subr_pool.c revision 1.136 1 /* $NetBSD: subr_pool.c,v 1.136 2007/11/14 11:14:13 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.136 2007/11/14 11:14:13 yamt Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bitops.h>
50 #include <sys/proc.h>
51 #include <sys/errno.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/pool.h>
56 #include <sys/syslog.h>
57 #include <sys/debug.h>
58 #include <sys/lockdebug.h>
59 #include <sys/xcall.h>
60 #include <sys/cpu.h>
61
62 #include <uvm/uvm.h>
63
64 /*
65 * Pool resource management utility.
66 *
67 * Memory is allocated in pages which are split into pieces according to
68 * the pool item size. Each page is kept on one of three lists in the
69 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
70 * for empty, full and partially-full pages respectively. The individual
71 * pool items are on a linked list headed by `ph_itemlist' in each page
72 * header. The memory for building the page list is either taken from
73 * the allocated pages themselves (for small pool items) or taken from
74 * an internal pool of page headers (`phpool').
75 */
76
77 /* List of all pools */
78 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
79
80 /* List of all caches. */
81 LIST_HEAD(,pool_cache) pool_cache_head =
82 LIST_HEAD_INITIALIZER(pool_cache_head);
83
84 /* Private pool for page header structures */
85 #define PHPOOL_MAX 8
86 static struct pool phpool[PHPOOL_MAX];
87 #define PHPOOL_FREELIST_NELEM(idx) \
88 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
89
90 #ifdef POOL_SUBPAGE
91 /* Pool of subpages for use by normal pools. */
92 static struct pool psppool;
93 #endif
94
95 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
96 SLIST_HEAD_INITIALIZER(pa_deferinitq);
97
98 static void *pool_page_alloc_meta(struct pool *, int);
99 static void pool_page_free_meta(struct pool *, void *);
100
101 /* allocator for pool metadata */
102 struct pool_allocator pool_allocator_meta = {
103 pool_page_alloc_meta, pool_page_free_meta,
104 .pa_backingmapptr = &kmem_map,
105 };
106
107 /* # of seconds to retain page after last use */
108 int pool_inactive_time = 10;
109
110 /* Next candidate for drainage (see pool_drain()) */
111 static struct pool *drainpp;
112
113 /* This lock protects both pool_head and drainpp. */
114 static kmutex_t pool_head_lock;
115 static kcondvar_t pool_busy;
116
117 typedef uint32_t pool_item_bitmap_t;
118 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
119 #define BITMAP_MASK (BITMAP_SIZE - 1)
120
121 struct pool_item_header {
122 /* Page headers */
123 LIST_ENTRY(pool_item_header)
124 ph_pagelist; /* pool page list */
125 SPLAY_ENTRY(pool_item_header)
126 ph_node; /* Off-page page headers */
127 void * ph_page; /* this page's address */
128 struct timeval ph_time; /* last referenced */
129 uint16_t ph_nmissing; /* # of chunks in use */
130 union {
131 /* !PR_NOTOUCH */
132 struct {
133 LIST_HEAD(, pool_item)
134 phu_itemlist; /* chunk list for this page */
135 } phu_normal;
136 /* PR_NOTOUCH */
137 struct {
138 uint16_t phu_off; /* start offset in page */
139 pool_item_bitmap_t phu_bitmap[];
140 } phu_notouch;
141 } ph_u;
142 };
143 #define ph_itemlist ph_u.phu_normal.phu_itemlist
144 #define ph_off ph_u.phu_notouch.phu_off
145 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
146
147 struct pool_item {
148 #ifdef DIAGNOSTIC
149 u_int pi_magic;
150 #endif
151 #define PI_MAGIC 0xdeaddeadU
152 /* Other entries use only this list entry */
153 LIST_ENTRY(pool_item) pi_list;
154 };
155
156 #define POOL_NEEDS_CATCHUP(pp) \
157 ((pp)->pr_nitems < (pp)->pr_minitems)
158
159 /*
160 * Pool cache management.
161 *
162 * Pool caches provide a way for constructed objects to be cached by the
163 * pool subsystem. This can lead to performance improvements by avoiding
164 * needless object construction/destruction; it is deferred until absolutely
165 * necessary.
166 *
167 * Caches are grouped into cache groups. Each cache group references up
168 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
169 * object from the pool, it calls the object's constructor and places it
170 * into a cache group. When a cache group frees an object back to the
171 * pool, it first calls the object's destructor. This allows the object
172 * to persist in constructed form while freed to the cache.
173 *
174 * The pool references each cache, so that when a pool is drained by the
175 * pagedaemon, it can drain each individual cache as well. Each time a
176 * cache is drained, the most idle cache group is freed to the pool in
177 * its entirety.
178 *
179 * Pool caches are layed on top of pools. By layering them, we can avoid
180 * the complexity of cache management for pools which would not benefit
181 * from it.
182 */
183
184 static struct pool pcgpool;
185 static struct pool cache_pool;
186 static struct pool cache_cpu_pool;
187
188 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
189 void *, paddr_t);
190 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
191 void **, paddr_t *, int);
192 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
193 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
194 static void pool_cache_xcall(pool_cache_t);
195
196 static int pool_catchup(struct pool *);
197 static void pool_prime_page(struct pool *, void *,
198 struct pool_item_header *);
199 static void pool_update_curpage(struct pool *);
200
201 static int pool_grow(struct pool *, int);
202 static void *pool_allocator_alloc(struct pool *, int);
203 static void pool_allocator_free(struct pool *, void *);
204
205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
206 void (*)(const char *, ...));
207 static void pool_print1(struct pool *, const char *,
208 void (*)(const char *, ...));
209
210 static int pool_chk_page(struct pool *, const char *,
211 struct pool_item_header *);
212
213 /*
214 * Pool log entry. An array of these is allocated in pool_init().
215 */
216 struct pool_log {
217 const char *pl_file;
218 long pl_line;
219 int pl_action;
220 #define PRLOG_GET 1
221 #define PRLOG_PUT 2
222 void *pl_addr;
223 };
224
225 #ifdef POOL_DIAGNOSTIC
226 /* Number of entries in pool log buffers */
227 #ifndef POOL_LOGSIZE
228 #define POOL_LOGSIZE 10
229 #endif
230
231 int pool_logsize = POOL_LOGSIZE;
232
233 static inline void
234 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
235 {
236 int n = pp->pr_curlogentry;
237 struct pool_log *pl;
238
239 if ((pp->pr_roflags & PR_LOGGING) == 0)
240 return;
241
242 /*
243 * Fill in the current entry. Wrap around and overwrite
244 * the oldest entry if necessary.
245 */
246 pl = &pp->pr_log[n];
247 pl->pl_file = file;
248 pl->pl_line = line;
249 pl->pl_action = action;
250 pl->pl_addr = v;
251 if (++n >= pp->pr_logsize)
252 n = 0;
253 pp->pr_curlogentry = n;
254 }
255
256 static void
257 pr_printlog(struct pool *pp, struct pool_item *pi,
258 void (*pr)(const char *, ...))
259 {
260 int i = pp->pr_logsize;
261 int n = pp->pr_curlogentry;
262
263 if ((pp->pr_roflags & PR_LOGGING) == 0)
264 return;
265
266 /*
267 * Print all entries in this pool's log.
268 */
269 while (i-- > 0) {
270 struct pool_log *pl = &pp->pr_log[n];
271 if (pl->pl_action != 0) {
272 if (pi == NULL || pi == pl->pl_addr) {
273 (*pr)("\tlog entry %d:\n", i);
274 (*pr)("\t\taction = %s, addr = %p\n",
275 pl->pl_action == PRLOG_GET ? "get" : "put",
276 pl->pl_addr);
277 (*pr)("\t\tfile: %s at line %lu\n",
278 pl->pl_file, pl->pl_line);
279 }
280 }
281 if (++n >= pp->pr_logsize)
282 n = 0;
283 }
284 }
285
286 static inline void
287 pr_enter(struct pool *pp, const char *file, long line)
288 {
289
290 if (__predict_false(pp->pr_entered_file != NULL)) {
291 printf("pool %s: reentrancy at file %s line %ld\n",
292 pp->pr_wchan, file, line);
293 printf(" previous entry at file %s line %ld\n",
294 pp->pr_entered_file, pp->pr_entered_line);
295 panic("pr_enter");
296 }
297
298 pp->pr_entered_file = file;
299 pp->pr_entered_line = line;
300 }
301
302 static inline void
303 pr_leave(struct pool *pp)
304 {
305
306 if (__predict_false(pp->pr_entered_file == NULL)) {
307 printf("pool %s not entered?\n", pp->pr_wchan);
308 panic("pr_leave");
309 }
310
311 pp->pr_entered_file = NULL;
312 pp->pr_entered_line = 0;
313 }
314
315 static inline void
316 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
317 {
318
319 if (pp->pr_entered_file != NULL)
320 (*pr)("\n\tcurrently entered from file %s line %ld\n",
321 pp->pr_entered_file, pp->pr_entered_line);
322 }
323 #else
324 #define pr_log(pp, v, action, file, line)
325 #define pr_printlog(pp, pi, pr)
326 #define pr_enter(pp, file, line)
327 #define pr_leave(pp)
328 #define pr_enter_check(pp, pr)
329 #endif /* POOL_DIAGNOSTIC */
330
331 static inline unsigned int
332 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
333 const void *v)
334 {
335 const char *cp = v;
336 unsigned int idx;
337
338 KASSERT(pp->pr_roflags & PR_NOTOUCH);
339 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
340 KASSERT(idx < pp->pr_itemsperpage);
341 return idx;
342 }
343
344 static inline void
345 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
346 void *obj)
347 {
348 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
349 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
350 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
351
352 KASSERT((*bitmap & mask) == 0);
353 *bitmap |= mask;
354 }
355
356 static inline void *
357 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
358 {
359 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
360 unsigned int idx;
361 int i;
362
363 for (i = 0; ; i++) {
364 int bit;
365
366 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
367 bit = ffs32(bitmap[i]);
368 if (bit) {
369 pool_item_bitmap_t mask;
370
371 bit--;
372 idx = (i * BITMAP_SIZE) + bit;
373 mask = 1 << bit;
374 KASSERT((bitmap[i] & mask) != 0);
375 bitmap[i] &= ~mask;
376 break;
377 }
378 }
379 KASSERT(idx < pp->pr_itemsperpage);
380 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
381 }
382
383 static inline void
384 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
385 {
386 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
387 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
388 int i;
389
390 for (i = 0; i < n; i++) {
391 bitmap[i] = (pool_item_bitmap_t)-1;
392 }
393 }
394
395 static inline int
396 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
397 {
398
399 /*
400 * we consider pool_item_header with smaller ph_page bigger.
