Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.138
      1 /*	$NetBSD: subr_pool.c,v 1.138 2007/12/05 06:52:01 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.138 2007/12/05 06:52:01 ad Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/bitops.h>
     50 #include <sys/proc.h>
     51 #include <sys/errno.h>
     52 #include <sys/kernel.h>
     53 #include <sys/malloc.h>
     54 #include <sys/lock.h>
     55 #include <sys/pool.h>
     56 #include <sys/syslog.h>
     57 #include <sys/debug.h>
     58 #include <sys/lockdebug.h>
     59 #include <sys/xcall.h>
     60 #include <sys/cpu.h>
     61 
     62 #include <uvm/uvm.h>
     63 
     64 /*
     65  * Pool resource management utility.
     66  *
     67  * Memory is allocated in pages which are split into pieces according to
     68  * the pool item size. Each page is kept on one of three lists in the
     69  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     70  * for empty, full and partially-full pages respectively. The individual
     71  * pool items are on a linked list headed by `ph_itemlist' in each page
     72  * header. The memory for building the page list is either taken from
     73  * the allocated pages themselves (for small pool items) or taken from
     74  * an internal pool of page headers (`phpool').
     75  */
     76 
     77 /* List of all pools */
     78 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     79 
     80 /* List of all caches. */
     81 LIST_HEAD(,pool_cache) pool_cache_head =
     82     LIST_HEAD_INITIALIZER(pool_cache_head);
     83 
     84 /* Private pool for page header structures */
     85 #define	PHPOOL_MAX	8
     86 static struct pool phpool[PHPOOL_MAX];
     87 #define	PHPOOL_FREELIST_NELEM(idx) \
     88 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     89 
     90 #ifdef POOL_SUBPAGE
     91 /* Pool of subpages for use by normal pools. */
     92 static struct pool psppool;
     93 #endif
     94 
     95 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     96     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     97 
     98 static void *pool_page_alloc_meta(struct pool *, int);
     99 static void pool_page_free_meta(struct pool *, void *);
    100 
    101 /* allocator for pool metadata */
    102 struct pool_allocator pool_allocator_meta = {
    103 	pool_page_alloc_meta, pool_page_free_meta,
    104 	.pa_backingmapptr = &kmem_map,
    105 };
    106 
    107 /* # of seconds to retain page after last use */
    108 int pool_inactive_time = 10;
    109 
    110 /* Next candidate for drainage (see pool_drain()) */
    111 static struct pool	*drainpp;
    112 
    113 /* This lock protects both pool_head and drainpp. */
    114 static kmutex_t pool_head_lock;
    115 static kcondvar_t pool_busy;
    116 
    117 typedef uint32_t pool_item_bitmap_t;
    118 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    119 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    120 
    121 struct pool_item_header {
    122 	/* Page headers */
    123 	LIST_ENTRY(pool_item_header)
    124 				ph_pagelist;	/* pool page list */
    125 	SPLAY_ENTRY(pool_item_header)
    126 				ph_node;	/* Off-page page headers */
    127 	void *			ph_page;	/* this page's address */
    128 	struct timeval		ph_time;	/* last referenced */
    129 	uint16_t		ph_nmissing;	/* # of chunks in use */
    130 	union {
    131 		/* !PR_NOTOUCH */
    132 		struct {
    133 			LIST_HEAD(, pool_item)
    134 				phu_itemlist;	/* chunk list for this page */
    135 		} phu_normal;
    136 		/* PR_NOTOUCH */
    137 		struct {
    138 			uint16_t phu_off;	/* start offset in page */
    139 			pool_item_bitmap_t phu_bitmap[];
    140 		} phu_notouch;
    141 	} ph_u;
    142 };
    143 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    144 #define	ph_off		ph_u.phu_notouch.phu_off
    145 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    146 
    147 struct pool_item {
    148 #ifdef DIAGNOSTIC
    149 	u_int pi_magic;
    150 #endif
    151 #define	PI_MAGIC 0xdeaddeadU
    152 	/* Other entries use only this list entry */
    153 	LIST_ENTRY(pool_item)	pi_list;
    154 };
    155 
    156 #define	POOL_NEEDS_CATCHUP(pp)						\
    157 	((pp)->pr_nitems < (pp)->pr_minitems)
    158 
    159 /*
    160  * Pool cache management.
    161  *
    162  * Pool caches provide a way for constructed objects to be cached by the
    163  * pool subsystem.  This can lead to performance improvements by avoiding
    164  * needless object construction/destruction; it is deferred until absolutely
    165  * necessary.
    166  *
    167  * Caches are grouped into cache groups.  Each cache group references up
    168  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    169  * object from the pool, it calls the object's constructor and places it
    170  * into a cache group.  When a cache group frees an object back to the
    171  * pool, it first calls the object's destructor.  This allows the object
    172  * to persist in constructed form while freed to the cache.
    173  *
    174  * The pool references each cache, so that when a pool is drained by the
    175  * pagedaemon, it can drain each individual cache as well.  Each time a
    176  * cache is drained, the most idle cache group is freed to the pool in
    177  * its entirety.
    178  *
    179  * Pool caches are layed on top of pools.  By layering them, we can avoid
    180  * the complexity of cache management for pools which would not benefit
    181  * from it.
    182  */
    183 
    184 static struct pool pcgpool;
    185 static struct pool cache_pool;
    186 static struct pool cache_cpu_pool;
    187 
    188 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    189 					     void *, paddr_t);
    190 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    191 					     void **, paddr_t *, int);
    192 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    193 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    194 static void	pool_cache_xcall(pool_cache_t);
    195 
    196 static int	pool_catchup(struct pool *);
    197 static void	pool_prime_page(struct pool *, void *,
    198 		    struct pool_item_header *);
    199 static void	pool_update_curpage(struct pool *);
    200 
    201 static int	pool_grow(struct pool *, int);
    202 static void	*pool_allocator_alloc(struct pool *, int);
    203 static void	pool_allocator_free(struct pool *, void *);
    204 
    205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    206 	void (*)(const char *, ...));
    207 static void pool_print1(struct pool *, const char *,
    208 	void (*)(const char *, ...));
    209 
    210 static int pool_chk_page(struct pool *, const char *,
    211 			 struct pool_item_header *);
    212 
    213 /*
    214  * Pool log entry. An array of these is allocated in pool_init().
    215  */
    216 struct pool_log {
    217 	const char	*pl_file;
    218 	long		pl_line;
    219 	int		pl_action;
    220 #define	PRLOG_GET	1
    221 #define	PRLOG_PUT	2
    222 	void		*pl_addr;
    223 };
    224 
    225 #ifdef POOL_DIAGNOSTIC
    226 /* Number of entries in pool log buffers */
    227 #ifndef POOL_LOGSIZE
    228 #define	POOL_LOGSIZE	10
    229 #endif
    230 
    231 int pool_logsize = POOL_LOGSIZE;
    232 
    233 static inline void
    234 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    235 {
    236 	int n = pp->pr_curlogentry;
    237 	struct pool_log *pl;
    238 
    239 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    240 		return;
    241 
    242 	/*
    243 	 * Fill in the current entry. Wrap around and overwrite
    244 	 * the oldest entry if necessary.
    245 	 */
    246 	pl = &pp->pr_log[n];
    247 	pl->pl_file = file;
    248 	pl->pl_line = line;
    249 	pl->pl_action = action;
    250 	pl->pl_addr = v;
    251 	if (++n >= pp->pr_logsize)
    252 		n = 0;
    253 	pp->pr_curlogentry = n;
    254 }
    255 
    256 static void
    257 pr_printlog(struct pool *pp, struct pool_item *pi,
    258     void (*pr)(const char *, ...))
    259 {
    260 	int i = pp->pr_logsize;
    261 	int n = pp->pr_curlogentry;
    262 
    263 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    264 		return;
    265 
    266 	/*
    267 	 * Print all entries in this pool's log.
    268 	 */
    269 	while (i-- > 0) {
    270 		struct pool_log *pl = &pp->pr_log[n];
    271 		if (pl->pl_action != 0) {
    272 			if (pi == NULL || pi == pl->pl_addr) {
    273 				(*pr)("\tlog entry %d:\n", i);
    274 				(*pr)("\t\taction = %s, addr = %p\n",
    275 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    276 				    pl->pl_addr);
    277 				(*pr)("\t\tfile: %s at line %lu\n",
    278 				    pl->pl_file, pl->pl_line);
    279 			}
    280 		}
    281 		if (++n >= pp->pr_logsize)
    282 			n = 0;
    283 	}
    284 }
    285 
    286 static inline void
    287 pr_enter(struct pool *pp, const char *file, long line)
    288 {
    289 
    290 	if (__predict_false(pp->pr_entered_file != NULL)) {
    291 		printf("pool %s: reentrancy at file %s line %ld\n",
    292 		    pp->pr_wchan, file, line);
    293 		printf("         previous entry at file %s line %ld\n",
    294 		    pp->pr_entered_file, pp->pr_entered_line);
    295 		panic("pr_enter");
    296 	}
    297 
    298 	pp->pr_entered_file = file;
    299 	pp->pr_entered_line = line;
    300 }
    301 
    302 static inline void
    303 pr_leave(struct pool *pp)
    304 {
    305 
    306 	if (__predict_false(pp->pr_entered_file == NULL)) {
    307 		printf("pool %s not entered?\n", pp->pr_wchan);
    308 		panic("pr_leave");
    309 	}
    310 
    311 	pp->pr_entered_file = NULL;
    312 	pp->pr_entered_line = 0;
    313 }
    314 
    315 static inline void
    316 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    317 {
    318 
    319 	if (pp->pr_entered_file != NULL)
    320 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    321 		    pp->pr_entered_file, pp->pr_entered_line);
    322 }
    323 #else
    324 #define	pr_log(pp, v, action, file, line)
    325 #define	pr_printlog(pp, pi, pr)
    326 #define	pr_enter(pp, file, line)
    327 #define	pr_leave(pp)
    328 #define	pr_enter_check(pp, pr)
    329 #endif /* POOL_DIAGNOSTIC */
    330 
    331 static inline unsigned int
    332 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    333     const void *v)
    334 {
    335 	const char *cp = v;
    336 	unsigned int idx;
    337 
    338 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    339 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    340 	KASSERT(idx < pp->pr_itemsperpage);
    341 	return idx;
    342 }
    343 
    344 static inline void
    345 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    346     void *obj)
    347 {
    348 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    349 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    350 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    351 
    352 	KASSERT((*bitmap & mask) == 0);
    353 	*bitmap |= mask;
    354 }
    355 
    356 static inline void *
    357 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    358 {
    359 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    360 	unsigned int idx;
    361 	int i;
    362 
    363 	for (i = 0; ; i++) {
    364 		int bit;
    365 
    366 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    367 		bit = ffs32(bitmap[i]);
    368 		if (bit) {
    369 			pool_item_bitmap_t mask;
    370 
    371 			bit--;
    372 			idx = (i * BITMAP_SIZE) + bit;
    373 			mask = 1 << bit;
    374 			KASSERT((bitmap[i] & mask) != 0);
    375 			bitmap[i] &= ~mask;
    376 			break;
    377 		}
    378 	}
    379 	KASSERT(idx < pp->pr_itemsperpage);
    380 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    381 }
    382 
    383 static inline void
    384 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    385 {
    386 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    387 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    388 	int i;
    389 
    390 	for (i = 0; i < n; i++) {
    391 		bitmap[i] = (pool_item_bitmap_t)-1;
    392 	}
    393 }
    394 
    395 static inline int
    396 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    397 {
    398 
    399 	/*
    400 	 * we consider pool_item_header with smaller ph_page bigger.
