subr_pool.c revision 1.132 1 /* $NetBSD: subr_pool.c,v 1.132 2007/10/11 19:45:25 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.132 2007/10/11 19:45:25 ad Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56 #include <sys/debug.h>
57
58 #include <uvm/uvm.h>
59
60 /*
61 * Pool resource management utility.
62 *
63 * Memory is allocated in pages which are split into pieces according to
64 * the pool item size. Each page is kept on one of three lists in the
65 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
66 * for empty, full and partially-full pages respectively. The individual
67 * pool items are on a linked list headed by `ph_itemlist' in each page
68 * header. The memory for building the page list is either taken from
69 * the allocated pages themselves (for small pool items) or taken from
70 * an internal pool of page headers (`phpool').
71 */
72
73 /* List of all pools */
74 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
75
76 /* Private pool for page header structures */
77 #define PHPOOL_MAX 8
78 static struct pool phpool[PHPOOL_MAX];
79 #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
80
81 #ifdef POOL_SUBPAGE
82 /* Pool of subpages for use by normal pools. */
83 static struct pool psppool;
84 #endif
85
86 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
87 SLIST_HEAD_INITIALIZER(pa_deferinitq);
88
89 static void *pool_page_alloc_meta(struct pool *, int);
90 static void pool_page_free_meta(struct pool *, void *);
91
92 /* allocator for pool metadata */
93 static struct pool_allocator pool_allocator_meta = {
94 pool_page_alloc_meta, pool_page_free_meta,
95 .pa_backingmapptr = &kmem_map,
96 };
97
98 /* # of seconds to retain page after last use */
99 int pool_inactive_time = 10;
100
101 /* Next candidate for drainage (see pool_drain()) */
102 static struct pool *drainpp;
103
104 /* This spin lock protects both pool_head and drainpp. */
105 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
106
107 typedef uint8_t pool_item_freelist_t;
108
109 struct pool_item_header {
110 /* Page headers */
111 LIST_ENTRY(pool_item_header)
112 ph_pagelist; /* pool page list */
113 SPLAY_ENTRY(pool_item_header)
114 ph_node; /* Off-page page headers */
115 void * ph_page; /* this page's address */
116 struct timeval ph_time; /* last referenced */
117 union {
118 /* !PR_NOTOUCH */
119 struct {
120 LIST_HEAD(, pool_item)
121 phu_itemlist; /* chunk list for this page */
122 } phu_normal;
123 /* PR_NOTOUCH */
124 struct {
125 uint16_t
126 phu_off; /* start offset in page */
127 pool_item_freelist_t
128 phu_firstfree; /* first free item */
129 /*
130 * XXX it might be better to use
131 * a simple bitmap and ffs(3)
132 */
133 } phu_notouch;
134 } ph_u;
135 uint16_t ph_nmissing; /* # of chunks in use */
136 };
137 #define ph_itemlist ph_u.phu_normal.phu_itemlist
138 #define ph_off ph_u.phu_notouch.phu_off
139 #define ph_firstfree ph_u.phu_notouch.phu_firstfree
140
141 struct pool_item {
142 #ifdef DIAGNOSTIC
143 u_int pi_magic;
144 #endif
145 #define PI_MAGIC 0xdeadbeefU
146 /* Other entries use only this list entry */
147 LIST_ENTRY(pool_item) pi_list;
148 };
149
150 #define POOL_NEEDS_CATCHUP(pp) \
151 ((pp)->pr_nitems < (pp)->pr_minitems)
152
153 /*
154 * Pool cache management.
155 *
156 * Pool caches provide a way for constructed objects to be cached by the
157 * pool subsystem. This can lead to performance improvements by avoiding
158 * needless object construction/destruction; it is deferred until absolutely
159 * necessary.
160 *
161 * Caches are grouped into cache groups. Each cache group references
162 * up to 16 constructed objects. When a cache allocates an object
163 * from the pool, it calls the object's constructor and places it into
164 * a cache group. When a cache group frees an object back to the pool,
165 * it first calls the object's destructor. This allows the object to
166 * persist in constructed form while freed to the cache.
167 *
168 * Multiple caches may exist for each pool. This allows a single
169 * object type to have multiple constructed forms. The pool references
170 * each cache, so that when a pool is drained by the pagedaemon, it can
171 * drain each individual cache as well. Each time a cache is drained,
172 * the most idle cache group is freed to the pool in its entirety.
173 *
174 * Pool caches are layed on top of pools. By layering them, we can avoid
175 * the complexity of cache management for pools which would not benefit
176 * from it.
177 */
178
179 /* The cache group pool. */
180 static struct pool pcgpool;
181
182 static void pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
183 struct pool_cache_grouplist *);
184 static void pcg_grouplist_free(struct pool_cache_grouplist *);
185
186 static int pool_catchup(struct pool *);
187 static void pool_prime_page(struct pool *, void *,
188 struct pool_item_header *);
189 static void pool_update_curpage(struct pool *);
190
191 static int pool_grow(struct pool *, int);
192 static void *pool_allocator_alloc(struct pool *, int);
193 static void pool_allocator_free(struct pool *, void *);
194
195 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
196 void (*)(const char *, ...));
197 static void pool_print1(struct pool *, const char *,
198 void (*)(const char *, ...));
199
200 static int pool_chk_page(struct pool *, const char *,
201 struct pool_item_header *);
202
203 /*
204 * Pool log entry. An array of these is allocated in pool_init().
205 */
206 struct pool_log {
207 const char *pl_file;
208 long pl_line;
209 int pl_action;
210 #define PRLOG_GET 1
211 #define PRLOG_PUT 2
212 void *pl_addr;
213 };
214
215 #ifdef POOL_DIAGNOSTIC
216 /* Number of entries in pool log buffers */
217 #ifndef POOL_LOGSIZE
218 #define POOL_LOGSIZE 10
219 #endif
220
221 int pool_logsize = POOL_LOGSIZE;
222
223 static inline void
224 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
225 {
226 int n = pp->pr_curlogentry;
227 struct pool_log *pl;
228
229 if ((pp->pr_roflags & PR_LOGGING) == 0)
230 return;
231
232 /*
233 * Fill in the current entry. Wrap around and overwrite
234 * the oldest entry if necessary.
235 */
236 pl = &pp->pr_log[n];
237 pl->pl_file = file;
238 pl->pl_line = line;
239 pl->pl_action = action;
240 pl->pl_addr = v;
241 if (++n >= pp->pr_logsize)
242 n = 0;
243 pp->pr_curlogentry = n;
244 }
245
246 static void
247 pr_printlog(struct pool *pp, struct pool_item *pi,
248 void (*pr)(const char *, ...))
249 {
250 int i = pp->pr_logsize;
251 int n = pp->pr_curlogentry;
252
253 if ((pp->pr_roflags & PR_LOGGING) == 0)
254 return;
255
256 /*
257 * Print all entries in this pool's log.
258 */
259 while (i-- > 0) {
260 struct pool_log *pl = &pp->pr_log[n];
261 if (pl->pl_action != 0) {
262 if (pi == NULL || pi == pl->pl_addr) {
263 (*pr)("\tlog entry %d:\n", i);
264 (*pr)("\t\taction = %s, addr = %p\n",
265 pl->pl_action == PRLOG_GET ? "get" : "put",
266 pl->pl_addr);
267 (*pr)("\t\tfile: %s at line %lu\n",
268 pl->pl_file, pl->pl_line);
269 }
270 }
271 if (++n >= pp->pr_logsize)
272 n = 0;
273 }
274 }
275
276 static inline void
277 pr_enter(struct pool *pp, const char *file, long line)
278 {
279
280 if (__predict_false(pp->pr_entered_file != NULL)) {
281 printf("pool %s: reentrancy at file %s line %ld\n",
282 pp->pr_wchan, file, line);
283 printf(" previous entry at file %s line %ld\n",
284 pp->pr_entered_file, pp->pr_entered_line);
285 panic("pr_enter");
286 }
287
288 pp->pr_entered_file = file;
289 pp->pr_entered_line = line;
290 }
291
292 static inline void
293 pr_leave(struct pool *pp)
294 {
295
296 if (__predict_false(pp->pr_entered_file == NULL)) {
297 printf("pool %s not entered?\n", pp->pr_wchan);
298 panic("pr_leave");
299 }
300
301 pp->pr_entered_file = NULL;
302 pp->pr_entered_line = 0;
303 }
304
305 static inline void
306 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
307 {
308
309 if (pp->pr_entered_file != NULL)
310 (*pr)("\n\tcurrently entered from file %s line %ld\n",
311 pp->pr_entered_file, pp->pr_entered_line);
312 }
313 #else
314 #define pr_log(pp, v, action, file, line)
315 #define pr_printlog(pp, pi, pr)
316 #define pr_enter(pp, file, line)
317 #define pr_leave(pp)
318 #define pr_enter_check(pp, pr)
319 #endif /* POOL_DIAGNOSTIC */
320
321 static inline int
322 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
323 const void *v)
324 {
325 const char *cp = v;
326 int idx;
327
328 KASSERT(pp->pr_roflags & PR_NOTOUCH);
329 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
330 KASSERT(idx < pp->pr_itemsperpage);
331 return idx;
332 }
333
334 #define PR_FREELIST_ALIGN(p) \
335 roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
336 #define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
337 #define PR_INDEX_USED ((pool_item_freelist_t)-1)
338 #define PR_INDEX_EOL ((pool_item_freelist_t)-2)
339
340 static inline void
341 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
342 void *obj)
343 {
344 int idx = pr_item_notouch_index(pp, ph, obj);
345 pool_item_freelist_t *freelist = PR_FREELIST(ph);
346
347 KASSERT(freelist[idx] == PR_INDEX_USED);
348 freelist[idx] = ph->ph_firstfree;
349 ph->ph_firstfree = idx;
350 }
351
352 static inline void *
353 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
354 {
355 int idx = ph->ph_firstfree;
356 pool_item_freelist_t *freelist = PR_FREELIST(ph);
357
358 KASSERT(freelist[idx] != PR_INDEX_USED);
359 ph->ph_firstfree = freelist[idx];
360 freelist[idx] = PR_INDEX_USED;
361
362 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
363 }
364
365 static inline int
366 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
367 {
368
369 /*
370 * we consider pool_item_header with smaller ph_page bigger.
