Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.137.2.4
      1 /*	$NetBSD: subr_pool.c,v 1.137.2.4 2007/12/26 17:55:57 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.137.2.4 2007/12/26 17:55:57 ad Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/bitops.h>
     50 #include <sys/proc.h>
     51 #include <sys/errno.h>
     52 #include <sys/kernel.h>
     53 #include <sys/malloc.h>
     54 #include <sys/lock.h>
     55 #include <sys/pool.h>
     56 #include <sys/syslog.h>
     57 #include <sys/debug.h>
     58 #include <sys/lockdebug.h>
     59 #include <sys/xcall.h>
     60 #include <sys/cpu.h>
     61 #include <sys/atomic.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 /*
     66  * Pool resource management utility.
     67  *
     68  * Memory is allocated in pages which are split into pieces according to
     69  * the pool item size. Each page is kept on one of three lists in the
     70  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     71  * for empty, full and partially-full pages respectively. The individual
     72  * pool items are on a linked list headed by `ph_itemlist' in each page
     73  * header. The memory for building the page list is either taken from
     74  * the allocated pages themselves (for small pool items) or taken from
     75  * an internal pool of page headers (`phpool').
     76  */
     77 
     78 /* List of all pools */
     79 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     80 
     81 /* Private pool for page header structures */
     82 #define	PHPOOL_MAX	8
     83 static struct pool phpool[PHPOOL_MAX];
     84 #define	PHPOOL_FREELIST_NELEM(idx) \
     85 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     86 
     87 #ifdef POOL_SUBPAGE
     88 /* Pool of subpages for use by normal pools. */
     89 static struct pool psppool;
     90 #endif
     91 
     92 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     93     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     94 
     95 static void *pool_page_alloc_meta(struct pool *, int);
     96 static void pool_page_free_meta(struct pool *, void *);
     97 
     98 /* allocator for pool metadata */
     99 struct pool_allocator pool_allocator_meta = {
    100 	pool_page_alloc_meta, pool_page_free_meta,
    101 	.pa_backingmapptr = &kmem_map,
    102 };
    103 
    104 /* # of seconds to retain page after last use */
    105 int pool_inactive_time = 10;
    106 
    107 /* Next candidate for drainage (see pool_drain()) */
    108 static struct pool	*drainpp;
    109 
    110 /* This lock protects both pool_head and drainpp. */
    111 static kmutex_t pool_head_lock;
    112 static kcondvar_t pool_busy;
    113 
    114 typedef uint32_t pool_item_bitmap_t;
    115 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    116 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    117 
    118 struct pool_item_header {
    119 	/* Page headers */
    120 	LIST_ENTRY(pool_item_header)
    121 				ph_pagelist;	/* pool page list */
    122 	SPLAY_ENTRY(pool_item_header)
    123 				ph_node;	/* Off-page page headers */
    124 	void *			ph_page;	/* this page's address */
    125 	struct timeval		ph_time;	/* last referenced */
    126 	uint16_t		ph_nmissing;	/* # of chunks in use */
    127 	union {
    128 		/* !PR_NOTOUCH */
    129 		struct {
    130 			LIST_HEAD(, pool_item)
    131 				phu_itemlist;	/* chunk list for this page */
    132 		} phu_normal;
    133 		/* PR_NOTOUCH */
    134 		struct {
    135 			uint16_t phu_off;	/* start offset in page */
    136 			pool_item_bitmap_t phu_bitmap[];
    137 		} phu_notouch;
    138 	} ph_u;
    139 };
    140 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    141 #define	ph_off		ph_u.phu_notouch.phu_off
    142 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    143 
    144 struct pool_item {
    145 #ifdef DIAGNOSTIC
    146 	u_int pi_magic;
    147 #endif
    148 #define	PI_MAGIC 0xdeaddeadU
    149 	/* Other entries use only this list entry */
    150 	LIST_ENTRY(pool_item)	pi_list;
    151 };
    152 
    153 #define	POOL_NEEDS_CATCHUP(pp)						\
    154 	((pp)->pr_nitems < (pp)->pr_minitems)
    155 
    156 /*
    157  * Pool cache management.
    158  *
    159  * Pool caches provide a way for constructed objects to be cached by the
    160  * pool subsystem.  This can lead to performance improvements by avoiding
    161  * needless object construction/destruction; it is deferred until absolutely
    162  * necessary.
    163  *
    164  * Caches are grouped into cache groups.  Each cache group references up
    165  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    166  * object from the pool, it calls the object's constructor and places it
    167  * into a cache group.  When a cache group frees an object back to the
    168  * pool, it first calls the object's destructor.  This allows the object
    169  * to persist in constructed form while freed to the cache.
    170  *
    171  * The pool references each cache, so that when a pool is drained by the
    172  * pagedaemon, it can drain each individual cache as well.  Each time a
    173  * cache is drained, the most idle cache group is freed to the pool in
    174  * its entirety.
    175  *
    176  * Pool caches are layed on top of pools.  By layering them, we can avoid
    177  * the complexity of cache management for pools which would not benefit
    178  * from it.
    179  */
    180 
    181 static struct pool pcgpool;
    182 static struct pool cache_pool;
    183 static struct pool cache_cpu_pool;
    184 
    185 /* List of all caches. */
    186 TAILQ_HEAD(,pool_cache) pool_cache_head =
    187     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    188 
    189 int pool_cache_disable;
    190 
    191 
    192 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    193 					     void *, paddr_t);
    194 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    195 					     void **, paddr_t *, int);
    196 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    197 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    198 static void	pool_cache_xcall(pool_cache_t);
    199 
    200 static int	pool_catchup(struct pool *);
    201 static void	pool_prime_page(struct pool *, void *,
    202 		    struct pool_item_header *);
    203 static void	pool_update_curpage(struct pool *);
    204 
    205 static int	pool_grow(struct pool *, int);
    206 static void	*pool_allocator_alloc(struct pool *, int);
    207 static void	pool_allocator_free(struct pool *, void *);
    208 
    209 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    210 	void (*)(const char *, ...));
    211 static void pool_print1(struct pool *, const char *,
    212 	void (*)(const char *, ...));
    213 
    214 static int pool_chk_page(struct pool *, const char *,
    215 			 struct pool_item_header *);
    216 
    217 /*
    218  * Pool log entry. An array of these is allocated in pool_init().
    219  */
    220 struct pool_log {
    221 	const char	*pl_file;
    222 	long		pl_line;
    223 	int		pl_action;
    224 #define	PRLOG_GET	1
    225 #define	PRLOG_PUT	2
    226 	void		*pl_addr;
    227 };
    228 
    229 #ifdef POOL_DIAGNOSTIC
    230 /* Number of entries in pool log buffers */
    231 #ifndef POOL_LOGSIZE
    232 #define	POOL_LOGSIZE	10
    233 #endif
    234 
    235 int pool_logsize = POOL_LOGSIZE;
    236 
    237 static inline void
    238 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    239 {
    240 	int n = pp->pr_curlogentry;
    241 	struct pool_log *pl;
    242 
    243 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    244 		return;
    245 
    246 	/*
    247 	 * Fill in the current entry. Wrap around and overwrite
    248 	 * the oldest entry if necessary.
    249 	 */
    250 	pl = &pp->pr_log[n];
    251 	pl->pl_file = file;
    252 	pl->pl_line = line;
    253 	pl->pl_action = action;
    254 	pl->pl_addr = v;
    255 	if (++n >= pp->pr_logsize)
    256 		n = 0;
    257 	pp->pr_curlogentry = n;
    258 }
    259 
    260 static void
    261 pr_printlog(struct pool *pp, struct pool_item *pi,
    262     void (*pr)(const char *, ...))
    263 {
    264 	int i = pp->pr_logsize;
    265 	int n = pp->pr_curlogentry;
    266 
    267 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    268 		return;
    269 
    270 	/*
    271 	 * Print all entries in this pool's log.
    272 	 */
    273 	while (i-- > 0) {
    274 		struct pool_log *pl = &pp->pr_log[n];
    275 		if (pl->pl_action != 0) {
    276 			if (pi == NULL || pi == pl->pl_addr) {
    277 				(*pr)("\tlog entry %d:\n", i);
    278 				(*pr)("\t\taction = %s, addr = %p\n",
    279 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    280 				    pl->pl_addr);
    281 				(*pr)("\t\tfile: %s at line %lu\n",
    282 				    pl->pl_file, pl->pl_line);
    283 			}
    284 		}
    285 		if (++n >= pp->pr_logsize)
    286 			n = 0;
    287 	}
    288 }
    289 
    290 static inline void
    291 pr_enter(struct pool *pp, const char *file, long line)
    292 {
    293 
    294 	if (__predict_false(pp->pr_entered_file != NULL)) {
    295 		printf("pool %s: reentrancy at file %s line %ld\n",
    296 		    pp->pr_wchan, file, line);
    297 		printf("         previous entry at file %s line %ld\n",
    298 		    pp->pr_entered_file, pp->pr_entered_line);
    299 		panic("pr_enter");
    300 	}
    301 
    302 	pp->pr_entered_file = file;
    303 	pp->pr_entered_line = line;
    304 }
    305 
    306 static inline void
    307 pr_leave(struct pool *pp)
    308 {
    309 
    310 	if (__predict_false(pp->pr_entered_file == NULL)) {
    311 		printf("pool %s not entered?\n", pp->pr_wchan);
    312 		panic("pr_leave");
    313 	}
    314 
    315 	pp->pr_entered_file = NULL;
    316 	pp->pr_entered_line = 0;
    317 }
    318 
    319 static inline void
    320 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    321 {
    322 
    323 	if (pp->pr_entered_file != NULL)
    324 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    325 		    pp->pr_entered_file, pp->pr_entered_line);
    326 }
    327 #else
    328 #define	pr_log(pp, v, action, file, line)
    329 #define	pr_printlog(pp, pi, pr)
    330 #define	pr_enter(pp, file, line)
    331 #define	pr_leave(pp)
    332 #define	pr_enter_check(pp, pr)
    333 #endif /* POOL_DIAGNOSTIC */
    334 
    335 static inline unsigned int
    336 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    337     const void *v)
    338 {
    339 	const char *cp = v;
    340 	unsigned int idx;
    341 
    342 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    343 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    344 	KASSERT(idx < pp->pr_itemsperpage);
    345 	return idx;
    346 }
    347 
    348 static inline void
    349 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    350     void *obj)
    351 {
    352 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    353 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    354 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    355 
    356 	KASSERT((*bitmap & mask) == 0);
    357 	*bitmap |= mask;
    358 }
    359 
    360 static inline void *
    361 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    362 {
    363 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    364 	unsigned int idx;
    365 	int i;
    366 
    367 	for (i = 0; ; i++) {
    368 		int bit;
    369 
    370 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    371 		bit = ffs32(bitmap[i]);
    372 		if (bit) {
    373 			pool_item_bitmap_t mask;
    374 
    375 			bit--;
    376 			idx = (i * BITMAP_SIZE) + bit;
    377 			mask = 1 << bit;
    378 			KASSERT((bitmap[i] & mask) != 0);
    379 			bitmap[i] &= ~mask;
    380 			break;
    381 		}
    382 	}
    383 	KASSERT(idx < pp->pr_itemsperpage);
    384 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    385 }
    386 
    387 static inline void
    388 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    389 {
    390 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    391 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    392 	int i;
    393 
    394 	for (i = 0; i < n; i++) {
    395 		bitmap[i] = (pool_item_bitmap_t)-1;
    396 	}
    397 }
    398 
    399 static inline int
    400 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    401 {
    402 
    403 	/*
    404 	 * we consider pool_item_header with smaller ph_page bigger.
