subr_pool.c revision 1.131.2.2 1 /* $NetBSD: subr_pool.c,v 1.131.2.2 2007/11/08 11:00:05 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.131.2.2 2007/11/08 11:00:05 matt Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56 #include <sys/debug.h>
57 #include <sys/lockdebug.h>
58 #include <sys/xcall.h>
59 #include <sys/cpu.h>
60
61 #include <uvm/uvm.h>
62
63 /*
64 * Pool resource management utility.
65 *
66 * Memory is allocated in pages which are split into pieces according to
67 * the pool item size. Each page is kept on one of three lists in the
68 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
69 * for empty, full and partially-full pages respectively. The individual
70 * pool items are on a linked list headed by `ph_itemlist' in each page
71 * header. The memory for building the page list is either taken from
72 * the allocated pages themselves (for small pool items) or taken from
73 * an internal pool of page headers (`phpool').
74 */
75
76 /* List of all pools */
77 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
78
79 /* List of all caches. */
80 LIST_HEAD(,pool_cache) pool_cache_head =
81 LIST_HEAD_INITIALIZER(pool_cache_head);
82
83 /* Private pool for page header structures */
84 #define PHPOOL_MAX 8
85 static struct pool phpool[PHPOOL_MAX];
86 #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
87
88 #ifdef POOL_SUBPAGE
89 /* Pool of subpages for use by normal pools. */
90 static struct pool psppool;
91 #endif
92
93 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
94 SLIST_HEAD_INITIALIZER(pa_deferinitq);
95
96 static void *pool_page_alloc_meta(struct pool *, int);
97 static void pool_page_free_meta(struct pool *, void *);
98
99 /* allocator for pool metadata */
100 struct pool_allocator pool_allocator_meta = {
101 pool_page_alloc_meta, pool_page_free_meta,
102 .pa_backingmapptr = &kmem_map,
103 };
104
105 /* # of seconds to retain page after last use */
106 int pool_inactive_time = 10;
107
108 /* Next candidate for drainage (see pool_drain()) */
109 static struct pool *drainpp;
110
111 /* This lock protects both pool_head and drainpp. */
112 static kmutex_t pool_head_lock;
113 static kcondvar_t pool_busy;
114
115 typedef uint8_t pool_item_freelist_t;
116
117 struct pool_item_header {
118 /* Page headers */
119 LIST_ENTRY(pool_item_header)
120 ph_pagelist; /* pool page list */
121 SPLAY_ENTRY(pool_item_header)
122 ph_node; /* Off-page page headers */
123 void * ph_page; /* this page's address */
124 struct timeval ph_time; /* last referenced */
125 union {
126 /* !PR_NOTOUCH */
127 struct {
128 LIST_HEAD(, pool_item)
129 phu_itemlist; /* chunk list for this page */
130 } phu_normal;
131 /* PR_NOTOUCH */
132 struct {
133 uint16_t
134 phu_off; /* start offset in page */
135 pool_item_freelist_t
136 phu_firstfree; /* first free item */
137 /*
138 * XXX it might be better to use
139 * a simple bitmap and ffs(3)
140 */
141 } phu_notouch;
142 } ph_u;
143 uint16_t ph_nmissing; /* # of chunks in use */
144 };
145 #define ph_itemlist ph_u.phu_normal.phu_itemlist
146 #define ph_off ph_u.phu_notouch.phu_off
147 #define ph_firstfree ph_u.phu_notouch.phu_firstfree
148
149 struct pool_item {
150 #ifdef DIAGNOSTIC
151 u_int pi_magic;
152 #endif
153 #define PI_MAGIC 0xdeaddeadU
154 /* Other entries use only this list entry */
155 LIST_ENTRY(pool_item) pi_list;
156 };
157
158 #define POOL_NEEDS_CATCHUP(pp) \
159 ((pp)->pr_nitems < (pp)->pr_minitems)
160
161 /*
162 * Pool cache management.
163 *
164 * Pool caches provide a way for constructed objects to be cached by the
165 * pool subsystem. This can lead to performance improvements by avoiding
166 * needless object construction/destruction; it is deferred until absolutely
167 * necessary.
168 *
169 * Caches are grouped into cache groups. Each cache group references up
170 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
171 * object from the pool, it calls the object's constructor and places it
172 * into a cache group. When a cache group frees an object back to the
173 * pool, it first calls the object's destructor. This allows the object
174 * to persist in constructed form while freed to the cache.
175 *
176 * The pool references each cache, so that when a pool is drained by the
177 * pagedaemon, it can drain each individual cache as well. Each time a
178 * cache is drained, the most idle cache group is freed to the pool in
179 * its entirety.
180 *
181 * Pool caches are layed on top of pools. By layering them, we can avoid
182 * the complexity of cache management for pools which would not benefit
183 * from it.
184 */
185
186 static struct pool pcgpool;
187 static struct pool cache_pool;
188 static struct pool cache_cpu_pool;
189
190 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
191 void *, paddr_t);
192 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
193 void **, paddr_t *, int);
194 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
195 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
196 static void pool_cache_xcall(pool_cache_t);
197
198 static int pool_catchup(struct pool *);
199 static void pool_prime_page(struct pool *, void *,
200 struct pool_item_header *);
201 static void pool_update_curpage(struct pool *);
202
203 static int pool_grow(struct pool *, int);
204 static void *pool_allocator_alloc(struct pool *, int);
205 static void pool_allocator_free(struct pool *, void *);
206
207 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
208 void (*)(const char *, ...));
209 static void pool_print1(struct pool *, const char *,
210 void (*)(const char *, ...));
211
212 static int pool_chk_page(struct pool *, const char *,
213 struct pool_item_header *);
214
215 /*
216 * Pool log entry. An array of these is allocated in pool_init().
217 */
218 struct pool_log {
219 const char *pl_file;
220 long pl_line;
221 int pl_action;
222 #define PRLOG_GET 1
223 #define PRLOG_PUT 2
224 void *pl_addr;
225 };
226
227 #ifdef POOL_DIAGNOSTIC
228 /* Number of entries in pool log buffers */
229 #ifndef POOL_LOGSIZE
230 #define POOL_LOGSIZE 10
231 #endif
232
233 int pool_logsize = POOL_LOGSIZE;
234
235 static inline void
236 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
237 {
238 int n = pp->pr_curlogentry;
239 struct pool_log *pl;
240
241 if ((pp->pr_roflags & PR_LOGGING) == 0)
242 return;
243
244 /*
245 * Fill in the current entry. Wrap around and overwrite
246 * the oldest entry if necessary.
247 */
248 pl = &pp->pr_log[n];
249 pl->pl_file = file;
250 pl->pl_line = line;
251 pl->pl_action = action;
252 pl->pl_addr = v;
253 if (++n >= pp->pr_logsize)
254 n = 0;
255 pp->pr_curlogentry = n;
256 }
257
258 static void
259 pr_printlog(struct pool *pp, struct pool_item *pi,
260 void (*pr)(const char *, ...))
261 {
262 int i = pp->pr_logsize;
263 int n = pp->pr_curlogentry;
264
265 if ((pp->pr_roflags & PR_LOGGING) == 0)
266 return;
267
268 /*
269 * Print all entries in this pool's log.
270 */
271 while (i-- > 0) {
272 struct pool_log *pl = &pp->pr_log[n];
273 if (pl->pl_action != 0) {
274 if (pi == NULL || pi == pl->pl_addr) {
275 (*pr)("\tlog entry %d:\n", i);
276 (*pr)("\t\taction = %s, addr = %p\n",
277 pl->pl_action == PRLOG_GET ? "get" : "put",
278 pl->pl_addr);
279 (*pr)("\t\tfile: %s at line %lu\n",
280 pl->pl_file, pl->pl_line);
281 }
282 }
283 if (++n >= pp->pr_logsize)
284 n = 0;
285 }
286 }
287
288 static inline void
289 pr_enter(struct pool *pp, const char *file, long line)
290 {
291
292 if (__predict_false(pp->pr_entered_file != NULL)) {
293 printf("pool %s: reentrancy at file %s line %ld\n",
294 pp->pr_wchan, file, line);
295 printf(" previous entry at file %s line %ld\n",
296 pp->pr_entered_file, pp->pr_entered_line);
297 panic("pr_enter");
298 }
299
300 pp->pr_entered_file = file;
301 pp->pr_entered_line = line;
302 }
303
304 static inline void
305 pr_leave(struct pool *pp)
306 {
307
308 if (__predict_false(pp->pr_entered_file == NULL)) {
309 printf("pool %s not entered?\n", pp->pr_wchan);
310 panic("pr_leave");
311 }
312
313 pp->pr_entered_file = NULL;
314 pp->pr_entered_line = 0;
315 }
316
317 static inline void
318 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
319 {
320
321 if (pp->pr_entered_file != NULL)
322 (*pr)("\n\tcurrently entered from file %s line %ld\n",
323 pp->pr_entered_file, pp->pr_entered_line);
324 }
325 #else
326 #define pr_log(pp, v, action, file, line)
327 #define pr_printlog(pp, pi, pr)
328 #define pr_enter(pp, file, line)
329 #define pr_leave(pp)
330 #define pr_enter_check(pp, pr)
331 #endif /* POOL_DIAGNOSTIC */
332
333 static inline int
334 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
335 const void *v)
336 {
337 const char *cp = v;
338 int idx;
339
340 KASSERT(pp->pr_roflags & PR_NOTOUCH);
341 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
342 KASSERT(idx < pp->pr_itemsperpage);
343 return idx;
344 }
345
346 #define PR_FREELIST_ALIGN(p) \
347 roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
348 #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
349 #define PR_INDEX_USED ((pool_item_freelist_t)-1)
350 #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
351
352 static inline void
353 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
354 void *obj)
355 {
356 int idx = pr_item_notouch_index(pp, ph, obj);
357 pool_item_freelist_t *freelist = PR_FREELIST(ph);
358
359 KASSERT(freelist[idx] == PR_INDEX_USED);
360 freelist[idx] = ph->ph_firstfree;
361 ph->ph_firstfree = idx;
362 }
363
364 static inline void *
365 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
366 {
367 int idx = ph->ph_firstfree;
368 pool_item_freelist_t *freelist = PR_FREELIST(ph);
369
370 KASSERT(freelist[idx] != PR_INDEX_USED);
371 ph->ph_firstfree = freelist[idx];
372 freelist[idx] = PR_INDEX_USED;
373
374 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
375 }
376
377 static inline int
378 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
379 {
380
381 /*
382 * we consider pool_item_header with smaller ph_page bigger.