371 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
372 */
373
374 if (a->ph_page < b->ph_page)
375 return (1);
376 else if (a->ph_page > b->ph_page)
377 return (-1);
378 else
379 return (0);
380 }
381
382 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
383 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
384
385 /*
386 * Return the pool page header based on item address.
387 */
388 static inline struct pool_item_header *
389 pr_find_pagehead(struct pool *pp, void *v)
390 {
391 struct pool_item_header *ph, tmp;
392
393 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
394 tmp.ph_page = (void *)(uintptr_t)v;
395 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
396 if (ph == NULL) {
397 ph = SPLAY_ROOT(&pp->pr_phtree);
398 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
399 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
400 }
401 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
402 }
403 } else {
404 void *page =
405 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
406
407 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
408 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
409 } else {
410 tmp.ph_page = page;
411 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
412 }
413 }
414
415 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
416 ((char *)ph->ph_page <= (char *)v &&
417 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
418 return ph;
419 }
420
421 static void
422 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
423 {
424 struct pool_item_header *ph;
425 int s;
426
427 while ((ph = LIST_FIRST(pq)) != NULL) {
428 LIST_REMOVE(ph, ph_pagelist);
429 pool_allocator_free(pp, ph->ph_page);
430 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
431 s = splvm();
432 pool_put(pp->pr_phpool, ph);
433 splx(s);
434 }
435 }
436 }
437
438 /*
439 * Remove a page from the pool.
440 */
441 static inline void
442 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
443 struct pool_pagelist *pq)
444 {
445
446 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
447
448 /*
449 * If the page was idle, decrement the idle page count.
450 */
451 if (ph->ph_nmissing == 0) {
452 #ifdef DIAGNOSTIC
453 if (pp->pr_nidle == 0)
454 panic("pr_rmpage: nidle inconsistent");
455 if (pp->pr_nitems < pp->pr_itemsperpage)
456 panic("pr_rmpage: nitems inconsistent");
457 #endif
458 pp->pr_nidle--;
459 }
460
461 pp->pr_nitems -= pp->pr_itemsperpage;
462
463 /*
464 * Unlink the page from the pool and queue it for release.
465 */
466 LIST_REMOVE(ph, ph_pagelist);
467 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
468 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
469 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
470
471 pp->pr_npages--;
472 pp->pr_npagefree++;
473
474 pool_update_curpage(pp);
475 }
476
477 static bool
478 pa_starved_p(struct pool_allocator *pa)
479 {
480
481 if (pa->pa_backingmap != NULL) {
482 return vm_map_starved_p(pa->pa_backingmap);
483 }
484 return false;
485 }
486
487 static int
488 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
489 {
490 struct pool *pp = obj;
491 struct pool_allocator *pa = pp->pr_alloc;
492
493 KASSERT(&pp->pr_reclaimerentry == ce);
494 pool_reclaim(pp);
495 if (!pa_starved_p(pa)) {
496 return CALLBACK_CHAIN_ABORT;
497 }
498 return CALLBACK_CHAIN_CONTINUE;
499 }
500
501 static void
502 pool_reclaim_register(struct pool *pp)
503 {
504 struct vm_map *map = pp->pr_alloc->pa_backingmap;
505 int s;
506
507 if (map == NULL) {
508 return;
509 }
510
511 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
512 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
513 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
514 splx(s);
515 }
516
517 static void
518 pool_reclaim_unregister(struct pool *pp)
519 {
520 struct vm_map *map = pp->pr_alloc->pa_backingmap;
521 int s;
522
523 if (map == NULL) {
524 return;
525 }
526
527 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
528 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
529 &pp->pr_reclaimerentry);
530 splx(s);
531 }
532
533 static void
534 pa_reclaim_register(struct pool_allocator *pa)
535 {
536 struct vm_map *map = *pa->pa_backingmapptr;
537 struct pool *pp;
538
539 KASSERT(pa->pa_backingmap == NULL);
540 if (map == NULL) {
541 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
542 return;
543 }
544 pa->pa_backingmap = map;
545 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
546 pool_reclaim_register(pp);
547 }
548 }
549
550 /*
551 * Initialize all the pools listed in the "pools" link set.
552 */
553 void
554 pool_subsystem_init(void)
555 {
556 struct pool_allocator *pa;
557 __link_set_decl(pools, struct link_pool_init);
558 struct link_pool_init * const *pi;
559
560 __link_set_foreach(pi, pools)
561 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
562 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
563 (*pi)->palloc, (*pi)->ipl);
564
565 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
566 KASSERT(pa->pa_backingmapptr != NULL);
567 KASSERT(*pa->pa_backingmapptr != NULL);
568 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
569 pa_reclaim_register(pa);
570 }
571 }
572
573 /*
574 * Initialize the given pool resource structure.
575 *
576 * We export this routine to allow other kernel parts to declare
577 * static pools that must be initialized before malloc() is available.
578 */
579 void
580 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
581 const char *wchan, struct pool_allocator *palloc, int ipl)
582 {
583 #ifdef DEBUG
584 struct pool *pp1;
585 #endif
586 size_t trysize, phsize;
587 int off, slack, s;
588
589 KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
590 PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
591
592 #ifdef DEBUG
593 /*
594 * Check that the pool hasn't already been initialised and
595 * added to the list of all pools.
596 */
597 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
598 if (pp == pp1)
599 panic("pool_init: pool %s already initialised",
600 wchan);
601 }
602 #endif
603
604 #ifdef POOL_DIAGNOSTIC
605 /*
606 * Always log if POOL_DIAGNOSTIC is defined.
607 */
608 if (pool_logsize != 0)
609 flags |= PR_LOGGING;
610 #endif
611
612 if (palloc == NULL)
613 palloc = &pool_allocator_kmem;
614 #ifdef POOL_SUBPAGE
615 if (size > palloc->pa_pagesz) {
616 if (palloc == &pool_allocator_kmem)
617 palloc = &pool_allocator_kmem_fullpage;
618 else if (palloc == &pool_allocator_nointr)
619 palloc = &pool_allocator_nointr_fullpage;
620 }
621 #endif /* POOL_SUBPAGE */
622 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
623 if (palloc->pa_pagesz == 0)
624 palloc->pa_pagesz = PAGE_SIZE;
625
626 TAILQ_INIT(&palloc->pa_list);
627
628 simple_lock_init(&palloc->pa_slock);
629 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
630 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
631
632 if (palloc->pa_backingmapptr != NULL) {
633 pa_reclaim_register(palloc);
634 }
635 palloc->pa_flags |= PA_INITIALIZED;
636 }
637
638 if (align == 0)
639 align = ALIGN(1);
640
641 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
642 size = sizeof(struct pool_item);
643
644 size = roundup(size, align);
645 #ifdef DIAGNOSTIC
646 if (size > palloc->pa_pagesz)
647 panic("pool_init: pool item size (%zu) too large", size);
648 #endif
649
650 /*
651 * Initialize the pool structure.
