subr_pool.c revision 1.138.4.1 1 /* $NetBSD: subr_pool.c,v 1.138.4.1 2007/12/13 21:56:54 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.138.4.1 2007/12/13 21:56:54 bouyer Exp $");
42
43 #include "opt_ddb.h"
44 #include "opt_pool.h"
45 #include "opt_poollog.h"
46 #include "opt_lockdebug.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bitops.h>
51 #include <sys/proc.h>
52 #include <sys/errno.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/lock.h>
56 #include <sys/pool.h>
57 #include <sys/syslog.h>
58 #include <sys/debug.h>
59 #include <sys/lockdebug.h>
60 #include <sys/xcall.h>
61 #include <sys/cpu.h>
62
63 #include <uvm/uvm.h>
64
65 /*
66 * Pool resource management utility.
67 *
68 * Memory is allocated in pages which are split into pieces according to
69 * the pool item size. Each page is kept on one of three lists in the
70 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
71 * for empty, full and partially-full pages respectively. The individual
72 * pool items are on a linked list headed by `ph_itemlist' in each page
73 * header. The memory for building the page list is either taken from
74 * the allocated pages themselves (for small pool items) or taken from
75 * an internal pool of page headers (`phpool').
76 */
77
78 /* List of all pools */
79 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
80
81 /* List of all caches. */
82 LIST_HEAD(,pool_cache) pool_cache_head =
83 LIST_HEAD_INITIALIZER(pool_cache_head);
84
85 /* Private pool for page header structures */
86 #define PHPOOL_MAX 8
87 static struct pool phpool[PHPOOL_MAX];
88 #define PHPOOL_FREELIST_NELEM(idx) \
89 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
90
91 #ifdef POOL_SUBPAGE
92 /* Pool of subpages for use by normal pools. */
93 static struct pool psppool;
94 #endif
95
96 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
97 SLIST_HEAD_INITIALIZER(pa_deferinitq);
98
99 static void *pool_page_alloc_meta(struct pool *, int);
100 static void pool_page_free_meta(struct pool *, void *);
101
102 /* allocator for pool metadata */
103 struct pool_allocator pool_allocator_meta = {
104 pool_page_alloc_meta, pool_page_free_meta,
105 .pa_backingmapptr = &kmem_map,
106 };
107
108 /* # of seconds to retain page after last use */
109 int pool_inactive_time = 10;
110
111 /* Next candidate for drainage (see pool_drain()) */
112 static struct pool *drainpp;
113
114 /* This lock protects both pool_head and drainpp. */
115 static kmutex_t pool_head_lock;
116 static kcondvar_t pool_busy;
117
118 typedef uint32_t pool_item_bitmap_t;
119 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
120 #define BITMAP_MASK (BITMAP_SIZE - 1)
121
122 struct pool_item_header {
123 /* Page headers */
124 LIST_ENTRY(pool_item_header)
125 ph_pagelist; /* pool page list */
126 SPLAY_ENTRY(pool_item_header)
127 ph_node; /* Off-page page headers */
128 void * ph_page; /* this page's address */
129 struct timeval ph_time; /* last referenced */
130 uint16_t ph_nmissing; /* # of chunks in use */
131 uint16_t ph_off; /* start offset in page */
132 union {
133 /* !PR_NOTOUCH */
134 struct {
135 LIST_HEAD(, pool_item)
136 phu_itemlist; /* chunk list for this page */
137 } phu_normal;
138 /* PR_NOTOUCH */
139 struct {
140 pool_item_bitmap_t phu_bitmap[1];
141 } phu_notouch;
142 } ph_u;
143 };
144 #define ph_itemlist ph_u.phu_normal.phu_itemlist
145 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
146
147 struct pool_item {
148 #ifdef DIAGNOSTIC
149 u_int pi_magic;
150 #endif
151 #define PI_MAGIC 0xdeaddeadU
152 /* Other entries use only this list entry */
153 LIST_ENTRY(pool_item) pi_list;
154 };
155
156 #define POOL_NEEDS_CATCHUP(pp) \
157 ((pp)->pr_nitems < (pp)->pr_minitems)
158
159 /*
160 * Pool cache management.
161 *
162 * Pool caches provide a way for constructed objects to be cached by the
163 * pool subsystem. This can lead to performance improvements by avoiding
164 * needless object construction/destruction; it is deferred until absolutely
165 * necessary.
166 *
167 * Caches are grouped into cache groups. Each cache group references up
168 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
169 * object from the pool, it calls the object's constructor and places it
170 * into a cache group. When a cache group frees an object back to the
171 * pool, it first calls the object's destructor. This allows the object
172 * to persist in constructed form while freed to the cache.
173 *
174 * The pool references each cache, so that when a pool is drained by the
175 * pagedaemon, it can drain each individual cache as well. Each time a
176 * cache is drained, the most idle cache group is freed to the pool in
177 * its entirety.
178 *
179 * Pool caches are layed on top of pools. By layering them, we can avoid
180 * the complexity of cache management for pools which would not benefit
181 * from it.
182 */
183
184 static struct pool pcgpool;
185 static struct pool cache_pool;
186 static struct pool cache_cpu_pool;
187
188 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
189 void *, paddr_t);
190 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
191 void **, paddr_t *, int);
192 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
193 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
194 static void pool_cache_xcall(pool_cache_t);
195
196 static int pool_catchup(struct pool *);
197 static void pool_prime_page(struct pool *, void *,
198 struct pool_item_header *);
199 static void pool_update_curpage(struct pool *);
200
201 static int pool_grow(struct pool *, int);
202 static void *pool_allocator_alloc(struct pool *, int);
203 static void pool_allocator_free(struct pool *, void *);
204
205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
206 void (*)(const char *, ...));
207 static void pool_print1(struct pool *, const char *,
208 void (*)(const char *, ...));
209
210 static int pool_chk_page(struct pool *, const char *,
211 struct pool_item_header *);
212
213 /*
214 * Pool log entry. An array of these is allocated in pool_init().
215 */
216 struct pool_log {
217 const char *pl_file;
218 long pl_line;
219 int pl_action;
220 #define PRLOG_GET 1
221 #define PRLOG_PUT 2
222 void *pl_addr;
223 };
224
225 #ifdef POOL_DIAGNOSTIC
226 /* Number of entries in pool log buffers */
227 #ifndef POOL_LOGSIZE
228 #define POOL_LOGSIZE 10
229 #endif
230
231 int pool_logsize = POOL_LOGSIZE;
232
233 static inline void
234 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
235 {
236 int n = pp->pr_curlogentry;
237 struct pool_log *pl;
238
239 if ((pp->pr_roflags & PR_LOGGING) == 0)
240 return;
241
242 /*
243 * Fill in the current entry. Wrap around and overwrite
244 * the oldest entry if necessary.
245 */
246 pl = &pp->pr_log[n];
247 pl->pl_file = file;
248 pl->pl_line = line;
249 pl->pl_action = action;
250 pl->pl_addr = v;
251 if (++n >= pp->pr_logsize)
252 n = 0;
253 pp->pr_curlogentry = n;
254 }
255
256 static void
257 pr_printlog(struct pool *pp, struct pool_item *pi,
258 void (*pr)(const char *, ...))
259 {
260 int i = pp->pr_logsize;
261 int n = pp->pr_curlogentry;
262
263 if ((pp->pr_roflags & PR_LOGGING) == 0)
264 return;
265
266 /*
267 * Print all entries in this pool's log.