    401 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    402 	 */
    403 
    404 	if (a->ph_page < b->ph_page)
    405 		return (1);
    406 	else if (a->ph_page > b->ph_page)
    407 		return (-1);
    408 	else
    409 		return (0);
    410 }
    411 
    412 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    413 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    414 
    415 /*
    416  * Return the pool page header based on item address.
    417  */
    418 static inline struct pool_item_header *
    419 pr_find_pagehead(struct pool *pp, void *v)
    420 {
    421 	struct pool_item_header *ph, tmp;
    422 
    423 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    424 		tmp.ph_page = (void *)(uintptr_t)v;
    425 		ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    426 		if (ph == NULL) {
    427 			ph = SPLAY_ROOT(&pp->pr_phtree);
    428 			if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    429 				ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    430 			}
    431 			KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    432 		}
    433 	} else {
    434 		void *page =
    435 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    436 
    437 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    438 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    439 		} else {
    440 			tmp.ph_page = page;
    441 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    442 		}
    443 	}
    444 
    445 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    446 	    ((char *)ph->ph_page <= (char *)v &&
    447 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    448 	return ph;
    449 }
    450 
    451 static void
    452 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    453 {
    454 	struct pool_item_header *ph;
    455 
    456 	while ((ph = LIST_FIRST(pq)) != NULL) {
    457 		LIST_REMOVE(ph, ph_pagelist);
    458 		pool_allocator_free(pp, ph->ph_page);
    459 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    460 			pool_put(pp->pr_phpool, ph);
    461 	}
    462 }
    463 
    464 /*
    465  * Remove a page from the pool.
    466  */
    467 static inline void
    468 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    469      struct pool_pagelist *pq)
    470 {
    471 
    472 	KASSERT(mutex_owned(&pp->pr_lock));
    473 
    474 	/*
    475 	 * If the page was idle, decrement the idle page count.
    476 	 */
    477 	if (ph->ph_nmissing == 0) {
    478 #ifdef DIAGNOSTIC
    479 		if (pp->pr_nidle == 0)
    480 			panic("pr_rmpage: nidle inconsistent");
    481 		if (pp->pr_nitems < pp->pr_itemsperpage)
    482 			panic("pr_rmpage: nitems inconsistent");
    483 #endif
    484 		pp->pr_nidle--;
    485 	}
    486 
    487 	pp->pr_nitems -= pp->pr_itemsperpage;
    488 
    489 	/*
    490 	 * Unlink the page from the pool and queue it for release.
    491 	 */
    492 	LIST_REMOVE(ph, ph_pagelist);
    493 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    494 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    495 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    496 
    497 	pp->pr_npages--;
    498 	pp->pr_npagefree++;
    499 
    500 	pool_update_curpage(pp);
    501 }
    502 
    503 static bool
    504 pa_starved_p(struct pool_allocator *pa)
    505 {
    506 
    507 	if (pa->pa_backingmap != NULL) {
    508 		return vm_map_starved_p(pa->pa_backingmap);
    509 	}
    510 	return false;
    511 }
    512 
    513 static int
    514 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    515 {
    516 	struct pool *pp = obj;
    517 	struct pool_allocator *pa = pp->pr_alloc;
    518 
    519 	KASSERT(&pp->pr_reclaimerentry == ce);
    520 	pool_reclaim(pp);
    521 	if (!pa_starved_p(pa)) {
    522 		return CALLBACK_CHAIN_ABORT;
    523 	}
    524 	return CALLBACK_CHAIN_CONTINUE;
    525 }
    526 
    527 static void
    528 pool_reclaim_register(struct pool *pp)
    529 {
    530 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    531 	int s;
    532 
    533 	if (map == NULL) {
    534 		return;
    535 	}
    536 
    537 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    538 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    539 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    540 	splx(s);
    541 }
    542 
    543 static void
    544 pool_reclaim_unregister(struct pool *pp)
    545 {
    546 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    547 	int s;
    548 
    549 	if (map == NULL) {
    550 		return;
    551 	}
    552 
    553 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    554 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    555 	    &pp->pr_reclaimerentry);
    556 	splx(s);
    557 }
    558 
    559 static void
    560 pa_reclaim_register(struct pool_allocator *pa)
    561 {
    562 	struct vm_map *map = *pa->pa_backingmapptr;
    563 	struct pool *pp;
    564 
    565 	KASSERT(pa->pa_backingmap == NULL);
    566 	if (map == NULL) {
    567 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    568 		return;
    569 	}
    570 	pa->pa_backingmap = map;
    571 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    572 		pool_reclaim_register(pp);
    573 	}
    574 }
    575 
    576 /*
    577  * Initialize all the pools listed in the "pools" link set.
    578  */
    579 void
    580 pool_subsystem_init(void)
    581 {
    582 	struct pool_allocator *pa;
    583 	__link_set_decl(pools, struct link_pool_init);
    584 	struct link_pool_init * const *pi;
    585 
    586 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    587 	cv_init(&pool_busy, "poolbusy");
    588 
    589 	__link_set_foreach(pi, pools)
    590 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    591 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    592 		    (*pi)->palloc, (*pi)->ipl);
    593 
    594 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    595 		KASSERT(pa->pa_backingmapptr != NULL);
    596 		KASSERT(*pa->pa_backingmapptr != NULL);
    597 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    598 		pa_reclaim_register(pa);
    599 	}
    600 
    601 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
    602 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    603 
    604 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
    605 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    606 }
    607 
    608 /*
    609  * Initialize the given pool resource structure.
    610  *
    611  * We export this routine to allow other kernel parts to declare
    612  * static pools that must be initialized before malloc() is available.
    613  */
    614 void
    615 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    616     const char *wchan, struct pool_allocator *palloc, int ipl)
    617 {
    618 #ifdef DEBUG
    619 	struct pool *pp1;
    620 #endif
    621 	size_t trysize, phsize;
    622 	int off, slack;
    623 
    624 #ifdef DEBUG
    625 	/*
    626 	 * Check that the pool hasn't already been initialised and
    627 	 * added to the list of all pools.
    628 	 */
    629 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
    630 		if (pp == pp1)
    631 			panic("pool_init: pool %s already initialised",
    632 			    wchan);
    633 	}
    634 #endif
    635 
    636 #ifdef POOL_DIAGNOSTIC
    637 	/*
    638 	 * Always log if POOL_DIAGNOSTIC is defined.
    639 	 */
    640 	if (pool_logsize != 0)
    641 		flags |= PR_LOGGING;
    642 #endif
    643 
    644 	if (palloc == NULL)
    645 		palloc = &pool_allocator_kmem;
    646 #ifdef POOL_SUBPAGE
    647 	if (size > palloc->pa_pagesz) {
    648 		if (palloc == &pool_allocator_kmem)
    649 			palloc = &pool_allocator_kmem_fullpage;
    650 		else if (palloc == &pool_allocator_nointr)
    651 			palloc = &pool_allocator_nointr_fullpage;
    652 	}
    653 #endif /* POOL_SUBPAGE */
    654 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    655 		if (palloc->pa_pagesz == 0)
    656 			palloc->pa_pagesz = PAGE_SIZE;
    657 
    658 		TAILQ_INIT(&palloc->pa_list);
    659 
    660 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    661 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    662 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    663 
    664 		if (palloc->pa_backingmapptr != NULL) {
    665 			pa_reclaim_register(palloc);
    666 		}
    667 		palloc->pa_flags |= PA_INITIALIZED;
    668 	}
    669 
    670 	if (align == 0)
    671 		align = ALIGN(1);
    672 
    673 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    674 		size = sizeof(struct pool_item);
    675 
    676 	size = roundup(size, align);
    677 #ifdef DIAGNOSTIC
    678 	if (size > palloc->pa_pagesz)
    679 		panic("pool_init: pool item size (%zu) too large", size);
    680 #endif
    681 
    682 	/*
    683 	 * Initialize the pool structure.
    684 	 */
    685 	LIST_INIT(&pp->pr_emptypages);
    686 	LIST_INIT(&pp->pr_fullpages);
    687 	LIST_INIT(&pp->pr_partpages);
    688 	pp->pr_cache = NULL;
    689 	pp->pr_curpage = NULL;
    690 	pp->pr_npages = 0;
    691 	pp->pr_minitems = 0;
    692 	pp->pr_minpages = 0;
    693 	pp->pr_maxpages = UINT_MAX;
    694 	pp->pr_roflags = flags;
    695 	pp->pr_flags = 0;
    696 	pp->pr_size = size;
    697 	pp->pr_align = align;
    698 	pp->pr_wchan = wchan;
    699 	pp->pr_alloc = palloc;
    700 	pp->pr_nitems = 0;
    701 	pp->pr_nout = 0;
    702 	pp->pr_hardlimit = UINT_MAX;
    703 	pp->pr_hardlimit_warning = NULL;
    704 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    705 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    706 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    707 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    708 	pp->pr_drain_hook = NULL;
    709 	pp->pr_drain_hook_arg = NULL;
    710 	pp->pr_freecheck = NULL;
    711 
    712 	/*
    713 	 * Decide whether to put the page header off page to avoid
    714 	 * wasting too large a part of the page or too big item.
    715 	 * Off-page page headers go on a hash table, so we can match
    716 	 * a returned item with its header based on the page address.
    717 	 * We use 1/16 of the page size and about 8 times of the item
    718 	 * size as the threshold (XXX: tune)
    719 	 *
    720 	 * However, we'll put the header into the page if we can put
    721 	 * it without wasting any items.
    722 	 *
    723 	 * Silently enforce `0 <= ioff < align'.
    724 	 */
    725 	pp->pr_itemoffset = ioff %= align;
    726 	/* See the comment below about reserved bytes. */
    727 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    728 	phsize = ALIGN(sizeof(struct pool_item_header));
    729 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    730 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    731 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    732 		/* Use the end of the page for the page header */
    733 		pp->pr_roflags |= PR_PHINPAGE;
    734 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    735 	} else {
    736 		/* The page header will be taken from our page header pool */
    737 		pp->pr_phoffset = 0;
    738 		off = palloc->pa_pagesz;
    739 		SPLAY_INIT(&pp->pr_phtree);
    740 	}
    741 
    742 	/*
    743 	 * Alignment is to take place at `ioff' within the item. This means
    744 	 * we must reserve up to `align - 1' bytes on the page to allow
    745 	 * appropriate positioning of each item.
    746 	 */
    747 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    748 	KASSERT(pp->pr_itemsperpage != 0);
    749 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    750 		int idx;
    751 
    752 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    753 		    idx++) {
    754 			/* nothing */
    755 		}
    756 		if (idx >= PHPOOL_MAX) {
    757 			/*
    758 			 * if you see this panic, consider to tweak
    759 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    760 			 */
    761 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    762 			    pp->pr_wchan, pp->pr_itemsperpage);
    763 		}
    764 		pp->pr_phpool = &phpool[idx];
    765 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    766 		pp->pr_phpool = &phpool[0];
    767 	}
    768 #if defined(DIAGNOSTIC)
    769 	else {
    770 		pp->pr_phpool = NULL;
    771 	}
    772 #endif
    773 
    774 	/*
    775 	 * Use the slack between the chunks and the page header
    776 	 * for "cache coloring".
