subr_pool.c revision 1.137.2.2 1 /* $NetBSD: subr_pool.c,v 1.137.2.2 2007/12/12 22:03:31 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.137.2.2 2007/12/12 22:03:31 ad Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bitops.h>
50 #include <sys/proc.h>
51 #include <sys/errno.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/pool.h>
56 #include <sys/syslog.h>
57 #include <sys/debug.h>
58 #include <sys/lockdebug.h>
59 #include <sys/xcall.h>
60 #include <sys/cpu.h>
61
62 #include <uvm/uvm.h>
63
64 /*
65 * Pool resource management utility.
66 *
67 * Memory is allocated in pages which are split into pieces according to
68 * the pool item size. Each page is kept on one of three lists in the
69 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
70 * for empty, full and partially-full pages respectively. The individual
71 * pool items are on a linked list headed by `ph_itemlist' in each page
72 * header. The memory for building the page list is either taken from
73 * the allocated pages themselves (for small pool items) or taken from
74 * an internal pool of page headers (`phpool').
75 */
76
77 /* List of all pools */
78 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
79
80 /* Private pool for page header structures */
81 #define PHPOOL_MAX 8
82 static struct pool phpool[PHPOOL_MAX];
83 #define PHPOOL_FREELIST_NELEM(idx) \
84 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
85
86 #ifdef POOL_SUBPAGE
87 /* Pool of subpages for use by normal pools. */
88 static struct pool psppool;
89 #endif
90
91 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
92 SLIST_HEAD_INITIALIZER(pa_deferinitq);
93
94 static void *pool_page_alloc_meta(struct pool *, int);
95 static void pool_page_free_meta(struct pool *, void *);
96
97 /* allocator for pool metadata */
98 struct pool_allocator pool_allocator_meta = {
99 pool_page_alloc_meta, pool_page_free_meta,
100 .pa_backingmapptr = &kmem_map,
101 };
102
103 /* # of seconds to retain page after last use */
104 int pool_inactive_time = 10;
105
106 /* Next candidate for drainage (see pool_drain()) */
107 static struct pool *drainpp;
108
109 /* This lock protects both pool_head and drainpp. */
110 static kmutex_t pool_head_lock;
111 static kcondvar_t pool_busy;
112
113 typedef uint32_t pool_item_bitmap_t;
114 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
115 #define BITMAP_MASK (BITMAP_SIZE - 1)
116
117 struct pool_item_header {
118 /* Page headers */
119 LIST_ENTRY(pool_item_header)
120 ph_pagelist; /* pool page list */
121 SPLAY_ENTRY(pool_item_header)
122 ph_node; /* Off-page page headers */
123 void * ph_page; /* this page's address */
124 struct timeval ph_time; /* last referenced */
125 uint16_t ph_nmissing; /* # of chunks in use */
126 union {
127 /* !PR_NOTOUCH */
128 struct {
129 LIST_HEAD(, pool_item)
130 phu_itemlist; /* chunk list for this page */
131 } phu_normal;
132 /* PR_NOTOUCH */
133 struct {
134 uint16_t phu_off; /* start offset in page */
135 pool_item_bitmap_t phu_bitmap[];
136 } phu_notouch;
137 } ph_u;
138 };
139 #define ph_itemlist ph_u.phu_normal.phu_itemlist
140 #define ph_off ph_u.phu_notouch.phu_off
141 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
142
143 struct pool_item {
144 #ifdef DIAGNOSTIC
145 u_int pi_magic;
146 #endif
147 #define PI_MAGIC 0xdeaddeadU
148 /* Other entries use only this list entry */
149 LIST_ENTRY(pool_item) pi_list;
150 };
151
152 #define POOL_NEEDS_CATCHUP(pp) \
153 ((pp)->pr_nitems < (pp)->pr_minitems)
154
155 /*
156 * Pool cache management.
157 *
158 * Pool caches provide a way for constructed objects to be cached by the
159 * pool subsystem. This can lead to performance improvements by avoiding
160 * needless object construction/destruction; it is deferred until absolutely
161 * necessary.
162 *
163 * Caches are grouped into cache groups. Each cache group references up
164 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
165 * object from the pool, it calls the object's constructor and places it
166 * into a cache group. When a cache group frees an object back to the
167 * pool, it first calls the object's destructor. This allows the object
168 * to persist in constructed form while freed to the cache.
169 *
170 * The pool references each cache, so that when a pool is drained by the
171 * pagedaemon, it can drain each individual cache as well. Each time a
172 * cache is drained, the most idle cache group is freed to the pool in
173 * its entirety.
174 *
175 * Pool caches are layed on top of pools. By layering them, we can avoid
176 * the complexity of cache management for pools which would not benefit
177 * from it.
178 */
179
180 static struct pool pcgpool;
181 static struct pool cache_pool;
182 static struct pool cache_cpu_pool;
183
184 /* List of all caches. */
185 LIST_HEAD(,pool_cache) pool_cache_head =
186 LIST_HEAD_INITIALIZER(pool_cache_head);
187
188 int pool_cache_disable;
189
190
191 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
192 void *, paddr_t);
193 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
194 void **, paddr_t *, int);
195 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
196 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
197 static void pool_cache_xcall(pool_cache_t);
198
199 static int pool_catchup(struct pool *);
200 static void pool_prime_page(struct pool *, void *,
201 struct pool_item_header *);
202 static void pool_update_curpage(struct pool *);
203
204 static int pool_grow(struct pool *, int);
205 static void *pool_allocator_alloc(struct pool *, int);
206 static void pool_allocator_free(struct pool *, void *);
207
208 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
209 void (*)(const char *, ...));
210 static void pool_print1(struct pool *, const char *,
211 void (*)(const char *, ...));
212
213 static int pool_chk_page(struct pool *, const char *,
214 struct pool_item_header *);
215
216 /*
217 * Pool log entry. An array of these is allocated in pool_init().
218 */
219 struct pool_log {
220 const char *pl_file;
221 long pl_line;
222 int pl_action;
223 #define PRLOG_GET 1
224 #define PRLOG_PUT 2
225 void *pl_addr;
226 };
227
228 #ifdef POOL_DIAGNOSTIC
229 /* Number of entries in pool log buffers */
230 #ifndef POOL_LOGSIZE
231 #define POOL_LOGSIZE 10
232 #endif
233
234 int pool_logsize = POOL_LOGSIZE;
235
236 static inline void
237 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
238 {
239 int n = pp->pr_curlogentry;
240 struct pool_log *pl;
241
242 if ((pp->pr_roflags & PR_LOGGING) == 0)
243 return;
244
245 /*
246 * Fill in the current entry. Wrap around and overwrite
247 * the oldest entry if necessary.
248 */
249 pl = &pp->pr_log[n];
250 pl->pl_file = file;
251 pl->pl_line = line;
252 pl->pl_action = action;
253 pl->pl_addr = v;
254 if (++n >= pp->pr_logsize)
255 n = 0;
256 pp->pr_curlogentry = n;
257 }
258
259 static void
260 pr_printlog(struct pool *pp, struct pool_item *pi,
261 void (*pr)(const char *, ...))
262 {
263 int i = pp->pr_logsize;
264 int n = pp->pr_curlogentry;
265
266 if ((pp->pr_roflags & PR_LOGGING) == 0)
267 return;
268
269 /*
270 * Print all entries in this pool's log.
271 */
272 while (i-- > 0) {
273 struct pool_log *pl = &pp->pr_log[n];
274 if (pl->pl_action != 0) {
275 if (pi == NULL || pi == pl->pl_addr) {
276 (*pr)("\tlog entry %d:\n", i);
277 (*pr)("\t\taction = %s, addr = %p\n",
278 pl->pl_action == PRLOG_GET ? "get" : "put",
279 pl->pl_addr);
280 (*pr)("\t\tfile: %s at line %lu\n",
281 pl->pl_file, pl->pl_line);
282 }
283 }
284 if (++n >= pp->pr_logsize)
285 n = 0;
286 }
287 }
288
289 static inline void
290 pr_enter(struct pool *pp, const char *file, long line)
291 {
292
293 if (__predict_false(pp->pr_entered_file != NULL)) {
294 printf("pool %s: reentrancy at file %s line %ld\n",
295 pp->pr_wchan, file, line);
296 printf(" previous entry at file %s line %ld\n",
297 pp->pr_entered_file, pp->pr_entered_line);
298 panic("pr_enter");
299 }
300
301 pp->pr_entered_file = file;
302 pp->pr_entered_line = line;
303 }
304
305 static inline void
306 pr_leave(struct pool *pp)
307 {
308
309 if (__predict_false(pp->pr_entered_file == NULL)) {
310 printf("pool %s not entered?\n", pp->pr_wchan);
311 panic("pr_leave");
312 }
313
314 pp->pr_entered_file = NULL;
315 pp->pr_entered_line = 0;
316 }
317
318 static inline void
319 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
320 {
321
322 if (pp->pr_entered_file != NULL)
323 (*pr)("\n\tcurrently entered from file %s line %ld\n",
324 pp->pr_entered_file, pp->pr_entered_line);
325 }
326 #else
327 #define pr_log(pp, v, action, file, line)
328 #define pr_printlog(pp, pi, pr)
329 #define pr_enter(pp, file, line)
330 #define pr_leave(pp)
331 #define pr_enter_check(pp, pr)
332 #endif /* POOL_DIAGNOSTIC */
333
334 static inline unsigned int
335 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
336 const void *v)
337 {
338 const char *cp = v;
339 unsigned int idx;
340
341 KASSERT(pp->pr_roflags & PR_NOTOUCH);
342 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
343 KASSERT(idx < pp->pr_itemsperpage);
344 return idx;
345 }
346
347 static inline void
348 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
349 void *obj)
350 {
351 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
352 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
353 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
354
355 KASSERT((*bitmap & mask) == 0);
356 *bitmap |= mask;
357 }
358
359 static inline void *
360 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
361 {
362 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
363 unsigned int idx;
364 int i;
365
366 for (i = 0; ; i++) {
367 int bit;
368
369 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
370 bit = ffs32(bitmap[i]);
371 if (bit) {
372 pool_item_bitmap_t mask;
373
374 bit--;
375 idx = (i * BITMAP_SIZE) + bit;
376 mask = 1 << bit;
377 KASSERT((bitmap[i] & mask) != 0);
378 bitmap[i] &= ~mask;
379 break;
380 }
381 }
382 KASSERT(idx < pp->pr_itemsperpage);
383 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
384 }
385
386 static inline void
387 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
388 {
389 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
390 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
391 int i;
392
393 for (i = 0; i < n; i++) {
394 bitmap[i] = (pool_item_bitmap_t)-1;
395 }
396 }
397
398 static inline int
399 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
400 {
401
402 /*
403 * we consider pool_item_header with smaller ph_page bigger.