    405 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    406 	 */
    407 
    408 	if (a->ph_page < b->ph_page)
    409 		return (1);
    410 	else if (a->ph_page > b->ph_page)
    411 		return (-1);
    412 	else
    413 		return (0);
    414 }
    415 
    416 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    417 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    418 
    419 /*
    420  * Return the pool page header based on item address.
    421  */
    422 static inline struct pool_item_header *
    423 pr_find_pagehead(struct pool *pp, void *v)
    424 {
    425 	struct pool_item_header *ph, tmp;
    426 
    427 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    428 		tmp.ph_page = (void *)(uintptr_t)v;
    429 		ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    430 		if (ph == NULL) {
    431 			ph = SPLAY_ROOT(&pp->pr_phtree);
    432 			if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    433 				ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    434 			}
    435 			KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    436 		}
    437 	} else {
    438 		void *page =
    439 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    440 
    441 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    442 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    443 		} else {
    444 			tmp.ph_page = page;
    445 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    446 		}
    447 	}
    448 
    449 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    450 	    ((char *)ph->ph_page <= (char *)v &&
    451 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    452 	return ph;
    453 }
    454 
    455 static void
    456 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    457 {
    458 	struct pool_item_header *ph;
    459 
    460 	while ((ph = LIST_FIRST(pq)) != NULL) {
    461 		LIST_REMOVE(ph, ph_pagelist);
    462 		pool_allocator_free(pp, ph->ph_page);
    463 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    464 			pool_put(pp->pr_phpool, ph);
    465 	}
    466 }
    467 
    468 /*
    469  * Remove a page from the pool.
    470  */
    471 static inline void
    472 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    473      struct pool_pagelist *pq)
    474 {
    475 
    476 	KASSERT(mutex_owned(&pp->pr_lock));
    477 
    478 	/*
    479 	 * If the page was idle, decrement the idle page count.
    480 	 */
    481 	if (ph->ph_nmissing == 0) {
    482 #ifdef DIAGNOSTIC
    483 		if (pp->pr_nidle == 0)
    484 			panic("pr_rmpage: nidle inconsistent");
    485 		if (pp->pr_nitems < pp->pr_itemsperpage)
    486 			panic("pr_rmpage: nitems inconsistent");
    487 #endif
    488 		pp->pr_nidle--;
    489 	}
    490 
    491 	pp->pr_nitems -= pp->pr_itemsperpage;
    492 
    493 	/*
    494 	 * Unlink the page from the pool and queue it for release.
    495 	 */
    496 	LIST_REMOVE(ph, ph_pagelist);
    497 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    498 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    499 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    500 
    501 	pp->pr_npages--;
    502 	pp->pr_npagefree++;
    503 
    504 	pool_update_curpage(pp);
    505 }
    506 
    507 static bool
    508 pa_starved_p(struct pool_allocator *pa)
    509 {
    510 
    511 	if (pa->pa_backingmap != NULL) {
    512 		return vm_map_starved_p(pa->pa_backingmap);
    513 	}
    514 	return false;
    515 }
    516 
    517 static int
    518 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    519 {
    520 	struct pool *pp = obj;
    521 	struct pool_allocator *pa = pp->pr_alloc;
    522 
    523 	KASSERT(&pp->pr_reclaimerentry == ce);
    524 	pool_reclaim(pp);
    525 	if (!pa_starved_p(pa)) {
    526 		return CALLBACK_CHAIN_ABORT;
    527 	}
    528 	return CALLBACK_CHAIN_CONTINUE;
    529 }
    530 
    531 static void
    532 pool_reclaim_register(struct pool *pp)
    533 {
    534 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    535 	int s;
    536 
    537 	if (map == NULL) {
    538 		return;
    539 	}
    540 
    541 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    542 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    543 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    544 	splx(s);
    545 }
    546 
    547 static void
    548 pool_reclaim_unregister(struct pool *pp)
    549 {
    550 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    551 	int s;
    552 
    553 	if (map == NULL) {
    554 		return;
    555 	}
    556 
    557 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    558 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    559 	    &pp->pr_reclaimerentry);
    560 	splx(s);
    561 }
    562 
    563 static void
    564 pa_reclaim_register(struct pool_allocator *pa)
    565 {
    566 	struct vm_map *map = *pa->pa_backingmapptr;
    567 	struct pool *pp;
    568 
    569 	KASSERT(pa->pa_backingmap == NULL);
    570 	if (map == NULL) {
    571 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    572 		return;
    573 	}
    574 	pa->pa_backingmap = map;
    575 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    576 		pool_reclaim_register(pp);
    577 	}
    578 }
    579 
    580 /*
    581  * Initialize all the pools listed in the "pools" link set.
    582  */
    583 void
    584 pool_subsystem_init(void)
    585 {
    586 	struct pool_allocator *pa;
    587 	__link_set_decl(pools, struct link_pool_init);
    588 	struct link_pool_init * const *pi;
    589 
    590 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    591 	cv_init(&pool_busy, "poolbusy");
    592 
    593 	__link_set_foreach(pi, pools)
    594 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    595 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    596 		    (*pi)->palloc, (*pi)->ipl);
    597 
    598 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    599 		KASSERT(pa->pa_backingmapptr != NULL);
    600 		KASSERT(*pa->pa_backingmapptr != NULL);
    601 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    602 		pa_reclaim_register(pa);
    603 	}
    604 
    605 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
    606 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    607 
    608 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
    609 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    610 }
    611 
    612 /*
    613  * Initialize the given pool resource structure.
    614  *
    615  * We export this routine to allow other kernel parts to declare
    616  * static pools that must be initialized before malloc() is available.
    617  */
    618 void
    619 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    620     const char *wchan, struct pool_allocator *palloc, int ipl)
    621 {
    622 	struct pool *pp1;
    623 	size_t trysize, phsize;
    624 	int off, slack;
    625 
    626 #ifdef DEBUG
    627 	/*
    628 	 * Check that the pool hasn't already been initialised and
    629 	 * added to the list of all pools.
    630 	 */
    631 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    632 		if (pp == pp1)
    633 			panic("pool_init: pool %s already initialised",
    634 			    wchan);
    635 	}
    636 #endif
    637 
    638 #ifdef POOL_DIAGNOSTIC
    639 	/*
    640 	 * Always log if POOL_DIAGNOSTIC is defined.
    641 	 */
    642 	if (pool_logsize != 0)
    643 		flags |= PR_LOGGING;
    644 #endif
    645 
    646 	if (palloc == NULL)
    647 		palloc = &pool_allocator_kmem;
    648 #ifdef POOL_SUBPAGE
    649 	if (size > palloc->pa_pagesz) {
    650 		if (palloc == &pool_allocator_kmem)
    651 			palloc = &pool_allocator_kmem_fullpage;
    652 		else if (palloc == &pool_allocator_nointr)
    653 			palloc = &pool_allocator_nointr_fullpage;
    654 	}
    655 #endif /* POOL_SUBPAGE */
    656 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    657 		if (palloc->pa_pagesz == 0)
    658 			palloc->pa_pagesz = PAGE_SIZE;
    659 
    660 		TAILQ_INIT(&palloc->pa_list);
    661 
    662 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    663 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    664 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    665 
    666 		if (palloc->pa_backingmapptr != NULL) {
    667 			pa_reclaim_register(palloc);
    668 		}
    669 		palloc->pa_flags |= PA_INITIALIZED;
    670 	}
    671 
    672 	if (align == 0)
    673 		align = ALIGN(1);
    674 
    675 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    676 		size = sizeof(struct pool_item);
    677 
    678 	size = roundup(size, align);
    679 #ifdef DIAGNOSTIC
    680 	if (size > palloc->pa_pagesz)
    681 		panic("pool_init: pool item size (%zu) too large", size);
    682 #endif
    683 
    684 	/*
    685 	 * Initialize the pool structure.
    686 	 */
    687 	LIST_INIT(&pp->pr_emptypages);
    688 	LIST_INIT(&pp->pr_fullpages);
    689 	LIST_INIT(&pp->pr_partpages);
    690 	pp->pr_cache = NULL;
    691 	pp->pr_curpage = NULL;
    692 	pp->pr_npages = 0;
    693 	pp->pr_minitems = 0;
    694 	pp->pr_minpages = 0;
    695 	pp->pr_maxpages = UINT_MAX;
    696 	pp->pr_roflags = flags;
    697 	pp->pr_flags = 0;
    698 	pp->pr_size = size;
    699 	pp->pr_align = align;
    700 	pp->pr_wchan = wchan;
    701 	pp->pr_alloc = palloc;
    702 	pp->pr_nitems = 0;
    703 	pp->pr_nout = 0;
    704 	pp->pr_hardlimit = UINT_MAX;
    705 	pp->pr_hardlimit_warning = NULL;
    706 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    707 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    708 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    709 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    710 	pp->pr_drain_hook = NULL;
    711 	pp->pr_drain_hook_arg = NULL;
    712 	pp->pr_freecheck = NULL;
    713 
    714 	/*
    715 	 * Decide whether to put the page header off page to avoid
    716 	 * wasting too large a part of the page or too big item.
    717 	 * Off-page page headers go on a hash table, so we can match
    718 	 * a returned item with its header based on the page address.
    719 	 * We use 1/16 of the page size and about 8 times of the item
    720 	 * size as the threshold (XXX: tune)
    721 	 *
    722 	 * However, we'll put the header into the page if we can put
    723 	 * it without wasting any items.
    724 	 *
    725 	 * Silently enforce `0 <= ioff < align'.
    726 	 */
    727 	pp->pr_itemoffset = ioff %= align;
    728 	/* See the comment below about reserved bytes. */
    729 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    730 	phsize = ALIGN(sizeof(struct pool_item_header));
    731 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    732 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    733 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    734 		/* Use the end of the page for the page header */
    735 		pp->pr_roflags |= PR_PHINPAGE;
    736 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    737 	} else {
    738 		/* The page header will be taken from our page header pool */
    739 		pp->pr_phoffset = 0;
    740 		off = palloc->pa_pagesz;
    741 		SPLAY_INIT(&pp->pr_phtree);
    742 	}
    743 
    744 	/*
    745 	 * Alignment is to take place at `ioff' within the item. This means
    746 	 * we must reserve up to `align - 1' bytes on the page to allow
    747 	 * appropriate positioning of each item.
    748 	 */
    749 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    750 	KASSERT(pp->pr_itemsperpage != 0);
    751 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    752 		int idx;
    753 
    754 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    755 		    idx++) {
    756 			/* nothing */
    757 		}
    758 		if (idx >= PHPOOL_MAX) {
    759 			/*
    760 			 * if you see this panic, consider to tweak
    761 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    762 			 */
    763 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    764 			    pp->pr_wchan, pp->pr_itemsperpage);
    765 		}
    766 		pp->pr_phpool = &phpool[idx];
    767 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    768 		pp->pr_phpool = &phpool[0];
    769 	}
    770 #if defined(DIAGNOSTIC)
    771 	else {
    772 		pp->pr_phpool = NULL;
    773 	}
    774 #endif
    775 
    776 	/*
    777 	 * Use the slack between the chunks and the page header
    778 	 * for "cache coloring".