401 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
402 */
403
404 if (a->ph_page < b->ph_page)
405 return (1);
406 else if (a->ph_page > b->ph_page)
407 return (-1);
408 else
409 return (0);
410 }
411
412 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
413 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
414
415 /*
416 * Return the pool page header based on item address.
417 */
418 static inline struct pool_item_header *
419 pr_find_pagehead(struct pool *pp, void *v)
420 {
421 struct pool_item_header *ph, tmp;
422
423 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
424 tmp.ph_page = (void *)(uintptr_t)v;
425 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
426 if (ph == NULL) {
427 ph = SPLAY_ROOT(&pp->pr_phtree);
428 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
429 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
430 }
431 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
432 }
433 } else {
434 void *page =
435 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
436
437 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
438 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
439 } else {
440 tmp.ph_page = page;
441 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
442 }
443 }
444
445 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
446 ((char *)ph->ph_page <= (char *)v &&
447 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
448 return ph;
449 }
450
451 static void
452 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
453 {
454 struct pool_item_header *ph;
455
456 while ((ph = LIST_FIRST(pq)) != NULL) {
457 LIST_REMOVE(ph, ph_pagelist);
458 pool_allocator_free(pp, ph->ph_page);
459 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
460 pool_put(pp->pr_phpool, ph);
461 }
462 }
463
464 /*
465 * Remove a page from the pool.
466 */
467 static inline void
468 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
469 struct pool_pagelist *pq)
470 {
471
472 KASSERT(mutex_owned(&pp->pr_lock));
473
474 /*
475 * If the page was idle, decrement the idle page count.
476 */
477 if (ph->ph_nmissing == 0) {
478 #ifdef DIAGNOSTIC
479 if (pp->pr_nidle == 0)
480 panic("pr_rmpage: nidle inconsistent");
481 if (pp->pr_nitems < pp->pr_itemsperpage)
482 panic("pr_rmpage: nitems inconsistent");
483 #endif
484 pp->pr_nidle--;
485 }
486
487 pp->pr_nitems -= pp->pr_itemsperpage;
488
489 /*
490 * Unlink the page from the pool and queue it for release.
491 */
492 LIST_REMOVE(ph, ph_pagelist);
493 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
494 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
495 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
496
497 pp->pr_npages--;
498 pp->pr_npagefree++;
499
500 pool_update_curpage(pp);
501 }
502
503 static bool
504 pa_starved_p(struct pool_allocator *pa)
505 {
506
507 if (pa->pa_backingmap != NULL) {
508 return vm_map_starved_p(pa->pa_backingmap);
509 }
510 return false;
511 }
512
513 static int
514 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
515 {
516 struct pool *pp = obj;
517 struct pool_allocator *pa = pp->pr_alloc;
518
519 KASSERT(&pp->pr_reclaimerentry == ce);
520 pool_reclaim(pp);
521 if (!pa_starved_p(pa)) {
522 return CALLBACK_CHAIN_ABORT;
523 }
524 return CALLBACK_CHAIN_CONTINUE;
525 }
526
527 static void
528 pool_reclaim_register(struct pool *pp)
529 {
530 struct vm_map *map = pp->pr_alloc->pa_backingmap;
531 int s;
532
533 if (map == NULL) {
534 return;
535 }
536
537 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
538 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
539 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
540 splx(s);
541 }
542
543 static void
544 pool_reclaim_unregister(struct pool *pp)
545 {
546 struct vm_map *map = pp->pr_alloc->pa_backingmap;
547 int s;
548
549 if (map == NULL) {
550 return;
551 }
552
553 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
554 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
555 &pp->pr_reclaimerentry);
556 splx(s);
557 }
558
559 static void
560 pa_reclaim_register(struct pool_allocator *pa)
561 {
562 struct vm_map *map = *pa->pa_backingmapptr;
563 struct pool *pp;
564
565 KASSERT(pa->pa_backingmap == NULL);
566 if (map == NULL) {
567 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
568 return;
569 }
570 pa->pa_backingmap = map;
571 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
572 pool_reclaim_register(pp);
573 }
574 }
575
576 /*
577 * Initialize all the pools listed in the "pools" link set.
578 */
579 void
580 pool_subsystem_init(void)
581 {
582 struct pool_allocator *pa;
583 __link_set_decl(pools, struct link_pool_init);
584 struct link_pool_init * const *pi;
585
586 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
587 cv_init(&pool_busy, "poolbusy");
588
589 __link_set_foreach(pi, pools)
590 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
591 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
592 (*pi)->palloc, (*pi)->ipl);
593
594 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
595 KASSERT(pa->pa_backingmapptr != NULL);
596 KASSERT(*pa->pa_backingmapptr != NULL);
597 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
598 pa_reclaim_register(pa);
599 }
600
601 pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
602 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
603
604 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
605 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
606 }
607
608 /*
609 * Initialize the given pool resource structure.
610 *
611 * We export this routine to allow other kernel parts to declare
612 * static pools that must be initialized before malloc() is available.
613 */
614 void
615 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
616 const char *wchan, struct pool_allocator *palloc, int ipl)
617 {
618 #ifdef DEBUG
619 struct pool *pp1;
620 #endif
621 size_t trysize, phsize;
622 int off, slack;
623
624 #ifdef DEBUG
625 /*
626 * Check that the pool hasn't already been initialised and
627 * added to the list of all pools.
628 */
629 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
630 if (pp == pp1)
631 panic("pool_init: pool %s already initialised",
632 wchan);
633 }
634 #endif
635
636 #ifdef POOL_DIAGNOSTIC
637 /*
638 * Always log if POOL_DIAGNOSTIC is defined.
639 */
640 if (pool_logsize != 0)
641 flags |= PR_LOGGING;
642 #endif
643
644 if (palloc == NULL)
645 palloc = &pool_allocator_kmem;
646 #ifdef POOL_SUBPAGE
647 if (size > palloc->pa_pagesz) {
648 if (palloc == &pool_allocator_kmem)
649 palloc = &pool_allocator_kmem_fullpage;
650 else if (palloc == &pool_allocator_nointr)
651 palloc = &pool_allocator_nointr_fullpage;
652 }
653 #endif /* POOL_SUBPAGE */
654 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
655 if (palloc->pa_pagesz == 0)
656 palloc->pa_pagesz = PAGE_SIZE;
657
658 TAILQ_INIT(&palloc->pa_list);
659
660 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
661 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
662 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
663
664 if (palloc->pa_backingmapptr != NULL) {
665 pa_reclaim_register(palloc);
666 }
667 palloc->pa_flags |= PA_INITIALIZED;
668 }
669
670 if (align == 0)
671 align = ALIGN(1);
672
673 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
674 size = sizeof(struct pool_item);
675
676 size = roundup(size, align);
677 #ifdef DIAGNOSTIC
678 if (size > palloc->pa_pagesz)
679 panic("pool_init: pool item size (%zu) too large", size);
680 #endif
681
682 /*
683 * Initialize the pool structure.
684 */
685 LIST_INIT(&pp->pr_emptypages);
686 LIST_INIT(&pp->pr_fullpages);
687 LIST_INIT(&pp->pr_partpages);
688 pp->pr_cache = NULL;
689 pp->pr_curpage = NULL;
690 pp->pr_npages = 0;
691 pp->pr_minitems = 0;
692 pp->pr_minpages = 0;
693 pp->pr_maxpages = UINT_MAX;
694 pp->pr_roflags = flags;
695 pp->pr_flags = 0;
696 pp->pr_size = size;
697 pp->pr_align = align;
698 pp->pr_wchan = wchan;
699 pp->pr_alloc = palloc;
700 pp->pr_nitems = 0;
701 pp->pr_nout = 0;
702 pp->pr_hardlimit = UINT_MAX;
703 pp->pr_hardlimit_warning = NULL;
704 pp->pr_hardlimit_ratecap.tv_sec = 0;
705 pp->pr_hardlimit_ratecap.tv_usec = 0;
706 pp->pr_hardlimit_warning_last.tv_sec = 0;
707 pp->pr_hardlimit_warning_last.tv_usec = 0;
708 pp->pr_drain_hook = NULL;
709 pp->pr_drain_hook_arg = NULL;
710 pp->pr_freecheck = NULL;
711
712 /*
713 * Decide whether to put the page header off page to avoid
714 * wasting too large a part of the page or too big item.
715 * Off-page page headers go on a hash table, so we can match
716 * a returned item with its header based on the page address.
717 * We use 1/16 of the page size and about 8 times of the item
718 * size as the threshold (XXX: tune)
719 *
720 * However, we'll put the header into the page if we can put
721 * it without wasting any items.
722 *
723 * Silently enforce `0 <= ioff < align'.
724 */
725 pp->pr_itemoffset = ioff %= align;
726 /* See the comment below about reserved bytes. */
727 trysize = palloc->pa_pagesz - ((align - ioff) % align);
728 phsize = ALIGN(sizeof(struct pool_item_header));
729 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
730 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
731 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
732 /* Use the end of the page for the page header */
733 pp->pr_roflags |= PR_PHINPAGE;
734 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
735 } else {
736 /* The page header will be taken from our page header pool */
737 pp->pr_phoffset = 0;
738 off = palloc->pa_pagesz;
739 SPLAY_INIT(&pp->pr_phtree);
740 }
741
742 /*
743 * Alignment is to take place at `ioff' within the item. This means
744 * we must reserve up to `align - 1' bytes on the page to allow
745 * appropriate positioning of each item.
746 */
747 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
748 KASSERT(pp->pr_itemsperpage != 0);
749 if ((pp->pr_roflags & PR_NOTOUCH)) {
750 int idx;
751
752 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
753 idx++) {
754 /* nothing */
755 }
756 if (idx >= PHPOOL_MAX) {
757 /*
758 * if you see this panic, consider to tweak
759 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
760 */
761 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
762 pp->pr_wchan, pp->pr_itemsperpage);
763 }
764 pp->pr_phpool = &phpool[idx];
765 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
766 pp->pr_phpool = &phpool[0];
767 }
768 #if defined(DIAGNOSTIC)
769 else {
770 pp->pr_phpool = NULL;
771 }
772 #endif
773
774 /*
775 * Use the slack between the chunks and the page header
776 * for "cache coloring".
