout--;
   1193 
   1194 	/* Cancel "pool empty" condition if it exists */
   1195 	if (pp->pr_curpage == NULL)
   1196 		pp->pr_curpage = ph;
   1197 
   1198 	if (pp->pr_flags & PR_WANTED) {
   1199 		pp->pr_flags &= ~PR_WANTED;
   1200 		if (ph->ph_nmissing == 0)
   1201 			pp->pr_nidle++;
   1202 		cv_broadcast(&pp->pr_cv);
   1203 		return;
   1204 	}
   1205 
   1206 	/*
   1207 	 * If this page is now empty, do one of two things:
   1208 	 *
   1209 	 *	(1) If we have more pages than the page high water mark,
   1210 	 *	    free the page back to the system.  ONLY CONSIDER
   1211 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1212 	 *	    CLAIM.
   1213 	 *
   1214 	 *	(2) Otherwise, move the page to the empty page list.
   1215 	 *
   1216 	 * Either way, select a new current page (so we use a partially-full
   1217 	 * page if one is available).
   1218 	 */
   1219 	if (ph->ph_nmissing == 0) {
   1220 		pp->pr_nidle++;
   1221 		if (pp->pr_npages > pp->pr_minpages &&
   1222 		    (pp->pr_npages > pp->pr_maxpages ||
   1223 		     pa_starved_p(pp->pr_alloc))) {
   1224 			pr_rmpage(pp, ph, pq);
   1225 		} else {
   1226 			LIST_REMOVE(ph, ph_pagelist);
   1227 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1228 
   1229 			/*
   1230 			 * Update the timestamp on the page.  A page must
   1231 			 * be idle for some period of time before it can
   1232 			 * be reclaimed by the pagedaemon.  This minimizes
   1233 			 * ping-pong'ing for memory.
   1234 			 */
   1235 			getmicrotime(&ph->ph_time);
   1236 		}
   1237 		pool_update_curpage(pp);
   1238 	}
   1239 
   1240 	/*
   1241 	 * If the page was previously completely full, move it to the
   1242 	 * partially-full list and make it the current page.  The next
   1243 	 * allocation will get the item from this page, instead of
   1244 	 * further fragmenting the pool.
   1245 	 */
   1246 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1247 		LIST_REMOVE(ph, ph_pagelist);
   1248 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1249 		pp->pr_curpage = ph;
   1250 	}
   1251 }
   1252 
   1253 /*
   1254  * Return resource to the pool; must be called at appropriate spl level
   1255  */
   1256 #ifdef POOL_DIAGNOSTIC
   1257 void
   1258 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1259 {
   1260 	struct pool_pagelist pq;
   1261 
   1262 	LIST_INIT(&pq);
   1263 
   1264 	mutex_enter(&pp->pr_lock);
   1265 	pr_enter(pp, file, line);
   1266 
   1267 	pr_log(pp, v, PRLOG_PUT, file, line);
   1268 
   1269 	pool_do_put(pp, v, &pq);
   1270 
   1271 	pr_leave(pp);
   1272 	mutex_exit(&pp->pr_lock);
   1273 
   1274 	pr_pagelist_free(pp, &pq);
   1275 }
   1276 #undef pool_put
   1277 #endif /* POOL_DIAGNOSTIC */
   1278 
   1279 void
   1280 pool_put(struct pool *pp, void *v)
   1281 {
   1282 	struct pool_pagelist pq;
   1283 
   1284 	LIST_INIT(&pq);
   1285 
   1286 	mutex_enter(&pp->pr_lock);
   1287 	pool_do_put(pp, v, &pq);
   1288 	mutex_exit(&pp->pr_lock);
   1289 
   1290 	pr_pagelist_free(pp, &pq);
   1291 }
   1292 
   1293 #ifdef POOL_DIAGNOSTIC
   1294 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1295 #endif
   1296 
   1297 /*
   1298  * pool_grow: grow a pool by a page.
   1299  *
   1300  * => called with pool locked.
   1301  * => unlock and relock the pool.
   1302  * => return with pool locked.
   1303  */
   1304 
   1305 static int
   1306 pool_grow(struct pool *pp, int flags)
   1307 {
   1308 	struct pool_item_header *ph = NULL;
   1309 	char *cp;
   1310 
   1311 	mutex_exit(&pp->pr_lock);
   1312 	cp = pool_allocator_alloc(pp, flags);
   1313 	if (__predict_true(cp != NULL)) {
   1314 		ph = pool_alloc_item_header(pp, cp, flags);
   1315 	}
   1316 	if (__predict_false(cp == NULL || ph == NULL)) {
   1317 		if (cp != NULL) {
   1318 			pool_allocator_free(pp, cp);
   1319 		}
   1320 		mutex_enter(&pp->pr_lock);
   1321 		return ENOMEM;
   1322 	}
   1323 
   1324 	mutex_enter(&pp->pr_lock);
   1325 	pool_prime_page(pp, cp, ph);
   1326 	pp->pr_npagealloc++;
   1327 	return 0;
   1328 }
   1329 
   1330 /*
   1331  * Add N items to the pool.
