subr_pool.c revision 1.128.2.7 1 /* $NetBSD: subr_pool.c,v 1.128.2.7 2007/09/01 12:55:15 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.128.2.7 2007/09/01 12:55:15 ad Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56 #include <sys/debug.h>
57 #include <sys/lockdebug.h>
58
59 #include <uvm/uvm.h>
60
61 /*
62 * Pool resource management utility.
63 *
64 * Memory is allocated in pages which are split into pieces according to
65 * the pool item size. Each page is kept on one of three lists in the
66 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
67 * for empty, full and partially-full pages respectively. The individual
68 * pool items are on a linked list headed by `ph_itemlist' in each page
69 * header. The memory for building the page list is either taken from
70 * the allocated pages themselves (for small pool items) or taken from
71 * an internal pool of page headers (`phpool').
72 */
73
74 /* List of all pools */
75 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
76
77 /* List of all caches. */
78 LIST_HEAD(,pool_cache) pool_cache_head =
79 LIST_HEAD_INITIALIZER(pool_cache_head);
80
81 /* Private pool for page header structures */
82 #define PHPOOL_MAX 8
83 static struct pool phpool[PHPOOL_MAX];
84 #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
85
86 #ifdef POOL_SUBPAGE
87 /* Pool of subpages for use by normal pools. */
88 static struct pool psppool;
89 #endif
90
91 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
92 SLIST_HEAD_INITIALIZER(pa_deferinitq);
93
94 static void *pool_page_alloc_meta(struct pool *, int);
95 static void pool_page_free_meta(struct pool *, void *);
96
97 /* allocator for pool metadata */
98 struct pool_allocator pool_allocator_meta = {
99 pool_page_alloc_meta, pool_page_free_meta,
100 .pa_backingmapptr = &kmem_map,
101 };
102
103 /* # of seconds to retain page after last use */
104 int pool_inactive_time = 10;
105
106 /* Next candidate for drainage (see pool_drain()) */
107 static struct pool *drainpp;
108
109 /* This lock protects both pool_head and drainpp. */
110 static kmutex_t pool_head_lock;
111 static kcondvar_t pool_busy;
112
113 typedef uint8_t pool_item_freelist_t;
114
115 struct pool_item_header {
116 /* Page headers */
117 LIST_ENTRY(pool_item_header)
118 ph_pagelist; /* pool page list */
119 SPLAY_ENTRY(pool_item_header)
120 ph_node; /* Off-page page headers */
121 void * ph_page; /* this page's address */
122 struct timeval ph_time; /* last referenced */
123 union {
124 /* !PR_NOTOUCH */
125 struct {
126 LIST_HEAD(, pool_item)
127 phu_itemlist; /* chunk list for this page */
128 } phu_normal;
129 /* PR_NOTOUCH */
130 struct {
131 uint16_t
132 phu_off; /* start offset in page */
133 pool_item_freelist_t
134 phu_firstfree; /* first free item */
135 /*
136 * XXX it might be better to use
137 * a simple bitmap and ffs(3)
138 */
139 } phu_notouch;
140 } ph_u;
141 uint16_t ph_nmissing; /* # of chunks in use */
142 };
143 #define ph_itemlist ph_u.phu_normal.phu_itemlist
144 #define ph_off ph_u.phu_notouch.phu_off
145 #define ph_firstfree ph_u.phu_notouch.phu_firstfree
146
147 struct pool_item {
148 #ifdef DIAGNOSTIC
149 u_int pi_magic;
150 #endif
151 #define PI_MAGIC 0xdeadbeefU
152 /* Other entries use only this list entry */
153 LIST_ENTRY(pool_item) pi_list;
154 };
155
156 #define POOL_NEEDS_CATCHUP(pp) \
157 ((pp)->pr_nitems < (pp)->pr_minitems)
158
159 /*
160 * Pool cache management.
161 *
162 * Pool caches provide a way for constructed objects to be cached by the
163 * pool subsystem. This can lead to performance improvements by avoiding
164 * needless object construction/destruction; it is deferred until absolutely
165 * necessary.
166 *
167 * Caches are grouped into cache groups. Each cache group references up
168 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
169 * object from the pool, it calls the object's constructor and places it
170 * into a cache group. When a cache group frees an object back to the
171 * pool, it first calls the object's destructor. This allows the object
172 * to persist in constructed form while freed to the cache.
173 *
174 * The pool references each cache, so that when a pool is drained by the
175 * pagedaemon, it can drain each individual cache as well. Each time a
176 * cache is drained, the most idle cache group is freed to the pool in
177 * its entirety.
178 *
179 * Pool caches are layed on top of pools. By layering them, we can avoid
180 * the complexity of cache management for pools which would not benefit
181 * from it.
182 */
183
184 static struct pool pcgpool;
185 static struct pool cache_pool;
186 static struct pool cache_cpu_pool;
187
188 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
189 void *, paddr_t);
190 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
191 void **, paddr_t *, int);
192 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
193 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
194
195 static int pool_catchup(struct pool *);
196 static void pool_prime_page(struct pool *, void *,
197 struct pool_item_header *);
198 static void pool_update_curpage(struct pool *);
199
200 static int pool_grow(struct pool *, int);
201 static void *pool_allocator_alloc(struct pool *, int);
202 static void pool_allocator_free(struct pool *, void *);
203
204 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
205 void (*)(const char *, ...));
206 static void pool_print1(struct pool *, const char *,
207 void (*)(const char *, ...));
208
209 static int pool_chk_page(struct pool *, const char *,
210 struct pool_item_header *);
211
212 /*
213 * Pool log entry. An array of these is allocated in pool_init().
214 */
215 struct pool_log {
216 const char *pl_file;
217 long pl_line;
218 int pl_action;
219 #define PRLOG_GET 1
220 #define PRLOG_PUT 2
221 void *pl_addr;
222 };
223
224 #ifdef POOL_DIAGNOSTIC
225 /* Number of entries in pool log buffers */
226 #ifndef POOL_LOGSIZE
227 #define POOL_LOGSIZE 10
228 #endif
229
230 int pool_logsize = POOL_LOGSIZE;
231
232 static inline void
233 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
234 {
235 int n = pp->pr_curlogentry;
236 struct pool_log *pl;
237
238 if ((pp->pr_roflags & PR_LOGGING) == 0)
239 return;
240
241 /*
242 * Fill in the current entry. Wrap around and overwrite
243 * the oldest entry if necessary.
244 */
245 pl = &pp->pr_log[n];
246 pl->pl_file = file;
247 pl->pl_line = line;
248 pl->pl_action = action;
249 pl->pl_addr = v;
250 if (++n >= pp->pr_logsize)
251 n = 0;
252 pp->pr_curlogentry = n;
253 }
254
255 static void
256 pr_printlog(struct pool *pp, struct pool_item *pi,
257 void (*pr)(const char *, ...))
258 {
259 int i = pp->pr_logsize;
260 int n = pp->pr_curlogentry;
261
262 if ((pp->pr_roflags & PR_LOGGING) == 0)
263 return;
264
265 /*
266 * Print all entries in this pool's log.
267 */
268 while (i-- > 0) {
269 struct pool_log *pl = &pp->pr_log[n];
270 if (pl->pl_action != 0) {
271 if (pi == NULL || pi == pl->pl_addr) {
272 (*pr)("\tlog entry %d:\n", i);
273 (*pr)("\t\taction = %s, addr = %p\n",
274 pl->pl_action == PRLOG_GET ? "get" : "put",
275 pl->pl_addr);
276 (*pr)("\t\tfile: %s at line %lu\n",
277 pl->pl_file, pl->pl_line);
278 }
279 }
280 if (++n >= pp->pr_logsize)
281 n = 0;
282 }
283 }
284
285 static inline void
286 pr_enter(struct pool *pp, const char *file, long line)
287 {
288
289 if (__predict_false(pp->pr_entered_file != NULL)) {
290 printf("pool %s: reentrancy at file %s line %ld\n",
291 pp->pr_wchan, file, line);
292 printf(" previous entry at file %s line %ld\n",
293 pp->pr_entered_file, pp->pr_entered_line);
294 panic("pr_enter");
295 }
296
297 pp->pr_entered_file = file;
298 pp->pr_entered_line = line;
299 }
300
301 static inline void
302 pr_leave(struct pool *pp)
303 {
304
305 if (__predict_false(pp->pr_entered_file == NULL)) {
306 printf("pool %s not entered?\n", pp->pr_wchan);
307 panic("pr_leave");
308 }
309
310 pp->pr_entered_file = NULL;
311 pp->pr_entered_line = 0;
312 }
313
314 static inline void
315 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
316 {
317
318 if (pp->pr_entered_file != NULL)
319 (*pr)("\n\tcurrently entered from file %s line %ld\n",
320 pp->pr_entered_file, pp->pr_entered_line);
321 }
322 #else
323 #define pr_log(pp, v, action, file, line)
324 #define pr_printlog(pp, pi, pr)
325 #define pr_enter(pp, file, line)
326 #define pr_leave(pp)
327 #define pr_enter_check(pp, pr)
328 #endif /* POOL_DIAGNOSTIC */
329
330 static inline int
331 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
332 const void *v)
333 {
334 const char *cp = v;
335 int idx;
336
337 KASSERT(pp->pr_roflags & PR_NOTOUCH);
338 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
339 KASSERT(idx < pp->pr_itemsperpage);
340 return idx;
341 }
342
343 #define PR_FREELIST_ALIGN(p) \
344 roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
345 #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
346 #define PR_INDEX_USED ((pool_item_freelist_t)-1)
347 #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
348
349 static inline void
350 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
351 void *obj)
352 {
353 int idx = pr_item_notouch_index(pp, ph, obj);
354 pool_item_freelist_t *freelist = PR_FREELIST(ph);
355
356 KASSERT(freelist[idx] == PR_INDEX_USED);
357 freelist[idx] = ph->ph_firstfree;
358 ph->ph_firstfree = idx;
359 }
360
361 static inline void *
362 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
363 {
364 int idx = ph->ph_firstfree;
365 pool_item_freelist_t *freelist = PR_FREELIST(ph);
366
367 KASSERT(freelist[idx] != PR_INDEX_USED);
368 ph->ph_firstfree = freelist[idx];
369 freelist[idx] = PR_INDEX_USED;
370
371 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
372 }
373
374 static inline int
375 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
376 {
377
378 /*
379 * we consider pool_item_header with smaller ph_page bigger.
