subr_pool.c revision 1.129.12.6 1 /* $NetBSD: subr_pool.c,v 1.129.12.6 2007/12/09 19:38:24 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.129.12.6 2007/12/09 19:38:24 jmcneill Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bitops.h>
50 #include <sys/proc.h>
51 #include <sys/errno.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/pool.h>
56 #include <sys/syslog.h>
57 #include <sys/debug.h>
58 #include <sys/lockdebug.h>
59 #include <sys/xcall.h>
60 #include <sys/cpu.h>
61
62 #include <uvm/uvm.h>
63
64 /*
65 * Pool resource management utility.
66 *
67 * Memory is allocated in pages which are split into pieces according to
68 * the pool item size. Each page is kept on one of three lists in the
69 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
70 * for empty, full and partially-full pages respectively. The individual
71 * pool items are on a linked list headed by `ph_itemlist' in each page
72 * header. The memory for building the page list is either taken from
73 * the allocated pages themselves (for small pool items) or taken from
74 * an internal pool of page headers (`phpool').
75 */
76
77 /* List of all pools */
78 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
79
80 /* List of all caches. */
81 LIST_HEAD(,pool_cache) pool_cache_head =
82 LIST_HEAD_INITIALIZER(pool_cache_head);
83
84 /* Private pool for page header structures */
85 #define PHPOOL_MAX 8
86 static struct pool phpool[PHPOOL_MAX];
87 #define PHPOOL_FREELIST_NELEM(idx) \
88 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
89
90 #ifdef POOL_SUBPAGE
91 /* Pool of subpages for use by normal pools. */
92 static struct pool psppool;
93 #endif
94
95 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
96 SLIST_HEAD_INITIALIZER(pa_deferinitq);
97
98 static void *pool_page_alloc_meta(struct pool *, int);
99 static void pool_page_free_meta(struct pool *, void *);
100
101 /* allocator for pool metadata */
102 struct pool_allocator pool_allocator_meta = {
103 pool_page_alloc_meta, pool_page_free_meta,
104 .pa_backingmapptr = &kmem_map,
105 };
106
107 /* # of seconds to retain page after last use */
108 int pool_inactive_time = 10;
109
110 /* Next candidate for drainage (see pool_drain()) */
111 static struct pool *drainpp;
112
113 /* This lock protects both pool_head and drainpp. */
114 static kmutex_t pool_head_lock;
115 static kcondvar_t pool_busy;
116
117 typedef uint32_t pool_item_bitmap_t;
118 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
119 #define BITMAP_MASK (BITMAP_SIZE - 1)
120
121 struct pool_item_header {
122 /* Page headers */
123 LIST_ENTRY(pool_item_header)
124 ph_pagelist; /* pool page list */
125 SPLAY_ENTRY(pool_item_header)
126 ph_node; /* Off-page page headers */
127 void * ph_page; /* this page's address */
128 struct timeval ph_time; /* last referenced */
129 uint16_t ph_nmissing; /* # of chunks in use */
130 union {
131 /* !PR_NOTOUCH */
132 struct {
133 LIST_HEAD(, pool_item)
134 phu_itemlist; /* chunk list for this page */
135 } phu_normal;
136 /* PR_NOTOUCH */
137 struct {
138 uint16_t phu_off; /* start offset in page */
139 pool_item_bitmap_t phu_bitmap[];
140 } phu_notouch;
141 } ph_u;
142 };
143 #define ph_itemlist ph_u.phu_normal.phu_itemlist
144 #define ph_off ph_u.phu_notouch.phu_off
145 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
146
147 struct pool_item {
148 #ifdef DIAGNOSTIC
149 u_int pi_magic;
150 #endif
151 #define PI_MAGIC 0xdeaddeadU
152 /* Other entries use only this list entry */
153 LIST_ENTRY(pool_item) pi_list;
154 };
155
156 #define POOL_NEEDS_CATCHUP(pp) \
157 ((pp)->pr_nitems < (pp)->pr_minitems)
158
159 /*
160 * Pool cache management.
161 *
162 * Pool caches provide a way for constructed objects to be cached by the
163 * pool subsystem. This can lead to performance improvements by avoiding
164 * needless object construction/destruction; it is deferred until absolutely
165 * necessary.
166 *
167 * Caches are grouped into cache groups. Each cache group references up
168 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
169 * object from the pool, it calls the object's constructor and places it
170 * into a cache group. When a cache group frees an object back to the
171 * pool, it first calls the object's destructor. This allows the object
172 * to persist in constructed form while freed to the cache.
173 *
174 * The pool references each cache, so that when a pool is drained by the
175 * pagedaemon, it can drain each individual cache as well. Each time a
176 * cache is drained, the most idle cache group is freed to the pool in
177 * its entirety.
178 *
179 * Pool caches are layed on top of pools. By layering them, we can avoid
180 * the complexity of cache management for pools which would not benefit
181 * from it.
182 */
183
184 static struct pool pcgpool;
185 static struct pool cache_pool;
186 static struct pool cache_cpu_pool;
187
188 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
189 void *, paddr_t);
190 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
191 void **, paddr_t *, int);
192 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
193 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
194 static void pool_cache_xcall(pool_cache_t);
195
196 static int pool_catchup(struct pool *);
197 static void pool_prime_page(struct pool *, void *,
198 struct pool_item_header *);
199 static void pool_update_curpage(struct pool *);
200
201 static int pool_grow(struct pool *, int);
202 static void *pool_allocator_alloc(struct pool *, int);
203 static void pool_allocator_free(struct pool *, void *);
204
205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
206 void (*)(const char *, ...));
207 static void pool_print1(struct pool *, const char *,
208 void (*)(const char *, ...));
209
210 static int pool_chk_page(struct pool *, const char *,
211 struct pool_item_header *);
212
213 /*
214 * Pool log entry. An array of these is allocated in pool_init().
215 */
216 struct pool_log {
217 const char *pl_file;
218 long pl_line;
219 int pl_action;
220 #define PRLOG_GET 1
221 #define PRLOG_PUT 2
222 void *pl_addr;
223 };
224
225 #ifdef POOL_DIAGNOSTIC
226 /* Number of entries in pool log buffers */
227 #ifndef POOL_LOGSIZE
228 #define POOL_LOGSIZE 10
229 #endif
230
231 int pool_logsize = POOL_LOGSIZE;
232
233 static inline void
234 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
235 {
236 int n = pp->pr_curlogentry;
237 struct pool_log *pl;
238
239 if ((pp->pr_roflags & PR_LOGGING) == 0)
240 return;
241
242 /*
243 * Fill in the current entry. Wrap around and overwrite
244 * the oldest entry if necessary.
245 */
246 pl = &pp->pr_log[n];
247 pl->pl_file = file;
248 pl->pl_line = line;
249 pl->pl_action = action;
250 pl->pl_addr = v;
251 if (++n >= pp->pr_logsize)
252 n = 0;
253 pp->pr_curlogentry = n;
254 }
255
256 static void
257 pr_printlog(struct pool *pp, struct pool_item *pi,
258 void (*pr)(const char *, ...))
259 {
260 int i = pp->pr_logsize;
261 int n = pp->pr_curlogentry;
262
263 if ((pp->pr_roflags & PR_LOGGING) == 0)
264 return;
265
266 /*
267 * Print all entries in this pool's log.
268 */
269 while (i-- > 0) {
270 struct pool_log *pl = &pp->pr_log[n];
271 if (pl->pl_action != 0) {
272 if (pi == NULL || pi == pl->pl_addr) {
273 (*pr)("\tlog entry %d:\n", i);
274 (*pr)("\t\taction = %s, addr = %p\n",
275 pl->pl_action == PRLOG_GET ? "get" : "put",
276 pl->pl_addr);
277 (*pr)("\t\tfile: %s at line %lu\n",
278 pl->pl_file, pl->pl_line);
279 }
280 }
281 if (++n >= pp->pr_logsize)
282 n = 0;
283 }
284 }
285
286 static inline void
287 pr_enter(struct pool *pp, const char *file, long line)
288 {
289
290 if (__predict_false(pp->pr_entered_file != NULL)) {
291 printf("pool %s: reentrancy at file %s line %ld\n",
292 pp->pr_wchan, file, line);
293 printf(" previous entry at file %s line %ld\n",
294 pp->pr_entered_file, pp->pr_entered_line);
295 panic("pr_enter");
296 }
297
298 pp->pr_entered_file = file;
299 pp->pr_entered_line = line;
300 }
301
302 static inline void
303 pr_leave(struct pool *pp)
304 {
305
306 if (__predict_false(pp->pr_entered_file == NULL)) {
307 printf("pool %s not entered?\n", pp->pr_wchan);
308 panic("pr_leave");
309 }
310
311 pp->pr_entered_file = NULL;
312 pp->pr_entered_line = 0;
313 }
314
315 static inline void
316 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
317 {
318
319 if (pp->pr_entered_file != NULL)
320 (*pr)("\n\tcurrently entered from file %s line %ld\n",
321 pp->pr_entered_file, pp->pr_entered_line);
322 }
323 #else
324 #define pr_log(pp, v, action, file, line)
325 #define pr_printlog(pp, pi, pr)
326 #define pr_enter(pp, file, line)
327 #define pr_leave(pp)
328 #define pr_enter_check(pp, pr)
329 #endif /* POOL_DIAGNOSTIC */
330
331 static inline unsigned int
332 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
333 const void *v)
334 {
335 const char *cp = v;
336 unsigned int idx;
337
338 KASSERT(pp->pr_roflags & PR_NOTOUCH);
339 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
340 KASSERT(idx < pp->pr_itemsperpage);
341 return idx;
342 }
343
344 static inline void
345 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
346 void *obj)
347 {
348 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
349 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
350 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
351
352 KASSERT((*bitmap & mask) == 0);
353 *bitmap |= mask;
354 }
355
356 static inline void *
357 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
358 {
359 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
360 unsigned int idx;
361 int i;
362
363 for (i = 0; ; i++) {
364 int bit;
365
366 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
367 bit = ffs32(bitmap[i]);
368 if (bit) {
369 pool_item_bitmap_t mask;
370
371 bit--;
372 idx = (i * BITMAP_SIZE) + bit;
373 mask = 1 << bit;
374 KASSERT((bitmap[i] & mask) != 0);
375 bitmap[i] &= ~mask;
376 break;
377 }
378 }
379 KASSERT(idx < pp->pr_itemsperpage);
380 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
381 }
382
383 static inline void
384 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
385 {
386 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
387 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
388 int i;
389
390 for (i = 0; i < n; i++) {
391 bitmap[i] = (pool_item_bitmap_t)-1;
392 }
393 }
394
395 static inline int
396 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
397 {
398
399 /*
400 * we consider pool_item_header with smaller ph_page bigger.