777 */
778 slack = off - pp->pr_itemsperpage * pp->pr_size;
779 pp->pr_maxcolor = (slack / align) * align;
780 pp->pr_curcolor = 0;
781
782 pp->pr_nget = 0;
783 pp->pr_nfail = 0;
784 pp->pr_nput = 0;
785 pp->pr_npagealloc = 0;
786 pp->pr_npagefree = 0;
787 pp->pr_hiwat = 0;
788 pp->pr_nidle = 0;
789 pp->pr_refcnt = 0;
790
791 #ifdef POOL_DIAGNOSTIC
792 if (flags & PR_LOGGING) {
793 if (kmem_map == NULL ||
794 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
795 M_TEMP, M_NOWAIT)) == NULL)
796 pp->pr_roflags &= ~PR_LOGGING;
797 pp->pr_curlogentry = 0;
798 pp->pr_logsize = pool_logsize;
799 }
800 #endif
801
802 pp->pr_entered_file = NULL;
803 pp->pr_entered_line = 0;
804
805 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
806 cv_init(&pp->pr_cv, wchan);
807 pp->pr_ipl = ipl;
808
809 /*
810 * Initialize private page header pool and cache magazine pool if we
811 * haven't done so yet.
812 * XXX LOCKING.
813 */
814 if (phpool[0].pr_size == 0) {
815 int idx;
816 for (idx = 0; idx < PHPOOL_MAX; idx++) {
817 static char phpool_names[PHPOOL_MAX][6+1+6+1];
818 int nelem;
819 size_t sz;
820
821 nelem = PHPOOL_FREELIST_NELEM(idx);
822 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
823 "phpool-%d", nelem);
824 sz = sizeof(struct pool_item_header);
825 if (nelem) {
826 sz = offsetof(struct pool_item_header,
827 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
828 }
829 pool_init(&phpool[idx], sz, 0, 0, 0,
830 phpool_names[idx], &pool_allocator_meta, IPL_VM);
831 }
832 #ifdef POOL_SUBPAGE
833 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
834 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
835 #endif
836 pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
837 "cachegrp", &pool_allocator_meta, IPL_VM);
838 }
839
840 if (__predict_true(!cold)) {
841 /* Insert into the list of all pools. */
842 mutex_enter(&pool_head_lock);
843 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
844 mutex_exit(&pool_head_lock);
845
846 /* Insert this into the list of pools using this allocator. */
847 mutex_enter(&palloc->pa_lock);
848 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
849 mutex_exit(&palloc->pa_lock);
850 } else {
851 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
852 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
853 }
854
855 pool_reclaim_register(pp);
856 }
857
858 /*
859 * De-commision a pool resource.
860 */
861 void
862 pool_destroy(struct pool *pp)
863 {
864 struct pool_pagelist pq;
865 struct pool_item_header *ph;
866
867 /* Remove from global pool list */
868 mutex_enter(&pool_head_lock);
869 while (pp->pr_refcnt != 0)
870 cv_wait(&pool_busy, &pool_head_lock);
871 LIST_REMOVE(pp, pr_poollist);
872 if (drainpp == pp)
873 drainpp = NULL;
874 mutex_exit(&pool_head_lock);
875
876 /* Remove this pool from its allocator's list of pools. */
877 pool_reclaim_unregister(pp);
878 mutex_enter(&pp->pr_alloc->pa_lock);
879 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
880 mutex_exit(&pp->pr_alloc->pa_lock);
881
882 mutex_enter(&pp->pr_lock);
883
884 KASSERT(pp->pr_cache == NULL);
885
886 #ifdef DIAGNOSTIC
887 if (pp->pr_nout != 0) {
888 pr_printlog(pp, NULL, printf);
889 panic("pool_destroy: pool busy: still out: %u",
890 pp->pr_nout);
891 }
892 #endif
893
894 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
895 KASSERT(LIST_EMPTY(&pp->pr_partpages));
896
897 /* Remove all pages */
898 LIST_INIT(&pq);
899 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
900 pr_rmpage(pp, ph, &pq);
901
902 mutex_exit(&pp->pr_lock);
903
904 pr_pagelist_free(pp, &pq);
905
906 #ifdef POOL_DIAGNOSTIC
907 if ((pp->pr_roflags & PR_LOGGING) != 0)
908 free(pp->pr_log, M_TEMP);
909 #endif
910
911 cv_destroy(&pp->pr_cv);
912 mutex_destroy(&pp->pr_lock);
913 }
914
915 void
916 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
917 {
918
919 /* XXX no locking -- must be used just after pool_init() */
920 #ifdef DIAGNOSTIC
921 if (pp->pr_drain_hook != NULL)
922 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
923 #endif
924 pp->pr_drain_hook = fn;
925 pp->pr_drain_hook_arg = arg;
926 }
927
928 static struct pool_item_header *
929 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
930 {
931 struct pool_item_header *ph;
932
933 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
934 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
935 else
936 ph = pool_get(pp->pr_phpool, flags);
937
938 return (ph);
939 }
940
941 /*
942 * Grab an item from the pool.
943 */
944 void *
945 #ifdef POOL_DIAGNOSTIC
946 _pool_get(struct pool *pp, int flags, const char *file, long line)
947 #else
948 pool_get(struct pool *pp, int flags)
949 #endif
950 {
951 struct pool_item *pi;
952 struct pool_item_header *ph;
953 void *v;
954
955 #ifdef DIAGNOSTIC
956 if (__predict_false(pp->pr_itemsperpage == 0))
957 panic("pool_get: pool %p: pr_itemsperpage is zero, "
958 "pool not initialized?", pp);
959 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
960 (flags & PR_WAITOK) != 0))
961 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
962
963 #endif /* DIAGNOSTIC */
964 #ifdef LOCKDEBUG
965 if (flags & PR_WAITOK)
966 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
967 #endif
968
969 mutex_enter(&pp->pr_lock);
970 pr_enter(pp, file, line);
971
972 startover:
973 /*
974 * Check to see if we've reached the hard limit. If we have,
975 * and we can wait, then wait until an item has been returned to
976 * the pool.
977 */
978 #ifdef DIAGNOSTIC
979 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
980 pr_leave(pp);
981 mutex_exit(&pp->pr_lock);
982 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
983 }
984 #endif
985 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
986 if (pp->pr_drain_hook != NULL) {
987 /*
988 * Since the drain hook is going to free things
989 * back to the pool, unlock, call the hook, re-lock,
990 * and check the hardlimit condition again.
991 */
992 pr_leave(pp);
993 mutex_exit(&pp->pr_lock);
994 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
995 mutex_enter(&pp->pr_lock);
996 pr_enter(pp, file, line);
997 if (pp->pr_nout < pp->pr_hardlimit)
998 goto startover;
999 }
1000
1001 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1002 /*
1003 * XXX: A warning isn't logged in this case. Should
1004 * it be?
1005 */
1006 pp->pr_flags |= PR_WANTED;
1007 pr_leave(pp);
1008 cv_wait(&pp->pr_cv, &pp->pr_lock);
1009 pr_enter(pp, file, line);
1010 goto startover;
1011 }
1012
1013 /*
1014 * Log a message that the hard limit has been hit.
1015 */
1016 if (pp->pr_hardlimit_warning != NULL &&
1017 ratecheck(&pp->pr_hardlimit_warning_last,
1018 &pp->pr_hardlimit_ratecap))
1019 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1020
1021 pp->pr_nfail++;
1022
1023 pr_leave(pp);
1024 mutex_exit(&pp->pr_lock);
1025 return (NULL);
1026 }
1027
1028 /*
1029 * The convention we use is that if `curpage' is not NULL, then
1030 * it points at a non-empty bucket. In particular, `curpage'
1031 * never points at a page header which has PR_PHINPAGE set and
1032 * has no items in its bucket.
1033 */
1034 if ((ph = pp->pr_curpage) == NULL) {
1035 int error;
1036
1037 #ifdef DIAGNOSTIC
1038 if (pp->pr_nitems != 0) {
1039 mutex_exit(&pp->pr_lock);
1040 printf("pool_get: %s: curpage NULL, nitems %u\n",
1041 pp->pr_wchan, pp->pr_nitems);
1042 panic("pool_get: nitems inconsistent");
1043 }
1044 #endif
1045
1046 /*
1047 * Call the back-end page allocator for more memory.
1048 * Release the pool lock, as the back-end page allocator
1049 * may block.
1050 */
1051 pr_leave(pp);
1052 error = pool_grow(pp, flags);
1053 pr_enter(pp, file, line);
1054 if (error != 0) {
1055 /*
1056 * We were unable to allocate a page or item
1057 * header, but we released the lock during
1058 * allocation, so perhaps items were freed
1059 * back to the pool. Check for this case.
1060 */
1061 if (pp->pr_curpage != NULL)
1062 goto startover;
1063
1064 pp->pr_nfail++;
1065 pr_leave(pp);
1066 mutex_exit(&pp->pr_lock);
1067 return (NULL);
1068 }
1069
1070 /* Start the allocation process over. */
1071 goto startover;
1072 }
1073 if (pp->pr_roflags & PR_NOTOUCH) {
1074 #ifdef DIAGNOSTIC
1075 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1076 pr_leave(pp);
1077 mutex_exit(&pp->pr_lock);
1078 panic("pool_get: %s: page empty", pp->pr_wchan);
1079 }
1080 #endif
1081 v = pr_item_notouch_get(pp, ph);
1082 #ifdef POOL_DIAGNOSTIC
1083 pr_log(pp, v, PRLOG_GET, file, line);
1084 #endif
1085 } else {
1086 v = pi = LIST_FIRST(&ph->ph_itemlist);
1087 if (__predict_false(v == NULL)) {
1088 pr_leave(pp);
1089 mutex_exit(&pp->pr_lock);
1090 panic("pool_get: %s: page empty", pp->pr_wchan);
1091 }
1092 #ifdef DIAGNOSTIC
1093 if (__predict_false(pp->pr_nitems == 0)) {
1094 pr_leave(pp);
1095 mutex_exit(&pp->pr_lock);
1096 printf("pool_get: %s: items on itemlist, nitems %u\n",
1097 pp->pr_wchan, pp->pr_nitems);
1098 panic("pool_get: nitems inconsistent");
1099 }
1100 #endif
1101
1102 #ifdef POOL_DIAGNOSTIC
1103 pr_log(pp, v, PRLOG_GET, file, line);
1104 #endif
1105
1106 #ifdef DIAGNOSTIC
1107 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1108 pr_printlog(pp, pi, printf);
1109 panic("pool_get(%s): free list modified: "
1110 "magic=%x; page %p; item addr %p\n",
1111 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1112 }
1113 #endif
1114
1115 /*
1116 * Remove from item list.