383 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
384 */
385
386 if (a->ph_page < b->ph_page)
387 return (1);
388 else if (a->ph_page > b->ph_page)
389 return (-1);
390 else
391 return (0);
392 }
393
394 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
395 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
396
397 /*
398 * Return the pool page header based on item address.
399 */
400 static inline struct pool_item_header *
401 pr_find_pagehead(struct pool *pp, void *v)
402 {
403 struct pool_item_header *ph, tmp;
404
405 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
406 tmp.ph_page = (void *)(uintptr_t)v;
407 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
408 if (ph == NULL) {
409 ph = SPLAY_ROOT(&pp->pr_phtree);
410 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
411 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
412 }
413 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
414 }
415 } else {
416 void *page =
417 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
418
419 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
420 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
421 } else {
422 tmp.ph_page = page;
423 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
424 }
425 }
426
427 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
428 ((char *)ph->ph_page <= (char *)v &&
429 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
430 return ph;
431 }
432
433 static void
434 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
435 {
436 struct pool_item_header *ph;
437
438 while ((ph = LIST_FIRST(pq)) != NULL) {
439 LIST_REMOVE(ph, ph_pagelist);
440 pool_allocator_free(pp, ph->ph_page);
441 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
442 pool_put(pp->pr_phpool, ph);
443 }
444 }
445
446 /*
447 * Remove a page from the pool.
448 */
449 static inline void
450 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
451 struct pool_pagelist *pq)
452 {
453
454 KASSERT(mutex_owned(&pp->pr_lock));
455
456 /*
457 * If the page was idle, decrement the idle page count.
458 */
459 if (ph->ph_nmissing == 0) {
460 #ifdef DIAGNOSTIC
461 if (pp->pr_nidle == 0)
462 panic("pr_rmpage: nidle inconsistent");
463 if (pp->pr_nitems < pp->pr_itemsperpage)
464 panic("pr_rmpage: nitems inconsistent");
465 #endif
466 pp->pr_nidle--;
467 }
468
469 pp->pr_nitems -= pp->pr_itemsperpage;
470
471 /*
472 * Unlink the page from the pool and queue it for release.
473 */
474 LIST_REMOVE(ph, ph_pagelist);
475 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
476 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
477 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
478
479 pp->pr_npages--;
480 pp->pr_npagefree++;
481
482 pool_update_curpage(pp);
483 }
484
485 static bool
486 pa_starved_p(struct pool_allocator *pa)
487 {
488
489 if (pa->pa_backingmap != NULL) {
490 return vm_map_starved_p(pa->pa_backingmap);
491 }
492 return false;
493 }
494
495 static int
496 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
497 {
498 struct pool *pp = obj;
499 struct pool_allocator *pa = pp->pr_alloc;
500
501 KASSERT(&pp->pr_reclaimerentry == ce);
502 pool_reclaim(pp);
503 if (!pa_starved_p(pa)) {
504 return CALLBACK_CHAIN_ABORT;
505 }
506 return CALLBACK_CHAIN_CONTINUE;
507 }
508
509 static void
510 pool_reclaim_register(struct pool *pp)
511 {
512 struct vm_map *map = pp->pr_alloc->pa_backingmap;
513 int s;
514
515 if (map == NULL) {
516 return;
517 }
518
519 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
520 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
521 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
522 splx(s);
523 }
524
525 static void
526 pool_reclaim_unregister(struct pool *pp)
527 {
528 struct vm_map *map = pp->pr_alloc->pa_backingmap;
529 int s;
530
531 if (map == NULL) {
532 return;
533 }
534
535 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
536 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
537 &pp->pr_reclaimerentry);
538 splx(s);
539 }
540
541 static void
542 pa_reclaim_register(struct pool_allocator *pa)
543 {
544 struct vm_map *map = *pa->pa_backingmapptr;
545 struct pool *pp;
546
547 KASSERT(pa->pa_backingmap == NULL);
548 if (map == NULL) {
549 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
550 return;
551 }
552 pa->pa_backingmap = map;
553 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
554 pool_reclaim_register(pp);
555 }
556 }
557
558 /*
559 * Initialize all the pools listed in the "pools" link set.
560 */
561 void
562 pool_subsystem_init(void)
563 {
564 struct pool_allocator *pa;
565 __link_set_decl(pools, struct link_pool_init);
566 struct link_pool_init * const *pi;
567
568 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
569 cv_init(&pool_busy, "poolbusy");
570
571 __link_set_foreach(pi, pools)
572 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
573 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
574 (*pi)->palloc, (*pi)->ipl);
575
576 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
577 KASSERT(pa->pa_backingmapptr != NULL);
578 KASSERT(*pa->pa_backingmapptr != NULL);
579 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
580 pa_reclaim_register(pa);
581 }
582
583 pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
584 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
585
586 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
587 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
588 }
589
590 /*
591 * Initialize the given pool resource structure.
592 *
593 * We export this routine to allow other kernel parts to declare
594 * static pools that must be initialized before malloc() is available.
595 */
596 void
597 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
598 const char *wchan, struct pool_allocator *palloc, int ipl)
599 {
600 #ifdef DEBUG
601 struct pool *pp1;
602 #endif
603 size_t trysize, phsize;
604 int off, slack;
605
606 KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
607 PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
608
609 #ifdef DEBUG
610 /*
611 * Check that the pool hasn't already been initialised and
612 * added to the list of all pools.
613 */
614 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
615 if (pp == pp1)
616 panic("pool_init: pool %s already initialised",
617 wchan);
618 }
619 #endif
620
621 #ifdef POOL_DIAGNOSTIC
622 /*
623 * Always log if POOL_DIAGNOSTIC is defined.
624 */
625 if (pool_logsize != 0)
626 flags |= PR_LOGGING;
627 #endif
628
629 if (palloc == NULL)
630 palloc = &pool_allocator_kmem;
631 #ifdef POOL_SUBPAGE
632 if (size > palloc->pa_pagesz) {
633 if (palloc == &pool_allocator_kmem)
634 palloc = &pool_allocator_kmem_fullpage;
635 else if (palloc == &pool_allocator_nointr)
636 palloc = &pool_allocator_nointr_fullpage;
637 }
638 #endif /* POOL_SUBPAGE */
639 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
640 if (palloc->pa_pagesz == 0)
641 palloc->pa_pagesz = PAGE_SIZE;
642
643 TAILQ_INIT(&palloc->pa_list);
644
645 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
646 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
647 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
648
649 if (palloc->pa_backingmapptr != NULL) {
650 pa_reclaim_register(palloc);
651 }
652 palloc->pa_flags |= PA_INITIALIZED;
653 }
654
655 if (align == 0)
656 align = ALIGN(1);
657
658 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
659 size = sizeof(struct pool_item);
660
661 size = roundup(size, align);
662 #ifdef DIAGNOSTIC
663 if (size > palloc->pa_pagesz)
664 panic("pool_init: pool item size (%zu) too large", size);
665 #endif
666
667 /*
668 * Initialize the pool structure.
669 */
670 LIST_INIT(&pp->pr_emptypages);
671 LIST_INIT(&pp->pr_fullpages);
672 LIST_INIT(&pp->pr_partpages);
673 pp->pr_cache = NULL;
674 pp->pr_curpage = NULL;
675 pp->pr_npages = 0;
676 pp->pr_minitems = 0;
677 pp->pr_minpages = 0;
678 pp->pr_maxpages = UINT_MAX;
679 pp->pr_roflags = flags;
680 pp->pr_flags = 0;
681 pp->pr_size = size;
682 pp->pr_align = align;
683 pp->pr_wchan = wchan;
684 pp->pr_alloc = palloc;
685 pp->pr_nitems = 0;
686 pp->pr_nout = 0;
687 pp->pr_hardlimit = UINT_MAX;
688 pp->pr_hardlimit_warning = NULL;
689 pp->pr_hardlimit_ratecap.tv_sec = 0;
690 pp->pr_hardlimit_ratecap.tv_usec = 0;
691 pp->pr_hardlimit_warning_last.tv_sec = 0;
692 pp->pr_hardlimit_warning_last.tv_usec = 0;
693 pp->pr_drain_hook = NULL;
694 pp->pr_drain_hook_arg = NULL;
695 pp->pr_freecheck = NULL;
696
697 /*
698 * Decide whether to put the page header off page to avoid
699 * wasting too large a part of the page or too big item.
700 * Off-page page headers go on a hash table, so we can match
701 * a returned item with its header based on the page address.
702 * We use 1/16 of the page size and about 8 times of the item
703 * size as the threshold (XXX: tune)
704 *
705 * However, we'll put the header into the page if we can put
706 * it without wasting any items.
707 *
708 * Silently enforce `0 <= ioff < align'.
709 */
710 pp->pr_itemoffset = ioff %= align;
711 /* See the comment below about reserved bytes. */
712 trysize = palloc->pa_pagesz - ((align - ioff) % align);
713 phsize = ALIGN(sizeof(struct pool_item_header));
714 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
715 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
716 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
717 /* Use the end of the page for the page header */
718 pp->pr_roflags |= PR_PHINPAGE;
719 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
720 } else {
721 /* The page header will be taken from our page header pool */
722 pp->pr_phoffset = 0;
723 off = palloc->pa_pagesz;
724 SPLAY_INIT(&pp->pr_phtree);
725 }
726
727 /*
728 * Alignment is to take place at `ioff' within the item. This means
729 * we must reserve up to `align - 1' bytes on the page to allow
730 * appropriate positioning of each item.
731 */
732 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
733 KASSERT(pp->pr_itemsperpage != 0);
734 if ((pp->pr_roflags & PR_NOTOUCH)) {
735 int idx;
736
737 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
738 idx++) {
739 /* nothing */
740 }
741 if (idx >= PHPOOL_MAX) {
742 /*
743 * if you see this panic, consider to tweak
744 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
745 */
746 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
747 pp->pr_wchan, pp->pr_itemsperpage);
748 }
749 pp->pr_phpool = &phpool[idx];
750 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
751 pp->pr_phpool = &phpool[0];
752 }
753 #if defined(DIAGNOSTIC)
754 else {
755 pp->pr_phpool = NULL;
756 }
757 #endif
758
759 /*
760 * Use the slack between the chunks and the page header
761 * for "cache coloring".