401 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
402 */
403
404 if (a->ph_page < b->ph_page)
405 return (1);
406 else if (a->ph_page > b->ph_page)
407 return (-1);
408 else
409 return (0);
410 }
411
412 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
413 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
414
415 /*
416 * Return the pool page header based on item address.
417 */
418 static inline struct pool_item_header *
419 pr_find_pagehead(struct pool *pp, void *v)
420 {
421 struct pool_item_header *ph, tmp;
422
423 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
424 tmp.ph_page = (void *)(uintptr_t)v;
425 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
426 if (ph == NULL) {
427 ph = SPLAY_ROOT(&pp->pr_phtree);
428 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
429 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
430 }
431 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
432 }
433 } else {
434 void *page =
435 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
436
437 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
438 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
439 } else {
440 tmp.ph_page = page;
441 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
442 }
443 }
444
445 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
446 ((char *)ph->ph_page <= (char *)v &&
447 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
448 return ph;
449 }
450
451 static void
452 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
453 {
454 struct pool_item_header *ph;
455
456 while ((ph = LIST_FIRST(pq)) != NULL) {
457 LIST_REMOVE(ph, ph_pagelist);
458 pool_allocator_free(pp, ph->ph_page);
459 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
460 pool_put(pp->pr_phpool, ph);
461 }
462 }
463
464 /*
465 * Remove a page from the pool.
466 */
467 static inline void
468 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
469 struct pool_pagelist *pq)
470 {
471
472 KASSERT(mutex_owned(&pp->pr_lock));
473
474 /*
475 * If the page was idle, decrement the idle page count.
476 */
477 if (ph->ph_nmissing == 0) {
478 #ifdef DIAGNOSTIC
479 if (pp->pr_nidle == 0)
480 panic("pr_rmpage: nidle inconsistent");
481 if (pp->pr_nitems < pp->pr_itemsperpage)
482 panic("pr_rmpage: nitems inconsistent");
483 #endif
484 pp->pr_nidle--;
485 }
486
487 pp->pr_nitems -= pp->pr_itemsperpage;
488
489 /*
490 * Unlink the page from the pool and queue it for release.
491 */
492 LIST_REMOVE(ph, ph_pagelist);
493 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
494 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
495 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
496
497 pp->pr_npages--;
498 pp->pr_npagefree++;
499
500 pool_update_curpage(pp);
501 }
502
503 static bool
504 pa_starved_p(struct pool_allocator *pa)
505 {
506
507 if (pa->pa_backingmap != NULL) {
508 return vm_map_starved_p(pa->pa_backingmap);
509 }
510 return false;
511 }
512
513 static int
514 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
515 {
516 struct pool *pp = obj;
517 struct pool_allocator *pa = pp->pr_alloc;
518
519 KASSERT(&pp->pr_reclaimerentry == ce);
520 pool_reclaim(pp);
521 if (!pa_starved_p(pa)) {
522 return CALLBACK_CHAIN_ABORT;
523 }
524 return CALLBACK_CHAIN_CONTINUE;
525 }
526
527 static void
528 pool_reclaim_register(struct pool *pp)
529 {
530 struct vm_map *map = pp->pr_alloc->pa_backingmap;
531 int s;
532
533 if (map == NULL) {
534 return;
535 }
536
537 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
538 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
539 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
540 splx(s);
541 }
542
543 static void
544 pool_reclaim_unregister(struct pool *pp)
545 {
546 struct vm_map *map = pp->pr_alloc->pa_backingmap;
547 int s;
548
549 if (map == NULL) {
550 return;
551 }
552
553 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
554 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
555 &pp->pr_reclaimerentry);
556 splx(s);
557 }
558
559 static void
560 pa_reclaim_register(struct pool_allocator *pa)
561 {
562 struct vm_map *map = *pa->pa_backingmapptr;
563 struct pool *pp;
564
565 KASSERT(pa->pa_backingmap == NULL);
566 if (map == NULL) {
567 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
568 return;
569 }
570 pa->pa_backingmap = map;
571 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
572 pool_reclaim_register(pp);
573 }
574 }
575
576 /*
577 * Initialize all the pools listed in the "pools" link set.
578 */
579 void
580 pool_subsystem_init(void)
581 {
582 struct pool_allocator *pa;
583 __link_set_decl(pools, struct link_pool_init);
584 struct link_pool_init * const *pi;
585
586 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
587 cv_init(&pool_busy, "poolbusy");
588
589 __link_set_foreach(pi, pools)
590 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
591 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
592 (*pi)->palloc, (*pi)->ipl);
593
594 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
595 KASSERT(pa->pa_backingmapptr != NULL);
596 KASSERT(*pa->pa_backingmapptr != NULL);
597 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
598 pa_reclaim_register(pa);
599 }
600
601 pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
602 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
603
604 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
605 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
606 }
607
608 /*
609 * Initialize the given pool resource structure.
610 *
611 * We export this routine to allow other kernel parts to declare
612 * static pools that must be initialized before malloc() is available.
613 */
614 void
615 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
616 const char *wchan, struct pool_allocator *palloc, int ipl)
617 {
618 #ifdef DEBUG
619 struct pool *pp1;
620 #endif
621 size_t trysize, phsize;
622 int off, slack;
623
624 #ifdef DEBUG
625 /*
626 * Check that the pool hasn't already been initialised and
627 * added to the list of all pools.
628 */
629 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
630 if (pp == pp1)
631 panic("pool_init: pool %s already initialised",
632 wchan);
633 }
634 #endif
635
636 #ifdef POOL_DIAGNOSTIC
637 /*
638 * Always log if POOL_DIAGNOSTIC is defined.
639 */
640 if (pool_logsize != 0)
641 flags |= PR_LOGGING;
642 #endif
643
644 if (palloc == NULL)
645 palloc = &pool_allocator_kmem;
646 #ifdef POOL_SUBPAGE
647 if (size > palloc->pa_pagesz) {
648 if (palloc == &pool_allocator_kmem)
649 palloc = &pool_allocator_kmem_fullpage;
650 else if (palloc == &pool_allocator_nointr)
651 palloc = &pool_allocator_nointr_fullpage;
652 }
653 #endif /* POOL_SUBPAGE */
654 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
655 if (palloc->pa_pagesz == 0)
656 palloc->pa_pagesz = PAGE_SIZE;
657
658 TAILQ_INIT(&palloc->pa_list);
659
660 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
661 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
662 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
663
664 if (palloc->pa_backingmapptr != NULL) {
665 pa_reclaim_register(palloc);
666 }
667 palloc->pa_flags |= PA_INITIALIZED;
668 }
669
670 if (align == 0)
671 align = ALIGN(1);
672
673 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
674 size = sizeof(struct pool_item);
675
676 size = roundup(size, align);
677 #ifdef DIAGNOSTIC
678 if (size > palloc->pa_pagesz)
679 panic("pool_init: pool item size (%zu) too large", size);
680 #endif
681
682 /*
683 * Initialize the pool structure.
684 */
685 LIST_INIT(&pp->pr_emptypages);
686 LIST_INIT(&pp->pr_fullpages);
687 LIST_INIT(&pp->pr_partpages);
688 pp->pr_cache = NULL;
689 pp->pr_curpage = NULL;
690 pp->pr_npages = 0;
691 pp->pr_minitems = 0;
692 pp->pr_minpages = 0;
693 pp->pr_maxpages = UINT_MAX;
694 pp->pr_roflags = flags;
695 pp->pr_flags = 0;
696 pp->pr_size = size;
697 pp->pr_align = align;
698 pp->pr_wchan = wchan;
699 pp->pr_alloc = palloc;
700 pp->pr_nitems = 0;
701 pp->pr_nout = 0;
702 pp->pr_hardlimit = UINT_MAX;
703 pp->pr_hardlimit_warning = NULL;
704 pp->pr_hardlimit_ratecap.tv_sec = 0;
705 pp->pr_hardlimit_ratecap.tv_usec = 0;
706 pp->pr_hardlimit_warning_last.tv_sec = 0;
707 pp->pr_hardlimit_warning_last.tv_usec = 0;
708 pp->pr_drain_hook = NULL;
709 pp->pr_drain_hook_arg = NULL;
710 pp->pr_freecheck = NULL;
711
712 /*
713 * Decide whether to put the page header off page to avoid
714 * wasting too large a part of the page or too big item.
715 * Off-page page headers go on a hash table, so we can match
716 * a returned item with its header based on the page address.
717 * We use 1/16 of the page size and about 8 times of the item
718 * size as the threshold (XXX: tune)
719 *
720 * However, we'll put the header into the page if we can put
721 * it without wasting any items.
722 *
723 * Silently enforce `0 <= ioff < align'.
724 */
725 pp->pr_itemoffset = ioff %= align;
726 /* See the comment below about reserved bytes. */
727 trysize = palloc->pa_pagesz - ((align - ioff) % align);
728 phsize = ALIGN(sizeof(struct pool_item_header));
729 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
730 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
731 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
732 /* Use the end of the page for the page header */
733 pp->pr_roflags |= PR_PHINPAGE;
734 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
735 } else {
736 /* The page header will be taken from our page header pool */
737 pp->pr_phoffset = 0;
738 off = palloc->pa_pagesz;
739 SPLAY_INIT(&pp->pr_phtree);
740 }
741
742 /*
743 * Alignment is to take place at `ioff' within the item. This means
744 * we must reserve up to `align - 1' bytes on the page to allow
745 * appropriate positioning of each item.
746 */
747 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
748 KASSERT(pp->pr_itemsperpage != 0);
749 if ((pp->pr_roflags & PR_NOTOUCH)) {
750 int idx;
751
752 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
753 idx++) {
754 /* nothing */
755 }
756 if (idx >= PHPOOL_MAX) {
757 /*
758 * if you see this panic, consider to tweak
759 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
760 */
761 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
762 pp->pr_wchan, pp->pr_itemsperpage);
763 }
764 pp->pr_phpool = &phpool[idx];
765 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
766 pp->pr_phpool = &phpool[0];
767 }
768 #if defined(DIAGNOSTIC)
769 else {
770 pp->pr_phpool = NULL;
771 }
772 #endif
773
774 /*
775 * Use the slack between the chunks and the page header
776 * for "cache coloring".