652 */
653 LIST_INIT(&pp->pr_emptypages);
654 LIST_INIT(&pp->pr_fullpages);
655 LIST_INIT(&pp->pr_partpages);
656 LIST_INIT(&pp->pr_cachelist);
657 pp->pr_curpage = NULL;
658 pp->pr_npages = 0;
659 pp->pr_minitems = 0;
660 pp->pr_minpages = 0;
661 pp->pr_maxpages = UINT_MAX;
662 pp->pr_roflags = flags;
663 pp->pr_flags = 0;
664 pp->pr_size = size;
665 pp->pr_align = align;
666 pp->pr_wchan = wchan;
667 pp->pr_alloc = palloc;
668 pp->pr_nitems = 0;
669 pp->pr_nout = 0;
670 pp->pr_hardlimit = UINT_MAX;
671 pp->pr_hardlimit_warning = NULL;
672 pp->pr_hardlimit_ratecap.tv_sec = 0;
673 pp->pr_hardlimit_ratecap.tv_usec = 0;
674 pp->pr_hardlimit_warning_last.tv_sec = 0;
675 pp->pr_hardlimit_warning_last.tv_usec = 0;
676 pp->pr_drain_hook = NULL;
677 pp->pr_drain_hook_arg = NULL;
678 pp->pr_freecheck = NULL;
679
680 /*
681 * Decide whether to put the page header off page to avoid
682 * wasting too large a part of the page or too big item.
683 * Off-page page headers go on a hash table, so we can match
684 * a returned item with its header based on the page address.
685 * We use 1/16 of the page size and about 8 times of the item
686 * size as the threshold (XXX: tune)
687 *
688 * However, we'll put the header into the page if we can put
689 * it without wasting any items.
690 *
691 * Silently enforce `0 <= ioff < align'.
692 */
693 pp->pr_itemoffset = ioff %= align;
694 /* See the comment below about reserved bytes. */
695 trysize = palloc->pa_pagesz - ((align - ioff) % align);
696 phsize = ALIGN(sizeof(struct pool_item_header));
697 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
698 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
699 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
700 /* Use the end of the page for the page header */
701 pp->pr_roflags |= PR_PHINPAGE;
702 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
703 } else {
704 /* The page header will be taken from our page header pool */
705 pp->pr_phoffset = 0;
706 off = palloc->pa_pagesz;
707 SPLAY_INIT(&pp->pr_phtree);
708 }
709
710 /*
711 * Alignment is to take place at `ioff' within the item. This means
712 * we must reserve up to `align - 1' bytes on the page to allow
713 * appropriate positioning of each item.
714 */
715 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
716 KASSERT(pp->pr_itemsperpage != 0);
717 if ((pp->pr_roflags & PR_NOTOUCH)) {
718 int idx;
719
720 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
721 idx++) {
722 /* nothing */
723 }
724 if (idx >= PHPOOL_MAX) {
725 /*
726 * if you see this panic, consider to tweak
727 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
728 */
729 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
730 pp->pr_wchan, pp->pr_itemsperpage);
731 }
732 pp->pr_phpool = &phpool[idx];
733 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
734 pp->pr_phpool = &phpool[0];
735 }
736 #if defined(DIAGNOSTIC)
737 else {
738 pp->pr_phpool = NULL;
739 }
740 #endif
741
742 /*
743 * Use the slack between the chunks and the page header
744 * for "cache coloring".
745 */
746 slack = off - pp->pr_itemsperpage * pp->pr_size;
747 pp->pr_maxcolor = (slack / align) * align;
748 pp->pr_curcolor = 0;
749
750 pp->pr_nget = 0;
751 pp->pr_nfail = 0;
752 pp->pr_nput = 0;
753 pp->pr_npagealloc = 0;
754 pp->pr_npagefree = 0;
755 pp->pr_hiwat = 0;
756 pp->pr_nidle = 0;
757
758 #ifdef POOL_DIAGNOSTIC
759 if (flags & PR_LOGGING) {
760 if (kmem_map == NULL ||
761 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
762 M_TEMP, M_NOWAIT)) == NULL)
763 pp->pr_roflags &= ~PR_LOGGING;
764 pp->pr_curlogentry = 0;
765 pp->pr_logsize = pool_logsize;
766 }
767 #endif
768
769 pp->pr_entered_file = NULL;
770 pp->pr_entered_line = 0;
771
772 simple_lock_init(&pp->pr_slock);
773
774 /*
775 * Initialize private page header pool and cache magazine pool if we
776 * haven't done so yet.
777 * XXX LOCKING.
778 */
779 if (phpool[0].pr_size == 0) {
780 int idx;
781 for (idx = 0; idx < PHPOOL_MAX; idx++) {
782 static char phpool_names[PHPOOL_MAX][6+1+6+1];
783 int nelem;
784 size_t sz;
785
786 nelem = PHPOOL_FREELIST_NELEM(idx);
787 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
788 "phpool-%d", nelem);
789 sz = sizeof(struct pool_item_header);
790 if (nelem) {
791 sz = PR_FREELIST_ALIGN(sz)
792 + nelem * sizeof(pool_item_freelist_t);
793 }
794 pool_init(&phpool[idx], sz, 0, 0, 0,
795 phpool_names[idx], &pool_allocator_meta, IPL_VM);
796 }
797 #ifdef POOL_SUBPAGE
798 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
799 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
800 #endif
801 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
802 0, "pcgpool", &pool_allocator_meta, IPL_VM);
803 }
804
805 /* Insert into the list of all pools. */
806 simple_lock(&pool_head_slock);
807 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
808 simple_unlock(&pool_head_slock);
809
810 /* Insert this into the list of pools using this allocator. */
811 s = splvm();
812 simple_lock(&palloc->pa_slock);
813 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
814 simple_unlock(&palloc->pa_slock);
815 splx(s);
816 pool_reclaim_register(pp);
817 }
818
819 /*
820 * De-commision a pool resource.
821 */
822 void
823 pool_destroy(struct pool *pp)
824 {
825 struct pool_pagelist pq;
826 struct pool_item_header *ph;
827 int s;
828
829 /* Remove from global pool list */
830 simple_lock(&pool_head_slock);
831 LIST_REMOVE(pp, pr_poollist);
832 if (drainpp == pp)
833 drainpp = NULL;
834 simple_unlock(&pool_head_slock);
835
836 /* Remove this pool from its allocator's list of pools. */
837 pool_reclaim_unregister(pp);
838 s = splvm();
839 simple_lock(&pp->pr_alloc->pa_slock);
840 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
841 simple_unlock(&pp->pr_alloc->pa_slock);
842 splx(s);
843
844 s = splvm();
845 simple_lock(&pp->pr_slock);
846
847 KASSERT(LIST_EMPTY(&pp->pr_cachelist));
848
849 #ifdef DIAGNOSTIC
850 if (pp->pr_nout != 0) {
851 pr_printlog(pp, NULL, printf);
852 panic("pool_destroy: pool busy: still out: %u",
853 pp->pr_nout);
854 }
855 #endif
856
857 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
858 KASSERT(LIST_EMPTY(&pp->pr_partpages));
859
860 /* Remove all pages */
861 LIST_INIT(&pq);
862 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
863 pr_rmpage(pp, ph, &pq);
864
865 simple_unlock(&pp->pr_slock);
866 splx(s);
867
868 pr_pagelist_free(pp, &pq);
869
870 #ifdef POOL_DIAGNOSTIC
871 if ((pp->pr_roflags & PR_LOGGING) != 0)
872 free(pp->pr_log, M_TEMP);
873 #endif
874 }
875
876 void
877 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
878 {
879
880 /* XXX no locking -- must be used just after pool_init() */
881 #ifdef DIAGNOSTIC
882 if (pp->pr_drain_hook != NULL)
883 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
884 #endif
885 pp->pr_drain_hook = fn;
886 pp->pr_drain_hook_arg = arg;
887 }
888
889 static struct pool_item_header *
890 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
891 {
892 struct pool_item_header *ph;
893 int s;
894
895 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
896
897 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
898 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
899 else {
900 s = splvm();
901 ph = pool_get(pp->pr_phpool, flags);
902 splx(s);
903 }
904
905 return (ph);
906 }
907
908 /*
909 * Grab an item from the pool; must be called at appropriate spl level
910 */
911 void *
912 #ifdef POOL_DIAGNOSTIC
913 _pool_get(struct pool *pp, int flags, const char *file, long line)
914 #else
915 pool_get(struct pool *pp, int flags)
916 #endif
917 {
918 struct pool_item *pi;
919 struct pool_item_header *ph;
920 void *v;
921
922 #ifdef DIAGNOSTIC
923 if (__predict_false(pp->pr_itemsperpage == 0))
924 panic("pool_get: pool %p: pr_itemsperpage is zero, "
925 "pool not initialized?", pp);
926 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
927 (flags & PR_WAITOK) != 0))
928 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
929
930 #endif /* DIAGNOSTIC */
931 #ifdef LOCKDEBUG
932 if (flags & PR_WAITOK)
933 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
934 #endif
935
936 simple_lock(&pp->pr_slock);
937 pr_enter(pp, file, line);
938
939 startover:
940 /*
941 * Check to see if we've reached the hard limit. If we have,
942 * and we can wait, then wait until an item has been returned to
943 * the pool.