404 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
405 */
406
407 if (a->ph_page < b->ph_page)
408 return (1);
409 else if (a->ph_page > b->ph_page)
410 return (-1);
411 else
412 return (0);
413 }
414
415 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
416 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
417
418 /*
419 * Return the pool page header based on item address.
420 */
421 static inline struct pool_item_header *
422 pr_find_pagehead(struct pool *pp, void *v)
423 {
424 struct pool_item_header *ph, tmp;
425
426 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
427 tmp.ph_page = (void *)(uintptr_t)v;
428 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
429 if (ph == NULL) {
430 ph = SPLAY_ROOT(&pp->pr_phtree);
431 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
432 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
433 }
434 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
435 }
436 } else {
437 void *page =
438 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
439
440 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
441 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
442 } else {
443 tmp.ph_page = page;
444 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
445 }
446 }
447
448 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
449 ((char *)ph->ph_page <= (char *)v &&
450 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
451 return ph;
452 }
453
454 static void
455 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
456 {
457 struct pool_item_header *ph;
458
459 while ((ph = LIST_FIRST(pq)) != NULL) {
460 LIST_REMOVE(ph, ph_pagelist);
461 pool_allocator_free(pp, ph->ph_page);
462 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
463 pool_put(pp->pr_phpool, ph);
464 }
465 }
466
467 /*
468 * Remove a page from the pool.
469 */
470 static inline void
471 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
472 struct pool_pagelist *pq)
473 {
474
475 KASSERT(mutex_owned(&pp->pr_lock));
476
477 /*
478 * If the page was idle, decrement the idle page count.
479 */
480 if (ph->ph_nmissing == 0) {
481 #ifdef DIAGNOSTIC
482 if (pp->pr_nidle == 0)
483 panic("pr_rmpage: nidle inconsistent");
484 if (pp->pr_nitems < pp->pr_itemsperpage)
485 panic("pr_rmpage: nitems inconsistent");
486 #endif
487 pp->pr_nidle--;
488 }
489
490 pp->pr_nitems -= pp->pr_itemsperpage;
491
492 /*
493 * Unlink the page from the pool and queue it for release.
494 */
495 LIST_REMOVE(ph, ph_pagelist);
496 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
497 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
498 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
499
500 pp->pr_npages--;
501 pp->pr_npagefree++;
502
503 pool_update_curpage(pp);
504 }
505
506 static bool
507 pa_starved_p(struct pool_allocator *pa)
508 {
509
510 if (pa->pa_backingmap != NULL) {
511 return vm_map_starved_p(pa->pa_backingmap);
512 }
513 return false;
514 }
515
516 static int
517 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
518 {
519 struct pool *pp = obj;
520 struct pool_allocator *pa = pp->pr_alloc;
521
522 KASSERT(&pp->pr_reclaimerentry == ce);
523 pool_reclaim(pp);
524 if (!pa_starved_p(pa)) {
525 return CALLBACK_CHAIN_ABORT;
526 }
527 return CALLBACK_CHAIN_CONTINUE;
528 }
529
530 static void
531 pool_reclaim_register(struct pool *pp)
532 {
533 struct vm_map *map = pp->pr_alloc->pa_backingmap;
534 int s;
535
536 if (map == NULL) {
537 return;
538 }
539
540 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
541 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
542 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
543 splx(s);
544 }
545
546 static void
547 pool_reclaim_unregister(struct pool *pp)
548 {
549 struct vm_map *map = pp->pr_alloc->pa_backingmap;
550 int s;
551
552 if (map == NULL) {
553 return;
554 }
555
556 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
557 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
558 &pp->pr_reclaimerentry);
559 splx(s);
560 }
561
562 static void
563 pa_reclaim_register(struct pool_allocator *pa)
564 {
565 struct vm_map *map = *pa->pa_backingmapptr;
566 struct pool *pp;
567
568 KASSERT(pa->pa_backingmap == NULL);
569 if (map == NULL) {
570 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
571 return;
572 }
573 pa->pa_backingmap = map;
574 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
575 pool_reclaim_register(pp);
576 }
577 }
578
579 /*
580 * Initialize all the pools listed in the "pools" link set.
581 */
582 void
583 pool_subsystem_init(void)
584 {
585 struct pool_allocator *pa;
586 __link_set_decl(pools, struct link_pool_init);
587 struct link_pool_init * const *pi;
588
589 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
590 cv_init(&pool_busy, "poolbusy");
591
592 __link_set_foreach(pi, pools)
593 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
594 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
595 (*pi)->palloc, (*pi)->ipl);
596
597 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
598 KASSERT(pa->pa_backingmapptr != NULL);
599 KASSERT(*pa->pa_backingmapptr != NULL);
600 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
601 pa_reclaim_register(pa);
602 }
603
604 pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
605 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
606
607 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
608 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
609 }
610
611 /*
612 * Initialize the given pool resource structure.
613 *
614 * We export this routine to allow other kernel parts to declare
615 * static pools that must be initialized before malloc() is available.
616 */
617 void
618 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
619 const char *wchan, struct pool_allocator *palloc, int ipl)
620 {
621 #ifdef DEBUG
622 struct pool *pp1;
623 #endif
624 size_t trysize, phsize;
625 int off, slack;
626
627 #ifdef DEBUG
628 /*
629 * Check that the pool hasn't already been initialised and
630 * added to the list of all pools.
631 */
632 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
633 if (pp == pp1)
634 panic("pool_init: pool %s already initialised",
635 wchan);
636 }
637 #endif
638
639 #ifdef POOL_DIAGNOSTIC
640 /*
641 * Always log if POOL_DIAGNOSTIC is defined.
642 */
643 if (pool_logsize != 0)
644 flags |= PR_LOGGING;
645 #endif
646
647 if (palloc == NULL)
648 palloc = &pool_allocator_kmem;
649 #ifdef POOL_SUBPAGE
650 if (size > palloc->pa_pagesz) {
651 if (palloc == &pool_allocator_kmem)
652 palloc = &pool_allocator_kmem_fullpage;
653 else if (palloc == &pool_allocator_nointr)
654 palloc = &pool_allocator_nointr_fullpage;
655 }
656 #endif /* POOL_SUBPAGE */
657 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
658 if (palloc->pa_pagesz == 0)
659 palloc->pa_pagesz = PAGE_SIZE;
660
661 TAILQ_INIT(&palloc->pa_list);
662
663 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
664 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
665 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
666
667 if (palloc->pa_backingmapptr != NULL) {
668 pa_reclaim_register(palloc);
669 }
670 palloc->pa_flags |= PA_INITIALIZED;
671 }
672
673 if (align == 0)
674 align = ALIGN(1);
675
676 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
677 size = sizeof(struct pool_item);
678
679 size = roundup(size, align);
680 #ifdef DIAGNOSTIC
681 if (size > palloc->pa_pagesz)
682 panic("pool_init: pool item size (%zu) too large", size);
683 #endif
684
685 /*
686 * Initialize the pool structure.
687 */
688 LIST_INIT(&pp->pr_emptypages);
689 LIST_INIT(&pp->pr_fullpages);
690 LIST_INIT(&pp->pr_partpages);
691 pp->pr_cache = NULL;
692 pp->pr_curpage = NULL;
693 pp->pr_npages = 0;
694 pp->pr_minitems = 0;
695 pp->pr_minpages = 0;
696 pp->pr_maxpages = UINT_MAX;
697 pp->pr_roflags = flags;
698 pp->pr_flags = 0;
699 pp->pr_size = size;
700 pp->pr_align = align;
701 pp->pr_wchan = wchan;
702 pp->pr_alloc = palloc;
703 pp->pr_nitems = 0;
704 pp->pr_nout = 0;
705 pp->pr_hardlimit = UINT_MAX;
706 pp->pr_hardlimit_warning = NULL;
707 pp->pr_hardlimit_ratecap.tv_sec = 0;
708 pp->pr_hardlimit_ratecap.tv_usec = 0;
709 pp->pr_hardlimit_warning_last.tv_sec = 0;
710 pp->pr_hardlimit_warning_last.tv_usec = 0;
711 pp->pr_drain_hook = NULL;
712 pp->pr_drain_hook_arg = NULL;
713 pp->pr_freecheck = NULL;
714
715 /*
716 * Decide whether to put the page header off page to avoid
717 * wasting too large a part of the page or too big item.
718 * Off-page page headers go on a hash table, so we can match
719 * a returned item with its header based on the page address.
720 * We use 1/16 of the page size and about 8 times of the item
721 * size as the threshold (XXX: tune)
722 *
723 * However, we'll put the header into the page if we can put
724 * it without wasting any items.
725 *
726 * Silently enforce `0 <= ioff < align'.
727 */
728 pp->pr_itemoffset = ioff %= align;
729 /* See the comment below about reserved bytes. */
730 trysize = palloc->pa_pagesz - ((align - ioff) % align);
731 phsize = ALIGN(sizeof(struct pool_item_header));
732 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
733 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
734 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
735 /* Use the end of the page for the page header */
736 pp->pr_roflags |= PR_PHINPAGE;
737 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
738 } else {
739 /* The page header will be taken from our page header pool */
740 pp->pr_phoffset = 0;
741 off = palloc->pa_pagesz;
742 SPLAY_INIT(&pp->pr_phtree);
743 }
744
745 /*
746 * Alignment is to take place at `ioff' within the item. This means
747 * we must reserve up to `align - 1' bytes on the page to allow
748 * appropriate positioning of each item.
749 */
750 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
751 KASSERT(pp->pr_itemsperpage != 0);
752 if ((pp->pr_roflags & PR_NOTOUCH)) {
753 int idx;
754
755 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
756 idx++) {
757 /* nothing */
758 }
759 if (idx >= PHPOOL_MAX) {
760 /*
761 * if you see this panic, consider to tweak
762 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
763 */
764 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
765 pp->pr_wchan, pp->pr_itemsperpage);
766 }
767 pp->pr_phpool = &phpool[idx];
768 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
769 pp->pr_phpool = &phpool[0];
770 }
771 #if defined(DIAGNOSTIC)
772 else {
773 pp->pr_phpool = NULL;
774 }
775 #endif
776
777 /*
778 * Use the slack between the chunks and the page header
779 * for "cache coloring".