268 */
269 while (i-- > 0) {
270 struct pool_log *pl = &pp->pr_log[n];
271 if (pl->pl_action != 0) {
272 if (pi == NULL || pi == pl->pl_addr) {
273 (*pr)("\tlog entry %d:\n", i);
274 (*pr)("\t\taction = %s, addr = %p\n",
275 pl->pl_action == PRLOG_GET ? "get" : "put",
276 pl->pl_addr);
277 (*pr)("\t\tfile: %s at line %lu\n",
278 pl->pl_file, pl->pl_line);
279 }
280 }
281 if (++n >= pp->pr_logsize)
282 n = 0;
283 }
284 }
285
286 static inline void
287 pr_enter(struct pool *pp, const char *file, long line)
288 {
289
290 if (__predict_false(pp->pr_entered_file != NULL)) {
291 printf("pool %s: reentrancy at file %s line %ld\n",
292 pp->pr_wchan, file, line);
293 printf(" previous entry at file %s line %ld\n",
294 pp->pr_entered_file, pp->pr_entered_line);
295 panic("pr_enter");
296 }
297
298 pp->pr_entered_file = file;
299 pp->pr_entered_line = line;
300 }
301
302 static inline void
303 pr_leave(struct pool *pp)
304 {
305
306 if (__predict_false(pp->pr_entered_file == NULL)) {
307 printf("pool %s not entered?\n", pp->pr_wchan);
308 panic("pr_leave");
309 }
310
311 pp->pr_entered_file = NULL;
312 pp->pr_entered_line = 0;
313 }
314
315 static inline void
316 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
317 {
318
319 if (pp->pr_entered_file != NULL)
320 (*pr)("\n\tcurrently entered from file %s line %ld\n",
321 pp->pr_entered_file, pp->pr_entered_line);
322 }
323 #else
324 #define pr_log(pp, v, action, file, line)
325 #define pr_printlog(pp, pi, pr)
326 #define pr_enter(pp, file, line)
327 #define pr_leave(pp)
328 #define pr_enter_check(pp, pr)
329 #endif /* POOL_DIAGNOSTIC */
330
331 static inline unsigned int
332 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
333 const void *v)
334 {
335 const char *cp = v;
336 unsigned int idx;
337
338 KASSERT(pp->pr_roflags & PR_NOTOUCH);
339 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
340 KASSERT(idx < pp->pr_itemsperpage);
341 return idx;
342 }
343
344 static inline void
345 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
346 void *obj)
347 {
348 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
349 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
350 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
351
352 KASSERT((*bitmap & mask) == 0);
353 *bitmap |= mask;
354 }
355
356 static inline void *
357 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
358 {
359 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
360 unsigned int idx;
361 int i;
362
363 for (i = 0; ; i++) {
364 int bit;
365
366 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
367 bit = ffs32(bitmap[i]);
368 if (bit) {
369 pool_item_bitmap_t mask;
370
371 bit--;
372 idx = (i * BITMAP_SIZE) + bit;
373 mask = 1 << bit;
374 KASSERT((bitmap[i] & mask) != 0);
375 bitmap[i] &= ~mask;
376 break;
377 }
378 }
379 KASSERT(idx < pp->pr_itemsperpage);
380 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
381 }
382
383 static inline void
384 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
385 {
386 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
387 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
388 int i;
389
390 for (i = 0; i < n; i++) {
391 bitmap[i] = (pool_item_bitmap_t)-1;
392 }
393 }
394
395 static inline int
396 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
397 {
398
399 /*
400 * we consider pool_item_header with smaller ph_page bigger.
401 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
402 */
403
404 if (a->ph_page < b->ph_page)
405 return (1);
406 else if (a->ph_page > b->ph_page)
407 return (-1);
408 else
409 return (0);
410 }
411
412 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
413 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
414
415 static inline struct pool_item_header *
416 pr_find_pagehead_noalign(struct pool *pp, void *v)
417 {
418 struct pool_item_header *ph, tmp;
419
420 tmp.ph_page = (void *)(uintptr_t)v;
421 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
422 if (ph == NULL) {
423 ph = SPLAY_ROOT(&pp->pr_phtree);
424 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
425 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
426 }
427 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
428 }
429
430 return ph;
431 }
432
433 /*
434 * Return the pool page header based on item address.
435 */
436 static inline struct pool_item_header *
437 pr_find_pagehead(struct pool *pp, void *v)
438 {
439 struct pool_item_header *ph, tmp;
440
441 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
442 ph = pr_find_pagehead_noalign(pp, v);
443 } else {
444 void *page =
445 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
446
447 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
448 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
449 } else {
450 tmp.ph_page = page;
451 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
452 }
453 }
454
455 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
456 ((char *)ph->ph_page <= (char *)v &&
457 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
458 return ph;
459 }
460
461 static void
462 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
463 {
464 struct pool_item_header *ph;
465
466 while ((ph = LIST_FIRST(pq)) != NULL) {
467 LIST_REMOVE(ph, ph_pagelist);
468 pool_allocator_free(pp, ph->ph_page);
469 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
470 pool_put(pp->pr_phpool, ph);
471 }
472 }
473
474 /*
475 * Remove a page from the pool.
476 */
477 static inline void
478 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
479 struct pool_pagelist *pq)
480 {
481
482 KASSERT(mutex_owned(&pp->pr_lock));
483
484 /*
485 * If the page was idle, decrement the idle page count.
486 */
487 if (ph->ph_nmissing == 0) {
488 #ifdef DIAGNOSTIC
489 if (pp->pr_nidle == 0)
490 panic("pr_rmpage: nidle inconsistent");
491 if (pp->pr_nitems < pp->pr_itemsperpage)
492 panic("pr_rmpage: nitems inconsistent");
493 #endif
494 pp->pr_nidle--;
495 }
496
497 pp->pr_nitems -= pp->pr_itemsperpage;
498
499 /*
500 * Unlink the page from the pool and queue it for release.
501 */
502 LIST_REMOVE(ph, ph_pagelist);
503 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
504 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
505 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
506
507 pp->pr_npages--;
508 pp->pr_npagefree++;
509
510 pool_update_curpage(pp);
511 }
512
513 static bool
514 pa_starved_p(struct pool_allocator *pa)
515 {
516
517 if (pa->pa_backingmap != NULL) {
518 return vm_map_starved_p(pa->pa_backingmap);
519 }
520 return false;
521 }
522
523 static int
524 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
525 {
526 struct pool *pp = obj;
527 struct pool_allocator *pa = pp->pr_alloc;
528
529 KASSERT(&pp->pr_reclaimerentry == ce);
530 pool_reclaim(pp);
531 if (!pa_starved_p(pa)) {
532 return CALLBACK_CHAIN_ABORT;
533 }
534 return CALLBACK_CHAIN_CONTINUE;
535 }
536
537 static void
538 pool_reclaim_register(struct pool *pp)
539 {
540 struct vm_map *map = pp->pr_alloc->pa_backingmap;
541 int s;
542
543 if (map == NULL) {
544 return;
545 }
546
547 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
548 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
549 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
550 splx(s);
551 }
552
553 static void
554 pool_reclaim_unregister(struct pool *pp)
555 {
556 struct vm_map *map = pp->pr_alloc->pa_backingmap;
557 int s;
558
559 if (map == NULL) {
560 return;
561 }
562
563 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
564 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
565 &pp->pr_reclaimerentry);
566 splx(s);
567 }
568
569 static void
570 pa_reclaim_register(struct pool_allocator *pa)
571 {
572 struct vm_map *map = *pa->pa_backingmapptr;
573 struct pool *pp;
574
575 KASSERT(pa->pa_backingmap == NULL);
576 if (map == NULL) {
577 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
578 return;
579 }
580 pa->pa_backingmap = map;
581 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
582 pool_reclaim_register(pp);
583 }
584 }
585
586 /*
587 * Initialize all the pools listed in the "pools" link set.
588 */
589 void
590 pool_subsystem_init(void)
591 {
592 struct pool_allocator *pa;
593 __link_set_decl(pools, struct link_pool_init);
594 struct link_pool_init * const *pi;
595
596 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
597 cv_init(&pool_busy, "poolbusy");
598
599 __link_set_foreach(pi, pools)
600 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
601 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
602 (*pi)->palloc, (*pi)->ipl);
603
604 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
605 KASSERT(pa->pa_backingmapptr != NULL);
606 KASSERT(*pa->pa_backingmapptr != NULL);
607 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
608 pa_reclaim_register(pa);
609 }
610
611 pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
612 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
613
614 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
615 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
616 }
617
618 /*
619 * Initialize the given pool resource structure.