    779 	 */
    780 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    781 	pp->pr_maxcolor = (slack / align) * align;
    782 	pp->pr_curcolor = 0;
    783 
    784 	pp->pr_nget = 0;
    785 	pp->pr_nfail = 0;
    786 	pp->pr_nput = 0;
    787 	pp->pr_npagealloc = 0;
    788 	pp->pr_npagefree = 0;
    789 	pp->pr_hiwat = 0;
    790 	pp->pr_nidle = 0;
    791 	pp->pr_refcnt = 0;
    792 
    793 #ifdef POOL_DIAGNOSTIC
    794 	if (flags & PR_LOGGING) {
    795 		if (kmem_map == NULL ||
    796 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    797 		     M_TEMP, M_NOWAIT)) == NULL)
    798 			pp->pr_roflags &= ~PR_LOGGING;
    799 		pp->pr_curlogentry = 0;
    800 		pp->pr_logsize = pool_logsize;
    801 	}
    802 #endif
    803 
    804 	pp->pr_entered_file = NULL;
    805 	pp->pr_entered_line = 0;
    806 
    807 	/*
    808 	 * XXXAD hack to prevent IP input processing from blocking.
    809 	 */
    810 	if (ipl == IPL_SOFTNET) {
    811 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
    812 	} else {
    813 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    814 	}
    815 	cv_init(&pp->pr_cv, wchan);
    816 	pp->pr_ipl = ipl;
    817 
    818 	/*
    819 	 * Initialize private page header pool and cache magazine pool if we
    820 	 * haven't done so yet.
    821 	 * XXX LOCKING.
    822 	 */
    823 	if (phpool[0].pr_size == 0) {
    824 		int idx;
    825 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    826 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    827 			int nelem;
    828 			size_t sz;
    829 
    830 			nelem = PHPOOL_FREELIST_NELEM(idx);
    831 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    832 			    "phpool-%d", nelem);
    833 			sz = sizeof(struct pool_item_header);
    834 			if (nelem) {
    835 				sz = offsetof(struct pool_item_header,
    836 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    837 			}
    838 			pool_init(&phpool[idx], sz, 0, 0, 0,
    839 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    840 		}
    841 #ifdef POOL_SUBPAGE
    842 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    843 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    844 #endif
    845 		pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
    846 		    "cachegrp", &pool_allocator_meta, IPL_VM);
    847 	}
    848 
    849 	/* Insert into the list of all pools. */
    850 	if (__predict_true(!cold))
    851 		mutex_enter(&pool_head_lock);
    852 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    853 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    854 			break;
    855 	}
    856 	if (pp1 == NULL)
    857 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    858 	else
    859 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    860 	if (__predict_true(!cold))
    861 		mutex_exit(&pool_head_lock);
    862 
    863 		/* Insert this into the list of pools using this allocator. */
    864 	if (__predict_true(!cold))
    865 		mutex_enter(&palloc->pa_lock);
    866 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    867 	if (__predict_true(!cold))
    868 		mutex_exit(&palloc->pa_lock);
    869 
    870 	pool_reclaim_register(pp);
    871 }
    872 
    873 /*
    874  * De-commision a pool resource.
    875  */
    876 void
    877 pool_destroy(struct pool *pp)
    878 {
    879 	struct pool_pagelist pq;
    880 	struct pool_item_header *ph;
    881 
    882 	/* Remove from global pool list */
    883 	mutex_enter(&pool_head_lock);
    884 	while (pp->pr_refcnt != 0)
    885 		cv_wait(&pool_busy, &pool_head_lock);
    886 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    887 	if (drainpp == pp)
    888 		drainpp = NULL;
    889 	mutex_exit(&pool_head_lock);
    890 
    891 	/* Remove this pool from its allocator's list of pools. */
    892 	pool_reclaim_unregister(pp);
    893 	mutex_enter(&pp->pr_alloc->pa_lock);
    894 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    895 	mutex_exit(&pp->pr_alloc->pa_lock);
    896 
    897 	mutex_enter(&pp->pr_lock);
    898 
    899 	KASSERT(pp->pr_cache == NULL);
    900 
    901 #ifdef DIAGNOSTIC
    902 	if (pp->pr_nout != 0) {
    903 		pr_printlog(pp, NULL, printf);
    904 		panic("pool_destroy: pool busy: still out: %u",
    905 		    pp->pr_nout);
    906 	}
    907 #endif
    908 
    909 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    910 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    911 
    912 	/* Remove all pages */
    913 	LIST_INIT(&pq);
    914 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    915 		pr_rmpage(pp, ph, &pq);
    916 
    917 	mutex_exit(&pp->pr_lock);
    918 
    919 	pr_pagelist_free(pp, &pq);
    920 
    921 #ifdef POOL_DIAGNOSTIC
    922 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    923 		free(pp->pr_log, M_TEMP);
    924 #endif
    925 
    926 	cv_destroy(&pp->pr_cv);
    927 	mutex_destroy(&pp->pr_lock);
    928 }
    929 
    930 void
    931 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    932 {
    933 
    934 	/* XXX no locking -- must be used just after pool_init() */
    935 #ifdef DIAGNOSTIC
    936 	if (pp->pr_drain_hook != NULL)
    937 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    938 #endif
    939 	pp->pr_drain_hook = fn;
    940 	pp->pr_drain_hook_arg = arg;
    941 }
    942 
    943 static struct pool_item_header *
    944 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    945 {
    946 	struct pool_item_header *ph;
    947 
    948 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    949 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    950 	else
    951 		ph = pool_get(pp->pr_phpool, flags);
    952 
    953 	return (ph);
    954 }
    955 
    956 /*
    957  * Grab an item from the pool.
    958  */
    959 void *
    960 #ifdef POOL_DIAGNOSTIC
    961 _pool_get(struct pool *pp, int flags, const char *file, long line)
    962 #else
    963 pool_get(struct pool *pp, int flags)
    964 #endif
    965 {
    966 	struct pool_item *pi;
    967 	struct pool_item_header *ph;
    968 	void *v;
    969 
    970 #ifdef DIAGNOSTIC
    971 	if (__predict_false(pp->pr_itemsperpage == 0))
    972 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    973 		    "pool not initialized?", pp);
    974 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    975 			    (flags & PR_WAITOK) != 0))
    976 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    977 
    978 #endif /* DIAGNOSTIC */
    979 #ifdef LOCKDEBUG
    980 	if (flags & PR_WAITOK)
    981 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
    982 #endif
    983 
    984 	mutex_enter(&pp->pr_lock);
    985 	pr_enter(pp, file, line);
    986 
    987  startover:
    988 	/*
    989 	 * Check to see if we've reached the hard limit.  If we have,
    990 	 * and we can wait, then wait until an item has been returned to
    991 	 * the pool.
    992 	 */
    993 #ifdef DIAGNOSTIC
    994 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    995 		pr_leave(pp);
    996 		mutex_exit(&pp->pr_lock);
    997 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    998 	}
    999 #endif
   1000 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1001 		if (pp->pr_drain_hook != NULL) {
   1002 			/*
   1003 			 * Since the drain hook is going to free things
   1004 			 * back to the pool, unlock, call the hook, re-lock,
   1005 			 * and check the hardlimit condition again.
   1006 			 */
   1007 			pr_leave(pp);
   1008 			mutex_exit(&pp->pr_lock);
   1009 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1010 			mutex_enter(&pp->pr_lock);
   1011 			pr_enter(pp, file, line);
   1012 			if (pp->pr_nout < pp->pr_hardlimit)
   1013 				goto startover;
   1014 		}
   1015 
   1016 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1017 			/*
   1018 			 * XXX: A warning isn't logged in this case.  Should
   1019 			 * it be?
   1020 			 */
   1021 			pp->pr_flags |= PR_WANTED;
   1022 			pr_leave(pp);
   1023 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1024 			pr_enter(pp, file, line);
   1025 			goto startover;
   1026 		}
   1027 
   1028 		/*
   1029 		 * Log a message that the hard limit has been hit.
   1030 		 */
   1031 		if (pp->pr_hardlimit_warning != NULL &&
   1032 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1033 			      &pp->pr_hardlimit_ratecap))
   1034 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1035 
   1036 		pp->pr_nfail++;
   1037 
   1038 		pr_leave(pp);
   1039 		mutex_exit(&pp->pr_lock);
   1040 		return (NULL);
   1041 	}
   1042 
   1043 	/*
   1044 	 * The convention we use is that if `curpage' is not NULL, then
   1045 	 * it points at a non-empty bucket. In particular, `curpage'
   1046 	 * never points at a page header which has PR_PHINPAGE set and
   1047 	 * has no items in its bucket.
   1048 	 */
   1049 	if ((ph = pp->pr_curpage) == NULL) {
   1050 		int error;
   1051 
   1052 #ifdef DIAGNOSTIC
   1053 		if (pp->pr_nitems != 0) {
   1054 			mutex_exit(&pp->pr_lock);
   1055 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1056 			    pp->pr_wchan, pp->pr_nitems);
   1057 			panic("pool_get: nitems inconsistent");
   1058 		}
   1059 #endif
   1060 
   1061 		/*
   1062 		 * Call the back-end page allocator for more memory.
   1063 		 * Release the pool lock, as the back-end page allocator
   1064 		 * may block.
   1065 		 */
   1066 		pr_leave(pp);
   1067 		error = pool_grow(pp, flags);
   1068 		pr_enter(pp, file, line);
   1069 		if (error != 0) {
   1070 			/*
   1071 			 * We were unable to allocate a page or item
   1072 			 * header, but we released the lock during
   1073 			 * allocation, so perhaps items were freed
   1074 			 * back to the pool.  Check for this case.
   1075 			 */
   1076 			if (pp->pr_curpage != NULL)
   1077 				goto startover;
   1078 
   1079 			pp->pr_nfail++;
   1080 			pr_leave(pp);
   1081 			mutex_exit(&pp->pr_lock);
   1082 			return (NULL);
   1083 		}
   1084 
   1085 		/* Start the allocation process over. */
   1086 		goto startover;
   1087 	}
   1088 	if (pp->pr_roflags & PR_NOTOUCH) {
   1089 #ifdef DIAGNOSTIC
   1090 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1091 			pr_leave(pp);
   1092 			mutex_exit(&pp->pr_lock);
   1093 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1094 		}
   1095 #endif
   1096 		v = pr_item_notouch_get(pp, ph);
   1097 #ifdef POOL_DIAGNOSTIC
   1098 		pr_log(pp, v, PRLOG_GET, file, line);
   1099 #endif
   1100 	} else {
   1101 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1102 		if (__predict_false(v == NULL)) {
   1103 			pr_leave(pp);
   1104 			mutex_exit(&pp->pr_lock);
   1105 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1106 		}
   1107 #ifdef DIAGNOSTIC
   1108 		if (__predict_false(pp->pr_nitems == 0)) {
   1109 			pr_leave(pp);
   1110 			mutex_exit(&pp->pr_lock);
   1111 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1112 			    pp->pr_wchan, pp->pr_nitems);
   1113 			panic("pool_get: nitems inconsistent");
   1114 		}
   1115 #endif
   1116 
   1117 #ifdef POOL_DIAGNOSTIC
   1118 		pr_log(pp, v, PRLOG_GET, file, line);
   1119 #endif
   1120 
   1121 #ifdef DIAGNOSTIC
   1122 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1123 			pr_printlog(pp, pi, printf);
   1124 			panic("pool_get(%s): free list modified: "
   1125 			    "magic=%x; page %p; item addr %p\n",
   1126 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1127 		}
   1128 #endif
   1129 
   1130 		/*
   1131 		 * Remove from item list.