944 */
945 #ifdef DIAGNOSTIC
946 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
947 pr_leave(pp);
948 simple_unlock(&pp->pr_slock);
949 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
950 }
951 #endif
952 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
953 if (pp->pr_drain_hook != NULL) {
954 /*
955 * Since the drain hook is going to free things
956 * back to the pool, unlock, call the hook, re-lock,
957 * and check the hardlimit condition again.
958 */
959 pr_leave(pp);
960 simple_unlock(&pp->pr_slock);
961 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
962 simple_lock(&pp->pr_slock);
963 pr_enter(pp, file, line);
964 if (pp->pr_nout < pp->pr_hardlimit)
965 goto startover;
966 }
967
968 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
969 /*
970 * XXX: A warning isn't logged in this case. Should
971 * it be?
972 */
973 pp->pr_flags |= PR_WANTED;
974 pr_leave(pp);
975 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
976 pr_enter(pp, file, line);
977 goto startover;
978 }
979
980 /*
981 * Log a message that the hard limit has been hit.
982 */
983 if (pp->pr_hardlimit_warning != NULL &&
984 ratecheck(&pp->pr_hardlimit_warning_last,
985 &pp->pr_hardlimit_ratecap))
986 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
987
988 pp->pr_nfail++;
989
990 pr_leave(pp);
991 simple_unlock(&pp->pr_slock);
992 return (NULL);
993 }
994
995 /*
996 * The convention we use is that if `curpage' is not NULL, then
997 * it points at a non-empty bucket. In particular, `curpage'
998 * never points at a page header which has PR_PHINPAGE set and
999 * has no items in its bucket.
1000 */
1001 if ((ph = pp->pr_curpage) == NULL) {
1002 int error;
1003
1004 #ifdef DIAGNOSTIC
1005 if (pp->pr_nitems != 0) {
1006 simple_unlock(&pp->pr_slock);
1007 printf("pool_get: %s: curpage NULL, nitems %u\n",
1008 pp->pr_wchan, pp->pr_nitems);
1009 panic("pool_get: nitems inconsistent");
1010 }
1011 #endif
1012
1013 /*
1014 * Call the back-end page allocator for more memory.
1015 * Release the pool lock, as the back-end page allocator
1016 * may block.
1017 */
1018 pr_leave(pp);
1019 error = pool_grow(pp, flags);
1020 pr_enter(pp, file, line);
1021 if (error != 0) {
1022 /*
1023 * We were unable to allocate a page or item
1024 * header, but we released the lock during
1025 * allocation, so perhaps items were freed
1026 * back to the pool. Check for this case.
1027 */
1028 if (pp->pr_curpage != NULL)
1029 goto startover;
1030
1031 pp->pr_nfail++;
1032 pr_leave(pp);
1033 simple_unlock(&pp->pr_slock);
1034 return (NULL);
1035 }
1036
1037 /* Start the allocation process over. */
1038 goto startover;
1039 }
1040 if (pp->pr_roflags & PR_NOTOUCH) {
1041 #ifdef DIAGNOSTIC
1042 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1043 pr_leave(pp);
1044 simple_unlock(&pp->pr_slock);
1045 panic("pool_get: %s: page empty", pp->pr_wchan);
1046 }
1047 #endif
1048 v = pr_item_notouch_get(pp, ph);
1049 #ifdef POOL_DIAGNOSTIC
1050 pr_log(pp, v, PRLOG_GET, file, line);
1051 #endif
1052 } else {
1053 v = pi = LIST_FIRST(&ph->ph_itemlist);
1054 if (__predict_false(v == NULL)) {
1055 pr_leave(pp);
1056 simple_unlock(&pp->pr_slock);
1057 panic("pool_get: %s: page empty", pp->pr_wchan);
1058 }
1059 #ifdef DIAGNOSTIC
1060 if (__predict_false(pp->pr_nitems == 0)) {
1061 pr_leave(pp);
1062 simple_unlock(&pp->pr_slock);
1063 printf("pool_get: %s: items on itemlist, nitems %u\n",
1064 pp->pr_wchan, pp->pr_nitems);
1065 panic("pool_get: nitems inconsistent");
1066 }
1067 #endif
1068
1069 #ifdef POOL_DIAGNOSTIC
1070 pr_log(pp, v, PRLOG_GET, file, line);
1071 #endif
1072
1073 #ifdef DIAGNOSTIC
1074 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1075 pr_printlog(pp, pi, printf);
1076 panic("pool_get(%s): free list modified: "
1077 "magic=%x; page %p; item addr %p\n",
1078 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1079 }
1080 #endif
1081
1082 /*
1083 * Remove from item list.
1084 */
1085 LIST_REMOVE(pi, pi_list);
1086 }
1087 pp->pr_nitems--;
1088 pp->pr_nout++;
1089 if (ph->ph_nmissing == 0) {
1090 #ifdef DIAGNOSTIC
1091 if (__predict_false(pp->pr_nidle == 0))
1092 panic("pool_get: nidle inconsistent");
1093 #endif
1094 pp->pr_nidle--;
1095
1096 /*
1097 * This page was previously empty. Move it to the list of
1098 * partially-full pages. This page is already curpage.
1099 */
1100 LIST_REMOVE(ph, ph_pagelist);
1101 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1102 }
1103 ph->ph_nmissing++;
1104 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1105 #ifdef DIAGNOSTIC
1106 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1107 !LIST_EMPTY(&ph->ph_itemlist))) {
1108 pr_leave(pp);
1109 simple_unlock(&pp->pr_slock);
1110 panic("pool_get: %s: nmissing inconsistent",
1111 pp->pr_wchan);
1112 }
1113 #endif
1114 /*
1115 * This page is now full. Move it to the full list
1116 * and select a new current page.
1117 */
1118 LIST_REMOVE(ph, ph_pagelist);
1119 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1120 pool_update_curpage(pp);
1121 }
1122
1123 pp->pr_nget++;
1124 pr_leave(pp);
1125
1126 /*
1127 * If we have a low water mark and we are now below that low
1128 * water mark, add more items to the pool.
1129 */
1130 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1131 /*
1132 * XXX: Should we log a warning? Should we set up a timeout
1133 * to try again in a second or so? The latter could break
1134 * a caller's assumptions about interrupt protection, etc.
1135 */
1136 }
1137
1138 simple_unlock(&pp->pr_slock);
1139 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1140 FREECHECK_OUT(&pp->pr_freecheck, v);
1141 return (v);
1142 }
1143
1144 /*
1145 * Internal version of pool_put(). Pool is already locked/entered.
1146 */
1147 static void
1148 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1149 {
1150 struct pool_item *pi = v;
1151 struct pool_item_header *ph;
1152
1153 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1154 FREECHECK_IN(&pp->pr_freecheck, v);
1155
1156 #ifdef DIAGNOSTIC
1157 if (__predict_false(pp->pr_nout == 0)) {
1158 printf("pool %s: putting with none out\n",
1159 pp->pr_wchan);
1160 panic("pool_put");
1161 }
1162 #endif
1163
1164 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1165 pr_printlog(pp, NULL, printf);
1166 panic("pool_put: %s: page header missing", pp->pr_wchan);
1167 }
1168
1169 /*
1170 * Return to item list.
1171 */
1172 if (pp->pr_roflags & PR_NOTOUCH) {
1173 pr_item_notouch_put(pp, ph, v);
1174 } else {
1175 #ifdef DIAGNOSTIC
1176 pi->pi_magic = PI_MAGIC;
1177 #endif
1178 #ifdef DEBUG
1179 {
1180 int i, *ip = v;
1181
1182 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1183 *ip++ = PI_MAGIC;
1184 }
1185 }
1186 #endif
1187
1188 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1189 }
1190 KDASSERT(ph->ph_nmissing != 0);
1191 ph->ph_nmissing--;
1192 pp->pr_nput++;
1193 pp->pr_nitems++;
1194 pp->pr_nout--;
1195
1196 /* Cancel "pool empty" condition if it exists */
1197 if (pp->pr_curpage == NULL)
1198 pp->pr_curpage = ph;
1199
1200 if (pp->pr_flags & PR_WANTED) {
1201 pp->pr_flags &= ~PR_WANTED;
1202 if (ph->ph_nmissing == 0)
1203 pp->pr_nidle++;
1204 wakeup((void *)pp);
1205 return;
1206 }
1207
1208 /*
1209 * If this page is now empty, do one of two things:
1210 *
1211 * (1) If we have more pages than the page high water mark,
1212 * free the page back to the system. ONLY CONSIDER
1213 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1214 * CLAIM.
1215 *
1216 * (2) Otherwise, move the page to the empty page list.
1217 *
1218 * Either way, select a new current page (so we use a partially-full
1219 * page if one is available).