620 *
621 * We export this routine to allow other kernel parts to declare
622 * static pools that must be initialized before malloc() is available.
623 */
624 void
625 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
626 const char *wchan, struct pool_allocator *palloc, int ipl)
627 {
628 #ifdef DEBUG
629 struct pool *pp1;
630 #endif
631 size_t trysize, phsize;
632 int off, slack;
633
634 #ifdef DEBUG
635 /*
636 * Check that the pool hasn't already been initialised and
637 * added to the list of all pools.
638 */
639 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
640 if (pp == pp1)
641 panic("pool_init: pool %s already initialised",
642 wchan);
643 }
644 #endif
645
646 #ifdef POOL_DIAGNOSTIC
647 /*
648 * Always log if POOL_DIAGNOSTIC is defined.
649 */
650 if (pool_logsize != 0)
651 flags |= PR_LOGGING;
652 #endif
653
654 if (palloc == NULL)
655 palloc = &pool_allocator_kmem;
656 #ifdef POOL_SUBPAGE
657 if (size > palloc->pa_pagesz) {
658 if (palloc == &pool_allocator_kmem)
659 palloc = &pool_allocator_kmem_fullpage;
660 else if (palloc == &pool_allocator_nointr)
661 palloc = &pool_allocator_nointr_fullpage;
662 }
663 #endif /* POOL_SUBPAGE */
664 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
665 if (palloc->pa_pagesz == 0)
666 palloc->pa_pagesz = PAGE_SIZE;
667
668 TAILQ_INIT(&palloc->pa_list);
669
670 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
671 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
672 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
673
674 if (palloc->pa_backingmapptr != NULL) {
675 pa_reclaim_register(palloc);
676 }
677 palloc->pa_flags |= PA_INITIALIZED;
678 }
679
680 if (align == 0)
681 align = ALIGN(1);
682
683 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
684 size = sizeof(struct pool_item);
685
686 size = roundup(size, align);
687 #ifdef DIAGNOSTIC
688 if (size > palloc->pa_pagesz)
689 panic("pool_init: pool item size (%zu) too large", size);
690 #endif
691
692 /*
693 * Initialize the pool structure.
694 */
695 LIST_INIT(&pp->pr_emptypages);
696 LIST_INIT(&pp->pr_fullpages);
697 LIST_INIT(&pp->pr_partpages);
698 pp->pr_cache = NULL;
699 pp->pr_curpage = NULL;
700 pp->pr_npages = 0;
701 pp->pr_minitems = 0;
702 pp->pr_minpages = 0;
703 pp->pr_maxpages = UINT_MAX;
704 pp->pr_roflags = flags;
705 pp->pr_flags = 0;
706 pp->pr_size = size;
707 pp->pr_align = align;
708 pp->pr_wchan = wchan;
709 pp->pr_alloc = palloc;
710 pp->pr_nitems = 0;
711 pp->pr_nout = 0;
712 pp->pr_hardlimit = UINT_MAX;
713 pp->pr_hardlimit_warning = NULL;
714 pp->pr_hardlimit_ratecap.tv_sec = 0;
715 pp->pr_hardlimit_ratecap.tv_usec = 0;
716 pp->pr_hardlimit_warning_last.tv_sec = 0;
717 pp->pr_hardlimit_warning_last.tv_usec = 0;
718 pp->pr_drain_hook = NULL;
719 pp->pr_drain_hook_arg = NULL;
720 pp->pr_freecheck = NULL;
721
722 /*
723 * Decide whether to put the page header off page to avoid
724 * wasting too large a part of the page or too big item.
725 * Off-page page headers go on a hash table, so we can match
726 * a returned item with its header based on the page address.
727 * We use 1/16 of the page size and about 8 times of the item
728 * size as the threshold (XXX: tune)
729 *
730 * However, we'll put the header into the page if we can put
731 * it without wasting any items.
732 *
733 * Silently enforce `0 <= ioff < align'.
734 */
735 pp->pr_itemoffset = ioff %= align;
736 /* See the comment below about reserved bytes. */
737 trysize = palloc->pa_pagesz - ((align - ioff) % align);
738 phsize = ALIGN(sizeof(struct pool_item_header));
739 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
740 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
741 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
742 /* Use the end of the page for the page header */
743 pp->pr_roflags |= PR_PHINPAGE;
744 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
745 } else {
746 /* The page header will be taken from our page header pool */
747 pp->pr_phoffset = 0;
748 off = palloc->pa_pagesz;
749 SPLAY_INIT(&pp->pr_phtree);
750 }
751
752 /*
753 * Alignment is to take place at `ioff' within the item. This means
754 * we must reserve up to `align - 1' bytes on the page to allow
755 * appropriate positioning of each item.
756 */
757 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
758 KASSERT(pp->pr_itemsperpage != 0);
759 if ((pp->pr_roflags & PR_NOTOUCH)) {
760 int idx;
761
762 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
763 idx++) {
764 /* nothing */
765 }
766 if (idx >= PHPOOL_MAX) {
767 /*
768 * if you see this panic, consider to tweak
769 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
770 */
771 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
772 pp->pr_wchan, pp->pr_itemsperpage);
773 }
774 pp->pr_phpool = &phpool[idx];
775 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
776 pp->pr_phpool = &phpool[0];
777 }
778 #if defined(DIAGNOSTIC)
779 else {
780 pp->pr_phpool = NULL;
781 }
782 #endif
783
784 /*
785 * Use the slack between the chunks and the page header
786 * for "cache coloring".
787 */
788 slack = off - pp->pr_itemsperpage * pp->pr_size;
789 pp->pr_maxcolor = (slack / align) * align;
790 pp->pr_curcolor = 0;
791
792 pp->pr_nget = 0;
793 pp->pr_nfail = 0;
794 pp->pr_nput = 0;
795 pp->pr_npagealloc = 0;
796 pp->pr_npagefree = 0;
797 pp->pr_hiwat = 0;
798 pp->pr_nidle = 0;
799 pp->pr_refcnt = 0;
800
801 #ifdef POOL_DIAGNOSTIC
802 if (flags & PR_LOGGING) {
803 if (kmem_map == NULL ||
804 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
805 M_TEMP, M_NOWAIT)) == NULL)
806 pp->pr_roflags &= ~PR_LOGGING;
807 pp->pr_curlogentry = 0;
808 pp->pr_logsize = pool_logsize;
809 }
810 #endif
811
812 pp->pr_entered_file = NULL;
813 pp->pr_entered_line = 0;
814
815 /*
816 * XXXAD hack to prevent IP input processing from blocking.
817 */
818 if (ipl == IPL_SOFTNET) {
819 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
820 } else {
821 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
822 }
823 cv_init(&pp->pr_cv, wchan);
824 pp->pr_ipl = ipl;
825
826 /*
827 * Initialize private page header pool and cache magazine pool if we
828 * haven't done so yet.
829 * XXX LOCKING.
830 */
831 if (phpool[0].pr_size == 0) {
832 int idx;
833 for (idx = 0; idx < PHPOOL_MAX; idx++) {
834 static char phpool_names[PHPOOL_MAX][6+1+6+1];
835 int nelem;
836 size_t sz;
837
838 nelem = PHPOOL_FREELIST_NELEM(idx);
839 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
840 "phpool-%d", nelem);
841 sz = sizeof(struct pool_item_header);
842 if (nelem) {
843 sz = offsetof(struct pool_item_header,
844 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
845 }
846 pool_init(&phpool[idx], sz, 0, 0, 0,
847 phpool_names[idx], &pool_allocator_meta, IPL_VM);
848 }
849 #ifdef POOL_SUBPAGE
850 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
851 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
852 #endif
853 pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
854 "cachegrp", &pool_allocator_meta, IPL_VM);
855 }
856
857 if (__predict_true(!cold)) {
858 /* Insert into the list of all pools. */
859 mutex_enter(&pool_head_lock);
860 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
861 mutex_exit(&pool_head_lock);
862
863 /* Insert this into the list of pools using this allocator. */
864 mutex_enter(&palloc->pa_lock);
865 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
866 mutex_exit(&palloc->pa_lock);
867 } else {
868 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
869 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
870 }
871
872 pool_reclaim_register(pp);
873 }
874
875 /*
876 * De-commision a pool resource.