762 */
763 slack = off - pp->pr_itemsperpage * pp->pr_size;
764 pp->pr_maxcolor = (slack / align) * align;
765 pp->pr_curcolor = 0;
766
767 pp->pr_nget = 0;
768 pp->pr_nfail = 0;
769 pp->pr_nput = 0;
770 pp->pr_npagealloc = 0;
771 pp->pr_npagefree = 0;
772 pp->pr_hiwat = 0;
773 pp->pr_nidle = 0;
774 pp->pr_refcnt = 0;
775
776 #ifdef POOL_DIAGNOSTIC
777 if (flags & PR_LOGGING) {
778 if (kmem_map == NULL ||
779 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
780 M_TEMP, M_NOWAIT)) == NULL)
781 pp->pr_roflags &= ~PR_LOGGING;
782 pp->pr_curlogentry = 0;
783 pp->pr_logsize = pool_logsize;
784 }
785 #endif
786
787 pp->pr_entered_file = NULL;
788 pp->pr_entered_line = 0;
789
790 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
791 cv_init(&pp->pr_cv, wchan);
792 pp->pr_ipl = ipl;
793
794 /*
795 * Initialize private page header pool and cache magazine pool if we
796 * haven't done so yet.
797 * XXX LOCKING.
798 */
799 if (phpool[0].pr_size == 0) {
800 int idx;
801 for (idx = 0; idx < PHPOOL_MAX; idx++) {
802 static char phpool_names[PHPOOL_MAX][6+1+6+1];
803 int nelem;
804 size_t sz;
805
806 nelem = PHPOOL_FREELIST_NELEM(idx);
807 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
808 "phpool-%d", nelem);
809 sz = sizeof(struct pool_item_header);
810 if (nelem) {
811 sz = PR_FREELIST_ALIGN(sz)
812 + nelem * sizeof(pool_item_freelist_t);
813 }
814 pool_init(&phpool[idx], sz, 0, 0, 0,
815 phpool_names[idx], &pool_allocator_meta, IPL_VM);
816 }
817 #ifdef POOL_SUBPAGE
818 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
819 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
820 #endif
821 pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
822 "cachegrp", &pool_allocator_meta, IPL_VM);
823 }
824
825 if (__predict_true(!cold)) {
826 /* Insert into the list of all pools. */
827 mutex_enter(&pool_head_lock);
828 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
829 mutex_exit(&pool_head_lock);
830
831 /* Insert this into the list of pools using this allocator. */
832 mutex_enter(&palloc->pa_lock);
833 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
834 mutex_exit(&palloc->pa_lock);
835 } else {
836 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
837 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
838 }
839
840 pool_reclaim_register(pp);
841 }
842
843 /*
844 * De-commision a pool resource.
845 */
846 void
847 pool_destroy(struct pool *pp)
848 {
849 struct pool_pagelist pq;
850 struct pool_item_header *ph;
851
852 /* Remove from global pool list */
853 mutex_enter(&pool_head_lock);
854 while (pp->pr_refcnt != 0)
855 cv_wait(&pool_busy, &pool_head_lock);
856 LIST_REMOVE(pp, pr_poollist);
857 if (drainpp == pp)
858 drainpp = NULL;
859 mutex_exit(&pool_head_lock);
860
861 /* Remove this pool from its allocator's list of pools. */
862 pool_reclaim_unregister(pp);
863 mutex_enter(&pp->pr_alloc->pa_lock);
864 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
865 mutex_exit(&pp->pr_alloc->pa_lock);
866
867 mutex_enter(&pp->pr_lock);
868
869 KASSERT(pp->pr_cache == NULL);
870
871 #ifdef DIAGNOSTIC
872 if (pp->pr_nout != 0) {
873 pr_printlog(pp, NULL, printf);
874 panic("pool_destroy: pool busy: still out: %u",
875 pp->pr_nout);
876 }
877 #endif
878
879 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
880 KASSERT(LIST_EMPTY(&pp->pr_partpages));
881
882 /* Remove all pages */
883 LIST_INIT(&pq);
884 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
885 pr_rmpage(pp, ph, &pq);
886
887 mutex_exit(&pp->pr_lock);
888
889 pr_pagelist_free(pp, &pq);
890
891 #ifdef POOL_DIAGNOSTIC
892 if ((pp->pr_roflags & PR_LOGGING) != 0)
893 free(pp->pr_log, M_TEMP);
894 #endif
895
896 cv_destroy(&pp->pr_cv);
897 mutex_destroy(&pp->pr_lock);
898 }
899
900 void
901 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
902 {
903
904 /* XXX no locking -- must be used just after pool_init() */
905 #ifdef DIAGNOSTIC
906 if (pp->pr_drain_hook != NULL)
907 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
908 #endif
909 pp->pr_drain_hook = fn;
910 pp->pr_drain_hook_arg = arg;
911 }
912
913 static struct pool_item_header *
914 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
915 {
916 struct pool_item_header *ph;
917
918 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
919 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
920 else
921 ph = pool_get(pp->pr_phpool, flags);
922
923 return (ph);
924 }
925
926 /*
927 * Grab an item from the pool.
928 */
929 void *
930 #ifdef POOL_DIAGNOSTIC
931 _pool_get(struct pool *pp, int flags, const char *file, long line)
932 #else
933 pool_get(struct pool *pp, int flags)
934 #endif
935 {
936 struct pool_item *pi;
937 struct pool_item_header *ph;
938 void *v;
939
940 #ifdef DIAGNOSTIC
941 if (__predict_false(pp->pr_itemsperpage == 0))
942 panic("pool_get: pool %p: pr_itemsperpage is zero, "
943 "pool not initialized?", pp);
944 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
945 (flags & PR_WAITOK) != 0))
946 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
947
948 #endif /* DIAGNOSTIC */
949 #ifdef LOCKDEBUG
950 if (flags & PR_WAITOK)
951 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
952 #endif
953
954 mutex_enter(&pp->pr_lock);
955 pr_enter(pp, file, line);
956
957 startover:
958 /*
959 * Check to see if we've reached the hard limit. If we have,
960 * and we can wait, then wait until an item has been returned to
961 * the pool.
962 */
963 #ifdef DIAGNOSTIC
964 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
965 pr_leave(pp);
966 mutex_exit(&pp->pr_lock);
967 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
968 }
969 #endif
970 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
971 if (pp->pr_drain_hook != NULL) {
972 /*
973 * Since the drain hook is going to free things
974 * back to the pool, unlock, call the hook, re-lock,
975 * and check the hardlimit condition again.
976 */
977 pr_leave(pp);
978 mutex_exit(&pp->pr_lock);
979 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
980 mutex_enter(&pp->pr_lock);
981 pr_enter(pp, file, line);
982 if (pp->pr_nout < pp->pr_hardlimit)
983 goto startover;
984 }
985
986 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
987 /*
988 * XXX: A warning isn't logged in this case. Should
989 * it be?
990 */
991 pp->pr_flags |= PR_WANTED;
992 pr_leave(pp);
993 cv_wait(&pp->pr_cv, &pp->pr_lock);
994 pr_enter(pp, file, line);
995 goto startover;
996 }
997
998 /*
999 * Log a message that the hard limit has been hit.
1000 */
1001 if (pp->pr_hardlimit_warning != NULL &&
1002 ratecheck(&pp->pr_hardlimit_warning_last,
1003 &pp->pr_hardlimit_ratecap))
1004 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1005
1006 pp->pr_nfail++;
1007
1008 pr_leave(pp);
1009 mutex_exit(&pp->pr_lock);
1010 return (NULL);
1011 }
1012
1013 /*
1014 * The convention we use is that if `curpage' is not NULL, then
1015 * it points at a non-empty bucket. In particular, `curpage'
1016 * never points at a page header which has PR_PHINPAGE set and
1017 * has no items in its bucket.
1018 */
1019 if ((ph = pp->pr_curpage) == NULL) {
1020 int error;
1021
1022 #ifdef DIAGNOSTIC
1023 if (pp->pr_nitems != 0) {
1024 mutex_exit(&pp->pr_lock);
1025 printf("pool_get: %s: curpage NULL, nitems %u\n",
1026 pp->pr_wchan, pp->pr_nitems);
1027 panic("pool_get: nitems inconsistent");
1028 }
1029 #endif
1030
1031 /*
1032 * Call the back-end page allocator for more memory.
1033 * Release the pool lock, as the back-end page allocator
1034 * may block.
1035 */
1036 pr_leave(pp);
1037 error = pool_grow(pp, flags);
1038 pr_enter(pp, file, line);
1039 if (error != 0) {
1040 /*
1041 * We were unable to allocate a page or item
1042 * header, but we released the lock during
1043 * allocation, so perhaps items were freed
1044 * back to the pool. Check for this case.
1045 */
1046 if (pp->pr_curpage != NULL)
1047 goto startover;
1048
1049 pp->pr_nfail++;
1050 pr_leave(pp);
1051 mutex_exit(&pp->pr_lock);
1052 return (NULL);
1053 }
1054
1055 /* Start the allocation process over. */
1056 goto startover;
1057 }
1058 if (pp->pr_roflags & PR_NOTOUCH) {
1059 #ifdef DIAGNOSTIC
1060 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1061 pr_leave(pp);
1062 mutex_exit(&pp->pr_lock);
1063 panic("pool_get: %s: page empty", pp->pr_wchan);
1064 }
1065 #endif
1066 v = pr_item_notouch_get(pp, ph);
1067 #ifdef POOL_DIAGNOSTIC
1068 pr_log(pp, v, PRLOG_GET, file, line);
1069 #endif
1070 } else {
1071 v = pi = LIST_FIRST(&ph->ph_itemlist);
1072 if (__predict_false(v == NULL)) {
1073 pr_leave(pp);
1074 mutex_exit(&pp->pr_lock);
1075 panic("pool_get: %s: page empty", pp->pr_wchan);
1076 }
1077 #ifdef DIAGNOSTIC
1078 if (__predict_false(pp->pr_nitems == 0)) {
1079 pr_leave(pp);
1080 mutex_exit(&pp->pr_lock);
1081 printf("pool_get: %s: items on itemlist, nitems %u\n",
1082 pp->pr_wchan, pp->pr_nitems);
1083 panic("pool_get: nitems inconsistent");
1084 }
1085 #endif
1086
1087 #ifdef POOL_DIAGNOSTIC
1088 pr_log(pp, v, PRLOG_GET, file, line);
1089 #endif
1090
1091 #ifdef DIAGNOSTIC
1092 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1093 pr_printlog(pp, pi, printf);
1094 panic("pool_get(%s): free list modified: "
1095 "magic=%x; page %p; item addr %p\n",
1096 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1097 }
1098 #endif
1099
1100 /*
1101 * Remove from item list.