380 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
381 */
382
383 if (a->ph_page < b->ph_page)
384 return (1);
385 else if (a->ph_page > b->ph_page)
386 return (-1);
387 else
388 return (0);
389 }
390
391 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
392 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
393
394 /*
395 * Return the pool page header based on item address.
396 */
397 static inline struct pool_item_header *
398 pr_find_pagehead(struct pool *pp, void *v)
399 {
400 struct pool_item_header *ph, tmp;
401
402 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
403 tmp.ph_page = (void *)(uintptr_t)v;
404 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
405 if (ph == NULL) {
406 ph = SPLAY_ROOT(&pp->pr_phtree);
407 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
408 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
409 }
410 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
411 }
412 } else {
413 void *page =
414 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
415
416 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
417 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
418 } else {
419 tmp.ph_page = page;
420 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
421 }
422 }
423
424 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
425 ((char *)ph->ph_page <= (char *)v &&
426 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
427 return ph;
428 }
429
430 static void
431 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
432 {
433 struct pool_item_header *ph;
434
435 while ((ph = LIST_FIRST(pq)) != NULL) {
436 LIST_REMOVE(ph, ph_pagelist);
437 pool_allocator_free(pp, ph->ph_page);
438 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
439 pool_put(pp->pr_phpool, ph);
440 }
441 }
442
443 /*
444 * Remove a page from the pool.
445 */
446 static inline void
447 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
448 struct pool_pagelist *pq)
449 {
450
451 KASSERT(mutex_owned(&pp->pr_lock));
452
453 /*
454 * If the page was idle, decrement the idle page count.
455 */
456 if (ph->ph_nmissing == 0) {
457 #ifdef DIAGNOSTIC
458 if (pp->pr_nidle == 0)
459 panic("pr_rmpage: nidle inconsistent");
460 if (pp->pr_nitems < pp->pr_itemsperpage)
461 panic("pr_rmpage: nitems inconsistent");
462 #endif
463 pp->pr_nidle--;
464 }
465
466 pp->pr_nitems -= pp->pr_itemsperpage;
467
468 /*
469 * Unlink the page from the pool and queue it for release.
470 */
471 LIST_REMOVE(ph, ph_pagelist);
472 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
473 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
474 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
475
476 pp->pr_npages--;
477 pp->pr_npagefree++;
478
479 pool_update_curpage(pp);
480 }
481
482 static bool
483 pa_starved_p(struct pool_allocator *pa)
484 {
485
486 if (pa->pa_backingmap != NULL) {
487 return vm_map_starved_p(pa->pa_backingmap);
488 }
489 return false;
490 }
491
492 static int
493 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
494 {
495 struct pool *pp = obj;
496 struct pool_allocator *pa = pp->pr_alloc;
497
498 KASSERT(&pp->pr_reclaimerentry == ce);
499 pool_reclaim(pp);
500 if (!pa_starved_p(pa)) {
501 return CALLBACK_CHAIN_ABORT;
502 }
503 return CALLBACK_CHAIN_CONTINUE;
504 }
505
506 static void
507 pool_reclaim_register(struct pool *pp)
508 {
509 struct vm_map *map = pp->pr_alloc->pa_backingmap;
510 int s;
511
512 if (map == NULL) {
513 return;
514 }
515
516 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
517 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
518 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
519 splx(s);
520 }
521
522 static void
523 pool_reclaim_unregister(struct pool *pp)
524 {
525 struct vm_map *map = pp->pr_alloc->pa_backingmap;
526 int s;
527
528 if (map == NULL) {
529 return;
530 }
531
532 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
533 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
534 &pp->pr_reclaimerentry);
535 splx(s);
536 }
537
538 static void
539 pa_reclaim_register(struct pool_allocator *pa)
540 {
541 struct vm_map *map = *pa->pa_backingmapptr;
542 struct pool *pp;
543
544 KASSERT(pa->pa_backingmap == NULL);
545 if (map == NULL) {
546 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
547 return;
548 }
549 pa->pa_backingmap = map;
550 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
551 pool_reclaim_register(pp);
552 }
553 }
554
555 /*
556 * Initialize all the pools listed in the "pools" link set.
557 */
558 void
559 pool_subsystem_init(void)
560 {
561 struct pool_allocator *pa;
562 __link_set_decl(pools, struct link_pool_init);
563 struct link_pool_init * const *pi;
564
565 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
566 cv_init(&pool_busy, "poolbusy");
567
568 __link_set_foreach(pi, pools)
569 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
570 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
571 (*pi)->palloc, (*pi)->ipl);
572
573 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
574 KASSERT(pa->pa_backingmapptr != NULL);
575 KASSERT(*pa->pa_backingmapptr != NULL);
576 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
577 pa_reclaim_register(pa);
578 }
579
580 pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
581 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
582
583 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
584 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
585 }
586
587 /*
588 * Initialize the given pool resource structure.
589 *
590 * We export this routine to allow other kernel parts to declare
591 * static pools that must be initialized before malloc() is available.
592 */
593 void
594 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
595 const char *wchan, struct pool_allocator *palloc, int ipl)
596 {
597 #ifdef DEBUG
598 struct pool *pp1;
599 #endif
600 size_t trysize, phsize;
601 int off, slack;
602
603 KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
604 PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
605
606 #ifdef DEBUG
607 /*
608 * Check that the pool hasn't already been initialised and
609 * added to the list of all pools.
610 */
611 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
612 if (pp == pp1)
613 panic("pool_init: pool %s already initialised",
614 wchan);
615 }
616 #endif
617
618 #ifdef POOL_DIAGNOSTIC
619 /*
620 * Always log if POOL_DIAGNOSTIC is defined.
621 */
622 if (pool_logsize != 0)
623 flags |= PR_LOGGING;
624 #endif
625
626 if (palloc == NULL)
627 palloc = &pool_allocator_kmem;
628 #ifdef POOL_SUBPAGE
629 if (size > palloc->pa_pagesz) {
630 if (palloc == &pool_allocator_kmem)
631 palloc = &pool_allocator_kmem_fullpage;
632 else if (palloc == &pool_allocator_nointr)
633 palloc = &pool_allocator_nointr_fullpage;
634 }
635 #endif /* POOL_SUBPAGE */
636 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
637 if (palloc->pa_pagesz == 0)
638 palloc->pa_pagesz = PAGE_SIZE;
639
640 TAILQ_INIT(&palloc->pa_list);
641
642 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
643 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
644 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
645
646 if (palloc->pa_backingmapptr != NULL) {
647 pa_reclaim_register(palloc);
648 }
649 palloc->pa_flags |= PA_INITIALIZED;
650 }
651
652 if (align == 0)
653 align = ALIGN(1);
654
655 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
656 size = sizeof(struct pool_item);
657
658 size = roundup(size, align);
659 #ifdef DIAGNOSTIC
660 if (size > palloc->pa_pagesz)
661 panic("pool_init: pool item size (%zu) too large", size);
662 #endif
663
664 /*
665 * Initialize the pool structure.
666 */
667 LIST_INIT(&pp->pr_emptypages);
668 LIST_INIT(&pp->pr_fullpages);
669 LIST_INIT(&pp->pr_partpages);
670 pp->pr_cache = NULL;
671 pp->pr_curpage = NULL;
672 pp->pr_npages = 0;
673 pp->pr_minitems = 0;
674 pp->pr_minpages = 0;
675 pp->pr_maxpages = UINT_MAX;
676 pp->pr_roflags = flags;
677 pp->pr_flags = 0;
678 pp->pr_size = size;
679 pp->pr_align = align;
680 pp->pr_wchan = wchan;
681 pp->pr_alloc = palloc;
682 pp->pr_nitems = 0;
683 pp->pr_nout = 0;
684 pp->pr_hardlimit = UINT_MAX;
685 pp->pr_hardlimit_warning = NULL;
686 pp->pr_hardlimit_ratecap.tv_sec = 0;
687 pp->pr_hardlimit_ratecap.tv_usec = 0;
688 pp->pr_hardlimit_warning_last.tv_sec = 0;
689 pp->pr_hardlimit_warning_last.tv_usec = 0;
690 pp->pr_drain_hook = NULL;
691 pp->pr_drain_hook_arg = NULL;
692 pp->pr_freecheck = NULL;
693
694 /*
695 * Decide whether to put the page header off page to avoid
696 * wasting too large a part of the page or too big item.
697 * Off-page page headers go on a hash table, so we can match
698 * a returned item with its header based on the page address.
699 * We use 1/16 of the page size and about 8 times of the item
700 * size as the threshold (XXX: tune)
701 *
702 * However, we'll put the header into the page if we can put
703 * it without wasting any items.
704 *
705 * Silently enforce `0 <= ioff < align'.
706 */
707 pp->pr_itemoffset = ioff %= align;
708 /* See the comment below about reserved bytes. */
709 trysize = palloc->pa_pagesz - ((align - ioff) % align);
710 phsize = ALIGN(sizeof(struct pool_item_header));
711 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
712 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
713 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
714 /* Use the end of the page for the page header */
715 pp->pr_roflags |= PR_PHINPAGE;
716 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
717 } else {
718 /* The page header will be taken from our page header pool */
719 pp->pr_phoffset = 0;
720 off = palloc->pa_pagesz;
721 SPLAY_INIT(&pp->pr_phtree);
722 }
723
724 /*
725 * Alignment is to take place at `ioff' within the item. This means
726 * we must reserve up to `align - 1' bytes on the page to allow
727 * appropriate positioning of each item.
728 */
729 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
730 KASSERT(pp->pr_itemsperpage != 0);
731 if ((pp->pr_roflags & PR_NOTOUCH)) {
732 int idx;
733
734 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
735 idx++) {
736 /* nothing */
737 }
738 if (idx >= PHPOOL_MAX) {
739 /*
740 * if you see this panic, consider to tweak
741 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
742 */
743 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
744 pp->pr_wchan, pp->pr_itemsperpage);
745 }
746 pp->pr_phpool = &phpool[idx];
747 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
748 pp->pr_phpool = &phpool[0];
749 }
750 #if defined(DIAGNOSTIC)
751 else {
752 pp->pr_phpool = NULL;
753 }
754 #endif
755
756 /*
757 * Use the slack between the chunks and the page header
758 * for "cache coloring".