877 */
878 void
879 pool_destroy(struct pool *pp)
880 {
881 struct pool_pagelist pq;
882 struct pool_item_header *ph;
883
884 /* Remove from global pool list */
885 mutex_enter(&pool_head_lock);
886 while (pp->pr_refcnt != 0)
887 cv_wait(&pool_busy, &pool_head_lock);
888 LIST_REMOVE(pp, pr_poollist);
889 if (drainpp == pp)
890 drainpp = NULL;
891 mutex_exit(&pool_head_lock);
892
893 /* Remove this pool from its allocator's list of pools. */
894 pool_reclaim_unregister(pp);
895 mutex_enter(&pp->pr_alloc->pa_lock);
896 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
897 mutex_exit(&pp->pr_alloc->pa_lock);
898
899 mutex_enter(&pp->pr_lock);
900
901 KASSERT(pp->pr_cache == NULL);
902
903 #ifdef DIAGNOSTIC
904 if (pp->pr_nout != 0) {
905 pr_printlog(pp, NULL, printf);
906 panic("pool_destroy: pool busy: still out: %u",
907 pp->pr_nout);
908 }
909 #endif
910
911 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
912 KASSERT(LIST_EMPTY(&pp->pr_partpages));
913
914 /* Remove all pages */
915 LIST_INIT(&pq);
916 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
917 pr_rmpage(pp, ph, &pq);
918
919 mutex_exit(&pp->pr_lock);
920
921 pr_pagelist_free(pp, &pq);
922
923 #ifdef POOL_DIAGNOSTIC
924 if ((pp->pr_roflags & PR_LOGGING) != 0)
925 free(pp->pr_log, M_TEMP);
926 #endif
927
928 cv_destroy(&pp->pr_cv);
929 mutex_destroy(&pp->pr_lock);
930 }
931
932 void
933 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
934 {
935
936 /* XXX no locking -- must be used just after pool_init() */
937 #ifdef DIAGNOSTIC
938 if (pp->pr_drain_hook != NULL)
939 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
940 #endif
941 pp->pr_drain_hook = fn;
942 pp->pr_drain_hook_arg = arg;
943 }
944
945 static struct pool_item_header *
946 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
947 {
948 struct pool_item_header *ph;
949
950 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
951 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
952 else
953 ph = pool_get(pp->pr_phpool, flags);
954
955 return (ph);
956 }
957
958 /*
959 * Grab an item from the pool.
960 */
961 void *
962 #ifdef POOL_DIAGNOSTIC
963 _pool_get(struct pool *pp, int flags, const char *file, long line)
964 #else
965 pool_get(struct pool *pp, int flags)
966 #endif
967 {
968 struct pool_item *pi;
969 struct pool_item_header *ph;
970 void *v;
971
972 #ifdef DIAGNOSTIC
973 if (__predict_false(pp->pr_itemsperpage == 0))
974 panic("pool_get: pool %p: pr_itemsperpage is zero, "
975 "pool not initialized?", pp);
976 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
977 (flags & PR_WAITOK) != 0))
978 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
979
980 #endif /* DIAGNOSTIC */
981 #ifdef LOCKDEBUG
982 if (flags & PR_WAITOK)
983 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
984 #endif
985
986 mutex_enter(&pp->pr_lock);
987 pr_enter(pp, file, line);
988
989 startover:
990 /*
991 * Check to see if we've reached the hard limit. If we have,
992 * and we can wait, then wait until an item has been returned to
993 * the pool.
994 */
995 #ifdef DIAGNOSTIC
996 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
997 pr_leave(pp);
998 mutex_exit(&pp->pr_lock);
999 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1000 }
1001 #endif
1002 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1003 if (pp->pr_drain_hook != NULL) {
1004 /*
1005 * Since the drain hook is going to free things
1006 * back to the pool, unlock, call the hook, re-lock,
1007 * and check the hardlimit condition again.
1008 */
1009 pr_leave(pp);
1010 mutex_exit(&pp->pr_lock);
1011 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1012 mutex_enter(&pp->pr_lock);
1013 pr_enter(pp, file, line);
1014 if (pp->pr_nout < pp->pr_hardlimit)
1015 goto startover;
1016 }
1017
1018 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1019 /*
1020 * XXX: A warning isn't logged in this case. Should
1021 * it be?
1022 */
1023 pp->pr_flags |= PR_WANTED;
1024 pr_leave(pp);
1025 cv_wait(&pp->pr_cv, &pp->pr_lock);
1026 pr_enter(pp, file, line);
1027 goto startover;
1028 }
1029
1030 /*
1031 * Log a message that the hard limit has been hit.
1032 */
1033 if (pp->pr_hardlimit_warning != NULL &&
1034 ratecheck(&pp->pr_hardlimit_warning_last,
1035 &pp->pr_hardlimit_ratecap))
1036 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1037
1038 pp->pr_nfail++;
1039
1040 pr_leave(pp);
1041 mutex_exit(&pp->pr_lock);
1042 return (NULL);
1043 }
1044
1045 /*
1046 * The convention we use is that if `curpage' is not NULL, then
1047 * it points at a non-empty bucket. In particular, `curpage'
1048 * never points at a page header which has PR_PHINPAGE set and
1049 * has no items in its bucket.
1050 */
1051 if ((ph = pp->pr_curpage) == NULL) {
1052 int error;
1053
1054 #ifdef DIAGNOSTIC
1055 if (pp->pr_nitems != 0) {
1056 mutex_exit(&pp->pr_lock);
1057 printf("pool_get: %s: curpage NULL, nitems %u\n",
1058 pp->pr_wchan, pp->pr_nitems);
1059 panic("pool_get: nitems inconsistent");
1060 }
1061 #endif
1062
1063 /*
1064 * Call the back-end page allocator for more memory.
1065 * Release the pool lock, as the back-end page allocator
1066 * may block.
1067 */
1068 pr_leave(pp);
1069 error = pool_grow(pp, flags);
1070 pr_enter(pp, file, line);
1071 if (error != 0) {
1072 /*
1073 * We were unable to allocate a page or item
1074 * header, but we released the lock during
1075 * allocation, so perhaps items were freed
1076 * back to the pool. Check for this case.
1077 */
1078 if (pp->pr_curpage != NULL)
1079 goto startover;
1080
1081 pp->pr_nfail++;
1082 pr_leave(pp);
1083 mutex_exit(&pp->pr_lock);
1084 return (NULL);
1085 }
1086
1087 /* Start the allocation process over. */
1088 goto startover;
1089 }
1090 if (pp->pr_roflags & PR_NOTOUCH) {
1091 #ifdef DIAGNOSTIC
1092 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1093 pr_leave(pp);
1094 mutex_exit(&pp->pr_lock);
1095 panic("pool_get: %s: page empty", pp->pr_wchan);
1096 }
1097 #endif
1098 v = pr_item_notouch_get(pp, ph);
1099 #ifdef POOL_DIAGNOSTIC
1100 pr_log(pp, v, PRLOG_GET, file, line);
1101 #endif
1102 } else {
1103 v = pi = LIST_FIRST(&ph->ph_itemlist);
1104 if (__predict_false(v == NULL)) {
1105 pr_leave(pp);
1106 mutex_exit(&pp->pr_lock);
1107 panic("pool_get: %s: page empty", pp->pr_wchan);
1108 }
1109 #ifdef DIAGNOSTIC
1110 if (__predict_false(pp->pr_nitems == 0)) {
1111 pr_leave(pp);
1112 mutex_exit(&pp->pr_lock);
1113 printf("pool_get: %s: items on itemlist, nitems %u\n",
1114 pp->pr_wchan, pp->pr_nitems);
1115 panic("pool_get: nitems inconsistent");
1116 }
1117 #endif
1118
1119 #ifdef POOL_DIAGNOSTIC
1120 pr_log(pp, v, PRLOG_GET, file, line);
1121 #endif
1122
1123 #ifdef DIAGNOSTIC
1124 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1125 pr_printlog(pp, pi, printf);
1126 panic("pool_get(%s): free list modified: "
1127 "magic=%x; page %p; item addr %p\n",
1128 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1129 }
1130 #endif
1131
1132 /*
1133 * Remove from item list.