777 */
778 slack = off - pp->pr_itemsperpage * pp->pr_size;
779 pp->pr_maxcolor = (slack / align) * align;
780 pp->pr_curcolor = 0;
781
782 pp->pr_nget = 0;
783 pp->pr_nfail = 0;
784 pp->pr_nput = 0;
785 pp->pr_npagealloc = 0;
786 pp->pr_npagefree = 0;
787 pp->pr_hiwat = 0;
788 pp->pr_nidle = 0;
789 pp->pr_refcnt = 0;
790
791 #ifdef POOL_DIAGNOSTIC
792 if (flags & PR_LOGGING) {
793 if (kmem_map == NULL ||
794 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
795 M_TEMP, M_NOWAIT)) == NULL)
796 pp->pr_roflags &= ~PR_LOGGING;
797 pp->pr_curlogentry = 0;
798 pp->pr_logsize = pool_logsize;
799 }
800 #endif
801
802 pp->pr_entered_file = NULL;
803 pp->pr_entered_line = 0;
804
805 /*
806 * XXXAD hack to prevent IP input processing from blocking.
807 */
808 if (ipl == IPL_SOFTNET) {
809 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
810 } else {
811 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
812 }
813 cv_init(&pp->pr_cv, wchan);
814 pp->pr_ipl = ipl;
815
816 /*
817 * Initialize private page header pool and cache magazine pool if we
818 * haven't done so yet.
819 * XXX LOCKING.
820 */
821 if (phpool[0].pr_size == 0) {
822 int idx;
823 for (idx = 0; idx < PHPOOL_MAX; idx++) {
824 static char phpool_names[PHPOOL_MAX][6+1+6+1];
825 int nelem;
826 size_t sz;
827
828 nelem = PHPOOL_FREELIST_NELEM(idx);
829 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
830 "phpool-%d", nelem);
831 sz = sizeof(struct pool_item_header);
832 if (nelem) {
833 sz = offsetof(struct pool_item_header,
834 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
835 }
836 pool_init(&phpool[idx], sz, 0, 0, 0,
837 phpool_names[idx], &pool_allocator_meta, IPL_VM);
838 }
839 #ifdef POOL_SUBPAGE
840 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
841 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
842 #endif
843 pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
844 "cachegrp", &pool_allocator_meta, IPL_VM);
845 }
846
847 if (__predict_true(!cold)) {
848 /* Insert into the list of all pools. */
849 mutex_enter(&pool_head_lock);
850 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
851 mutex_exit(&pool_head_lock);
852
853 /* Insert this into the list of pools using this allocator. */
854 mutex_enter(&palloc->pa_lock);
855 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
856 mutex_exit(&palloc->pa_lock);
857 } else {
858 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
859 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
860 }
861
862 pool_reclaim_register(pp);
863 }
864
865 /*
866 * De-commision a pool resource.
867 */
868 void
869 pool_destroy(struct pool *pp)
870 {
871 struct pool_pagelist pq;
872 struct pool_item_header *ph;
873
874 /* Remove from global pool list */
875 mutex_enter(&pool_head_lock);
876 while (pp->pr_refcnt != 0)
877 cv_wait(&pool_busy, &pool_head_lock);
878 LIST_REMOVE(pp, pr_poollist);
879 if (drainpp == pp)
880 drainpp = NULL;
881 mutex_exit(&pool_head_lock);
882
883 /* Remove this pool from its allocator's list of pools. */
884 pool_reclaim_unregister(pp);
885 mutex_enter(&pp->pr_alloc->pa_lock);
886 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
887 mutex_exit(&pp->pr_alloc->pa_lock);
888
889 mutex_enter(&pp->pr_lock);
890
891 KASSERT(pp->pr_cache == NULL);
892
893 #ifdef DIAGNOSTIC
894 if (pp->pr_nout != 0) {
895 pr_printlog(pp, NULL, printf);
896 panic("pool_destroy: pool busy: still out: %u",
897 pp->pr_nout);
898 }
899 #endif
900
901 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
902 KASSERT(LIST_EMPTY(&pp->pr_partpages));
903
904 /* Remove all pages */
905 LIST_INIT(&pq);
906 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
907 pr_rmpage(pp, ph, &pq);
908
909 mutex_exit(&pp->pr_lock);
910
911 pr_pagelist_free(pp, &pq);
912
913 #ifdef POOL_DIAGNOSTIC
914 if ((pp->pr_roflags & PR_LOGGING) != 0)
915 free(pp->pr_log, M_TEMP);
916 #endif
917
918 cv_destroy(&pp->pr_cv);
919 mutex_destroy(&pp->pr_lock);
920 }
921
922 void
923 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
924 {
925
926 /* XXX no locking -- must be used just after pool_init() */
927 #ifdef DIAGNOSTIC
928 if (pp->pr_drain_hook != NULL)
929 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
930 #endif
931 pp->pr_drain_hook = fn;
932 pp->pr_drain_hook_arg = arg;
933 }
934
935 static struct pool_item_header *
936 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
937 {
938 struct pool_item_header *ph;
939
940 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
941 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
942 else
943 ph = pool_get(pp->pr_phpool, flags);
944
945 return (ph);
946 }
947
948 /*
949 * Grab an item from the pool.
950 */
951 void *
952 #ifdef POOL_DIAGNOSTIC
953 _pool_get(struct pool *pp, int flags, const char *file, long line)
954 #else
955 pool_get(struct pool *pp, int flags)
956 #endif
957 {
958 struct pool_item *pi;
959 struct pool_item_header *ph;
960 void *v;
961
962 #ifdef DIAGNOSTIC
963 if (__predict_false(pp->pr_itemsperpage == 0))
964 panic("pool_get: pool %p: pr_itemsperpage is zero, "
965 "pool not initialized?", pp);
966 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
967 (flags & PR_WAITOK) != 0))
968 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
969
970 #endif /* DIAGNOSTIC */
971 #ifdef LOCKDEBUG
972 if (flags & PR_WAITOK)
973 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
974 #endif
975
976 mutex_enter(&pp->pr_lock);
977 pr_enter(pp, file, line);
978
979 startover:
980 /*
981 * Check to see if we've reached the hard limit. If we have,
982 * and we can wait, then wait until an item has been returned to
983 * the pool.
984 */
985 #ifdef DIAGNOSTIC
986 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
987 pr_leave(pp);
988 mutex_exit(&pp->pr_lock);
989 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
990 }
991 #endif
992 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
993 if (pp->pr_drain_hook != NULL) {
994 /*
995 * Since the drain hook is going to free things
996 * back to the pool, unlock, call the hook, re-lock,
997 * and check the hardlimit condition again.
998 */
999 pr_leave(pp);
1000 mutex_exit(&pp->pr_lock);
1001 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1002 mutex_enter(&pp->pr_lock);
1003 pr_enter(pp, file, line);
1004 if (pp->pr_nout < pp->pr_hardlimit)
1005 goto startover;
1006 }
1007
1008 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1009 /*
1010 * XXX: A warning isn't logged in this case. Should
1011 * it be?
1012 */
1013 pp->pr_flags |= PR_WANTED;
1014 pr_leave(pp);
1015 cv_wait(&pp->pr_cv, &pp->pr_lock);
1016 pr_enter(pp, file, line);
1017 goto startover;
1018 }
1019
1020 /*
1021 * Log a message that the hard limit has been hit.
1022 */
1023 if (pp->pr_hardlimit_warning != NULL &&
1024 ratecheck(&pp->pr_hardlimit_warning_last,
1025 &pp->pr_hardlimit_ratecap))
1026 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1027
1028 pp->pr_nfail++;
1029
1030 pr_leave(pp);
1031 mutex_exit(&pp->pr_lock);
1032 return (NULL);
1033 }
1034
1035 /*
1036 * The convention we use is that if `curpage' is not NULL, then
1037 * it points at a non-empty bucket. In particular, `curpage'
1038 * never points at a page header which has PR_PHINPAGE set and
1039 * has no items in its bucket.
1040 */
1041 if ((ph = pp->pr_curpage) == NULL) {
1042 int error;
1043
1044 #ifdef DIAGNOSTIC
1045 if (pp->pr_nitems != 0) {
1046 mutex_exit(&pp->pr_lock);
1047 printf("pool_get: %s: curpage NULL, nitems %u\n",
1048 pp->pr_wchan, pp->pr_nitems);
1049 panic("pool_get: nitems inconsistent");
1050 }
1051 #endif
1052
1053 /*
1054 * Call the back-end page allocator for more memory.
1055 * Release the pool lock, as the back-end page allocator
1056 * may block.
1057 */
1058 pr_leave(pp);
1059 error = pool_grow(pp, flags);
1060 pr_enter(pp, file, line);
1061 if (error != 0) {
1062 /*
1063 * We were unable to allocate a page or item
1064 * header, but we released the lock during
1065 * allocation, so perhaps items were freed
1066 * back to the pool. Check for this case.
1067 */
1068 if (pp->pr_curpage != NULL)
1069 goto startover;
1070
1071 pp->pr_nfail++;
1072 pr_leave(pp);
1073 mutex_exit(&pp->pr_lock);
1074 return (NULL);
1075 }
1076
1077 /* Start the allocation process over. */
1078 goto startover;
1079 }
1080 if (pp->pr_roflags & PR_NOTOUCH) {
1081 #ifdef DIAGNOSTIC
1082 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1083 pr_leave(pp);
1084 mutex_exit(&pp->pr_lock);
1085 panic("pool_get: %s: page empty", pp->pr_wchan);
1086 }
1087 #endif
1088 v = pr_item_notouch_get(pp, ph);
1089 #ifdef POOL_DIAGNOSTIC
1090 pr_log(pp, v, PRLOG_GET, file, line);
1091 #endif
1092 } else {
1093 v = pi = LIST_FIRST(&ph->ph_itemlist);
1094 if (__predict_false(v == NULL)) {
1095 pr_leave(pp);
1096 mutex_exit(&pp->pr_lock);
1097 panic("pool_get: %s: page empty", pp->pr_wchan);
1098 }
1099 #ifdef DIAGNOSTIC
1100 if (__predict_false(pp->pr_nitems == 0)) {
1101 pr_leave(pp);
1102 mutex_exit(&pp->pr_lock);
1103 printf("pool_get: %s: items on itemlist, nitems %u\n",
1104 pp->pr_wchan, pp->pr_nitems);
1105 panic("pool_get: nitems inconsistent");
1106 }
1107 #endif
1108
1109 #ifdef POOL_DIAGNOSTIC
1110 pr_log(pp, v, PRLOG_GET, file, line);
1111 #endif
1112
1113 #ifdef DIAGNOSTIC
1114 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1115 pr_printlog(pp, pi, printf);
1116 panic("pool_get(%s): free list modified: "
1117 "magic=%x; page %p; item addr %p\n",
1118 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1119 }
1120 #endif
1121
1122 /*
1123 * Remove from item list.