759 */
760 slack = off - pp->pr_itemsperpage * pp->pr_size;
761 pp->pr_maxcolor = (slack / align) * align;
762 pp->pr_curcolor = 0;
763
764 pp->pr_nget = 0;
765 pp->pr_nfail = 0;
766 pp->pr_nput = 0;
767 pp->pr_npagealloc = 0;
768 pp->pr_npagefree = 0;
769 pp->pr_hiwat = 0;
770 pp->pr_nidle = 0;
771 pp->pr_refcnt = 0;
772
773 #ifdef POOL_DIAGNOSTIC
774 if (flags & PR_LOGGING) {
775 if (kmem_map == NULL ||
776 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
777 M_TEMP, M_NOWAIT)) == NULL)
778 pp->pr_roflags &= ~PR_LOGGING;
779 pp->pr_curlogentry = 0;
780 pp->pr_logsize = pool_logsize;
781 }
782 #endif
783
784 pp->pr_entered_file = NULL;
785 pp->pr_entered_line = 0;
786
787 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
788 cv_init(&pp->pr_cv, wchan);
789 pp->pr_ipl = ipl;
790
791 /*
792 * Initialize private page header pool and cache magazine pool if we
793 * haven't done so yet.
794 * XXX LOCKING.
795 */
796 if (phpool[0].pr_size == 0) {
797 int idx;
798 for (idx = 0; idx < PHPOOL_MAX; idx++) {
799 static char phpool_names[PHPOOL_MAX][6+1+6+1];
800 int nelem;
801 size_t sz;
802
803 nelem = PHPOOL_FREELIST_NELEM(idx);
804 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
805 "phpool-%d", nelem);
806 sz = sizeof(struct pool_item_header);
807 if (nelem) {
808 sz = PR_FREELIST_ALIGN(sz)
809 + nelem * sizeof(pool_item_freelist_t);
810 }
811 pool_init(&phpool[idx], sz, 0, 0, 0,
812 phpool_names[idx], &pool_allocator_meta, IPL_VM);
813 }
814 #ifdef POOL_SUBPAGE
815 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
816 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
817 #endif
818 pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
819 "cachegrp", &pool_allocator_meta, IPL_VM);
820 }
821
822 if (__predict_true(!cold)) {
823 /* Insert into the list of all pools. */
824 mutex_enter(&pool_head_lock);
825 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
826 mutex_exit(&pool_head_lock);
827
828 /* Insert this into the list of pools using this allocator. */
829 mutex_enter(&palloc->pa_lock);
830 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
831 mutex_exit(&palloc->pa_lock);
832 } else {
833 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
834 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
835 }
836
837 pool_reclaim_register(pp);
838 }
839
840 /*
841 * De-commision a pool resource.
842 */
843 void
844 pool_destroy(struct pool *pp)
845 {
846 struct pool_pagelist pq;
847 struct pool_item_header *ph;
848
849 /* Remove from global pool list */
850 mutex_enter(&pool_head_lock);
851 while (pp->pr_refcnt != 0)
852 cv_wait(&pool_busy, &pool_head_lock);
853 LIST_REMOVE(pp, pr_poollist);
854 if (drainpp == pp)
855 drainpp = NULL;
856 mutex_exit(&pool_head_lock);
857
858 /* Remove this pool from its allocator's list of pools. */
859 pool_reclaim_unregister(pp);
860 mutex_enter(&pp->pr_alloc->pa_lock);
861 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
862 mutex_exit(&pp->pr_alloc->pa_lock);
863
864 mutex_enter(&pp->pr_lock);
865
866 KASSERT(pp->pr_cache == NULL);
867
868 #ifdef DIAGNOSTIC
869 if (pp->pr_nout != 0) {
870 pr_printlog(pp, NULL, printf);
871 panic("pool_destroy: pool busy: still out: %u",
872 pp->pr_nout);
873 }
874 #endif
875
876 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
877 KASSERT(LIST_EMPTY(&pp->pr_partpages));
878
879 /* Remove all pages */
880 LIST_INIT(&pq);
881 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
882 pr_rmpage(pp, ph, &pq);
883
884 mutex_exit(&pp->pr_lock);
885
886 pr_pagelist_free(pp, &pq);
887
888 #ifdef POOL_DIAGNOSTIC
889 if ((pp->pr_roflags & PR_LOGGING) != 0)
890 free(pp->pr_log, M_TEMP);
891 #endif
892
893 cv_destroy(&pp->pr_cv);
894 mutex_destroy(&pp->pr_lock);
895 }
896
897 void
898 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
899 {
900
901 /* XXX no locking -- must be used just after pool_init() */
902 #ifdef DIAGNOSTIC
903 if (pp->pr_drain_hook != NULL)
904 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
905 #endif
906 pp->pr_drain_hook = fn;
907 pp->pr_drain_hook_arg = arg;
908 }
909
910 static struct pool_item_header *
911 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
912 {
913 struct pool_item_header *ph;
914
915 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
916 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
917 else
918 ph = pool_get(pp->pr_phpool, flags);
919
920 return (ph);
921 }
922
923 /*
924 * Grab an item from the pool; must be called at appropriate spl level
925 */
926 void *
927 #ifdef POOL_DIAGNOSTIC
928 _pool_get(struct pool *pp, int flags, const char *file, long line)
929 #else
930 pool_get(struct pool *pp, int flags)
931 #endif
932 {
933 struct pool_item *pi;
934 struct pool_item_header *ph;
935 void *v;
936
937 #ifdef DIAGNOSTIC
938 if (__predict_false(pp->pr_itemsperpage == 0))
939 panic("pool_get: pool %p: pr_itemsperpage is zero, "
940 "pool not initialized?", pp);
941 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
942 (flags & PR_WAITOK) != 0))
943 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
944
945 #endif /* DIAGNOSTIC */
946 #ifdef LOCKDEBUG
947 if (flags & PR_WAITOK)
948 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
949 #endif
950
951 mutex_enter(&pp->pr_lock);
952 pr_enter(pp, file, line);
953
954 startover:
955 /*
956 * Check to see if we've reached the hard limit. If we have,
957 * and we can wait, then wait until an item has been returned to
958 * the pool.
959 */
960 #ifdef DIAGNOSTIC
961 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
962 pr_leave(pp);
963 mutex_exit(&pp->pr_lock);
964 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
965 }
966 #endif
967 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
968 if (pp->pr_drain_hook != NULL) {
969 /*
970 * Since the drain hook is going to free things
971 * back to the pool, unlock, call the hook, re-lock,
972 * and check the hardlimit condition again.
973 */
974 pr_leave(pp);
975 mutex_exit(&pp->pr_lock);
976 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
977 mutex_enter(&pp->pr_lock);
978 pr_enter(pp, file, line);
979 if (pp->pr_nout < pp->pr_hardlimit)
980 goto startover;
981 }
982
983 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
984 /*
985 * XXX: A warning isn't logged in this case. Should
986 * it be?
987 */
988 pp->pr_flags |= PR_WANTED;
989 pr_leave(pp);
990 cv_wait(&pp->pr_cv, &pp->pr_lock);
991 pr_enter(pp, file, line);
992 goto startover;
993 }
994
995 /*
996 * Log a message that the hard limit has been hit.
997 */
998 if (pp->pr_hardlimit_warning != NULL &&
999 ratecheck(&pp->pr_hardlimit_warning_last,
1000 &pp->pr_hardlimit_ratecap))
1001 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1002
1003 pp->pr_nfail++;
1004
1005 pr_leave(pp);
1006 mutex_exit(&pp->pr_lock);
1007 return (NULL);
1008 }
1009
1010 /*
1011 * The convention we use is that if `curpage' is not NULL, then
1012 * it points at a non-empty bucket. In particular, `curpage'
1013 * never points at a page header which has PR_PHINPAGE set and
1014 * has no items in its bucket.
1015 */
1016 if ((ph = pp->pr_curpage) == NULL) {
1017 int error;
1018
1019 #ifdef DIAGNOSTIC
1020 if (pp->pr_nitems != 0) {
1021 mutex_exit(&pp->pr_lock);
1022 printf("pool_get: %s: curpage NULL, nitems %u\n",
1023 pp->pr_wchan, pp->pr_nitems);
1024 panic("pool_get: nitems inconsistent");
1025 }
1026 #endif
1027
1028 /*
1029 * Call the back-end page allocator for more memory.
1030 * Release the pool lock, as the back-end page allocator
1031 * may block.
1032 */
1033 pr_leave(pp);
1034 error = pool_grow(pp, flags);
1035 pr_enter(pp, file, line);
1036 if (error != 0) {
1037 /*
1038 * We were unable to allocate a page or item
1039 * header, but we released the lock during
1040 * allocation, so perhaps items were freed
1041 * back to the pool. Check for this case.
1042 */
1043 if (pp->pr_curpage != NULL)
1044 goto startover;
1045
1046 pp->pr_nfail++;
1047 pr_leave(pp);
1048 mutex_exit(&pp->pr_lock);
1049 return (NULL);
1050 }
1051
1052 /* Start the allocation process over. */
1053 goto startover;
1054 }
1055 if (pp->pr_roflags & PR_NOTOUCH) {
1056 #ifdef DIAGNOSTIC
1057 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1058 pr_leave(pp);
1059 mutex_exit(&pp->pr_lock);
1060 panic("pool_get: %s: page empty", pp->pr_wchan);
1061 }
1062 #endif
1063 v = pr_item_notouch_get(pp, ph);
1064 #ifdef POOL_DIAGNOSTIC
1065 pr_log(pp, v, PRLOG_GET, file, line);
1066 #endif
1067 } else {
1068 v = pi = LIST_FIRST(&ph->ph_itemlist);
1069 if (__predict_false(v == NULL)) {
1070 pr_leave(pp);
1071 mutex_exit(&pp->pr_lock);
1072 panic("pool_get: %s: page empty", pp->pr_wchan);
1073 }
1074 #ifdef DIAGNOSTIC
1075 if (__predict_false(pp->pr_nitems == 0)) {
1076 pr_leave(pp);
1077 mutex_exit(&pp->pr_lock);
1078 printf("pool_get: %s: items on itemlist, nitems %u\n",
1079 pp->pr_wchan, pp->pr_nitems);
1080 panic("pool_get: nitems inconsistent");
1081 }
1082 #endif
1083
1084 #ifdef POOL_DIAGNOSTIC
1085 pr_log(pp, v, PRLOG_GET, file, line);
1086 #endif
1087
1088 #ifdef DIAGNOSTIC
1089 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1090 pr_printlog(pp, pi, printf);
1091 panic("pool_get(%s): free list modified: "
1092 "magic=%x; page %p; item addr %p\n",
1093 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1094 }
1095 #endif
1096
1097 /*
1098 * Remove from item list.