   1332  */
   1333 int
   1334 pool_prime(struct pool *pp, int n)
   1335 {
   1336 	int newpages;
   1337 	int error = 0;
   1338 
   1339 	mutex_enter(&pp->pr_lock);
   1340 
   1341 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1342 
   1343 	while (newpages-- > 0) {
   1344 		error = pool_grow(pp, PR_NOWAIT);
   1345 		if (error) {
   1346 			break;
   1347 		}
   1348 		pp->pr_minpages++;
   1349 	}
   1350 
   1351 	if (pp->pr_minpages >= pp->pr_maxpages)
   1352 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1353 
   1354 	mutex_exit(&pp->pr_lock);
   1355 	return error;
   1356 }
   1357 
   1358 /*
   1359  * Add a page worth of items to the pool.
   1360  *
   1361  * Note, we must be called with the pool descriptor LOCKED.
   1362  */
   1363 static void
   1364 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1365 {
   1366 	struct pool_item *pi;
   1367 	void *cp = storage;
   1368 	const unsigned int align = pp->pr_align;
   1369 	const unsigned int ioff = pp->pr_itemoffset;
   1370 	int n;
   1371 
   1372 	KASSERT(mutex_owned(&pp->pr_lock));
   1373 
   1374 #ifdef DIAGNOSTIC
   1375 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1376 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1377 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1378 #endif
   1379 
   1380 	/*
   1381 	 * Insert page header.
   1382 	 */
   1383 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1384 	LIST_INIT(&ph->ph_itemlist);
   1385 	ph->ph_page = storage;
   1386 	ph->ph_nmissing = 0;
   1387 	getmicrotime(&ph->ph_time);
   1388 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1389 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1390 
   1391 	pp->pr_nidle++;
   1392 
   1393 	/*
   1394 	 * Color this page.
   1395 	 */
   1396 	cp = (char *)cp + pp->pr_curcolor;
   1397 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1398 		pp->pr_curcolor = 0;
   1399 
   1400 	/*
   1401 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1402 	 */
   1403 	if (ioff != 0)
   1404 		cp = (char *)cp + align - ioff;
   1405 
   1406 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1407 
   1408 	/*
   1409 	 * Insert remaining chunks on the bucket list.
   1410 	 */
   1411 	n = pp->pr_itemsperpage;
   1412 	pp->pr_nitems += n;
   1413 
   1414 	if (pp->pr_roflags & PR_NOTOUCH) {
   1415 		pool_item_freelist_t *freelist = PR_FREELIST(ph);
   1416 		int i;
   1417 
   1418 		ph->ph_off = (char *)cp - (char *)storage;
   1419 		ph->ph_firstfree = 0;
   1420 		for (i = 0; i < n - 1; i++)
   1421 			freelist[i] = i + 1;
   1422 		freelist[n - 1] = PR_INDEX_EOL;
   1423 	} else {
   1424 		while (n--) {
   1425 			pi = (struct pool_item *)cp;
   1426 
   1427 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1428 
   1429 			/* Insert on page list */
   1430 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1431 #ifdef DIAGNOSTIC
   1432 			pi->pi_magic = PI_MAGIC;
   1433 #endif
   1434 			cp = (char *)cp + pp->pr_size;
   1435 
   1436 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1437 		}
   1438 	}
   1439 
   1440 	/*
   1441 	 * If the pool was depleted, point at the new page.
   1442 	 */
   1443 	if (pp->pr_curpage == NULL)
   1444 		pp->pr_curpage = ph;
   1445 
   1446 	if (++pp->pr_npages > pp->pr_hiwat)
   1447 		pp->pr_hiwat = pp->pr_npages;
   1448 }
   1449 
   1450 /*
   1451  * Used by pool_get() when nitems drops below the low water mark.  This
   1452  * is used to catch up pr_nitems with the low water mark.
   1453  *
   1454  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1455  *
   1456  * Note 2, we must be called with the pool already locked, and we return
   1457  * with it locked.
   1458  */
   1459 static int
   1460 pool_catchup(struct pool *pp)
   1461 {
   1462 	int error = 0;
   1463 
   1464 	while (POOL_NEEDS_CATCHUP(pp)) {
   1465 		error = pool_grow(pp, PR_NOWAIT);
   1466 		if (error) {
   1467 			break;
   1468 		}
   1469 	}
   1470 	return error;
   1471 }
   1472 
   1473 static void
   1474 pool_update_curpage(struct pool *pp)
   1475 {
   1476 
   1477 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1478 	if (pp->pr_curpage == NULL) {
   1479 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1480 	}
   1481 }
   1482 
   1483 void
   1484 pool_setlowat(struct pool *pp, int n)
   1485 {
   1486 
   1487 	mutex_enter(&pp->pr_lock);
   1488 
   1489 	pp->pr_minitems = n;
   1490 	pp->pr_minpages = (n == 0)
   1491 		? 0
   1492 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1493 
   1494 	/* Make sure we're caught up with the newly-set low water mark. */
   1495 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1496 		/*
   1497 		 * XXX: Should we log a warning?  Should we set up a timeout
   1498 		 * to try again in a second or so?  The latter could break
   1499 		 * a caller's assumptions about interrupt protection, etc.