    777 	 */
    778 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    779 	pp->pr_maxcolor = (slack / align) * align;
    780 	pp->pr_curcolor = 0;
    781 
    782 	pp->pr_nget = 0;
    783 	pp->pr_nfail = 0;
    784 	pp->pr_nput = 0;
    785 	pp->pr_npagealloc = 0;
    786 	pp->pr_npagefree = 0;
    787 	pp->pr_hiwat = 0;
    788 	pp->pr_nidle = 0;
    789 	pp->pr_refcnt = 0;
    790 
    791 #ifdef POOL_DIAGNOSTIC
    792 	if (flags & PR_LOGGING) {
    793 		if (kmem_map == NULL ||
    794 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    795 		     M_TEMP, M_NOWAIT)) == NULL)
    796 			pp->pr_roflags &= ~PR_LOGGING;
    797 		pp->pr_curlogentry = 0;
    798 		pp->pr_logsize = pool_logsize;
    799 	}
    800 #endif
    801 
    802 	pp->pr_entered_file = NULL;
    803 	pp->pr_entered_line = 0;
    804 
    805 	/*
    806 	 * XXXAD hack to prevent IP input processing from blocking.
    807 	 */
    808 	if (ipl == IPL_SOFTNET) {
    809 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
    810 	} else {
    811 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    812 	}
    813 	cv_init(&pp->pr_cv, wchan);
    814 	pp->pr_ipl = ipl;
    815 
    816 	/*
    817 	 * Initialize private page header pool and cache magazine pool if we
    818 	 * haven't done so yet.
    819 	 * XXX LOCKING.
    820 	 */
    821 	if (phpool[0].pr_size == 0) {
    822 		int idx;
    823 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    824 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    825 			int nelem;
    826 			size_t sz;
    827 
    828 			nelem = PHPOOL_FREELIST_NELEM(idx);
    829 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    830 			    "phpool-%d", nelem);
    831 			sz = sizeof(struct pool_item_header);
    832 			if (nelem) {
    833 				sz = offsetof(struct pool_item_header,
    834 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    835 			}
    836 			pool_init(&phpool[idx], sz, 0, 0, 0,
    837 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    838 		}
    839 #ifdef POOL_SUBPAGE
    840 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    841 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    842 #endif
    843 		pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
    844 		    "cachegrp", &pool_allocator_meta, IPL_VM);
    845 	}
    846 
    847 	if (__predict_true(!cold)) {
    848 		/* Insert into the list of all pools. */
    849 		mutex_enter(&pool_head_lock);
    850 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    851 		mutex_exit(&pool_head_lock);
    852 
    853 		/* Insert this into the list of pools using this allocator. */
    854 		mutex_enter(&palloc->pa_lock);
    855 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    856 		mutex_exit(&palloc->pa_lock);
    857 	} else {
    858 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    859 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    860 	}
    861 
    862 	pool_reclaim_register(pp);
    863 }
    864 
    865 /*
    866  * De-commision a pool resource.
    867  */
    868 void
    869 pool_destroy(struct pool *pp)
    870 {
    871 	struct pool_pagelist pq;
    872 	struct pool_item_header *ph;
    873 
    874 	/* Remove from global pool list */
    875 	mutex_enter(&pool_head_lock);
    876 	while (pp->pr_refcnt != 0)
    877 		cv_wait(&pool_busy, &pool_head_lock);
    878 	LIST_REMOVE(pp, pr_poollist);
    879 	if (drainpp == pp)
    880 		drainpp = NULL;
    881 	mutex_exit(&pool_head_lock);
    882 
    883 	/* Remove this pool from its allocator's list of pools. */
    884 	pool_reclaim_unregister(pp);
    885 	mutex_enter(&pp->pr_alloc->pa_lock);
    886 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    887 	mutex_exit(&pp->pr_alloc->pa_lock);
    888 
    889 	mutex_enter(&pp->pr_lock);
    890 
    891 	KASSERT(pp->pr_cache == NULL);
    892 
    893 #ifdef DIAGNOSTIC
    894 	if (pp->pr_nout != 0) {
    895 		pr_printlog(pp, NULL, printf);
    896 		panic("pool_destroy: pool busy: still out: %u",
    897 		    pp->pr_nout);
    898 	}
    899 #endif
    900 
    901 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    902 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    903 
    904 	/* Remove all pages */
    905 	LIST_INIT(&pq);
    906 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    907 		pr_rmpage(pp, ph, &pq);
    908 
    909 	mutex_exit(&pp->pr_lock);
    910 
    911 	pr_pagelist_free(pp, &pq);
    912 
    913 #ifdef POOL_DIAGNOSTIC
    914 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    915 		free(pp->pr_log, M_TEMP);
    916 #endif
    917 
    918 	cv_destroy(&pp->pr_cv);
    919 	mutex_destroy(&pp->pr_lock);
    920 }
    921 
    922 void
    923 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    924 {
    925 
    926 	/* XXX no locking -- must be used just after pool_init() */
    927 #ifdef DIAGNOSTIC
    928 	if (pp->pr_drain_hook != NULL)
    929 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    930 #endif
    931 	pp->pr_drain_hook = fn;
    932 	pp->pr_drain_hook_arg = arg;
    933 }
    934 
    935 static struct pool_item_header *
    936 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    937 {
    938 	struct pool_item_header *ph;
    939 
    940 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    941 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    942 	else
    943 		ph = pool_get(pp->pr_phpool, flags);
    944 
    945 	return (ph);
    946 }
    947 
    948 /*
    949  * Grab an item from the pool.
    950  */
    951 void *
    952 #ifdef POOL_DIAGNOSTIC
    953 _pool_get(struct pool *pp, int flags, const char *file, long line)
    954 #else
    955 pool_get(struct pool *pp, int flags)
    956 #endif
    957 {
    958 	struct pool_item *pi;
    959 	struct pool_item_header *ph;
    960 	void *v;
    961 
    962 #ifdef DIAGNOSTIC
    963 	if (__predict_false(pp->pr_itemsperpage == 0))
    964 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    965 		    "pool not initialized?", pp);
    966 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    967 			    (flags & PR_WAITOK) != 0))
    968 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    969 
    970 #endif /* DIAGNOSTIC */
    971 #ifdef LOCKDEBUG
    972 	if (flags & PR_WAITOK)
    973 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
    974 #endif
    975 
    976 	mutex_enter(&pp->pr_lock);
    977 	pr_enter(pp, file, line);
    978 
    979  startover:
    980 	/*
    981 	 * Check to see if we've reached the hard limit.  If we have,
    982 	 * and we can wait, then wait until an item has been returned to
    983 	 * the pool.
    984 	 */
    985 #ifdef DIAGNOSTIC
    986 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    987 		pr_leave(pp);
    988 		mutex_exit(&pp->pr_lock);
    989 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    990 	}
    991 #endif
    992 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    993 		if (pp->pr_drain_hook != NULL) {
    994 			/*
    995 			 * Since the drain hook is going to free things
    996 			 * back to the pool, unlock, call the hook, re-lock,
    997 			 * and check the hardlimit condition again.
    998 			 */
    999 			pr_leave(pp);
   1000 			mutex_exit(&pp->pr_lock);
   1001 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1002 			mutex_enter(&pp->pr_lock);
   1003 			pr_enter(pp, file, line);
   1004 			if (pp->pr_nout < pp->pr_hardlimit)
   1005 				goto startover;
   1006 		}
   1007 
   1008 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1009 			/*
   1010 			 * XXX: A warning isn't logged in this case.  Should
   1011 			 * it be?
   1012 			 */
   1013 			pp->pr_flags |= PR_WANTED;
   1014 			pr_leave(pp);
   1015 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1016 			pr_enter(pp, file, line);
   1017 			goto startover;
   1018 		}
   1019 
   1020 		/*
   1021 		 * Log a message that the hard limit has been hit.
   1022 		 */
   1023 		if (pp->pr_hardlimit_warning != NULL &&
   1024 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1025 			      &pp->pr_hardlimit_ratecap))
   1026 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1027 
   1028 		pp->pr_nfail++;
   1029 
   1030 		pr_leave(pp);
   1031 		mutex_exit(&pp->pr_lock);
   1032 		return (NULL);
   1033 	}
   1034 
   1035 	/*
   1036 	 * The convention we use is that if `curpage' is not NULL, then
   1037 	 * it points at a non-empty bucket. In particular, `curpage'
   1038 	 * never points at a page header which has PR_PHINPAGE set and
   1039 	 * has no items in its bucket.
   1040 	 */
   1041 	if ((ph = pp->pr_curpage) == NULL) {
   1042 		int error;
   1043 
   1044 #ifdef DIAGNOSTIC
   1045 		if (pp->pr_nitems != 0) {
   1046 			mutex_exit(&pp->pr_lock);
   1047 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1048 			    pp->pr_wchan, pp->pr_nitems);
   1049 			panic("pool_get: nitems inconsistent");
   1050 		}
   1051 #endif
   1052 
   1053 		/*
   1054 		 * Call the back-end page allocator for more memory.
   1055 		 * Release the pool lock, as the back-end page allocator
   1056 		 * may block.
   1057 		 */
   1058 		pr_leave(pp);
   1059 		error = pool_grow(pp, flags);
   1060 		pr_enter(pp, file, line);
   1061 		if (error != 0) {
   1062 			/*
   1063 			 * We were unable to allocate a page or item
   1064 			 * header, but we released the lock during
   1065 			 * allocation, so perhaps items were freed
   1066 			 * back to the pool.  Check for this case.
   1067 			 */
   1068 			if (pp->pr_curpage != NULL)
   1069 				goto startover;
   1070 
   1071 			pp->pr_nfail++;
   1072 			pr_leave(pp);
   1073 			mutex_exit(&pp->pr_lock);
   1074 			return (NULL);
   1075 		}
   1076 
   1077 		/* Start the allocation process over. */
   1078 		goto startover;
   1079 	}
   1080 	if (pp->pr_roflags & PR_NOTOUCH) {
   1081 #ifdef DIAGNOSTIC
   1082 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1083 			pr_leave(pp);
   1084 			mutex_exit(&pp->pr_lock);
   1085 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1086 		}
   1087 #endif
   1088 		v = pr_item_notouch_get(pp, ph);
   1089 #ifdef POOL_DIAGNOSTIC
   1090 		pr_log(pp, v, PRLOG_GET, file, line);
   1091 #endif
   1092 	} else {
   1093 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1094 		if (__predict_false(v == NULL)) {
   1095 			pr_leave(pp);
   1096 			mutex_exit(&pp->pr_lock);
   1097 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1098 		}
   1099 #ifdef DIAGNOSTIC
   1100 		if (__predict_false(pp->pr_nitems == 0)) {
   1101 			pr_leave(pp);
   1102 			mutex_exit(&pp->pr_lock);
   1103 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1104 			    pp->pr_wchan, pp->pr_nitems);
   1105 			panic("pool_get: nitems inconsistent");
   1106 		}
   1107 #endif
   1108 
   1109 #ifdef POOL_DIAGNOSTIC
   1110 		pr_log(pp, v, PRLOG_GET, file, line);
   1111 #endif
   1112 
   1113 #ifdef DIAGNOSTIC
   1114 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1115 			pr_printlog(pp, pi, printf);
   1116 			panic("pool_get(%s): free list modified: "
   1117 			    "magic=%x; page %p; item addr %p\n",
   1118 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1119 		}
   1120 #endif
   1121 
   1122 		/*
   1123 		 * Remove from item list.