780 */
781 slack = off - pp->pr_itemsperpage * pp->pr_size;
782 pp->pr_maxcolor = (slack / align) * align;
783 pp->pr_curcolor = 0;
784
785 pp->pr_nget = 0;
786 pp->pr_nfail = 0;
787 pp->pr_nput = 0;
788 pp->pr_npagealloc = 0;
789 pp->pr_npagefree = 0;
790 pp->pr_hiwat = 0;
791 pp->pr_nidle = 0;
792 pp->pr_refcnt = 0;
793
794 #ifdef POOL_DIAGNOSTIC
795 if (flags & PR_LOGGING) {
796 if (kmem_map == NULL ||
797 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
798 M_TEMP, M_NOWAIT)) == NULL)
799 pp->pr_roflags &= ~PR_LOGGING;
800 pp->pr_curlogentry = 0;
801 pp->pr_logsize = pool_logsize;
802 }
803 #endif
804
805 pp->pr_entered_file = NULL;
806 pp->pr_entered_line = 0;
807
808 /*
809 * XXXAD hack to prevent IP input processing from blocking.
810 */
811 if (ipl == IPL_SOFTNET) {
812 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
813 } else {
814 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
815 }
816 cv_init(&pp->pr_cv, wchan);
817 pp->pr_ipl = ipl;
818
819 /*
820 * Initialize private page header pool and cache magazine pool if we
821 * haven't done so yet.
822 * XXX LOCKING.
823 */
824 if (phpool[0].pr_size == 0) {
825 int idx;
826 for (idx = 0; idx < PHPOOL_MAX; idx++) {
827 static char phpool_names[PHPOOL_MAX][6+1+6+1];
828 int nelem;
829 size_t sz;
830
831 nelem = PHPOOL_FREELIST_NELEM(idx);
832 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
833 "phpool-%d", nelem);
834 sz = sizeof(struct pool_item_header);
835 if (nelem) {
836 sz = offsetof(struct pool_item_header,
837 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
838 }
839 pool_init(&phpool[idx], sz, 0, 0, 0,
840 phpool_names[idx], &pool_allocator_meta, IPL_VM);
841 }
842 #ifdef POOL_SUBPAGE
843 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
844 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
845 #endif
846 pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
847 "cachegrp", &pool_allocator_meta, IPL_VM);
848 }
849
850 if (__predict_true(!cold)) {
851 /* Insert into the list of all pools. */
852 mutex_enter(&pool_head_lock);
853 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
854 mutex_exit(&pool_head_lock);
855
856 /* Insert this into the list of pools using this allocator. */
857 mutex_enter(&palloc->pa_lock);
858 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
859 mutex_exit(&palloc->pa_lock);
860 } else {
861 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
862 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
863 }
864
865 pool_reclaim_register(pp);
866 }
867
868 /*
869 * De-commision a pool resource.
870 */
871 void
872 pool_destroy(struct pool *pp)
873 {
874 struct pool_pagelist pq;
875 struct pool_item_header *ph;
876
877 /* Remove from global pool list */
878 mutex_enter(&pool_head_lock);
879 while (pp->pr_refcnt != 0)
880 cv_wait(&pool_busy, &pool_head_lock);
881 LIST_REMOVE(pp, pr_poollist);
882 if (drainpp == pp)
883 drainpp = NULL;
884 mutex_exit(&pool_head_lock);
885
886 /* Remove this pool from its allocator's list of pools. */
887 pool_reclaim_unregister(pp);
888 mutex_enter(&pp->pr_alloc->pa_lock);
889 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
890 mutex_exit(&pp->pr_alloc->pa_lock);
891
892 mutex_enter(&pp->pr_lock);
893
894 KASSERT(pp->pr_cache == NULL);
895
896 #ifdef DIAGNOSTIC
897 if (pp->pr_nout != 0) {
898 pr_printlog(pp, NULL, printf);
899 panic("pool_destroy: pool busy: still out: %u",
900 pp->pr_nout);
901 }
902 #endif
903
904 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
905 KASSERT(LIST_EMPTY(&pp->pr_partpages));
906
907 /* Remove all pages */
908 LIST_INIT(&pq);
909 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
910 pr_rmpage(pp, ph, &pq);
911
912 mutex_exit(&pp->pr_lock);
913
914 pr_pagelist_free(pp, &pq);
915
916 #ifdef POOL_DIAGNOSTIC
917 if ((pp->pr_roflags & PR_LOGGING) != 0)
918 free(pp->pr_log, M_TEMP);
919 #endif
920
921 cv_destroy(&pp->pr_cv);
922 mutex_destroy(&pp->pr_lock);
923 }
924
925 void
926 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
927 {
928
929 /* XXX no locking -- must be used just after pool_init() */
930 #ifdef DIAGNOSTIC
931 if (pp->pr_drain_hook != NULL)
932 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
933 #endif
934 pp->pr_drain_hook = fn;
935 pp->pr_drain_hook_arg = arg;
936 }
937
938 static struct pool_item_header *
939 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
940 {
941 struct pool_item_header *ph;
942
943 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
944 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
945 else
946 ph = pool_get(pp->pr_phpool, flags);
947
948 return (ph);
949 }
950
951 /*
952 * Grab an item from the pool.
953 */
954 void *
955 #ifdef POOL_DIAGNOSTIC
956 _pool_get(struct pool *pp, int flags, const char *file, long line)
957 #else
958 pool_get(struct pool *pp, int flags)
959 #endif
960 {
961 struct pool_item *pi;
962 struct pool_item_header *ph;
963 void *v;
964
965 #ifdef DIAGNOSTIC
966 if (__predict_false(pp->pr_itemsperpage == 0))
967 panic("pool_get: pool %p: pr_itemsperpage is zero, "
968 "pool not initialized?", pp);
969 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
970 (flags & PR_WAITOK) != 0))
971 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
972
973 #endif /* DIAGNOSTIC */
974 #ifdef LOCKDEBUG
975 if (flags & PR_WAITOK)
976 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
977 #endif
978
979 mutex_enter(&pp->pr_lock);
980 pr_enter(pp, file, line);
981
982 startover:
983 /*
984 * Check to see if we've reached the hard limit. If we have,
985 * and we can wait, then wait until an item has been returned to
986 * the pool.
987 */
988 #ifdef DIAGNOSTIC
989 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
990 pr_leave(pp);
991 mutex_exit(&pp->pr_lock);
992 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
993 }
994 #endif
995 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
996 if (pp->pr_drain_hook != NULL) {
997 /*
998 * Since the drain hook is going to free things
999 * back to the pool, unlock, call the hook, re-lock,
1000 * and check the hardlimit condition again.
1001 */
1002 pr_leave(pp);
1003 mutex_exit(&pp->pr_lock);
1004 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1005 mutex_enter(&pp->pr_lock);
1006 pr_enter(pp, file, line);
1007 if (pp->pr_nout < pp->pr_hardlimit)
1008 goto startover;
1009 }
1010
1011 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1012 /*
1013 * XXX: A warning isn't logged in this case. Should
1014 * it be?
1015 */
1016 pp->pr_flags |= PR_WANTED;
1017 pr_leave(pp);
1018 cv_wait(&pp->pr_cv, &pp->pr_lock);
1019 pr_enter(pp, file, line);
1020 goto startover;
1021 }
1022
1023 /*
1024 * Log a message that the hard limit has been hit.
1025 */
1026 if (pp->pr_hardlimit_warning != NULL &&
1027 ratecheck(&pp->pr_hardlimit_warning_last,
1028 &pp->pr_hardlimit_ratecap))
1029 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1030
1031 pp->pr_nfail++;
1032
1033 pr_leave(pp);
1034 mutex_exit(&pp->pr_lock);
1035 return (NULL);
1036 }
1037
1038 /*
1039 * The convention we use is that if `curpage' is not NULL, then
1040 * it points at a non-empty bucket. In particular, `curpage'
1041 * never points at a page header which has PR_PHINPAGE set and
1042 * has no items in its bucket.
1043 */
1044 if ((ph = pp->pr_curpage) == NULL) {
1045 int error;
1046
1047 #ifdef DIAGNOSTIC
1048 if (pp->pr_nitems != 0) {
1049 mutex_exit(&pp->pr_lock);
1050 printf("pool_get: %s: curpage NULL, nitems %u\n",
1051 pp->pr_wchan, pp->pr_nitems);
1052 panic("pool_get: nitems inconsistent");
1053 }
1054 #endif
1055
1056 /*
1057 * Call the back-end page allocator for more memory.
1058 * Release the pool lock, as the back-end page allocator
1059 * may block.
1060 */
1061 pr_leave(pp);
1062 error = pool_grow(pp, flags);
1063 pr_enter(pp, file, line);
1064 if (error != 0) {
1065 /*
1066 * We were unable to allocate a page or item
1067 * header, but we released the lock during
1068 * allocation, so perhaps items were freed
1069 * back to the pool. Check for this case.
1070 */
1071 if (pp->pr_curpage != NULL)
1072 goto startover;
1073
1074 pp->pr_nfail++;
1075 pr_leave(pp);
1076 mutex_exit(&pp->pr_lock);
1077 return (NULL);
1078 }
1079
1080 /* Start the allocation process over. */
1081 goto startover;
1082 }
1083 if (pp->pr_roflags & PR_NOTOUCH) {
1084 #ifdef DIAGNOSTIC
1085 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1086 pr_leave(pp);
1087 mutex_exit(&pp->pr_lock);
1088 panic("pool_get: %s: page empty", pp->pr_wchan);
1089 }
1090 #endif
1091 v = pr_item_notouch_get(pp, ph);
1092 #ifdef POOL_DIAGNOSTIC
1093 pr_log(pp, v, PRLOG_GET, file, line);
1094 #endif
1095 } else {
1096 v = pi = LIST_FIRST(&ph->ph_itemlist);
1097 if (__predict_false(v == NULL)) {
1098 pr_leave(pp);
1099 mutex_exit(&pp->pr_lock);
1100 panic("pool_get: %s: page empty", pp->pr_wchan);
1101 }
1102 #ifdef DIAGNOSTIC
1103 if (__predict_false(pp->pr_nitems == 0)) {
1104 pr_leave(pp);
1105 mutex_exit(&pp->pr_lock);
1106 printf("pool_get: %s: items on itemlist, nitems %u\n",
1107 pp->pr_wchan, pp->pr_nitems);
1108 panic("pool_get: nitems inconsistent");
1109 }
1110 #endif
1111
1112 #ifdef POOL_DIAGNOSTIC
1113 pr_log(pp, v, PRLOG_GET, file, line);
1114 #endif
1115
1116 #ifdef DIAGNOSTIC
1117 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1118 pr_printlog(pp, pi, printf);
1119 panic("pool_get(%s): free list modified: "
1120 "magic=%x; page %p; item addr %p\n",
1121 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1122 }
1123 #endif
1124
1125 /*
1126 * Remove from item list.