1220 */
1221 if (ph->ph_nmissing == 0) {
1222 pp->pr_nidle++;
1223 if (pp->pr_npages > pp->pr_minpages &&
1224 (pp->pr_npages > pp->pr_maxpages ||
1225 pa_starved_p(pp->pr_alloc))) {
1226 pr_rmpage(pp, ph, pq);
1227 } else {
1228 LIST_REMOVE(ph, ph_pagelist);
1229 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1230
1231 /*
1232 * Update the timestamp on the page. A page must
1233 * be idle for some period of time before it can
1234 * be reclaimed by the pagedaemon. This minimizes
1235 * ping-pong'ing for memory.
1236 */
1237 getmicrotime(&ph->ph_time);
1238 }
1239 pool_update_curpage(pp);
1240 }
1241
1242 /*
1243 * If the page was previously completely full, move it to the
1244 * partially-full list and make it the current page. The next
1245 * allocation will get the item from this page, instead of
1246 * further fragmenting the pool.
1247 */
1248 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1249 LIST_REMOVE(ph, ph_pagelist);
1250 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1251 pp->pr_curpage = ph;
1252 }
1253 }
1254
1255 /*
1256 * Return resource to the pool; must be called at appropriate spl level
1257 */
1258 #ifdef POOL_DIAGNOSTIC
1259 void
1260 _pool_put(struct pool *pp, void *v, const char *file, long line)
1261 {
1262 struct pool_pagelist pq;
1263
1264 LIST_INIT(&pq);
1265
1266 simple_lock(&pp->pr_slock);
1267 pr_enter(pp, file, line);
1268
1269 pr_log(pp, v, PRLOG_PUT, file, line);
1270
1271 pool_do_put(pp, v, &pq);
1272
1273 pr_leave(pp);
1274 simple_unlock(&pp->pr_slock);
1275
1276 pr_pagelist_free(pp, &pq);
1277 }
1278 #undef pool_put
1279 #endif /* POOL_DIAGNOSTIC */
1280
1281 void
1282 pool_put(struct pool *pp, void *v)
1283 {
1284 struct pool_pagelist pq;
1285
1286 LIST_INIT(&pq);
1287
1288 simple_lock(&pp->pr_slock);
1289 pool_do_put(pp, v, &pq);
1290 simple_unlock(&pp->pr_slock);
1291
1292 pr_pagelist_free(pp, &pq);
1293 }
1294
1295 #ifdef POOL_DIAGNOSTIC
1296 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1297 #endif
1298
1299 /*
1300 * pool_grow: grow a pool by a page.
1301 *
1302 * => called with pool locked.
1303 * => unlock and relock the pool.
1304 * => return with pool locked.
1305 */
1306
1307 static int
1308 pool_grow(struct pool *pp, int flags)
1309 {
1310 struct pool_item_header *ph = NULL;
1311 char *cp;
1312
1313 simple_unlock(&pp->pr_slock);
1314 cp = pool_allocator_alloc(pp, flags);
1315 if (__predict_true(cp != NULL)) {
1316 ph = pool_alloc_item_header(pp, cp, flags);
1317 }
1318 if (__predict_false(cp == NULL || ph == NULL)) {
1319 if (cp != NULL) {
1320 pool_allocator_free(pp, cp);
1321 }
1322 simple_lock(&pp->pr_slock);
1323 return ENOMEM;
1324 }
1325
1326 simple_lock(&pp->pr_slock);
1327 pool_prime_page(pp, cp, ph);
1328 pp->pr_npagealloc++;
1329 return 0;
1330 }
1331
1332 /*
1333 * Add N items to the pool.
1334 */
1335 int
1336 pool_prime(struct pool *pp, int n)
1337 {
1338 int newpages;
1339 int error = 0;
1340
1341 simple_lock(&pp->pr_slock);
1342
1343 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1344
1345 while (newpages-- > 0) {
1346 error = pool_grow(pp, PR_NOWAIT);
1347 if (error) {
1348 break;
1349 }
1350 pp->pr_minpages++;
1351 }
1352
1353 if (pp->pr_minpages >= pp->pr_maxpages)
1354 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1355
1356 simple_unlock(&pp->pr_slock);
1357 return error;
1358 }
1359
1360 /*
1361 * Add a page worth of items to the pool.
1362 *
1363 * Note, we must be called with the pool descriptor LOCKED.
1364 */
1365 static void
1366 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1367 {
1368 struct pool_item *pi;
1369 void *cp = storage;
1370 const unsigned int align = pp->pr_align;
1371 const unsigned int ioff = pp->pr_itemoffset;
1372 int n;
1373
1374 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1375
1376 #ifdef DIAGNOSTIC
1377 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1378 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1379 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1380 #endif
1381
1382 /*
1383 * Insert page header.
1384 */
1385 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1386 LIST_INIT(&ph->ph_itemlist);
1387 ph->ph_page = storage;
1388 ph->ph_nmissing = 0;
1389 getmicrotime(&ph->ph_time);
1390 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1391 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1392
1393 pp->pr_nidle++;
1394
1395 /*
1396 * Color this page.
1397 */
1398 cp = (char *)cp + pp->pr_curcolor;
1399 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1400 pp->pr_curcolor = 0;
1401
1402 /*
1403 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1404 */
1405 if (ioff != 0)
1406 cp = (char *)cp + align - ioff;
1407
1408 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1409
1410 /*
1411 * Insert remaining chunks on the bucket list.
1412 */
1413 n = pp->pr_itemsperpage;
1414 pp->pr_nitems += n;
1415
1416 if (pp->pr_roflags & PR_NOTOUCH) {
1417 pool_item_freelist_t *freelist = PR_FREELIST(ph);
1418 int i;
1419
1420 ph->ph_off = (char *)cp - (char *)storage;
1421 ph->ph_firstfree = 0;
1422 for (i = 0; i < n - 1; i++)
1423 freelist[i] = i + 1;
1424 freelist[n - 1] = PR_INDEX_EOL;
1425 } else {
1426 while (n--) {
1427 pi = (struct pool_item *)cp;
1428
1429 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1430
1431 /* Insert on page list */
1432 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1433 #ifdef DIAGNOSTIC
1434 pi->pi_magic = PI_MAGIC;
1435 #endif
1436 cp = (char *)cp + pp->pr_size;
1437
1438 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1439 }
1440 }
1441
1442 /*
1443 * If the pool was depleted, point at the new page.
1444 */
1445 if (pp->pr_curpage == NULL)
1446 pp->pr_curpage = ph;
1447
1448 if (++pp->pr_npages > pp->pr_hiwat)
1449 pp->pr_hiwat = pp->pr_npages;
1450 }
1451
1452 /*
1453 * Used by pool_get() when nitems drops below the low water mark. This
1454 * is used to catch up pr_nitems with the low water mark.
1455 *
1456 * Note 1, we never wait for memory here, we let the caller decide what to do.
1457 *
1458 * Note 2, we must be called with the pool already locked, and we return
1459 * with it locked.
1460 */
1461 static int
1462 pool_catchup(struct pool *pp)
1463 {
1464 int error = 0;
1465
1466 while (POOL_NEEDS_CATCHUP(pp)) {
1467 error = pool_grow(pp, PR_NOWAIT);
1468 if (error) {
1469 break;
1470 }
1471 }
1472 return error;
1473 }
1474
1475 static void
1476 pool_update_curpage(struct pool *pp)
1477 {
1478
1479 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1480 if (pp->pr_curpage == NULL) {
1481 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1482 }
1483 }
1484
1485 void
1486 pool_setlowat(struct pool *pp, int n)
1487 {
1488
1489 simple_lock(&pp->pr_slock);
1490
1491 pp->pr_minitems = n;
1492 pp->pr_minpages = (n == 0)
1493 ? 0
1494 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1495
1496 /* Make sure we're caught up with the newly-set low water mark. */
1497 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1498 /*
1499 * XXX: Should we log a warning? Should we set up a timeout
1500 * to try again in a second or so? The latter could break
1501 * a caller's assumptions about interrupt protection, etc.
1502 */
1503 }
1504
1505 simple_unlock(&pp->pr_slock);
1506 }
1507
1508 void
1509 pool_sethiwat(struct pool *pp, int n)
1510 {
1511
1512 simple_lock(&pp->pr_slock);
1513
1514 pp->pr_maxpages = (n == 0)
1515 ? 0
1516 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1517
1518 simple_unlock(&pp->pr_slock);
1519 }
1520
1521 void
1522 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1523 {
1524
1525 simple_lock(&pp->pr_slock);
1526
1527 pp->pr_hardlimit = n;
1528 pp->pr_hardlimit_warning = warnmess;
1529 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1530 pp->pr_hardlimit_warning_last.tv_sec = 0;
1531 pp->pr_hardlimit_warning_last.tv_usec = 0;
1532
1533 /*
1534 * In-line version of pool_sethiwat(), because we don't want to
1535 * release the lock.
1536 */
1537 pp->pr_maxpages = (n == 0)
1538 ? 0
1539 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1540
1541 simple_unlock(&pp->pr_slock);
1542 }
1543
1544 /*
1545 * Release all complete pages that have not been used recently.