   1500 		 */
   1501 	}
   1502 
   1503 	mutex_exit(&pp->pr_lock);
   1504 }
   1505 
   1506 void
   1507 pool_sethiwat(struct pool *pp, int n)
   1508 {
   1509 
   1510 	mutex_enter(&pp->pr_lock);
   1511 
   1512 	pp->pr_maxpages = (n == 0)
   1513 		? 0
   1514 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1515 
   1516 	mutex_exit(&pp->pr_lock);
   1517 }
   1518 
   1519 void
   1520 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1521 {
   1522 
   1523 	mutex_enter(&pp->pr_lock);
   1524 
   1525 	pp->pr_hardlimit = n;
   1526 	pp->pr_hardlimit_warning = warnmess;
   1527 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1528 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1529 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1530 
   1531 	/*
   1532 	 * In-line version of pool_sethiwat(), because we don't want to
   1533 	 * release the lock.
   1534 	 */
   1535 	pp->pr_maxpages = (n == 0)
   1536 		? 0
   1537 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1538 
   1539 	mutex_exit(&pp->pr_lock);
   1540 }
   1541 
   1542 /*
   1543  * Release all complete pages that have not been used recently.
   1544  */
   1545 int
   1546 #ifdef POOL_DIAGNOSTIC
   1547 _pool_reclaim(struct pool *pp, const char *file, long line)
   1548 #else
   1549 pool_reclaim(struct pool *pp)
   1550 #endif
   1551 {
   1552 	struct pool_item_header *ph, *phnext;
   1553 	struct pool_cache *pc;
   1554 	struct pool_pagelist pq;
   1555 	struct pool_cache_grouplist pcgl;
   1556 	struct timeval curtime, diff;
   1557 
   1558 	if (pp->pr_drain_hook != NULL) {
   1559 		/*
   1560 		 * The drain hook must be called with the pool unlocked.
   1561 		 */
   1562 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1563 	}
   1564 
   1565 	if (mutex_tryenter(&pp->pr_lock) == 0)
   1566 		return (0);
   1567 	pr_enter(pp, file, line);
   1568 
   1569 	LIST_INIT(&pq);
   1570 	LIST_INIT(&pcgl);
   1571 
   1572 	/*
   1573 	 * Reclaim items from the pool's caches.
   1574 	 */
   1575 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
   1576 		pool_cache_reclaim(pc, &pq, &pcgl);
   1577 
   1578 	getmicrotime(&curtime);
   1579 
   1580 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1581 		phnext = LIST_NEXT(ph, ph_pagelist);
   1582 
   1583 		/* Check our minimum page claim */
   1584 		if (pp->pr_npages <= pp->pr_minpages)
   1585 			break;
   1586 
   1587 		KASSERT(ph->ph_nmissing == 0);
   1588 		timersub(&curtime, &ph->ph_time, &diff);
   1589 		if (diff.tv_sec < pool_inactive_time
   1590 		    && !pa_starved_p(pp->pr_alloc))
   1591 			continue;
   1592 
   1593 		/*
   1594 		 * If freeing this page would put us below
   1595 		 * the low water mark, stop now.
   1596 		 */
   1597 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1598 		    pp->pr_minitems)
   1599 			break;
   1600 
   1601 		pr_rmpage(pp, ph, &pq);
   1602 	}
   1603 
   1604 	pr_leave(pp);
   1605 	mutex_exit(&pp->pr_lock);
   1606 	if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
   1607 		return 0;
   1608 
   1609 	pr_pagelist_free(pp, &pq);
   1610 	pcg_grouplist_free(&pcgl);
   1611 	return (1);
   1612 }
   1613 
   1614 /*
   1615  * Drain pools, one at a time.
   1616  *
   1617  * Note, we must never be called from an interrupt context.
   1618  */
   1619 void
   1620 pool_drain(void *arg)
   1621 {
   1622 	struct pool *pp;
   1623 	int s;
   1624 
   1625 	pp = NULL;
   1626 	s = splvm();	/* XXX why? */
   1627 	mutex_enter(&pool_head_lock);
   1628 	if (drainpp == NULL) {
   1629 		drainpp = LIST_FIRST(&pool_head);
   1630 	}
   1631 	if (drainpp) {
   1632 		pp = drainpp;
   1633 		drainpp = LIST_NEXT(pp, pr_poollist);
   1634 	}
   1635 	mutex_exit(&pool_head_lock);
   1636 	if (pp)
   1637 		pool_reclaim(pp);
   1638 	splx(s);
   1639 }
   1640 
   1641 /*
   1642  * Diagnostic helpers.