1099 */
1100 LIST_REMOVE(pi, pi_list);
1101 }
1102 pp->pr_nitems--;
1103 pp->pr_nout++;
1104 if (ph->ph_nmissing == 0) {
1105 #ifdef DIAGNOSTIC
1106 if (__predict_false(pp->pr_nidle == 0))
1107 panic("pool_get: nidle inconsistent");
1108 #endif
1109 pp->pr_nidle--;
1110
1111 /*
1112 * This page was previously empty. Move it to the list of
1113 * partially-full pages. This page is already curpage.
1114 */
1115 LIST_REMOVE(ph, ph_pagelist);
1116 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1117 }
1118 ph->ph_nmissing++;
1119 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1120 #ifdef DIAGNOSTIC
1121 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1122 !LIST_EMPTY(&ph->ph_itemlist))) {
1123 pr_leave(pp);
1124 mutex_exit(&pp->pr_lock);
1125 panic("pool_get: %s: nmissing inconsistent",
1126 pp->pr_wchan);
1127 }
1128 #endif
1129 /*
1130 * This page is now full. Move it to the full list
1131 * and select a new current page.
1132 */
1133 LIST_REMOVE(ph, ph_pagelist);
1134 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1135 pool_update_curpage(pp);
1136 }
1137
1138 pp->pr_nget++;
1139 pr_leave(pp);
1140
1141 /*
1142 * If we have a low water mark and we are now below that low
1143 * water mark, add more items to the pool.
1144 */
1145 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1146 /*
1147 * XXX: Should we log a warning? Should we set up a timeout
1148 * to try again in a second or so? The latter could break
1149 * a caller's assumptions about interrupt protection, etc.
1150 */
1151 }
1152
1153 mutex_exit(&pp->pr_lock);
1154 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1155 FREECHECK_OUT(&pp->pr_freecheck, v);
1156 return (v);
1157 }
1158
1159 /*
1160 * Internal version of pool_put(). Pool is already locked/entered.
1161 */
1162 static void
1163 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1164 {
1165 struct pool_item *pi = v;
1166 struct pool_item_header *ph;
1167
1168 KASSERT(mutex_owned(&pp->pr_lock));
1169 FREECHECK_IN(&pp->pr_freecheck, v);
1170 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1171
1172 #ifdef DIAGNOSTIC
1173 if (__predict_false(pp->pr_nout == 0)) {
1174 printf("pool %s: putting with none out\n",
1175 pp->pr_wchan);
1176 panic("pool_put");
1177 }
1178 #endif
1179
1180 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1181 pr_printlog(pp, NULL, printf);
1182 panic("pool_put: %s: page header missing", pp->pr_wchan);
1183 }
1184
1185 /*
1186 * Return to item list.
1187 */
1188 if (pp->pr_roflags & PR_NOTOUCH) {
1189 pr_item_notouch_put(pp, ph, v);
1190 } else {
1191 #ifdef DIAGNOSTIC
1192 pi->pi_magic = PI_MAGIC;
1193 #endif
1194 #ifdef DEBUG
1195 {
1196 int i, *ip = v;
1197
1198 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1199 *ip++ = PI_MAGIC;
1200 }
1201 }
1202 #endif
1203
1204 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1205 }
1206 KDASSERT(ph->ph_nmissing != 0);
1207 ph->ph_nmissing--;
1208 pp->pr_nput++;
1209 pp->pr_nitems++;
1210 pp->pr_nout--;
1211
1212 /* Cancel "pool empty" condition if it exists */
1213 if (pp->pr_curpage == NULL)
1214 pp->pr_curpage = ph;
1215
1216 if (pp->pr_flags & PR_WANTED) {
1217 pp->pr_flags &= ~PR_WANTED;
1218 if (ph->ph_nmissing == 0)
1219 pp->pr_nidle++;
1220 cv_broadcast(&pp->pr_cv);
1221 return;
1222 }
1223
1224 /*
1225 * If this page is now empty, do one of two things:
1226 *
1227 * (1) If we have more pages than the page high water mark,
1228 * free the page back to the system. ONLY CONSIDER
1229 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1230 * CLAIM.
1231 *
1232 * (2) Otherwise, move the page to the empty page list.
1233 *
1234 * Either way, select a new current page (so we use a partially-full
1235 * page if one is available).
1236 */
1237 if (ph->ph_nmissing == 0) {
1238 pp->pr_nidle++;
1239 if (pp->pr_npages > pp->pr_minpages &&
1240 (pp->pr_npages > pp->pr_maxpages ||
1241 pa_starved_p(pp->pr_alloc))) {
1242 pr_rmpage(pp, ph, pq);
1243 } else {
1244 LIST_REMOVE(ph, ph_pagelist);
1245 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1246
1247 /*
1248 * Update the timestamp on the page. A page must
1249 * be idle for some period of time before it can
1250 * be reclaimed by the pagedaemon. This minimizes
1251 * ping-pong'ing for memory.
1252 */
1253 getmicrotime(&ph->ph_time);
1254 }
1255 pool_update_curpage(pp);
1256 }
1257
1258 /*
1259 * If the page was previously completely full, move it to the
1260 * partially-full list and make it the current page. The next
1261 * allocation will get the item from this page, instead of
1262 * further fragmenting the pool.
1263 */
1264 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1265 LIST_REMOVE(ph, ph_pagelist);
1266 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1267 pp->pr_curpage = ph;
1268 }
1269 }
1270
1271 /*
1272 * Return resource to the pool; must be called at appropriate spl level
1273 */
1274 #ifdef POOL_DIAGNOSTIC
1275 void
1276 _pool_put(struct pool *pp, void *v, const char *file, long line)
1277 {
1278 struct pool_pagelist pq;
1279
1280 LIST_INIT(&pq);
1281
1282 mutex_enter(&pp->pr_lock);
1283 pr_enter(pp, file, line);
1284
1285 pr_log(pp, v, PRLOG_PUT, file, line);
1286
1287 pool_do_put(pp, v, &pq);
1288
1289 pr_leave(pp);
1290 mutex_exit(&pp->pr_lock);
1291
1292 pr_pagelist_free(pp, &pq);
1293 }
1294 #undef pool_put
1295 #endif /* POOL_DIAGNOSTIC */
1296
1297 void
1298 pool_put(struct pool *pp, void *v)
1299 {
1300 struct pool_pagelist pq;
1301
1302 LIST_INIT(&pq);
1303
1304 mutex_enter(&pp->pr_lock);
1305 pool_do_put(pp, v, &pq);
1306 mutex_exit(&pp->pr_lock);
1307
1308 pr_pagelist_free(pp, &pq);
1309 }
1310
1311 #ifdef POOL_DIAGNOSTIC
1312 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1313 #endif
1314
1315 /*
1316 * pool_grow: grow a pool by a page.
1317 *
1318 * => called with pool locked.
1319 * => unlock and relock the pool.
1320 * => return with pool locked.
1321 */
1322
1323 static int
1324 pool_grow(struct pool *pp, int flags)
1325 {
1326 struct pool_item_header *ph = NULL;
1327 char *cp;
1328
1329 mutex_exit(&pp->pr_lock);
1330 cp = pool_allocator_alloc(pp, flags);
1331 if (__predict_true(cp != NULL)) {
1332 ph = pool_alloc_item_header(pp, cp, flags);
1333 }
1334 if (__predict_false(cp == NULL || ph == NULL)) {
1335 if (cp != NULL) {
1336 pool_allocator_free(pp, cp);
1337 }
1338 mutex_enter(&pp->pr_lock);
1339 return ENOMEM;
1340 }
1341
1342 mutex_enter(&pp->pr_lock);
1343 pool_prime_page(pp, cp, ph);
1344 pp->pr_npagealloc++;
1345 return 0;
1346 }
1347
1348 /*
1349 * Add N items to the pool.
1350 */
1351 int
1352 pool_prime(struct pool *pp, int n)
1353 {
1354 int newpages;
1355 int error = 0;
1356
1357 mutex_enter(&pp->pr_lock);
1358
1359 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1360
1361 while (newpages-- > 0) {
1362 error = pool_grow(pp, PR_NOWAIT);
1363 if (error) {
1364 break;
1365 }
1366 pp->pr_minpages++;
1367 }
1368
1369 if (pp->pr_minpages >= pp->pr_maxpages)
1370 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1371
1372 mutex_exit(&pp->pr_lock);
1373 return error;
1374 }
1375
1376 /*
1377 * Add a page worth of items to the pool.
1378 *
1379 * Note, we must be called with the pool descriptor LOCKED.
1380 */
1381 static void
1382 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1383 {
1384 struct pool_item *pi;
1385 void *cp = storage;
1386 const unsigned int align = pp->pr_align;
1387 const unsigned int ioff = pp->pr_itemoffset;
1388 int n;
1389
1390 KASSERT(mutex_owned(&pp->pr_lock));
1391
1392 #ifdef DIAGNOSTIC
1393 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1394 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1395 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1396 #endif
1397
1398 /*
1399 * Insert page header.
1400 */
1401 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1402 LIST_INIT(&ph->ph_itemlist);
1403 ph->ph_page = storage;
1404 ph->ph_nmissing = 0;
1405 getmicrotime(&ph->ph_time);
1406 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1407 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1408
1409 pp->pr_nidle++;
1410
1411 /*
1412 * Color this page.