   1132 		 */
   1133 		LIST_REMOVE(pi, pi_list);
   1134 	}
   1135 	pp->pr_nitems--;
   1136 	pp->pr_nout++;
   1137 	if (ph->ph_nmissing == 0) {
   1138 #ifdef DIAGNOSTIC
   1139 		if (__predict_false(pp->pr_nidle == 0))
   1140 			panic("pool_get: nidle inconsistent");
   1141 #endif
   1142 		pp->pr_nidle--;
   1143 
   1144 		/*
   1145 		 * This page was previously empty.  Move it to the list of
   1146 		 * partially-full pages.  This page is already curpage.
   1147 		 */
   1148 		LIST_REMOVE(ph, ph_pagelist);
   1149 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1150 	}
   1151 	ph->ph_nmissing++;
   1152 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1153 #ifdef DIAGNOSTIC
   1154 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1155 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1156 			pr_leave(pp);
   1157 			mutex_exit(&pp->pr_lock);
   1158 			panic("pool_get: %s: nmissing inconsistent",
   1159 			    pp->pr_wchan);
   1160 		}
   1161 #endif
   1162 		/*
   1163 		 * This page is now full.  Move it to the full list
   1164 		 * and select a new current page.
   1165 		 */
   1166 		LIST_REMOVE(ph, ph_pagelist);
   1167 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1168 		pool_update_curpage(pp);
   1169 	}
   1170 
   1171 	pp->pr_nget++;
   1172 	pr_leave(pp);
   1173 
   1174 	/*
   1175 	 * If we have a low water mark and we are now below that low
   1176 	 * water mark, add more items to the pool.
   1177 	 */
   1178 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1179 		/*
   1180 		 * XXX: Should we log a warning?  Should we set up a timeout
   1181 		 * to try again in a second or so?  The latter could break
   1182 		 * a caller's assumptions about interrupt protection, etc.
   1183 		 */
   1184 	}
   1185 
   1186 	mutex_exit(&pp->pr_lock);
   1187 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1188 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1189 	return (v);
   1190 }
   1191 
   1192 /*
   1193  * Internal version of pool_put().  Pool is already locked/entered.
   1194  */
   1195 static void
   1196 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1197 {
   1198 	struct pool_item *pi = v;
   1199 	struct pool_item_header *ph;
   1200 
   1201 	KASSERT(mutex_owned(&pp->pr_lock));
   1202 	FREECHECK_IN(&pp->pr_freecheck, v);
   1203 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1204 
   1205 #ifdef DIAGNOSTIC
   1206 	if (__predict_false(pp->pr_nout == 0)) {
   1207 		printf("pool %s: putting with none out\n",
   1208 		    pp->pr_wchan);
   1209 		panic("pool_put");
   1210 	}
   1211 #endif
   1212 
   1213 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1214 		pr_printlog(pp, NULL, printf);
   1215 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1216 	}
   1217 
   1218 	/*
   1219 	 * Return to item list.
   1220 	 */
   1221 	if (pp->pr_roflags & PR_NOTOUCH) {
   1222 		pr_item_notouch_put(pp, ph, v);
   1223 	} else {
   1224 #ifdef DIAGNOSTIC
   1225 		pi->pi_magic = PI_MAGIC;
   1226 #endif
   1227 #ifdef DEBUG
   1228 		{
   1229 			int i, *ip = v;
   1230 
   1231 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1232 				*ip++ = PI_MAGIC;
   1233 			}
   1234 		}
   1235 #endif
   1236 
   1237 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1238 	}
   1239 	KDASSERT(ph->ph_nmissing != 0);
   1240 	ph->ph_nmissing--;
   1241 	pp->pr_nput++;
   1242 	pp->pr_nitems++;
   1243 	pp->pr_nout--;
   1244 
   1245 	/* Cancel "pool empty" condition if it exists */
   1246 	if (pp->pr_curpage == NULL)
   1247 		pp->pr_curpage = ph;
   1248 
   1249 	if (pp->pr_flags & PR_WANTED) {
   1250 		pp->pr_flags &= ~PR_WANTED;
   1251 		if (ph->ph_nmissing == 0)
   1252 			pp->pr_nidle++;
   1253 		cv_broadcast(&pp->pr_cv);
   1254 		return;
   1255 	}
   1256 
   1257 	/*
   1258 	 * If this page is now empty, do one of two things:
   1259 	 *
   1260 	 *	(1) If we have more pages than the page high water mark,
   1261 	 *	    free the page back to the system.  ONLY CONSIDER
   1262 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1263 	 *	    CLAIM.
   1264 	 *
   1265 	 *	(2) Otherwise, move the page to the empty page list.
   1266 	 *
   1267 	 * Either way, select a new current page (so we use a partially-full
   1268 	 * page if one is available).
   1269 	 */
   1270 	if (ph->ph_nmissing == 0) {
   1271 		pp->pr_nidle++;
   1272 		if (pp->pr_npages > pp->pr_minpages &&
   1273 		    (pp->pr_npages > pp->pr_maxpages ||
   1274 		     pa_starved_p(pp->pr_alloc))) {
   1275 			pr_rmpage(pp, ph, pq);
   1276 		} else {
   1277 			LIST_REMOVE(ph, ph_pagelist);
   1278 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1279 
   1280 			/*
   1281 			 * Update the timestamp on the page.  A page must
   1282 			 * be idle for some period of time before it can
   1283 			 * be reclaimed by the pagedaemon.  This minimizes
   1284 			 * ping-pong'ing for memory.
   1285 			 */
   1286 			getmicrotime(&ph->ph_time);
   1287 		}
   1288 		pool_update_curpage(pp);
   1289 	}
   1290 
   1291 	/*
   1292 	 * If the page was previously completely full, move it to the
   1293 	 * partially-full list and make it the current page.  The next
   1294 	 * allocation will get the item from this page, instead of
   1295 	 * further fragmenting the pool.
   1296 	 */
   1297 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1298 		LIST_REMOVE(ph, ph_pagelist);
   1299 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1300 		pp->pr_curpage = ph;
   1301 	}
   1302 }
   1303 
   1304 /*
   1305  * Return resource to the pool.
   1306  */
   1307 #ifdef POOL_DIAGNOSTIC
   1308 void
   1309 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1310 {
   1311 	struct pool_pagelist pq;
   1312 
   1313 	LIST_INIT(&pq);
   1314 
   1315 	mutex_enter(&pp->pr_lock);
   1316 	pr_enter(pp, file, line);
   1317 
   1318 	pr_log(pp, v, PRLOG_PUT, file, line);
   1319 
   1320 	pool_do_put(pp, v, &pq);
   1321 
   1322 	pr_leave(pp);
   1323 	mutex_exit(&pp->pr_lock);
   1324 
   1325 	pr_pagelist_free(pp, &pq);
   1326 }
   1327 #undef pool_put
   1328 #endif /* POOL_DIAGNOSTIC */
   1329 
   1330 void
   1331 pool_put(struct pool *pp, void *v)
   1332 {
   1333 	struct pool_pagelist pq;
   1334 
   1335 	LIST_INIT(&pq);
   1336 
   1337 	mutex_enter(&pp->pr_lock);
   1338 	pool_do_put(pp, v, &pq);
   1339 	mutex_exit(&pp->pr_lock);
   1340 
   1341 	pr_pagelist_free(pp, &pq);
   1342 }
   1343 
   1344 #ifdef POOL_DIAGNOSTIC
   1345 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1346 #endif
   1347 
   1348 /*
   1349  * pool_grow: grow a pool by a page.
   1350  *
   1351  * => called with pool locked.
   1352  * => unlock and relock the pool.
   1353  * => return with pool locked.
   1354  */
   1355 
   1356 static int
   1357 pool_grow(struct pool *pp, int flags)
   1358 {
   1359 	struct pool_item_header *ph = NULL;
   1360 	char *cp;
   1361 
   1362 	mutex_exit(&pp->pr_lock);
   1363 	cp = pool_allocator_alloc(pp, flags);
   1364 	if (__predict_true(cp != NULL)) {
   1365 		ph = pool_alloc_item_header(pp, cp, flags);
   1366 	}
   1367 	if (__predict_false(cp == NULL || ph == NULL)) {
   1368 		if (cp != NULL) {
   1369 			pool_allocator_free(pp, cp);
   1370 		}
   1371 		mutex_enter(&pp->pr_lock);
   1372 		return ENOMEM;
   1373 	}
   1374 
   1375 	mutex_enter(&pp->pr_lock);
   1376 	pool_prime_page(pp, cp, ph);
   1377 	pp->pr_npagealloc++;
   1378 	return 0;
   1379 }
   1380 
   1381 /*
   1382  * Add N items to the pool.
   1383  */
   1384 int
   1385 pool_prime(struct pool *pp, int n)
   1386 {
   1387 	int newpages;
   1388 	int error = 0;
   1389 
   1390 	mutex_enter(&pp->pr_lock);
   1391 
   1392 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1393 
   1394 	while (newpages-- > 0) {
   1395 		error = pool_grow(pp, PR_NOWAIT);
   1396 		if (error) {
   1397 			break;
   1398 		}
   1399 		pp->pr_minpages++;
   1400 	}
   1401 
   1402 	if (pp->pr_minpages >= pp->pr_maxpages)
   1403 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1404 
   1405 	mutex_exit(&pp->pr_lock);
   1406 	return error;
   1407 }
   1408 
   1409 /*
   1410  * Add a page worth of items to the pool.
   1411  *
   1412  * Note, we must be called with the pool descriptor LOCKED.
   1413  */
   1414 static void
   1415 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1416 {
   1417 	struct pool_item *pi;
   1418 	void *cp = storage;
   1419 	const unsigned int align = pp->pr_align;
   1420 	const unsigned int ioff = pp->pr_itemoffset;
   1421 	int n;
   1422 
   1423 	KASSERT(mutex_owned(&pp->pr_lock));
   1424 
   1425 #ifdef DIAGNOSTIC
   1426 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1427 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1428 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1429 #endif
   1430 
   1431 	/*
   1432 	 * Insert page header.
   1433 	 */
   1434 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1435 	LIST_INIT(&ph->ph_itemlist);
   1436 	ph->ph_page = storage;
   1437 	ph->ph_nmissing = 0;
   1438 	getmicrotime(&ph->ph_time);
   1439 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1440 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1441 
   1442 	pp->pr_nidle++;
   1443 
   1444 	/*
   1445 	 * Color this page.
   1446 	 */
   1447 	cp = (char *)cp + pp->pr_curcolor;
   1448 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1449 		pp->pr_curcolor = 0;
   1450 
   1451 	/*
   1452 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1453 	 */
   1454 	if (ioff != 0)
   1455 		cp = (char *)cp + align - ioff;
   1456 
   1457 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1458 
   1459 	/*
   1460 	 * Insert remaining chunks on the bucket list.
   1461 	 */
   1462 	n = pp->pr_itemsperpage;
   1463 	pp->pr_nitems += n;
   1464 
   1465 	if (pp->pr_roflags & PR_NOTOUCH) {
   1466 		pr_item_notouch_init(pp, ph);
   1467 	} else {
   1468 		while (n--) {
   1469 			pi = (struct pool_item *)cp;
   1470 
   1471 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1472 
   1473 			/* Insert on page list */
   1474 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1475 #ifdef DIAGNOSTIC
   1476 			pi->pi_magic = PI_MAGIC;
   1477 #endif
   1478 			cp = (char *)cp + pp->pr_size;
   1479 
   1480 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1481 		}
   1482 	}
   1483 
   1484 	/*
   1485 	 * If the pool was depleted, point at the new page.