1117 */
1118 LIST_REMOVE(pi, pi_list);
1119 }
1120 pp->pr_nitems--;
1121 pp->pr_nout++;
1122 if (ph->ph_nmissing == 0) {
1123 #ifdef DIAGNOSTIC
1124 if (__predict_false(pp->pr_nidle == 0))
1125 panic("pool_get: nidle inconsistent");
1126 #endif
1127 pp->pr_nidle--;
1128
1129 /*
1130 * This page was previously empty. Move it to the list of
1131 * partially-full pages. This page is already curpage.
1132 */
1133 LIST_REMOVE(ph, ph_pagelist);
1134 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1135 }
1136 ph->ph_nmissing++;
1137 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1138 #ifdef DIAGNOSTIC
1139 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1140 !LIST_EMPTY(&ph->ph_itemlist))) {
1141 pr_leave(pp);
1142 mutex_exit(&pp->pr_lock);
1143 panic("pool_get: %s: nmissing inconsistent",
1144 pp->pr_wchan);
1145 }
1146 #endif
1147 /*
1148 * This page is now full. Move it to the full list
1149 * and select a new current page.
1150 */
1151 LIST_REMOVE(ph, ph_pagelist);
1152 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1153 pool_update_curpage(pp);
1154 }
1155
1156 pp->pr_nget++;
1157 pr_leave(pp);
1158
1159 /*
1160 * If we have a low water mark and we are now below that low
1161 * water mark, add more items to the pool.
1162 */
1163 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1164 /*
1165 * XXX: Should we log a warning? Should we set up a timeout
1166 * to try again in a second or so? The latter could break
1167 * a caller's assumptions about interrupt protection, etc.
1168 */
1169 }
1170
1171 mutex_exit(&pp->pr_lock);
1172 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1173 FREECHECK_OUT(&pp->pr_freecheck, v);
1174 return (v);
1175 }
1176
1177 /*
1178 * Internal version of pool_put(). Pool is already locked/entered.
1179 */
1180 static void
1181 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1182 {
1183 struct pool_item *pi = v;
1184 struct pool_item_header *ph;
1185
1186 KASSERT(mutex_owned(&pp->pr_lock));
1187 FREECHECK_IN(&pp->pr_freecheck, v);
1188 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1189
1190 #ifdef DIAGNOSTIC
1191 if (__predict_false(pp->pr_nout == 0)) {
1192 printf("pool %s: putting with none out\n",
1193 pp->pr_wchan);
1194 panic("pool_put");
1195 }
1196 #endif
1197
1198 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1199 pr_printlog(pp, NULL, printf);
1200 panic("pool_put: %s: page header missing", pp->pr_wchan);
1201 }
1202
1203 /*
1204 * Return to item list.
1205 */
1206 if (pp->pr_roflags & PR_NOTOUCH) {
1207 pr_item_notouch_put(pp, ph, v);
1208 } else {
1209 #ifdef DIAGNOSTIC
1210 pi->pi_magic = PI_MAGIC;
1211 #endif
1212 #ifdef DEBUG
1213 {
1214 int i, *ip = v;
1215
1216 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1217 *ip++ = PI_MAGIC;
1218 }
1219 }
1220 #endif
1221
1222 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1223 }
1224 KDASSERT(ph->ph_nmissing != 0);
1225 ph->ph_nmissing--;
1226 pp->pr_nput++;
1227 pp->pr_nitems++;
1228 pp->pr_nout--;
1229
1230 /* Cancel "pool empty" condition if it exists */
1231 if (pp->pr_curpage == NULL)
1232 pp->pr_curpage = ph;
1233
1234 if (pp->pr_flags & PR_WANTED) {
1235 pp->pr_flags &= ~PR_WANTED;
1236 if (ph->ph_nmissing == 0)
1237 pp->pr_nidle++;
1238 cv_broadcast(&pp->pr_cv);
1239 return;
1240 }
1241
1242 /*
1243 * If this page is now empty, do one of two things:
1244 *
1245 * (1) If we have more pages than the page high water mark,
1246 * free the page back to the system. ONLY CONSIDER
1247 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1248 * CLAIM.
1249 *
1250 * (2) Otherwise, move the page to the empty page list.
1251 *
1252 * Either way, select a new current page (so we use a partially-full
1253 * page if one is available).
1254 */
1255 if (ph->ph_nmissing == 0) {
1256 pp->pr_nidle++;
1257 if (pp->pr_npages > pp->pr_minpages &&
1258 (pp->pr_npages > pp->pr_maxpages ||
1259 pa_starved_p(pp->pr_alloc))) {
1260 pr_rmpage(pp, ph, pq);
1261 } else {
1262 LIST_REMOVE(ph, ph_pagelist);
1263 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1264
1265 /*
1266 * Update the timestamp on the page. A page must
1267 * be idle for some period of time before it can
1268 * be reclaimed by the pagedaemon. This minimizes
1269 * ping-pong'ing for memory.
1270 */
1271 getmicrotime(&ph->ph_time);
1272 }
1273 pool_update_curpage(pp);
1274 }
1275
1276 /*
1277 * If the page was previously completely full, move it to the
1278 * partially-full list and make it the current page. The next
1279 * allocation will get the item from this page, instead of
1280 * further fragmenting the pool.
1281 */
1282 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1283 LIST_REMOVE(ph, ph_pagelist);
1284 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1285 pp->pr_curpage = ph;
1286 }
1287 }
1288
1289 /*
1290 * Return resource to the pool.
1291 */
1292 #ifdef POOL_DIAGNOSTIC
1293 void
1294 _pool_put(struct pool *pp, void *v, const char *file, long line)
1295 {
1296 struct pool_pagelist pq;
1297
1298 LIST_INIT(&pq);
1299
1300 mutex_enter(&pp->pr_lock);
1301 pr_enter(pp, file, line);
1302
1303 pr_log(pp, v, PRLOG_PUT, file, line);
1304
1305 pool_do_put(pp, v, &pq);
1306
1307 pr_leave(pp);
1308 mutex_exit(&pp->pr_lock);
1309
1310 pr_pagelist_free(pp, &pq);
1311 }
1312 #undef pool_put
1313 #endif /* POOL_DIAGNOSTIC */
1314
1315 void
1316 pool_put(struct pool *pp, void *v)
1317 {
1318 struct pool_pagelist pq;
1319
1320 LIST_INIT(&pq);
1321
1322 mutex_enter(&pp->pr_lock);
1323 pool_do_put(pp, v, &pq);
1324 mutex_exit(&pp->pr_lock);
1325
1326 pr_pagelist_free(pp, &pq);
1327 }
1328
1329 #ifdef POOL_DIAGNOSTIC
1330 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1331 #endif
1332
1333 /*
1334 * pool_grow: grow a pool by a page.
1335 *
1336 * => called with pool locked.
1337 * => unlock and relock the pool.
1338 * => return with pool locked.
1339 */
1340
1341 static int
1342 pool_grow(struct pool *pp, int flags)
1343 {
1344 struct pool_item_header *ph = NULL;
1345 char *cp;
1346
1347 mutex_exit(&pp->pr_lock);
1348 cp = pool_allocator_alloc(pp, flags);
1349 if (__predict_true(cp != NULL)) {
1350 ph = pool_alloc_item_header(pp, cp, flags);
1351 }
1352 if (__predict_false(cp == NULL || ph == NULL)) {
1353 if (cp != NULL) {
1354 pool_allocator_free(pp, cp);
1355 }
1356 mutex_enter(&pp->pr_lock);
1357 return ENOMEM;
1358 }
1359
1360 mutex_enter(&pp->pr_lock);
1361 pool_prime_page(pp, cp, ph);
1362 pp->pr_npagealloc++;
1363 return 0;
1364 }
1365
1366 /*
1367 * Add N items to the pool.
1368 */
1369 int
1370 pool_prime(struct pool *pp, int n)
1371 {
1372 int newpages;
1373 int error = 0;
1374
1375 mutex_enter(&pp->pr_lock);
1376
1377 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1378
1379 while (newpages-- > 0) {
1380 error = pool_grow(pp, PR_NOWAIT);
1381 if (error) {
1382 break;
1383 }
1384 pp->pr_minpages++;
1385 }
1386
1387 if (pp->pr_minpages >= pp->pr_maxpages)
1388 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1389
1390 mutex_exit(&pp->pr_lock);
1391 return error;
1392 }
1393
1394 /*
1395 * Add a page worth of items to the pool.
1396 *
1397 * Note, we must be called with the pool descriptor LOCKED.
1398 */
1399 static void
1400 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1401 {
1402 struct pool_item *pi;
1403 void *cp = storage;
1404 const unsigned int align = pp->pr_align;
1405 const unsigned int ioff = pp->pr_itemoffset;
1406 int n;
1407
1408 KASSERT(mutex_owned(&pp->pr_lock));
1409
1410 #ifdef DIAGNOSTIC
1411 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1412 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1413 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1414 #endif
1415
1416 /*
1417 * Insert page header.
1418 */
1419 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1420 LIST_INIT(&ph->ph_itemlist);
1421 ph->ph_page = storage;
1422 ph->ph_nmissing = 0;
1423 getmicrotime(&ph->ph_time);
1424 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1425 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1426
1427 pp->pr_nidle++;
1428
1429 /*
1430 * Color this page.
1431 */
1432 cp = (char *)cp + pp->pr_curcolor;
1433 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1434 pp->pr_curcolor = 0;
1435
1436 /*
1437 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1438 */
1439 if (ioff != 0)
1440 cp = (char *)cp + align - ioff;
1441
1442 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1443
1444 /*
1445 * Insert remaining chunks on the bucket list.
1446 */
1447 n = pp->pr_itemsperpage;
1448 pp->pr_nitems += n;
1449
1450 if (pp->pr_roflags & PR_NOTOUCH) {
1451 pr_item_notouch_init(pp, ph);
1452 } else {
1453 while (n--) {
1454 pi = (struct pool_item *)cp;
1455
1456 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1457
1458 /* Insert on page list */
1459 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1460 #ifdef DIAGNOSTIC
1461 pi->pi_magic = PI_MAGIC;
1462 #endif
1463 cp = (char *)cp + pp->pr_size;
1464
1465 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1466 }
1467 }
1468
1469 /*
1470 * If the pool was depleted, point at the new page.