1413 */
1414 cp = (char *)cp + pp->pr_curcolor;
1415 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1416 pp->pr_curcolor = 0;
1417
1418 /*
1419 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1420 */
1421 if (ioff != 0)
1422 cp = (char *)cp + align - ioff;
1423
1424 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1425
1426 /*
1427 * Insert remaining chunks on the bucket list.
1428 */
1429 n = pp->pr_itemsperpage;
1430 pp->pr_nitems += n;
1431
1432 if (pp->pr_roflags & PR_NOTOUCH) {
1433 pool_item_freelist_t *freelist = PR_FREELIST(ph);
1434 int i;
1435
1436 ph->ph_off = (char *)cp - (char *)storage;
1437 ph->ph_firstfree = 0;
1438 for (i = 0; i < n - 1; i++)
1439 freelist[i] = i + 1;
1440 freelist[n - 1] = PR_INDEX_EOL;
1441 } else {
1442 while (n--) {
1443 pi = (struct pool_item *)cp;
1444
1445 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1446
1447 /* Insert on page list */
1448 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1449 #ifdef DIAGNOSTIC
1450 pi->pi_magic = PI_MAGIC;
1451 #endif
1452 cp = (char *)cp + pp->pr_size;
1453
1454 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1455 }
1456 }
1457
1458 /*
1459 * If the pool was depleted, point at the new page.
1460 */
1461 if (pp->pr_curpage == NULL)
1462 pp->pr_curpage = ph;
1463
1464 if (++pp->pr_npages > pp->pr_hiwat)
1465 pp->pr_hiwat = pp->pr_npages;
1466 }
1467
1468 /*
1469 * Used by pool_get() when nitems drops below the low water mark. This
1470 * is used to catch up pr_nitems with the low water mark.
1471 *
1472 * Note 1, we never wait for memory here, we let the caller decide what to do.
1473 *
1474 * Note 2, we must be called with the pool already locked, and we return
1475 * with it locked.
1476 */
1477 static int
1478 pool_catchup(struct pool *pp)
1479 {
1480 int error = 0;
1481
1482 while (POOL_NEEDS_CATCHUP(pp)) {
1483 error = pool_grow(pp, PR_NOWAIT);
1484 if (error) {
1485 break;
1486 }
1487 }
1488 return error;
1489 }
1490
1491 static void
1492 pool_update_curpage(struct pool *pp)
1493 {
1494
1495 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1496 if (pp->pr_curpage == NULL) {
1497 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1498 }
1499 }
1500
1501 void
1502 pool_setlowat(struct pool *pp, int n)
1503 {
1504
1505 mutex_enter(&pp->pr_lock);
1506
1507 pp->pr_minitems = n;
1508 pp->pr_minpages = (n == 0)
1509 ? 0
1510 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1511
1512 /* Make sure we're caught up with the newly-set low water mark. */
1513 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1514 /*
1515 * XXX: Should we log a warning? Should we set up a timeout
1516 * to try again in a second or so? The latter could break
1517 * a caller's assumptions about interrupt protection, etc.
1518 */
1519 }
1520
1521 mutex_exit(&pp->pr_lock);
1522 }
1523
1524 void
1525 pool_sethiwat(struct pool *pp, int n)
1526 {
1527
1528 mutex_enter(&pp->pr_lock);
1529
1530 pp->pr_maxpages = (n == 0)
1531 ? 0
1532 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1533
1534 mutex_exit(&pp->pr_lock);
1535 }
1536
1537 void
1538 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1539 {
1540
1541 mutex_enter(&pp->pr_lock);
1542
1543 pp->pr_hardlimit = n;
1544 pp->pr_hardlimit_warning = warnmess;
1545 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1546 pp->pr_hardlimit_warning_last.tv_sec = 0;
1547 pp->pr_hardlimit_warning_last.tv_usec = 0;
1548
1549 /*
1550 * In-line version of pool_sethiwat(), because we don't want to
1551 * release the lock.
1552 */
1553 pp->pr_maxpages = (n == 0)
1554 ? 0
1555 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1556
1557 mutex_exit(&pp->pr_lock);
1558 }
1559
1560 /*
1561 * Release all complete pages that have not been used recently.
1562 */
1563 int
1564 #ifdef POOL_DIAGNOSTIC
1565 _pool_reclaim(struct pool *pp, const char *file, long line)
1566 #else
1567 pool_reclaim(struct pool *pp)
1568 #endif
1569 {
1570 struct pool_item_header *ph, *phnext;
1571 struct pool_pagelist pq;
1572 struct timeval curtime, diff;
1573
1574 if (pp->pr_drain_hook != NULL) {
1575 /*
1576 * The drain hook must be called with the pool unlocked.
1577 */
1578 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1579 }
1580
1581 if (mutex_tryenter(&pp->pr_lock) == 0)
1582 return (0);
1583 pr_enter(pp, file, line);
1584
1585 LIST_INIT(&pq);
1586
1587 /*
1588 * Reclaim items from the pool's caches.
1589 */
1590 if (pp->pr_cache != NULL)
1591 pool_cache_invalidate(pp->pr_cache);
1592
1593 getmicrotime(&curtime);
1594
1595 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1596 phnext = LIST_NEXT(ph, ph_pagelist);
1597
1598 /* Check our minimum page claim */
1599 if (pp->pr_npages <= pp->pr_minpages)
1600 break;
1601
1602 KASSERT(ph->ph_nmissing == 0);
1603 timersub(&curtime, &ph->ph_time, &diff);
1604 if (diff.tv_sec < pool_inactive_time
1605 && !pa_starved_p(pp->pr_alloc))
1606 continue;
1607
1608 /*
1609 * If freeing this page would put us below
1610 * the low water mark, stop now.
1611 */
1612 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1613 pp->pr_minitems)
1614 break;
1615
1616 pr_rmpage(pp, ph, &pq);
1617 }
1618
1619 pr_leave(pp);
1620 mutex_exit(&pp->pr_lock);
1621 if (LIST_EMPTY(&pq))
1622 return 0;
1623
1624 pr_pagelist_free(pp, &pq);
1625
1626 return (1);
1627 }
1628
1629 /*
1630 * Drain pools, one at a time.
1631 *
1632 * Note, we must never be called from an interrupt context.
1633 */
1634 void
1635 pool_drain(void *arg)
1636 {
1637 struct pool *pp;
1638
1639 pp = NULL;
1640
1641 /* Find next pool to drain, and add a reference. */
1642 mutex_enter(&pool_head_lock);
1643 if (drainpp == NULL) {
1644 drainpp = LIST_FIRST(&pool_head);
1645 }
1646 if (drainpp != NULL) {
1647 pp = drainpp;
1648 drainpp = LIST_NEXT(pp, pr_poollist);
1649 }
1650 if (pp != NULL)
1651 pp->pr_refcnt++;
1652 mutex_exit(&pool_head_lock);
1653
1654 /* If we have a candidate, drain it and unlock. */
1655 if (pp != NULL) {
1656 pool_reclaim(pp);
1657 mutex_enter(&pool_head_lock);
1658 pp->pr_refcnt--;
1659 cv_broadcast(&pool_busy);
1660 mutex_exit(&pool_head_lock);
1661 }
1662 }
1663
1664 /*
1665 * Diagnostic helpers.
1666 */
1667 void
1668 pool_print(struct pool *pp, const char *modif)
1669 {
1670
1671 pool_print1(pp, modif, printf);
1672 }
1673
1674 void
1675 pool_printall(const char *modif, void (*pr)(const char *, ...))
1676 {
1677 struct pool *pp;
1678
1679 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1680 pool_printit(pp, modif, pr);
1681 }
1682 }
1683
1684 void
1685 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1686 {
1687
1688 if (pp == NULL) {
1689 (*pr)("Must specify a pool to print.\n");
1690 return;
1691 }
1692
1693 pool_print1(pp, modif, pr);
1694 }
1695
1696 static void
1697 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1698 void (*pr)(const char *, ...))