   1643  */
   1644 void
   1645 pool_print(struct pool *pp, const char *modif)
   1646 {
   1647 
   1648 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1649 		printf("pool %s is locked; try again later\n",
   1650 		    pp->pr_wchan);
   1651 		return;
   1652 	}
   1653 	pool_print1(pp, modif, printf);
   1654 	mutex_exit(&pp->pr_lock);
   1655 }
   1656 
   1657 void
   1658 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1659 {
   1660 	struct pool *pp;
   1661 
   1662 	if (mutex_tryenter(&pool_head_lock) == 0) {
   1663 		(*pr)("WARNING: pool_head_slock is locked\n");
   1664 	} else {
   1665 		mutex_exit(&pool_head_lock);
   1666 	}
   1667 
   1668 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   1669 		pool_printit(pp, modif, pr);
   1670 	}
   1671 }
   1672 
   1673 void
   1674 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1675 {
   1676 
   1677 	if (pp == NULL) {
   1678 		(*pr)("Must specify a pool to print.\n");
   1679 		return;
   1680 	}
   1681 
   1682 	/*
   1683 	 * Called from DDB; interrupts should be blocked, and all
   1684 	 * other processors should be paused.  We can skip locking
   1685 	 * the pool in this case.
   1686 	 *
   1687 	 * We do a mutex_tryenter() just to print the lock
   1688 	 * status, however.
   1689 	 */
   1690 
   1691 	if (mutex_tryenter(&pp->pr_lock) == 0)
   1692 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1693 	else
   1694 		mutex_exit(&pp->pr_lock);
   1695 
   1696 	pool_print1(pp, modif, pr);
   1697 }
   1698 
   1699 static void
   1700 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1701     void (*pr)(const char *, ...))
   1702 {
   1703 	struct pool_item_header *ph;
   1704 #ifdef DIAGNOSTIC
   1705 	struct pool_item *pi;
   1706 #endif
   1707 
   1708 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1709 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1710 		    ph->ph_page, ph->ph_nmissing,
   1711 		    (u_long)ph->ph_time.tv_sec,
   1712 		    (u_long)ph->ph_time.tv_usec);
   1713 #ifdef DIAGNOSTIC
   1714 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1715 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1716 				if (pi->pi_magic != PI_MAGIC) {
   1717 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1718 					    pi, pi->pi_magic);
   1719 				}
   1720 			}
   1721 		}
   1722 #endif
   1723 	}
   1724 }
   1725 
   1726 static void
   1727 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1728 {
   1729 	struct pool_item_header *ph;
   1730 	struct pool_cache *pc;
   1731 	struct pool_cache_group *pcg;
   1732 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1733 	char c;
   1734 
   1735 	while ((c = *modif++) != '\0') {
   1736 		if (c == 'l')
   1737 			print_log = 1;
   1738 		if (c == 'p')
   1739 			print_pagelist = 1;
   1740 		if (c == 'c')
   1741 			print_cache = 1;
   1742 	}
   1743 
   1744 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1745 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1746 	    pp->pr_roflags);
   1747 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1748 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1749 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1750 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1751 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1752 
   1753 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1754 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1755 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1756 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1757 
   1758 	if (print_pagelist == 0)
   1759 		goto skip_pagelist;
   1760 
   1761 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1762 		(*pr)("\n\tempty page list:\n");
   1763 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1764 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1765 		(*pr)("\n\tfull page list:\n");
   1766 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1767 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1768 		(*pr)("\n\tpartial-page list:\n");
   1769 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1770 
   1771 	if (pp->pr_curpage == NULL)
   1772 		(*pr)("\tno current page\n");
   1773 	else
   1774 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1775 
   1776  skip_pagelist:
   1777 	if (print_log == 0)
   1778 		goto skip_log;
   1779 
   1780 	(*pr)("\n");
   1781 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1782 		(*pr)("\tno log\n");
   1783 	else {
   1784 		pr_printlog(pp, NULL, pr);
   1785 	}
   1786 
   1787  skip_log:
   1788 	if (print_cache == 0)
   1789 		goto skip_cache;
   1790 
   1791 #define PR_GROUPLIST(pcg)						\
   1792 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1793 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1794 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1795 		    POOL_PADDR_INVALID) {				\