   1124 		 */
   1125 		LIST_REMOVE(pi, pi_list);
   1126 	}
   1127 	pp->pr_nitems--;
   1128 	pp->pr_nout++;
   1129 	if (ph->ph_nmissing == 0) {
   1130 #ifdef DIAGNOSTIC
   1131 		if (__predict_false(pp->pr_nidle == 0))
   1132 			panic("pool_get: nidle inconsistent");
   1133 #endif
   1134 		pp->pr_nidle--;
   1135 
   1136 		/*
   1137 		 * This page was previously empty.  Move it to the list of
   1138 		 * partially-full pages.  This page is already curpage.
   1139 		 */
   1140 		LIST_REMOVE(ph, ph_pagelist);
   1141 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1142 	}
   1143 	ph->ph_nmissing++;
   1144 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1145 #ifdef DIAGNOSTIC
   1146 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1147 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1148 			pr_leave(pp);
   1149 			mutex_exit(&pp->pr_lock);
   1150 			panic("pool_get: %s: nmissing inconsistent",
   1151 			    pp->pr_wchan);
   1152 		}
   1153 #endif
   1154 		/*
   1155 		 * This page is now full.  Move it to the full list
   1156 		 * and select a new current page.
   1157 		 */
   1158 		LIST_REMOVE(ph, ph_pagelist);
   1159 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1160 		pool_update_curpage(pp);
   1161 	}
   1162 
   1163 	pp->pr_nget++;
   1164 	pr_leave(pp);
   1165 
   1166 	/*
   1167 	 * If we have a low water mark and we are now below that low
   1168 	 * water mark, add more items to the pool.
   1169 	 */
   1170 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1171 		/*
   1172 		 * XXX: Should we log a warning?  Should we set up a timeout
   1173 		 * to try again in a second or so?  The latter could break
   1174 		 * a caller's assumptions about interrupt protection, etc.
   1175 		 */
   1176 	}
   1177 
   1178 	mutex_exit(&pp->pr_lock);
   1179 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1180 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1181 	return (v);
   1182 }
   1183 
   1184 /*
   1185  * Internal version of pool_put().  Pool is already locked/entered.
   1186  */
   1187 static void
   1188 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1189 {
   1190 	struct pool_item *pi = v;
   1191 	struct pool_item_header *ph;
   1192 
   1193 	KASSERT(mutex_owned(&pp->pr_lock));
   1194 	FREECHECK_IN(&pp->pr_freecheck, v);
   1195 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1196 
   1197 #ifdef DIAGNOSTIC
   1198 	if (__predict_false(pp->pr_nout == 0)) {
   1199 		printf("pool %s: putting with none out\n",
   1200 		    pp->pr_wchan);
   1201 		panic("pool_put");
   1202 	}
   1203 #endif
   1204 
   1205 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1206 		pr_printlog(pp, NULL, printf);
   1207 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1208 	}
   1209 
   1210 	/*
   1211 	 * Return to item list.
   1212 	 */
   1213 	if (pp->pr_roflags & PR_NOTOUCH) {
   1214 		pr_item_notouch_put(pp, ph, v);
   1215 	} else {
   1216 #ifdef DIAGNOSTIC
   1217 		pi->pi_magic = PI_MAGIC;
   1218 #endif
   1219 #ifdef DEBUG
   1220 		{
   1221 			int i, *ip = v;
   1222 
   1223 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1224 				*ip++ = PI_MAGIC;
   1225 			}
   1226 		}
   1227 #endif
   1228 
   1229 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1230 	}
   1231 	KDASSERT(ph->ph_nmissing != 0);
   1232 	ph->ph_nmissing--;
   1233 	pp->pr_nput++;
   1234 	pp->pr_nitems++;
   1235 	pp->pr_nout--;
   1236 
   1237 	/* Cancel "pool empty" condition if it exists */
   1238 	if (pp->pr_curpage == NULL)
   1239 		pp->pr_curpage = ph;
   1240 
   1241 	if (pp->pr_flags & PR_WANTED) {
   1242 		pp->pr_flags &= ~PR_WANTED;
   1243 		if (ph->ph_nmissing == 0)
   1244 			pp->pr_nidle++;
   1245 		cv_broadcast(&pp->pr_cv);
   1246 		return;
   1247 	}
   1248 
   1249 	/*
   1250 	 * If this page is now empty, do one of two things:
   1251 	 *
   1252 	 *	(1) If we have more pages than the page high water mark,
   1253 	 *	    free the page back to the system.  ONLY CONSIDER
   1254 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1255 	 *	    CLAIM.
   1256 	 *
   1257 	 *	(2) Otherwise, move the page to the empty page list.
   1258 	 *
   1259 	 * Either way, select a new current page (so we use a partially-full
   1260 	 * page if one is available).
   1261 	 */
   1262 	if (ph->ph_nmissing == 0) {
   1263 		pp->pr_nidle++;
   1264 		if (pp->pr_npages > pp->pr_minpages &&
   1265 		    (pp->pr_npages > pp->pr_maxpages ||
   1266 		     pa_starved_p(pp->pr_alloc))) {
   1267 			pr_rmpage(pp, ph, pq);
   1268 		} else {
   1269 			LIST_REMOVE(ph, ph_pagelist);
   1270 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1271 
   1272 			/*
   1273 			 * Update the timestamp on the page.  A page must
   1274 			 * be idle for some period of time before it can
   1275 			 * be reclaimed by the pagedaemon.  This minimizes
   1276 			 * ping-pong'ing for memory.
   1277 			 */
   1278 			getmicrotime(&ph->ph_time);
   1279 		}
   1280 		pool_update_curpage(pp);
   1281 	}
   1282 
   1283 	/*
   1284 	 * If the page was previously completely full, move it to the
   1285 	 * partially-full list and make it the current page.  The next
   1286 	 * allocation will get the item from this page, instead of
   1287 	 * further fragmenting the pool.
   1288 	 */
   1289 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1290 		LIST_REMOVE(ph, ph_pagelist);
   1291 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1292 		pp->pr_curpage = ph;
   1293 	}
   1294 }
   1295 
   1296 /*
   1297  * Return resource to the pool.
   1298  */
   1299 #ifdef POOL_DIAGNOSTIC
   1300 void
   1301 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1302 {
   1303 	struct pool_pagelist pq;
   1304 
   1305 	LIST_INIT(&pq);
   1306 
   1307 	mutex_enter(&pp->pr_lock);
   1308 	pr_enter(pp, file, line);
   1309 
   1310 	pr_log(pp, v, PRLOG_PUT, file, line);
   1311 
   1312 	pool_do_put(pp, v, &pq);
   1313 
   1314 	pr_leave(pp);
   1315 	mutex_exit(&pp->pr_lock);
   1316 
   1317 	pr_pagelist_free(pp, &pq);
   1318 }
   1319 #undef pool_put
   1320 #endif /* POOL_DIAGNOSTIC */
   1321 
   1322 void
   1323 pool_put(struct pool *pp, void *v)
   1324 {
   1325 	struct pool_pagelist pq;
   1326 
   1327 	LIST_INIT(&pq);
   1328 
   1329 	mutex_enter(&pp->pr_lock);
   1330 	pool_do_put(pp, v, &pq);
   1331 	mutex_exit(&pp->pr_lock);
   1332 
   1333 	pr_pagelist_free(pp, &pq);
   1334 }
   1335 
   1336 #ifdef POOL_DIAGNOSTIC
   1337 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1338 #endif
   1339 
   1340 /*
   1341  * pool_grow: grow a pool by a page.
   1342  *
   1343  * => called with pool locked.
   1344  * => unlock and relock the pool.
   1345  * => return with pool locked.
   1346  */
   1347 
   1348 static int
   1349 pool_grow(struct pool *pp, int flags)
   1350 {
   1351 	struct pool_item_header *ph = NULL;
   1352 	char *cp;
   1353 
   1354 	mutex_exit(&pp->pr_lock);
   1355 	cp = pool_allocator_alloc(pp, flags);
   1356 	if (__predict_true(cp != NULL)) {
   1357 		ph = pool_alloc_item_header(pp, cp, flags);
   1358 	}
   1359 	if (__predict_false(cp == NULL || ph == NULL)) {
   1360 		if (cp != NULL) {
   1361 			pool_allocator_free(pp, cp);
   1362 		}
   1363 		mutex_enter(&pp->pr_lock);
   1364 		return ENOMEM;
   1365 	}
   1366 
   1367 	mutex_enter(&pp->pr_lock);
   1368 	pool_prime_page(pp, cp, ph);
   1369 	pp->pr_npagealloc++;
   1370 	return 0;
   1371 }
   1372 
   1373 /*
   1374  * Add N items to the pool.
   1375  */
   1376 int
   1377 pool_prime(struct pool *pp, int n)
   1378 {
   1379 	int newpages;
   1380 	int error = 0;
   1381 
   1382 	mutex_enter(&pp->pr_lock);
   1383 
   1384 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1385 
   1386 	while (newpages-- > 0) {
   1387 		error = pool_grow(pp, PR_NOWAIT);
   1388 		if (error) {
   1389 			break;
   1390 		}
   1391 		pp->pr_minpages++;
   1392 	}
   1393 
   1394 	if (pp->pr_minpages >= pp->pr_maxpages)
   1395 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1396 
   1397 	mutex_exit(&pp->pr_lock);
   1398 	return error;
   1399 }
   1400 
   1401 /*
   1402  * Add a page worth of items to the pool.
   1403  *
   1404  * Note, we must be called with the pool descriptor LOCKED.
   1405  */
   1406 static void
   1407 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1408 {
   1409 	struct pool_item *pi;
   1410 	void *cp = storage;
   1411 	const unsigned int align = pp->pr_align;
   1412 	const unsigned int ioff = pp->pr_itemoffset;
   1413 	int n;
   1414 
   1415 	KASSERT(mutex_owned(&pp->pr_lock));
   1416 
   1417 #ifdef DIAGNOSTIC
   1418 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1419 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1420 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1421 #endif
   1422 
   1423 	/*
   1424 	 * Insert page header.
   1425 	 */
   1426 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1427 	LIST_INIT(&ph->ph_itemlist);
   1428 	ph->ph_page = storage;
   1429 	ph->ph_nmissing = 0;
   1430 	getmicrotime(&ph->ph_time);
   1431 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1432 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1433 
   1434 	pp->pr_nidle++;
   1435 
   1436 	/*
   1437 	 * Color this page.
   1438 	 */
   1439 	cp = (char *)cp + pp->pr_curcolor;
   1440 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1441 		pp->pr_curcolor = 0;
   1442 
   1443 	/*
   1444 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1445 	 */
   1446 	if (ioff != 0)
   1447 		cp = (char *)cp + align - ioff;
   1448 
   1449 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1450 
   1451 	/*
   1452 	 * Insert remaining chunks on the bucket list.
   1453 	 */
   1454 	n = pp->pr_itemsperpage;
   1455 	pp->pr_nitems += n;
   1456 
   1457 	if (pp->pr_roflags & PR_NOTOUCH) {
   1458 		pr_item_notouch_init(pp, ph);
   1459 	} else {
   1460 		while (n--) {
   1461 			pi = (struct pool_item *)cp;
   1462 
   1463 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1464 
   1465 			/* Insert on page list */
   1466 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1467 #ifdef DIAGNOSTIC
   1468 			pi->pi_magic = PI_MAGIC;
   1469 #endif
   1470 			cp = (char *)cp + pp->pr_size;
   1471 
   1472 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1473 		}
   1474 	}
   1475 
   1476 	/*
   1477 	 * If the pool was depleted, point at the new page.