1102 */
1103 LIST_REMOVE(pi, pi_list);
1104 }
1105 pp->pr_nitems--;
1106 pp->pr_nout++;
1107 if (ph->ph_nmissing == 0) {
1108 #ifdef DIAGNOSTIC
1109 if (__predict_false(pp->pr_nidle == 0))
1110 panic("pool_get: nidle inconsistent");
1111 #endif
1112 pp->pr_nidle--;
1113
1114 /*
1115 * This page was previously empty. Move it to the list of
1116 * partially-full pages. This page is already curpage.
1117 */
1118 LIST_REMOVE(ph, ph_pagelist);
1119 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1120 }
1121 ph->ph_nmissing++;
1122 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1123 #ifdef DIAGNOSTIC
1124 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1125 !LIST_EMPTY(&ph->ph_itemlist))) {
1126 pr_leave(pp);
1127 mutex_exit(&pp->pr_lock);
1128 panic("pool_get: %s: nmissing inconsistent",
1129 pp->pr_wchan);
1130 }
1131 #endif
1132 /*
1133 * This page is now full. Move it to the full list
1134 * and select a new current page.
1135 */
1136 LIST_REMOVE(ph, ph_pagelist);
1137 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1138 pool_update_curpage(pp);
1139 }
1140
1141 pp->pr_nget++;
1142 pr_leave(pp);
1143
1144 /*
1145 * If we have a low water mark and we are now below that low
1146 * water mark, add more items to the pool.
1147 */
1148 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1149 /*
1150 * XXX: Should we log a warning? Should we set up a timeout
1151 * to try again in a second or so? The latter could break
1152 * a caller's assumptions about interrupt protection, etc.
1153 */
1154 }
1155
1156 mutex_exit(&pp->pr_lock);
1157 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1158 FREECHECK_OUT(&pp->pr_freecheck, v);
1159 return (v);
1160 }
1161
1162 /*
1163 * Internal version of pool_put(). Pool is already locked/entered.
1164 */
1165 static void
1166 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1167 {
1168 struct pool_item *pi = v;
1169 struct pool_item_header *ph;
1170
1171 KASSERT(mutex_owned(&pp->pr_lock));
1172 FREECHECK_IN(&pp->pr_freecheck, v);
1173 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1174
1175 #ifdef DIAGNOSTIC
1176 if (__predict_false(pp->pr_nout == 0)) {
1177 printf("pool %s: putting with none out\n",
1178 pp->pr_wchan);
1179 panic("pool_put");
1180 }
1181 #endif
1182
1183 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1184 pr_printlog(pp, NULL, printf);
1185 panic("pool_put: %s: page header missing", pp->pr_wchan);
1186 }
1187
1188 /*
1189 * Return to item list.
1190 */
1191 if (pp->pr_roflags & PR_NOTOUCH) {
1192 pr_item_notouch_put(pp, ph, v);
1193 } else {
1194 #ifdef DIAGNOSTIC
1195 pi->pi_magic = PI_MAGIC;
1196 #endif
1197 #ifdef DEBUG
1198 {
1199 int i, *ip = v;
1200
1201 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1202 *ip++ = PI_MAGIC;
1203 }
1204 }
1205 #endif
1206
1207 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1208 }
1209 KDASSERT(ph->ph_nmissing != 0);
1210 ph->ph_nmissing--;
1211 pp->pr_nput++;
1212 pp->pr_nitems++;
1213 pp->pr_nout--;
1214
1215 /* Cancel "pool empty" condition if it exists */
1216 if (pp->pr_curpage == NULL)
1217 pp->pr_curpage = ph;
1218
1219 if (pp->pr_flags & PR_WANTED) {
1220 pp->pr_flags &= ~PR_WANTED;
1221 if (ph->ph_nmissing == 0)
1222 pp->pr_nidle++;
1223 cv_broadcast(&pp->pr_cv);
1224 return;
1225 }
1226
1227 /*
1228 * If this page is now empty, do one of two things:
1229 *
1230 * (1) If we have more pages than the page high water mark,
1231 * free the page back to the system. ONLY CONSIDER
1232 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1233 * CLAIM.
1234 *
1235 * (2) Otherwise, move the page to the empty page list.
1236 *
1237 * Either way, select a new current page (so we use a partially-full
1238 * page if one is available).
1239 */
1240 if (ph->ph_nmissing == 0) {
1241 pp->pr_nidle++;
1242 if (pp->pr_npages > pp->pr_minpages &&
1243 (pp->pr_npages > pp->pr_maxpages ||
1244 pa_starved_p(pp->pr_alloc))) {
1245 pr_rmpage(pp, ph, pq);
1246 } else {
1247 LIST_REMOVE(ph, ph_pagelist);
1248 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1249
1250 /*
1251 * Update the timestamp on the page. A page must
1252 * be idle for some period of time before it can
1253 * be reclaimed by the pagedaemon. This minimizes
1254 * ping-pong'ing for memory.
1255 */
1256 getmicrotime(&ph->ph_time);
1257 }
1258 pool_update_curpage(pp);
1259 }
1260
1261 /*
1262 * If the page was previously completely full, move it to the
1263 * partially-full list and make it the current page. The next
1264 * allocation will get the item from this page, instead of
1265 * further fragmenting the pool.
1266 */
1267 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1268 LIST_REMOVE(ph, ph_pagelist);
1269 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1270 pp->pr_curpage = ph;
1271 }
1272 }
1273
1274 /*
1275 * Return resource to the pool.
1276 */
1277 #ifdef POOL_DIAGNOSTIC
1278 void
1279 _pool_put(struct pool *pp, void *v, const char *file, long line)
1280 {
1281 struct pool_pagelist pq;
1282
1283 LIST_INIT(&pq);
1284
1285 mutex_enter(&pp->pr_lock);
1286 pr_enter(pp, file, line);
1287
1288 pr_log(pp, v, PRLOG_PUT, file, line);
1289
1290 pool_do_put(pp, v, &pq);
1291
1292 pr_leave(pp);
1293 mutex_exit(&pp->pr_lock);
1294
1295 pr_pagelist_free(pp, &pq);
1296 }
1297 #undef pool_put
1298 #endif /* POOL_DIAGNOSTIC */
1299
1300 void
1301 pool_put(struct pool *pp, void *v)
1302 {
1303 struct pool_pagelist pq;
1304
1305 LIST_INIT(&pq);
1306
1307 mutex_enter(&pp->pr_lock);
1308 pool_do_put(pp, v, &pq);
1309 mutex_exit(&pp->pr_lock);
1310
1311 pr_pagelist_free(pp, &pq);
1312 }
1313
1314 #ifdef POOL_DIAGNOSTIC
1315 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1316 #endif
1317
1318 /*
1319 * pool_grow: grow a pool by a page.
1320 *
1321 * => called with pool locked.
1322 * => unlock and relock the pool.
1323 * => return with pool locked.
1324 */
1325
1326 static int
1327 pool_grow(struct pool *pp, int flags)
1328 {
1329 struct pool_item_header *ph = NULL;
1330 char *cp;
1331
1332 mutex_exit(&pp->pr_lock);
1333 cp = pool_allocator_alloc(pp, flags);
1334 if (__predict_true(cp != NULL)) {
1335 ph = pool_alloc_item_header(pp, cp, flags);
1336 }
1337 if (__predict_false(cp == NULL || ph == NULL)) {
1338 if (cp != NULL) {
1339 pool_allocator_free(pp, cp);
1340 }
1341 mutex_enter(&pp->pr_lock);
1342 return ENOMEM;
1343 }
1344
1345 mutex_enter(&pp->pr_lock);
1346 pool_prime_page(pp, cp, ph);
1347 pp->pr_npagealloc++;
1348 return 0;
1349 }
1350
1351 /*
1352 * Add N items to the pool.
1353 */
1354 int
1355 pool_prime(struct pool *pp, int n)
1356 {
1357 int newpages;
1358 int error = 0;
1359
1360 mutex_enter(&pp->pr_lock);
1361
1362 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1363
1364 while (newpages-- > 0) {
1365 error = pool_grow(pp, PR_NOWAIT);
1366 if (error) {
1367 break;
1368 }
1369 pp->pr_minpages++;
1370 }
1371
1372 if (pp->pr_minpages >= pp->pr_maxpages)
1373 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1374
1375 mutex_exit(&pp->pr_lock);
1376 return error;
1377 }
1378
1379 /*
1380 * Add a page worth of items to the pool.
1381 *
1382 * Note, we must be called with the pool descriptor LOCKED.
1383 */
1384 static void
1385 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1386 {
1387 struct pool_item *pi;
1388 void *cp = storage;
1389 const unsigned int align = pp->pr_align;
1390 const unsigned int ioff = pp->pr_itemoffset;
1391 int n;
1392
1393 KASSERT(mutex_owned(&pp->pr_lock));
1394
1395 #ifdef DIAGNOSTIC
1396 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1397 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1398 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1399 #endif
1400
1401 /*
1402 * Insert page header.
1403 */
1404 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1405 LIST_INIT(&ph->ph_itemlist);
1406 ph->ph_page = storage;
1407 ph->ph_nmissing = 0;
1408 getmicrotime(&ph->ph_time);
1409 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1410 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1411
1412 pp->pr_nidle++;
1413
1414 /*
1415 * Color this page.
1416 */
1417 cp = (char *)cp + pp->pr_curcolor;
1418 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1419 pp->pr_curcolor = 0;
1420
1421 /*
1422 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1423 */
1424 if (ioff != 0)
1425 cp = (char *)cp + align - ioff;
1426
1427 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1428
1429 /*
1430 * Insert remaining chunks on the bucket list.
1431 */
1432 n = pp->pr_itemsperpage;
1433 pp->pr_nitems += n;
1434
1435 if (pp->pr_roflags & PR_NOTOUCH) {
1436 pool_item_freelist_t *freelist = PR_FREELIST(ph);
1437 int i;
1438
1439 ph->ph_off = (char *)cp - (char *)storage;
1440 ph->ph_firstfree = 0;
1441 for (i = 0; i < n - 1; i++)
1442 freelist[i] = i + 1;
1443 freelist[n - 1] = PR_INDEX_EOL;
1444 } else {
1445 while (n--) {
1446 pi = (struct pool_item *)cp;
1447
1448 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1449
1450 /* Insert on page list */
1451 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1452 #ifdef DIAGNOSTIC
1453 pi->pi_magic = PI_MAGIC;
1454 #endif
1455 cp = (char *)cp + pp->pr_size;
1456
1457 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1458 }
1459 }
1460
1461 /*
1462 * If the pool was depleted, point at the new page.