1699 {
1700 struct pool_item_header *ph;
1701 #ifdef DIAGNOSTIC
1702 struct pool_item *pi;
1703 #endif
1704
1705 LIST_FOREACH(ph, pl, ph_pagelist) {
1706 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1707 ph->ph_page, ph->ph_nmissing,
1708 (u_long)ph->ph_time.tv_sec,
1709 (u_long)ph->ph_time.tv_usec);
1710 #ifdef DIAGNOSTIC
1711 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1712 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1713 if (pi->pi_magic != PI_MAGIC) {
1714 (*pr)("\t\t\titem %p, magic 0x%x\n",
1715 pi, pi->pi_magic);
1716 }
1717 }
1718 }
1719 #endif
1720 }
1721 }
1722
1723 static void
1724 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1725 {
1726 struct pool_item_header *ph;
1727 pool_cache_t pc;
1728 pcg_t *pcg;
1729 pool_cache_cpu_t *cc;
1730 uint64_t cpuhit, cpumiss;
1731 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1732 char c;
1733
1734 while ((c = *modif++) != '\0') {
1735 if (c == 'l')
1736 print_log = 1;
1737 if (c == 'p')
1738 print_pagelist = 1;
1739 if (c == 'c')
1740 print_cache = 1;
1741 }
1742
1743 if ((pc = pp->pr_cache) != NULL) {
1744 (*pr)("POOL CACHE");
1745 } else {
1746 (*pr)("POOL");
1747 }
1748
1749 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1750 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1751 pp->pr_roflags);
1752 (*pr)("\talloc %p\n", pp->pr_alloc);
1753 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1754 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1755 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1756 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1757
1758 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1759 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1760 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1761 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1762
1763 if (print_pagelist == 0)
1764 goto skip_pagelist;
1765
1766 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1767 (*pr)("\n\tempty page list:\n");
1768 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1769 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1770 (*pr)("\n\tfull page list:\n");
1771 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1772 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1773 (*pr)("\n\tpartial-page list:\n");
1774 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1775
1776 if (pp->pr_curpage == NULL)
1777 (*pr)("\tno current page\n");
1778 else
1779 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1780
1781 skip_pagelist:
1782 if (print_log == 0)
1783 goto skip_log;
1784
1785 (*pr)("\n");
1786 if ((pp->pr_roflags & PR_LOGGING) == 0)
1787 (*pr)("\tno log\n");
1788 else {
1789 pr_printlog(pp, NULL, pr);
1790 }
1791
1792 skip_log:
1793
1794 #define PR_GROUPLIST(pcg) \
1795 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1796 for (i = 0; i < PCG_NOBJECTS; i++) { \
1797 if (pcg->pcg_objects[i].pcgo_pa != \
1798 POOL_PADDR_INVALID) { \
1799 (*pr)("\t\t\t%p, 0x%llx\n", \
1800 pcg->pcg_objects[i].pcgo_va, \
1801 (unsigned long long) \
1802 pcg->pcg_objects[i].pcgo_pa); \
1803 } else { \
1804 (*pr)("\t\t\t%p\n", \
1805 pcg->pcg_objects[i].pcgo_va); \
1806 } \
1807 }
1808
1809 if (pc != NULL) {
1810 cpuhit = 0;
1811 cpumiss = 0;
1812 for (i = 0; i < MAXCPUS; i++) {
1813 if ((cc = pc->pc_cpus[i]) == NULL)
1814 continue;
1815 cpuhit += cc->cc_hits;
1816 cpumiss += cc->cc_misses;
1817 }
1818 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1819 (*pr)("\tcache layer hits %llu misses %llu\n",
1820 pc->pc_hits, pc->pc_misses);
1821 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1822 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1823 pc->pc_contended);
1824 (*pr)("\tcache layer empty groups %u full groups %u\n",
1825 pc->pc_nempty, pc->pc_nfull);
1826 if (print_cache) {
1827 (*pr)("\tfull cache groups:\n");
1828 for (pcg = pc->pc_fullgroups; pcg != NULL;
1829 pcg = pcg->pcg_next) {
1830 PR_GROUPLIST(pcg);
1831 }
1832 (*pr)("\tempty cache groups:\n");
1833 for (pcg = pc->pc_emptygroups; pcg != NULL;
1834 pcg = pcg->pcg_next) {
1835 PR_GROUPLIST(pcg);
1836 }
1837 }
1838 }
1839 #undef PR_GROUPLIST
1840
1841 pr_enter_check(pp, pr);
1842 }
1843
1844 static int
1845 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1846 {
1847 struct pool_item *pi;
1848 void *page;
1849 int n;
1850
1851 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1852 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1853 if (page != ph->ph_page &&
1854 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1855 if (label != NULL)
1856 printf("%s: ", label);
1857 printf("pool(%p:%s): page inconsistency: page %p;"
1858 " at page head addr %p (p %p)\n", pp,
1859 pp->pr_wchan, ph->ph_page,
1860 ph, page);
1861 return 1;
1862 }
1863 }
1864
1865 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1866 return 0;
1867
1868 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1869 pi != NULL;
1870 pi = LIST_NEXT(pi,pi_list), n++) {
1871
1872 #ifdef DIAGNOSTIC
1873 if (pi->pi_magic != PI_MAGIC) {
1874 if (label != NULL)
1875 printf("%s: ", label);
1876 printf("pool(%s): free list modified: magic=%x;"
1877 " page %p; item ordinal %d; addr %p\n",
1878 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1879 n, pi);
1880 panic("pool");
1881 }
1882 #endif
1883 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1884 continue;
1885 }
1886 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1887 if (page == ph->ph_page)
1888 continue;
1889
1890 if (label != NULL)
1891 printf("%s: ", label);
1892 printf("pool(%p:%s): page inconsistency: page %p;"
1893 " item ordinal %d; addr %p (p %p)\n", pp,
1894 pp->pr_wchan, ph->ph_page,
1895 n, pi, page);
1896 return 1;
1897 }
1898 return 0;
1899 }
1900
1901
1902 int
1903 pool_chk(struct pool *pp, const char *label)
1904 {
1905 struct pool_item_header *ph;
1906 int r = 0;
1907
1908 mutex_enter(&pp->pr_lock);
1909 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1910 r = pool_chk_page(pp, label, ph);
1911 if (r) {
1912 goto out;
1913 }
1914 }
1915 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1916 r = pool_chk_page(pp, label, ph);
1917 if (r) {
1918 goto out;
1919 }
1920 }
1921 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1922 r = pool_chk_page(pp, label, ph);
1923 if (r) {
1924 goto out;
1925 }
1926 }
1927
1928 out:
1929 mutex_exit(&pp->pr_lock);
1930 return (r);
1931 }
1932
1933 /*
1934 * pool_cache_init:
1935 *
1936 * Initialize a pool cache.
1937 */
1938 pool_cache_t
1939 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1940 const char *wchan, struct pool_allocator *palloc, int ipl,
1941 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1942 {
1943 pool_cache_t pc;
1944
1945 pc = pool_get(&cache_pool, PR_WAITOK);
1946 if (pc == NULL)
1947 return NULL;
1948
1949 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1950 palloc, ipl, ctor, dtor, arg);
1951
1952 return pc;
1953 }
1954
1955 /*
1956 * pool_cache_bootstrap:
1957 *
1958 * Kernel-private version of pool_cache_init(). The caller
1959 * provides initial storage.
1960 */
1961 void
1962 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1963 u_int align_offset, u_int flags, const char *wchan,
1964 struct pool_allocator *palloc, int ipl,
1965 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1966 void *arg)
1967 {
1968 CPU_INFO_ITERATOR cii;
1969 struct cpu_info *ci;
1970 struct pool *pp;
1971
1972 pp = &pc->pc_pool;
1973 if (palloc == NULL && ipl == IPL_NONE)
1974 palloc = &pool_allocator_nointr;
1975 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1976
1977 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, pp->pr_ipl);
1978
1979 pc->pc_emptygroups = NULL;
1980 pc->pc_fullgroups = NULL;
1981 pc->pc_ctor = ctor;
1982 pc->pc_dtor = dtor;
1983 pc->pc_arg = arg;
1984 pc->pc_hits = 0;
1985 pc->pc_misses = 0;
1986 pc->pc_nempty = 0;
1987 pc->pc_nfull = 0;
1988 pc->pc_contended = 0;
1989 pc->pc_refcnt = 0;
1990
1991 /* Allocate per-CPU caches. */
1992 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
1993 pc->pc_ncpu = 0;
1994 for (CPU_INFO_FOREACH(cii, ci)) {
1995 pool_cache_cpu_init1(ci, pc);
1996 }
1997
1998 if (__predict_true(!cold)) {
1999 mutex_enter(&pp->pr_lock);
2000 pp->pr_cache = pc;
2001 mutex_exit(&pp->pr_lock);
2002 mutex_enter(&pool_head_lock);
2003 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2004 mutex_exit(&pool_head_lock);
2005 } else {
2006 pp->pr_cache = pc;
2007 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2008 }
2009 }
2010
2011 /*
2012 * pool_cache_destroy:
2013 *
2014 * Destroy a pool cache.
2015 */
2016 void
2017 pool_cache_destroy(pool_cache_t pc)
2018 {
2019 struct pool *pp = &pc->pc_pool;
2020 pool_cache_cpu_t *cc;
2021 pcg_t *pcg;
2022 int i;
2023
2024 /* Remove it from the global list. */
2025 mutex_enter(&pool_head_lock);
2026 while (pc->pc_refcnt != 0)
2027 cv_wait(&pool_busy, &pool_head_lock);
2028 LIST_REMOVE(pc, pc_cachelist);
2029 mutex_exit(&pool_head_lock);
2030
2031 /* First, invalidate the entire cache. */
2032 pool_cache_invalidate(pc);
2033
2034 /* Disassociate it from the pool. */
2035 mutex_enter(&pp->pr_lock);
2036 pp->pr_cache = NULL;
2037 mutex_exit(&pp->pr_lock);
2038
2039 /* Destroy per-CPU data */
2040 for (i = 0; i < MAXCPUS; i++) {
2041 if ((cc = pc->pc_cpus[i]) == NULL)
2042 continue;
2043 if ((pcg = cc->cc_current) != NULL) {
2044 pcg->pcg_next = NULL;
2045 pool_cache_invalidate_groups(pc, pcg);
2046 }
2047 if ((pcg = cc->cc_previous) != NULL) {
2048 pcg->pcg_next = NULL;
2049 pool_cache_invalidate_groups(pc, pcg);
2050 }
2051 if (cc != &pc->pc_cpu0)
2052 pool_put(&cache_cpu_pool, cc);
2053 }
2054
2055 /* Finally, destroy it. */
2056 mutex_destroy(&pc->pc_lock);
2057 pool_destroy(pp);
2058 pool_put(&cache_pool, pc);
2059 }
2060
2061 /*
2062 * pool_cache_cpu_init1:
2063 *
2064 * Called for each pool_cache whenever a new CPU is attached.
2065 */
2066 static void
2067 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2068 {
2069 pool_cache_cpu_t *cc;
2070
2071 KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2072
2073 if ((cc = pc->pc_cpus[ci->ci_index]) != NULL) {
2074 KASSERT(cc->cc_cpu = ci);
2075 return;
2076 }
2077
2078 /*
2079 * The first CPU is 'free'. This needs to be the case for
2080 * bootstrap - we may not be able to allocate yet.
2081 */
2082 if (pc->pc_ncpu == 0) {
2083 cc = &pc->pc_cpu0;
2084 pc->pc_ncpu = 1;
2085 } else {
2086 mutex_enter(&pc->pc_lock);
2087 pc->pc_ncpu++;
2088 mutex_exit(&pc->pc_lock);
2089 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2090 }
2091
2092 cc->cc_ipl = pc->pc_pool.pr_ipl;
2093 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2094 cc->cc_cache = pc;
2095 cc->cc_cpu = ci;
2096 cc->cc_hits = 0;
2097 cc->cc_misses = 0;
2098 cc->cc_current = NULL;
2099 cc->cc_previous = NULL;
2100 cc->cc_busy = NULL;
2101
2102 pc->pc_cpus[ci->ci_index] = cc;
2103 }
2104
2105 /*
2106 * pool_cache_cpu_init:
2107 *
2108 * Called whenever a new CPU is attached.