1134 */
1135 LIST_REMOVE(pi, pi_list);
1136 }
1137 pp->pr_nitems--;
1138 pp->pr_nout++;
1139 if (ph->ph_nmissing == 0) {
1140 #ifdef DIAGNOSTIC
1141 if (__predict_false(pp->pr_nidle == 0))
1142 panic("pool_get: nidle inconsistent");
1143 #endif
1144 pp->pr_nidle--;
1145
1146 /*
1147 * This page was previously empty. Move it to the list of
1148 * partially-full pages. This page is already curpage.
1149 */
1150 LIST_REMOVE(ph, ph_pagelist);
1151 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1152 }
1153 ph->ph_nmissing++;
1154 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1155 #ifdef DIAGNOSTIC
1156 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1157 !LIST_EMPTY(&ph->ph_itemlist))) {
1158 pr_leave(pp);
1159 mutex_exit(&pp->pr_lock);
1160 panic("pool_get: %s: nmissing inconsistent",
1161 pp->pr_wchan);
1162 }
1163 #endif
1164 /*
1165 * This page is now full. Move it to the full list
1166 * and select a new current page.
1167 */
1168 LIST_REMOVE(ph, ph_pagelist);
1169 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1170 pool_update_curpage(pp);
1171 }
1172
1173 pp->pr_nget++;
1174 pr_leave(pp);
1175
1176 /*
1177 * If we have a low water mark and we are now below that low
1178 * water mark, add more items to the pool.
1179 */
1180 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1181 /*
1182 * XXX: Should we log a warning? Should we set up a timeout
1183 * to try again in a second or so? The latter could break
1184 * a caller's assumptions about interrupt protection, etc.
1185 */
1186 }
1187
1188 mutex_exit(&pp->pr_lock);
1189 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1190 FREECHECK_OUT(&pp->pr_freecheck, v);
1191 return (v);
1192 }
1193
1194 /*
1195 * Internal version of pool_put(). Pool is already locked/entered.
1196 */
1197 static void
1198 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1199 {
1200 struct pool_item *pi = v;
1201 struct pool_item_header *ph;
1202
1203 KASSERT(mutex_owned(&pp->pr_lock));
1204 FREECHECK_IN(&pp->pr_freecheck, v);
1205 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1206
1207 #ifdef DIAGNOSTIC
1208 if (__predict_false(pp->pr_nout == 0)) {
1209 printf("pool %s: putting with none out\n",
1210 pp->pr_wchan);
1211 panic("pool_put");
1212 }
1213 #endif
1214
1215 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1216 pr_printlog(pp, NULL, printf);
1217 panic("pool_put: %s: page header missing", pp->pr_wchan);
1218 }
1219
1220 /*
1221 * Return to item list.
1222 */
1223 if (pp->pr_roflags & PR_NOTOUCH) {
1224 pr_item_notouch_put(pp, ph, v);
1225 } else {
1226 #ifdef DIAGNOSTIC
1227 pi->pi_magic = PI_MAGIC;
1228 #endif
1229 #ifdef DEBUG
1230 {
1231 int i, *ip = v;
1232
1233 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1234 *ip++ = PI_MAGIC;
1235 }
1236 }
1237 #endif
1238
1239 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1240 }
1241 KDASSERT(ph->ph_nmissing != 0);
1242 ph->ph_nmissing--;
1243 pp->pr_nput++;
1244 pp->pr_nitems++;
1245 pp->pr_nout--;
1246
1247 /* Cancel "pool empty" condition if it exists */
1248 if (pp->pr_curpage == NULL)
1249 pp->pr_curpage = ph;
1250
1251 if (pp->pr_flags & PR_WANTED) {
1252 pp->pr_flags &= ~PR_WANTED;
1253 if (ph->ph_nmissing == 0)
1254 pp->pr_nidle++;
1255 cv_broadcast(&pp->pr_cv);
1256 return;
1257 }
1258
1259 /*
1260 * If this page is now empty, do one of two things:
1261 *
1262 * (1) If we have more pages than the page high water mark,
1263 * free the page back to the system. ONLY CONSIDER
1264 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1265 * CLAIM.
1266 *
1267 * (2) Otherwise, move the page to the empty page list.
1268 *
1269 * Either way, select a new current page (so we use a partially-full
1270 * page if one is available).
1271 */
1272 if (ph->ph_nmissing == 0) {
1273 pp->pr_nidle++;
1274 if (pp->pr_npages > pp->pr_minpages &&
1275 (pp->pr_npages > pp->pr_maxpages ||
1276 pa_starved_p(pp->pr_alloc))) {
1277 pr_rmpage(pp, ph, pq);
1278 } else {
1279 LIST_REMOVE(ph, ph_pagelist);
1280 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1281
1282 /*
1283 * Update the timestamp on the page. A page must
1284 * be idle for some period of time before it can
1285 * be reclaimed by the pagedaemon. This minimizes
1286 * ping-pong'ing for memory.
1287 */
1288 getmicrotime(&ph->ph_time);
1289 }
1290 pool_update_curpage(pp);
1291 }
1292
1293 /*
1294 * If the page was previously completely full, move it to the
1295 * partially-full list and make it the current page. The next
1296 * allocation will get the item from this page, instead of
1297 * further fragmenting the pool.
1298 */
1299 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1300 LIST_REMOVE(ph, ph_pagelist);
1301 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1302 pp->pr_curpage = ph;
1303 }
1304 }
1305
1306 /*
1307 * Return resource to the pool.
1308 */
1309 #ifdef POOL_DIAGNOSTIC
1310 void
1311 _pool_put(struct pool *pp, void *v, const char *file, long line)
1312 {
1313 struct pool_pagelist pq;
1314
1315 LIST_INIT(&pq);
1316
1317 mutex_enter(&pp->pr_lock);
1318 pr_enter(pp, file, line);
1319
1320 pr_log(pp, v, PRLOG_PUT, file, line);
1321
1322 pool_do_put(pp, v, &pq);
1323
1324 pr_leave(pp);
1325 mutex_exit(&pp->pr_lock);
1326
1327 pr_pagelist_free(pp, &pq);
1328 }
1329 #undef pool_put
1330 #endif /* POOL_DIAGNOSTIC */
1331
1332 void
1333 pool_put(struct pool *pp, void *v)
1334 {
1335 struct pool_pagelist pq;
1336
1337 LIST_INIT(&pq);
1338
1339 mutex_enter(&pp->pr_lock);
1340 pool_do_put(pp, v, &pq);
1341 mutex_exit(&pp->pr_lock);
1342
1343 pr_pagelist_free(pp, &pq);
1344 }
1345
1346 #ifdef POOL_DIAGNOSTIC
1347 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1348 #endif
1349
1350 /*
1351 * pool_grow: grow a pool by a page.
1352 *
1353 * => called with pool locked.
1354 * => unlock and relock the pool.
1355 * => return with pool locked.
1356 */
1357
1358 static int
1359 pool_grow(struct pool *pp, int flags)
1360 {
1361 struct pool_item_header *ph = NULL;
1362 char *cp;
1363
1364 mutex_exit(&pp->pr_lock);
1365 cp = pool_allocator_alloc(pp, flags);
1366 if (__predict_true(cp != NULL)) {
1367 ph = pool_alloc_item_header(pp, cp, flags);
1368 }
1369 if (__predict_false(cp == NULL || ph == NULL)) {
1370 if (cp != NULL) {
1371 pool_allocator_free(pp, cp);
1372 }
1373 mutex_enter(&pp->pr_lock);
1374 return ENOMEM;
1375 }
1376
1377 mutex_enter(&pp->pr_lock);
1378 pool_prime_page(pp, cp, ph);
1379 pp->pr_npagealloc++;
1380 return 0;
1381 }
1382
1383 /*
1384 * Add N items to the pool.