1127 */
1128 LIST_REMOVE(pi, pi_list);
1129 }
1130 pp->pr_nitems--;
1131 pp->pr_nout++;
1132 if (ph->ph_nmissing == 0) {
1133 #ifdef DIAGNOSTIC
1134 if (__predict_false(pp->pr_nidle == 0))
1135 panic("pool_get: nidle inconsistent");
1136 #endif
1137 pp->pr_nidle--;
1138
1139 /*
1140 * This page was previously empty. Move it to the list of
1141 * partially-full pages. This page is already curpage.
1142 */
1143 LIST_REMOVE(ph, ph_pagelist);
1144 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1145 }
1146 ph->ph_nmissing++;
1147 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1148 #ifdef DIAGNOSTIC
1149 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1150 !LIST_EMPTY(&ph->ph_itemlist))) {
1151 pr_leave(pp);
1152 mutex_exit(&pp->pr_lock);
1153 panic("pool_get: %s: nmissing inconsistent",
1154 pp->pr_wchan);
1155 }
1156 #endif
1157 /*
1158 * This page is now full. Move it to the full list
1159 * and select a new current page.
1160 */
1161 LIST_REMOVE(ph, ph_pagelist);
1162 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1163 pool_update_curpage(pp);
1164 }
1165
1166 pp->pr_nget++;
1167 pr_leave(pp);
1168
1169 /*
1170 * If we have a low water mark and we are now below that low
1171 * water mark, add more items to the pool.
1172 */
1173 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1174 /*
1175 * XXX: Should we log a warning? Should we set up a timeout
1176 * to try again in a second or so? The latter could break
1177 * a caller's assumptions about interrupt protection, etc.
1178 */
1179 }
1180
1181 mutex_exit(&pp->pr_lock);
1182 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1183 FREECHECK_OUT(&pp->pr_freecheck, v);
1184 return (v);
1185 }
1186
1187 /*
1188 * Internal version of pool_put(). Pool is already locked/entered.
1189 */
1190 static void
1191 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1192 {
1193 struct pool_item *pi = v;
1194 struct pool_item_header *ph;
1195
1196 KASSERT(mutex_owned(&pp->pr_lock));
1197 FREECHECK_IN(&pp->pr_freecheck, v);
1198 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1199
1200 #ifdef DIAGNOSTIC
1201 if (__predict_false(pp->pr_nout == 0)) {
1202 printf("pool %s: putting with none out\n",
1203 pp->pr_wchan);
1204 panic("pool_put");
1205 }
1206 #endif
1207
1208 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1209 pr_printlog(pp, NULL, printf);
1210 panic("pool_put: %s: page header missing", pp->pr_wchan);
1211 }
1212
1213 /*
1214 * Return to item list.
1215 */
1216 if (pp->pr_roflags & PR_NOTOUCH) {
1217 pr_item_notouch_put(pp, ph, v);
1218 } else {
1219 #ifdef DIAGNOSTIC
1220 pi->pi_magic = PI_MAGIC;
1221 #endif
1222 #ifdef DEBUG
1223 {
1224 int i, *ip = v;
1225
1226 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1227 *ip++ = PI_MAGIC;
1228 }
1229 }
1230 #endif
1231
1232 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1233 }
1234 KDASSERT(ph->ph_nmissing != 0);
1235 ph->ph_nmissing--;
1236 pp->pr_nput++;
1237 pp->pr_nitems++;
1238 pp->pr_nout--;
1239
1240 /* Cancel "pool empty" condition if it exists */
1241 if (pp->pr_curpage == NULL)
1242 pp->pr_curpage = ph;
1243
1244 if (pp->pr_flags & PR_WANTED) {
1245 pp->pr_flags &= ~PR_WANTED;
1246 if (ph->ph_nmissing == 0)
1247 pp->pr_nidle++;
1248 cv_broadcast(&pp->pr_cv);
1249 return;
1250 }
1251
1252 /*
1253 * If this page is now empty, do one of two things:
1254 *
1255 * (1) If we have more pages than the page high water mark,
1256 * free the page back to the system. ONLY CONSIDER
1257 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1258 * CLAIM.
1259 *
1260 * (2) Otherwise, move the page to the empty page list.
1261 *
1262 * Either way, select a new current page (so we use a partially-full
1263 * page if one is available).
1264 */
1265 if (ph->ph_nmissing == 0) {
1266 pp->pr_nidle++;
1267 if (pp->pr_npages > pp->pr_minpages &&
1268 (pp->pr_npages > pp->pr_maxpages ||
1269 pa_starved_p(pp->pr_alloc))) {
1270 pr_rmpage(pp, ph, pq);
1271 } else {
1272 LIST_REMOVE(ph, ph_pagelist);
1273 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1274
1275 /*
1276 * Update the timestamp on the page. A page must
1277 * be idle for some period of time before it can
1278 * be reclaimed by the pagedaemon. This minimizes
1279 * ping-pong'ing for memory.
1280 */
1281 getmicrotime(&ph->ph_time);
1282 }
1283 pool_update_curpage(pp);
1284 }
1285
1286 /*
1287 * If the page was previously completely full, move it to the
1288 * partially-full list and make it the current page. The next
1289 * allocation will get the item from this page, instead of
1290 * further fragmenting the pool.
1291 */
1292 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1293 LIST_REMOVE(ph, ph_pagelist);
1294 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1295 pp->pr_curpage = ph;
1296 }
1297 }
1298
1299 /*
1300 * Return resource to the pool.
1301 */
1302 #ifdef POOL_DIAGNOSTIC
1303 void
1304 _pool_put(struct pool *pp, void *v, const char *file, long line)
1305 {
1306 struct pool_pagelist pq;
1307
1308 LIST_INIT(&pq);
1309
1310 mutex_enter(&pp->pr_lock);
1311 pr_enter(pp, file, line);
1312
1313 pr_log(pp, v, PRLOG_PUT, file, line);
1314
1315 pool_do_put(pp, v, &pq);
1316
1317 pr_leave(pp);
1318 mutex_exit(&pp->pr_lock);
1319
1320 pr_pagelist_free(pp, &pq);
1321 }
1322 #undef pool_put
1323 #endif /* POOL_DIAGNOSTIC */
1324
1325 void
1326 pool_put(struct pool *pp, void *v)
1327 {
1328 struct pool_pagelist pq;
1329
1330 LIST_INIT(&pq);
1331
1332 mutex_enter(&pp->pr_lock);
1333 pool_do_put(pp, v, &pq);
1334 mutex_exit(&pp->pr_lock);
1335
1336 pr_pagelist_free(pp, &pq);
1337 }
1338
1339 #ifdef POOL_DIAGNOSTIC
1340 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1341 #endif
1342
1343 /*
1344 * pool_grow: grow a pool by a page.
1345 *
1346 * => called with pool locked.
1347 * => unlock and relock the pool.
1348 * => return with pool locked.
1349 */
1350
1351 static int
1352 pool_grow(struct pool *pp, int flags)
1353 {
1354 struct pool_item_header *ph = NULL;
1355 char *cp;
1356
1357 mutex_exit(&pp->pr_lock);
1358 cp = pool_allocator_alloc(pp, flags);
1359 if (__predict_true(cp != NULL)) {
1360 ph = pool_alloc_item_header(pp, cp, flags);
1361 }
1362 if (__predict_false(cp == NULL || ph == NULL)) {
1363 if (cp != NULL) {
1364 pool_allocator_free(pp, cp);
1365 }
1366 mutex_enter(&pp->pr_lock);
1367 return ENOMEM;
1368 }
1369
1370 mutex_enter(&pp->pr_lock);
1371 pool_prime_page(pp, cp, ph);
1372 pp->pr_npagealloc++;
1373 return 0;
1374 }
1375
1376 /*
1377 * Add N items to the pool.
1378 */
1379 int
1380 pool_prime(struct pool *pp, int n)
1381 {
1382 int newpages;
1383 int error = 0;
1384
1385 mutex_enter(&pp->pr_lock);
1386
1387 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1388
1389 while (newpages-- > 0) {
1390 error = pool_grow(pp, PR_NOWAIT);
1391 if (error) {
1392 break;
1393 }
1394 pp->pr_minpages++;
1395 }
1396
1397 if (pp->pr_minpages >= pp->pr_maxpages)
1398 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1399
1400 mutex_exit(&pp->pr_lock);
1401 return error;
1402 }
1403
1404 /*
1405 * Add a page worth of items to the pool.
1406 *
1407 * Note, we must be called with the pool descriptor LOCKED.
1408 */
1409 static void
1410 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1411 {
1412 struct pool_item *pi;
1413 void *cp = storage;
1414 const unsigned int align = pp->pr_align;
1415 const unsigned int ioff = pp->pr_itemoffset;
1416 int n;
1417
1418 KASSERT(mutex_owned(&pp->pr_lock));
1419
1420 #ifdef DIAGNOSTIC
1421 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1422 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1423 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1424 #endif
1425
1426 /*
1427 * Insert page header.
1428 */
1429 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1430 LIST_INIT(&ph->ph_itemlist);
1431 ph->ph_page = storage;
1432 ph->ph_nmissing = 0;
1433 getmicrotime(&ph->ph_time);
1434 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1435 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1436
1437 pp->pr_nidle++;
1438
1439 /*
1440 * Color this page.
1441 */
1442 cp = (char *)cp + pp->pr_curcolor;
1443 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1444 pp->pr_curcolor = 0;
1445
1446 /*
1447 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1448 */
1449 if (ioff != 0)
1450 cp = (char *)cp + align - ioff;
1451
1452 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1453
1454 /*
1455 * Insert remaining chunks on the bucket list.
1456 */
1457 n = pp->pr_itemsperpage;
1458 pp->pr_nitems += n;
1459
1460 if (pp->pr_roflags & PR_NOTOUCH) {
1461 pr_item_notouch_init(pp, ph);
1462 } else {
1463 while (n--) {
1464 pi = (struct pool_item *)cp;
1465
1466 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1467
1468 /* Insert on page list */
1469 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1470 #ifdef DIAGNOSTIC
1471 pi->pi_magic = PI_MAGIC;
1472 #endif
1473 cp = (char *)cp + pp->pr_size;
1474
1475 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1476 }
1477 }
1478
1479 /*
1480 * If the pool was depleted, point at the new page.