2109 */
2110 void
2111 pool_cache_cpu_init(struct cpu_info *ci)
2112 {
2113 pool_cache_t pc;
2114
2115 mutex_enter(&pool_head_lock);
2116 LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2117 pc->pc_refcnt++;
2118 mutex_exit(&pool_head_lock);
2119
2120 pool_cache_cpu_init1(ci, pc);
2121
2122 mutex_enter(&pool_head_lock);
2123 pc->pc_refcnt--;
2124 cv_broadcast(&pool_busy);
2125 }
2126 mutex_exit(&pool_head_lock);
2127 }
2128
2129 /*
2130 * pool_cache_reclaim:
2131 *
2132 * Reclaim memory from a pool cache.
2133 */
2134 bool
2135 pool_cache_reclaim(pool_cache_t pc)
2136 {
2137
2138 return pool_reclaim(&pc->pc_pool);
2139 }
2140
2141 static inline void *
2142 pcg_get(pcg_t *pcg, paddr_t *pap)
2143 {
2144 void *object;
2145 u_int idx;
2146
2147 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2148 KASSERT(pcg->pcg_avail != 0);
2149
2150 idx = --pcg->pcg_avail;
2151 object = pcg->pcg_objects[idx].pcgo_va;
2152 if (pap != NULL)
2153 *pap = pcg->pcg_objects[idx].pcgo_pa;
2154
2155 #ifdef DIAGNOSTIC
2156 pcg->pcg_objects[idx].pcgo_va = NULL;
2157 KASSERT(object != NULL);
2158 #endif
2159
2160 return (object);
2161 }
2162
2163 static inline void
2164 pcg_put(pcg_t *pcg, void *object, paddr_t pa)
2165 {
2166 u_int idx;
2167
2168 idx = pcg->pcg_avail++;
2169
2170 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2171 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
2172
2173 pcg->pcg_objects[idx].pcgo_va = object;
2174 pcg->pcg_objects[idx].pcgo_pa = pa;
2175 }
2176
2177 /*
2178 * pool_cache_destruct_object:
2179 *
2180 * Force destruction of an object and its release back into
2181 * the pool.
2182 */
2183 void
2184 pool_cache_destruct_object(pool_cache_t pc, void *object)
2185 {
2186
2187 if (pc->pc_dtor != NULL)
2188 (*pc->pc_dtor)(pc->pc_arg, object);
2189 pool_put(&pc->pc_pool, object);
2190 }
2191
2192 /*
2193 * pool_cache_invalidate_groups:
2194 *
2195 * Invalidate a chain of groups and destruct all objects.
2196 */
2197 static void
2198 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2199 {
2200 void *object;
2201 pcg_t *next;
2202 int i;
2203
2204 for (; pcg != NULL; pcg = next) {
2205 next = pcg->pcg_next;
2206
2207 for (i = 0; i < pcg->pcg_avail; i++) {
2208 object = pcg->pcg_objects[i].pcgo_va;
2209 if (pc->pc_dtor != NULL)
2210 (*pc->pc_dtor)(pc->pc_arg, object);
2211 pool_put(&pc->pc_pool, object);
2212 }
2213
2214 pool_put(&pcgpool, pcg);
2215 }
2216 }
2217
2218 /*
2219 * pool_cache_invalidate:
2220 *
2221 * Invalidate a pool cache (destruct and release all of the
2222 * cached objects). Does not reclaim objects from the pool.
2223 */
2224 void
2225 pool_cache_invalidate(pool_cache_t pc)
2226 {
2227 pcg_t *full, *empty;
2228
2229 mutex_enter(&pc->pc_lock);
2230 full = pc->pc_fullgroups;
2231 empty = pc->pc_emptygroups;
2232 pc->pc_fullgroups = NULL;
2233 pc->pc_emptygroups = NULL;
2234 pc->pc_nfull = 0;
2235 pc->pc_nempty = 0;
2236 mutex_exit(&pc->pc_lock);
2237
2238 pool_cache_invalidate_groups(pc, full);
2239 pool_cache_invalidate_groups(pc, empty);
2240 }
2241
2242 void
2243 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2244 {
2245
2246 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2247 }
2248
2249 void
2250 pool_cache_setlowat(pool_cache_t pc, int n)
2251 {
2252
2253 pool_setlowat(&pc->pc_pool, n);
2254 }
2255
2256 void
2257 pool_cache_sethiwat(pool_cache_t pc, int n)
2258 {
2259
2260 pool_sethiwat(&pc->pc_pool, n);
2261 }
2262
2263 void
2264 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2265 {
2266
2267 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2268 }
2269
2270 static inline pool_cache_cpu_t *
2271 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2272 {
2273 pool_cache_cpu_t *cc;
2274 struct cpu_info *ci;
2275
2276 /*
2277 * Prevent other users of the cache from accessing our
2278 * CPU-local data. To avoid touching shared state, we
2279 * pull the neccessary information from CPU local data.
2280 */
2281 ci = curcpu();
2282 cc = pc->pc_cpus[ci->ci_data.cpu_index];
2283 if (cc->cc_ipl == IPL_NONE) {
2284 crit_enter();
2285 } else {
2286 *s = splraiseipl(cc->cc_iplcookie);
2287 }
2288
2289 /* Moved to another CPU before disabling preemption? */
2290 if (__predict_false(ci != curcpu())) {
2291 ci = curcpu();
2292 cc = pc->pc_cpus[ci->ci_data.cpu_index];
2293 }
2294
2295 #ifdef DIAGNOSTIC
2296 KASSERT(cc->cc_busy == NULL);
2297 KASSERT(cc->cc_cpu == ci);
2298 KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2299 cc->cc_busy = curlwp;
2300 #endif
2301
2302 return cc;
2303 }
2304
2305 static inline void
2306 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2307 {
2308
2309 #ifdef DIAGNOSTIC
2310 KASSERT(cc->cc_busy == curlwp);
2311 cc->cc_busy = NULL;
2312 #endif
2313
2314 /* No longer need exclusive access to the per-CPU data. */
2315 if (cc->cc_ipl == IPL_NONE) {
2316 crit_exit();
2317 } else {
2318 splx(*s);
2319 }
2320 }
2321
2322 #if __GNUC_PREREQ__(3, 0)
2323 __attribute ((noinline))
2324 #endif
2325 pool_cache_cpu_t *
2326 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2327 paddr_t *pap, int flags)
2328 {
2329 pcg_t *pcg, *cur;
2330 uint64_t ncsw;
2331 pool_cache_t pc;
2332 void *object;
2333
2334 pc = cc->cc_cache;
2335 cc->cc_misses++;
2336
2337 /*
2338 * Nothing was available locally. Try and grab a group
2339 * from the cache.
2340 */
2341 if (!mutex_tryenter(&pc->pc_lock)) {
2342 ncsw = curlwp->l_ncsw;
2343 mutex_enter(&pc->pc_lock);
2344 pc->pc_contended++;
2345
2346 /*
2347 * If we context switched while locking, then
2348 * our view of the per-CPU data is invalid:
2349 * retry.
2350 */
2351 if (curlwp->l_ncsw != ncsw) {
2352 mutex_exit(&pc->pc_lock);
2353 pool_cache_cpu_exit(cc, s);
2354 return pool_cache_cpu_enter(pc, s);
2355 }
2356 }
2357
2358 if ((pcg = pc->pc_fullgroups) != NULL) {
2359 /*
2360 * If there's a full group, release our empty
2361 * group back to the cache. Install the full
2362 * group as cc_current and return.
2363 */
2364 if ((cur = cc->cc_current) != NULL) {
2365 KASSERT(cur->pcg_avail == 0);
2366 cur->pcg_next = pc->pc_emptygroups;
2367 pc->pc_emptygroups = cur;
2368 pc->pc_nempty++;
2369 }
2370 KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
2371 cc->cc_current = pcg;
2372 pc->pc_fullgroups = pcg->pcg_next;
2373 pc->pc_hits++;
2374 pc->pc_nfull--;
2375 mutex_exit(&pc->pc_lock);
2376 return cc;
2377 }
2378
2379 /*
2380 * Nothing available locally or in cache. Take the slow
2381 * path: fetch a new object from the pool and construct
2382 * it.
2383 */
2384 pc->pc_misses++;
2385 mutex_exit(&pc->pc_lock);
2386 pool_cache_cpu_exit(cc, s);
2387
2388 object = pool_get(&pc->pc_pool, flags);
2389 *objectp = object;
2390 if (object == NULL)
2391 return NULL;
2392
2393 if (pc->pc_ctor != NULL) {
2394 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2395 pool_put(&pc->pc_pool, object);
2396 *objectp = NULL;
2397 return NULL;
2398 }
2399 }
2400
2401 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2402 (pc->pc_pool.pr_align - 1)) == 0);
2403
2404 if (pap != NULL) {
2405 #ifdef POOL_VTOPHYS
2406 *pap = POOL_VTOPHYS(object);
2407 #else
2408 *pap = POOL_PADDR_INVALID;
2409 #endif
2410 }
2411
2412 FREECHECK_OUT(&pc->pc_freecheck, object);
2413 return NULL;
2414 }
2415
2416 /*
2417 * pool_cache_get{,_paddr}:
2418 *
2419 * Get an object from a pool cache (optionally returning
2420 * the physical address of the object).
2421 */
2422 void *
2423 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2424 {
2425 pool_cache_cpu_t *cc;
2426 pcg_t *pcg;
2427 void *object;
2428 int s;
2429
2430 #ifdef LOCKDEBUG
2431 if (flags & PR_WAITOK)
2432 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2433 #endif
2434
2435 cc = pool_cache_cpu_enter(pc, &s);
2436 do {
2437 /* Try and allocate an object from the current group. */
2438 pcg = cc->cc_current;
2439 if (pcg != NULL && pcg->pcg_avail > 0) {
2440 object = pcg_get(pcg, pap);
2441 cc->cc_hits++;
2442 pool_cache_cpu_exit(cc, &s);
2443 FREECHECK_OUT(&pc->pc_freecheck, object);
2444 return object;
2445 }
2446
2447 /*
2448 * That failed. If the previous group isn't empty, swap
2449 * it with the current group and allocate from there.