   1486 	 */
   1487 	if (pp->pr_curpage == NULL)
   1488 		pp->pr_curpage = ph;
   1489 
   1490 	if (++pp->pr_npages > pp->pr_hiwat)
   1491 		pp->pr_hiwat = pp->pr_npages;
   1492 }
   1493 
   1494 /*
   1495  * Used by pool_get() when nitems drops below the low water mark.  This
   1496  * is used to catch up pr_nitems with the low water mark.
   1497  *
   1498  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1499  *
   1500  * Note 2, we must be called with the pool already locked, and we return
   1501  * with it locked.
   1502  */
   1503 static int
   1504 pool_catchup(struct pool *pp)
   1505 {
   1506 	int error = 0;
   1507 
   1508 	while (POOL_NEEDS_CATCHUP(pp)) {
   1509 		error = pool_grow(pp, PR_NOWAIT);
   1510 		if (error) {
   1511 			break;
   1512 		}
   1513 	}
   1514 	return error;
   1515 }
   1516 
   1517 static void
   1518 pool_update_curpage(struct pool *pp)
   1519 {
   1520 
   1521 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1522 	if (pp->pr_curpage == NULL) {
   1523 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1524 	}
   1525 }
   1526 
   1527 void
   1528 pool_setlowat(struct pool *pp, int n)
   1529 {
   1530 
   1531 	mutex_enter(&pp->pr_lock);
   1532 
   1533 	pp->pr_minitems = n;
   1534 	pp->pr_minpages = (n == 0)
   1535 		? 0
   1536 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1537 
   1538 	/* Make sure we're caught up with the newly-set low water mark. */
   1539 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1540 		/*
   1541 		 * XXX: Should we log a warning?  Should we set up a timeout
   1542 		 * to try again in a second or so?  The latter could break
   1543 		 * a caller's assumptions about interrupt protection, etc.
   1544 		 */
   1545 	}
   1546 
   1547 	mutex_exit(&pp->pr_lock);
   1548 }
   1549 
   1550 void
   1551 pool_sethiwat(struct pool *pp, int n)
   1552 {
   1553 
   1554 	mutex_enter(&pp->pr_lock);
   1555 
   1556 	pp->pr_maxpages = (n == 0)
   1557 		? 0
   1558 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1559 
   1560 	mutex_exit(&pp->pr_lock);
   1561 }
   1562 
   1563 void
   1564 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1565 {
   1566 
   1567 	mutex_enter(&pp->pr_lock);
   1568 
   1569 	pp->pr_hardlimit = n;
   1570 	pp->pr_hardlimit_warning = warnmess;
   1571 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1572 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1573 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1574 
   1575 	/*
   1576 	 * In-line version of pool_sethiwat(), because we don't want to
   1577 	 * release the lock.
   1578 	 */
   1579 	pp->pr_maxpages = (n == 0)
   1580 		? 0
   1581 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1582 
   1583 	mutex_exit(&pp->pr_lock);
   1584 }
   1585 
   1586 /*
   1587  * Release all complete pages that have not been used recently.
   1588  */
   1589 int
   1590 #ifdef POOL_DIAGNOSTIC
   1591 _pool_reclaim(struct pool *pp, const char *file, long line)
   1592 #else
   1593 pool_reclaim(struct pool *pp)
   1594 #endif
   1595 {
   1596 	struct pool_item_header *ph, *phnext;
   1597 	struct pool_pagelist pq;
   1598 	struct timeval curtime, diff;
   1599 	bool klock;
   1600 	int rv;
   1601 
   1602 	if (pp->pr_drain_hook != NULL) {
   1603 		/*
   1604 		 * The drain hook must be called with the pool unlocked.
   1605 		 */
   1606 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1607 	}
   1608 
   1609 	/*
   1610 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
   1611 	 * and we are called from the pagedaemon without kernel_lock.
   1612 	 * Does not apply to IPL_SOFTBIO.
   1613 	 */
   1614 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1615 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1616 		KERNEL_LOCK(1, NULL);
   1617 		klock = true;
   1618 	} else
   1619 		klock = false;
   1620 
   1621 	/* Reclaim items from the pool's cache (if any). */
   1622 	if (pp->pr_cache != NULL)
   1623 		pool_cache_invalidate(pp->pr_cache);
   1624 
   1625 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1626 		if (klock) {
   1627 			KERNEL_UNLOCK_ONE(NULL);
   1628 		}
   1629 		return (0);
   1630 	}
   1631 	pr_enter(pp, file, line);
   1632 
   1633 	LIST_INIT(&pq);
   1634 
   1635 	getmicrotime(&curtime);
   1636 
   1637 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1638 		phnext = LIST_NEXT(ph, ph_pagelist);
   1639 
   1640 		/* Check our minimum page claim */
   1641 		if (pp->pr_npages <= pp->pr_minpages)
   1642 			break;
   1643 
   1644 		KASSERT(ph->ph_nmissing == 0);
   1645 		timersub(&curtime, &ph->ph_time, &diff);
   1646 		if (diff.tv_sec < pool_inactive_time
   1647 		    && !pa_starved_p(pp->pr_alloc))
   1648 			continue;
   1649 
   1650 		/*
   1651 		 * If freeing this page would put us below
   1652 		 * the low water mark, stop now.
   1653 		 */
   1654 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1655 		    pp->pr_minitems)
   1656 			break;
   1657 
   1658 		pr_rmpage(pp, ph, &pq);
   1659 	}
   1660 
   1661 	pr_leave(pp);
   1662 	mutex_exit(&pp->pr_lock);
   1663 
   1664 	if (LIST_EMPTY(&pq))
   1665 		rv = 0;
   1666 	else {
   1667 		pr_pagelist_free(pp, &pq);
   1668 		rv = 1;
   1669 	}
   1670 
   1671 	if (klock) {
   1672 		KERNEL_UNLOCK_ONE(NULL);
   1673 	}
   1674 
   1675 	return (rv);
   1676 }
   1677 
   1678 /*
   1679  * Drain pools, one at a time.  This is a two stage process;
   1680  * drain_start kicks off a cross call to drain CPU-level caches
   1681  * if the pool has an associated pool_cache.  drain_end waits
   1682  * for those cross calls to finish, and then drains the cache
   1683  * (if any) and pool.
   1684  *
   1685  * Note, must never be called from interrupt context.
   1686  */
   1687 void
   1688 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1689 {
   1690 	struct pool *pp;
   1691 
   1692 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1693 
   1694 	pp = NULL;
   1695 
   1696 	/* Find next pool to drain, and add a reference. */
   1697 	mutex_enter(&pool_head_lock);
   1698 	do {
   1699 		if (drainpp == NULL) {
   1700 			drainpp = TAILQ_FIRST(&pool_head);
   1701 		}
   1702 		if (drainpp != NULL) {
   1703 			pp = drainpp;
   1704 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1705 		}
   1706 		/*
   1707 		 * Skip completely idle pools.  We depend on at least
   1708 		 * one pool in the system being active.
   1709 		 */
   1710 	} while (pp == NULL || pp->pr_npages == 0);
   1711 	pp->pr_refcnt++;
   1712 	mutex_exit(&pool_head_lock);
   1713 
   1714 	/* If there is a pool_cache, drain CPU level caches. */
   1715 	*ppp = pp;
   1716 	if (pp->pr_cache != NULL) {
   1717 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1718 		    pp->pr_cache, NULL);
   1719 	}
   1720 }
   1721 
   1722 void
   1723 pool_drain_end(struct pool *pp, uint64_t where)
   1724 {
   1725 
   1726 	if (pp == NULL)
   1727 		return;
   1728 
   1729 	KASSERT(pp->pr_refcnt > 0);
   1730 
   1731 	/* Wait for remote draining to complete. */
   1732 	if (pp->pr_cache != NULL)
   1733 		xc_wait(where);
   1734 
   1735 	/* Drain the cache (if any) and pool.. */
   1736 	pool_reclaim(pp);
   1737 
   1738 	/* Finally, unlock the pool. */
   1739 	mutex_enter(&pool_head_lock);
   1740 	pp->pr_refcnt--;
   1741 	cv_broadcast(&pool_busy);
   1742 	mutex_exit(&pool_head_lock);
   1743 }
   1744 
   1745 /*
   1746  * Diagnostic helpers.
   1747  */
   1748 void
   1749 pool_print(struct pool *pp, const char *modif)
   1750 {
   1751 
   1752 	pool_print1(pp, modif, printf);
   1753 }
   1754 
   1755 void
   1756 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1757 {
   1758 	struct pool *pp;
   1759 
   1760 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1761 		pool_printit(pp, modif, pr);
   1762 	}
   1763 }
   1764 
   1765 void
   1766 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1767 {
   1768 
   1769 	if (pp == NULL) {
   1770 		(*pr)("Must specify a pool to print.\n");
   1771 		return;
   1772 	}
   1773 
   1774 	pool_print1(pp, modif, pr);
   1775 }
   1776 
   1777 static void
   1778 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1779     void (*pr)(const char *, ...))