1546 */
1547 int
1548 #ifdef POOL_DIAGNOSTIC
1549 _pool_reclaim(struct pool *pp, const char *file, long line)
1550 #else
1551 pool_reclaim(struct pool *pp)
1552 #endif
1553 {
1554 struct pool_item_header *ph, *phnext;
1555 struct pool_cache *pc;
1556 struct pool_pagelist pq;
1557 struct pool_cache_grouplist pcgl;
1558 struct timeval curtime, diff;
1559
1560 if (pp->pr_drain_hook != NULL) {
1561 /*
1562 * The drain hook must be called with the pool unlocked.
1563 */
1564 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1565 }
1566
1567 if (simple_lock_try(&pp->pr_slock) == 0)
1568 return (0);
1569 pr_enter(pp, file, line);
1570
1571 LIST_INIT(&pq);
1572 LIST_INIT(&pcgl);
1573
1574 /*
1575 * Reclaim items from the pool's caches.
1576 */
1577 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1578 pool_cache_reclaim(pc, &pq, &pcgl);
1579
1580 getmicrotime(&curtime);
1581
1582 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1583 phnext = LIST_NEXT(ph, ph_pagelist);
1584
1585 /* Check our minimum page claim */
1586 if (pp->pr_npages <= pp->pr_minpages)
1587 break;
1588
1589 KASSERT(ph->ph_nmissing == 0);
1590 timersub(&curtime, &ph->ph_time, &diff);
1591 if (diff.tv_sec < pool_inactive_time
1592 && !pa_starved_p(pp->pr_alloc))
1593 continue;
1594
1595 /*
1596 * If freeing this page would put us below
1597 * the low water mark, stop now.
1598 */
1599 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1600 pp->pr_minitems)
1601 break;
1602
1603 pr_rmpage(pp, ph, &pq);
1604 }
1605
1606 pr_leave(pp);
1607 simple_unlock(&pp->pr_slock);
1608 if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
1609 return 0;
1610
1611 pr_pagelist_free(pp, &pq);
1612 pcg_grouplist_free(&pcgl);
1613 return (1);
1614 }
1615
1616 /*
1617 * Drain pools, one at a time.
1618 *
1619 * Note, we must never be called from an interrupt context.
1620 *
1621 * XXX Pool can disappear while draining.
1622 */
1623 void
1624 pool_drain(void *arg)
1625 {
1626 struct pool *pp;
1627 int s;
1628
1629 pp = NULL;
1630 s = splvm();
1631 simple_lock(&pool_head_slock);
1632 if (drainpp == NULL) {
1633 drainpp = LIST_FIRST(&pool_head);
1634 }
1635 if (drainpp) {
1636 pp = drainpp;
1637 drainpp = LIST_NEXT(pp, pr_poollist);
1638 }
1639 simple_unlock(&pool_head_slock);
1640 if (pp)
1641 pool_reclaim(pp);
1642 splx(s);
1643 }
1644
1645 /*
1646 * Diagnostic helpers.
1647 */
1648 void
1649 pool_print(struct pool *pp, const char *modif)
1650 {
1651 int s;
1652
1653 s = splvm();
1654 if (simple_lock_try(&pp->pr_slock) == 0) {
1655 printf("pool %s is locked; try again later\n",
1656 pp->pr_wchan);
1657 splx(s);
1658 return;
1659 }
1660 pool_print1(pp, modif, printf);
1661 simple_unlock(&pp->pr_slock);
1662 splx(s);
1663 }
1664
1665 void
1666 pool_printall(const char *modif, void (*pr)(const char *, ...))
1667 {
1668 struct pool *pp;
1669
1670 if (simple_lock_try(&pool_head_slock) == 0) {
1671 (*pr)("WARNING: pool_head_slock is locked\n");
1672 } else {
1673 simple_unlock(&pool_head_slock);
1674 }
1675
1676 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1677 pool_printit(pp, modif, pr);
1678 }
1679 }
1680
1681 void
1682 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1683 {
1684
1685 if (pp == NULL) {
1686 (*pr)("Must specify a pool to print.\n");
1687 return;
1688 }
1689
1690 /*
1691 * Called from DDB; interrupts should be blocked, and all
1692 * other processors should be paused. We can skip locking
1693 * the pool in this case.
1694 *
1695 * We do a simple_lock_try() just to print the lock
1696 * status, however.
1697 */
1698
1699 if (simple_lock_try(&pp->pr_slock) == 0)
1700 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1701 else
1702 simple_unlock(&pp->pr_slock);
1703
1704 pool_print1(pp, modif, pr);
1705 }
1706
1707 static void
1708 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1709 void (*pr)(const char *, ...))
1710 {
1711 struct pool_item_header *ph;
1712 #ifdef DIAGNOSTIC
1713 struct pool_item *pi;
1714 #endif
1715
1716 LIST_FOREACH(ph, pl, ph_pagelist) {
1717 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1718 ph->ph_page, ph->ph_nmissing,
1719 (u_long)ph->ph_time.tv_sec,
1720 (u_long)ph->ph_time.tv_usec);
1721 #ifdef DIAGNOSTIC
1722 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1723 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1724 if (pi->pi_magic != PI_MAGIC) {
1725 (*pr)("\t\t\titem %p, magic 0x%x\n",
1726 pi, pi->pi_magic);
1727 }
1728 }
1729 }
1730 #endif
1731 }
1732 }
1733
1734 static void
1735 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1736 {
1737 struct pool_item_header *ph;
1738 struct pool_cache *pc;
1739 struct pool_cache_group *pcg;
1740 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1741 char c;
1742
1743 while ((c = *modif++) != '\0') {
1744 if (c == 'l')
1745 print_log = 1;
1746 if (c == 'p')
1747 print_pagelist = 1;
1748 if (c == 'c')
1749 print_cache = 1;
1750 }
1751
1752 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1753 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1754 pp->pr_roflags);
1755 (*pr)("\talloc %p\n", pp->pr_alloc);
1756 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1757 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1758 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1759 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1760
1761 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1762 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1763 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1764 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1765
1766 if (print_pagelist == 0)
1767 goto skip_pagelist;
1768
1769 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1770 (*pr)("\n\tempty page list:\n");
1771 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1772 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1773 (*pr)("\n\tfull page list:\n");
1774 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1775 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1776 (*pr)("\n\tpartial-page list:\n");
1777 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1778
1779 if (pp->pr_curpage == NULL)
1780 (*pr)("\tno current page\n");
1781 else
1782 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1783
1784 skip_pagelist:
1785 if (print_log == 0)
1786 goto skip_log;
1787
1788 (*pr)("\n");
1789 if ((pp->pr_roflags & PR_LOGGING) == 0)
1790 (*pr)("\tno log\n");
1791 else {
1792 pr_printlog(pp, NULL, pr);
1793 }
1794
1795 skip_log:
1796 if (print_cache == 0)
1797 goto skip_cache;
1798
1799 #define PR_GROUPLIST(pcg) \
1800 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1801 for (i = 0; i < PCG_NOBJECTS; i++) { \
1802 if (pcg->pcg_objects[i].pcgo_pa != \
1803 POOL_PADDR_INVALID) { \
1804 (*pr)("\t\t\t%p, 0x%llx\n", \
1805 pcg->pcg_objects[i].pcgo_va, \
1806 (unsigned long long) \
1807 pcg->pcg_objects[i].pcgo_pa); \
1808 } else { \
1809 (*pr)("\t\t\t%p\n", \
1810 pcg->pcg_objects[i].pcgo_va); \
1811 } \
1812 }
1813
1814 LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1815 (*pr)("\tcache %p\n", pc);
1816 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1817 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1818 (*pr)("\t full groups:\n");
1819 LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
1820 PR_GROUPLIST(pcg);
1821 }
1822 (*pr)("\t partial groups:\n");
1823 LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
1824 PR_GROUPLIST(pcg);
1825 }
1826 (*pr)("\t empty groups:\n");
1827 LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
1828 PR_GROUPLIST(pcg);
1829 }
1830 }
1831 #undef PR_GROUPLIST
1832
1833 skip_cache:
1834 pr_enter_check(pp, pr);
1835 }
1836
1837 static int
1838 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1839 {
1840 struct pool_item *pi;
1841 void *page;
1842 int n;
1843
1844 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1845 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1846 if (page != ph->ph_page &&
1847 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1848 if (label != NULL)
1849 printf("%s: ", label);
1850 printf("pool(%p:%s): page inconsistency: page %p;"
1851 " at page head addr %p (p %p)\n", pp,
1852 pp->pr_wchan, ph->ph_page,
1853 ph, page);
1854 return 1;
1855 }
1856 }
1857
1858 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1859 return 0;
1860
1861 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1862 pi != NULL;
1863 pi = LIST_NEXT(pi,pi_list), n++) {
1864
1865 #ifdef DIAGNOSTIC
1866 if (pi->pi_magic != PI_MAGIC) {
1867 if (label != NULL)
1868 printf("%s: ", label);
1869 printf("pool(%s): free list modified: magic=%x;"
1870 " page %p; item ordinal %d; addr %p\n",
1871 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1872 n, pi);
1873 panic("pool");
1874 }
1875 #endif
1876 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1877 continue;
1878 }
1879 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1880 if (page == ph->ph_page)
1881 continue;
1882
1883 if (label != NULL)
1884 printf("%s: ", label);
1885 printf("pool(%p:%s): page inconsistency: page %p;"
1886 " item ordinal %d; addr %p (p %p)\n", pp,
1887 pp->pr_wchan, ph->ph_page,
1888 n, pi, page);
1889 return 1;
1890 }
1891 return 0;
1892 }
1893
1894
1895 int
1896 pool_chk(struct pool *pp, const char *label)
1897 {
1898 struct pool_item_header *ph;
1899 int r = 0;
1900
1901 simple_lock(&pp->pr_slock);
1902 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1903 r = pool_chk_page(pp, label, ph);
1904 if (r) {
1905 goto out;
1906 }
1907 }
1908 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1909 r = pool_chk_page(pp, label, ph);
1910 if (r) {
1911 goto out;
1912 }
1913 }
1914 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1915 r = pool_chk_page(pp, label, ph);
1916 if (r) {
1917 goto out;
1918 }
1919 }
1920
1921 out:
1922 simple_unlock(&pp->pr_slock);
1923 return (r);
1924 }
1925
1926 /*
1927 * pool_cache_init:
1928 *
1929 * Initialize a pool cache.