1471 */
1472 if (pp->pr_curpage == NULL)
1473 pp->pr_curpage = ph;
1474
1475 if (++pp->pr_npages > pp->pr_hiwat)
1476 pp->pr_hiwat = pp->pr_npages;
1477 }
1478
1479 /*
1480 * Used by pool_get() when nitems drops below the low water mark. This
1481 * is used to catch up pr_nitems with the low water mark.
1482 *
1483 * Note 1, we never wait for memory here, we let the caller decide what to do.
1484 *
1485 * Note 2, we must be called with the pool already locked, and we return
1486 * with it locked.
1487 */
1488 static int
1489 pool_catchup(struct pool *pp)
1490 {
1491 int error = 0;
1492
1493 while (POOL_NEEDS_CATCHUP(pp)) {
1494 error = pool_grow(pp, PR_NOWAIT);
1495 if (error) {
1496 break;
1497 }
1498 }
1499 return error;
1500 }
1501
1502 static void
1503 pool_update_curpage(struct pool *pp)
1504 {
1505
1506 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1507 if (pp->pr_curpage == NULL) {
1508 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1509 }
1510 }
1511
1512 void
1513 pool_setlowat(struct pool *pp, int n)
1514 {
1515
1516 mutex_enter(&pp->pr_lock);
1517
1518 pp->pr_minitems = n;
1519 pp->pr_minpages = (n == 0)
1520 ? 0
1521 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1522
1523 /* Make sure we're caught up with the newly-set low water mark. */
1524 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1525 /*
1526 * XXX: Should we log a warning? Should we set up a timeout
1527 * to try again in a second or so? The latter could break
1528 * a caller's assumptions about interrupt protection, etc.
1529 */
1530 }
1531
1532 mutex_exit(&pp->pr_lock);
1533 }
1534
1535 void
1536 pool_sethiwat(struct pool *pp, int n)
1537 {
1538
1539 mutex_enter(&pp->pr_lock);
1540
1541 pp->pr_maxpages = (n == 0)
1542 ? 0
1543 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1544
1545 mutex_exit(&pp->pr_lock);
1546 }
1547
1548 void
1549 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1550 {
1551
1552 mutex_enter(&pp->pr_lock);
1553
1554 pp->pr_hardlimit = n;
1555 pp->pr_hardlimit_warning = warnmess;
1556 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1557 pp->pr_hardlimit_warning_last.tv_sec = 0;
1558 pp->pr_hardlimit_warning_last.tv_usec = 0;
1559
1560 /*
1561 * In-line version of pool_sethiwat(), because we don't want to
1562 * release the lock.
1563 */
1564 pp->pr_maxpages = (n == 0)
1565 ? 0
1566 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1567
1568 mutex_exit(&pp->pr_lock);
1569 }
1570
1571 /*
1572 * Release all complete pages that have not been used recently.
1573 */
1574 int
1575 #ifdef POOL_DIAGNOSTIC
1576 _pool_reclaim(struct pool *pp, const char *file, long line)
1577 #else
1578 pool_reclaim(struct pool *pp)
1579 #endif
1580 {
1581 struct pool_item_header *ph, *phnext;
1582 struct pool_pagelist pq;
1583 struct timeval curtime, diff;
1584 bool klock;
1585 int rv;
1586
1587 if (pp->pr_drain_hook != NULL) {
1588 /*
1589 * The drain hook must be called with the pool unlocked.
1590 */
1591 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1592 }
1593
1594 /*
1595 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
1596 * and we are called from the pagedaemon without kernel_lock.
1597 * Does not apply to IPL_SOFTBIO.
1598 */
1599 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1600 pp->pr_ipl == IPL_SOFTSERIAL) {
1601 KERNEL_LOCK(1, NULL);
1602 klock = true;
1603 } else
1604 klock = false;
1605
1606 /* Reclaim items from the pool's cache (if any). */
1607 if (pp->pr_cache != NULL)
1608 pool_cache_invalidate(pp->pr_cache);
1609
1610 if (mutex_tryenter(&pp->pr_lock) == 0) {
1611 if (klock) {
1612 KERNEL_UNLOCK_ONE(NULL);
1613 }
1614 return (0);
1615 }
1616 pr_enter(pp, file, line);
1617
1618 LIST_INIT(&pq);
1619
1620 getmicrotime(&curtime);
1621
1622 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1623 phnext = LIST_NEXT(ph, ph_pagelist);
1624
1625 /* Check our minimum page claim */
1626 if (pp->pr_npages <= pp->pr_minpages)
1627 break;
1628
1629 KASSERT(ph->ph_nmissing == 0);
1630 timersub(&curtime, &ph->ph_time, &diff);
1631 if (diff.tv_sec < pool_inactive_time
1632 && !pa_starved_p(pp->pr_alloc))
1633 continue;
1634
1635 /*
1636 * If freeing this page would put us below
1637 * the low water mark, stop now.
1638 */
1639 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1640 pp->pr_minitems)
1641 break;
1642
1643 pr_rmpage(pp, ph, &pq);
1644 }
1645
1646 pr_leave(pp);
1647 mutex_exit(&pp->pr_lock);
1648
1649 if (LIST_EMPTY(&pq))
1650 rv = 0;
1651 else {
1652 pr_pagelist_free(pp, &pq);
1653 rv = 1;
1654 }
1655
1656 if (klock) {
1657 KERNEL_UNLOCK_ONE(NULL);
1658 }
1659
1660 return (rv);
1661 }
1662
1663 /*
1664 * Drain pools, one at a time. This is a two stage process;
1665 * drain_start kicks off a cross call to drain CPU-level caches
1666 * if the pool has an associated pool_cache. drain_end waits
1667 * for those cross calls to finish, and then drains the cache
1668 * (if any) and pool.
1669 *
1670 * Note, must never be called from interrupt context.
1671 */
1672 void
1673 pool_drain_start(struct pool **ppp, uint64_t *wp)
1674 {
1675 struct pool *pp;
1676
1677 KASSERT(!LIST_EMPTY(&pool_head));
1678
1679 pp = NULL;
1680
1681 /* Find next pool to drain, and add a reference. */
1682 mutex_enter(&pool_head_lock);
1683 do {
1684 if (drainpp == NULL) {
1685 drainpp = LIST_FIRST(&pool_head);
1686 }
1687 if (drainpp != NULL) {
1688 pp = drainpp;
1689 drainpp = LIST_NEXT(pp, pr_poollist);
1690 }
1691 /*
1692 * Skip completely idle pools. We depend on at least
1693 * one pool in the system being active.
1694 */
1695 } while (pp == NULL || pp->pr_npages == 0);
1696 pp->pr_refcnt++;
1697 mutex_exit(&pool_head_lock);
1698
1699 /* If there is a pool_cache, drain CPU level caches. */
1700 *ppp = pp;
1701 if (pp->pr_cache != NULL) {
1702 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1703 pp->pr_cache, NULL);
1704 }
1705 }
1706
1707 void
1708 pool_drain_end(struct pool *pp, uint64_t where)
1709 {
1710
1711 if (pp == NULL)
1712 return;
1713
1714 KASSERT(pp->pr_refcnt > 0);
1715
1716 /* Wait for remote draining to complete. */
1717 if (pp->pr_cache != NULL)
1718 xc_wait(where);
1719
1720 /* Drain the cache (if any) and pool.. */
1721 pool_reclaim(pp);
1722
1723 /* Finally, unlock the pool. */
1724 mutex_enter(&pool_head_lock);
1725 pp->pr_refcnt--;
1726 cv_broadcast(&pool_busy);
1727 mutex_exit(&pool_head_lock);
1728 }
1729
1730 /*
1731 * Diagnostic helpers.
1732 */
1733 void
1734 pool_print(struct pool *pp, const char *modif)
1735 {
1736
1737 pool_print1(pp, modif, printf);
1738 }
1739
1740 void
1741 pool_printall(const char *modif, void (*pr)(const char *, ...))
1742 {
1743 struct pool *pp;
1744
1745 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1746 pool_printit(pp, modif, pr);
1747 }
1748 }
1749
1750 void
1751 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1752 {
1753
1754 if (pp == NULL) {
1755 (*pr)("Must specify a pool to print.\n");
1756 return;
1757 }
1758
1759 pool_print1(pp, modif, pr);
1760 }
1761
1762 static void
1763 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1764 void (*pr)(const char *, ...))