   1796 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1797 			    pcg->pcg_objects[i].pcgo_va,		\
   1798 			    (unsigned long long)			\
   1799 			    pcg->pcg_objects[i].pcgo_pa);		\
   1800 		} else {						\
   1801 			(*pr)("\t\t\t%p\n",				\
   1802 			    pcg->pcg_objects[i].pcgo_va);		\
   1803 		}							\
   1804 	}
   1805 
   1806 	LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
   1807 		(*pr)("\tcache %p\n", pc);
   1808 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1809 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1810 		(*pr)("\t    full groups:\n");
   1811 		LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
   1812 			PR_GROUPLIST(pcg);
   1813 		}
   1814 		(*pr)("\t    partial groups:\n");
   1815 		LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
   1816 			PR_GROUPLIST(pcg);
   1817 		}
   1818 		(*pr)("\t    empty groups:\n");
   1819 		LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
   1820 			PR_GROUPLIST(pcg);
   1821 		}
   1822 	}
   1823 #undef PR_GROUPLIST
   1824 
   1825  skip_cache:
   1826 	pr_enter_check(pp, pr);
   1827 }
   1828 
   1829 static int
   1830 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1831 {
   1832 	struct pool_item *pi;
   1833 	void *page;
   1834 	int n;
   1835 
   1836 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1837 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1838 		if (page != ph->ph_page &&
   1839 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1840 			if (label != NULL)
   1841 				printf("%s: ", label);
   1842 			printf("pool(%p:%s): page inconsistency: page %p;"
   1843 			       " at page head addr %p (p %p)\n", pp,
   1844 				pp->pr_wchan, ph->ph_page,
   1845 				ph, page);
   1846 			return 1;
   1847 		}
   1848 	}
   1849 
   1850 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1851 		return 0;
   1852 
   1853 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1854 	     pi != NULL;
   1855 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1856 
   1857 #ifdef DIAGNOSTIC
   1858 		if (pi->pi_magic != PI_MAGIC) {
   1859 			if (label != NULL)
   1860 				printf("%s: ", label);
   1861 			printf("pool(%s): free list modified: magic=%x;"
   1862 			       " page %p; item ordinal %d; addr %p\n",
   1863 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1864 				n, pi);
   1865 			panic("pool");
   1866 		}
   1867 #endif
   1868 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1869 			continue;
   1870 		}
   1871 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1872 		if (page == ph->ph_page)
   1873 			continue;
   1874 
   1875 		if (label != NULL)
   1876 			printf("%s: ", label);
   1877 		printf("pool(%p:%s): page inconsistency: page %p;"
   1878 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1879 			pp->pr_wchan, ph->ph_page,
   1880 			n, pi, page);
   1881 		return 1;
   1882 	}
   1883 	return 0;
   1884 }
   1885 
   1886 
   1887 int
   1888 pool_chk(struct pool *pp, const char *label)
   1889 {
   1890 	struct pool_item_header *ph;
   1891 	int r = 0;
   1892 
   1893 	mutex_enter(&pp->pr_lock);
   1894 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1895 		r = pool_chk_page(pp, label, ph);
   1896 		if (r) {
   1897 			goto out;
   1898 		}
   1899 	}
   1900 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1901 		r = pool_chk_page(pp, label, ph);
   1902 		if (r) {
   1903 			goto out;
   1904 		}
   1905 	}
   1906 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1907 		r = pool_chk_page(pp, label, ph);
   1908 		if (r) {
   1909 			goto out;
   1910 		}
   1911 	}
   1912 
   1913 out:
   1914 	mutex_exit(&pp->pr_lock);
   1915 	return (r);
   1916 }
   1917 
   1918 /*
   1919  * pool_cache_init:
   1920  *
   1921  *	Initialize a pool cache.
   1922  *
   1923  *	NOTE: If the pool must be protected from interrupts, we expect
   1924  *	to be called at the appropriate interrupt priority level.
   1925  */
   1926 void
   1927 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1928     int (*ctor)(void *, void *, int),
   1929     void (*dtor)(void *, void *),
   1930     void *arg)
   1931 {
   1932 
   1933 	LIST_INIT(&pc->pc_emptygroups);
   1934 	LIST_INIT(&pc->pc_fullgroups);
   1935 	LIST_INIT(&pc->pc_partgroups);
   1936 	mutex_init(&pc->pc_lock, MUTEX_DRIVER, pp->pr_ipl);
   1937 
   1938 	pc->pc_pool = pp;
   1939 
   1940 	pc->pc_ctor = ctor;
   1941 	pc->pc_dtor = dtor;
   1942 	pc->pc_arg  = arg;
   1943 
   1944 	pc->pc_hits   = 0;
   1945 	pc->pc_misses = 0;
   1946 
   1947 	pc->pc_ngroups = 0;
   1948 
   1949 	pc->pc_nitems = 0;
   1950 
   1951 	if (__predict_true(!cold)) {
   1952 		mutex_enter(&pp->pr_lock);
   1953 		LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
   1954 		mutex_exit(&pp->pr_lock);
   1955 	} else
   1956 		LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
   1957 }
   1958 
   1959 /*
   1960  * pool_cache_destroy:
   1961  *
   1962  *	Destroy a pool cache.