1385 */
1386 int
1387 pool_prime(struct pool *pp, int n)
1388 {
1389 int newpages;
1390 int error = 0;
1391
1392 mutex_enter(&pp->pr_lock);
1393
1394 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1395
1396 while (newpages-- > 0) {
1397 error = pool_grow(pp, PR_NOWAIT);
1398 if (error) {
1399 break;
1400 }
1401 pp->pr_minpages++;
1402 }
1403
1404 if (pp->pr_minpages >= pp->pr_maxpages)
1405 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1406
1407 mutex_exit(&pp->pr_lock);
1408 return error;
1409 }
1410
1411 /*
1412 * Add a page worth of items to the pool.
1413 *
1414 * Note, we must be called with the pool descriptor LOCKED.
1415 */
1416 static void
1417 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1418 {
1419 struct pool_item *pi;
1420 void *cp = storage;
1421 const unsigned int align = pp->pr_align;
1422 const unsigned int ioff = pp->pr_itemoffset;
1423 int n;
1424
1425 KASSERT(mutex_owned(&pp->pr_lock));
1426
1427 #ifdef DIAGNOSTIC
1428 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1429 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1430 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1431 #endif
1432
1433 /*
1434 * Insert page header.
1435 */
1436 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1437 LIST_INIT(&ph->ph_itemlist);
1438 ph->ph_page = storage;
1439 ph->ph_nmissing = 0;
1440 getmicrotime(&ph->ph_time);
1441 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1442 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1443
1444 pp->pr_nidle++;
1445
1446 /*
1447 * Color this page.
1448 */
1449 ph->ph_off = pp->pr_curcolor;
1450 cp = (char *)cp + ph->ph_off;
1451 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1452 pp->pr_curcolor = 0;
1453
1454 /*
1455 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1456 */
1457 if (ioff != 0)
1458 cp = (char *)cp + align - ioff;
1459
1460 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1461
1462 /*
1463 * Insert remaining chunks on the bucket list.
1464 */
1465 n = pp->pr_itemsperpage;
1466 pp->pr_nitems += n;
1467
1468 if (pp->pr_roflags & PR_NOTOUCH) {
1469 pr_item_notouch_init(pp, ph);
1470 } else {
1471 while (n--) {
1472 pi = (struct pool_item *)cp;
1473
1474 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1475
1476 /* Insert on page list */
1477 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1478 #ifdef DIAGNOSTIC
1479 pi->pi_magic = PI_MAGIC;
1480 #endif
1481 cp = (char *)cp + pp->pr_size;
1482
1483 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1484 }
1485 }
1486
1487 /*
1488 * If the pool was depleted, point at the new page.
1489 */
1490 if (pp->pr_curpage == NULL)
1491 pp->pr_curpage = ph;
1492
1493 if (++pp->pr_npages > pp->pr_hiwat)
1494 pp->pr_hiwat = pp->pr_npages;
1495 }
1496
1497 /*
1498 * Used by pool_get() when nitems drops below the low water mark. This
1499 * is used to catch up pr_nitems with the low water mark.
1500 *
1501 * Note 1, we never wait for memory here, we let the caller decide what to do.
1502 *
1503 * Note 2, we must be called with the pool already locked, and we return
1504 * with it locked.
1505 */
1506 static int
1507 pool_catchup(struct pool *pp)
1508 {
1509 int error = 0;
1510
1511 while (POOL_NEEDS_CATCHUP(pp)) {
1512 error = pool_grow(pp, PR_NOWAIT);
1513 if (error) {
1514 break;
1515 }
1516 }
1517 return error;
1518 }
1519
1520 static void
1521 pool_update_curpage(struct pool *pp)
1522 {
1523
1524 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1525 if (pp->pr_curpage == NULL) {
1526 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1527 }
1528 }
1529
1530 void
1531 pool_setlowat(struct pool *pp, int n)
1532 {
1533
1534 mutex_enter(&pp->pr_lock);
1535
1536 pp->pr_minitems = n;
1537 pp->pr_minpages = (n == 0)
1538 ? 0
1539 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1540
1541 /* Make sure we're caught up with the newly-set low water mark. */
1542 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1543 /*
1544 * XXX: Should we log a warning? Should we set up a timeout
1545 * to try again in a second or so? The latter could break
1546 * a caller's assumptions about interrupt protection, etc.
1547 */
1548 }
1549
1550 mutex_exit(&pp->pr_lock);
1551 }
1552
1553 void
1554 pool_sethiwat(struct pool *pp, int n)
1555 {
1556
1557 mutex_enter(&pp->pr_lock);
1558
1559 pp->pr_maxpages = (n == 0)
1560 ? 0
1561 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1562
1563 mutex_exit(&pp->pr_lock);
1564 }
1565
1566 void
1567 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1568 {
1569
1570 mutex_enter(&pp->pr_lock);
1571
1572 pp->pr_hardlimit = n;
1573 pp->pr_hardlimit_warning = warnmess;
1574 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1575 pp->pr_hardlimit_warning_last.tv_sec = 0;
1576 pp->pr_hardlimit_warning_last.tv_usec = 0;
1577
1578 /*
1579 * In-line version of pool_sethiwat(), because we don't want to
1580 * release the lock.
1581 */
1582 pp->pr_maxpages = (n == 0)
1583 ? 0
1584 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1585
1586 mutex_exit(&pp->pr_lock);
1587 }
1588
1589 /*
1590 * Release all complete pages that have not been used recently.
1591 */
1592 int
1593 #ifdef POOL_DIAGNOSTIC
1594 _pool_reclaim(struct pool *pp, const char *file, long line)
1595 #else
1596 pool_reclaim(struct pool *pp)
1597 #endif
1598 {
1599 struct pool_item_header *ph, *phnext;
1600 struct pool_pagelist pq;
1601 struct timeval curtime, diff;
1602 bool klock;
1603 int rv;
1604
1605 if (pp->pr_drain_hook != NULL) {
1606 /*
1607 * The drain hook must be called with the pool unlocked.
1608 */
1609 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1610 }
1611
1612 /*
1613 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
1614 * and we are called from the pagedaemon without kernel_lock.
1615 * Does not apply to IPL_SOFTBIO.
1616 */
1617 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1618 pp->pr_ipl == IPL_SOFTSERIAL) {
1619 KERNEL_LOCK(1, NULL);
1620 klock = true;
1621 } else
1622 klock = false;
1623
1624 /* Reclaim items from the pool's cache (if any). */
1625 if (pp->pr_cache != NULL)
1626 pool_cache_invalidate(pp->pr_cache);
1627
1628 if (mutex_tryenter(&pp->pr_lock) == 0) {
1629 if (klock) {
1630 KERNEL_UNLOCK_ONE(NULL);
1631 }
1632 return (0);
1633 }
1634 pr_enter(pp, file, line);
1635
1636 LIST_INIT(&pq);
1637
1638 getmicrotime(&curtime);
1639
1640 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1641 phnext = LIST_NEXT(ph, ph_pagelist);
1642
1643 /* Check our minimum page claim */
1644 if (pp->pr_npages <= pp->pr_minpages)
1645 break;
1646
1647 KASSERT(ph->ph_nmissing == 0);
1648 timersub(&curtime, &ph->ph_time, &diff);
1649 if (diff.tv_sec < pool_inactive_time
1650 && !pa_starved_p(pp->pr_alloc))
1651 continue;
1652
1653 /*
1654 * If freeing this page would put us below
1655 * the low water mark, stop now.
1656 */
1657 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1658 pp->pr_minitems)
1659 break;
1660
1661 pr_rmpage(pp, ph, &pq);
1662 }
1663
1664 pr_leave(pp);
1665 mutex_exit(&pp->pr_lock);
1666
1667 if (LIST_EMPTY(&pq))
1668 rv = 0;
1669 else {
1670 pr_pagelist_free(pp, &pq);
1671 rv = 1;
1672 }
1673
1674 if (klock) {
1675 KERNEL_UNLOCK_ONE(NULL);
1676 }
1677
1678 return (rv);
1679 }
1680
1681 /*
1682 * Drain pools, one at a time. This is a two stage process;
1683 * drain_start kicks off a cross call to drain CPU-level caches
1684 * if the pool has an associated pool_cache. drain_end waits
1685 * for those cross calls to finish, and then drains the cache
1686 * (if any) and pool.