   1780 {
   1781 	struct pool_item_header *ph;
   1782 #ifdef DIAGNOSTIC
   1783 	struct pool_item *pi;
   1784 #endif
   1785 
   1786 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1787 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1788 		    ph->ph_page, ph->ph_nmissing,
   1789 		    (u_long)ph->ph_time.tv_sec,
   1790 		    (u_long)ph->ph_time.tv_usec);
   1791 #ifdef DIAGNOSTIC
   1792 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1793 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1794 				if (pi->pi_magic != PI_MAGIC) {
   1795 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1796 					    pi, pi->pi_magic);
   1797 				}
   1798 			}
   1799 		}
   1800 #endif
   1801 	}
   1802 }
   1803 
   1804 static void
   1805 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1806 {
   1807 	struct pool_item_header *ph;
   1808 	pool_cache_t pc;
   1809 	pcg_t *pcg;
   1810 	pool_cache_cpu_t *cc;
   1811 	uint64_t cpuhit, cpumiss;
   1812 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1813 	char c;
   1814 
   1815 	while ((c = *modif++) != '\0') {
   1816 		if (c == 'l')
   1817 			print_log = 1;
   1818 		if (c == 'p')
   1819 			print_pagelist = 1;
   1820 		if (c == 'c')
   1821 			print_cache = 1;
   1822 	}
   1823 
   1824 	if ((pc = pp->pr_cache) != NULL) {
   1825 		(*pr)("POOL CACHE");
   1826 	} else {
   1827 		(*pr)("POOL");
   1828 	}
   1829 
   1830 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1831 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1832 	    pp->pr_roflags);
   1833 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1834 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1835 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1836 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1837 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1838 
   1839 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1840 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1841 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1842 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1843 
   1844 	if (print_pagelist == 0)
   1845 		goto skip_pagelist;
   1846 
   1847 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1848 		(*pr)("\n\tempty page list:\n");
   1849 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1850 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1851 		(*pr)("\n\tfull page list:\n");
   1852 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1853 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1854 		(*pr)("\n\tpartial-page list:\n");
   1855 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1856 
   1857 	if (pp->pr_curpage == NULL)
   1858 		(*pr)("\tno current page\n");
   1859 	else
   1860 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1861 
   1862  skip_pagelist:
   1863 	if (print_log == 0)
   1864 		goto skip_log;
   1865 
   1866 	(*pr)("\n");
   1867 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1868 		(*pr)("\tno log\n");
   1869 	else {
   1870 		pr_printlog(pp, NULL, pr);
   1871 	}
   1872 
   1873  skip_log:
   1874 
   1875 #define PR_GROUPLIST(pcg)						\
   1876 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1877 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1878 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1879 		    POOL_PADDR_INVALID) {				\
   1880 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1881 			    pcg->pcg_objects[i].pcgo_va,		\
   1882 			    (unsigned long long)			\
   1883 			    pcg->pcg_objects[i].pcgo_pa);		\
   1884 		} else {						\
   1885 			(*pr)("\t\t\t%p\n",				\
   1886 			    pcg->pcg_objects[i].pcgo_va);		\
   1887 		}							\
   1888 	}
   1889 
   1890 	if (pc != NULL) {
   1891 		cpuhit = 0;
   1892 		cpumiss = 0;
   1893 		for (i = 0; i < MAXCPUS; i++) {
   1894 			if ((cc = pc->pc_cpus[i]) == NULL)
   1895 				continue;
   1896 			cpuhit += cc->cc_hits;
   1897 			cpumiss += cc->cc_misses;
   1898 		}
   1899 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1900 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1901 		    pc->pc_hits, pc->pc_misses);
   1902 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1903 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1904 		    pc->pc_contended);
   1905 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1906 		    pc->pc_nempty, pc->pc_nfull);
   1907 		if (print_cache) {
   1908 			(*pr)("\tfull cache groups:\n");
   1909 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1910 			    pcg = pcg->pcg_next) {
   1911 				PR_GROUPLIST(pcg);
   1912 			}
   1913 			(*pr)("\tempty cache groups:\n");
   1914 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1915 			    pcg = pcg->pcg_next) {
   1916 				PR_GROUPLIST(pcg);
   1917 			}
   1918 		}
   1919 	}
   1920 #undef PR_GROUPLIST
   1921 
   1922 	pr_enter_check(pp, pr);
   1923 }
   1924 
   1925 static int
   1926 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1927 {
   1928 	struct pool_item *pi;
   1929 	void *page;
   1930 	int n;
   1931 
   1932 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1933 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1934 		if (page != ph->ph_page &&
   1935 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1936 			if (label != NULL)
   1937 				printf("%s: ", label);
   1938 			printf("pool(%p:%s): page inconsistency: page %p;"
   1939 			       " at page head addr %p (p %p)\n", pp,
   1940 				pp->pr_wchan, ph->ph_page,
   1941 				ph, page);
   1942 			return 1;
   1943 		}
   1944 	}
   1945 
   1946 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1947 		return 0;
   1948 
   1949 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1950 	     pi != NULL;
   1951 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1952 
   1953 #ifdef DIAGNOSTIC
   1954 		if (pi->pi_magic != PI_MAGIC) {
   1955 			if (label != NULL)
   1956 				printf("%s: ", label);
   1957 			printf("pool(%s): free list modified: magic=%x;"
   1958 			       " page %p; item ordinal %d; addr %p\n",
   1959 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1960 				n, pi);
   1961 			panic("pool");
   1962 		}
   1963 #endif
   1964 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1965 			continue;
   1966 		}
   1967 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1968 		if (page == ph->ph_page)
   1969 			continue;
   1970 
   1971 		if (label != NULL)
   1972 			printf("%s: ", label);
   1973 		printf("pool(%p:%s): page inconsistency: page %p;"
   1974 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1975 			pp->pr_wchan, ph->ph_page,
   1976 			n, pi, page);
   1977 		return 1;
   1978 	}
   1979 	return 0;
   1980 }
   1981 
   1982 
   1983 int
   1984 pool_chk(struct pool *pp, const char *label)
   1985 {
   1986 	struct pool_item_header *ph;
   1987 	int r = 0;
   1988 
   1989 	mutex_enter(&pp->pr_lock);
   1990 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1991 		r = pool_chk_page(pp, label, ph);
   1992 		if (r) {
   1993 			goto out;
   1994 		}
   1995 	}
   1996 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1997 		r = pool_chk_page(pp, label, ph);
   1998 		if (r) {
   1999 			goto out;
   2000 		}
   2001 	}
   2002 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2003 		r = pool_chk_page(pp, label, ph);
   2004 		if (r) {
   2005 			goto out;
   2006 		}
   2007 	}
   2008 
   2009 out:
   2010 	mutex_exit(&pp->pr_lock);
   2011 	return (r);
   2012 }
   2013 
   2014 /*
   2015  * pool_cache_init:
   2016  *
   2017  *	Initialize a pool cache.
   2018  */
   2019 pool_cache_t
   2020 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2021     const char *wchan, struct pool_allocator *palloc, int ipl,
   2022     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2023 {
   2024 	pool_cache_t pc;
   2025 
   2026 	pc = pool_get(&cache_pool, PR_WAITOK);
   2027 	if (pc == NULL)
   2028 		return NULL;
   2029 
   2030 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2031 	   palloc, ipl, ctor, dtor, arg);
   2032 
   2033 	return pc;
   2034 }
   2035 
   2036 /*
   2037  * pool_cache_bootstrap:
   2038  *
   2039  *	Kernel-private version of pool_cache_init().  The caller
   2040  *	provides initial storage.
   2041  */
   2042 void
   2043 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2044     u_int align_offset, u_int flags, const char *wchan,
   2045     struct pool_allocator *palloc, int ipl,
   2046     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2047     void *arg)
   2048 {
   2049 	CPU_INFO_ITERATOR cii;
   2050 	pool_cache_t pc1;
   2051 	struct cpu_info *ci;
   2052 	struct pool *pp;
   2053 
   2054 	pp = &pc->pc_pool;
   2055 	if (palloc == NULL && ipl == IPL_NONE)
   2056 		palloc = &pool_allocator_nointr;
   2057 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2058 
   2059 	/*
   2060 	 * XXXAD hack to prevent IP input processing from blocking.
   2061 	 */
   2062 	if (ipl == IPL_SOFTNET) {
   2063 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
   2064 	} else {
   2065 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2066 	}
   2067 
   2068 	if (ctor == NULL) {
   2069 		ctor = (int (*)(void *, void *, int))nullop;
   2070 	}
   2071 	if (dtor == NULL) {
   2072 		dtor = (void (*)(void *, void *))nullop;
   2073 	}
   2074 
   2075 	pc->pc_emptygroups = NULL;
   2076 	pc->pc_fullgroups = NULL;
   2077 	pc->pc_partgroups = NULL;
   2078 	pc->pc_ctor = ctor;
   2079 	pc->pc_dtor = dtor;
   2080 	pc->pc_arg  = arg;
   2081 	pc->pc_hits  = 0;
   2082 	pc->pc_misses = 0;
   2083 	pc->pc_nempty = 0;
   2084 	pc->pc_npart = 0;
   2085 	pc->pc_nfull = 0;
   2086 	pc->pc_contended = 0;
   2087 	pc->pc_refcnt = 0;
   2088 	pc->pc_freecheck = NULL;
   2089 
   2090 	/* Allocate per-CPU caches. */
   2091 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2092 	pc->pc_ncpu = 0;
   2093 	if (ncpu == 0) {
   2094 		/* XXX For sparc: boot CPU is not attached yet. */
   2095 		pool_cache_cpu_init1(curcpu(), pc);
   2096 	} else {
   2097 		for (CPU_INFO_FOREACH(cii, ci)) {
   2098 			pool_cache_cpu_init1(ci, pc);
   2099 		}
   2100 	}
   2101 
   2102 	/* Add to list of all pools. */
   2103 	if (__predict_true(!cold))
   2104 		mutex_enter(&pool_head_lock);
   2105 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2106 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2107 			break;
   2108 	}
   2109 	if (pc1 == NULL)
   2110 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2111 	else
   2112 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2113 	if (__predict_true(!cold))
   2114 		mutex_exit(&pool_head_lock);
   2115 
   2116 	membar_sync();
   2117 	pp->pr_cache = pc;
   2118 }
   2119 
   2120 /*
   2121  * pool_cache_destroy:
   2122  *
   2123  *	Destroy a pool cache.
   2124  */
   2125 void
   2126 pool_cache_destroy(pool_cache_t pc)
   2127 {
   2128 	struct pool *pp = &pc->pc_pool;
   2129 	pool_cache_cpu_t *cc;
   2130 	pcg_t *pcg;
   2131 	int i;
   2132 
   2133 	/* Remove it from the global list. */
   2134 	mutex_enter(&pool_head_lock);
   2135 	while (pc->pc_refcnt != 0)
   2136 		cv_wait(&pool_busy, &pool_head_lock);
   2137 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2138 	mutex_exit(&pool_head_lock);
   2139 
   2140 	/* First, invalidate the entire cache. */
   2141 	pool_cache_invalidate(pc);
   2142 
   2143 	/* Disassociate it from the pool. */
   2144 	mutex_enter(&pp->pr_lock);
   2145 	pp->pr_cache = NULL;
   2146 	mutex_exit(&pp->pr_lock);
   2147 
   2148 	/* Destroy per-CPU data */
   2149 	for (i = 0; i < MAXCPUS; i++) {
   2150 		if ((cc = pc->pc_cpus[i]) == NULL)
   2151 			continue;
   2152 		if ((pcg = cc->cc_current) != NULL) {
   2153 			pcg->pcg_next = NULL;
   2154 			pool_cache_invalidate_groups(pc, pcg);
   2155 		}
   2156 		if ((pcg = cc->cc_previous) != NULL) {
   2157 			pcg->pcg_next = NULL;
   2158 			pool_cache_invalidate_groups(pc, pcg);
   2159 		}
   2160 		if (cc != &pc->pc_cpu0)
   2161 			pool_put(&cache_cpu_pool, cc);
   2162 	}
   2163 
   2164 	/* Finally, destroy it. */
   2165 	mutex_destroy(&pc->pc_lock);
   2166 	pool_destroy(pp);
   2167 	pool_put(&cache_pool, pc);
   2168 }
   2169 
   2170 /*
   2171  * pool_cache_cpu_init1:
   2172  *
   2173  *	Called for each pool_cache whenever a new CPU is attached.
   2174  */
   2175 static void
   2176 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2177 {
   2178 	pool_cache_cpu_t *cc;
   2179 	int index;
   2180 
   2181 	index = ci->ci_index;
   2182 
   2183 	KASSERT(index < MAXCPUS);
   2184 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
   2185 
   2186 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2187 		KASSERT(cc->cc_cpuindex == index);
   2188 		return;
   2189 	}
   2190 
   2191 	/*
   2192 	 * The first CPU is 'free'.  This needs to be the case for
   2193 	 * bootstrap - we may not be able to allocate yet.
   2194 	 */
   2195 	if (pc->pc_ncpu == 0) {
   2196 		cc = &pc->pc_cpu0;
   2197 		pc->pc_ncpu = 1;
   2198 	} else {
   2199 		mutex_enter(&pc->pc_lock);
   2200 		pc->pc_ncpu++;
   2201 		mutex_exit(&pc->pc_lock);
   2202 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2203 	}
   2204 
   2205 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2206 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2207 	cc->cc_cache = pc;
   2208 	cc->cc_cpuindex = index;
   2209 	cc->cc_hits = 0;
   2210 	cc->cc_misses = 0;
   2211 	cc->cc_current = NULL;
   2212 	cc->cc_previous = NULL;
   2213 
   2214 	pc->pc_cpus[index] = cc;
   2215 }
   2216 
   2217 /*
   2218  * pool_cache_cpu_init:
   2219  *
   2220  *	Called whenever a new CPU is attached.