   1963  */
   1964 void
   1965 pool_cache_destroy(struct pool_cache *pc)
   1966 {
   1967 	struct pool *pp = pc->pc_pool;
   1968 
   1969 	/* First, invalidate the entire cache. */
   1970 	pool_cache_invalidate(pc);
   1971 
   1972 	/* ...and remove it from the pool's cache list. */
   1973 	mutex_enter(&pp->pr_lock);
   1974 	LIST_REMOVE(pc, pc_poollist);
   1975 	mutex_exit(&pp->pr_lock);
   1976 
   1977 	mutex_destroy(&pc->pc_lock);
   1978 }
   1979 
   1980 static inline void *
   1981 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
   1982 {
   1983 	void *object;
   1984 	u_int idx;
   1985 
   1986 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1987 	KASSERT(pcg->pcg_avail != 0);
   1988 	idx = --pcg->pcg_avail;
   1989 
   1990 	KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
   1991 	object = pcg->pcg_objects[idx].pcgo_va;
   1992 	if (pap != NULL)
   1993 		*pap = pcg->pcg_objects[idx].pcgo_pa;
   1994 	pcg->pcg_objects[idx].pcgo_va = NULL;
   1995 
   1996 	return (object);
   1997 }
   1998 
   1999 static inline void
   2000 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
   2001 {
   2002 	u_int idx;
   2003 
   2004 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   2005 	idx = pcg->pcg_avail++;
   2006 
   2007 	KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
   2008 	pcg->pcg_objects[idx].pcgo_va = object;
   2009 	pcg->pcg_objects[idx].pcgo_pa = pa;
   2010 }
   2011 
   2012 static void
   2013 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
   2014 {
   2015 	struct pool_cache_group *pcg;
   2016 
   2017 	while ((pcg = LIST_FIRST(pcgl)) != NULL) {
   2018 		LIST_REMOVE(pcg, pcg_list);
   2019 		pool_put(&pcgpool, pcg);
   2020 	}
   2021 }
   2022 
   2023 /*
   2024  * pool_cache_get{,_paddr}:
   2025  *
   2026  *	Get an object from a pool cache (optionally returning
   2027  *	the physical address of the object).
   2028  */
   2029 void *
   2030 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
   2031 {
   2032 	struct pool_cache_group *pcg;
   2033 	void *object;
   2034 
   2035 #ifdef LOCKDEBUG
   2036 	if (flags & PR_WAITOK)
   2037 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2038 #endif
   2039 
   2040 	mutex_enter(&pc->pc_lock);
   2041 
   2042 	pcg = LIST_FIRST(&pc->pc_partgroups);
   2043 	if (pcg == NULL) {
   2044 		pcg = LIST_FIRST(&pc->pc_fullgroups);
   2045 		if (pcg != NULL) {
   2046 			LIST_REMOVE(pcg, pcg_list);
   2047 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2048 		}
   2049 	}
   2050 	if (pcg == NULL) {
   2051 
   2052 		/*
   2053 		 * No groups with any available objects.  Allocate
   2054 		 * a new object, construct it, and return it to
   2055 		 * the caller.  We will allocate a group, if necessary,
   2056 		 * when the object is freed back to the cache.
   2057 		 */
   2058 		pc->pc_misses++;
   2059 		mutex_exit(&pc->pc_lock);
   2060 		object = pool_get(pc->pc_pool, flags);
   2061 		if (object != NULL && pc->pc_ctor != NULL) {
   2062 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2063 				pool_put(pc->pc_pool, object);
   2064 				return (NULL);
   2065 			}
   2066 		}
   2067 		KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
   2068 		    (pc->pc_pool->pr_align - 1)) == 0);
   2069 		if (object != NULL && pap != NULL) {
   2070 #ifdef POOL_VTOPHYS
   2071 			*pap = POOL_VTOPHYS(object);
   2072 #else
   2073 			*pap = POOL_PADDR_INVALID;
   2074 #endif
   2075 		}
   2076 
   2077 		FREECHECK_OUT(&pc->pc_freecheck, object);
   2078 		return (object);
   2079 	}
   2080 
   2081 	pc->pc_hits++;
   2082 	pc->pc_nitems--;
   2083 	object = pcg_get(pcg, pap);
   2084 
   2085 	if (pcg->pcg_avail == 0) {
   2086 		LIST_REMOVE(pcg, pcg_list);
   2087 		LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
   2088 	}
   2089 	mutex_exit(&pc->pc_lock);
   2090 
   2091 	KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
   2092 	    (pc->pc_pool->pr_align - 1)) == 0);
   2093 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2094 	return (object);
   2095 }
   2096 
   2097 /*
   2098  * pool_cache_put{,_paddr}:
   2099  *
   2100  *	Put an object back to the pool cache (optionally caching the
   2101  *	physical address of the object).
   2102  */
   2103 void
   2104 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
   2105 {
   2106 	struct pool_cache_group *pcg;
   2107 
   2108 	FREECHECK_IN(&pc->pc_freecheck, object);
   2109 
   2110 	if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
   2111 		goto destruct;
   2112 	}
   2113 
   2114 	mutex_enter(&pc->pc_lock);
   2115 
   2116 	pcg = LIST_FIRST(&pc->pc_partgroups);
   2117 	if (pcg == NULL) {
   2118 		pcg = LIST_FIRST(&pc->pc_emptygroups);
   2119 		if (pcg != NULL) {
   2120 			LIST_REMOVE(pcg, pcg_list);
   2121 			LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2122 		}
   2123 	}
   2124 	if (pcg == NULL) {
   2125 
   2126 		/*
   2127 		 * No empty groups to free the object to.  Attempt to
   2128 		 * allocate one.