1930 *
1931 * NOTE: If the pool must be protected from interrupts, we expect
1932 * to be called at the appropriate interrupt priority level.
1933 */
1934 void
1935 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1936 int (*ctor)(void *, void *, int),
1937 void (*dtor)(void *, void *),
1938 void *arg)
1939 {
1940
1941 LIST_INIT(&pc->pc_emptygroups);
1942 LIST_INIT(&pc->pc_fullgroups);
1943 LIST_INIT(&pc->pc_partgroups);
1944 simple_lock_init(&pc->pc_slock);
1945
1946 pc->pc_pool = pp;
1947
1948 pc->pc_ctor = ctor;
1949 pc->pc_dtor = dtor;
1950 pc->pc_arg = arg;
1951
1952 pc->pc_hits = 0;
1953 pc->pc_misses = 0;
1954
1955 pc->pc_ngroups = 0;
1956
1957 pc->pc_nitems = 0;
1958
1959 simple_lock(&pp->pr_slock);
1960 LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
1961 simple_unlock(&pp->pr_slock);
1962 }
1963
1964 /*
1965 * pool_cache_destroy:
1966 *
1967 * Destroy a pool cache.
1968 */
1969 void
1970 pool_cache_destroy(struct pool_cache *pc)
1971 {
1972 struct pool *pp = pc->pc_pool;
1973
1974 /* First, invalidate the entire cache. */
1975 pool_cache_invalidate(pc);
1976
1977 /* ...and remove it from the pool's cache list. */
1978 simple_lock(&pp->pr_slock);
1979 LIST_REMOVE(pc, pc_poollist);
1980 simple_unlock(&pp->pr_slock);
1981 }
1982
1983 static inline void *
1984 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1985 {
1986 void *object;
1987 u_int idx;
1988
1989 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1990 KASSERT(pcg->pcg_avail != 0);
1991 idx = --pcg->pcg_avail;
1992
1993 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1994 object = pcg->pcg_objects[idx].pcgo_va;
1995 if (pap != NULL)
1996 *pap = pcg->pcg_objects[idx].pcgo_pa;
1997 pcg->pcg_objects[idx].pcgo_va = NULL;
1998
1999 return (object);
2000 }
2001
2002 static inline void
2003 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
2004 {
2005 u_int idx;
2006
2007 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
2008 idx = pcg->pcg_avail++;
2009
2010 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
2011 pcg->pcg_objects[idx].pcgo_va = object;
2012 pcg->pcg_objects[idx].pcgo_pa = pa;
2013 }
2014
2015 static void
2016 pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
2017 {
2018 struct pool_cache_group *pcg;
2019 int s;
2020
2021 s = splvm();
2022 while ((pcg = LIST_FIRST(pcgl)) != NULL) {
2023 LIST_REMOVE(pcg, pcg_list);
2024 pool_put(&pcgpool, pcg);
2025 }
2026 splx(s);
2027 }
2028
2029 /*
2030 * pool_cache_get{,_paddr}:
2031 *
2032 * Get an object from a pool cache (optionally returning
2033 * the physical address of the object).
2034 */
2035 void *
2036 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
2037 {
2038 struct pool_cache_group *pcg;
2039 void *object;
2040
2041 #ifdef LOCKDEBUG
2042 if (flags & PR_WAITOK)
2043 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2044 #endif
2045
2046 simple_lock(&pc->pc_slock);
2047
2048 pcg = LIST_FIRST(&pc->pc_partgroups);
2049 if (pcg == NULL) {
2050 pcg = LIST_FIRST(&pc->pc_fullgroups);
2051 if (pcg != NULL) {
2052 LIST_REMOVE(pcg, pcg_list);
2053 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2054 }
2055 }
2056 if (pcg == NULL) {
2057
2058 /*
2059 * No groups with any available objects. Allocate
2060 * a new object, construct it, and return it to
2061 * the caller. We will allocate a group, if necessary,
2062 * when the object is freed back to the cache.
2063 */
2064 pc->pc_misses++;
2065 simple_unlock(&pc->pc_slock);
2066 object = pool_get(pc->pc_pool, flags);
2067 if (object != NULL && pc->pc_ctor != NULL) {
2068 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2069 pool_put(pc->pc_pool, object);
2070 return (NULL);
2071 }
2072 }
2073 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
2074 (pc->pc_pool->pr_align - 1)) == 0);
2075 if (object != NULL && pap != NULL) {
2076 #ifdef POOL_VTOPHYS
2077 *pap = POOL_VTOPHYS(object);
2078 #else
2079 *pap = POOL_PADDR_INVALID;
2080 #endif
2081 }
2082
2083 FREECHECK_OUT(&pc->pc_freecheck, object);
2084 return (object);
2085 }
2086
2087 pc->pc_hits++;
2088 pc->pc_nitems--;
2089 object = pcg_get(pcg, pap);
2090
2091 if (pcg->pcg_avail == 0) {
2092 LIST_REMOVE(pcg, pcg_list);
2093 LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
2094 }
2095 simple_unlock(&pc->pc_slock);
2096
2097 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
2098 (pc->pc_pool->pr_align - 1)) == 0);
2099 FREECHECK_OUT(&pc->pc_freecheck, object);
2100 return (object);
2101 }
2102
2103 /*
2104 * pool_cache_put{,_paddr}:
2105 *
2106 * Put an object back to the pool cache (optionally caching the
2107 * physical address of the object).
2108 */
2109 void
2110 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
2111 {
2112 struct pool_cache_group *pcg;
2113 int s;
2114
2115 FREECHECK_IN(&pc->pc_freecheck, object);
2116
2117 if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
2118 goto destruct;
2119 }
2120
2121 simple_lock(&pc->pc_slock);
2122
2123 pcg = LIST_FIRST(&pc->pc_partgroups);
2124 if (pcg == NULL) {
2125 pcg = LIST_FIRST(&pc->pc_emptygroups);
2126 if (pcg != NULL) {
2127 LIST_REMOVE(pcg, pcg_list);
2128 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2129 }
2130 }
2131 if (pcg == NULL) {
2132
2133 /*
2134 * No empty groups to free the object to. Attempt to
2135 * allocate one.
2136 */
2137 simple_unlock(&pc->pc_slock);
2138 s = splvm();
2139 pcg = pool_get(&pcgpool, PR_NOWAIT);
2140 splx(s);
2141 if (pcg == NULL) {
2142 destruct:
2143
2144 /*
2145 * Unable to allocate a cache group; destruct the object
2146 * and free it back to the pool.
2147 */
2148 pool_cache_destruct_object(pc, object);
2149 return;
2150 }
2151 memset(pcg, 0, sizeof(*pcg));
2152 simple_lock(&pc->pc_slock);
2153 pc->pc_ngroups++;
2154 LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
2155 }
2156
2157 pc->pc_nitems++;
2158 pcg_put(pcg, object, pa);
2159
2160 if (pcg->pcg_avail == PCG_NOBJECTS) {
2161 LIST_REMOVE(pcg, pcg_list);
2162 LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
2163 }
2164 simple_unlock(&pc->pc_slock);
2165 }
2166
2167 /*
2168 * pool_cache_destruct_object:
2169 *
2170 * Force destruction of an object and its release back into
2171 * the pool.