   1478 	 */
   1479 	if (pp->pr_curpage == NULL)
   1480 		pp->pr_curpage = ph;
   1481 
   1482 	if (++pp->pr_npages > pp->pr_hiwat)
   1483 		pp->pr_hiwat = pp->pr_npages;
   1484 }
   1485 
   1486 /*
   1487  * Used by pool_get() when nitems drops below the low water mark.  This
   1488  * is used to catch up pr_nitems with the low water mark.
   1489  *
   1490  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1491  *
   1492  * Note 2, we must be called with the pool already locked, and we return
   1493  * with it locked.
   1494  */
   1495 static int
   1496 pool_catchup(struct pool *pp)
   1497 {
   1498 	int error = 0;
   1499 
   1500 	while (POOL_NEEDS_CATCHUP(pp)) {
   1501 		error = pool_grow(pp, PR_NOWAIT);
   1502 		if (error) {
   1503 			break;
   1504 		}
   1505 	}
   1506 	return error;
   1507 }
   1508 
   1509 static void
   1510 pool_update_curpage(struct pool *pp)
   1511 {
   1512 
   1513 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1514 	if (pp->pr_curpage == NULL) {
   1515 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1516 	}
   1517 }
   1518 
   1519 void
   1520 pool_setlowat(struct pool *pp, int n)
   1521 {
   1522 
   1523 	mutex_enter(&pp->pr_lock);
   1524 
   1525 	pp->pr_minitems = n;
   1526 	pp->pr_minpages = (n == 0)
   1527 		? 0
   1528 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1529 
   1530 	/* Make sure we're caught up with the newly-set low water mark. */
   1531 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1532 		/*
   1533 		 * XXX: Should we log a warning?  Should we set up a timeout
   1534 		 * to try again in a second or so?  The latter could break
   1535 		 * a caller's assumptions about interrupt protection, etc.
   1536 		 */
   1537 	}
   1538 
   1539 	mutex_exit(&pp->pr_lock);
   1540 }
   1541 
   1542 void
   1543 pool_sethiwat(struct pool *pp, int n)
   1544 {
   1545 
   1546 	mutex_enter(&pp->pr_lock);
   1547 
   1548 	pp->pr_maxpages = (n == 0)
   1549 		? 0
   1550 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1551 
   1552 	mutex_exit(&pp->pr_lock);
   1553 }
   1554 
   1555 void
   1556 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1557 {
   1558 
   1559 	mutex_enter(&pp->pr_lock);
   1560 
   1561 	pp->pr_hardlimit = n;
   1562 	pp->pr_hardlimit_warning = warnmess;
   1563 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1564 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1565 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1566 
   1567 	/*
   1568 	 * In-line version of pool_sethiwat(), because we don't want to
   1569 	 * release the lock.
   1570 	 */
   1571 	pp->pr_maxpages = (n == 0)
   1572 		? 0
   1573 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1574 
   1575 	mutex_exit(&pp->pr_lock);
   1576 }
   1577 
   1578 /*
   1579  * Release all complete pages that have not been used recently.
   1580  */
   1581 int
   1582 #ifdef POOL_DIAGNOSTIC
   1583 _pool_reclaim(struct pool *pp, const char *file, long line)
   1584 #else
   1585 pool_reclaim(struct pool *pp)
   1586 #endif
   1587 {
   1588 	struct pool_item_header *ph, *phnext;
   1589 	struct pool_pagelist pq;
   1590 	struct timeval curtime, diff;
   1591 	bool klock;
   1592 	int rv;
   1593 
   1594 	if (pp->pr_drain_hook != NULL) {
   1595 		/*
   1596 		 * The drain hook must be called with the pool unlocked.
   1597 		 */
   1598 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1599 	}
   1600 
   1601 	/*
   1602 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
   1603 	 * and we are called from the pagedaemon without kernel_lock.
   1604 	 * Does not apply to IPL_SOFTBIO.
   1605 	 */
   1606 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1607 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1608 		KERNEL_LOCK(1, NULL);
   1609 		klock = true;
   1610 	} else
   1611 		klock = false;
   1612 
   1613 	/* Reclaim items from the pool's cache (if any). */
   1614 	if (pp->pr_cache != NULL)
   1615 		pool_cache_invalidate(pp->pr_cache);
   1616 
   1617 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1618 		if (klock) {
   1619 			KERNEL_UNLOCK_ONE(NULL);
   1620 		}
   1621 		return (0);
   1622 	}
   1623 	pr_enter(pp, file, line);
   1624 
   1625 	LIST_INIT(&pq);
   1626 
   1627 	getmicrotime(&curtime);
   1628 
   1629 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1630 		phnext = LIST_NEXT(ph, ph_pagelist);
   1631 
   1632 		/* Check our minimum page claim */
   1633 		if (pp->pr_npages <= pp->pr_minpages)
   1634 			break;
   1635 
   1636 		KASSERT(ph->ph_nmissing == 0);
   1637 		timersub(&curtime, &ph->ph_time, &diff);
   1638 		if (diff.tv_sec < pool_inactive_time
   1639 		    && !pa_starved_p(pp->pr_alloc))
   1640 			continue;
   1641 
   1642 		/*
   1643 		 * If freeing this page would put us below
   1644 		 * the low water mark, stop now.
   1645 		 */
   1646 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1647 		    pp->pr_minitems)
   1648 			break;
   1649 
   1650 		pr_rmpage(pp, ph, &pq);
   1651 	}
   1652 
   1653 	pr_leave(pp);
   1654 	mutex_exit(&pp->pr_lock);
   1655 
   1656 	if (LIST_EMPTY(&pq))
   1657 		rv = 0;
   1658 	else {
   1659 		pr_pagelist_free(pp, &pq);
   1660 		rv = 1;
   1661 	}
   1662 
   1663 	if (klock) {
   1664 		KERNEL_UNLOCK_ONE(NULL);
   1665 	}
   1666 
   1667 	return (rv);
   1668 }
   1669 
   1670 /*
   1671  * Drain pools, one at a time.  This is a two stage process;
   1672  * drain_start kicks off a cross call to drain CPU-level caches
   1673  * if the pool has an associated pool_cache.  drain_end waits
   1674  * for those cross calls to finish, and then drains the cache
   1675  * (if any) and pool.
   1676  *
   1677  * Note, must never be called from interrupt context.
   1678  */
   1679 void
   1680 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1681 {
   1682 	struct pool *pp;
   1683 
   1684 	KASSERT(!LIST_EMPTY(&pool_head));
   1685 
   1686 	pp = NULL;
   1687 
   1688 	/* Find next pool to drain, and add a reference. */
   1689 	mutex_enter(&pool_head_lock);
   1690 	do {
   1691 		if (drainpp == NULL) {
   1692 			drainpp = LIST_FIRST(&pool_head);
   1693 		}
   1694 		if (drainpp != NULL) {
   1695 			pp = drainpp;
   1696 			drainpp = LIST_NEXT(pp, pr_poollist);
   1697 		}
   1698 		/*
   1699 		 * Skip completely idle pools.  We depend on at least
   1700 		 * one pool in the system being active.
   1701 		 */
   1702 	} while (pp == NULL || pp->pr_npages == 0);
   1703 	pp->pr_refcnt++;
   1704 	mutex_exit(&pool_head_lock);
   1705 
   1706 	/* If there is a pool_cache, drain CPU level caches. */
   1707 	*ppp = pp;
   1708 	if (pp->pr_cache != NULL) {
   1709 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1710 		    pp->pr_cache, NULL);
   1711 	}
   1712 }
   1713 
   1714 void
   1715 pool_drain_end(struct pool *pp, uint64_t where)
   1716 {
   1717 
   1718 	if (pp == NULL)
   1719 		return;
   1720 
   1721 	KASSERT(pp->pr_refcnt > 0);
   1722 
   1723 	/* Wait for remote draining to complete. */
   1724 	if (pp->pr_cache != NULL)
   1725 		xc_wait(where);
   1726 
   1727 	/* Drain the cache (if any) and pool.. */
   1728 	pool_reclaim(pp);
   1729 
   1730 	/* Finally, unlock the pool. */
   1731 	mutex_enter(&pool_head_lock);
   1732 	pp->pr_refcnt--;
   1733 	cv_broadcast(&pool_busy);
   1734 	mutex_exit(&pool_head_lock);
   1735 }
   1736 
   1737 /*
   1738  * Diagnostic helpers.
   1739  */
   1740 void
   1741 pool_print(struct pool *pp, const char *modif)
   1742 {
   1743 
   1744 	pool_print1(pp, modif, printf);
   1745 }
   1746 
   1747 void
   1748 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1749 {
   1750 	struct pool *pp;
   1751 
   1752 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   1753 		pool_printit(pp, modif, pr);
   1754 	}
   1755 }
   1756 
   1757 void
   1758 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1759 {
   1760 
   1761 	if (pp == NULL) {
   1762 		(*pr)("Must specify a pool to print.\n");
   1763 		return;
   1764 	}
   1765 
   1766 	pool_print1(pp, modif, pr);
   1767 }
   1768 
   1769 static void
   1770 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1771     void (*pr)(const char *, ...))