   2129 		 */
   2130 		mutex_exit(&pc->pc_lock);
   2131 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   2132 		if (pcg == NULL) {
   2133 destruct:
   2134 
   2135 			/*
   2136 			 * Unable to allocate a cache group; destruct the object
   2137 			 * and free it back to the pool.
   2138 			 */
   2139 			pool_cache_destruct_object(pc, object);
   2140 			return;
   2141 		}
   2142 		memset(pcg, 0, sizeof(*pcg));
   2143 		mutex_enter(&pc->pc_lock);
   2144 		pc->pc_ngroups++;
   2145 		LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
   2146 	}
   2147 
   2148 	pc->pc_nitems++;
   2149 	pcg_put(pcg, object, pa);
   2150 
   2151 	if (pcg->pcg_avail == PCG_NOBJECTS) {
   2152 		LIST_REMOVE(pcg, pcg_list);
   2153 		LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
   2154 	}
   2155 	mutex_exit(&pc->pc_lock);
   2156 }
   2157 
   2158 /*
   2159  * pool_cache_destruct_object:
   2160  *
   2161  *	Force destruction of an object and its release back into
   2162  *	the pool.
   2163  */
   2164 void
   2165 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   2166 {
   2167 
   2168 	if (pc->pc_dtor != NULL)
   2169 		(*pc->pc_dtor)(pc->pc_arg, object);
   2170 	pool_put(pc->pc_pool, object);
   2171 }
   2172 
   2173 static void
   2174 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
   2175     struct pool_cache *pc, struct pool_pagelist *pq,
   2176     struct pool_cache_grouplist *pcgdl)
   2177 {
   2178 	struct pool_cache_group *pcg, *npcg;
   2179 	void *object;
   2180 
   2181 	for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
   2182 		npcg = LIST_NEXT(pcg, pcg_list);
   2183 		while (pcg->pcg_avail != 0) {
   2184 			pc->pc_nitems--;
   2185 			object = pcg_get(pcg, NULL);
   2186 			if (pc->pc_dtor != NULL)
   2187 				(*pc->pc_dtor)(pc->pc_arg, object);
   2188 			pool_do_put(pc->pc_pool, object, pq);
   2189 		}
   2190 		pc->pc_ngroups--;
   2191 		LIST_REMOVE(pcg, pcg_list);
   2192 		LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
   2193 	}
   2194 }
   2195 
   2196 static void
   2197 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
   2198     struct pool_cache_grouplist *pcgl)
   2199 {
   2200 
   2201 	KASSERT(mutex_owned(&pc->pc_lock));
   2202 	KASSERT(mutex_owned(&pc->pc_pool->pr_lock));
   2203 
   2204 	pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
   2205 	pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
   2206 
   2207 	KASSERT(LIST_EMPTY(&pc->pc_partgroups));
   2208 	KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
   2209 	KASSERT(pc->pc_nitems == 0);
   2210 }
   2211 
   2212 /*
   2213  * pool_cache_invalidate:
   2214  *
   2215  *	Invalidate a pool cache (destruct and release all of the
   2216  *	cached objects).
   2217  */
   2218 void
   2219 pool_cache_invalidate(struct pool_cache *pc)
   2220 {
   2221 	struct pool_pagelist pq;
   2222 	struct pool_cache_grouplist pcgl;
   2223 
   2224 	LIST_INIT(&pq);
   2225 	LIST_INIT(&pcgl);
   2226 
   2227 	mutex_enter(&pc->pc_lock);
   2228 	mutex_enter(&pc->pc_pool->pr_lock);
   2229 
   2230 	pool_do_cache_invalidate(pc, &pq, &pcgl);
   2231 
   2232 	mutex_exit(&pc->pc_pool->pr_lock);
   2233 	mutex_exit(&pc->pc_lock);
   2234 
   2235 	pr_pagelist_free(pc->pc_pool, &pq);
   2236 	pcg_grouplist_free(&pcgl);
   2237 }
   2238 
   2239 /*
   2240  * pool_cache_reclaim:
   2241  *
   2242  *	Reclaim a pool cache for pool_reclaim().
   2243  */
   2244 static void
   2245 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
   2246     struct pool_cache_grouplist *pcgl)
   2247 {
   2248 
   2249 	/*
   2250 	 * We're locking in the wrong order (normally pool_cache -> pool,
   2251 	 * but the pool is already locked when we get here), so we have
   2252 	 * to use trylock.  If we can't lock the pool_cache, it's not really
   2253 	 * a big deal here.
   2254 	 */
   2255 	if (mutex_tryenter(&pc->pc_lock) == 0)
   2256 		return;
   2257 
   2258 	pool_do_cache_invalidate(pc, pq, pcgl);
   2259 
   2260 	mutex_exit(&pc->pc_lock);
   2261 }
   2262 
   2263 /*
   2264  * Pool backend allocators.
   2265  *
   2266  * Each pool has a backend allocator that handles allocation, deallocation,
   2267  * and any additional draining that might be needed.