1687 *
1688 * Note, must never be called from interrupt context.
1689 */
1690 void
1691 pool_drain_start(struct pool **ppp, uint64_t *wp)
1692 {
1693 struct pool *pp;
1694
1695 KASSERT(!LIST_EMPTY(&pool_head));
1696
1697 pp = NULL;
1698
1699 /* Find next pool to drain, and add a reference. */
1700 mutex_enter(&pool_head_lock);
1701 do {
1702 if (drainpp == NULL) {
1703 drainpp = LIST_FIRST(&pool_head);
1704 }
1705 if (drainpp != NULL) {
1706 pp = drainpp;
1707 drainpp = LIST_NEXT(pp, pr_poollist);
1708 }
1709 /*
1710 * Skip completely idle pools. We depend on at least
1711 * one pool in the system being active.
1712 */
1713 } while (pp == NULL || pp->pr_npages == 0);
1714 pp->pr_refcnt++;
1715 mutex_exit(&pool_head_lock);
1716
1717 /* If there is a pool_cache, drain CPU level caches. */
1718 *ppp = pp;
1719 if (pp->pr_cache != NULL) {
1720 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1721 pp->pr_cache, NULL);
1722 }
1723 }
1724
1725 void
1726 pool_drain_end(struct pool *pp, uint64_t where)
1727 {
1728
1729 if (pp == NULL)
1730 return;
1731
1732 KASSERT(pp->pr_refcnt > 0);
1733
1734 /* Wait for remote draining to complete. */
1735 if (pp->pr_cache != NULL)
1736 xc_wait(where);
1737
1738 /* Drain the cache (if any) and pool.. */
1739 pool_reclaim(pp);
1740
1741 /* Finally, unlock the pool. */
1742 mutex_enter(&pool_head_lock);
1743 pp->pr_refcnt--;
1744 cv_broadcast(&pool_busy);
1745 mutex_exit(&pool_head_lock);
1746 }
1747
1748 /*
1749 * Diagnostic helpers.
1750 */
1751 void
1752 pool_print(struct pool *pp, const char *modif)
1753 {
1754
1755 pool_print1(pp, modif, printf);
1756 }
1757
1758 void
1759 pool_printall(const char *modif, void (*pr)(const char *, ...))
1760 {
1761 struct pool *pp;
1762
1763 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1764 pool_printit(pp, modif, pr);
1765 }
1766 }
1767
1768 void
1769 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1770 {
1771
1772 if (pp == NULL) {
1773 (*pr)("Must specify a pool to print.\n");
1774 return;
1775 }
1776
1777 pool_print1(pp, modif, pr);
1778 }
1779
1780 static void
1781 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1782 void (*pr)(const char *, ...))
1783 {
1784 struct pool_item_header *ph;
1785 #ifdef DIAGNOSTIC
1786 struct pool_item *pi;
1787 #endif
1788
1789 LIST_FOREACH(ph, pl, ph_pagelist) {
1790 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1791 ph->ph_page, ph->ph_nmissing,
1792 (u_long)ph->ph_time.tv_sec,
1793 (u_long)ph->ph_time.tv_usec);
1794 #ifdef DIAGNOSTIC
1795 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1796 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1797 if (pi->pi_magic != PI_MAGIC) {
1798 (*pr)("\t\t\titem %p, magic 0x%x\n",
1799 pi, pi->pi_magic);
1800 }
1801 }
1802 }
1803 #endif
1804 }
1805 }
1806
1807 static void
1808 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1809 {
1810 struct pool_item_header *ph;
1811 pool_cache_t pc;
1812 pcg_t *pcg;
1813 pool_cache_cpu_t *cc;
1814 uint64_t cpuhit, cpumiss;
1815 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1816 char c;
1817
1818 while ((c = *modif++) != '\0') {
1819 if (c == 'l')
1820 print_log = 1;
1821 if (c == 'p')
1822 print_pagelist = 1;
1823 if (c == 'c')
1824 print_cache = 1;
1825 }
1826
1827 if ((pc = pp->pr_cache) != NULL) {
1828 (*pr)("POOL CACHE");
1829 } else {
1830 (*pr)("POOL");
1831 }
1832
1833 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1834 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1835 pp->pr_roflags);
1836 (*pr)("\talloc %p\n", pp->pr_alloc);
1837 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1838 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1839 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1840 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1841
1842 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1843 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1844 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1845 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1846
1847 if (print_pagelist == 0)
1848 goto skip_pagelist;
1849
1850 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1851 (*pr)("\n\tempty page list:\n");
1852 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1853 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1854 (*pr)("\n\tfull page list:\n");
1855 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1856 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1857 (*pr)("\n\tpartial-page list:\n");
1858 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1859
1860 if (pp->pr_curpage == NULL)
1861 (*pr)("\tno current page\n");
1862 else
1863 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1864
1865 skip_pagelist:
1866 if (print_log == 0)
1867 goto skip_log;
1868
1869 (*pr)("\n");
1870 if ((pp->pr_roflags & PR_LOGGING) == 0)
1871 (*pr)("\tno log\n");
1872 else {
1873 pr_printlog(pp, NULL, pr);
1874 }
1875
1876 skip_log:
1877
1878 #define PR_GROUPLIST(pcg) \
1879 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1880 for (i = 0; i < PCG_NOBJECTS; i++) { \
1881 if (pcg->pcg_objects[i].pcgo_pa != \
1882 POOL_PADDR_INVALID) { \
1883 (*pr)("\t\t\t%p, 0x%llx\n", \
1884 pcg->pcg_objects[i].pcgo_va, \
1885 (unsigned long long) \
1886 pcg->pcg_objects[i].pcgo_pa); \
1887 } else { \
1888 (*pr)("\t\t\t%p\n", \
1889 pcg->pcg_objects[i].pcgo_va); \
1890 } \
1891 }
1892
1893 if (pc != NULL) {
1894 cpuhit = 0;
1895 cpumiss = 0;
1896 for (i = 0; i < MAXCPUS; i++) {
1897 if ((cc = pc->pc_cpus[i]) == NULL)
1898 continue;
1899 cpuhit += cc->cc_hits;
1900 cpumiss += cc->cc_misses;
1901 }
1902 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1903 (*pr)("\tcache layer hits %llu misses %llu\n",
1904 pc->pc_hits, pc->pc_misses);
1905 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1906 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1907 pc->pc_contended);
1908 (*pr)("\tcache layer empty groups %u full groups %u\n",
1909 pc->pc_nempty, pc->pc_nfull);
1910 if (print_cache) {
1911 (*pr)("\tfull cache groups:\n");
1912 for (pcg = pc->pc_fullgroups; pcg != NULL;
1913 pcg = pcg->pcg_next) {
1914 PR_GROUPLIST(pcg);
1915 }
1916 (*pr)("\tempty cache groups:\n");
1917 for (pcg = pc->pc_emptygroups; pcg != NULL;
1918 pcg = pcg->pcg_next) {
1919 PR_GROUPLIST(pcg);
1920 }
1921 }
1922 }
1923 #undef PR_GROUPLIST
1924
1925 pr_enter_check(pp, pr);
1926 }
1927
1928 static int
1929 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1930 {
1931 struct pool_item *pi;
1932 void *page;
1933 int n;
1934
1935 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1936 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1937 if (page != ph->ph_page &&
1938 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1939 if (label != NULL)
1940 printf("%s: ", label);
1941 printf("pool(%p:%s): page inconsistency: page %p;"
1942 " at page head addr %p (p %p)\n", pp,
1943 pp->pr_wchan, ph->ph_page,
1944 ph, page);
1945 return 1;
1946 }
1947 }
1948
1949 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1950 return 0;
1951
1952 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1953 pi != NULL;
1954 pi = LIST_NEXT(pi,pi_list), n++) {
1955
1956 #ifdef DIAGNOSTIC
1957 if (pi->pi_magic != PI_MAGIC) {
1958 if (label != NULL)
1959 printf("%s: ", label);
1960 printf("pool(%s): free list modified: magic=%x;"
1961 " page %p; item ordinal %d; addr %p\n",
1962 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1963 n, pi);
1964 panic("pool");
1965 }
1966 #endif
1967 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1968 continue;
1969 }
1970 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1971 if (page == ph->ph_page)
1972 continue;
1973
1974 if (label != NULL)
1975 printf("%s: ", label);
1976 printf("pool(%p:%s): page inconsistency: page %p;"
1977 " item ordinal %d; addr %p (p %p)\n", pp,
1978 pp->pr_wchan, ph->ph_page,
1979 n, pi, page);
1980 return 1;
1981 }
1982 return 0;
1983 }
1984
1985
1986 int
1987 pool_chk(struct pool *pp, const char *label)
1988 {
1989 struct pool_item_header *ph;
1990 int r = 0;
1991
1992 mutex_enter(&pp->pr_lock);
1993 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1994 r = pool_chk_page(pp, label, ph);
1995 if (r) {
1996 goto out;
1997 }
1998 }
1999 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2000 r = pool_chk_page(pp, label, ph);
2001 if (r) {
2002 goto out;
2003 }
2004 }
2005 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2006 r = pool_chk_page(pp, label, ph);
2007 if (r) {
2008 goto out;
2009 }
2010 }
2011
2012 out:
2013 mutex_exit(&pp->pr_lock);
2014 return (r);
2015 }
2016
2017 /*
2018 * pool_cache_init:
2019 *
2020 * Initialize a pool cache.