1124 */
1125 LIST_REMOVE(pi, pi_list);
1126 }
1127 pp->pr_nitems--;
1128 pp->pr_nout++;
1129 if (ph->ph_nmissing == 0) {
1130 #ifdef DIAGNOSTIC
1131 if (__predict_false(pp->pr_nidle == 0))
1132 panic("pool_get: nidle inconsistent");
1133 #endif
1134 pp->pr_nidle--;
1135
1136 /*
1137 * This page was previously empty. Move it to the list of
1138 * partially-full pages. This page is already curpage.
1139 */
1140 LIST_REMOVE(ph, ph_pagelist);
1141 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1142 }
1143 ph->ph_nmissing++;
1144 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1145 #ifdef DIAGNOSTIC
1146 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1147 !LIST_EMPTY(&ph->ph_itemlist))) {
1148 pr_leave(pp);
1149 mutex_exit(&pp->pr_lock);
1150 panic("pool_get: %s: nmissing inconsistent",
1151 pp->pr_wchan);
1152 }
1153 #endif
1154 /*
1155 * This page is now full. Move it to the full list
1156 * and select a new current page.
1157 */
1158 LIST_REMOVE(ph, ph_pagelist);
1159 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1160 pool_update_curpage(pp);
1161 }
1162
1163 pp->pr_nget++;
1164 pr_leave(pp);
1165
1166 /*
1167 * If we have a low water mark and we are now below that low
1168 * water mark, add more items to the pool.
1169 */
1170 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1171 /*
1172 * XXX: Should we log a warning? Should we set up a timeout
1173 * to try again in a second or so? The latter could break
1174 * a caller's assumptions about interrupt protection, etc.
1175 */
1176 }
1177
1178 mutex_exit(&pp->pr_lock);
1179 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1180 FREECHECK_OUT(&pp->pr_freecheck, v);
1181 return (v);
1182 }
1183
1184 /*
1185 * Internal version of pool_put(). Pool is already locked/entered.
1186 */
1187 static void
1188 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1189 {
1190 struct pool_item *pi = v;
1191 struct pool_item_header *ph;
1192
1193 KASSERT(mutex_owned(&pp->pr_lock));
1194 FREECHECK_IN(&pp->pr_freecheck, v);
1195 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1196
1197 #ifdef DIAGNOSTIC
1198 if (__predict_false(pp->pr_nout == 0)) {
1199 printf("pool %s: putting with none out\n",
1200 pp->pr_wchan);
1201 panic("pool_put");
1202 }
1203 #endif
1204
1205 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1206 pr_printlog(pp, NULL, printf);
1207 panic("pool_put: %s: page header missing", pp->pr_wchan);
1208 }
1209
1210 /*
1211 * Return to item list.
1212 */
1213 if (pp->pr_roflags & PR_NOTOUCH) {
1214 pr_item_notouch_put(pp, ph, v);
1215 } else {
1216 #ifdef DIAGNOSTIC
1217 pi->pi_magic = PI_MAGIC;
1218 #endif
1219 #ifdef DEBUG
1220 {
1221 int i, *ip = v;
1222
1223 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1224 *ip++ = PI_MAGIC;
1225 }
1226 }
1227 #endif
1228
1229 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1230 }
1231 KDASSERT(ph->ph_nmissing != 0);
1232 ph->ph_nmissing--;
1233 pp->pr_nput++;
1234 pp->pr_nitems++;
1235 pp->pr_nout--;
1236
1237 /* Cancel "pool empty" condition if it exists */
1238 if (pp->pr_curpage == NULL)
1239 pp->pr_curpage = ph;
1240
1241 if (pp->pr_flags & PR_WANTED) {
1242 pp->pr_flags &= ~PR_WANTED;
1243 if (ph->ph_nmissing == 0)
1244 pp->pr_nidle++;
1245 cv_broadcast(&pp->pr_cv);
1246 return;
1247 }
1248
1249 /*
1250 * If this page is now empty, do one of two things:
1251 *
1252 * (1) If we have more pages than the page high water mark,
1253 * free the page back to the system. ONLY CONSIDER
1254 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1255 * CLAIM.
1256 *
1257 * (2) Otherwise, move the page to the empty page list.
1258 *
1259 * Either way, select a new current page (so we use a partially-full
1260 * page if one is available).
1261 */
1262 if (ph->ph_nmissing == 0) {
1263 pp->pr_nidle++;
1264 if (pp->pr_npages > pp->pr_minpages &&
1265 (pp->pr_npages > pp->pr_maxpages ||
1266 pa_starved_p(pp->pr_alloc))) {
1267 pr_rmpage(pp, ph, pq);
1268 } else {
1269 LIST_REMOVE(ph, ph_pagelist);
1270 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1271
1272 /*
1273 * Update the timestamp on the page. A page must
1274 * be idle for some period of time before it can
1275 * be reclaimed by the pagedaemon. This minimizes
1276 * ping-pong'ing for memory.
1277 */
1278 getmicrotime(&ph->ph_time);
1279 }
1280 pool_update_curpage(pp);
1281 }
1282
1283 /*
1284 * If the page was previously completely full, move it to the
1285 * partially-full list and make it the current page. The next
1286 * allocation will get the item from this page, instead of
1287 * further fragmenting the pool.
1288 */
1289 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1290 LIST_REMOVE(ph, ph_pagelist);
1291 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1292 pp->pr_curpage = ph;
1293 }
1294 }
1295
1296 /*
1297 * Return resource to the pool.
1298 */
1299 #ifdef POOL_DIAGNOSTIC
1300 void
1301 _pool_put(struct pool *pp, void *v, const char *file, long line)
1302 {
1303 struct pool_pagelist pq;
1304
1305 LIST_INIT(&pq);
1306
1307 mutex_enter(&pp->pr_lock);
1308 pr_enter(pp, file, line);
1309
1310 pr_log(pp, v, PRLOG_PUT, file, line);
1311
1312 pool_do_put(pp, v, &pq);
1313
1314 pr_leave(pp);
1315 mutex_exit(&pp->pr_lock);
1316
1317 pr_pagelist_free(pp, &pq);
1318 }
1319 #undef pool_put
1320 #endif /* POOL_DIAGNOSTIC */
1321
1322 void
1323 pool_put(struct pool *pp, void *v)
1324 {
1325 struct pool_pagelist pq;
1326
1327 LIST_INIT(&pq);
1328
1329 mutex_enter(&pp->pr_lock);
1330 pool_do_put(pp, v, &pq);
1331 mutex_exit(&pp->pr_lock);
1332
1333 pr_pagelist_free(pp, &pq);
1334 }
1335
1336 #ifdef POOL_DIAGNOSTIC
1337 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1338 #endif
1339
1340 /*
1341 * pool_grow: grow a pool by a page.
1342 *
1343 * => called with pool locked.
1344 * => unlock and relock the pool.
1345 * => return with pool locked.
1346 */
1347
1348 static int
1349 pool_grow(struct pool *pp, int flags)
1350 {
1351 struct pool_item_header *ph = NULL;
1352 char *cp;
1353
1354 mutex_exit(&pp->pr_lock);
1355 cp = pool_allocator_alloc(pp, flags);
1356 if (__predict_true(cp != NULL)) {
1357 ph = pool_alloc_item_header(pp, cp, flags);
1358 }
1359 if (__predict_false(cp == NULL || ph == NULL)) {
1360 if (cp != NULL) {
1361 pool_allocator_free(pp, cp);
1362 }
1363 mutex_enter(&pp->pr_lock);
1364 return ENOMEM;
1365 }
1366
1367 mutex_enter(&pp->pr_lock);
1368 pool_prime_page(pp, cp, ph);
1369 pp->pr_npagealloc++;
1370 return 0;
1371 }
1372
1373 /*
1374 * Add N items to the pool.
1375 */
1376 int
1377 pool_prime(struct pool *pp, int n)
1378 {
1379 int newpages;
1380 int error = 0;
1381
1382 mutex_enter(&pp->pr_lock);
1383
1384 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1385
1386 while (newpages-- > 0) {
1387 error = pool_grow(pp, PR_NOWAIT);
1388 if (error) {
1389 break;
1390 }
1391 pp->pr_minpages++;
1392 }
1393
1394 if (pp->pr_minpages >= pp->pr_maxpages)
1395 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1396
1397 mutex_exit(&pp->pr_lock);
1398 return error;
1399 }
1400
1401 /*
1402 * Add a page worth of items to the pool.
1403 *
1404 * Note, we must be called with the pool descriptor LOCKED.
1405 */
1406 static void
1407 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1408 {
1409 struct pool_item *pi;
1410 void *cp = storage;
1411 const unsigned int align = pp->pr_align;
1412 const unsigned int ioff = pp->pr_itemoffset;
1413 int n;
1414
1415 KASSERT(mutex_owned(&pp->pr_lock));
1416
1417 #ifdef DIAGNOSTIC
1418 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1419 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1420 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1421 #endif
1422
1423 /*
1424 * Insert page header.
1425 */
1426 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1427 LIST_INIT(&ph->ph_itemlist);
1428 ph->ph_page = storage;
1429 ph->ph_nmissing = 0;
1430 getmicrotime(&ph->ph_time);
1431 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1432 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1433
1434 pp->pr_nidle++;
1435
1436 /*
1437 * Color this page.
1438 */
1439 cp = (char *)cp + pp->pr_curcolor;
1440 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1441 pp->pr_curcolor = 0;
1442
1443 /*
1444 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1445 */
1446 if (ioff != 0)
1447 cp = (char *)cp + align - ioff;
1448
1449 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1450
1451 /*
1452 * Insert remaining chunks on the bucket list.
1453 */
1454 n = pp->pr_itemsperpage;
1455 pp->pr_nitems += n;
1456
1457 if (pp->pr_roflags & PR_NOTOUCH) {
1458 pr_item_notouch_init(pp, ph);
1459 } else {
1460 while (n--) {
1461 pi = (struct pool_item *)cp;
1462
1463 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1464
1465 /* Insert on page list */
1466 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1467 #ifdef DIAGNOSTIC
1468 pi->pi_magic = PI_MAGIC;
1469 #endif
1470 cp = (char *)cp + pp->pr_size;
1471
1472 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1473 }
1474 }
1475
1476 /*
1477 * If the pool was depleted, point at the new page.