   1772 {
   1773 	struct pool_item_header *ph;
   1774 #ifdef DIAGNOSTIC
   1775 	struct pool_item *pi;
   1776 #endif
   1777 
   1778 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1779 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1780 		    ph->ph_page, ph->ph_nmissing,
   1781 		    (u_long)ph->ph_time.tv_sec,
   1782 		    (u_long)ph->ph_time.tv_usec);
   1783 #ifdef DIAGNOSTIC
   1784 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1785 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1786 				if (pi->pi_magic != PI_MAGIC) {
   1787 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1788 					    pi, pi->pi_magic);
   1789 				}
   1790 			}
   1791 		}
   1792 #endif
   1793 	}
   1794 }
   1795 
   1796 static void
   1797 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1798 {
   1799 	struct pool_item_header *ph;
   1800 	pool_cache_t pc;
   1801 	pcg_t *pcg;
   1802 	pool_cache_cpu_t *cc;
   1803 	uint64_t cpuhit, cpumiss;
   1804 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1805 	char c;
   1806 
   1807 	while ((c = *modif++) != '\0') {
   1808 		if (c == 'l')
   1809 			print_log = 1;
   1810 		if (c == 'p')
   1811 			print_pagelist = 1;
   1812 		if (c == 'c')
   1813 			print_cache = 1;
   1814 	}
   1815 
   1816 	if ((pc = pp->pr_cache) != NULL) {
   1817 		(*pr)("POOL CACHE");
   1818 	} else {
   1819 		(*pr)("POOL");
   1820 	}
   1821 
   1822 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1823 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1824 	    pp->pr_roflags);
   1825 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1826 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1827 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1828 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1829 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1830 
   1831 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1832 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1833 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1834 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1835 
   1836 	if (print_pagelist == 0)
   1837 		goto skip_pagelist;
   1838 
   1839 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1840 		(*pr)("\n\tempty page list:\n");
   1841 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1842 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1843 		(*pr)("\n\tfull page list:\n");
   1844 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1845 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1846 		(*pr)("\n\tpartial-page list:\n");
   1847 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1848 
   1849 	if (pp->pr_curpage == NULL)
   1850 		(*pr)("\tno current page\n");
   1851 	else
   1852 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1853 
   1854  skip_pagelist:
   1855 	if (print_log == 0)
   1856 		goto skip_log;
   1857 
   1858 	(*pr)("\n");
   1859 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1860 		(*pr)("\tno log\n");
   1861 	else {
   1862 		pr_printlog(pp, NULL, pr);
   1863 	}
   1864 
   1865  skip_log:
   1866 
   1867 #define PR_GROUPLIST(pcg)						\
   1868 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1869 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1870 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1871 		    POOL_PADDR_INVALID) {				\
   1872 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1873 			    pcg->pcg_objects[i].pcgo_va,		\
   1874 			    (unsigned long long)			\
   1875 			    pcg->pcg_objects[i].pcgo_pa);		\
   1876 		} else {						\
   1877 			(*pr)("\t\t\t%p\n",				\
   1878 			    pcg->pcg_objects[i].pcgo_va);		\
   1879 		}							\
   1880 	}
   1881 
   1882 	if (pc != NULL) {
   1883 		cpuhit = 0;
   1884 		cpumiss = 0;
   1885 		for (i = 0; i < MAXCPUS; i++) {
   1886 			if ((cc = pc->pc_cpus[i]) == NULL)
   1887 				continue;
   1888 			cpuhit += cc->cc_hits;
   1889 			cpumiss += cc->cc_misses;
   1890 		}
   1891 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1892 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1893 		    pc->pc_hits, pc->pc_misses);
   1894 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1895 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1896 		    pc->pc_contended);
   1897 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1898 		    pc->pc_nempty, pc->pc_nfull);
   1899 		if (print_cache) {
   1900 			(*pr)("\tfull cache groups:\n");
   1901 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1902 			    pcg = pcg->pcg_next) {
   1903 				PR_GROUPLIST(pcg);
   1904 			}
   1905 			(*pr)("\tempty cache groups:\n");
   1906 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1907 			    pcg = pcg->pcg_next) {
   1908 				PR_GROUPLIST(pcg);
   1909 			}
   1910 		}
   1911 	}
   1912 #undef PR_GROUPLIST
   1913 
   1914 	pr_enter_check(pp, pr);
   1915 }
   1916 
   1917 static int
   1918 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1919 {
   1920 	struct pool_item *pi;
   1921 	void *page;
   1922 	int n;
   1923 
   1924 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1925 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1926 		if (page != ph->ph_page &&
   1927 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1928 			if (label != NULL)
   1929 				printf("%s: ", label);
   1930 			printf("pool(%p:%s): page inconsistency: page %p;"
   1931 			       " at page head addr %p (p %p)\n", pp,
   1932 				pp->pr_wchan, ph->ph_page,
   1933 				ph, page);
   1934 			return 1;
   1935 		}
   1936 	}
   1937 
   1938 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1939 		return 0;
   1940 
   1941 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1942 	     pi != NULL;
   1943 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1944 
   1945 #ifdef DIAGNOSTIC
   1946 		if (pi->pi_magic != PI_MAGIC) {
   1947 			if (label != NULL)
   1948 				printf("%s: ", label);
   1949 			printf("pool(%s): free list modified: magic=%x;"
   1950 			       " page %p; item ordinal %d; addr %p\n",
   1951 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1952 				n, pi);
   1953 			panic("pool");
   1954 		}
   1955 #endif
   1956 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1957 			continue;
   1958 		}
   1959 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1960 		if (page == ph->ph_page)
   1961 			continue;
   1962 
   1963 		if (label != NULL)
   1964 			printf("%s: ", label);
   1965 		printf("pool(%p:%s): page inconsistency: page %p;"
   1966 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1967 			pp->pr_wchan, ph->ph_page,
   1968 			n, pi, page);
   1969 		return 1;
   1970 	}
   1971 	return 0;
   1972 }
   1973 
   1974 
   1975 int
   1976 pool_chk(struct pool *pp, const char *label)
   1977 {
   1978 	struct pool_item_header *ph;
   1979 	int r = 0;
   1980 
   1981 	mutex_enter(&pp->pr_lock);
   1982 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1983 		r = pool_chk_page(pp, label, ph);
   1984 		if (r) {
   1985 			goto out;
   1986 		}
   1987 	}
   1988 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1989 		r = pool_chk_page(pp, label, ph);
   1990 		if (r) {
   1991 			goto out;
   1992 		}
   1993 	}
   1994 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1995 		r = pool_chk_page(pp, label, ph);
   1996 		if (r) {
   1997 			goto out;
   1998 		}
   1999 	}
   2000 
   2001 out:
   2002 	mutex_exit(&pp->pr_lock);
   2003 	return (r);
   2004 }
   2005 
   2006 /*
   2007  * pool_cache_init:
   2008  *
   2009  *	Initialize a pool cache.
   2010  */
   2011 pool_cache_t
   2012 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2013     const char *wchan, struct pool_allocator *palloc, int ipl,
   2014     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2015 {
   2016 	pool_cache_t pc;
   2017 
   2018 	pc = pool_get(&cache_pool, PR_WAITOK);
   2019 	if (pc == NULL)
   2020 		return NULL;
   2021 
   2022 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2023 	   palloc, ipl, ctor, dtor, arg);
   2024 
   2025 	return pc;
   2026 }
   2027 
   2028 /*
   2029  * pool_cache_bootstrap:
   2030  *
   2031  *	Kernel-private version of pool_cache_init().  The caller
   2032  *	provides initial storage.
   2033  */
   2034 void
   2035 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2036     u_int align_offset, u_int flags, const char *wchan,
   2037     struct pool_allocator *palloc, int ipl,
   2038     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2039     void *arg)
   2040 {
   2041 	CPU_INFO_ITERATOR cii;
   2042 	struct cpu_info *ci;
   2043 	struct pool *pp;
   2044 
   2045 	pp = &pc->pc_pool;
   2046 	if (palloc == NULL && ipl == IPL_NONE)
   2047 		palloc = &pool_allocator_nointr;
   2048 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2049 
   2050 	/*
   2051 	 * XXXAD hack to prevent IP input processing from blocking.
   2052 	 */
   2053 	if (ipl == IPL_SOFTNET) {
   2054 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
   2055 	} else {
   2056 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2057 	}
   2058 
   2059 	if (ctor == NULL) {
   2060 		ctor = (int (*)(void *, void *, int))nullop;
   2061 	}
   2062 	if (dtor == NULL) {
   2063 		dtor = (void (*)(void *, void *))nullop;
   2064 	}
   2065 
   2066 	pc->pc_emptygroups = NULL;
   2067 	pc->pc_fullgroups = NULL;
   2068 	pc->pc_partgroups = NULL;
   2069 	pc->pc_ctor = ctor;
   2070 	pc->pc_dtor = dtor;
   2071 	pc->pc_arg  = arg;
   2072 	pc->pc_hits  = 0;
   2073 	pc->pc_misses = 0;
   2074 	pc->pc_nempty = 0;
   2075 	pc->pc_npart = 0;
   2076 	pc->pc_nfull = 0;
   2077 	pc->pc_contended = 0;
   2078 	pc->pc_refcnt = 0;
   2079 	pc->pc_freecheck = NULL;
   2080 
   2081 	/* Allocate per-CPU caches. */
   2082 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2083 	pc->pc_ncpu = 0;
   2084 	if (ncpu == 0) {
   2085 		/* XXX For sparc: boot CPU is not attached yet. */
   2086 		pool_cache_cpu_init1(curcpu(), pc);
   2087 	} else {
   2088 		for (CPU_INFO_FOREACH(cii, ci)) {
   2089 			pool_cache_cpu_init1(ci, pc);
   2090 		}
   2091 	}
   2092 
   2093 	if (__predict_true(!cold)) {
   2094 		mutex_enter(&pp->pr_lock);
   2095 		pp->pr_cache = pc;
   2096 		mutex_exit(&pp->pr_lock);
   2097 		mutex_enter(&pool_head_lock);
   2098 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2099 		mutex_exit(&pool_head_lock);
   2100 	} else {
   2101 		pp->pr_cache = pc;
   2102 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2103 	}
   2104 }
   2105 
   2106 /*
   2107  * pool_cache_destroy:
   2108  *
   2109  *	Destroy a pool cache.
   2110  */
   2111 void
   2112 pool_cache_destroy(pool_cache_t pc)
   2113 {
   2114 	struct pool *pp = &pc->pc_pool;
   2115 	pool_cache_cpu_t *cc;
   2116 	pcg_t *pcg;
   2117 	int i;
   2118 
   2119 	/* Remove it from the global list. */
   2120 	mutex_enter(&pool_head_lock);
   2121 	while (pc->pc_refcnt != 0)
   2122 		cv_wait(&pool_busy, &pool_head_lock);
   2123 	LIST_REMOVE(pc, pc_cachelist);
   2124 	mutex_exit(&pool_head_lock);
   2125 
   2126 	/* First, invalidate the entire cache. */
   2127 	pool_cache_invalidate(pc);
   2128 
   2129 	/* Disassociate it from the pool. */
   2130 	mutex_enter(&pp->pr_lock);
   2131 	pp->pr_cache = NULL;
   2132 	mutex_exit(&pp->pr_lock);
   2133 
   2134 	/* Destroy per-CPU data */
   2135 	for (i = 0; i < MAXCPUS; i++) {
   2136 		if ((cc = pc->pc_cpus[i]) == NULL)
   2137 			continue;
   2138 		if ((pcg = cc->cc_current) != NULL) {
   2139 			pcg->pcg_next = NULL;
   2140 			pool_cache_invalidate_groups(pc, pcg);
   2141 		}
   2142 		if ((pcg = cc->cc_previous) != NULL) {
   2143 			pcg->pcg_next = NULL;
   2144 			pool_cache_invalidate_groups(pc, pcg);
   2145 		}
   2146 		if (cc != &pc->pc_cpu0)
   2147 			pool_put(&cache_cpu_pool, cc);
   2148 	}
   2149 
   2150 	/* Finally, destroy it. */
   2151 	mutex_destroy(&pc->pc_lock);
   2152 	pool_destroy(pp);
   2153 	pool_put(&cache_pool, pc);
   2154 }
   2155 
   2156 /*
   2157  * pool_cache_cpu_init1:
   2158  *
   2159  *	Called for each pool_cache whenever a new CPU is attached.
   2160  */
   2161 static void
   2162 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2163 {
   2164 	pool_cache_cpu_t *cc;
   2165 	int index;
   2166 
   2167 	index = ci->ci_index;
   2168 
   2169 	KASSERT(index < MAXCPUS);
   2170 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
   2171 
   2172 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2173 		KASSERT(cc->cc_cpuindex == index);
   2174 		return;
   2175 	}
   2176 
   2177 	/*
   2178 	 * The first CPU is 'free'.  This needs to be the case for
   2179 	 * bootstrap - we may not be able to allocate yet.
   2180 	 */
   2181 	if (pc->pc_ncpu == 0) {
   2182 		cc = &pc->pc_cpu0;
   2183 		pc->pc_ncpu = 1;
   2184 	} else {
   2185 		mutex_enter(&pc->pc_lock);
   2186 		pc->pc_ncpu++;
   2187 		mutex_exit(&pc->pc_lock);
   2188 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2189 	}
   2190 
   2191 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2192 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2193 	cc->cc_cache = pc;
   2194 	cc->cc_cpuindex = index;
   2195 	cc->cc_hits = 0;
   2196 	cc->cc_misses = 0;
   2197 	cc->cc_current = NULL;
   2198 	cc->cc_previous = NULL;
   2199 
   2200 	pc->pc_cpus[index] = cc;
   2201 }
   2202 
   2203 /*
   2204  * pool_cache_cpu_init:
   2205  *
   2206  *	Called whenever a new CPU is attached.