1481 */
1482 if (pp->pr_curpage == NULL)
1483 pp->pr_curpage = ph;
1484
1485 if (++pp->pr_npages > pp->pr_hiwat)
1486 pp->pr_hiwat = pp->pr_npages;
1487 }
1488
1489 /*
1490 * Used by pool_get() when nitems drops below the low water mark. This
1491 * is used to catch up pr_nitems with the low water mark.
1492 *
1493 * Note 1, we never wait for memory here, we let the caller decide what to do.
1494 *
1495 * Note 2, we must be called with the pool already locked, and we return
1496 * with it locked.
1497 */
1498 static int
1499 pool_catchup(struct pool *pp)
1500 {
1501 int error = 0;
1502
1503 while (POOL_NEEDS_CATCHUP(pp)) {
1504 error = pool_grow(pp, PR_NOWAIT);
1505 if (error) {
1506 break;
1507 }
1508 }
1509 return error;
1510 }
1511
1512 static void
1513 pool_update_curpage(struct pool *pp)
1514 {
1515
1516 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1517 if (pp->pr_curpage == NULL) {
1518 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1519 }
1520 }
1521
1522 void
1523 pool_setlowat(struct pool *pp, int n)
1524 {
1525
1526 mutex_enter(&pp->pr_lock);
1527
1528 pp->pr_minitems = n;
1529 pp->pr_minpages = (n == 0)
1530 ? 0
1531 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1532
1533 /* Make sure we're caught up with the newly-set low water mark. */
1534 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1535 /*
1536 * XXX: Should we log a warning? Should we set up a timeout
1537 * to try again in a second or so? The latter could break
1538 * a caller's assumptions about interrupt protection, etc.
1539 */
1540 }
1541
1542 mutex_exit(&pp->pr_lock);
1543 }
1544
1545 void
1546 pool_sethiwat(struct pool *pp, int n)
1547 {
1548
1549 mutex_enter(&pp->pr_lock);
1550
1551 pp->pr_maxpages = (n == 0)
1552 ? 0
1553 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1554
1555 mutex_exit(&pp->pr_lock);
1556 }
1557
1558 void
1559 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1560 {
1561
1562 mutex_enter(&pp->pr_lock);
1563
1564 pp->pr_hardlimit = n;
1565 pp->pr_hardlimit_warning = warnmess;
1566 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1567 pp->pr_hardlimit_warning_last.tv_sec = 0;
1568 pp->pr_hardlimit_warning_last.tv_usec = 0;
1569
1570 /*
1571 * In-line version of pool_sethiwat(), because we don't want to
1572 * release the lock.
1573 */
1574 pp->pr_maxpages = (n == 0)
1575 ? 0
1576 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1577
1578 mutex_exit(&pp->pr_lock);
1579 }
1580
1581 /*
1582 * Release all complete pages that have not been used recently.
1583 */
1584 int
1585 #ifdef POOL_DIAGNOSTIC
1586 _pool_reclaim(struct pool *pp, const char *file, long line)
1587 #else
1588 pool_reclaim(struct pool *pp)
1589 #endif
1590 {
1591 struct pool_item_header *ph, *phnext;
1592 struct pool_pagelist pq;
1593 struct timeval curtime, diff;
1594 bool klock;
1595 int rv;
1596
1597 if (pp->pr_drain_hook != NULL) {
1598 /*
1599 * The drain hook must be called with the pool unlocked.
1600 */
1601 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1602 }
1603
1604 /*
1605 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
1606 * and we are called from the pagedaemon without kernel_lock.
1607 * Does not apply to IPL_SOFTBIO.
1608 */
1609 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1610 pp->pr_ipl == IPL_SOFTSERIAL) {
1611 KERNEL_LOCK(1, NULL);
1612 klock = true;
1613 } else
1614 klock = false;
1615
1616 /* Reclaim items from the pool's cache (if any). */
1617 if (pp->pr_cache != NULL)
1618 pool_cache_invalidate(pp->pr_cache);
1619
1620 if (mutex_tryenter(&pp->pr_lock) == 0) {
1621 if (klock) {
1622 KERNEL_UNLOCK_ONE(NULL);
1623 }
1624 return (0);
1625 }
1626 pr_enter(pp, file, line);
1627
1628 LIST_INIT(&pq);
1629
1630 getmicrotime(&curtime);
1631
1632 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1633 phnext = LIST_NEXT(ph, ph_pagelist);
1634
1635 /* Check our minimum page claim */
1636 if (pp->pr_npages <= pp->pr_minpages)
1637 break;
1638
1639 KASSERT(ph->ph_nmissing == 0);
1640 timersub(&curtime, &ph->ph_time, &diff);
1641 if (diff.tv_sec < pool_inactive_time
1642 && !pa_starved_p(pp->pr_alloc))
1643 continue;
1644
1645 /*
1646 * If freeing this page would put us below
1647 * the low water mark, stop now.
1648 */
1649 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1650 pp->pr_minitems)
1651 break;
1652
1653 pr_rmpage(pp, ph, &pq);
1654 }
1655
1656 pr_leave(pp);
1657 mutex_exit(&pp->pr_lock);
1658
1659 if (LIST_EMPTY(&pq))
1660 rv = 0;
1661 else {
1662 pr_pagelist_free(pp, &pq);
1663 rv = 1;
1664 }
1665
1666 if (klock) {
1667 KERNEL_UNLOCK_ONE(NULL);
1668 }
1669
1670 return (rv);
1671 }
1672
1673 /*
1674 * Drain pools, one at a time. This is a two stage process;
1675 * drain_start kicks off a cross call to drain CPU-level caches
1676 * if the pool has an associated pool_cache. drain_end waits
1677 * for those cross calls to finish, and then drains the cache
1678 * (if any) and pool.
1679 *
1680 * Note, must never be called from interrupt context.
1681 */
1682 void
1683 pool_drain_start(struct pool **ppp, uint64_t *wp)
1684 {
1685 struct pool *pp;
1686
1687 KASSERT(!LIST_EMPTY(&pool_head));
1688
1689 pp = NULL;
1690
1691 /* Find next pool to drain, and add a reference. */
1692 mutex_enter(&pool_head_lock);
1693 do {
1694 if (drainpp == NULL) {
1695 drainpp = LIST_FIRST(&pool_head);
1696 }
1697 if (drainpp != NULL) {
1698 pp = drainpp;
1699 drainpp = LIST_NEXT(pp, pr_poollist);
1700 }
1701 /*
1702 * Skip completely idle pools. We depend on at least
1703 * one pool in the system being active.
1704 */
1705 } while (pp == NULL || pp->pr_npages == 0);
1706 pp->pr_refcnt++;
1707 mutex_exit(&pool_head_lock);
1708
1709 /* If there is a pool_cache, drain CPU level caches. */
1710 *ppp = pp;
1711 if (pp->pr_cache != NULL) {
1712 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1713 pp->pr_cache, NULL);
1714 }
1715 }
1716
1717 void
1718 pool_drain_end(struct pool *pp, uint64_t where)
1719 {
1720
1721 if (pp == NULL)
1722 return;
1723
1724 KASSERT(pp->pr_refcnt > 0);
1725
1726 /* Wait for remote draining to complete. */
1727 if (pp->pr_cache != NULL)
1728 xc_wait(where);
1729
1730 /* Drain the cache (if any) and pool.. */
1731 pool_reclaim(pp);
1732
1733 /* Finally, unlock the pool. */
1734 mutex_enter(&pool_head_lock);
1735 pp->pr_refcnt--;
1736 cv_broadcast(&pool_busy);
1737 mutex_exit(&pool_head_lock);
1738 }
1739
1740 /*
1741 * Diagnostic helpers.
1742 */
1743 void
1744 pool_print(struct pool *pp, const char *modif)
1745 {
1746
1747 pool_print1(pp, modif, printf);
1748 }
1749
1750 void
1751 pool_printall(const char *modif, void (*pr)(const char *, ...))
1752 {
1753 struct pool *pp;
1754
1755 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1756 pool_printit(pp, modif, pr);
1757 }
1758 }
1759
1760 void
1761 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1762 {
1763
1764 if (pp == NULL) {
1765 (*pr)("Must specify a pool to print.\n");
1766 return;
1767 }
1768
1769 pool_print1(pp, modif, pr);
1770 }
1771
1772 static void
1773 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1774 void (*pr)(const char *, ...))