1478 */
1479 if (pp->pr_curpage == NULL)
1480 pp->pr_curpage = ph;
1481
1482 if (++pp->pr_npages > pp->pr_hiwat)
1483 pp->pr_hiwat = pp->pr_npages;
1484 }
1485
1486 /*
1487 * Used by pool_get() when nitems drops below the low water mark. This
1488 * is used to catch up pr_nitems with the low water mark.
1489 *
1490 * Note 1, we never wait for memory here, we let the caller decide what to do.
1491 *
1492 * Note 2, we must be called with the pool already locked, and we return
1493 * with it locked.
1494 */
1495 static int
1496 pool_catchup(struct pool *pp)
1497 {
1498 int error = 0;
1499
1500 while (POOL_NEEDS_CATCHUP(pp)) {
1501 error = pool_grow(pp, PR_NOWAIT);
1502 if (error) {
1503 break;
1504 }
1505 }
1506 return error;
1507 }
1508
1509 static void
1510 pool_update_curpage(struct pool *pp)
1511 {
1512
1513 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1514 if (pp->pr_curpage == NULL) {
1515 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1516 }
1517 }
1518
1519 void
1520 pool_setlowat(struct pool *pp, int n)
1521 {
1522
1523 mutex_enter(&pp->pr_lock);
1524
1525 pp->pr_minitems = n;
1526 pp->pr_minpages = (n == 0)
1527 ? 0
1528 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1529
1530 /* Make sure we're caught up with the newly-set low water mark. */
1531 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1532 /*
1533 * XXX: Should we log a warning? Should we set up a timeout
1534 * to try again in a second or so? The latter could break
1535 * a caller's assumptions about interrupt protection, etc.
1536 */
1537 }
1538
1539 mutex_exit(&pp->pr_lock);
1540 }
1541
1542 void
1543 pool_sethiwat(struct pool *pp, int n)
1544 {
1545
1546 mutex_enter(&pp->pr_lock);
1547
1548 pp->pr_maxpages = (n == 0)
1549 ? 0
1550 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1551
1552 mutex_exit(&pp->pr_lock);
1553 }
1554
1555 void
1556 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1557 {
1558
1559 mutex_enter(&pp->pr_lock);
1560
1561 pp->pr_hardlimit = n;
1562 pp->pr_hardlimit_warning = warnmess;
1563 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1564 pp->pr_hardlimit_warning_last.tv_sec = 0;
1565 pp->pr_hardlimit_warning_last.tv_usec = 0;
1566
1567 /*
1568 * In-line version of pool_sethiwat(), because we don't want to
1569 * release the lock.
1570 */
1571 pp->pr_maxpages = (n == 0)
1572 ? 0
1573 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1574
1575 mutex_exit(&pp->pr_lock);
1576 }
1577
1578 /*
1579 * Release all complete pages that have not been used recently.
1580 */
1581 int
1582 #ifdef POOL_DIAGNOSTIC
1583 _pool_reclaim(struct pool *pp, const char *file, long line)
1584 #else
1585 pool_reclaim(struct pool *pp)
1586 #endif
1587 {
1588 struct pool_item_header *ph, *phnext;
1589 struct pool_pagelist pq;
1590 struct timeval curtime, diff;
1591 bool klock;
1592 int rv;
1593
1594 if (pp->pr_drain_hook != NULL) {
1595 /*
1596 * The drain hook must be called with the pool unlocked.
1597 */
1598 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1599 }
1600
1601 /*
1602 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
1603 * and we are called from the pagedaemon without kernel_lock.
1604 * Does not apply to IPL_SOFTBIO.
1605 */
1606 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1607 pp->pr_ipl == IPL_SOFTSERIAL) {
1608 KERNEL_LOCK(1, NULL);
1609 klock = true;
1610 } else
1611 klock = false;
1612
1613 /* Reclaim items from the pool's cache (if any). */
1614 if (pp->pr_cache != NULL)
1615 pool_cache_invalidate(pp->pr_cache);
1616
1617 if (mutex_tryenter(&pp->pr_lock) == 0) {
1618 if (klock) {
1619 KERNEL_UNLOCK_ONE(NULL);
1620 }
1621 return (0);
1622 }
1623 pr_enter(pp, file, line);
1624
1625 LIST_INIT(&pq);
1626
1627 getmicrotime(&curtime);
1628
1629 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1630 phnext = LIST_NEXT(ph, ph_pagelist);
1631
1632 /* Check our minimum page claim */
1633 if (pp->pr_npages <= pp->pr_minpages)
1634 break;
1635
1636 KASSERT(ph->ph_nmissing == 0);
1637 timersub(&curtime, &ph->ph_time, &diff);
1638 if (diff.tv_sec < pool_inactive_time
1639 && !pa_starved_p(pp->pr_alloc))
1640 continue;
1641
1642 /*
1643 * If freeing this page would put us below
1644 * the low water mark, stop now.
1645 */
1646 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1647 pp->pr_minitems)
1648 break;
1649
1650 pr_rmpage(pp, ph, &pq);
1651 }
1652
1653 pr_leave(pp);
1654 mutex_exit(&pp->pr_lock);
1655
1656 if (LIST_EMPTY(&pq))
1657 rv = 0;
1658 else {
1659 pr_pagelist_free(pp, &pq);
1660 rv = 1;
1661 }
1662
1663 if (klock) {
1664 KERNEL_UNLOCK_ONE(NULL);
1665 }
1666
1667 return (rv);
1668 }
1669
1670 /*
1671 * Drain pools, one at a time. This is a two stage process;
1672 * drain_start kicks off a cross call to drain CPU-level caches
1673 * if the pool has an associated pool_cache. drain_end waits
1674 * for those cross calls to finish, and then drains the cache
1675 * (if any) and pool.
1676 *
1677 * Note, must never be called from interrupt context.
1678 */
1679 void
1680 pool_drain_start(struct pool **ppp, uint64_t *wp)
1681 {
1682 struct pool *pp;
1683
1684 KASSERT(!LIST_EMPTY(&pool_head));
1685
1686 pp = NULL;
1687
1688 /* Find next pool to drain, and add a reference. */
1689 mutex_enter(&pool_head_lock);
1690 do {
1691 if (drainpp == NULL) {
1692 drainpp = LIST_FIRST(&pool_head);
1693 }
1694 if (drainpp != NULL) {
1695 pp = drainpp;
1696 drainpp = LIST_NEXT(pp, pr_poollist);
1697 }
1698 /*
1699 * Skip completely idle pools. We depend on at least
1700 * one pool in the system being active.
1701 */
1702 } while (pp == NULL || pp->pr_npages == 0);
1703 pp->pr_refcnt++;
1704 mutex_exit(&pool_head_lock);
1705
1706 /* If there is a pool_cache, drain CPU level caches. */
1707 *ppp = pp;
1708 if (pp->pr_cache != NULL) {
1709 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1710 pp->pr_cache, NULL);
1711 }
1712 }
1713
1714 void
1715 pool_drain_end(struct pool *pp, uint64_t where)
1716 {
1717
1718 if (pp == NULL)
1719 return;
1720
1721 KASSERT(pp->pr_refcnt > 0);
1722
1723 /* Wait for remote draining to complete. */
1724 if (pp->pr_cache != NULL)
1725 xc_wait(where);
1726
1727 /* Drain the cache (if any) and pool.. */
1728 pool_reclaim(pp);
1729
1730 /* Finally, unlock the pool. */
1731 mutex_enter(&pool_head_lock);
1732 pp->pr_refcnt--;
1733 cv_broadcast(&pool_busy);
1734 mutex_exit(&pool_head_lock);
1735 }
1736
1737 /*
1738 * Diagnostic helpers.
1739 */
1740 void
1741 pool_print(struct pool *pp, const char *modif)
1742 {
1743
1744 pool_print1(pp, modif, printf);
1745 }
1746
1747 void
1748 pool_printall(const char *modif, void (*pr)(const char *, ...))
1749 {
1750 struct pool *pp;
1751
1752 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1753 pool_printit(pp, modif, pr);
1754 }
1755 }
1756
1757 void
1758 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1759 {
1760
1761 if (pp == NULL) {
1762 (*pr)("Must specify a pool to print.\n");
1763 return;
1764 }
1765
1766 pool_print1(pp, modif, pr);
1767 }
1768
1769 static void
1770 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1771 void (*pr)(const char *, ...))