1463 */
1464 if (pp->pr_curpage == NULL)
1465 pp->pr_curpage = ph;
1466
1467 if (++pp->pr_npages > pp->pr_hiwat)
1468 pp->pr_hiwat = pp->pr_npages;
1469 }
1470
1471 /*
1472 * Used by pool_get() when nitems drops below the low water mark. This
1473 * is used to catch up pr_nitems with the low water mark.
1474 *
1475 * Note 1, we never wait for memory here, we let the caller decide what to do.
1476 *
1477 * Note 2, we must be called with the pool already locked, and we return
1478 * with it locked.
1479 */
1480 static int
1481 pool_catchup(struct pool *pp)
1482 {
1483 int error = 0;
1484
1485 while (POOL_NEEDS_CATCHUP(pp)) {
1486 error = pool_grow(pp, PR_NOWAIT);
1487 if (error) {
1488 break;
1489 }
1490 }
1491 return error;
1492 }
1493
1494 static void
1495 pool_update_curpage(struct pool *pp)
1496 {
1497
1498 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1499 if (pp->pr_curpage == NULL) {
1500 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1501 }
1502 }
1503
1504 void
1505 pool_setlowat(struct pool *pp, int n)
1506 {
1507
1508 mutex_enter(&pp->pr_lock);
1509
1510 pp->pr_minitems = n;
1511 pp->pr_minpages = (n == 0)
1512 ? 0
1513 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1514
1515 /* Make sure we're caught up with the newly-set low water mark. */
1516 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1517 /*
1518 * XXX: Should we log a warning? Should we set up a timeout
1519 * to try again in a second or so? The latter could break
1520 * a caller's assumptions about interrupt protection, etc.
1521 */
1522 }
1523
1524 mutex_exit(&pp->pr_lock);
1525 }
1526
1527 void
1528 pool_sethiwat(struct pool *pp, int n)
1529 {
1530
1531 mutex_enter(&pp->pr_lock);
1532
1533 pp->pr_maxpages = (n == 0)
1534 ? 0
1535 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1536
1537 mutex_exit(&pp->pr_lock);
1538 }
1539
1540 void
1541 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1542 {
1543
1544 mutex_enter(&pp->pr_lock);
1545
1546 pp->pr_hardlimit = n;
1547 pp->pr_hardlimit_warning = warnmess;
1548 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1549 pp->pr_hardlimit_warning_last.tv_sec = 0;
1550 pp->pr_hardlimit_warning_last.tv_usec = 0;
1551
1552 /*
1553 * In-line version of pool_sethiwat(), because we don't want to
1554 * release the lock.
1555 */
1556 pp->pr_maxpages = (n == 0)
1557 ? 0
1558 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1559
1560 mutex_exit(&pp->pr_lock);
1561 }
1562
1563 /*
1564 * Release all complete pages that have not been used recently.
1565 */
1566 int
1567 #ifdef POOL_DIAGNOSTIC
1568 _pool_reclaim(struct pool *pp, const char *file, long line)
1569 #else
1570 pool_reclaim(struct pool *pp)
1571 #endif
1572 {
1573 struct pool_item_header *ph, *phnext;
1574 struct pool_pagelist pq;
1575 struct timeval curtime, diff;
1576 bool klock;
1577 int rv;
1578
1579 if (pp->pr_drain_hook != NULL) {
1580 /*
1581 * The drain hook must be called with the pool unlocked.
1582 */
1583 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1584 }
1585
1586 /*
1587 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
1588 * and we are called from the pagedaemon without kernel_lock.
1589 * Does not apply to IPL_SOFTBIO.
1590 */
1591 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1592 pp->pr_ipl == IPL_SOFTSERIAL) {
1593 KERNEL_LOCK(1, NULL);
1594 klock = true;
1595 } else
1596 klock = false;
1597
1598 /* Reclaim items from the pool's cache (if any). */
1599 if (pp->pr_cache != NULL)
1600 pool_cache_invalidate(pp->pr_cache);
1601
1602 if (mutex_tryenter(&pp->pr_lock) == 0) {
1603 if (klock) {
1604 KERNEL_UNLOCK_ONE(NULL);
1605 }
1606 return (0);
1607 }
1608 pr_enter(pp, file, line);
1609
1610 LIST_INIT(&pq);
1611
1612 getmicrotime(&curtime);
1613
1614 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1615 phnext = LIST_NEXT(ph, ph_pagelist);
1616
1617 /* Check our minimum page claim */
1618 if (pp->pr_npages <= pp->pr_minpages)
1619 break;
1620
1621 KASSERT(ph->ph_nmissing == 0);
1622 timersub(&curtime, &ph->ph_time, &diff);
1623 if (diff.tv_sec < pool_inactive_time
1624 && !pa_starved_p(pp->pr_alloc))
1625 continue;
1626
1627 /*
1628 * If freeing this page would put us below
1629 * the low water mark, stop now.
1630 */
1631 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1632 pp->pr_minitems)
1633 break;
1634
1635 pr_rmpage(pp, ph, &pq);
1636 }
1637
1638 pr_leave(pp);
1639 mutex_exit(&pp->pr_lock);
1640
1641 if (LIST_EMPTY(&pq))
1642 rv = 0;
1643 else {
1644 pr_pagelist_free(pp, &pq);
1645 rv = 1;
1646 }
1647
1648 if (klock) {
1649 KERNEL_UNLOCK_ONE(NULL);
1650 }
1651
1652 return (rv);
1653 }
1654
1655 /*
1656 * Drain pools, one at a time. This is a two stage process;
1657 * drain_start kicks off a cross call to drain CPU-level caches
1658 * if the pool has an associated pool_cache. drain_end waits
1659 * for those cross calls to finish, and then drains the cache
1660 * (if any) and pool.
1661 *
1662 * Note, must never be called from interrupt context.
1663 */
1664 void
1665 pool_drain_start(struct pool **ppp, uint64_t *wp)
1666 {
1667 struct pool *pp;
1668
1669 KASSERT(!LIST_EMPTY(&pool_head));
1670
1671 pp = NULL;
1672
1673 /* Find next pool to drain, and add a reference. */
1674 mutex_enter(&pool_head_lock);
1675 do {
1676 if (drainpp == NULL) {
1677 drainpp = LIST_FIRST(&pool_head);
1678 }
1679 if (drainpp != NULL) {
1680 pp = drainpp;
1681 drainpp = LIST_NEXT(pp, pr_poollist);
1682 }
1683 /*
1684 * Skip completely idle pools. We depend on at least
1685 * one pool in the system being active.
1686 */
1687 } while (pp == NULL || pp->pr_npages == 0);
1688 pp->pr_refcnt++;
1689 mutex_exit(&pool_head_lock);
1690
1691 /* If there is a pool_cache, drain CPU level caches. */
1692 *ppp = pp;
1693 if (pp->pr_cache != NULL) {
1694 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1695 pp->pr_cache, NULL);
1696 }
1697 }
1698
1699 void
1700 pool_drain_end(struct pool *pp, uint64_t where)
1701 {
1702
1703 if (pp == NULL)
1704 return;
1705
1706 KASSERT(pp->pr_refcnt > 0);
1707
1708 /* Wait for remote draining to complete. */
1709 if (pp->pr_cache != NULL)
1710 xc_wait(where);
1711
1712 /* Drain the cache (if any) and pool.. */
1713 pool_reclaim(pp);
1714
1715 /* Finally, unlock the pool. */
1716 mutex_enter(&pool_head_lock);
1717 pp->pr_refcnt--;
1718 cv_broadcast(&pool_busy);
1719 mutex_exit(&pool_head_lock);
1720 }
1721
1722 /*
1723 * Diagnostic helpers.
1724 */
1725 void
1726 pool_print(struct pool *pp, const char *modif)
1727 {
1728
1729 pool_print1(pp, modif, printf);
1730 }
1731
1732 void
1733 pool_printall(const char *modif, void (*pr)(const char *, ...))
1734 {
1735 struct pool *pp;
1736
1737 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1738 pool_printit(pp, modif, pr);
1739 }
1740 }
1741
1742 void
1743 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1744 {
1745
1746 if (pp == NULL) {
1747 (*pr)("Must specify a pool to print.\n");
1748 return;
1749 }
1750
1751 pool_print1(pp, modif, pr);
1752 }
1753
1754 static void
1755 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1756 void (*pr)(const char *, ...))