1775 {
1776 struct pool_item_header *ph;
1777 #ifdef DIAGNOSTIC
1778 struct pool_item *pi;
1779 #endif
1780
1781 LIST_FOREACH(ph, pl, ph_pagelist) {
1782 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1783 ph->ph_page, ph->ph_nmissing,
1784 (u_long)ph->ph_time.tv_sec,
1785 (u_long)ph->ph_time.tv_usec);
1786 #ifdef DIAGNOSTIC
1787 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1788 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1789 if (pi->pi_magic != PI_MAGIC) {
1790 (*pr)("\t\t\titem %p, magic 0x%x\n",
1791 pi, pi->pi_magic);
1792 }
1793 }
1794 }
1795 #endif
1796 }
1797 }
1798
1799 static void
1800 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1801 {
1802 struct pool_item_header *ph;
1803 pool_cache_t pc;
1804 pcg_t *pcg;
1805 pool_cache_cpu_t *cc;
1806 uint64_t cpuhit, cpumiss;
1807 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1808 char c;
1809
1810 while ((c = *modif++) != '\0') {
1811 if (c == 'l')
1812 print_log = 1;
1813 if (c == 'p')
1814 print_pagelist = 1;
1815 if (c == 'c')
1816 print_cache = 1;
1817 }
1818
1819 if ((pc = pp->pr_cache) != NULL) {
1820 (*pr)("POOL CACHE");
1821 } else {
1822 (*pr)("POOL");
1823 }
1824
1825 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1826 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1827 pp->pr_roflags);
1828 (*pr)("\talloc %p\n", pp->pr_alloc);
1829 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1830 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1831 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1832 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1833
1834 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1835 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1836 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1837 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1838
1839 if (print_pagelist == 0)
1840 goto skip_pagelist;
1841
1842 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1843 (*pr)("\n\tempty page list:\n");
1844 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1845 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1846 (*pr)("\n\tfull page list:\n");
1847 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1848 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1849 (*pr)("\n\tpartial-page list:\n");
1850 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1851
1852 if (pp->pr_curpage == NULL)
1853 (*pr)("\tno current page\n");
1854 else
1855 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1856
1857 skip_pagelist:
1858 if (print_log == 0)
1859 goto skip_log;
1860
1861 (*pr)("\n");
1862 if ((pp->pr_roflags & PR_LOGGING) == 0)
1863 (*pr)("\tno log\n");
1864 else {
1865 pr_printlog(pp, NULL, pr);
1866 }
1867
1868 skip_log:
1869
1870 #define PR_GROUPLIST(pcg) \
1871 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1872 for (i = 0; i < PCG_NOBJECTS; i++) { \
1873 if (pcg->pcg_objects[i].pcgo_pa != \
1874 POOL_PADDR_INVALID) { \
1875 (*pr)("\t\t\t%p, 0x%llx\n", \
1876 pcg->pcg_objects[i].pcgo_va, \
1877 (unsigned long long) \
1878 pcg->pcg_objects[i].pcgo_pa); \
1879 } else { \
1880 (*pr)("\t\t\t%p\n", \
1881 pcg->pcg_objects[i].pcgo_va); \
1882 } \
1883 }
1884
1885 if (pc != NULL) {
1886 cpuhit = 0;
1887 cpumiss = 0;
1888 for (i = 0; i < MAXCPUS; i++) {
1889 if ((cc = pc->pc_cpus[i]) == NULL)
1890 continue;
1891 cpuhit += cc->cc_hits;
1892 cpumiss += cc->cc_misses;
1893 }
1894 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1895 (*pr)("\tcache layer hits %llu misses %llu\n",
1896 pc->pc_hits, pc->pc_misses);
1897 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1898 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1899 pc->pc_contended);
1900 (*pr)("\tcache layer empty groups %u full groups %u\n",
1901 pc->pc_nempty, pc->pc_nfull);
1902 if (print_cache) {
1903 (*pr)("\tfull cache groups:\n");
1904 for (pcg = pc->pc_fullgroups; pcg != NULL;
1905 pcg = pcg->pcg_next) {
1906 PR_GROUPLIST(pcg);
1907 }
1908 (*pr)("\tempty cache groups:\n");
1909 for (pcg = pc->pc_emptygroups; pcg != NULL;
1910 pcg = pcg->pcg_next) {
1911 PR_GROUPLIST(pcg);
1912 }
1913 }
1914 }
1915 #undef PR_GROUPLIST
1916
1917 pr_enter_check(pp, pr);
1918 }
1919
1920 static int
1921 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1922 {
1923 struct pool_item *pi;
1924 void *page;
1925 int n;
1926
1927 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1928 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1929 if (page != ph->ph_page &&
1930 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1931 if (label != NULL)
1932 printf("%s: ", label);
1933 printf("pool(%p:%s): page inconsistency: page %p;"
1934 " at page head addr %p (p %p)\n", pp,
1935 pp->pr_wchan, ph->ph_page,
1936 ph, page);
1937 return 1;
1938 }
1939 }
1940
1941 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1942 return 0;
1943
1944 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1945 pi != NULL;
1946 pi = LIST_NEXT(pi,pi_list), n++) {
1947
1948 #ifdef DIAGNOSTIC
1949 if (pi->pi_magic != PI_MAGIC) {
1950 if (label != NULL)
1951 printf("%s: ", label);
1952 printf("pool(%s): free list modified: magic=%x;"
1953 " page %p; item ordinal %d; addr %p\n",
1954 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1955 n, pi);
1956 panic("pool");
1957 }
1958 #endif
1959 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1960 continue;
1961 }
1962 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1963 if (page == ph->ph_page)
1964 continue;
1965
1966 if (label != NULL)
1967 printf("%s: ", label);
1968 printf("pool(%p:%s): page inconsistency: page %p;"
1969 " item ordinal %d; addr %p (p %p)\n", pp,
1970 pp->pr_wchan, ph->ph_page,
1971 n, pi, page);
1972 return 1;
1973 }
1974 return 0;
1975 }
1976
1977
1978 int
1979 pool_chk(struct pool *pp, const char *label)
1980 {
1981 struct pool_item_header *ph;
1982 int r = 0;
1983
1984 mutex_enter(&pp->pr_lock);
1985 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1986 r = pool_chk_page(pp, label, ph);
1987 if (r) {
1988 goto out;
1989 }
1990 }
1991 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1992 r = pool_chk_page(pp, label, ph);
1993 if (r) {
1994 goto out;
1995 }
1996 }
1997 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1998 r = pool_chk_page(pp, label, ph);
1999 if (r) {
2000 goto out;
2001 }
2002 }
2003
2004 out:
2005 mutex_exit(&pp->pr_lock);
2006 return (r);
2007 }
2008
2009 /*
2010 * pool_cache_init:
2011 *
2012 * Initialize a pool cache.
2013 */
2014 pool_cache_t
2015 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2016 const char *wchan, struct pool_allocator *palloc, int ipl,
2017 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2018 {
2019 pool_cache_t pc;
2020
2021 pc = pool_get(&cache_pool, PR_WAITOK);
2022 if (pc == NULL)
2023 return NULL;
2024
2025 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2026 palloc, ipl, ctor, dtor, arg);
2027
2028 return pc;
2029 }
2030
2031 /*
2032 * pool_cache_bootstrap:
2033 *
2034 * Kernel-private version of pool_cache_init(). The caller
2035 * provides initial storage.
2036 */
2037 void
2038 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2039 u_int align_offset, u_int flags, const char *wchan,
2040 struct pool_allocator *palloc, int ipl,
2041 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2042 void *arg)
2043 {
2044 CPU_INFO_ITERATOR cii;
2045 struct cpu_info *ci;
2046 struct pool *pp;
2047
2048 pp = &pc->pc_pool;
2049 if (palloc == NULL && ipl == IPL_NONE)
2050 palloc = &pool_allocator_nointr;
2051 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2052
2053 /*
2054 * XXXAD hack to prevent IP input processing from blocking.
2055 */
2056 if (ipl == IPL_SOFTNET) {
2057 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
2058 } else {
2059 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2060 }
2061
2062 if (ctor == NULL) {
2063 ctor = (int (*)(void *, void *, int))nullop;
2064 }
2065 if (dtor == NULL) {
2066 dtor = (void (*)(void *, void *))nullop;
2067 }
2068
2069 pc->pc_emptygroups = NULL;
2070 pc->pc_fullgroups = NULL;
2071 pc->pc_partgroups = NULL;
2072 pc->pc_ctor = ctor;
2073 pc->pc_dtor = dtor;
2074 pc->pc_arg = arg;
2075 pc->pc_hits = 0;
2076 pc->pc_misses = 0;
2077 pc->pc_nempty = 0;
2078 pc->pc_npart = 0;
2079 pc->pc_nfull = 0;
2080 pc->pc_contended = 0;
2081 pc->pc_refcnt = 0;
2082 pc->pc_freecheck = NULL;
2083
2084 /* Allocate per-CPU caches. */
2085 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2086 pc->pc_ncpu = 0;
2087 if (ncpu == 0) {
2088 /* XXX For sparc: boot CPU is not attached yet. */
2089 pool_cache_cpu_init1(curcpu(), pc);
2090 } else {
2091 for (CPU_INFO_FOREACH(cii, ci)) {
2092 pool_cache_cpu_init1(ci, pc);
2093 }
2094 }
2095
2096 if (__predict_true(!cold)) {
2097 mutex_enter(&pp->pr_lock);
2098 pp->pr_cache = pc;
2099 mutex_exit(&pp->pr_lock);
2100 mutex_enter(&pool_head_lock);
2101 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2102 mutex_exit(&pool_head_lock);
2103 } else {
2104 pp->pr_cache = pc;
2105 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2106 }
2107 }
2108
2109 /*
2110 * pool_cache_destroy:
2111 *
2112 * Destroy a pool cache.
2113 */
2114 void
2115 pool_cache_destroy(pool_cache_t pc)
2116 {
2117 struct pool *pp = &pc->pc_pool;
2118 pool_cache_cpu_t *cc;
2119 pcg_t *pcg;
2120 int i;
2121
2122 /* Remove it from the global list. */
2123 mutex_enter(&pool_head_lock);
2124 while (pc->pc_refcnt != 0)
2125 cv_wait(&pool_busy, &pool_head_lock);
2126 LIST_REMOVE(pc, pc_cachelist);
2127 mutex_exit(&pool_head_lock);
2128
2129 /* First, invalidate the entire cache. */
2130 pool_cache_invalidate(pc);
2131
2132 /* Disassociate it from the pool. */
2133 mutex_enter(&pp->pr_lock);
2134 pp->pr_cache = NULL;
2135 mutex_exit(&pp->pr_lock);
2136
2137 /* Destroy per-CPU data */
2138 for (i = 0; i < MAXCPUS; i++) {
2139 if ((cc = pc->pc_cpus[i]) == NULL)
2140 continue;
2141 if ((pcg = cc->cc_current) != NULL) {
2142 pcg->pcg_next = NULL;
2143 pool_cache_invalidate_groups(pc, pcg);
2144 }
2145 if ((pcg = cc->cc_previous) != NULL) {
2146 pcg->pcg_next = NULL;
2147 pool_cache_invalidate_groups(pc, pcg);
2148 }
2149 if (cc != &pc->pc_cpu0)
2150 pool_put(&cache_cpu_pool, cc);
2151 }
2152
2153 /* Finally, destroy it. */
2154 mutex_destroy(&pc->pc_lock);
2155 pool_destroy(pp);
2156 pool_put(&cache_pool, pc);
2157 }
2158
2159 /*
2160 * pool_cache_cpu_init1:
2161 *
2162 * Called for each pool_cache whenever a new CPU is attached.
2163 */
2164 static void
2165 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2166 {
2167 pool_cache_cpu_t *cc;
2168 int index;
2169
2170 index = ci->ci_index;
2171
2172 KASSERT(index < MAXCPUS);
2173 KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2174
2175 if ((cc = pc->pc_cpus[index]) != NULL) {
2176 KASSERT(cc->cc_cpuindex == index);
2177 return;
2178 }
2179
2180 /*
2181 * The first CPU is 'free'. This needs to be the case for
2182 * bootstrap - we may not be able to allocate yet.
2183 */
2184 if (pc->pc_ncpu == 0) {
2185 cc = &pc->pc_cpu0;
2186 pc->pc_ncpu = 1;
2187 } else {
2188 mutex_enter(&pc->pc_lock);
2189 pc->pc_ncpu++;
2190 mutex_exit(&pc->pc_lock);
2191 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2192 }
2193
2194 cc->cc_ipl = pc->pc_pool.pr_ipl;
2195 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2196 cc->cc_cache = pc;
2197 cc->cc_cpuindex = index;
2198 cc->cc_hits = 0;
2199 cc->cc_misses = 0;
2200 cc->cc_current = NULL;
2201 cc->cc_previous = NULL;
2202
2203 pc->pc_cpus[index] = cc;
2204 }
2205
2206 /*
2207 * pool_cache_cpu_init:
2208 *
2209 * Called whenever a new CPU is attached.