1772 {
1773 struct pool_item_header *ph;
1774 #ifdef DIAGNOSTIC
1775 struct pool_item *pi;
1776 #endif
1777
1778 LIST_FOREACH(ph, pl, ph_pagelist) {
1779 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1780 ph->ph_page, ph->ph_nmissing,
1781 (u_long)ph->ph_time.tv_sec,
1782 (u_long)ph->ph_time.tv_usec);
1783 #ifdef DIAGNOSTIC
1784 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1785 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1786 if (pi->pi_magic != PI_MAGIC) {
1787 (*pr)("\t\t\titem %p, magic 0x%x\n",
1788 pi, pi->pi_magic);
1789 }
1790 }
1791 }
1792 #endif
1793 }
1794 }
1795
1796 static void
1797 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1798 {
1799 struct pool_item_header *ph;
1800 pool_cache_t pc;
1801 pcg_t *pcg;
1802 pool_cache_cpu_t *cc;
1803 uint64_t cpuhit, cpumiss;
1804 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1805 char c;
1806
1807 while ((c = *modif++) != '\0') {
1808 if (c == 'l')
1809 print_log = 1;
1810 if (c == 'p')
1811 print_pagelist = 1;
1812 if (c == 'c')
1813 print_cache = 1;
1814 }
1815
1816 if ((pc = pp->pr_cache) != NULL) {
1817 (*pr)("POOL CACHE");
1818 } else {
1819 (*pr)("POOL");
1820 }
1821
1822 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1823 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1824 pp->pr_roflags);
1825 (*pr)("\talloc %p\n", pp->pr_alloc);
1826 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1827 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1828 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1829 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1830
1831 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1832 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1833 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1834 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1835
1836 if (print_pagelist == 0)
1837 goto skip_pagelist;
1838
1839 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1840 (*pr)("\n\tempty page list:\n");
1841 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1842 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1843 (*pr)("\n\tfull page list:\n");
1844 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1845 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1846 (*pr)("\n\tpartial-page list:\n");
1847 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1848
1849 if (pp->pr_curpage == NULL)
1850 (*pr)("\tno current page\n");
1851 else
1852 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1853
1854 skip_pagelist:
1855 if (print_log == 0)
1856 goto skip_log;
1857
1858 (*pr)("\n");
1859 if ((pp->pr_roflags & PR_LOGGING) == 0)
1860 (*pr)("\tno log\n");
1861 else {
1862 pr_printlog(pp, NULL, pr);
1863 }
1864
1865 skip_log:
1866
1867 #define PR_GROUPLIST(pcg) \
1868 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1869 for (i = 0; i < PCG_NOBJECTS; i++) { \
1870 if (pcg->pcg_objects[i].pcgo_pa != \
1871 POOL_PADDR_INVALID) { \
1872 (*pr)("\t\t\t%p, 0x%llx\n", \
1873 pcg->pcg_objects[i].pcgo_va, \
1874 (unsigned long long) \
1875 pcg->pcg_objects[i].pcgo_pa); \
1876 } else { \
1877 (*pr)("\t\t\t%p\n", \
1878 pcg->pcg_objects[i].pcgo_va); \
1879 } \
1880 }
1881
1882 if (pc != NULL) {
1883 cpuhit = 0;
1884 cpumiss = 0;
1885 for (i = 0; i < MAXCPUS; i++) {
1886 if ((cc = pc->pc_cpus[i]) == NULL)
1887 continue;
1888 cpuhit += cc->cc_hits;
1889 cpumiss += cc->cc_misses;
1890 }
1891 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1892 (*pr)("\tcache layer hits %llu misses %llu\n",
1893 pc->pc_hits, pc->pc_misses);
1894 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1895 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1896 pc->pc_contended);
1897 (*pr)("\tcache layer empty groups %u full groups %u\n",
1898 pc->pc_nempty, pc->pc_nfull);
1899 if (print_cache) {
1900 (*pr)("\tfull cache groups:\n");
1901 for (pcg = pc->pc_fullgroups; pcg != NULL;
1902 pcg = pcg->pcg_next) {
1903 PR_GROUPLIST(pcg);
1904 }
1905 (*pr)("\tempty cache groups:\n");
1906 for (pcg = pc->pc_emptygroups; pcg != NULL;
1907 pcg = pcg->pcg_next) {
1908 PR_GROUPLIST(pcg);
1909 }
1910 }
1911 }
1912 #undef PR_GROUPLIST
1913
1914 pr_enter_check(pp, pr);
1915 }
1916
1917 static int
1918 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1919 {
1920 struct pool_item *pi;
1921 void *page;
1922 int n;
1923
1924 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1925 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1926 if (page != ph->ph_page &&
1927 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1928 if (label != NULL)
1929 printf("%s: ", label);
1930 printf("pool(%p:%s): page inconsistency: page %p;"
1931 " at page head addr %p (p %p)\n", pp,
1932 pp->pr_wchan, ph->ph_page,
1933 ph, page);
1934 return 1;
1935 }
1936 }
1937
1938 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1939 return 0;
1940
1941 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1942 pi != NULL;
1943 pi = LIST_NEXT(pi,pi_list), n++) {
1944
1945 #ifdef DIAGNOSTIC
1946 if (pi->pi_magic != PI_MAGIC) {
1947 if (label != NULL)
1948 printf("%s: ", label);
1949 printf("pool(%s): free list modified: magic=%x;"
1950 " page %p; item ordinal %d; addr %p\n",
1951 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1952 n, pi);
1953 panic("pool");
1954 }
1955 #endif
1956 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1957 continue;
1958 }
1959 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1960 if (page == ph->ph_page)
1961 continue;
1962
1963 if (label != NULL)
1964 printf("%s: ", label);
1965 printf("pool(%p:%s): page inconsistency: page %p;"
1966 " item ordinal %d; addr %p (p %p)\n", pp,
1967 pp->pr_wchan, ph->ph_page,
1968 n, pi, page);
1969 return 1;
1970 }
1971 return 0;
1972 }
1973
1974
1975 int
1976 pool_chk(struct pool *pp, const char *label)
1977 {
1978 struct pool_item_header *ph;
1979 int r = 0;
1980
1981 mutex_enter(&pp->pr_lock);
1982 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1983 r = pool_chk_page(pp, label, ph);
1984 if (r) {
1985 goto out;
1986 }
1987 }
1988 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1989 r = pool_chk_page(pp, label, ph);
1990 if (r) {
1991 goto out;
1992 }
1993 }
1994 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1995 r = pool_chk_page(pp, label, ph);
1996 if (r) {
1997 goto out;
1998 }
1999 }
2000
2001 out:
2002 mutex_exit(&pp->pr_lock);
2003 return (r);
2004 }
2005
2006 /*
2007 * pool_cache_init:
2008 *
2009 * Initialize a pool cache.
2010 */
2011 pool_cache_t
2012 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2013 const char *wchan, struct pool_allocator *palloc, int ipl,
2014 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2015 {
2016 pool_cache_t pc;
2017
2018 pc = pool_get(&cache_pool, PR_WAITOK);
2019 if (pc == NULL)
2020 return NULL;
2021
2022 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2023 palloc, ipl, ctor, dtor, arg);
2024
2025 return pc;
2026 }
2027
2028 /*
2029 * pool_cache_bootstrap:
2030 *
2031 * Kernel-private version of pool_cache_init(). The caller
2032 * provides initial storage.
2033 */
2034 void
2035 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2036 u_int align_offset, u_int flags, const char *wchan,
2037 struct pool_allocator *palloc, int ipl,
2038 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2039 void *arg)
2040 {
2041 CPU_INFO_ITERATOR cii;
2042 struct cpu_info *ci;
2043 struct pool *pp;
2044
2045 pp = &pc->pc_pool;
2046 if (palloc == NULL && ipl == IPL_NONE)
2047 palloc = &pool_allocator_nointr;
2048 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2049
2050 /*
2051 * XXXAD hack to prevent IP input processing from blocking.
2052 */
2053 if (ipl == IPL_SOFTNET) {
2054 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
2055 } else {
2056 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2057 }
2058
2059 if (ctor == NULL) {
2060 ctor = (int (*)(void *, void *, int))nullop;
2061 }
2062 if (dtor == NULL) {
2063 dtor = (void (*)(void *, void *))nullop;
2064 }
2065
2066 pc->pc_emptygroups = NULL;
2067 pc->pc_fullgroups = NULL;
2068 pc->pc_partgroups = NULL;
2069 pc->pc_ctor = ctor;
2070 pc->pc_dtor = dtor;
2071 pc->pc_arg = arg;
2072 pc->pc_hits = 0;
2073 pc->pc_misses = 0;
2074 pc->pc_nempty = 0;
2075 pc->pc_npart = 0;
2076 pc->pc_nfull = 0;
2077 pc->pc_contended = 0;
2078 pc->pc_refcnt = 0;
2079 pc->pc_freecheck = NULL;
2080
2081 /* Allocate per-CPU caches. */
2082 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2083 pc->pc_ncpu = 0;
2084 if (ncpu == 0) {
2085 /* XXX For sparc: boot CPU is not attached yet. */
2086 pool_cache_cpu_init1(curcpu(), pc);
2087 } else {
2088 for (CPU_INFO_FOREACH(cii, ci)) {
2089 pool_cache_cpu_init1(ci, pc);
2090 }
2091 }
2092
2093 if (__predict_true(!cold)) {
2094 mutex_enter(&pp->pr_lock);
2095 pp->pr_cache = pc;
2096 mutex_exit(&pp->pr_lock);
2097 mutex_enter(&pool_head_lock);
2098 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2099 mutex_exit(&pool_head_lock);
2100 } else {
2101 pp->pr_cache = pc;
2102 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2103 }
2104 }
2105
2106 /*
2107 * pool_cache_destroy:
2108 *
2109 * Destroy a pool cache.
2110 */
2111 void
2112 pool_cache_destroy(pool_cache_t pc)
2113 {
2114 struct pool *pp = &pc->pc_pool;
2115 pool_cache_cpu_t *cc;
2116 pcg_t *pcg;
2117 int i;
2118
2119 /* Remove it from the global list. */
2120 mutex_enter(&pool_head_lock);
2121 while (pc->pc_refcnt != 0)
2122 cv_wait(&pool_busy, &pool_head_lock);
2123 LIST_REMOVE(pc, pc_cachelist);
2124 mutex_exit(&pool_head_lock);
2125
2126 /* First, invalidate the entire cache. */
2127 pool_cache_invalidate(pc);
2128
2129 /* Disassociate it from the pool. */
2130 mutex_enter(&pp->pr_lock);
2131 pp->pr_cache = NULL;
2132 mutex_exit(&pp->pr_lock);
2133
2134 /* Destroy per-CPU data */
2135 for (i = 0; i < MAXCPUS; i++) {
2136 if ((cc = pc->pc_cpus[i]) == NULL)
2137 continue;
2138 if ((pcg = cc->cc_current) != NULL) {
2139 pcg->pcg_next = NULL;
2140 pool_cache_invalidate_groups(pc, pcg);
2141 }
2142 if ((pcg = cc->cc_previous) != NULL) {
2143 pcg->pcg_next = NULL;
2144 pool_cache_invalidate_groups(pc, pcg);
2145 }
2146 if (cc != &pc->pc_cpu0)
2147 pool_put(&cache_cpu_pool, cc);
2148 }
2149
2150 /* Finally, destroy it. */
2151 mutex_destroy(&pc->pc_lock);
2152 pool_destroy(pp);
2153 pool_put(&cache_pool, pc);
2154 }
2155
2156 /*
2157 * pool_cache_cpu_init1:
2158 *
2159 * Called for each pool_cache whenever a new CPU is attached.
2160 */
2161 static void
2162 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2163 {
2164 pool_cache_cpu_t *cc;
2165 int index;
2166
2167 index = ci->ci_index;
2168
2169 KASSERT(index < MAXCPUS);
2170 KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2171
2172 if ((cc = pc->pc_cpus[index]) != NULL) {
2173 KASSERT(cc->cc_cpuindex == index);
2174 return;
2175 }
2176
2177 /*
2178 * The first CPU is 'free'. This needs to be the case for
2179 * bootstrap - we may not be able to allocate yet.
2180 */
2181 if (pc->pc_ncpu == 0) {
2182 cc = &pc->pc_cpu0;
2183 pc->pc_ncpu = 1;
2184 } else {
2185 mutex_enter(&pc->pc_lock);
2186 pc->pc_ncpu++;
2187 mutex_exit(&pc->pc_lock);
2188 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2189 }
2190
2191 cc->cc_ipl = pc->pc_pool.pr_ipl;
2192 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2193 cc->cc_cache = pc;
2194 cc->cc_cpuindex = index;
2195 cc->cc_hits = 0;
2196 cc->cc_misses = 0;
2197 cc->cc_current = NULL;
2198 cc->cc_previous = NULL;
2199
2200 pc->pc_cpus[index] = cc;
2201 }
2202
2203 /*
2204 * pool_cache_cpu_init:
2205 *
2206 * Called whenever a new CPU is attached.