1765 {
1766 struct pool_item_header *ph;
1767 #ifdef DIAGNOSTIC
1768 struct pool_item *pi;
1769 #endif
1770
1771 LIST_FOREACH(ph, pl, ph_pagelist) {
1772 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1773 ph->ph_page, ph->ph_nmissing,
1774 (u_long)ph->ph_time.tv_sec,
1775 (u_long)ph->ph_time.tv_usec);
1776 #ifdef DIAGNOSTIC
1777 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1778 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1779 if (pi->pi_magic != PI_MAGIC) {
1780 (*pr)("\t\t\titem %p, magic 0x%x\n",
1781 pi, pi->pi_magic);
1782 }
1783 }
1784 }
1785 #endif
1786 }
1787 }
1788
1789 static void
1790 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1791 {
1792 struct pool_item_header *ph;
1793 pool_cache_t pc;
1794 pcg_t *pcg;
1795 pool_cache_cpu_t *cc;
1796 uint64_t cpuhit, cpumiss;
1797 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1798 char c;
1799
1800 while ((c = *modif++) != '\0') {
1801 if (c == 'l')
1802 print_log = 1;
1803 if (c == 'p')
1804 print_pagelist = 1;
1805 if (c == 'c')
1806 print_cache = 1;
1807 }
1808
1809 if ((pc = pp->pr_cache) != NULL) {
1810 (*pr)("POOL CACHE");
1811 } else {
1812 (*pr)("POOL");
1813 }
1814
1815 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1816 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1817 pp->pr_roflags);
1818 (*pr)("\talloc %p\n", pp->pr_alloc);
1819 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1820 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1821 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1822 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1823
1824 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1825 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1826 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1827 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1828
1829 if (print_pagelist == 0)
1830 goto skip_pagelist;
1831
1832 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1833 (*pr)("\n\tempty page list:\n");
1834 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1835 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1836 (*pr)("\n\tfull page list:\n");
1837 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1838 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1839 (*pr)("\n\tpartial-page list:\n");
1840 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1841
1842 if (pp->pr_curpage == NULL)
1843 (*pr)("\tno current page\n");
1844 else
1845 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1846
1847 skip_pagelist:
1848 if (print_log == 0)
1849 goto skip_log;
1850
1851 (*pr)("\n");
1852 if ((pp->pr_roflags & PR_LOGGING) == 0)
1853 (*pr)("\tno log\n");
1854 else {
1855 pr_printlog(pp, NULL, pr);
1856 }
1857
1858 skip_log:
1859
1860 #define PR_GROUPLIST(pcg) \
1861 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1862 for (i = 0; i < PCG_NOBJECTS; i++) { \
1863 if (pcg->pcg_objects[i].pcgo_pa != \
1864 POOL_PADDR_INVALID) { \
1865 (*pr)("\t\t\t%p, 0x%llx\n", \
1866 pcg->pcg_objects[i].pcgo_va, \
1867 (unsigned long long) \
1868 pcg->pcg_objects[i].pcgo_pa); \
1869 } else { \
1870 (*pr)("\t\t\t%p\n", \
1871 pcg->pcg_objects[i].pcgo_va); \
1872 } \
1873 }
1874
1875 if (pc != NULL) {
1876 cpuhit = 0;
1877 cpumiss = 0;
1878 for (i = 0; i < MAXCPUS; i++) {
1879 if ((cc = pc->pc_cpus[i]) == NULL)
1880 continue;
1881 cpuhit += cc->cc_hits;
1882 cpumiss += cc->cc_misses;
1883 }
1884 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1885 (*pr)("\tcache layer hits %llu misses %llu\n",
1886 pc->pc_hits, pc->pc_misses);
1887 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1888 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1889 pc->pc_contended);
1890 (*pr)("\tcache layer empty groups %u full groups %u\n",
1891 pc->pc_nempty, pc->pc_nfull);
1892 if (print_cache) {
1893 (*pr)("\tfull cache groups:\n");
1894 for (pcg = pc->pc_fullgroups; pcg != NULL;
1895 pcg = pcg->pcg_next) {
1896 PR_GROUPLIST(pcg);
1897 }
1898 (*pr)("\tempty cache groups:\n");
1899 for (pcg = pc->pc_emptygroups; pcg != NULL;
1900 pcg = pcg->pcg_next) {
1901 PR_GROUPLIST(pcg);
1902 }
1903 }
1904 }
1905 #undef PR_GROUPLIST
1906
1907 pr_enter_check(pp, pr);
1908 }
1909
1910 static int
1911 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1912 {
1913 struct pool_item *pi;
1914 void *page;
1915 int n;
1916
1917 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1918 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1919 if (page != ph->ph_page &&
1920 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1921 if (label != NULL)
1922 printf("%s: ", label);
1923 printf("pool(%p:%s): page inconsistency: page %p;"
1924 " at page head addr %p (p %p)\n", pp,
1925 pp->pr_wchan, ph->ph_page,
1926 ph, page);
1927 return 1;
1928 }
1929 }
1930
1931 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1932 return 0;
1933
1934 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1935 pi != NULL;
1936 pi = LIST_NEXT(pi,pi_list), n++) {
1937
1938 #ifdef DIAGNOSTIC
1939 if (pi->pi_magic != PI_MAGIC) {
1940 if (label != NULL)
1941 printf("%s: ", label);
1942 printf("pool(%s): free list modified: magic=%x;"
1943 " page %p; item ordinal %d; addr %p\n",
1944 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1945 n, pi);
1946 panic("pool");
1947 }
1948 #endif
1949 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1950 continue;
1951 }
1952 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1953 if (page == ph->ph_page)
1954 continue;
1955
1956 if (label != NULL)
1957 printf("%s: ", label);
1958 printf("pool(%p:%s): page inconsistency: page %p;"
1959 " item ordinal %d; addr %p (p %p)\n", pp,
1960 pp->pr_wchan, ph->ph_page,
1961 n, pi, page);
1962 return 1;
1963 }
1964 return 0;
1965 }
1966
1967
1968 int
1969 pool_chk(struct pool *pp, const char *label)
1970 {
1971 struct pool_item_header *ph;
1972 int r = 0;
1973
1974 mutex_enter(&pp->pr_lock);
1975 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1976 r = pool_chk_page(pp, label, ph);
1977 if (r) {
1978 goto out;
1979 }
1980 }
1981 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1982 r = pool_chk_page(pp, label, ph);
1983 if (r) {
1984 goto out;
1985 }
1986 }
1987 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1988 r = pool_chk_page(pp, label, ph);
1989 if (r) {
1990 goto out;
1991 }
1992 }
1993
1994 out:
1995 mutex_exit(&pp->pr_lock);
1996 return (r);
1997 }
1998
1999 /*
2000 * pool_cache_init:
2001 *
2002 * Initialize a pool cache.
2003 */
2004 pool_cache_t
2005 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2006 const char *wchan, struct pool_allocator *palloc, int ipl,
2007 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2008 {
2009 pool_cache_t pc;
2010
2011 pc = pool_get(&cache_pool, PR_WAITOK);
2012 if (pc == NULL)
2013 return NULL;
2014
2015 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2016 palloc, ipl, ctor, dtor, arg);
2017
2018 return pc;
2019 }
2020
2021 /*
2022 * pool_cache_bootstrap:
2023 *
2024 * Kernel-private version of pool_cache_init(). The caller
2025 * provides initial storage.
2026 */
2027 void
2028 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2029 u_int align_offset, u_int flags, const char *wchan,
2030 struct pool_allocator *palloc, int ipl,
2031 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2032 void *arg)
2033 {
2034 CPU_INFO_ITERATOR cii;
2035 struct cpu_info *ci;
2036 struct pool *pp;
2037
2038 pp = &pc->pc_pool;
2039 if (palloc == NULL && ipl == IPL_NONE)
2040 palloc = &pool_allocator_nointr;
2041 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2042
2043 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, pp->pr_ipl);
2044
2045 if (ctor == NULL) {
2046 ctor = (int (*)(void *, void *, int))nullop;
2047 }
2048 if (dtor == NULL) {
2049 dtor = (void (*)(void *, void *))nullop;
2050 }
2051
2052 pc->pc_emptygroups = NULL;
2053 pc->pc_fullgroups = NULL;
2054 pc->pc_partgroups = NULL;
2055 pc->pc_ctor = ctor;
2056 pc->pc_dtor = dtor;
2057 pc->pc_arg = arg;
2058 pc->pc_hits = 0;
2059 pc->pc_misses = 0;
2060 pc->pc_nempty = 0;
2061 pc->pc_npart = 0;
2062 pc->pc_nfull = 0;
2063 pc->pc_contended = 0;
2064 pc->pc_refcnt = 0;
2065 pc->pc_freecheck = NULL;
2066
2067 /* Allocate per-CPU caches. */
2068 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2069 pc->pc_ncpu = 0;
2070 for (CPU_INFO_FOREACH(cii, ci)) {
2071 pool_cache_cpu_init1(ci, pc);
2072 }
2073
2074 if (__predict_true(!cold)) {
2075 mutex_enter(&pp->pr_lock);
2076 pp->pr_cache = pc;
2077 mutex_exit(&pp->pr_lock);
2078 mutex_enter(&pool_head_lock);
2079 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2080 mutex_exit(&pool_head_lock);
2081 } else {
2082 pp->pr_cache = pc;
2083 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2084 }
2085 }
2086
2087 /*
2088 * pool_cache_destroy:
2089 *
2090 * Destroy a pool cache.
2091 */
2092 void
2093 pool_cache_destroy(pool_cache_t pc)
2094 {
2095 struct pool *pp = &pc->pc_pool;
2096 pool_cache_cpu_t *cc;
2097 pcg_t *pcg;
2098 int i;
2099
2100 /* Remove it from the global list. */
2101 mutex_enter(&pool_head_lock);
2102 while (pc->pc_refcnt != 0)
2103 cv_wait(&pool_busy, &pool_head_lock);
2104 LIST_REMOVE(pc, pc_cachelist);
2105 mutex_exit(&pool_head_lock);
2106
2107 /* First, invalidate the entire cache. */
2108 pool_cache_invalidate(pc);
2109
2110 /* Disassociate it from the pool. */
2111 mutex_enter(&pp->pr_lock);
2112 pp->pr_cache = NULL;
2113 mutex_exit(&pp->pr_lock);
2114
2115 /* Destroy per-CPU data */
2116 for (i = 0; i < MAXCPUS; i++) {
2117 if ((cc = pc->pc_cpus[i]) == NULL)
2118 continue;
2119 if ((pcg = cc->cc_current) != NULL) {
2120 pcg->pcg_next = NULL;
2121 pool_cache_invalidate_groups(pc, pcg);
2122 }
2123 if ((pcg = cc->cc_previous) != NULL) {
2124 pcg->pcg_next = NULL;
2125 pool_cache_invalidate_groups(pc, pcg);
2126 }
2127 if (cc != &pc->pc_cpu0)
2128 pool_put(&cache_cpu_pool, cc);
2129 }
2130
2131 /* Finally, destroy it. */
2132 mutex_destroy(&pc->pc_lock);
2133 pool_destroy(pp);
2134 pool_put(&cache_pool, pc);
2135 }
2136
2137 /*
2138 * pool_cache_cpu_init1:
2139 *
2140 * Called for each pool_cache whenever a new CPU is attached.
2141 */
2142 static void
2143 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2144 {
2145 pool_cache_cpu_t *cc;
2146
2147 KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2148
2149 if ((cc = pc->pc_cpus[ci->ci_index]) != NULL) {
2150 KASSERT(cc->cc_cpu = ci);
2151 return;
2152 }
2153
2154 /*
2155 * The first CPU is 'free'. This needs to be the case for
2156 * bootstrap - we may not be able to allocate yet.
2157 */
2158 if (pc->pc_ncpu == 0) {
2159 cc = &pc->pc_cpu0;
2160 pc->pc_ncpu = 1;
2161 } else {
2162 mutex_enter(&pc->pc_lock);
2163 pc->pc_ncpu++;
2164 mutex_exit(&pc->pc_lock);
2165 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2166 }
2167
2168 cc->cc_ipl = pc->pc_pool.pr_ipl;
2169 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2170 cc->cc_cache = pc;
2171 cc->cc_cpu = ci;
2172 cc->cc_hits = 0;
2173 cc->cc_misses = 0;
2174 cc->cc_current = NULL;
2175 cc->cc_previous = NULL;
2176
2177 pc->pc_cpus[ci->ci_index] = cc;
2178 }
2179
2180 /*
2181 * pool_cache_cpu_init:
2182 *
2183 * Called whenever a new CPU is attached.