2210 */
2211 void
2212 pool_cache_cpu_init(struct cpu_info *ci)
2213 {
2214 pool_cache_t pc;
2215
2216 mutex_enter(&pool_head_lock);
2217 LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2218 pc->pc_refcnt++;
2219 mutex_exit(&pool_head_lock);
2220
2221 pool_cache_cpu_init1(ci, pc);
2222
2223 mutex_enter(&pool_head_lock);
2224 pc->pc_refcnt--;
2225 cv_broadcast(&pool_busy);
2226 }
2227 mutex_exit(&pool_head_lock);
2228 }
2229
2230 /*
2231 * pool_cache_reclaim:
2232 *
2233 * Reclaim memory from a pool cache.
2234 */
2235 bool
2236 pool_cache_reclaim(pool_cache_t pc)
2237 {
2238
2239 return pool_reclaim(&pc->pc_pool);
2240 }
2241
2242 static void
2243 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2244 {
2245
2246 (*pc->pc_dtor)(pc->pc_arg, object);
2247 pool_put(&pc->pc_pool, object);
2248 }
2249
2250 /*
2251 * pool_cache_destruct_object:
2252 *
2253 * Force destruction of an object and its release back into
2254 * the pool.
2255 */
2256 void
2257 pool_cache_destruct_object(pool_cache_t pc, void *object)
2258 {
2259
2260 FREECHECK_IN(&pc->pc_freecheck, object);
2261
2262 pool_cache_destruct_object1(pc, object);
2263 }
2264
2265 /*
2266 * pool_cache_invalidate_groups:
2267 *
2268 * Invalidate a chain of groups and destruct all objects.
2269 */
2270 static void
2271 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2272 {
2273 void *object;
2274 pcg_t *next;
2275 int i;
2276
2277 for (; pcg != NULL; pcg = next) {
2278 next = pcg->pcg_next;
2279
2280 for (i = 0; i < pcg->pcg_avail; i++) {
2281 object = pcg->pcg_objects[i].pcgo_va;
2282 pool_cache_destruct_object1(pc, object);
2283 }
2284
2285 pool_put(&pcgpool, pcg);
2286 }
2287 }
2288
2289 /*
2290 * pool_cache_invalidate:
2291 *
2292 * Invalidate a pool cache (destruct and release all of the
2293 * cached objects). Does not reclaim objects from the pool.
2294 */
2295 void
2296 pool_cache_invalidate(pool_cache_t pc)
2297 {
2298 pcg_t *full, *empty, *part;
2299
2300 mutex_enter(&pc->pc_lock);
2301 full = pc->pc_fullgroups;
2302 empty = pc->pc_emptygroups;
2303 part = pc->pc_partgroups;
2304 pc->pc_fullgroups = NULL;
2305 pc->pc_emptygroups = NULL;
2306 pc->pc_partgroups = NULL;
2307 pc->pc_nfull = 0;
2308 pc->pc_nempty = 0;
2309 pc->pc_npart = 0;
2310 mutex_exit(&pc->pc_lock);
2311
2312 pool_cache_invalidate_groups(pc, full);
2313 pool_cache_invalidate_groups(pc, empty);
2314 pool_cache_invalidate_groups(pc, part);
2315 }
2316
2317 void
2318 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2319 {
2320
2321 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2322 }
2323
2324 void
2325 pool_cache_setlowat(pool_cache_t pc, int n)
2326 {
2327
2328 pool_setlowat(&pc->pc_pool, n);
2329 }
2330
2331 void
2332 pool_cache_sethiwat(pool_cache_t pc, int n)
2333 {
2334
2335 pool_sethiwat(&pc->pc_pool, n);
2336 }
2337
2338 void
2339 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2340 {
2341
2342 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2343 }
2344
2345 static inline pool_cache_cpu_t *
2346 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2347 {
2348 pool_cache_cpu_t *cc;
2349
2350 /*
2351 * Prevent other users of the cache from accessing our
2352 * CPU-local data. To avoid touching shared state, we
2353 * pull the neccessary information from CPU local data.
2354 */
2355 crit_enter();
2356 cc = pc->pc_cpus[curcpu()->ci_index];
2357 KASSERT(cc->cc_cache == pc);
2358 if (cc->cc_ipl != IPL_NONE) {
2359 *s = splraiseipl(cc->cc_iplcookie);
2360 }
2361 KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2362
2363 return cc;
2364 }
2365
2366 static inline void
2367 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2368 {
2369
2370 /* No longer need exclusive access to the per-CPU data. */
2371 if (cc->cc_ipl != IPL_NONE) {
2372 splx(*s);
2373 }
2374 crit_exit();
2375 }
2376
2377 #if __GNUC_PREREQ__(3, 0)
2378 __attribute ((noinline))
2379 #endif
2380 pool_cache_cpu_t *
2381 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2382 paddr_t *pap, int flags)
2383 {
2384 pcg_t *pcg, *cur;
2385 uint64_t ncsw;
2386 pool_cache_t pc;
2387 void *object;
2388
2389 pc = cc->cc_cache;
2390 cc->cc_misses++;
2391
2392 /*
2393 * Nothing was available locally. Try and grab a group
2394 * from the cache.
2395 */
2396 if (!mutex_tryenter(&pc->pc_lock)) {
2397 ncsw = curlwp->l_ncsw;
2398 mutex_enter(&pc->pc_lock);
2399 pc->pc_contended++;
2400
2401 /*
2402 * If we context switched while locking, then
2403 * our view of the per-CPU data is invalid:
2404 * retry.
2405 */
2406 if (curlwp->l_ncsw != ncsw) {
2407 mutex_exit(&pc->pc_lock);
2408 pool_cache_cpu_exit(cc, s);
2409 return pool_cache_cpu_enter(pc, s);
2410 }
2411 }
2412
2413 if ((pcg = pc->pc_fullgroups) != NULL) {
2414 /*
2415 * If there's a full group, release our empty
2416 * group back to the cache. Install the full
2417 * group as cc_current and return.
2418 */
2419 if ((cur = cc->cc_current) != NULL) {
2420 KASSERT(cur->pcg_avail == 0);
2421 cur->pcg_next = pc->pc_emptygroups;
2422 pc->pc_emptygroups = cur;
2423 pc->pc_nempty++;
2424 }
2425 KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
2426 cc->cc_current = pcg;
2427 pc->pc_fullgroups = pcg->pcg_next;
2428 pc->pc_hits++;
2429 pc->pc_nfull--;
2430 mutex_exit(&pc->pc_lock);
2431 return cc;
2432 }
2433
2434 /*
2435 * Nothing available locally or in cache. Take the slow
2436 * path: fetch a new object from the pool and construct
2437 * it.
2438 */
2439 pc->pc_misses++;
2440 mutex_exit(&pc->pc_lock);
2441 pool_cache_cpu_exit(cc, s);
2442
2443 object = pool_get(&pc->pc_pool, flags);
2444 *objectp = object;
2445 if (object == NULL)
2446 return NULL;
2447
2448 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2449 pool_put(&pc->pc_pool, object);
2450 *objectp = NULL;
2451 return NULL;
2452 }
2453
2454 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2455 (pc->pc_pool.pr_align - 1)) == 0);
2456
2457 if (pap != NULL) {
2458 #ifdef POOL_VTOPHYS
2459 *pap = POOL_VTOPHYS(object);
2460 #else
2461 *pap = POOL_PADDR_INVALID;
2462 #endif
2463 }
2464
2465 FREECHECK_OUT(&pc->pc_freecheck, object);
2466 return NULL;
2467 }
2468
2469 /*
2470 * pool_cache_get{,_paddr}:
2471 *
2472 * Get an object from a pool cache (optionally returning
2473 * the physical address of the object).
2474 */
2475 void *
2476 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2477 {
2478 pool_cache_cpu_t *cc;
2479 pcg_t *pcg;
2480 void *object;
2481 int s;
2482
2483 #ifdef LOCKDEBUG
2484 if (flags & PR_WAITOK)
2485 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2486 #endif
2487
2488 cc = pool_cache_cpu_enter(pc, &s);
2489 do {
2490 /* Try and allocate an object from the current group. */
2491 pcg = cc->cc_current;
2492 if (pcg != NULL && pcg->pcg_avail > 0) {
2493 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2494 if (pap != NULL)
2495 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2496 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2497 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2498 KASSERT(object != NULL);
2499 cc->cc_hits++;
2500 pool_cache_cpu_exit(cc, &s);
2501 FREECHECK_OUT(&pc->pc_freecheck, object);
2502 return object;
2503 }
2504
2505 /*
2506 * That failed. If the previous group isn't empty, swap
2507 * it with the current group and allocate from there.
2508 */
2509 pcg = cc->cc_previous;
2510 if (pcg != NULL && pcg->pcg_avail > 0) {
2511 cc->cc_previous = cc->cc_current;
2512 cc->cc_current = pcg;
2513 continue;
2514 }
2515
2516 /*
2517 * Can't allocate from either group: try the slow path.
2518 * If get_slow() allocated an object for us, or if
2519 * no more objects are available, it will return NULL.
2520 * Otherwise, we need to retry.
2521 */
2522 cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2523 } while (cc != NULL);
2524
2525 return object;
2526 }
2527
2528 #if __GNUC_PREREQ__(3, 0)
2529 __attribute ((noinline))
2530 #endif
2531 pool_cache_cpu_t *
2532 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2533 {
2534 pcg_t *pcg, *cur;
2535 uint64_t ncsw;
2536 pool_cache_t pc;
2537
2538 pc = cc->cc_cache;
2539 cc->cc_misses++;
2540
2541 /*
2542 * No free slots locally. Try to grab an empty, unused
2543 * group from the cache.
2544 */
2545 if (!mutex_tryenter(&pc->pc_lock)) {
2546 ncsw = curlwp->l_ncsw;
2547 mutex_enter(&pc->pc_lock);
2548 pc->pc_contended++;
2549
2550 /*
2551 * If we context switched while locking, then
2552 * our view of the per-CPU data is invalid:
2553 * retry.
2554 */
2555 if (curlwp->l_ncsw != ncsw) {
2556 mutex_exit(&pc->pc_lock);
2557 pool_cache_cpu_exit(cc, s);
2558 return pool_cache_cpu_enter(pc, s);
2559 }
2560 }
2561
2562 if ((pcg = pc->pc_emptygroups) != NULL) {
2563 /*
2564 * If there's a empty group, release our full
2565 * group back to the cache. Install the empty
2566 * group as cc_current and return.