1757 {
1758 struct pool_item_header *ph;
1759 #ifdef DIAGNOSTIC
1760 struct pool_item *pi;
1761 #endif
1762
1763 LIST_FOREACH(ph, pl, ph_pagelist) {
1764 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1765 ph->ph_page, ph->ph_nmissing,
1766 (u_long)ph->ph_time.tv_sec,
1767 (u_long)ph->ph_time.tv_usec);
1768 #ifdef DIAGNOSTIC
1769 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1770 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1771 if (pi->pi_magic != PI_MAGIC) {
1772 (*pr)("\t\t\titem %p, magic 0x%x\n",
1773 pi, pi->pi_magic);
1774 }
1775 }
1776 }
1777 #endif
1778 }
1779 }
1780
1781 static void
1782 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1783 {
1784 struct pool_item_header *ph;
1785 pool_cache_t pc;
1786 pcg_t *pcg;
1787 pool_cache_cpu_t *cc;
1788 uint64_t cpuhit, cpumiss;
1789 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1790 char c;
1791
1792 while ((c = *modif++) != '\0') {
1793 if (c == 'l')
1794 print_log = 1;
1795 if (c == 'p')
1796 print_pagelist = 1;
1797 if (c == 'c')
1798 print_cache = 1;
1799 }
1800
1801 if ((pc = pp->pr_cache) != NULL) {
1802 (*pr)("POOL CACHE");
1803 } else {
1804 (*pr)("POOL");
1805 }
1806
1807 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1808 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1809 pp->pr_roflags);
1810 (*pr)("\talloc %p\n", pp->pr_alloc);
1811 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1812 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1813 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1814 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1815
1816 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1817 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1818 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1819 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1820
1821 if (print_pagelist == 0)
1822 goto skip_pagelist;
1823
1824 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1825 (*pr)("\n\tempty page list:\n");
1826 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1827 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1828 (*pr)("\n\tfull page list:\n");
1829 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1830 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1831 (*pr)("\n\tpartial-page list:\n");
1832 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1833
1834 if (pp->pr_curpage == NULL)
1835 (*pr)("\tno current page\n");
1836 else
1837 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1838
1839 skip_pagelist:
1840 if (print_log == 0)
1841 goto skip_log;
1842
1843 (*pr)("\n");
1844 if ((pp->pr_roflags & PR_LOGGING) == 0)
1845 (*pr)("\tno log\n");
1846 else {
1847 pr_printlog(pp, NULL, pr);
1848 }
1849
1850 skip_log:
1851
1852 #define PR_GROUPLIST(pcg) \
1853 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1854 for (i = 0; i < PCG_NOBJECTS; i++) { \
1855 if (pcg->pcg_objects[i].pcgo_pa != \
1856 POOL_PADDR_INVALID) { \
1857 (*pr)("\t\t\t%p, 0x%llx\n", \
1858 pcg->pcg_objects[i].pcgo_va, \
1859 (unsigned long long) \
1860 pcg->pcg_objects[i].pcgo_pa); \
1861 } else { \
1862 (*pr)("\t\t\t%p\n", \
1863 pcg->pcg_objects[i].pcgo_va); \
1864 } \
1865 }
1866
1867 if (pc != NULL) {
1868 cpuhit = 0;
1869 cpumiss = 0;
1870 for (i = 0; i < MAXCPUS; i++) {
1871 if ((cc = pc->pc_cpus[i]) == NULL)
1872 continue;
1873 cpuhit += cc->cc_hits;
1874 cpumiss += cc->cc_misses;
1875 }
1876 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1877 (*pr)("\tcache layer hits %llu misses %llu\n",
1878 pc->pc_hits, pc->pc_misses);
1879 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1880 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1881 pc->pc_contended);
1882 (*pr)("\tcache layer empty groups %u full groups %u\n",
1883 pc->pc_nempty, pc->pc_nfull);
1884 if (print_cache) {
1885 (*pr)("\tfull cache groups:\n");
1886 for (pcg = pc->pc_fullgroups; pcg != NULL;
1887 pcg = pcg->pcg_next) {
1888 PR_GROUPLIST(pcg);
1889 }
1890 (*pr)("\tempty cache groups:\n");
1891 for (pcg = pc->pc_emptygroups; pcg != NULL;
1892 pcg = pcg->pcg_next) {
1893 PR_GROUPLIST(pcg);
1894 }
1895 }
1896 }
1897 #undef PR_GROUPLIST
1898
1899 pr_enter_check(pp, pr);
1900 }
1901
1902 static int
1903 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1904 {
1905 struct pool_item *pi;
1906 void *page;
1907 int n;
1908
1909 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1910 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1911 if (page != ph->ph_page &&
1912 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1913 if (label != NULL)
1914 printf("%s: ", label);
1915 printf("pool(%p:%s): page inconsistency: page %p;"
1916 " at page head addr %p (p %p)\n", pp,
1917 pp->pr_wchan, ph->ph_page,
1918 ph, page);
1919 return 1;
1920 }
1921 }
1922
1923 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1924 return 0;
1925
1926 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1927 pi != NULL;
1928 pi = LIST_NEXT(pi,pi_list), n++) {
1929
1930 #ifdef DIAGNOSTIC
1931 if (pi->pi_magic != PI_MAGIC) {
1932 if (label != NULL)
1933 printf("%s: ", label);
1934 printf("pool(%s): free list modified: magic=%x;"
1935 " page %p; item ordinal %d; addr %p\n",
1936 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1937 n, pi);
1938 panic("pool");
1939 }
1940 #endif
1941 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1942 continue;
1943 }
1944 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1945 if (page == ph->ph_page)
1946 continue;
1947
1948 if (label != NULL)
1949 printf("%s: ", label);
1950 printf("pool(%p:%s): page inconsistency: page %p;"
1951 " item ordinal %d; addr %p (p %p)\n", pp,
1952 pp->pr_wchan, ph->ph_page,
1953 n, pi, page);
1954 return 1;
1955 }
1956 return 0;
1957 }
1958
1959
1960 int
1961 pool_chk(struct pool *pp, const char *label)
1962 {
1963 struct pool_item_header *ph;
1964 int r = 0;
1965
1966 mutex_enter(&pp->pr_lock);
1967 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1968 r = pool_chk_page(pp, label, ph);
1969 if (r) {
1970 goto out;
1971 }
1972 }
1973 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1974 r = pool_chk_page(pp, label, ph);
1975 if (r) {
1976 goto out;
1977 }
1978 }
1979 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1980 r = pool_chk_page(pp, label, ph);
1981 if (r) {
1982 goto out;
1983 }
1984 }
1985
1986 out:
1987 mutex_exit(&pp->pr_lock);
1988 return (r);
1989 }
1990
1991 /*
1992 * pool_cache_init:
1993 *
1994 * Initialize a pool cache.
1995 */
1996 pool_cache_t
1997 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1998 const char *wchan, struct pool_allocator *palloc, int ipl,
1999 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2000 {
2001 pool_cache_t pc;
2002
2003 pc = pool_get(&cache_pool, PR_WAITOK);
2004 if (pc == NULL)
2005 return NULL;
2006
2007 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2008 palloc, ipl, ctor, dtor, arg);
2009
2010 return pc;
2011 }
2012
2013 /*
2014 * pool_cache_bootstrap:
2015 *
2016 * Kernel-private version of pool_cache_init(). The caller
2017 * provides initial storage.
2018 */
2019 void
2020 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2021 u_int align_offset, u_int flags, const char *wchan,
2022 struct pool_allocator *palloc, int ipl,
2023 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2024 void *arg)
2025 {
2026 CPU_INFO_ITERATOR cii;
2027 struct cpu_info *ci;
2028 struct pool *pp;
2029
2030 pp = &pc->pc_pool;
2031 if (palloc == NULL && ipl == IPL_NONE)
2032 palloc = &pool_allocator_nointr;
2033 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2034
2035 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, pp->pr_ipl);
2036
2037 if (ctor == NULL) {
2038 ctor = (int (*)(void *, void *, int))nullop;
2039 }
2040 if (dtor == NULL) {
2041 dtor = (void (*)(void *, void *))nullop;
2042 }
2043
2044 pc->pc_emptygroups = NULL;
2045 pc->pc_fullgroups = NULL;
2046 pc->pc_partgroups = NULL;
2047 pc->pc_ctor = ctor;
2048 pc->pc_dtor = dtor;
2049 pc->pc_arg = arg;
2050 pc->pc_hits = 0;
2051 pc->pc_misses = 0;
2052 pc->pc_nempty = 0;
2053 pc->pc_npart = 0;
2054 pc->pc_nfull = 0;
2055 pc->pc_contended = 0;
2056 pc->pc_refcnt = 0;
2057
2058 /* Allocate per-CPU caches. */
2059 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2060 pc->pc_ncpu = 0;
2061 for (CPU_INFO_FOREACH(cii, ci)) {
2062 pool_cache_cpu_init1(ci, pc);
2063 }
2064
2065 if (__predict_true(!cold)) {
2066 mutex_enter(&pp->pr_lock);
2067 pp->pr_cache = pc;
2068 mutex_exit(&pp->pr_lock);
2069 mutex_enter(&pool_head_lock);
2070 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2071 mutex_exit(&pool_head_lock);
2072 } else {
2073 pp->pr_cache = pc;
2074 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2075 }
2076 }
2077
2078 /*
2079 * pool_cache_destroy:
2080 *
2081 * Destroy a pool cache.
2082 */
2083 void
2084 pool_cache_destroy(pool_cache_t pc)
2085 {
2086 struct pool *pp = &pc->pc_pool;
2087 pool_cache_cpu_t *cc;
2088 pcg_t *pcg;
2089 int i;
2090
2091 /* Remove it from the global list. */
2092 mutex_enter(&pool_head_lock);
2093 while (pc->pc_refcnt != 0)
2094 cv_wait(&pool_busy, &pool_head_lock);
2095 LIST_REMOVE(pc, pc_cachelist);
2096 mutex_exit(&pool_head_lock);
2097
2098 /* First, invalidate the entire cache. */
2099 pool_cache_invalidate(pc);
2100
2101 /* Disassociate it from the pool. */
2102 mutex_enter(&pp->pr_lock);
2103 pp->pr_cache = NULL;
2104 mutex_exit(&pp->pr_lock);
2105
2106 /* Destroy per-CPU data */
2107 for (i = 0; i < MAXCPUS; i++) {
2108 if ((cc = pc->pc_cpus[i]) == NULL)
2109 continue;
2110 if ((pcg = cc->cc_current) != NULL) {
2111 pcg->pcg_next = NULL;
2112 pool_cache_invalidate_groups(pc, pcg);
2113 }
2114 if ((pcg = cc->cc_previous) != NULL) {
2115 pcg->pcg_next = NULL;
2116 pool_cache_invalidate_groups(pc, pcg);
2117 }
2118 if (cc != &pc->pc_cpu0)
2119 pool_put(&cache_cpu_pool, cc);
2120 }
2121
2122 /* Finally, destroy it. */
2123 mutex_destroy(&pc->pc_lock);
2124 pool_destroy(pp);
2125 pool_put(&cache_pool, pc);
2126 }
2127
2128 /*
2129 * pool_cache_cpu_init1:
2130 *
2131 * Called for each pool_cache whenever a new CPU is attached.
2132 */
2133 static void
2134 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2135 {
2136 pool_cache_cpu_t *cc;
2137
2138 KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2139
2140 if ((cc = pc->pc_cpus[ci->ci_index]) != NULL) {
2141 KASSERT(cc->cc_cpu = ci);
2142 return;
2143 }
2144
2145 /*
2146 * The first CPU is 'free'. This needs to be the case for
2147 * bootstrap - we may not be able to allocate yet.
2148 */
2149 if (pc->pc_ncpu == 0) {
2150 cc = &pc->pc_cpu0;
2151 pc->pc_ncpu = 1;
2152 } else {
2153 mutex_enter(&pc->pc_lock);
2154 pc->pc_ncpu++;
2155 mutex_exit(&pc->pc_lock);
2156 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2157 }
2158
2159 cc->cc_ipl = pc->pc_pool.pr_ipl;
2160 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2161 cc->cc_cache = pc;
2162 cc->cc_cpu = ci;
2163 cc->cc_hits = 0;
2164 cc->cc_misses = 0;
2165 cc->cc_current = NULL;
2166 cc->cc_previous = NULL;
2167
2168 pc->pc_cpus[ci->ci_index] = cc;
2169 }
2170
2171 /*
2172 * pool_cache_cpu_init:
2173 *
2174 * Called whenever a new CPU is attached.