2207 */
2208 void
2209 pool_cache_cpu_init(struct cpu_info *ci)
2210 {
2211 pool_cache_t pc;
2212
2213 mutex_enter(&pool_head_lock);
2214 LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2215 pc->pc_refcnt++;
2216 mutex_exit(&pool_head_lock);
2217
2218 pool_cache_cpu_init1(ci, pc);
2219
2220 mutex_enter(&pool_head_lock);
2221 pc->pc_refcnt--;
2222 cv_broadcast(&pool_busy);
2223 }
2224 mutex_exit(&pool_head_lock);
2225 }
2226
2227 /*
2228 * pool_cache_reclaim:
2229 *
2230 * Reclaim memory from a pool cache.
2231 */
2232 bool
2233 pool_cache_reclaim(pool_cache_t pc)
2234 {
2235
2236 return pool_reclaim(&pc->pc_pool);
2237 }
2238
2239 static void
2240 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2241 {
2242
2243 (*pc->pc_dtor)(pc->pc_arg, object);
2244 pool_put(&pc->pc_pool, object);
2245 }
2246
2247 /*
2248 * pool_cache_destruct_object:
2249 *
2250 * Force destruction of an object and its release back into
2251 * the pool.
2252 */
2253 void
2254 pool_cache_destruct_object(pool_cache_t pc, void *object)
2255 {
2256
2257 FREECHECK_IN(&pc->pc_freecheck, object);
2258
2259 pool_cache_destruct_object1(pc, object);
2260 }
2261
2262 /*
2263 * pool_cache_invalidate_groups:
2264 *
2265 * Invalidate a chain of groups and destruct all objects.
2266 */
2267 static void
2268 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2269 {
2270 void *object;
2271 pcg_t *next;
2272 int i;
2273
2274 for (; pcg != NULL; pcg = next) {
2275 next = pcg->pcg_next;
2276
2277 for (i = 0; i < pcg->pcg_avail; i++) {
2278 object = pcg->pcg_objects[i].pcgo_va;
2279 pool_cache_destruct_object1(pc, object);
2280 }
2281
2282 pool_put(&pcgpool, pcg);
2283 }
2284 }
2285
2286 /*
2287 * pool_cache_invalidate:
2288 *
2289 * Invalidate a pool cache (destruct and release all of the
2290 * cached objects). Does not reclaim objects from the pool.
2291 */
2292 void
2293 pool_cache_invalidate(pool_cache_t pc)
2294 {
2295 pcg_t *full, *empty, *part;
2296
2297 mutex_enter(&pc->pc_lock);
2298 full = pc->pc_fullgroups;
2299 empty = pc->pc_emptygroups;
2300 part = pc->pc_partgroups;
2301 pc->pc_fullgroups = NULL;
2302 pc->pc_emptygroups = NULL;
2303 pc->pc_partgroups = NULL;
2304 pc->pc_nfull = 0;
2305 pc->pc_nempty = 0;
2306 pc->pc_npart = 0;
2307 mutex_exit(&pc->pc_lock);
2308
2309 pool_cache_invalidate_groups(pc, full);
2310 pool_cache_invalidate_groups(pc, empty);
2311 pool_cache_invalidate_groups(pc, part);
2312 }
2313
2314 void
2315 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2316 {
2317
2318 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2319 }
2320
2321 void
2322 pool_cache_setlowat(pool_cache_t pc, int n)
2323 {
2324
2325 pool_setlowat(&pc->pc_pool, n);
2326 }
2327
2328 void
2329 pool_cache_sethiwat(pool_cache_t pc, int n)
2330 {
2331
2332 pool_sethiwat(&pc->pc_pool, n);
2333 }
2334
2335 void
2336 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2337 {
2338
2339 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2340 }
2341
2342 static inline pool_cache_cpu_t *
2343 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2344 {
2345 pool_cache_cpu_t *cc;
2346
2347 /*
2348 * Prevent other users of the cache from accessing our
2349 * CPU-local data. To avoid touching shared state, we
2350 * pull the neccessary information from CPU local data.
2351 */
2352 crit_enter();
2353 cc = pc->pc_cpus[curcpu()->ci_index];
2354 KASSERT(cc->cc_cache == pc);
2355 if (cc->cc_ipl != IPL_NONE) {
2356 *s = splraiseipl(cc->cc_iplcookie);
2357 }
2358 KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2359
2360 return cc;
2361 }
2362
2363 static inline void
2364 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2365 {
2366
2367 /* No longer need exclusive access to the per-CPU data. */
2368 if (cc->cc_ipl != IPL_NONE) {
2369 splx(*s);
2370 }
2371 crit_exit();
2372 }
2373
2374 #if __GNUC_PREREQ__(3, 0)
2375 __attribute ((noinline))
2376 #endif
2377 pool_cache_cpu_t *
2378 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2379 paddr_t *pap, int flags)
2380 {
2381 pcg_t *pcg, *cur;
2382 uint64_t ncsw;
2383 pool_cache_t pc;
2384 void *object;
2385
2386 pc = cc->cc_cache;
2387 cc->cc_misses++;
2388
2389 /*
2390 * Nothing was available locally. Try and grab a group
2391 * from the cache.
2392 */
2393 if (!mutex_tryenter(&pc->pc_lock)) {
2394 ncsw = curlwp->l_ncsw;
2395 mutex_enter(&pc->pc_lock);
2396 pc->pc_contended++;
2397
2398 /*
2399 * If we context switched while locking, then
2400 * our view of the per-CPU data is invalid:
2401 * retry.
2402 */
2403 if (curlwp->l_ncsw != ncsw) {
2404 mutex_exit(&pc->pc_lock);
2405 pool_cache_cpu_exit(cc, s);
2406 return pool_cache_cpu_enter(pc, s);
2407 }
2408 }
2409
2410 if ((pcg = pc->pc_fullgroups) != NULL) {
2411 /*
2412 * If there's a full group, release our empty
2413 * group back to the cache. Install the full
2414 * group as cc_current and return.
2415 */
2416 if ((cur = cc->cc_current) != NULL) {
2417 KASSERT(cur->pcg_avail == 0);
2418 cur->pcg_next = pc->pc_emptygroups;
2419 pc->pc_emptygroups = cur;
2420 pc->pc_nempty++;
2421 }
2422 KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
2423 cc->cc_current = pcg;
2424 pc->pc_fullgroups = pcg->pcg_next;
2425 pc->pc_hits++;
2426 pc->pc_nfull--;
2427 mutex_exit(&pc->pc_lock);
2428 return cc;
2429 }
2430
2431 /*
2432 * Nothing available locally or in cache. Take the slow
2433 * path: fetch a new object from the pool and construct
2434 * it.
2435 */
2436 pc->pc_misses++;
2437 mutex_exit(&pc->pc_lock);
2438 pool_cache_cpu_exit(cc, s);
2439
2440 object = pool_get(&pc->pc_pool, flags);
2441 *objectp = object;
2442 if (object == NULL)
2443 return NULL;
2444
2445 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2446 pool_put(&pc->pc_pool, object);
2447 *objectp = NULL;
2448 return NULL;
2449 }
2450
2451 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2452 (pc->pc_pool.pr_align - 1)) == 0);
2453
2454 if (pap != NULL) {
2455 #ifdef POOL_VTOPHYS
2456 *pap = POOL_VTOPHYS(object);
2457 #else
2458 *pap = POOL_PADDR_INVALID;
2459 #endif
2460 }
2461
2462 FREECHECK_OUT(&pc->pc_freecheck, object);
2463 return NULL;
2464 }
2465
2466 /*
2467 * pool_cache_get{,_paddr}:
2468 *
2469 * Get an object from a pool cache (optionally returning
2470 * the physical address of the object).
2471 */
2472 void *
2473 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2474 {
2475 pool_cache_cpu_t *cc;
2476 pcg_t *pcg;
2477 void *object;
2478 int s;
2479
2480 #ifdef LOCKDEBUG
2481 if (flags & PR_WAITOK)
2482 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2483 #endif
2484
2485 cc = pool_cache_cpu_enter(pc, &s);
2486 do {
2487 /* Try and allocate an object from the current group. */
2488 pcg = cc->cc_current;
2489 if (pcg != NULL && pcg->pcg_avail > 0) {
2490 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2491 if (pap != NULL)
2492 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2493 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2494 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2495 KASSERT(object != NULL);
2496 cc->cc_hits++;
2497 pool_cache_cpu_exit(cc, &s);
2498 FREECHECK_OUT(&pc->pc_freecheck, object);
2499 return object;
2500 }
2501
2502 /*
2503 * That failed. If the previous group isn't empty, swap
2504 * it with the current group and allocate from there.
2505 */
2506 pcg = cc->cc_previous;
2507 if (pcg != NULL && pcg->pcg_avail > 0) {
2508 cc->cc_previous = cc->cc_current;
2509 cc->cc_current = pcg;
2510 continue;
2511 }
2512
2513 /*
2514 * Can't allocate from either group: try the slow path.
2515 * If get_slow() allocated an object for us, or if
2516 * no more objects are available, it will return NULL.
2517 * Otherwise, we need to retry.
2518 */
2519 cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2520 } while (cc != NULL);
2521
2522 return object;
2523 }
2524
2525 #if __GNUC_PREREQ__(3, 0)
2526 __attribute ((noinline))
2527 #endif
2528 pool_cache_cpu_t *
2529 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2530 {
2531 pcg_t *pcg, *cur;
2532 uint64_t ncsw;
2533 pool_cache_t pc;
2534
2535 pc = cc->cc_cache;
2536 cc->cc_misses++;
2537
2538 /*
2539 * No free slots locally. Try to grab an empty, unused
2540 * group from the cache.
2541 */
2542 if (!mutex_tryenter(&pc->pc_lock)) {
2543 ncsw = curlwp->l_ncsw;
2544 mutex_enter(&pc->pc_lock);
2545 pc->pc_contended++;
2546
2547 /*
2548 * If we context switched while locking, then
2549 * our view of the per-CPU data is invalid:
2550 * retry.