2567 */
2568 if ((cur = cc->cc_current) != NULL) {
2569 KASSERT(cur->pcg_avail == PCG_NOBJECTS);
2570 cur->pcg_next = pc->pc_fullgroups;
2571 pc->pc_fullgroups = cur;
2572 pc->pc_nfull++;
2573 }
2574 KASSERT(pcg->pcg_avail == 0);
2575 cc->cc_current = pcg;
2576 pc->pc_emptygroups = pcg->pcg_next;
2577 pc->pc_hits++;
2578 pc->pc_nempty--;
2579 mutex_exit(&pc->pc_lock);
2580 return cc;
2581 }
2582
2583 /*
2584 * Nothing available locally or in cache. Take the
2585 * slow path and try to allocate a new group that we
2586 * can release to.
2587 */
2588 pc->pc_misses++;
2589 mutex_exit(&pc->pc_lock);
2590 pool_cache_cpu_exit(cc, s);
2591
2592 /*
2593 * If we can't allocate a new group, just throw the
2594 * object away.
2595 */
2596 if (pool_cache_disable) {
2597 pcg = NULL;
2598 } else {
2599 pcg = pool_get(&pcgpool, PR_NOWAIT);
2600 }
2601 if (pcg == NULL) {
2602 pool_cache_destruct_object(pc, object);
2603 return NULL;
2604 }
2605 #ifdef DIAGNOSTIC
2606 memset(pcg, 0, sizeof(*pcg));
2607 #else
2608 pcg->pcg_avail = 0;
2609 #endif
2610
2611 /*
2612 * Add the empty group to the cache and try again.
2613 */
2614 mutex_enter(&pc->pc_lock);
2615 pcg->pcg_next = pc->pc_emptygroups;
2616 pc->pc_emptygroups = pcg;
2617 pc->pc_nempty++;
2618 mutex_exit(&pc->pc_lock);
2619
2620 return pool_cache_cpu_enter(pc, s);
2621 }
2622
2623 /*
2624 * pool_cache_put{,_paddr}:
2625 *
2626 * Put an object back to the pool cache (optionally caching the
2627 * physical address of the object).
2628 */
2629 void
2630 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2631 {
2632 pool_cache_cpu_t *cc;
2633 pcg_t *pcg;
2634 int s;
2635
2636 FREECHECK_IN(&pc->pc_freecheck, object);
2637
2638 cc = pool_cache_cpu_enter(pc, &s);
2639 do {
2640 /* If the current group isn't full, release it there. */
2641 pcg = cc->cc_current;
2642 if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
2643 KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
2644 == NULL);
2645 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2646 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2647 pcg->pcg_avail++;
2648 cc->cc_hits++;
2649 pool_cache_cpu_exit(cc, &s);
2650 return;
2651 }
2652
2653 /*
2654 * That failed. If the previous group is empty, swap
2655 * it with the current group and try again.
2656 */
2657 pcg = cc->cc_previous;
2658 if (pcg != NULL && pcg->pcg_avail == 0) {
2659 cc->cc_previous = cc->cc_current;
2660 cc->cc_current = pcg;
2661 continue;
2662 }
2663
2664 /*
2665 * Can't free to either group: try the slow path.
2666 * If put_slow() releases the object for us, it
2667 * will return NULL. Otherwise we need to retry.
2668 */
2669 cc = pool_cache_put_slow(cc, &s, object, pa);
2670 } while (cc != NULL);
2671 }
2672
2673 /*
2674 * pool_cache_xcall:
2675 *
2676 * Transfer objects from the per-CPU cache to the global cache.
2677 * Run within a cross-call thread.
2678 */
2679 static void
2680 pool_cache_xcall(pool_cache_t pc)
2681 {
2682 pool_cache_cpu_t *cc;
2683 pcg_t *prev, *cur, **list;
2684 int s = 0; /* XXXgcc */
2685
2686 cc = pool_cache_cpu_enter(pc, &s);
2687 cur = cc->cc_current;
2688 cc->cc_current = NULL;
2689 prev = cc->cc_previous;
2690 cc->cc_previous = NULL;
2691 pool_cache_cpu_exit(cc, &s);
2692
2693 /*
2694 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2695 * because locks at IPL_SOFTXXX are still spinlocks. Does not
2696 * apply to IPL_SOFTBIO. Cross-call threads do not take the
2697 * kernel_lock.
2698 */
2699 s = splvm();
2700 mutex_enter(&pc->pc_lock);
2701 if (cur != NULL) {
2702 if (cur->pcg_avail == PCG_NOBJECTS) {
2703 list = &pc->pc_fullgroups;
2704 pc->pc_nfull++;
2705 } else if (cur->pcg_avail == 0) {
2706 list = &pc->pc_emptygroups;
2707 pc->pc_nempty++;
2708 } else {
2709 list = &pc->pc_partgroups;
2710 pc->pc_npart++;
2711 }
2712 cur->pcg_next = *list;
2713 *list = cur;
2714 }
2715 if (prev != NULL) {
2716 if (prev->pcg_avail == PCG_NOBJECTS) {
2717 list = &pc->pc_fullgroups;
2718 pc->pc_nfull++;
2719 } else if (prev->pcg_avail == 0) {
2720 list = &pc->pc_emptygroups;
2721 pc->pc_nempty++;
2722 } else {
2723 list = &pc->pc_partgroups;
2724 pc->pc_npart++;
2725 }
2726 prev->pcg_next = *list;
2727 *list = prev;
2728 }
2729 mutex_exit(&pc->pc_lock);
2730 splx(s);
2731 }
2732
2733 /*
2734 * Pool backend allocators.
2735 *
2736 * Each pool has a backend allocator that handles allocation, deallocation,
2737 * and any additional draining that might be needed.
2738 *
2739 * We provide two standard allocators:
2740 *
2741 * pool_allocator_kmem - the default when no allocator is specified
2742 *
2743 * pool_allocator_nointr - used for pools that will not be accessed
2744 * in interrupt context.
2745 */
2746 void *pool_page_alloc(struct pool *, int);
2747 void pool_page_free(struct pool *, void *);
2748
2749 #ifdef POOL_SUBPAGE
2750 struct pool_allocator pool_allocator_kmem_fullpage = {
2751 pool_page_alloc, pool_page_free, 0,
2752 .pa_backingmapptr = &kmem_map,
2753 };
2754 #else
2755 struct pool_allocator pool_allocator_kmem = {
2756 pool_page_alloc, pool_page_free, 0,
2757 .pa_backingmapptr = &kmem_map,
2758 };
2759 #endif
2760
2761 void *pool_page_alloc_nointr(struct pool *, int);
2762 void pool_page_free_nointr(struct pool *, void *);
2763
2764 #ifdef POOL_SUBPAGE
2765 struct pool_allocator pool_allocator_nointr_fullpage = {
2766 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2767 .pa_backingmapptr = &kernel_map,
2768 };
2769 #else
2770 struct pool_allocator pool_allocator_nointr = {
2771 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2772 .pa_backingmapptr = &kernel_map,
2773 };
2774 #endif
2775
2776 #ifdef POOL_SUBPAGE
2777 void *pool_subpage_alloc(struct pool *, int);
2778 void pool_subpage_free(struct pool *, void *);
2779
2780 struct pool_allocator pool_allocator_kmem = {
2781 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2782 .pa_backingmapptr = &kmem_map,
2783 };
2784
2785 void *pool_subpage_alloc_nointr(struct pool *, int);
2786 void pool_subpage_free_nointr(struct pool *, void *);
2787
2788 struct pool_allocator pool_allocator_nointr = {
2789 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2790 .pa_backingmapptr = &kmem_map,
2791 };
2792 #endif /* POOL_SUBPAGE */
2793
2794 static void *
2795 pool_allocator_alloc(struct pool *pp, int flags)
2796 {
2797 struct pool_allocator *pa = pp->pr_alloc;
2798 void *res;
2799
2800 res = (*pa->pa_alloc)(pp, flags);
2801 if (res == NULL && (flags & PR_WAITOK) == 0) {
2802 /*
2803 * We only run the drain hook here if PR_NOWAIT.
2804 * In other cases, the hook will be run in
2805 * pool_reclaim().
2806 */
2807 if (pp->pr_drain_hook != NULL) {
2808 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2809 res = (*pa->pa_alloc)(pp, flags);
2810 }
2811 }
2812 return res;
2813 }
2814
2815 static void
2816 pool_allocator_free(struct pool *pp, void *v)
2817 {
2818 struct pool_allocator *pa = pp->pr_alloc;
2819
2820 (*pa->pa_free)(pp, v);
2821 }
2822
2823 void *
2824 pool_page_alloc(struct pool *pp, int flags)
2825 {
2826 bool waitok = (flags & PR_WAITOK) ? true : false;
2827
2828 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2829 }
2830
2831 void
2832 pool_page_free(struct pool *pp, void *v)
2833 {
2834
2835 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2836 }
2837
2838 static void *
2839 pool_page_alloc_meta(struct pool *pp, int flags)
2840 {
2841 bool waitok = (flags & PR_WAITOK) ? true : false;
2842
2843 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2844 }
2845
2846 static void
2847 pool_page_free_meta(struct pool *pp, void *v)
2848 {
2849
2850 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2851 }
2852
2853 #ifdef POOL_SUBPAGE
2854 /* Sub-page allocator, for machines with large hardware pages. */
2855 void *
2856 pool_subpage_alloc(struct pool *pp, int flags)
2857 {
2858 return pool_get(&psppool, flags);
2859 }
2860
2861 void
2862 pool_subpage_free(struct pool *pp, void *v)
2863 {
2864 pool_put(&psppool, v);
2865 }
2866
2867 /* We don't provide a real nointr allocator. Maybe later. */
2868 void *
2869 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2870 {
2871
2872 return (pool_subpage_alloc(pp, flags));
2873 }
2874
2875 void
2876 pool_subpage_free_nointr(struct pool *pp, void *v)
2877 {
2878
2879 pool_subpage_free(pp, v);
2880 }
2881 #endif /* POOL_SUBPAGE */
2882 void *
2883 pool_page_alloc_nointr(struct pool *pp, int flags)
2884 {
2885 bool waitok = (flags & PR_WAITOK) ? true : false;
2886
2887 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2888 }
2889
2890 void
2891 pool_page_free_nointr(struct pool *pp, void *v)
2892 {
2893
2894 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2895 }
2896