2172 */
2173 void
2174 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2175 {
2176
2177 if (pc->pc_dtor != NULL)
2178 (*pc->pc_dtor)(pc->pc_arg, object);
2179 pool_put(pc->pc_pool, object);
2180 }
2181
2182 /*
2183 * pool_do_cache_invalidate_grouplist:
2184 *
2185 * Invalidate a single grouplist and destruct all objects.
2186 * XXX This is too expensive. We should swap the list then
2187 * unlock.
2188 */
2189 static void
2190 pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
2191 struct pool_cache *pc, struct pool_pagelist *pq,
2192 struct pool_cache_grouplist *pcgdl)
2193 {
2194 struct pool_cache_group *pcg;
2195 void *object;
2196
2197 LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
2198 LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
2199
2200 while ((pcg = LIST_FIRST(pcgsl)) != NULL) {
2201 pc->pc_ngroups--;
2202 LIST_REMOVE(pcg, pcg_list);
2203 LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
2204 pc->pc_nitems -= pcg->pcg_avail;
2205 simple_unlock(&pc->pc_pool->pr_slock);
2206 simple_unlock(&pc->pc_slock);
2207
2208 while (pcg->pcg_avail != 0) {
2209 object = pcg_get(pcg, NULL);
2210 if (pc->pc_dtor != NULL)
2211 (*pc->pc_dtor)(pc->pc_arg, object);
2212 simple_lock(&pc->pc_pool->pr_slock);
2213 pool_do_put(pc->pc_pool, object, pq);
2214 simple_unlock(&pc->pc_pool->pr_slock);
2215 }
2216
2217 simple_lock(&pc->pc_slock);
2218 simple_lock(&pc->pc_pool->pr_slock);
2219 }
2220 }
2221
2222 static void
2223 pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
2224 struct pool_cache_grouplist *pcgl)
2225 {
2226
2227 LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
2228 LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
2229
2230 pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
2231 pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
2232
2233 KASSERT(LIST_EMPTY(&pc->pc_partgroups));
2234 KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
2235 KASSERT(pc->pc_nitems == 0);
2236 }
2237
2238 /*
2239 * pool_cache_invalidate:
2240 *
2241 * Invalidate a pool cache (destruct and release all of the
2242 * cached objects).
2243 */
2244 void
2245 pool_cache_invalidate(struct pool_cache *pc)
2246 {
2247 struct pool_pagelist pq;
2248 struct pool_cache_grouplist pcgl;
2249
2250 LIST_INIT(&pq);
2251 LIST_INIT(&pcgl);
2252
2253 simple_lock(&pc->pc_slock);
2254 simple_lock(&pc->pc_pool->pr_slock);
2255
2256 pool_do_cache_invalidate(pc, &pq, &pcgl);
2257
2258 simple_unlock(&pc->pc_pool->pr_slock);
2259 simple_unlock(&pc->pc_slock);
2260
2261 pr_pagelist_free(pc->pc_pool, &pq);
2262 pcg_grouplist_free(&pcgl);
2263 }
2264
2265 /*
2266 * pool_cache_reclaim:
2267 *
2268 * Reclaim a pool cache for pool_reclaim().
2269 */
2270 static void
2271 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
2272 struct pool_cache_grouplist *pcgl)
2273 {
2274
2275 /*
2276 * We're locking in the wrong order (normally pool_cache -> pool,
2277 * but the pool is already locked when we get here), so we have
2278 * to use trylock. If we can't lock the pool_cache, it's not really
2279 * a big deal here.
2280 */
2281 if (simple_lock_try(&pc->pc_slock) == 0)
2282 return;
2283
2284 pool_do_cache_invalidate(pc, pq, pcgl);
2285
2286 simple_unlock(&pc->pc_slock);
2287 }
2288
2289 /*
2290 * Pool backend allocators.
2291 *
2292 * Each pool has a backend allocator that handles allocation, deallocation,
2293 * and any additional draining that might be needed.
2294 *
2295 * We provide two standard allocators:
2296 *
2297 * pool_allocator_kmem - the default when no allocator is specified
2298 *
2299 * pool_allocator_nointr - used for pools that will not be accessed
2300 * in interrupt context.
2301 */
2302 void *pool_page_alloc(struct pool *, int);
2303 void pool_page_free(struct pool *, void *);
2304
2305 #ifdef POOL_SUBPAGE
2306 struct pool_allocator pool_allocator_kmem_fullpage = {
2307 pool_page_alloc, pool_page_free, 0,
2308 .pa_backingmapptr = &kmem_map,
2309 };
2310 #else
2311 struct pool_allocator pool_allocator_kmem = {
2312 pool_page_alloc, pool_page_free, 0,
2313 .pa_backingmapptr = &kmem_map,
2314 };
2315 #endif
2316
2317 void *pool_page_alloc_nointr(struct pool *, int);
2318 void pool_page_free_nointr(struct pool *, void *);
2319
2320 #ifdef POOL_SUBPAGE
2321 struct pool_allocator pool_allocator_nointr_fullpage = {
2322 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2323 .pa_backingmapptr = &kernel_map,
2324 };
2325 #else
2326 struct pool_allocator pool_allocator_nointr = {
2327 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2328 .pa_backingmapptr = &kernel_map,
2329 };
2330 #endif
2331
2332 #ifdef POOL_SUBPAGE
2333 void *pool_subpage_alloc(struct pool *, int);
2334 void pool_subpage_free(struct pool *, void *);
2335
2336 struct pool_allocator pool_allocator_kmem = {
2337 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2338 .pa_backingmapptr = &kmem_map,
2339 };
2340
2341 void *pool_subpage_alloc_nointr(struct pool *, int);
2342 void pool_subpage_free_nointr(struct pool *, void *);
2343
2344 struct pool_allocator pool_allocator_nointr = {
2345 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2346 .pa_backingmapptr = &kmem_map,
2347 };
2348 #endif /* POOL_SUBPAGE */
2349
2350 static void *
2351 pool_allocator_alloc(struct pool *pp, int flags)
2352 {
2353 struct pool_allocator *pa = pp->pr_alloc;
2354 void *res;
2355
2356 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2357
2358 res = (*pa->pa_alloc)(pp, flags);
2359 if (res == NULL && (flags & PR_WAITOK) == 0) {
2360 /*
2361 * We only run the drain hook here if PR_NOWAIT.
2362 * In other cases, the hook will be run in
2363 * pool_reclaim().
2364 */
2365 if (pp->pr_drain_hook != NULL) {
2366 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2367 res = (*pa->pa_alloc)(pp, flags);
2368 }
2369 }
2370 return res;
2371 }
2372
2373 static void
2374 pool_allocator_free(struct pool *pp, void *v)
2375 {
2376 struct pool_allocator *pa = pp->pr_alloc;
2377
2378 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2379
2380 (*pa->pa_free)(pp, v);
2381 }
2382
2383 void *
2384 pool_page_alloc(struct pool *pp, int flags)
2385 {
2386 bool waitok = (flags & PR_WAITOK) ? true : false;
2387
2388 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2389 }
2390
2391 void
2392 pool_page_free(struct pool *pp, void *v)
2393 {
2394
2395 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2396 }
2397
2398 static void *
2399 pool_page_alloc_meta(struct pool *pp, int flags)
2400 {
2401 bool waitok = (flags & PR_WAITOK) ? true : false;
2402
2403 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2404 }
2405
2406 static void
2407 pool_page_free_meta(struct pool *pp, void *v)
2408 {
2409
2410 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2411 }
2412
2413 #ifdef POOL_SUBPAGE
2414 /* Sub-page allocator, for machines with large hardware pages. */
2415 void *
2416 pool_subpage_alloc(struct pool *pp, int flags)
2417 {
2418 void *v;
2419 int s;
2420 s = splvm();
2421 v = pool_get(&psppool, flags);
2422 splx(s);
2423 return v;
2424 }
2425
2426 void
2427 pool_subpage_free(struct pool *pp, void *v)
2428 {
2429 int s;
2430 s = splvm();
2431 pool_put(&psppool, v);
2432 splx(s);
2433 }
2434
2435 /* We don't provide a real nointr allocator. Maybe later. */
2436 void *
2437 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2438 {
2439
2440 return (pool_subpage_alloc(pp, flags));
2441 }
2442
2443 void
2444 pool_subpage_free_nointr(struct pool *pp, void *v)
2445 {
2446
2447 pool_subpage_free(pp, v);
2448 }
2449 #endif /* POOL_SUBPAGE */
2450 void *
2451 pool_page_alloc_nointr(struct pool *pp, int flags)
2452 {
2453 bool waitok = (flags & PR_WAITOK) ? true : false;
2454
2455 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2456 }
2457
2458 void
2459 pool_page_free_nointr(struct pool *pp, void *v)
2460 {
2461
2462 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2463 }
2464