   2221  */
   2222 void
   2223 pool_cache_cpu_init(struct cpu_info *ci)
   2224 {
   2225 	pool_cache_t pc;
   2226 
   2227 	mutex_enter(&pool_head_lock);
   2228 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2229 		pc->pc_refcnt++;
   2230 		mutex_exit(&pool_head_lock);
   2231 
   2232 		pool_cache_cpu_init1(ci, pc);
   2233 
   2234 		mutex_enter(&pool_head_lock);
   2235 		pc->pc_refcnt--;
   2236 		cv_broadcast(&pool_busy);
   2237 	}
   2238 	mutex_exit(&pool_head_lock);
   2239 }
   2240 
   2241 /*
   2242  * pool_cache_reclaim:
   2243  *
   2244  *	Reclaim memory from a pool cache.
   2245  */
   2246 bool
   2247 pool_cache_reclaim(pool_cache_t pc)
   2248 {
   2249 
   2250 	return pool_reclaim(&pc->pc_pool);
   2251 }
   2252 
   2253 static void
   2254 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2255 {
   2256 
   2257 	(*pc->pc_dtor)(pc->pc_arg, object);
   2258 	pool_put(&pc->pc_pool, object);
   2259 }
   2260 
   2261 /*
   2262  * pool_cache_destruct_object:
   2263  *
   2264  *	Force destruction of an object and its release back into
   2265  *	the pool.
   2266  */
   2267 void
   2268 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2269 {
   2270 
   2271 	FREECHECK_IN(&pc->pc_freecheck, object);
   2272 
   2273 	pool_cache_destruct_object1(pc, object);
   2274 }
   2275 
   2276 /*
   2277  * pool_cache_invalidate_groups:
   2278  *
   2279  *	Invalidate a chain of groups and destruct all objects.
   2280  */
   2281 static void
   2282 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2283 {
   2284 	void *object;
   2285 	pcg_t *next;
   2286 	int i;
   2287 
   2288 	for (; pcg != NULL; pcg = next) {
   2289 		next = pcg->pcg_next;
   2290 
   2291 		for (i = 0; i < pcg->pcg_avail; i++) {
   2292 			object = pcg->pcg_objects[i].pcgo_va;
   2293 			pool_cache_destruct_object1(pc, object);
   2294 		}
   2295 
   2296 		pool_put(&pcgpool, pcg);
   2297 	}
   2298 }
   2299 
   2300 /*
   2301  * pool_cache_invalidate:
   2302  *
   2303  *	Invalidate a pool cache (destruct and release all of the
   2304  *	cached objects).  Does not reclaim objects from the pool.
   2305  */
   2306 void
   2307 pool_cache_invalidate(pool_cache_t pc)
   2308 {
   2309 	pcg_t *full, *empty, *part;
   2310 
   2311 	mutex_enter(&pc->pc_lock);
   2312 	full = pc->pc_fullgroups;
   2313 	empty = pc->pc_emptygroups;
   2314 	part = pc->pc_partgroups;
   2315 	pc->pc_fullgroups = NULL;
   2316 	pc->pc_emptygroups = NULL;
   2317 	pc->pc_partgroups = NULL;
   2318 	pc->pc_nfull = 0;
   2319 	pc->pc_nempty = 0;
   2320 	pc->pc_npart = 0;
   2321 	mutex_exit(&pc->pc_lock);
   2322 
   2323 	pool_cache_invalidate_groups(pc, full);
   2324 	pool_cache_invalidate_groups(pc, empty);
   2325 	pool_cache_invalidate_groups(pc, part);
   2326 }
   2327 
   2328 void
   2329 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2330 {
   2331 
   2332 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2333 }
   2334 
   2335 void
   2336 pool_cache_setlowat(pool_cache_t pc, int n)
   2337 {
   2338 
   2339 	pool_setlowat(&pc->pc_pool, n);
   2340 }
   2341 
   2342 void
   2343 pool_cache_sethiwat(pool_cache_t pc, int n)
   2344 {
   2345 
   2346 	pool_sethiwat(&pc->pc_pool, n);
   2347 }
   2348 
   2349 void
   2350 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2351 {
   2352 
   2353 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2354 }
   2355 
   2356 static inline pool_cache_cpu_t *
   2357 pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2358 {
   2359 	pool_cache_cpu_t *cc;
   2360 
   2361 	/*
   2362 	 * Prevent other users of the cache from accessing our
   2363 	 * CPU-local data.  To avoid touching shared state, we
   2364 	 * pull the neccessary information from CPU local data.
   2365 	 */
   2366 	crit_enter();
   2367 	cc = pc->pc_cpus[curcpu()->ci_index];
   2368 	KASSERT(cc->cc_cache == pc);
   2369 	if (cc->cc_ipl != IPL_NONE) {
   2370 		*s = splraiseipl(cc->cc_iplcookie);
   2371 	}
   2372 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
   2373 
   2374 	return cc;
   2375 }
   2376 
   2377 static inline void
   2378 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2379 {
   2380 
   2381 	/* No longer need exclusive access to the per-CPU data. */
   2382 	if (cc->cc_ipl != IPL_NONE) {
   2383 		splx(*s);
   2384 	}
   2385 	crit_exit();
   2386 }
   2387 
   2388 #if __GNUC_PREREQ__(3, 0)
   2389 __attribute ((noinline))
   2390 #endif
   2391 pool_cache_cpu_t *
   2392 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2393 		    paddr_t *pap, int flags)
   2394 {
   2395 	pcg_t *pcg, *cur;
   2396 	uint64_t ncsw;
   2397 	pool_cache_t pc;
   2398 	void *object;
   2399 
   2400 	pc = cc->cc_cache;
   2401 	cc->cc_misses++;
   2402 
   2403 	/*
   2404 	 * Nothing was available locally.  Try and grab a group
   2405 	 * from the cache.
   2406 	 */
   2407 	if (!mutex_tryenter(&pc->pc_lock)) {
   2408 		ncsw = curlwp->l_ncsw;
   2409 		mutex_enter(&pc->pc_lock);
   2410 		pc->pc_contended++;
   2411 
   2412 		/*
   2413 		 * If we context switched while locking, then
   2414 		 * our view of the per-CPU data is invalid:
   2415 		 * retry.
   2416 		 */
   2417 		if (curlwp->l_ncsw != ncsw) {
   2418 			mutex_exit(&pc->pc_lock);
   2419 			pool_cache_cpu_exit(cc, s);
   2420 			return pool_cache_cpu_enter(pc, s);
   2421 		}
   2422 	}
   2423 
   2424 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2425 		/*
   2426 		 * If there's a full group, release our empty
   2427 		 * group back to the cache.  Install the full
   2428 		 * group as cc_current and return.
   2429 		 */
   2430 		if ((cur = cc->cc_current) != NULL) {
   2431 			KASSERT(cur->pcg_avail == 0);
   2432 			cur->pcg_next = pc->pc_emptygroups;
   2433 			pc->pc_emptygroups = cur;
   2434 			pc->pc_nempty++;
   2435 		}
   2436 		KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
   2437 		cc->cc_current = pcg;
   2438 		pc->pc_fullgroups = pcg->pcg_next;
   2439 		pc->pc_hits++;
   2440 		pc->pc_nfull--;
   2441 		mutex_exit(&pc->pc_lock);
   2442 		return cc;
   2443 	}
   2444 
   2445 	/*
   2446 	 * Nothing available locally or in cache.  Take the slow
   2447 	 * path: fetch a new object from the pool and construct
   2448 	 * it.
   2449 	 */
   2450 	pc->pc_misses++;
   2451 	mutex_exit(&pc->pc_lock);
   2452 	pool_cache_cpu_exit(cc, s);
   2453 
   2454 	object = pool_get(&pc->pc_pool, flags);
   2455 	*objectp = object;
   2456 	if (object == NULL)
   2457 		return NULL;
   2458 
   2459 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2460 		pool_put(&pc->pc_pool, object);
   2461 		*objectp = NULL;
   2462 		return NULL;
   2463 	}
   2464 
   2465 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2466 	    (pc->pc_pool.pr_align - 1)) == 0);
   2467 
   2468 	if (pap != NULL) {
   2469 #ifdef POOL_VTOPHYS
   2470 		*pap = POOL_VTOPHYS(object);
   2471 #else
   2472 		*pap = POOL_PADDR_INVALID;
   2473 #endif
   2474 	}
   2475 
   2476 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2477 	return NULL;
   2478 }
   2479 
   2480 /*
   2481  * pool_cache_get{,_paddr}:
   2482  *
   2483  *	Get an object from a pool cache (optionally returning
   2484  *	the physical address of the object).
   2485  */
   2486 void *
   2487 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2488 {
   2489 	pool_cache_cpu_t *cc;
   2490 	pcg_t *pcg;
   2491 	void *object;
   2492 	int s;
   2493 
   2494 #ifdef LOCKDEBUG
   2495 	if (flags & PR_WAITOK)
   2496 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2497 #endif
   2498 
   2499 	cc = pool_cache_cpu_enter(pc, &s);
   2500 	do {
   2501 		/* Try and allocate an object from the current group. */
   2502 	 	pcg = cc->cc_current;
   2503 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2504 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2505 			if (pap != NULL)
   2506 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2507 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2508 			KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   2509 			KASSERT(object != NULL);
   2510 			cc->cc_hits++;
   2511 			pool_cache_cpu_exit(cc, &s);
   2512 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2513 			return object;
   2514 		}
   2515 
   2516 		/*
   2517 		 * That failed.  If the previous group isn't empty, swap
   2518 		 * it with the current group and allocate from there.
   2519 		 */
   2520 		pcg = cc->cc_previous;
   2521 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2522 			cc->cc_previous = cc->cc_current;
   2523 			cc->cc_current = pcg;
   2524 			continue;
   2525 		}
   2526 
   2527 		/*
   2528 		 * Can't allocate from either group: try the slow path.
   2529 		 * If get_slow() allocated an object for us, or if
   2530 		 * no more objects are available, it will return NULL.
   2531 		 * Otherwise, we need to retry.
   2532 		 */
   2533 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2534 	} while (cc != NULL);
   2535 
   2536 	return object;
   2537 }
   2538 
   2539 #if __GNUC_PREREQ__(3, 0)
   2540 __attribute ((noinline))
   2541 #endif
   2542 pool_cache_cpu_t *
   2543 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2544 {
   2545 	pcg_t *pcg, *cur;
   2546 	uint64_t ncsw;
   2547 	pool_cache_t pc;
   2548 
   2549 	pc = cc->cc_cache;
   2550 	cc->cc_misses++;
   2551 
   2552 	/*
   2553 	 * No free slots locally.  Try to grab an empty, unused
   2554 	 * group from the cache.
   2555 	 */
   2556 	if (!mutex_tryenter(&pc->pc_lock)) {
   2557 		ncsw = curlwp->l_ncsw;
   2558 		mutex_enter(&pc->pc_lock);
   2559 		pc->pc_contended++;
   2560 
   2561 		/*
   2562 		 * If we context switched while locking, then
   2563 		 * our view of the per-CPU data is invalid:
   2564 		 * retry.