2175 */
2176 void
2177 pool_cache_cpu_init(struct cpu_info *ci)
2178 {
2179 pool_cache_t pc;
2180
2181 mutex_enter(&pool_head_lock);
2182 LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2183 pc->pc_refcnt++;
2184 mutex_exit(&pool_head_lock);
2185
2186 pool_cache_cpu_init1(ci, pc);
2187
2188 mutex_enter(&pool_head_lock);
2189 pc->pc_refcnt--;
2190 cv_broadcast(&pool_busy);
2191 }
2192 mutex_exit(&pool_head_lock);
2193 }
2194
2195 /*
2196 * pool_cache_reclaim:
2197 *
2198 * Reclaim memory from a pool cache.
2199 */
2200 bool
2201 pool_cache_reclaim(pool_cache_t pc)
2202 {
2203
2204 return pool_reclaim(&pc->pc_pool);
2205 }
2206
2207 /*
2208 * pool_cache_destruct_object:
2209 *
2210 * Force destruction of an object and its release back into
2211 * the pool.
2212 */
2213 void
2214 pool_cache_destruct_object(pool_cache_t pc, void *object)
2215 {
2216
2217 (*pc->pc_dtor)(pc->pc_arg, object);
2218 pool_put(&pc->pc_pool, object);
2219 }
2220
2221 /*
2222 * pool_cache_invalidate_groups:
2223 *
2224 * Invalidate a chain of groups and destruct all objects.
2225 */
2226 static void
2227 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2228 {
2229 void *object;
2230 pcg_t *next;
2231 int i;
2232
2233 for (; pcg != NULL; pcg = next) {
2234 next = pcg->pcg_next;
2235
2236 for (i = 0; i < pcg->pcg_avail; i++) {
2237 object = pcg->pcg_objects[i].pcgo_va;
2238 pool_cache_destruct_object(pc, object);
2239 }
2240
2241 pool_put(&pcgpool, pcg);
2242 }
2243 }
2244
2245 /*
2246 * pool_cache_invalidate:
2247 *
2248 * Invalidate a pool cache (destruct and release all of the
2249 * cached objects). Does not reclaim objects from the pool.
2250 */
2251 void
2252 pool_cache_invalidate(pool_cache_t pc)
2253 {
2254 pcg_t *full, *empty, *part;
2255
2256 mutex_enter(&pc->pc_lock);
2257 full = pc->pc_fullgroups;
2258 empty = pc->pc_emptygroups;
2259 part = pc->pc_partgroups;
2260 pc->pc_fullgroups = NULL;
2261 pc->pc_emptygroups = NULL;
2262 pc->pc_partgroups = NULL;
2263 pc->pc_nfull = 0;
2264 pc->pc_nempty = 0;
2265 pc->pc_npart = 0;
2266 mutex_exit(&pc->pc_lock);
2267
2268 pool_cache_invalidate_groups(pc, full);
2269 pool_cache_invalidate_groups(pc, empty);
2270 pool_cache_invalidate_groups(pc, part);
2271 }
2272
2273 void
2274 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2275 {
2276
2277 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2278 }
2279
2280 void
2281 pool_cache_setlowat(pool_cache_t pc, int n)
2282 {
2283
2284 pool_setlowat(&pc->pc_pool, n);
2285 }
2286
2287 void
2288 pool_cache_sethiwat(pool_cache_t pc, int n)
2289 {
2290
2291 pool_sethiwat(&pc->pc_pool, n);
2292 }
2293
2294 void
2295 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2296 {
2297
2298 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2299 }
2300
2301 static inline pool_cache_cpu_t *
2302 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2303 {
2304 pool_cache_cpu_t *cc;
2305 struct cpu_info *ci;
2306
2307 /*
2308 * Prevent other users of the cache from accessing our
2309 * CPU-local data. To avoid touching shared state, we
2310 * pull the neccessary information from CPU local data.
2311 */
2312 ci = curcpu();
2313 KASSERT(ci->ci_data.cpu_index < MAXCPUS);
2314 cc = pc->pc_cpus[ci->ci_data.cpu_index];
2315 KASSERT(cc->cc_cache == pc);
2316 if (cc->cc_ipl == IPL_NONE) {
2317 crit_enter();
2318 } else {
2319 *s = splraiseipl(cc->cc_iplcookie);
2320 }
2321
2322 /* Moved to another CPU before disabling preemption? */
2323 if (__predict_false(ci != curcpu())) {
2324 ci = curcpu();
2325 cc = pc->pc_cpus[ci->ci_data.cpu_index];
2326 }
2327
2328 #ifdef DIAGNOSTIC
2329 KASSERT(cc->cc_cpu == ci);
2330 KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2331 #endif
2332
2333 return cc;
2334 }
2335
2336 static inline void
2337 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2338 {
2339
2340 /* No longer need exclusive access to the per-CPU data. */
2341 if (cc->cc_ipl == IPL_NONE) {
2342 crit_exit();
2343 } else {
2344 splx(*s);
2345 }
2346 }
2347
2348 #if __GNUC_PREREQ__(3, 0)
2349 __attribute ((noinline))
2350 #endif
2351 pool_cache_cpu_t *
2352 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2353 paddr_t *pap, int flags)
2354 {
2355 pcg_t *pcg, *cur;
2356 uint64_t ncsw;
2357 pool_cache_t pc;
2358 void *object;
2359
2360 pc = cc->cc_cache;
2361 cc->cc_misses++;
2362
2363 /*
2364 * Nothing was available locally. Try and grab a group
2365 * from the cache.
2366 */
2367 if (!mutex_tryenter(&pc->pc_lock)) {
2368 ncsw = curlwp->l_ncsw;
2369 mutex_enter(&pc->pc_lock);
2370 pc->pc_contended++;
2371
2372 /*
2373 * If we context switched while locking, then
2374 * our view of the per-CPU data is invalid:
2375 * retry.
2376 */
2377 if (curlwp->l_ncsw != ncsw) {
2378 mutex_exit(&pc->pc_lock);
2379 pool_cache_cpu_exit(cc, s);
2380 return pool_cache_cpu_enter(pc, s);
2381 }
2382 }
2383
2384 if ((pcg = pc->pc_fullgroups) != NULL) {
2385 /*
2386 * If there's a full group, release our empty
2387 * group back to the cache. Install the full
2388 * group as cc_current and return.
2389 */
2390 if ((cur = cc->cc_current) != NULL) {
2391 KASSERT(cur->pcg_avail == 0);
2392 cur->pcg_next = pc->pc_emptygroups;
2393 pc->pc_emptygroups = cur;
2394 pc->pc_nempty++;
2395 }
2396 KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
2397 cc->cc_current = pcg;
2398 pc->pc_fullgroups = pcg->pcg_next;
2399 pc->pc_hits++;
2400 pc->pc_nfull--;
2401 mutex_exit(&pc->pc_lock);
2402 return cc;
2403 }
2404
2405 /*
2406 * Nothing available locally or in cache. Take the slow
2407 * path: fetch a new object from the pool and construct
2408 * it.
2409 */
2410 pc->pc_misses++;
2411 mutex_exit(&pc->pc_lock);
2412 pool_cache_cpu_exit(cc, s);
2413
2414 object = pool_get(&pc->pc_pool, flags);
2415 *objectp = object;
2416 if (object == NULL)
2417 return NULL;
2418
2419 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2420 pool_put(&pc->pc_pool, object);
2421 *objectp = NULL;
2422 return NULL;
2423 }
2424
2425 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2426 (pc->pc_pool.pr_align - 1)) == 0);
2427
2428 if (pap != NULL) {
2429 #ifdef POOL_VTOPHYS
2430 *pap = POOL_VTOPHYS(object);
2431 #else
2432 *pap = POOL_PADDR_INVALID;
2433 #endif
2434 }
2435
2436 FREECHECK_OUT(&pc->pc_freecheck, object);
2437 return NULL;
2438 }
2439
2440 /*
2441 * pool_cache_get{,_paddr}:
2442 *
2443 * Get an object from a pool cache (optionally returning
2444 * the physical address of the object).
2445 */
2446 void *
2447 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2448 {
2449 pool_cache_cpu_t *cc;
2450 pcg_t *pcg;
2451 void *object;
2452 int s;
2453
2454 #ifdef LOCKDEBUG
2455 if (flags & PR_WAITOK)
2456 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2457 #endif
2458
2459 cc = pool_cache_cpu_enter(pc, &s);
2460 do {
2461 /* Try and allocate an object from the current group. */
2462 pcg = cc->cc_current;
2463 if (pcg != NULL && pcg->pcg_avail > 0) {
2464 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2465 if (pap != NULL)
2466 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2467 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2468 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2469 KASSERT(object != NULL);
2470 cc->cc_hits++;
2471 pool_cache_cpu_exit(cc, &s);
2472 FREECHECK_OUT(&pc->pc_freecheck, object);
2473 return object;
2474 }
2475
2476 /*
2477 * That failed. If the previous group isn't empty, swap
2478 * it with the current group and allocate from there.
2479 */
2480 pcg = cc->cc_previous;
2481 if (pcg != NULL && pcg->pcg_avail > 0) {
2482 cc->cc_previous = cc->cc_current;
2483 cc->cc_current = pcg;
2484 continue;
2485 }
2486
2487 /*
2488 * Can't allocate from either group: try the slow path.
2489 * If get_slow() allocated an object for us, or if
2490 * no more objects are available, it will return NULL.
2491 * Otherwise, we need to retry.
2492 */
2493 cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2494 } while (cc != NULL);
2495
2496 return object;
2497 }
2498
2499 #if __GNUC_PREREQ__(3, 0)
2500 __attribute ((noinline))
2501 #endif
2502 pool_cache_cpu_t *
2503 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2504 {
2505 pcg_t *pcg, *cur;
2506 uint64_t ncsw;
2507 pool_cache_t pc;
2508
2509 pc = cc->cc_cache;
2510 cc->cc_misses++;
2511
2512 /*
2513 * No free slots locally. Try to grab an empty, unused
2514 * group from the cache.
2515 */
2516 if (!mutex_tryenter(&pc->pc_lock)) {
2517 ncsw = curlwp->l_ncsw;
2518 mutex_enter(&pc->pc_lock);
2519 pc->pc_contended++;
2520
2521 /*
2522 * If we context switched while locking, then
2523 * our view of the per-CPU data is invalid:
2524 * retry.