2184 */
2185 void
2186 pool_cache_cpu_init(struct cpu_info *ci)
2187 {
2188 pool_cache_t pc;
2189
2190 mutex_enter(&pool_head_lock);
2191 LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2192 pc->pc_refcnt++;
2193 mutex_exit(&pool_head_lock);
2194
2195 pool_cache_cpu_init1(ci, pc);
2196
2197 mutex_enter(&pool_head_lock);
2198 pc->pc_refcnt--;
2199 cv_broadcast(&pool_busy);
2200 }
2201 mutex_exit(&pool_head_lock);
2202 }
2203
2204 /*
2205 * pool_cache_reclaim:
2206 *
2207 * Reclaim memory from a pool cache.
2208 */
2209 bool
2210 pool_cache_reclaim(pool_cache_t pc)
2211 {
2212
2213 return pool_reclaim(&pc->pc_pool);
2214 }
2215
2216 static void
2217 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2218 {
2219
2220 (*pc->pc_dtor)(pc->pc_arg, object);
2221 pool_put(&pc->pc_pool, object);
2222 }
2223
2224 /*
2225 * pool_cache_destruct_object:
2226 *
2227 * Force destruction of an object and its release back into
2228 * the pool.
2229 */
2230 void
2231 pool_cache_destruct_object(pool_cache_t pc, void *object)
2232 {
2233
2234 FREECHECK_IN(&pc->pc_freecheck, object);
2235
2236 pool_cache_destruct_object1(pc, object);
2237 }
2238
2239 /*
2240 * pool_cache_invalidate_groups:
2241 *
2242 * Invalidate a chain of groups and destruct all objects.
2243 */
2244 static void
2245 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2246 {
2247 void *object;
2248 pcg_t *next;
2249 int i;
2250
2251 for (; pcg != NULL; pcg = next) {
2252 next = pcg->pcg_next;
2253
2254 for (i = 0; i < pcg->pcg_avail; i++) {
2255 object = pcg->pcg_objects[i].pcgo_va;
2256 pool_cache_destruct_object1(pc, object);
2257 }
2258
2259 pool_put(&pcgpool, pcg);
2260 }
2261 }
2262
2263 /*
2264 * pool_cache_invalidate:
2265 *
2266 * Invalidate a pool cache (destruct and release all of the
2267 * cached objects). Does not reclaim objects from the pool.
2268 */
2269 void
2270 pool_cache_invalidate(pool_cache_t pc)
2271 {
2272 pcg_t *full, *empty, *part;
2273
2274 mutex_enter(&pc->pc_lock);
2275 full = pc->pc_fullgroups;
2276 empty = pc->pc_emptygroups;
2277 part = pc->pc_partgroups;
2278 pc->pc_fullgroups = NULL;
2279 pc->pc_emptygroups = NULL;
2280 pc->pc_partgroups = NULL;
2281 pc->pc_nfull = 0;
2282 pc->pc_nempty = 0;
2283 pc->pc_npart = 0;
2284 mutex_exit(&pc->pc_lock);
2285
2286 pool_cache_invalidate_groups(pc, full);
2287 pool_cache_invalidate_groups(pc, empty);
2288 pool_cache_invalidate_groups(pc, part);
2289 }
2290
2291 void
2292 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2293 {
2294
2295 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2296 }
2297
2298 void
2299 pool_cache_setlowat(pool_cache_t pc, int n)
2300 {
2301
2302 pool_setlowat(&pc->pc_pool, n);
2303 }
2304
2305 void
2306 pool_cache_sethiwat(pool_cache_t pc, int n)
2307 {
2308
2309 pool_sethiwat(&pc->pc_pool, n);
2310 }
2311
2312 void
2313 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2314 {
2315
2316 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2317 }
2318
2319 static inline pool_cache_cpu_t *
2320 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2321 {
2322 pool_cache_cpu_t *cc;
2323 struct cpu_info *ci;
2324
2325 /*
2326 * Prevent other users of the cache from accessing our
2327 * CPU-local data. To avoid touching shared state, we
2328 * pull the neccessary information from CPU local data.
2329 */
2330 ci = curcpu();
2331 KASSERT(ci->ci_data.cpu_index < MAXCPUS);
2332 cc = pc->pc_cpus[ci->ci_data.cpu_index];
2333 KASSERT(cc->cc_cache == pc);
2334 if (cc->cc_ipl == IPL_NONE) {
2335 crit_enter();
2336 } else {
2337 *s = splraiseipl(cc->cc_iplcookie);
2338 }
2339
2340 /* Moved to another CPU before disabling preemption? */
2341 if (__predict_false(ci != curcpu())) {
2342 ci = curcpu();
2343 cc = pc->pc_cpus[ci->ci_data.cpu_index];
2344 }
2345
2346 #ifdef DIAGNOSTIC
2347 KASSERT(cc->cc_cpu == ci);
2348 KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2349 #endif
2350
2351 return cc;
2352 }
2353
2354 static inline void
2355 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2356 {
2357
2358 /* No longer need exclusive access to the per-CPU data. */
2359 if (cc->cc_ipl == IPL_NONE) {
2360 crit_exit();
2361 } else {
2362 splx(*s);
2363 }
2364 }
2365
2366 #if __GNUC_PREREQ__(3, 0)
2367 __attribute ((noinline))
2368 #endif
2369 pool_cache_cpu_t *
2370 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2371 paddr_t *pap, int flags)
2372 {
2373 pcg_t *pcg, *cur;
2374 uint64_t ncsw;
2375 pool_cache_t pc;
2376 void *object;
2377
2378 pc = cc->cc_cache;
2379 cc->cc_misses++;
2380
2381 /*
2382 * Nothing was available locally. Try and grab a group
2383 * from the cache.
2384 */
2385 if (!mutex_tryenter(&pc->pc_lock)) {
2386 ncsw = curlwp->l_ncsw;
2387 mutex_enter(&pc->pc_lock);
2388 pc->pc_contended++;
2389
2390 /*
2391 * If we context switched while locking, then
2392 * our view of the per-CPU data is invalid:
2393 * retry.
2394 */
2395 if (curlwp->l_ncsw != ncsw) {
2396 mutex_exit(&pc->pc_lock);
2397 pool_cache_cpu_exit(cc, s);
2398 return pool_cache_cpu_enter(pc, s);
2399 }
2400 }
2401
2402 if ((pcg = pc->pc_fullgroups) != NULL) {
2403 /*
2404 * If there's a full group, release our empty
2405 * group back to the cache. Install the full
2406 * group as cc_current and return.
2407 */
2408 if ((cur = cc->cc_current) != NULL) {
2409 KASSERT(cur->pcg_avail == 0);
2410 cur->pcg_next = pc->pc_emptygroups;
2411 pc->pc_emptygroups = cur;
2412 pc->pc_nempty++;
2413 }
2414 KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
2415 cc->cc_current = pcg;
2416 pc->pc_fullgroups = pcg->pcg_next;
2417 pc->pc_hits++;
2418 pc->pc_nfull--;
2419 mutex_exit(&pc->pc_lock);
2420 return cc;
2421 }
2422
2423 /*
2424 * Nothing available locally or in cache. Take the slow
2425 * path: fetch a new object from the pool and construct
2426 * it.
2427 */
2428 pc->pc_misses++;
2429 mutex_exit(&pc->pc_lock);
2430 pool_cache_cpu_exit(cc, s);
2431
2432 object = pool_get(&pc->pc_pool, flags);
2433 *objectp = object;
2434 if (object == NULL)
2435 return NULL;
2436
2437 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2438 pool_put(&pc->pc_pool, object);
2439 *objectp = NULL;
2440 return NULL;
2441 }
2442
2443 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2444 (pc->pc_pool.pr_align - 1)) == 0);
2445
2446 if (pap != NULL) {
2447 #ifdef POOL_VTOPHYS
2448 *pap = POOL_VTOPHYS(object);
2449 #else
2450 *pap = POOL_PADDR_INVALID;
2451 #endif
2452 }
2453
2454 FREECHECK_OUT(&pc->pc_freecheck, object);
2455 return NULL;
2456 }
2457
2458 /*
2459 * pool_cache_get{,_paddr}:
2460 *
2461 * Get an object from a pool cache (optionally returning
2462 * the physical address of the object).
2463 */
2464 void *
2465 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2466 {
2467 pool_cache_cpu_t *cc;
2468 pcg_t *pcg;
2469 void *object;
2470 int s;
2471
2472 #ifdef LOCKDEBUG
2473 if (flags & PR_WAITOK)
2474 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2475 #endif
2476
2477 cc = pool_cache_cpu_enter(pc, &s);
2478 do {
2479 /* Try and allocate an object from the current group. */
2480 pcg = cc->cc_current;
2481 if (pcg != NULL && pcg->pcg_avail > 0) {
2482 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2483 if (pap != NULL)
2484 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2485 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2486 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2487 KASSERT(object != NULL);
2488 cc->cc_hits++;
2489 pool_cache_cpu_exit(cc, &s);
2490 FREECHECK_OUT(&pc->pc_freecheck, object);
2491 return object;
2492 }
2493
2494 /*
2495 * That failed. If the previous group isn't empty, swap
2496 * it with the current group and allocate from there.
2497 */
2498 pcg = cc->cc_previous;
2499 if (pcg != NULL && pcg->pcg_avail > 0) {
2500 cc->cc_previous = cc->cc_current;
2501 cc->cc_current = pcg;
2502 continue;
2503 }
2504
2505 /*
2506 * Can't allocate from either group: try the slow path.
2507 * If get_slow() allocated an object for us, or if
2508 * no more objects are available, it will return NULL.
2509 * Otherwise, we need to retry.
2510 */
2511 cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2512 } while (cc != NULL);
2513
2514 return object;
2515 }
2516
2517 #if __GNUC_PREREQ__(3, 0)
2518 __attribute ((noinline))
2519 #endif
2520 pool_cache_cpu_t *
2521 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2522 {
2523 pcg_t *pcg, *cur;
2524 uint64_t ncsw;
2525 pool_cache_t pc;
2526
2527 pc = cc->cc_cache;
2528 cc->cc_misses++;
2529
2530 /*
2531 * No free slots locally. Try to grab an empty, unused
2532 * group from the cache.
2533 */
2534 if (!mutex_tryenter(&pc->pc_lock)) {
2535 ncsw = curlwp->l_ncsw;
2536 mutex_enter(&pc->pc_lock);
2537 pc->pc_contended++;
2538
2539 /*
2540 * If we context switched while locking, then
2541 * our view of the per-CPU data is invalid:
2542 * retry.