2551 */
2552 if (curlwp->l_ncsw != ncsw) {
2553 mutex_exit(&pc->pc_lock);
2554 pool_cache_cpu_exit(cc, s);
2555 return pool_cache_cpu_enter(pc, s);
2556 }
2557 }
2558
2559 if ((pcg = pc->pc_emptygroups) != NULL) {
2560 /*
2561 * If there's a empty group, release our full
2562 * group back to the cache. Install the empty
2563 * group as cc_current and return.
2564 */
2565 if ((cur = cc->cc_current) != NULL) {
2566 KASSERT(cur->pcg_avail == PCG_NOBJECTS);
2567 cur->pcg_next = pc->pc_fullgroups;
2568 pc->pc_fullgroups = cur;
2569 pc->pc_nfull++;
2570 }
2571 KASSERT(pcg->pcg_avail == 0);
2572 cc->cc_current = pcg;
2573 pc->pc_emptygroups = pcg->pcg_next;
2574 pc->pc_hits++;
2575 pc->pc_nempty--;
2576 mutex_exit(&pc->pc_lock);
2577 return cc;
2578 }
2579
2580 /*
2581 * Nothing available locally or in cache. Take the
2582 * slow path and try to allocate a new group that we
2583 * can release to.
2584 */
2585 pc->pc_misses++;
2586 mutex_exit(&pc->pc_lock);
2587 pool_cache_cpu_exit(cc, s);
2588
2589 /*
2590 * If we can't allocate a new group, just throw the
2591 * object away.
2592 */
2593 pcg = pool_get(&pcgpool, PR_NOWAIT);
2594 if (pcg == NULL) {
2595 pool_cache_destruct_object(pc, object);
2596 return NULL;
2597 }
2598 #ifdef DIAGNOSTIC
2599 memset(pcg, 0, sizeof(*pcg));
2600 #else
2601 pcg->pcg_avail = 0;
2602 #endif
2603
2604 /*
2605 * Add the empty group to the cache and try again.
2606 */
2607 mutex_enter(&pc->pc_lock);
2608 pcg->pcg_next = pc->pc_emptygroups;
2609 pc->pc_emptygroups = pcg;
2610 pc->pc_nempty++;
2611 mutex_exit(&pc->pc_lock);
2612
2613 return pool_cache_cpu_enter(pc, s);
2614 }
2615
2616 /*
2617 * pool_cache_put{,_paddr}:
2618 *
2619 * Put an object back to the pool cache (optionally caching the
2620 * physical address of the object).
2621 */
2622 void
2623 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2624 {
2625 pool_cache_cpu_t *cc;
2626 pcg_t *pcg;
2627 int s;
2628
2629 FREECHECK_IN(&pc->pc_freecheck, object);
2630
2631 cc = pool_cache_cpu_enter(pc, &s);
2632 do {
2633 /* If the current group isn't full, release it there. */
2634 pcg = cc->cc_current;
2635 if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
2636 KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
2637 == NULL);
2638 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2639 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2640 pcg->pcg_avail++;
2641 cc->cc_hits++;
2642 pool_cache_cpu_exit(cc, &s);
2643 return;
2644 }
2645
2646 /*
2647 * That failed. If the previous group is empty, swap
2648 * it with the current group and try again.
2649 */
2650 pcg = cc->cc_previous;
2651 if (pcg != NULL && pcg->pcg_avail == 0) {
2652 cc->cc_previous = cc->cc_current;
2653 cc->cc_current = pcg;
2654 continue;
2655 }
2656
2657 /*
2658 * Can't free to either group: try the slow path.
2659 * If put_slow() releases the object for us, it
2660 * will return NULL. Otherwise we need to retry.
2661 */
2662 cc = pool_cache_put_slow(cc, &s, object, pa);
2663 } while (cc != NULL);
2664 }
2665
2666 /*
2667 * pool_cache_xcall:
2668 *
2669 * Transfer objects from the per-CPU cache to the global cache.
2670 * Run within a cross-call thread.
2671 */
2672 static void
2673 pool_cache_xcall(pool_cache_t pc)
2674 {
2675 pool_cache_cpu_t *cc;
2676 pcg_t *prev, *cur, **list;
2677 int s = 0; /* XXXgcc */
2678
2679 cc = pool_cache_cpu_enter(pc, &s);
2680 cur = cc->cc_current;
2681 cc->cc_current = NULL;
2682 prev = cc->cc_previous;
2683 cc->cc_previous = NULL;
2684 pool_cache_cpu_exit(cc, &s);
2685
2686 /*
2687 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2688 * because locks at IPL_SOFTXXX are still spinlocks. Does not
2689 * apply to IPL_SOFTBIO. Cross-call threads do not take the
2690 * kernel_lock.
2691 */
2692 s = splvm();
2693 mutex_enter(&pc->pc_lock);
2694 if (cur != NULL) {
2695 if (cur->pcg_avail == PCG_NOBJECTS) {
2696 list = &pc->pc_fullgroups;
2697 pc->pc_nfull++;
2698 } else if (cur->pcg_avail == 0) {
2699 list = &pc->pc_emptygroups;
2700 pc->pc_nempty++;
2701 } else {
2702 list = &pc->pc_partgroups;
2703 pc->pc_npart++;
2704 }
2705 cur->pcg_next = *list;
2706 *list = cur;
2707 }
2708 if (prev != NULL) {
2709 if (prev->pcg_avail == PCG_NOBJECTS) {
2710 list = &pc->pc_fullgroups;
2711 pc->pc_nfull++;
2712 } else if (prev->pcg_avail == 0) {
2713 list = &pc->pc_emptygroups;
2714 pc->pc_nempty++;
2715 } else {
2716 list = &pc->pc_partgroups;
2717 pc->pc_npart++;
2718 }
2719 prev->pcg_next = *list;
2720 *list = prev;
2721 }
2722 mutex_exit(&pc->pc_lock);
2723 splx(s);
2724 }
2725
2726 /*
2727 * Pool backend allocators.
2728 *
2729 * Each pool has a backend allocator that handles allocation, deallocation,
2730 * and any additional draining that might be needed.
2731 *
2732 * We provide two standard allocators:
2733 *
2734 * pool_allocator_kmem - the default when no allocator is specified
2735 *
2736 * pool_allocator_nointr - used for pools that will not be accessed
2737 * in interrupt context.
2738 */
2739 void *pool_page_alloc(struct pool *, int);
2740 void pool_page_free(struct pool *, void *);
2741
2742 #ifdef POOL_SUBPAGE
2743 struct pool_allocator pool_allocator_kmem_fullpage = {
2744 pool_page_alloc, pool_page_free, 0,
2745 .pa_backingmapptr = &kmem_map,
2746 };
2747 #else
2748 struct pool_allocator pool_allocator_kmem = {
2749 pool_page_alloc, pool_page_free, 0,
2750 .pa_backingmapptr = &kmem_map,
2751 };
2752 #endif
2753
2754 void *pool_page_alloc_nointr(struct pool *, int);
2755 void pool_page_free_nointr(struct pool *, void *);
2756
2757 #ifdef POOL_SUBPAGE
2758 struct pool_allocator pool_allocator_nointr_fullpage = {
2759 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2760 .pa_backingmapptr = &kernel_map,
2761 };
2762 #else
2763 struct pool_allocator pool_allocator_nointr = {
2764 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2765 .pa_backingmapptr = &kernel_map,
2766 };
2767 #endif
2768
2769 #ifdef POOL_SUBPAGE
2770 void *pool_subpage_alloc(struct pool *, int);
2771 void pool_subpage_free(struct pool *, void *);
2772
2773 struct pool_allocator pool_allocator_kmem = {
2774 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2775 .pa_backingmapptr = &kmem_map,
2776 };
2777
2778 void *pool_subpage_alloc_nointr(struct pool *, int);
2779 void pool_subpage_free_nointr(struct pool *, void *);
2780
2781 struct pool_allocator pool_allocator_nointr = {
2782 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2783 .pa_backingmapptr = &kmem_map,
2784 };
2785 #endif /* POOL_SUBPAGE */
2786
2787 static void *
2788 pool_allocator_alloc(struct pool *pp, int flags)
2789 {
2790 struct pool_allocator *pa = pp->pr_alloc;
2791 void *res;
2792
2793 res = (*pa->pa_alloc)(pp, flags);
2794 if (res == NULL && (flags & PR_WAITOK) == 0) {
2795 /*
2796 * We only run the drain hook here if PR_NOWAIT.
2797 * In other cases, the hook will be run in
2798 * pool_reclaim().
2799 */
2800 if (pp->pr_drain_hook != NULL) {
2801 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2802 res = (*pa->pa_alloc)(pp, flags);
2803 }
2804 }
2805 return res;
2806 }
2807
2808 static void
2809 pool_allocator_free(struct pool *pp, void *v)
2810 {
2811 struct pool_allocator *pa = pp->pr_alloc;
2812
2813 (*pa->pa_free)(pp, v);
2814 }
2815
2816 void *
2817 pool_page_alloc(struct pool *pp, int flags)
2818 {
2819 bool waitok = (flags & PR_WAITOK) ? true : false;
2820
2821 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2822 }
2823
2824 void
2825 pool_page_free(struct pool *pp, void *v)
2826 {
2827
2828 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2829 }
2830
2831 static void *
2832 pool_page_alloc_meta(struct pool *pp, int flags)
2833 {
2834 bool waitok = (flags & PR_WAITOK) ? true : false;
2835
2836 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2837 }
2838
2839 static void
2840 pool_page_free_meta(struct pool *pp, void *v)
2841 {
2842
2843 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2844 }
2845
2846 #ifdef POOL_SUBPAGE
2847 /* Sub-page allocator, for machines with large hardware pages. */
2848 void *
2849 pool_subpage_alloc(struct pool *pp, int flags)
2850 {
2851 return pool_get(&psppool, flags);
2852 }
2853
2854 void
2855 pool_subpage_free(struct pool *pp, void *v)
2856 {
2857 pool_put(&psppool, v);
2858 }
2859
2860 /* We don't provide a real nointr allocator. Maybe later. */
2861 void *
2862 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2863 {
2864
2865 return (pool_subpage_alloc(pp, flags));
2866 }
2867
2868 void
2869 pool_subpage_free_nointr(struct pool *pp, void *v)
2870 {
2871
2872 pool_subpage_free(pp, v);
2873 }
2874 #endif /* POOL_SUBPAGE */
2875 void *
2876 pool_page_alloc_nointr(struct pool *pp, int flags)
2877 {
2878 bool waitok = (flags & PR_WAITOK) ? true : false;
2879
2880 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2881 }
2882
2883 void
2884 pool_page_free_nointr(struct pool *pp, void *v)
2885 {
2886
2887 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2888 }
2889