2525 */
2526 if (curlwp->l_ncsw != ncsw) {
2527 mutex_exit(&pc->pc_lock);
2528 pool_cache_cpu_exit(cc, s);
2529 return pool_cache_cpu_enter(pc, s);
2530 }
2531 }
2532
2533 if ((pcg = pc->pc_emptygroups) != NULL) {
2534 /*
2535 * If there's a empty group, release our full
2536 * group back to the cache. Install the empty
2537 * group as cc_current and return.
2538 */
2539 if ((cur = cc->cc_current) != NULL) {
2540 KASSERT(cur->pcg_avail == PCG_NOBJECTS);
2541 cur->pcg_next = pc->pc_fullgroups;
2542 pc->pc_fullgroups = cur;
2543 pc->pc_nfull++;
2544 }
2545 KASSERT(pcg->pcg_avail == 0);
2546 cc->cc_current = pcg;
2547 pc->pc_emptygroups = pcg->pcg_next;
2548 pc->pc_hits++;
2549 pc->pc_nempty--;
2550 mutex_exit(&pc->pc_lock);
2551 return cc;
2552 }
2553
2554 /*
2555 * Nothing available locally or in cache. Take the
2556 * slow path and try to allocate a new group that we
2557 * can release to.
2558 */
2559 pc->pc_misses++;
2560 mutex_exit(&pc->pc_lock);
2561 pool_cache_cpu_exit(cc, s);
2562
2563 /*
2564 * If we can't allocate a new group, just throw the
2565 * object away.
2566 */
2567 pcg = pool_get(&pcgpool, PR_NOWAIT);
2568 if (pcg == NULL) {
2569 pool_cache_destruct_object(pc, object);
2570 return NULL;
2571 }
2572 #ifdef DIAGNOSTIC
2573 memset(pcg, 0, sizeof(*pcg));
2574 #else
2575 pcg->pcg_avail = 0;
2576 #endif
2577
2578 /*
2579 * Add the empty group to the cache and try again.
2580 */
2581 mutex_enter(&pc->pc_lock);
2582 pcg->pcg_next = pc->pc_emptygroups;
2583 pc->pc_emptygroups = pcg;
2584 pc->pc_nempty++;
2585 mutex_exit(&pc->pc_lock);
2586
2587 return pool_cache_cpu_enter(pc, s);
2588 }
2589
2590 /*
2591 * pool_cache_put{,_paddr}:
2592 *
2593 * Put an object back to the pool cache (optionally caching the
2594 * physical address of the object).
2595 */
2596 void
2597 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2598 {
2599 pool_cache_cpu_t *cc;
2600 pcg_t *pcg;
2601 int s;
2602
2603 FREECHECK_IN(&pc->pc_freecheck, object);
2604
2605 cc = pool_cache_cpu_enter(pc, &s);
2606 do {
2607 /* If the current group isn't full, release it there. */
2608 pcg = cc->cc_current;
2609 if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
2610 KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
2611 == NULL);
2612 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2613 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2614 pcg->pcg_avail++;
2615 cc->cc_hits++;
2616 pool_cache_cpu_exit(cc, &s);
2617 return;
2618 }
2619
2620 /*
2621 * That failed. If the previous group is empty, swap
2622 * it with the current group and try again.
2623 */
2624 pcg = cc->cc_previous;
2625 if (pcg != NULL && pcg->pcg_avail == 0) {
2626 cc->cc_previous = cc->cc_current;
2627 cc->cc_current = pcg;
2628 continue;
2629 }
2630
2631 /*
2632 * Can't free to either group: try the slow path.
2633 * If put_slow() releases the object for us, it
2634 * will return NULL. Otherwise we need to retry.
2635 */
2636 cc = pool_cache_put_slow(cc, &s, object, pa);
2637 } while (cc != NULL);
2638 }
2639
2640 /*
2641 * pool_cache_xcall:
2642 *
2643 * Transfer objects from the per-CPU cache to the global cache.
2644 * Run within a cross-call thread.
2645 */
2646 static void
2647 pool_cache_xcall(pool_cache_t pc)
2648 {
2649 pool_cache_cpu_t *cc;
2650 pcg_t *prev, *cur, **list;
2651 int s = 0; /* XXXgcc */
2652
2653 cc = pool_cache_cpu_enter(pc, &s);
2654 cur = cc->cc_current;
2655 cc->cc_current = NULL;
2656 prev = cc->cc_previous;
2657 cc->cc_previous = NULL;
2658 pool_cache_cpu_exit(cc, &s);
2659
2660 /*
2661 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2662 * because locks at IPL_SOFTXXX are still spinlocks. Does not
2663 * apply to IPL_SOFTBIO. Cross-call threads do not take the
2664 * kernel_lock.
2665 */
2666 s = splvm();
2667 mutex_enter(&pc->pc_lock);
2668 if (cur != NULL) {
2669 if (cur->pcg_avail == PCG_NOBJECTS) {
2670 list = &pc->pc_fullgroups;
2671 pc->pc_nfull++;
2672 } else if (cur->pcg_avail == 0) {
2673 list = &pc->pc_emptygroups;
2674 pc->pc_nempty++;
2675 } else {
2676 list = &pc->pc_partgroups;
2677 pc->pc_npart++;
2678 }
2679 cur->pcg_next = *list;
2680 *list = cur;
2681 }
2682 if (prev != NULL) {
2683 if (prev->pcg_avail == PCG_NOBJECTS) {
2684 list = &pc->pc_fullgroups;
2685 pc->pc_nfull++;
2686 } else if (prev->pcg_avail == 0) {
2687 list = &pc->pc_emptygroups;
2688 pc->pc_nempty++;
2689 } else {
2690 list = &pc->pc_partgroups;
2691 pc->pc_npart++;
2692 }
2693 prev->pcg_next = *list;
2694 *list = prev;
2695 }
2696 mutex_exit(&pc->pc_lock);
2697 splx(s);
2698 }
2699
2700 /*
2701 * Pool backend allocators.
2702 *
2703 * Each pool has a backend allocator that handles allocation, deallocation,
2704 * and any additional draining that might be needed.
2705 *
2706 * We provide two standard allocators:
2707 *
2708 * pool_allocator_kmem - the default when no allocator is specified
2709 *
2710 * pool_allocator_nointr - used for pools that will not be accessed
2711 * in interrupt context.
2712 */
2713 void *pool_page_alloc(struct pool *, int);
2714 void pool_page_free(struct pool *, void *);
2715
2716 #ifdef POOL_SUBPAGE
2717 struct pool_allocator pool_allocator_kmem_fullpage = {
2718 pool_page_alloc, pool_page_free, 0,
2719 .pa_backingmapptr = &kmem_map,
2720 };
2721 #else
2722 struct pool_allocator pool_allocator_kmem = {
2723 pool_page_alloc, pool_page_free, 0,
2724 .pa_backingmapptr = &kmem_map,
2725 };
2726 #endif
2727
2728 void *pool_page_alloc_nointr(struct pool *, int);
2729 void pool_page_free_nointr(struct pool *, void *);
2730
2731 #ifdef POOL_SUBPAGE
2732 struct pool_allocator pool_allocator_nointr_fullpage = {
2733 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2734 .pa_backingmapptr = &kernel_map,
2735 };
2736 #else
2737 struct pool_allocator pool_allocator_nointr = {
2738 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2739 .pa_backingmapptr = &kernel_map,
2740 };
2741 #endif
2742
2743 #ifdef POOL_SUBPAGE
2744 void *pool_subpage_alloc(struct pool *, int);
2745 void pool_subpage_free(struct pool *, void *);
2746
2747 struct pool_allocator pool_allocator_kmem = {
2748 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2749 .pa_backingmapptr = &kmem_map,
2750 };
2751
2752 void *pool_subpage_alloc_nointr(struct pool *, int);
2753 void pool_subpage_free_nointr(struct pool *, void *);
2754
2755 struct pool_allocator pool_allocator_nointr = {
2756 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2757 .pa_backingmapptr = &kmem_map,
2758 };
2759 #endif /* POOL_SUBPAGE */
2760
2761 static void *
2762 pool_allocator_alloc(struct pool *pp, int flags)
2763 {
2764 struct pool_allocator *pa = pp->pr_alloc;
2765 void *res;
2766
2767 res = (*pa->pa_alloc)(pp, flags);
2768 if (res == NULL && (flags & PR_WAITOK) == 0) {
2769 /*
2770 * We only run the drain hook here if PR_NOWAIT.
2771 * In other cases, the hook will be run in
2772 * pool_reclaim().
2773 */
2774 if (pp->pr_drain_hook != NULL) {
2775 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2776 res = (*pa->pa_alloc)(pp, flags);
2777 }
2778 }
2779 return res;
2780 }
2781
2782 static void
2783 pool_allocator_free(struct pool *pp, void *v)
2784 {
2785 struct pool_allocator *pa = pp->pr_alloc;
2786
2787 (*pa->pa_free)(pp, v);
2788 }
2789
2790 void *
2791 pool_page_alloc(struct pool *pp, int flags)
2792 {
2793 bool waitok = (flags & PR_WAITOK) ? true : false;
2794
2795 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2796 }
2797
2798 void
2799 pool_page_free(struct pool *pp, void *v)
2800 {
2801
2802 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2803 }
2804
2805 static void *
2806 pool_page_alloc_meta(struct pool *pp, int flags)
2807 {
2808 bool waitok = (flags & PR_WAITOK) ? true : false;
2809
2810 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2811 }
2812
2813 static void
2814 pool_page_free_meta(struct pool *pp, void *v)
2815 {
2816
2817 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2818 }
2819
2820 #ifdef POOL_SUBPAGE
2821 /* Sub-page allocator, for machines with large hardware pages. */
2822 void *
2823 pool_subpage_alloc(struct pool *pp, int flags)
2824 {
2825 return pool_get(&psppool, flags);
2826 }
2827
2828 void
2829 pool_subpage_free(struct pool *pp, void *v)
2830 {
2831 pool_put(&psppool, v);
2832 }
2833
2834 /* We don't provide a real nointr allocator. Maybe later. */
2835 void *
2836 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2837 {
2838
2839 return (pool_subpage_alloc(pp, flags));
2840 }
2841
2842 void
2843 pool_subpage_free_nointr(struct pool *pp, void *v)
2844 {
2845
2846 pool_subpage_free(pp, v);
2847 }
2848 #endif /* POOL_SUBPAGE */
2849 void *
2850 pool_page_alloc_nointr(struct pool *pp, int flags)
2851 {
2852 bool waitok = (flags & PR_WAITOK) ? true : false;
2853
2854 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2855 }
2856
2857 void
2858 pool_page_free_nointr(struct pool *pp, void *v)
2859 {
2860
2861 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2862 }
2863