   2207  */
   2208 void
   2209 pool_cache_cpu_init(struct cpu_info *ci)
   2210 {
   2211 	pool_cache_t pc;
   2212 
   2213 	mutex_enter(&pool_head_lock);
   2214 	LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2215 		pc->pc_refcnt++;
   2216 		mutex_exit(&pool_head_lock);
   2217 
   2218 		pool_cache_cpu_init1(ci, pc);
   2219 
   2220 		mutex_enter(&pool_head_lock);
   2221 		pc->pc_refcnt--;
   2222 		cv_broadcast(&pool_busy);
   2223 	}
   2224 	mutex_exit(&pool_head_lock);
   2225 }
   2226 
   2227 /*
   2228  * pool_cache_reclaim:
   2229  *
   2230  *	Reclaim memory from a pool cache.
   2231  */
   2232 bool
   2233 pool_cache_reclaim(pool_cache_t pc)
   2234 {
   2235 
   2236 	return pool_reclaim(&pc->pc_pool);
   2237 }
   2238 
   2239 static void
   2240 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2241 {
   2242 
   2243 	(*pc->pc_dtor)(pc->pc_arg, object);
   2244 	pool_put(&pc->pc_pool, object);
   2245 }
   2246 
   2247 /*
   2248  * pool_cache_destruct_object:
   2249  *
   2250  *	Force destruction of an object and its release back into
   2251  *	the pool.
   2252  */
   2253 void
   2254 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2255 {
   2256 
   2257 	FREECHECK_IN(&pc->pc_freecheck, object);
   2258 
   2259 	pool_cache_destruct_object1(pc, object);
   2260 }
   2261 
   2262 /*
   2263  * pool_cache_invalidate_groups:
   2264  *
   2265  *	Invalidate a chain of groups and destruct all objects.
   2266  */
   2267 static void
   2268 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2269 {
   2270 	void *object;
   2271 	pcg_t *next;
   2272 	int i;
   2273 
   2274 	for (; pcg != NULL; pcg = next) {
   2275 		next = pcg->pcg_next;
   2276 
   2277 		for (i = 0; i < pcg->pcg_avail; i++) {
   2278 			object = pcg->pcg_objects[i].pcgo_va;
   2279 			pool_cache_destruct_object1(pc, object);
   2280 		}
   2281 
   2282 		pool_put(&pcgpool, pcg);
   2283 	}
   2284 }
   2285 
   2286 /*
   2287  * pool_cache_invalidate:
   2288  *
   2289  *	Invalidate a pool cache (destruct and release all of the
   2290  *	cached objects).  Does not reclaim objects from the pool.
   2291  */
   2292 void
   2293 pool_cache_invalidate(pool_cache_t pc)
   2294 {
   2295 	pcg_t *full, *empty, *part;
   2296 
   2297 	mutex_enter(&pc->pc_lock);
   2298 	full = pc->pc_fullgroups;
   2299 	empty = pc->pc_emptygroups;
   2300 	part = pc->pc_partgroups;
   2301 	pc->pc_fullgroups = NULL;
   2302 	pc->pc_emptygroups = NULL;
   2303 	pc->pc_partgroups = NULL;
   2304 	pc->pc_nfull = 0;
   2305 	pc->pc_nempty = 0;
   2306 	pc->pc_npart = 0;
   2307 	mutex_exit(&pc->pc_lock);
   2308 
   2309 	pool_cache_invalidate_groups(pc, full);
   2310 	pool_cache_invalidate_groups(pc, empty);
   2311 	pool_cache_invalidate_groups(pc, part);
   2312 }
   2313 
   2314 void
   2315 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2316 {
   2317 
   2318 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2319 }
   2320 
   2321 void
   2322 pool_cache_setlowat(pool_cache_t pc, int n)
   2323 {
   2324 
   2325 	pool_setlowat(&pc->pc_pool, n);
   2326 }
   2327 
   2328 void
   2329 pool_cache_sethiwat(pool_cache_t pc, int n)
   2330 {
   2331 
   2332 	pool_sethiwat(&pc->pc_pool, n);
   2333 }
   2334 
   2335 void
   2336 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2337 {
   2338 
   2339 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2340 }
   2341 
   2342 static inline pool_cache_cpu_t *
   2343 pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2344 {
   2345 	pool_cache_cpu_t *cc;
   2346 
   2347 	/*
   2348 	 * Prevent other users of the cache from accessing our
   2349 	 * CPU-local data.  To avoid touching shared state, we
   2350 	 * pull the neccessary information from CPU local data.
   2351 	 */
   2352 	crit_enter();
   2353 	cc = pc->pc_cpus[curcpu()->ci_index];
   2354 	KASSERT(cc->cc_cache == pc);
   2355 	if (cc->cc_ipl != IPL_NONE) {
   2356 		*s = splraiseipl(cc->cc_iplcookie);
   2357 	}
   2358 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
   2359 
   2360 	return cc;
   2361 }
   2362 
   2363 static inline void
   2364 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2365 {
   2366 
   2367 	/* No longer need exclusive access to the per-CPU data. */
   2368 	if (cc->cc_ipl != IPL_NONE) {
   2369 		splx(*s);
   2370 	}
   2371 	crit_exit();
   2372 }
   2373 
   2374 #if __GNUC_PREREQ__(3, 0)
   2375 __attribute ((noinline))
   2376 #endif
   2377 pool_cache_cpu_t *
   2378 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2379 		    paddr_t *pap, int flags)
   2380 {
   2381 	pcg_t *pcg, *cur;
   2382 	uint64_t ncsw;
   2383 	pool_cache_t pc;
   2384 	void *object;
   2385 
   2386 	pc = cc->cc_cache;
   2387 	cc->cc_misses++;
   2388 
   2389 	/*
   2390 	 * Nothing was available locally.  Try and grab a group
   2391 	 * from the cache.
   2392 	 */
   2393 	if (!mutex_tryenter(&pc->pc_lock)) {
   2394 		ncsw = curlwp->l_ncsw;
   2395 		mutex_enter(&pc->pc_lock);
   2396 		pc->pc_contended++;
   2397 
   2398 		/*
   2399 		 * If we context switched while locking, then
   2400 		 * our view of the per-CPU data is invalid:
   2401 		 * retry.
   2402 		 */
   2403 		if (curlwp->l_ncsw != ncsw) {
   2404 			mutex_exit(&pc->pc_lock);
   2405 			pool_cache_cpu_exit(cc, s);
   2406 			return pool_cache_cpu_enter(pc, s);
   2407 		}
   2408 	}
   2409 
   2410 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2411 		/*
   2412 		 * If there's a full group, release our empty
   2413 		 * group back to the cache.  Install the full
   2414 		 * group as cc_current and return.
   2415 		 */
   2416 		if ((cur = cc->cc_current) != NULL) {
   2417 			KASSERT(cur->pcg_avail == 0);
   2418 			cur->pcg_next = pc->pc_emptygroups;
   2419 			pc->pc_emptygroups = cur;
   2420 			pc->pc_nempty++;
   2421 		}
   2422 		KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
   2423 		cc->cc_current = pcg;
   2424 		pc->pc_fullgroups = pcg->pcg_next;
   2425 		pc->pc_hits++;
   2426 		pc->pc_nfull--;
   2427 		mutex_exit(&pc->pc_lock);
   2428 		return cc;
   2429 	}
   2430 
   2431 	/*
   2432 	 * Nothing available locally or in cache.  Take the slow
   2433 	 * path: fetch a new object from the pool and construct
   2434 	 * it.
   2435 	 */
   2436 	pc->pc_misses++;
   2437 	mutex_exit(&pc->pc_lock);
   2438 	pool_cache_cpu_exit(cc, s);
   2439 
   2440 	object = pool_get(&pc->pc_pool, flags);
   2441 	*objectp = object;
   2442 	if (object == NULL)
   2443 		return NULL;
   2444 
   2445 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2446 		pool_put(&pc->pc_pool, object);
   2447 		*objectp = NULL;
   2448 		return NULL;
   2449 	}
   2450 
   2451 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2452 	    (pc->pc_pool.pr_align - 1)) == 0);
   2453 
   2454 	if (pap != NULL) {
   2455 #ifdef POOL_VTOPHYS
   2456 		*pap = POOL_VTOPHYS(object);
   2457 #else
   2458 		*pap = POOL_PADDR_INVALID;
   2459 #endif
   2460 	}
   2461 
   2462 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2463 	return NULL;
   2464 }
   2465 
   2466 /*
   2467  * pool_cache_get{,_paddr}:
   2468  *
   2469  *	Get an object from a pool cache (optionally returning
   2470  *	the physical address of the object).
   2471  */
   2472 void *
   2473 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2474 {
   2475 	pool_cache_cpu_t *cc;
   2476 	pcg_t *pcg;
   2477 	void *object;
   2478 	int s;
   2479 
   2480 #ifdef LOCKDEBUG
   2481 	if (flags & PR_WAITOK)
   2482 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2483 #endif
   2484 
   2485 	cc = pool_cache_cpu_enter(pc, &s);
   2486 	do {
   2487 		/* Try and allocate an object from the current group. */
   2488 	 	pcg = cc->cc_current;
   2489 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2490 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2491 			if (pap != NULL)
   2492 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2493 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2494 			KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   2495 			KASSERT(object != NULL);
   2496 			cc->cc_hits++;
   2497 			pool_cache_cpu_exit(cc, &s);
   2498 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2499 			return object;
   2500 		}
   2501 
   2502 		/*
   2503 		 * That failed.  If the previous group isn't empty, swap
   2504 		 * it with the current group and allocate from there.
   2505 		 */
   2506 		pcg = cc->cc_previous;
   2507 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2508 			cc->cc_previous = cc->cc_current;
   2509 			cc->cc_current = pcg;
   2510 			continue;
   2511 		}
   2512 
   2513 		/*
   2514 		 * Can't allocate from either group: try the slow path.
   2515 		 * If get_slow() allocated an object for us, or if
   2516 		 * no more objects are available, it will return NULL.
   2517 		 * Otherwise, we need to retry.
   2518 		 */
   2519 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2520 	} while (cc != NULL);
   2521 
   2522 	return object;
   2523 }
   2524 
   2525 #if __GNUC_PREREQ__(3, 0)
   2526 __attribute ((noinline))
   2527 #endif
   2528 pool_cache_cpu_t *
   2529 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2530 {
   2531 	pcg_t *pcg, *cur;
   2532 	uint64_t ncsw;
   2533 	pool_cache_t pc;
   2534 
   2535 	pc = cc->cc_cache;
   2536 	cc->cc_misses++;
   2537 
   2538 	/*
   2539 	 * No free slots locally.  Try to grab an empty, unused
   2540 	 * group from the cache.
   2541 	 */
   2542 	if (!mutex_tryenter(&pc->pc_lock)) {
   2543 		ncsw = curlwp->l_ncsw;
   2544 		mutex_enter(&pc->pc_lock);
   2545 		pc->pc_contended++;
   2546 
   2547 		/*
   2548 		 * If we context switched while locking, then
   2549 		 * our view of the per-CPU data is invalid:
   2550 		 * retry.