2543 */
2544 if (curlwp->l_ncsw != ncsw) {
2545 mutex_exit(&pc->pc_lock);
2546 pool_cache_cpu_exit(cc, s);
2547 return pool_cache_cpu_enter(pc, s);
2548 }
2549 }
2550
2551 if ((pcg = pc->pc_emptygroups) != NULL) {
2552 /*
2553 * If there's a empty group, release our full
2554 * group back to the cache. Install the empty
2555 * group as cc_current and return.
2556 */
2557 if ((cur = cc->cc_current) != NULL) {
2558 KASSERT(cur->pcg_avail == PCG_NOBJECTS);
2559 cur->pcg_next = pc->pc_fullgroups;
2560 pc->pc_fullgroups = cur;
2561 pc->pc_nfull++;
2562 }
2563 KASSERT(pcg->pcg_avail == 0);
2564 cc->cc_current = pcg;
2565 pc->pc_emptygroups = pcg->pcg_next;
2566 pc->pc_hits++;
2567 pc->pc_nempty--;
2568 mutex_exit(&pc->pc_lock);
2569 return cc;
2570 }
2571
2572 /*
2573 * Nothing available locally or in cache. Take the
2574 * slow path and try to allocate a new group that we
2575 * can release to.
2576 */
2577 pc->pc_misses++;
2578 mutex_exit(&pc->pc_lock);
2579 pool_cache_cpu_exit(cc, s);
2580
2581 /*
2582 * If we can't allocate a new group, just throw the
2583 * object away.
2584 */
2585 pcg = pool_get(&pcgpool, PR_NOWAIT);
2586 if (pcg == NULL) {
2587 pool_cache_destruct_object(pc, object);
2588 return NULL;
2589 }
2590 #ifdef DIAGNOSTIC
2591 memset(pcg, 0, sizeof(*pcg));
2592 #else
2593 pcg->pcg_avail = 0;
2594 #endif
2595
2596 /*
2597 * Add the empty group to the cache and try again.
2598 */
2599 mutex_enter(&pc->pc_lock);
2600 pcg->pcg_next = pc->pc_emptygroups;
2601 pc->pc_emptygroups = pcg;
2602 pc->pc_nempty++;
2603 mutex_exit(&pc->pc_lock);
2604
2605 return pool_cache_cpu_enter(pc, s);
2606 }
2607
2608 /*
2609 * pool_cache_put{,_paddr}:
2610 *
2611 * Put an object back to the pool cache (optionally caching the
2612 * physical address of the object).
2613 */
2614 void
2615 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2616 {
2617 pool_cache_cpu_t *cc;
2618 pcg_t *pcg;
2619 int s;
2620
2621 FREECHECK_IN(&pc->pc_freecheck, object);
2622
2623 cc = pool_cache_cpu_enter(pc, &s);
2624 do {
2625 /* If the current group isn't full, release it there. */
2626 pcg = cc->cc_current;
2627 if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
2628 KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
2629 == NULL);
2630 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2631 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2632 pcg->pcg_avail++;
2633 cc->cc_hits++;
2634 pool_cache_cpu_exit(cc, &s);
2635 return;
2636 }
2637
2638 /*
2639 * That failed. If the previous group is empty, swap
2640 * it with the current group and try again.
2641 */
2642 pcg = cc->cc_previous;
2643 if (pcg != NULL && pcg->pcg_avail == 0) {
2644 cc->cc_previous = cc->cc_current;
2645 cc->cc_current = pcg;
2646 continue;
2647 }
2648
2649 /*
2650 * Can't free to either group: try the slow path.
2651 * If put_slow() releases the object for us, it
2652 * will return NULL. Otherwise we need to retry.
2653 */
2654 cc = pool_cache_put_slow(cc, &s, object, pa);
2655 } while (cc != NULL);
2656 }
2657
2658 /*
2659 * pool_cache_xcall:
2660 *
2661 * Transfer objects from the per-CPU cache to the global cache.
2662 * Run within a cross-call thread.
2663 */
2664 static void
2665 pool_cache_xcall(pool_cache_t pc)
2666 {
2667 pool_cache_cpu_t *cc;
2668 pcg_t *prev, *cur, **list;
2669 int s = 0; /* XXXgcc */
2670
2671 cc = pool_cache_cpu_enter(pc, &s);
2672 cur = cc->cc_current;
2673 cc->cc_current = NULL;
2674 prev = cc->cc_previous;
2675 cc->cc_previous = NULL;
2676 pool_cache_cpu_exit(cc, &s);
2677
2678 /*
2679 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2680 * because locks at IPL_SOFTXXX are still spinlocks. Does not
2681 * apply to IPL_SOFTBIO. Cross-call threads do not take the
2682 * kernel_lock.
2683 */
2684 s = splvm();
2685 mutex_enter(&pc->pc_lock);
2686 if (cur != NULL) {
2687 if (cur->pcg_avail == PCG_NOBJECTS) {
2688 list = &pc->pc_fullgroups;
2689 pc->pc_nfull++;
2690 } else if (cur->pcg_avail == 0) {
2691 list = &pc->pc_emptygroups;
2692 pc->pc_nempty++;
2693 } else {
2694 list = &pc->pc_partgroups;
2695 pc->pc_npart++;
2696 }
2697 cur->pcg_next = *list;
2698 *list = cur;
2699 }
2700 if (prev != NULL) {
2701 if (prev->pcg_avail == PCG_NOBJECTS) {
2702 list = &pc->pc_fullgroups;
2703 pc->pc_nfull++;
2704 } else if (prev->pcg_avail == 0) {
2705 list = &pc->pc_emptygroups;
2706 pc->pc_nempty++;
2707 } else {
2708 list = &pc->pc_partgroups;
2709 pc->pc_npart++;
2710 }
2711 prev->pcg_next = *list;
2712 *list = prev;
2713 }
2714 mutex_exit(&pc->pc_lock);
2715 splx(s);
2716 }
2717
2718 /*
2719 * Pool backend allocators.
2720 *
2721 * Each pool has a backend allocator that handles allocation, deallocation,
2722 * and any additional draining that might be needed.
2723 *
2724 * We provide two standard allocators:
2725 *
2726 * pool_allocator_kmem - the default when no allocator is specified
2727 *
2728 * pool_allocator_nointr - used for pools that will not be accessed
2729 * in interrupt context.
2730 */
2731 void *pool_page_alloc(struct pool *, int);
2732 void pool_page_free(struct pool *, void *);
2733
2734 #ifdef POOL_SUBPAGE
2735 struct pool_allocator pool_allocator_kmem_fullpage = {
2736 pool_page_alloc, pool_page_free, 0,
2737 .pa_backingmapptr = &kmem_map,
2738 };
2739 #else
2740 struct pool_allocator pool_allocator_kmem = {
2741 pool_page_alloc, pool_page_free, 0,
2742 .pa_backingmapptr = &kmem_map,
2743 };
2744 #endif
2745
2746 void *pool_page_alloc_nointr(struct pool *, int);
2747 void pool_page_free_nointr(struct pool *, void *);
2748
2749 #ifdef POOL_SUBPAGE
2750 struct pool_allocator pool_allocator_nointr_fullpage = {
2751 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2752 .pa_backingmapptr = &kernel_map,
2753 };
2754 #else
2755 struct pool_allocator pool_allocator_nointr = {
2756 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2757 .pa_backingmapptr = &kernel_map,
2758 };
2759 #endif
2760
2761 #ifdef POOL_SUBPAGE
2762 void *pool_subpage_alloc(struct pool *, int);
2763 void pool_subpage_free(struct pool *, void *);
2764
2765 struct pool_allocator pool_allocator_kmem = {
2766 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2767 .pa_backingmapptr = &kmem_map,
2768 };
2769
2770 void *pool_subpage_alloc_nointr(struct pool *, int);
2771 void pool_subpage_free_nointr(struct pool *, void *);
2772
2773 struct pool_allocator pool_allocator_nointr = {
2774 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2775 .pa_backingmapptr = &kmem_map,
2776 };
2777 #endif /* POOL_SUBPAGE */
2778
2779 static void *
2780 pool_allocator_alloc(struct pool *pp, int flags)
2781 {
2782 struct pool_allocator *pa = pp->pr_alloc;
2783 void *res;
2784
2785 res = (*pa->pa_alloc)(pp, flags);
2786 if (res == NULL && (flags & PR_WAITOK) == 0) {
2787 /*
2788 * We only run the drain hook here if PR_NOWAIT.
2789 * In other cases, the hook will be run in
2790 * pool_reclaim().
2791 */
2792 if (pp->pr_drain_hook != NULL) {
2793 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2794 res = (*pa->pa_alloc)(pp, flags);
2795 }
2796 }
2797 return res;
2798 }
2799
2800 static void
2801 pool_allocator_free(struct pool *pp, void *v)
2802 {
2803 struct pool_allocator *pa = pp->pr_alloc;
2804
2805 (*pa->pa_free)(pp, v);
2806 }
2807
2808 void *
2809 pool_page_alloc(struct pool *pp, int flags)
2810 {
2811 bool waitok = (flags & PR_WAITOK) ? true : false;
2812
2813 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2814 }
2815
2816 void
2817 pool_page_free(struct pool *pp, void *v)
2818 {
2819
2820 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2821 }
2822
2823 static void *
2824 pool_page_alloc_meta(struct pool *pp, int flags)
2825 {
2826 bool waitok = (flags & PR_WAITOK) ? true : false;
2827
2828 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2829 }
2830
2831 static void
2832 pool_page_free_meta(struct pool *pp, void *v)
2833 {
2834
2835 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2836 }
2837
2838 #ifdef POOL_SUBPAGE
2839 /* Sub-page allocator, for machines with large hardware pages. */
2840 void *
2841 pool_subpage_alloc(struct pool *pp, int flags)
2842 {
2843 return pool_get(&psppool, flags);
2844 }
2845
2846 void
2847 pool_subpage_free(struct pool *pp, void *v)
2848 {
2849 pool_put(&psppool, v);
2850 }
2851
2852 /* We don't provide a real nointr allocator. Maybe later. */
2853 void *
2854 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2855 {
2856
2857 return (pool_subpage_alloc(pp, flags));
2858 }
2859
2860 void
2861 pool_subpage_free_nointr(struct pool *pp, void *v)
2862 {
2863
2864 pool_subpage_free(pp, v);
2865 }
2866 #endif /* POOL_SUBPAGE */
2867 void *
2868 pool_page_alloc_nointr(struct pool *pp, int flags)
2869 {
2870 bool waitok = (flags & PR_WAITOK) ? true : false;
2871
2872 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2873 }
2874
2875 void
2876 pool_page_free_nointr(struct pool *pp, void *v)
2877 {
2878
2879 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2880 }
2881