2450 */
2451 pcg = cc->cc_previous;
2452 if (pcg != NULL && pcg->pcg_avail > 0) {
2453 cc->cc_previous = cc->cc_current;
2454 cc->cc_current = pcg;
2455 continue;
2456 }
2457
2458 /*
2459 * Can't allocate from either group: try the slow path.
2460 * If get_slow() allocated an object for us, or if
2461 * no more objects are available, it will return NULL.
2462 * Otherwise, we need to retry.
2463 */
2464 cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2465 } while (cc != NULL);
2466
2467 return object;
2468 }
2469
2470 #if __GNUC_PREREQ__(3, 0)
2471 __attribute ((noinline))
2472 #endif
2473 pool_cache_cpu_t *
2474 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2475 {
2476 pcg_t *pcg, *cur;
2477 uint64_t ncsw;
2478 pool_cache_t pc;
2479
2480 pc = cc->cc_cache;
2481 cc->cc_misses++;
2482
2483 /*
2484 * No free slots locally. Try to grab an empty, unused
2485 * group from the cache.
2486 */
2487 if (!mutex_tryenter(&pc->pc_lock)) {
2488 ncsw = curlwp->l_ncsw;
2489 mutex_enter(&pc->pc_lock);
2490 pc->pc_contended++;
2491
2492 /*
2493 * If we context switched while locking, then
2494 * our view of the per-CPU data is invalid:
2495 * retry.
2496 */
2497 if (curlwp->l_ncsw != ncsw) {
2498 mutex_exit(&pc->pc_lock);
2499 pool_cache_cpu_exit(cc, s);
2500 return pool_cache_cpu_enter(pc, s);
2501 }
2502 }
2503
2504 if ((pcg = pc->pc_emptygroups) != NULL) {
2505 /*
2506 * If there's a empty group, release our full
2507 * group back to the cache. Install the empty
2508 * group as cc_current and return.
2509 */
2510 if ((cur = cc->cc_current) != NULL) {
2511 KASSERT(cur->pcg_avail == PCG_NOBJECTS);
2512 cur->pcg_next = pc->pc_fullgroups;
2513 pc->pc_fullgroups = cur;
2514 pc->pc_nfull++;
2515 }
2516 KASSERT(pcg->pcg_avail == 0);
2517 cc->cc_current = pcg;
2518 pc->pc_emptygroups = pcg->pcg_next;
2519 pc->pc_hits++;
2520 pc->pc_nempty--;
2521 mutex_exit(&pc->pc_lock);
2522 return cc;
2523 }
2524
2525 /*
2526 * Nothing available locally or in cache. Take the
2527 * slow path and try to allocate a new group that we
2528 * can release to.
2529 */
2530 pc->pc_misses++;
2531 mutex_exit(&pc->pc_lock);
2532 pool_cache_cpu_exit(cc, s);
2533
2534 /*
2535 * If we can't allocate a new group, just throw the
2536 * object away.
2537 */
2538 #ifdef XXXAD /* Disable the cache layer for now. */
2539 pcg = pool_get(&pcgpool, PR_NOWAIT);
2540 #else
2541 pcg = NULL;
2542 #endif
2543 if (pcg == NULL) {
2544 pool_cache_destruct_object(pc, object);
2545 return NULL;
2546 }
2547 #ifdef DIAGNOSTIC
2548 memset(pcg, 0, sizeof(*pcg));
2549 #else
2550 pcg->pcg_avail = 0;
2551 #endif
2552
2553 /*
2554 * Add the empty group to the cache and try again.
2555 */
2556 mutex_enter(&pc->pc_lock);
2557 pcg->pcg_next = pc->pc_emptygroups;
2558 pc->pc_emptygroups = pcg;
2559 pc->pc_nempty++;
2560 mutex_exit(&pc->pc_lock);
2561
2562 return pool_cache_cpu_enter(pc, s);
2563 }
2564
2565 /*
2566 * pool_cache_put{,_paddr}:
2567 *
2568 * Put an object back to the pool cache (optionally caching the
2569 * physical address of the object).
2570 */
2571 void
2572 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2573 {
2574 pool_cache_cpu_t *cc;
2575 pcg_t *pcg;
2576 int s;
2577
2578 FREECHECK_IN(&pc->pc_freecheck, object);
2579
2580 cc = pool_cache_cpu_enter(pc, &s);
2581 do {
2582 /* If the current group isn't full, release it there. */
2583 pcg = cc->cc_current;
2584 if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
2585 pcg_put(pcg, object, pa);
2586 cc->cc_hits++;
2587 pool_cache_cpu_exit(cc, &s);
2588 return;
2589 }
2590
2591 /*
2592 * That failed. If the previous group is empty, swap
2593 * it with the current group and try again.
2594 */
2595 pcg = cc->cc_previous;
2596 if (pcg != NULL && pcg->pcg_avail == 0) {
2597 cc->cc_previous = cc->cc_current;
2598 cc->cc_current = pcg;
2599 continue;
2600 }
2601
2602 /*
2603 * Can't free to either group: try the slow path.
2604 * If put_slow() releases the object for us, it
2605 * will return NULL. Otherwise we need to retry.
2606 */
2607 cc = pool_cache_put_slow(cc, &s, object, pa);
2608 } while (cc != NULL);
2609 }
2610
2611 /*
2612 * Pool backend allocators.
2613 *
2614 * Each pool has a backend allocator that handles allocation, deallocation,
2615 * and any additional draining that might be needed.
2616 *
2617 * We provide two standard allocators:
2618 *
2619 * pool_allocator_kmem - the default when no allocator is specified
2620 *
2621 * pool_allocator_nointr - used for pools that will not be accessed
2622 * in interrupt context.
2623 */
2624 void *pool_page_alloc(struct pool *, int);
2625 void pool_page_free(struct pool *, void *);
2626
2627 #ifdef POOL_SUBPAGE
2628 struct pool_allocator pool_allocator_kmem_fullpage = {
2629 pool_page_alloc, pool_page_free, 0,
2630 .pa_backingmapptr = &kmem_map,
2631 };
2632 #else
2633 struct pool_allocator pool_allocator_kmem = {
2634 pool_page_alloc, pool_page_free, 0,
2635 .pa_backingmapptr = &kmem_map,
2636 };
2637 #endif
2638
2639 void *pool_page_alloc_nointr(struct pool *, int);
2640 void pool_page_free_nointr(struct pool *, void *);
2641
2642 #ifdef POOL_SUBPAGE
2643 struct pool_allocator pool_allocator_nointr_fullpage = {
2644 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2645 .pa_backingmapptr = &kernel_map,
2646 };
2647 #else
2648 struct pool_allocator pool_allocator_nointr = {
2649 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2650 .pa_backingmapptr = &kernel_map,
2651 };
2652 #endif
2653
2654 #ifdef POOL_SUBPAGE
2655 void *pool_subpage_alloc(struct pool *, int);
2656 void pool_subpage_free(struct pool *, void *);
2657
2658 struct pool_allocator pool_allocator_kmem = {
2659 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2660 .pa_backingmapptr = &kmem_map,
2661 };
2662
2663 void *pool_subpage_alloc_nointr(struct pool *, int);
2664 void pool_subpage_free_nointr(struct pool *, void *);
2665
2666 struct pool_allocator pool_allocator_nointr = {
2667 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2668 .pa_backingmapptr = &kmem_map,
2669 };
2670 #endif /* POOL_SUBPAGE */
2671
2672 static void *
2673 pool_allocator_alloc(struct pool *pp, int flags)
2674 {
2675 struct pool_allocator *pa = pp->pr_alloc;
2676 void *res;
2677
2678 res = (*pa->pa_alloc)(pp, flags);
2679 if (res == NULL && (flags & PR_WAITOK) == 0) {
2680 /*
2681 * We only run the drain hook here if PR_NOWAIT.
2682 * In other cases, the hook will be run in
2683 * pool_reclaim().
2684 */
2685 if (pp->pr_drain_hook != NULL) {
2686 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2687 res = (*pa->pa_alloc)(pp, flags);
2688 }
2689 }
2690 return res;
2691 }
2692
2693 static void
2694 pool_allocator_free(struct pool *pp, void *v)
2695 {
2696 struct pool_allocator *pa = pp->pr_alloc;
2697
2698 (*pa->pa_free)(pp, v);
2699 }
2700
2701 void *
2702 pool_page_alloc(struct pool *pp, int flags)
2703 {
2704 bool waitok = (flags & PR_WAITOK) ? true : false;
2705
2706 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2707 }
2708
2709 void
2710 pool_page_free(struct pool *pp, void *v)
2711 {
2712
2713 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2714 }
2715
2716 static void *
2717 pool_page_alloc_meta(struct pool *pp, int flags)
2718 {
2719 bool waitok = (flags & PR_WAITOK) ? true : false;
2720
2721 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2722 }
2723
2724 static void
2725 pool_page_free_meta(struct pool *pp, void *v)
2726 {
2727
2728 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2729 }
2730
2731 #ifdef POOL_SUBPAGE
2732 /* Sub-page allocator, for machines with large hardware pages. */
2733 void *
2734 pool_subpage_alloc(struct pool *pp, int flags)
2735 {
2736 return pool_get(&psppool, flags);
2737 }
2738
2739 void
2740 pool_subpage_free(struct pool *pp, void *v)
2741 {
2742 pool_put(&psppool, v);
2743 }
2744
2745 /* We don't provide a real nointr allocator. Maybe later. */
2746 void *
2747 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2748 {
2749
2750 return (pool_subpage_alloc(pp, flags));
2751 }
2752
2753 void
2754 pool_subpage_free_nointr(struct pool *pp, void *v)
2755 {
2756
2757 pool_subpage_free(pp, v);
2758 }
2759 #endif /* POOL_SUBPAGE */
2760 void *
2761 pool_page_alloc_nointr(struct pool *pp, int flags)
2762 {
2763 bool waitok = (flags & PR_WAITOK) ? true : false;
2764
2765 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2766 }
2767
2768 void
2769 pool_page_free_nointr(struct pool *pp, void *v)
2770 {
2771
2772 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2773 }
2774