   2268  *
   2269  * We provide two standard allocators:
   2270  *
   2271  *	pool_allocator_kmem - the default when no allocator is specified
   2272  *
   2273  *	pool_allocator_nointr - used for pools that will not be accessed
   2274  *	in interrupt context.
   2275  */
   2276 void	*pool_page_alloc(struct pool *, int);
   2277 void	pool_page_free(struct pool *, void *);
   2278 
   2279 #ifdef POOL_SUBPAGE
   2280 struct pool_allocator pool_allocator_kmem_fullpage = {
   2281 	pool_page_alloc, pool_page_free, 0,
   2282 	.pa_backingmapptr = &kmem_map,
   2283 };
   2284 #else
   2285 struct pool_allocator pool_allocator_kmem = {
   2286 	pool_page_alloc, pool_page_free, 0,
   2287 	.pa_backingmapptr = &kmem_map,
   2288 };
   2289 #endif
   2290 
   2291 void	*pool_page_alloc_nointr(struct pool *, int);
   2292 void	pool_page_free_nointr(struct pool *, void *);
   2293 
   2294 #ifdef POOL_SUBPAGE
   2295 struct pool_allocator pool_allocator_nointr_fullpage = {
   2296 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2297 	.pa_backingmapptr = &kernel_map,
   2298 };
   2299 #else
   2300 struct pool_allocator pool_allocator_nointr = {
   2301 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2302 	.pa_backingmapptr = &kernel_map,
   2303 };
   2304 #endif
   2305 
   2306 #ifdef POOL_SUBPAGE
   2307 void	*pool_subpage_alloc(struct pool *, int);
   2308 void	pool_subpage_free(struct pool *, void *);
   2309 
   2310 struct pool_allocator pool_allocator_kmem = {
   2311 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2312 	.pa_backingmapptr = &kmem_map,
   2313 };
   2314 
   2315 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2316 void	pool_subpage_free_nointr(struct pool *, void *);
   2317 
   2318 struct pool_allocator pool_allocator_nointr = {
   2319 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2320 	.pa_backingmapptr = &kmem_map,
   2321 };
   2322 #endif /* POOL_SUBPAGE */
   2323 
   2324 static void *
   2325 pool_allocator_alloc(struct pool *pp, int flags)
   2326 {
   2327 	struct pool_allocator *pa = pp->pr_alloc;
   2328 	void *res;
   2329 
   2330 	res = (*pa->pa_alloc)(pp, flags);
   2331 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2332 		/*
   2333 		 * We only run the drain hook here if PR_NOWAIT.
   2334 		 * In other cases, the hook will be run in
   2335 		 * pool_reclaim().
   2336 		 */
   2337 		if (pp->pr_drain_hook != NULL) {
   2338 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2339 			res = (*pa->pa_alloc)(pp, flags);
   2340 		}
   2341 	}
   2342 	return res;
   2343 }
   2344 
   2345 static void
   2346 pool_allocator_free(struct pool *pp, void *v)
   2347 {
   2348 	struct pool_allocator *pa = pp->pr_alloc;
   2349 
   2350 	(*pa->pa_free)(pp, v);
   2351 }
   2352 
   2353 void *
   2354 pool_page_alloc(struct pool *pp, int flags)
   2355 {
   2356 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2357 
   2358 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2359 }
   2360 
   2361 void
   2362 pool_page_free(struct pool *pp, void *v)
   2363 {
   2364 
   2365 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2366 }
   2367 
   2368 static void *
   2369 pool_page_alloc_meta(struct pool *pp, int flags)
   2370 {
   2371 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2372 
   2373 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2374 }
   2375 
   2376 static void
   2377 pool_page_free_meta(struct pool *pp, void *v)
   2378 {
   2379 
   2380 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2381 }
   2382 
   2383 #ifdef POOL_SUBPAGE
   2384 /* Sub-page allocator, for machines with large hardware pages. */
   2385 void *
   2386 pool_subpage_alloc(struct pool *pp, int flags)
   2387 {
   2388 	return pool_get(&psppool, flags);
   2389 }
   2390 
   2391 void
   2392 pool_subpage_free(struct pool *pp, void *v)
   2393 {
   2394 	pool_put(&psppool, v);
   2395 }
   2396 
   2397 /* We don't provide a real nointr allocator.  Maybe later. */
   2398 void *
   2399 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2400 {
   2401 
   2402 	return (pool_subpage_alloc(pp, flags));
   2403 }
   2404 
   2405 void
   2406 pool_subpage_free_nointr(struct pool *pp, void *v)
   2407 {
   2408 
   2409 	pool_subpage_free(pp, v);
   2410 }
   2411 #endif /* POOL_SUBPAGE */
   2412 void *
   2413 pool_page_alloc_nointr(struct pool *pp, int flags)
   2414 {
   2415 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2416 
   2417 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2418 }
   2419 
   2420 void
   2421 pool_page_free_nointr(struct pool *pp, void *v)
   2422 {
   2423 
   2424 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2425 }
   2426