   2565 		 */
   2566 		if (curlwp->l_ncsw != ncsw) {
   2567 			mutex_exit(&pc->pc_lock);
   2568 			pool_cache_cpu_exit(cc, s);
   2569 			return pool_cache_cpu_enter(pc, s);
   2570 		}
   2571 	}
   2572 
   2573 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2574 		/*
   2575 		 * If there's a empty group, release our full
   2576 		 * group back to the cache.  Install the empty
   2577 		 * group as cc_current and return.
   2578 		 */
   2579 		if ((cur = cc->cc_current) != NULL) {
   2580 			KASSERT(cur->pcg_avail == PCG_NOBJECTS);
   2581 			cur->pcg_next = pc->pc_fullgroups;
   2582 			pc->pc_fullgroups = cur;
   2583 			pc->pc_nfull++;
   2584 		}
   2585 		KASSERT(pcg->pcg_avail == 0);
   2586 		cc->cc_current = pcg;
   2587 		pc->pc_emptygroups = pcg->pcg_next;
   2588 		pc->pc_hits++;
   2589 		pc->pc_nempty--;
   2590 		mutex_exit(&pc->pc_lock);
   2591 		return cc;
   2592 	}
   2593 
   2594 	/*
   2595 	 * Nothing available locally or in cache.  Take the
   2596 	 * slow path and try to allocate a new group that we
   2597 	 * can release to.
   2598 	 */
   2599 	pc->pc_misses++;
   2600 	mutex_exit(&pc->pc_lock);
   2601 	pool_cache_cpu_exit(cc, s);
   2602 
   2603 	/*
   2604 	 * If we can't allocate a new group, just throw the
   2605 	 * object away.
   2606 	 */
   2607 	if (pool_cache_disable) {
   2608 		pcg = NULL;
   2609 	} else {
   2610 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   2611 	}
   2612 	if (pcg == NULL) {
   2613 		pool_cache_destruct_object(pc, object);
   2614 		return NULL;
   2615 	}
   2616 #ifdef DIAGNOSTIC
   2617 	memset(pcg, 0, sizeof(*pcg));
   2618 #else
   2619 	pcg->pcg_avail = 0;
   2620 #endif
   2621 
   2622 	/*
   2623 	 * Add the empty group to the cache and try again.
   2624 	 */
   2625 	mutex_enter(&pc->pc_lock);
   2626 	pcg->pcg_next = pc->pc_emptygroups;
   2627 	pc->pc_emptygroups = pcg;
   2628 	pc->pc_nempty++;
   2629 	mutex_exit(&pc->pc_lock);
   2630 
   2631 	return pool_cache_cpu_enter(pc, s);
   2632 }
   2633 
   2634 /*
   2635  * pool_cache_put{,_paddr}:
   2636  *
   2637  *	Put an object back to the pool cache (optionally caching the
   2638  *	physical address of the object).
   2639  */
   2640 void
   2641 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2642 {
   2643 	pool_cache_cpu_t *cc;
   2644 	pcg_t *pcg;
   2645 	int s;
   2646 
   2647 	FREECHECK_IN(&pc->pc_freecheck, object);
   2648 
   2649 	cc = pool_cache_cpu_enter(pc, &s);
   2650 	do {
   2651 		/* If the current group isn't full, release it there. */
   2652 	 	pcg = cc->cc_current;
   2653 		if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
   2654 			KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
   2655 			    == NULL);
   2656 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2657 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2658 			pcg->pcg_avail++;
   2659 			cc->cc_hits++;
   2660 			pool_cache_cpu_exit(cc, &s);
   2661 			return;
   2662 		}
   2663 
   2664 		/*
   2665 		 * That failed.  If the previous group is empty, swap
   2666 		 * it with the current group and try again.
   2667 		 */
   2668 		pcg = cc->cc_previous;
   2669 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2670 			cc->cc_previous = cc->cc_current;
   2671 			cc->cc_current = pcg;
   2672 			continue;
   2673 		}
   2674 
   2675 		/*
   2676 		 * Can't free to either group: try the slow path.
   2677 		 * If put_slow() releases the object for us, it
   2678 		 * will return NULL.  Otherwise we need to retry.
   2679 		 */
   2680 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2681 	} while (cc != NULL);
   2682 }
   2683 
   2684 /*
   2685  * pool_cache_xcall:
   2686  *
   2687  *	Transfer objects from the per-CPU cache to the global cache.
   2688  *	Run within a cross-call thread.
   2689  */
   2690 static void
   2691 pool_cache_xcall(pool_cache_t pc)
   2692 {
   2693 	pool_cache_cpu_t *cc;
   2694 	pcg_t *prev, *cur, **list;
   2695 	int s = 0; /* XXXgcc */
   2696 
   2697 	cc = pool_cache_cpu_enter(pc, &s);
   2698 	cur = cc->cc_current;
   2699 	cc->cc_current = NULL;
   2700 	prev = cc->cc_previous;
   2701 	cc->cc_previous = NULL;
   2702 	pool_cache_cpu_exit(cc, &s);
   2703 
   2704 	/*
   2705 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2706 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2707 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2708 	 * kernel_lock.
   2709 	 */
   2710 	s = splvm();
   2711 	mutex_enter(&pc->pc_lock);
   2712 	if (cur != NULL) {
   2713 		if (cur->pcg_avail == PCG_NOBJECTS) {
   2714 			list = &pc->pc_fullgroups;
   2715 			pc->pc_nfull++;
   2716 		} else if (cur->pcg_avail == 0) {
   2717 			list = &pc->pc_emptygroups;
   2718 			pc->pc_nempty++;
   2719 		} else {
   2720 			list = &pc->pc_partgroups;
   2721 			pc->pc_npart++;
   2722 		}
   2723 		cur->pcg_next = *list;
   2724 		*list = cur;
   2725 	}
   2726 	if (prev != NULL) {
   2727 		if (prev->pcg_avail == PCG_NOBJECTS) {
   2728 			list = &pc->pc_fullgroups;
   2729 			pc->pc_nfull++;
   2730 		} else if (prev->pcg_avail == 0) {
   2731 			list = &pc->pc_emptygroups;
   2732 			pc->pc_nempty++;
   2733 		} else {
   2734 			list = &pc->pc_partgroups;
   2735 			pc->pc_npart++;
   2736 		}
   2737 		prev->pcg_next = *list;
   2738 		*list = prev;
   2739 	}
   2740 	mutex_exit(&pc->pc_lock);
   2741 	splx(s);
   2742 }
   2743 
   2744 /*
   2745  * Pool backend allocators.
   2746  *
   2747  * Each pool has a backend allocator that handles allocation, deallocation,
   2748  * and any additional draining that might be needed.
   2749  *
   2750  * We provide two standard allocators:
   2751  *
   2752  *	pool_allocator_kmem - the default when no allocator is specified
   2753  *
   2754  *	pool_allocator_nointr - used for pools that will not be accessed
   2755  *	in interrupt context.
   2756  */
   2757 void	*pool_page_alloc(struct pool *, int);
   2758 void	pool_page_free(struct pool *, void *);
   2759 
   2760 #ifdef POOL_SUBPAGE
   2761 struct pool_allocator pool_allocator_kmem_fullpage = {
   2762 	pool_page_alloc, pool_page_free, 0,
   2763 	.pa_backingmapptr = &kmem_map,
   2764 };
   2765 #else
   2766 struct pool_allocator pool_allocator_kmem = {
   2767 	pool_page_alloc, pool_page_free, 0,
   2768 	.pa_backingmapptr = &kmem_map,
   2769 };
   2770 #endif
   2771 
   2772 void	*pool_page_alloc_nointr(struct pool *, int);
   2773 void	pool_page_free_nointr(struct pool *, void *);
   2774 
   2775 #ifdef POOL_SUBPAGE
   2776 struct pool_allocator pool_allocator_nointr_fullpage = {
   2777 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2778 	.pa_backingmapptr = &kernel_map,
   2779 };
   2780 #else
   2781 struct pool_allocator pool_allocator_nointr = {
   2782 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2783 	.pa_backingmapptr = &kernel_map,
   2784 };
   2785 #endif
   2786 
   2787 #ifdef POOL_SUBPAGE
   2788 void	*pool_subpage_alloc(struct pool *, int);
   2789 void	pool_subpage_free(struct pool *, void *);
   2790 
   2791 struct pool_allocator pool_allocator_kmem = {
   2792 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2793 	.pa_backingmapptr = &kmem_map,
   2794 };
   2795 
   2796 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2797 void	pool_subpage_free_nointr(struct pool *, void *);
   2798 
   2799 struct pool_allocator pool_allocator_nointr = {
   2800 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2801 	.pa_backingmapptr = &kmem_map,
   2802 };
   2803 #endif /* POOL_SUBPAGE */
   2804 
   2805 static void *
   2806 pool_allocator_alloc(struct pool *pp, int flags)
   2807 {
   2808 	struct pool_allocator *pa = pp->pr_alloc;
   2809 	void *res;
   2810 
   2811 	res = (*pa->pa_alloc)(pp, flags);
   2812 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2813 		/*
   2814 		 * We only run the drain hook here if PR_NOWAIT.
   2815 		 * In other cases, the hook will be run in
   2816 		 * pool_reclaim().
   2817 		 */
   2818 		if (pp->pr_drain_hook != NULL) {
   2819 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2820 			res = (*pa->pa_alloc)(pp, flags);
   2821 		}
   2822 	}
   2823 	return res;
   2824 }
   2825 
   2826 static void
   2827 pool_allocator_free(struct pool *pp, void *v)
   2828 {
   2829 	struct pool_allocator *pa = pp->pr_alloc;
   2830 
   2831 	(*pa->pa_free)(pp, v);
   2832 }
   2833 
   2834 void *
   2835 pool_page_alloc(struct pool *pp, int flags)
   2836 {
   2837 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2838 
   2839 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2840 }
   2841 
   2842 void
   2843 pool_page_free(struct pool *pp, void *v)
   2844 {
   2845 
   2846 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2847 }
   2848 
   2849 static void *
   2850 pool_page_alloc_meta(struct pool *pp, int flags)
   2851 {
   2852 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2853 
   2854 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2855 }
   2856 
   2857 static void
   2858 pool_page_free_meta(struct pool *pp, void *v)
   2859 {
   2860 
   2861 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2862 }
   2863 
   2864 #ifdef POOL_SUBPAGE
   2865 /* Sub-page allocator, for machines with large hardware pages. */
   2866 void *
   2867 pool_subpage_alloc(struct pool *pp, int flags)
   2868 {
   2869 	return pool_get(&psppool, flags);
   2870 }
   2871 
   2872 void
   2873 pool_subpage_free(struct pool *pp, void *v)
   2874 {
   2875 	pool_put(&psppool, v);
   2876 }
   2877 
   2878 /* We don't provide a real nointr allocator.  Maybe later. */
   2879 void *
   2880 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2881 {
   2882 
   2883 	return (pool_subpage_alloc(pp, flags));
   2884 }
   2885 
   2886 void
   2887 pool_subpage_free_nointr(struct pool *pp, void *v)
   2888 {
   2889 
   2890 	pool_subpage_free(pp, v);
   2891 }
   2892 #endif /* POOL_SUBPAGE */
   2893 void *
   2894 pool_page_alloc_nointr(struct pool *pp, int flags)
   2895 {
   2896 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2897 
   2898 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2899 }
   2900 
   2901 void
   2902 pool_page_free_nointr(struct pool *pp, void *v)
   2903 {
   2904 
   2905 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2906 }
   2907