   2551 		 */
   2552 		if (curlwp->l_ncsw != ncsw) {
   2553 			mutex_exit(&pc->pc_lock);
   2554 			pool_cache_cpu_exit(cc, s);
   2555 			return pool_cache_cpu_enter(pc, s);
   2556 		}
   2557 	}
   2558 
   2559 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2560 		/*
   2561 		 * If there's a empty group, release our full
   2562 		 * group back to the cache.  Install the empty
   2563 		 * group as cc_current and return.
   2564 		 */
   2565 		if ((cur = cc->cc_current) != NULL) {
   2566 			KASSERT(cur->pcg_avail == PCG_NOBJECTS);
   2567 			cur->pcg_next = pc->pc_fullgroups;
   2568 			pc->pc_fullgroups = cur;
   2569 			pc->pc_nfull++;
   2570 		}
   2571 		KASSERT(pcg->pcg_avail == 0);
   2572 		cc->cc_current = pcg;
   2573 		pc->pc_emptygroups = pcg->pcg_next;
   2574 		pc->pc_hits++;
   2575 		pc->pc_nempty--;
   2576 		mutex_exit(&pc->pc_lock);
   2577 		return cc;
   2578 	}
   2579 
   2580 	/*
   2581 	 * Nothing available locally or in cache.  Take the
   2582 	 * slow path and try to allocate a new group that we
   2583 	 * can release to.
   2584 	 */
   2585 	pc->pc_misses++;
   2586 	mutex_exit(&pc->pc_lock);
   2587 	pool_cache_cpu_exit(cc, s);
   2588 
   2589 	/*
   2590 	 * If we can't allocate a new group, just throw the
   2591 	 * object away.
   2592 	 */
   2593 	pcg = pool_get(&pcgpool, PR_NOWAIT);
   2594 	if (pcg == NULL) {
   2595 		pool_cache_destruct_object(pc, object);
   2596 		return NULL;
   2597 	}
   2598 #ifdef DIAGNOSTIC
   2599 	memset(pcg, 0, sizeof(*pcg));
   2600 #else
   2601 	pcg->pcg_avail = 0;
   2602 #endif
   2603 
   2604 	/*
   2605 	 * Add the empty group to the cache and try again.
   2606 	 */
   2607 	mutex_enter(&pc->pc_lock);
   2608 	pcg->pcg_next = pc->pc_emptygroups;
   2609 	pc->pc_emptygroups = pcg;
   2610 	pc->pc_nempty++;
   2611 	mutex_exit(&pc->pc_lock);
   2612 
   2613 	return pool_cache_cpu_enter(pc, s);
   2614 }
   2615 
   2616 /*
   2617  * pool_cache_put{,_paddr}:
   2618  *
   2619  *	Put an object back to the pool cache (optionally caching the
   2620  *	physical address of the object).
   2621  */
   2622 void
   2623 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2624 {
   2625 	pool_cache_cpu_t *cc;
   2626 	pcg_t *pcg;
   2627 	int s;
   2628 
   2629 	FREECHECK_IN(&pc->pc_freecheck, object);
   2630 
   2631 	cc = pool_cache_cpu_enter(pc, &s);
   2632 	do {
   2633 		/* If the current group isn't full, release it there. */
   2634 	 	pcg = cc->cc_current;
   2635 		if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
   2636 			KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
   2637 			    == NULL);
   2638 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2639 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2640 			pcg->pcg_avail++;
   2641 			cc->cc_hits++;
   2642 			pool_cache_cpu_exit(cc, &s);
   2643 			return;
   2644 		}
   2645 
   2646 		/*
   2647 		 * That failed.  If the previous group is empty, swap
   2648 		 * it with the current group and try again.
   2649 		 */
   2650 		pcg = cc->cc_previous;
   2651 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2652 			cc->cc_previous = cc->cc_current;
   2653 			cc->cc_current = pcg;
   2654 			continue;
   2655 		}
   2656 
   2657 		/*
   2658 		 * Can't free to either group: try the slow path.
   2659 		 * If put_slow() releases the object for us, it
   2660 		 * will return NULL.  Otherwise we need to retry.
   2661 		 */
   2662 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2663 	} while (cc != NULL);
   2664 }
   2665 
   2666 /*
   2667  * pool_cache_xcall:
   2668  *
   2669  *	Transfer objects from the per-CPU cache to the global cache.
   2670  *	Run within a cross-call thread.
   2671  */
   2672 static void
   2673 pool_cache_xcall(pool_cache_t pc)
   2674 {
   2675 	pool_cache_cpu_t *cc;
   2676 	pcg_t *prev, *cur, **list;
   2677 	int s = 0; /* XXXgcc */
   2678 
   2679 	cc = pool_cache_cpu_enter(pc, &s);
   2680 	cur = cc->cc_current;
   2681 	cc->cc_current = NULL;
   2682 	prev = cc->cc_previous;
   2683 	cc->cc_previous = NULL;
   2684 	pool_cache_cpu_exit(cc, &s);
   2685 
   2686 	/*
   2687 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2688 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2689 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2690 	 * kernel_lock.
   2691 	 */
   2692 	s = splvm();
   2693 	mutex_enter(&pc->pc_lock);
   2694 	if (cur != NULL) {
   2695 		if (cur->pcg_avail == PCG_NOBJECTS) {
   2696 			list = &pc->pc_fullgroups;
   2697 			pc->pc_nfull++;
   2698 		} else if (cur->pcg_avail == 0) {
   2699 			list = &pc->pc_emptygroups;
   2700 			pc->pc_nempty++;
   2701 		} else {
   2702 			list = &pc->pc_partgroups;
   2703 			pc->pc_npart++;
   2704 		}
   2705 		cur->pcg_next = *list;
   2706 		*list = cur;
   2707 	}
   2708 	if (prev != NULL) {
   2709 		if (prev->pcg_avail == PCG_NOBJECTS) {
   2710 			list = &pc->pc_fullgroups;
   2711 			pc->pc_nfull++;
   2712 		} else if (prev->pcg_avail == 0) {
   2713 			list = &pc->pc_emptygroups;
   2714 			pc->pc_nempty++;
   2715 		} else {
   2716 			list = &pc->pc_partgroups;
   2717 			pc->pc_npart++;
   2718 		}
   2719 		prev->pcg_next = *list;
   2720 		*list = prev;
   2721 	}
   2722 	mutex_exit(&pc->pc_lock);
   2723 	splx(s);
   2724 }
   2725 
   2726 /*
   2727  * Pool backend allocators.
   2728  *
   2729  * Each pool has a backend allocator that handles allocation, deallocation,
   2730  * and any additional draining that might be needed.
   2731  *
   2732  * We provide two standard allocators:
   2733  *
   2734  *	pool_allocator_kmem - the default when no allocator is specified
   2735  *
   2736  *	pool_allocator_nointr - used for pools that will not be accessed
   2737  *	in interrupt context.
   2738  */
   2739 void	*pool_page_alloc(struct pool *, int);
   2740 void	pool_page_free(struct pool *, void *);
   2741 
   2742 #ifdef POOL_SUBPAGE
   2743 struct pool_allocator pool_allocator_kmem_fullpage = {
   2744 	pool_page_alloc, pool_page_free, 0,
   2745 	.pa_backingmapptr = &kmem_map,
   2746 };
   2747 #else
   2748 struct pool_allocator pool_allocator_kmem = {
   2749 	pool_page_alloc, pool_page_free, 0,
   2750 	.pa_backingmapptr = &kmem_map,
   2751 };
   2752 #endif
   2753 
   2754 void	*pool_page_alloc_nointr(struct pool *, int);
   2755 void	pool_page_free_nointr(struct pool *, void *);
   2756 
   2757 #ifdef POOL_SUBPAGE
   2758 struct pool_allocator pool_allocator_nointr_fullpage = {
   2759 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2760 	.pa_backingmapptr = &kernel_map,
   2761 };
   2762 #else
   2763 struct pool_allocator pool_allocator_nointr = {
   2764 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2765 	.pa_backingmapptr = &kernel_map,
   2766 };
   2767 #endif
   2768 
   2769 #ifdef POOL_SUBPAGE
   2770 void	*pool_subpage_alloc(struct pool *, int);
   2771 void	pool_subpage_free(struct pool *, void *);
   2772 
   2773 struct pool_allocator pool_allocator_kmem = {
   2774 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2775 	.pa_backingmapptr = &kmem_map,
   2776 };
   2777 
   2778 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2779 void	pool_subpage_free_nointr(struct pool *, void *);
   2780 
   2781 struct pool_allocator pool_allocator_nointr = {
   2782 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2783 	.pa_backingmapptr = &kmem_map,
   2784 };
   2785 #endif /* POOL_SUBPAGE */
   2786 
   2787 static void *
   2788 pool_allocator_alloc(struct pool *pp, int flags)
   2789 {
   2790 	struct pool_allocator *pa = pp->pr_alloc;
   2791 	void *res;
   2792 
   2793 	res = (*pa->pa_alloc)(pp, flags);
   2794 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2795 		/*
   2796 		 * We only run the drain hook here if PR_NOWAIT.
   2797 		 * In other cases, the hook will be run in
   2798 		 * pool_reclaim().
   2799 		 */
   2800 		if (pp->pr_drain_hook != NULL) {
   2801 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2802 			res = (*pa->pa_alloc)(pp, flags);
   2803 		}
   2804 	}
   2805 	return res;
   2806 }
   2807 
   2808 static void
   2809 pool_allocator_free(struct pool *pp, void *v)
   2810 {
   2811 	struct pool_allocator *pa = pp->pr_alloc;
   2812 
   2813 	(*pa->pa_free)(pp, v);
   2814 }
   2815 
   2816 void *
   2817 pool_page_alloc(struct pool *pp, int flags)
   2818 {
   2819 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2820 
   2821 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2822 }
   2823 
   2824 void
   2825 pool_page_free(struct pool *pp, void *v)
   2826 {
   2827 
   2828 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2829 }
   2830 
   2831 static void *
   2832 pool_page_alloc_meta(struct pool *pp, int flags)
   2833 {
   2834 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2835 
   2836 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2837 }
   2838 
   2839 static void
   2840 pool_page_free_meta(struct pool *pp, void *v)
   2841 {
   2842 
   2843 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2844 }
   2845 
   2846 #ifdef POOL_SUBPAGE
   2847 /* Sub-page allocator, for machines with large hardware pages. */
   2848 void *
   2849 pool_subpage_alloc(struct pool *pp, int flags)
   2850 {
   2851 	return pool_get(&psppool, flags);
   2852 }
   2853 
   2854 void
   2855 pool_subpage_free(struct pool *pp, void *v)
   2856 {
   2857 	pool_put(&psppool, v);
   2858 }
   2859 
   2860 /* We don't provide a real nointr allocator.  Maybe later. */
   2861 void *
   2862 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2863 {
   2864 
   2865 	return (pool_subpage_alloc(pp, flags));
   2866 }
   2867 
   2868 void
   2869 pool_subpage_free_nointr(struct pool *pp, void *v)
   2870 {
   2871 
   2872 	pool_subpage_free(pp, v);
   2873 }
   2874 #endif /* POOL_SUBPAGE */
   2875 void *
   2876 pool_page_alloc_nointr(struct pool *pp, int flags)
   2877 {
   2878 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2879 
   2880 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2881 }
   2882 
   2883 void
   2884 pool_page_free_nointr(struct pool *pp, void *v)
   2885 {
   2886 
   2887 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2888 }
   2889