2021 */
2022 pool_cache_t
2023 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2024 const char *wchan, struct pool_allocator *palloc, int ipl,
2025 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2026 {
2027 pool_cache_t pc;
2028
2029 pc = pool_get(&cache_pool, PR_WAITOK);
2030 if (pc == NULL)
2031 return NULL;
2032
2033 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2034 palloc, ipl, ctor, dtor, arg);
2035
2036 return pc;
2037 }
2038
2039 /*
2040 * pool_cache_bootstrap:
2041 *
2042 * Kernel-private version of pool_cache_init(). The caller
2043 * provides initial storage.
2044 */
2045 void
2046 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2047 u_int align_offset, u_int flags, const char *wchan,
2048 struct pool_allocator *palloc, int ipl,
2049 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2050 void *arg)
2051 {
2052 CPU_INFO_ITERATOR cii;
2053 struct cpu_info *ci;
2054 struct pool *pp;
2055
2056 pp = &pc->pc_pool;
2057 if (palloc == NULL && ipl == IPL_NONE)
2058 palloc = &pool_allocator_nointr;
2059 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2060
2061 /*
2062 * XXXAD hack to prevent IP input processing from blocking.
2063 */
2064 if (ipl == IPL_SOFTNET) {
2065 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
2066 } else {
2067 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2068 }
2069
2070 if (ctor == NULL) {
2071 ctor = (int (*)(void *, void *, int))nullop;
2072 }
2073 if (dtor == NULL) {
2074 dtor = (void (*)(void *, void *))nullop;
2075 }
2076
2077 pc->pc_emptygroups = NULL;
2078 pc->pc_fullgroups = NULL;
2079 pc->pc_partgroups = NULL;
2080 pc->pc_ctor = ctor;
2081 pc->pc_dtor = dtor;
2082 pc->pc_arg = arg;
2083 pc->pc_hits = 0;
2084 pc->pc_misses = 0;
2085 pc->pc_nempty = 0;
2086 pc->pc_npart = 0;
2087 pc->pc_nfull = 0;
2088 pc->pc_contended = 0;
2089 pc->pc_refcnt = 0;
2090 pc->pc_freecheck = NULL;
2091
2092 /* Allocate per-CPU caches. */
2093 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2094 pc->pc_ncpu = 0;
2095 if (ncpu < 2) {
2096 /* XXX For sparc: boot CPU is not attached yet. */
2097 pool_cache_cpu_init1(curcpu(), pc);
2098 } else {
2099 for (CPU_INFO_FOREACH(cii, ci)) {
2100 pool_cache_cpu_init1(ci, pc);
2101 }
2102 }
2103
2104 if (__predict_true(!cold)) {
2105 mutex_enter(&pp->pr_lock);
2106 pp->pr_cache = pc;
2107 mutex_exit(&pp->pr_lock);
2108 mutex_enter(&pool_head_lock);
2109 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2110 mutex_exit(&pool_head_lock);
2111 } else {
2112 pp->pr_cache = pc;
2113 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2114 }
2115 }
2116
2117 /*
2118 * pool_cache_destroy:
2119 *
2120 * Destroy a pool cache.
2121 */
2122 void
2123 pool_cache_destroy(pool_cache_t pc)
2124 {
2125 struct pool *pp = &pc->pc_pool;
2126 pool_cache_cpu_t *cc;
2127 pcg_t *pcg;
2128 int i;
2129
2130 /* Remove it from the global list. */
2131 mutex_enter(&pool_head_lock);
2132 while (pc->pc_refcnt != 0)
2133 cv_wait(&pool_busy, &pool_head_lock);
2134 LIST_REMOVE(pc, pc_cachelist);
2135 mutex_exit(&pool_head_lock);
2136
2137 /* First, invalidate the entire cache. */
2138 pool_cache_invalidate(pc);
2139
2140 /* Disassociate it from the pool. */
2141 mutex_enter(&pp->pr_lock);
2142 pp->pr_cache = NULL;
2143 mutex_exit(&pp->pr_lock);
2144
2145 /* Destroy per-CPU data */
2146 for (i = 0; i < MAXCPUS; i++) {
2147 if ((cc = pc->pc_cpus[i]) == NULL)
2148 continue;
2149 if ((pcg = cc->cc_current) != NULL) {
2150 pcg->pcg_next = NULL;
2151 pool_cache_invalidate_groups(pc, pcg);
2152 }
2153 if ((pcg = cc->cc_previous) != NULL) {
2154 pcg->pcg_next = NULL;
2155 pool_cache_invalidate_groups(pc, pcg);
2156 }
2157 if (cc != &pc->pc_cpu0)
2158 pool_put(&cache_cpu_pool, cc);
2159 }
2160
2161 /* Finally, destroy it. */
2162 mutex_destroy(&pc->pc_lock);
2163 pool_destroy(pp);
2164 pool_put(&cache_pool, pc);
2165 }
2166
2167 /*
2168 * pool_cache_cpu_init1:
2169 *
2170 * Called for each pool_cache whenever a new CPU is attached.
2171 */
2172 static void
2173 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2174 {
2175 pool_cache_cpu_t *cc;
2176 int index;
2177
2178 index = ci->ci_index;
2179
2180 KASSERT(index < MAXCPUS);
2181 KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2182
2183 if ((cc = pc->pc_cpus[index]) != NULL) {
2184 KASSERT(cc->cc_cpuindex == index);
2185 return;
2186 }
2187
2188 /*
2189 * The first CPU is 'free'. This needs to be the case for
2190 * bootstrap - we may not be able to allocate yet.
2191 */
2192 if (pc->pc_ncpu == 0) {
2193 cc = &pc->pc_cpu0;
2194 pc->pc_ncpu = 1;
2195 } else {
2196 mutex_enter(&pc->pc_lock);
2197 pc->pc_ncpu++;
2198 mutex_exit(&pc->pc_lock);
2199 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2200 }
2201
2202 cc->cc_ipl = pc->pc_pool.pr_ipl;
2203 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2204 cc->cc_cache = pc;
2205 cc->cc_cpuindex = index;
2206 cc->cc_hits = 0;
2207 cc->cc_misses = 0;
2208 cc->cc_current = NULL;
2209 cc->cc_previous = NULL;
2210
2211 pc->pc_cpus[index] = cc;
2212 }
2213
2214 /*
2215 * pool_cache_cpu_init:
2216 *
2217 * Called whenever a new CPU is attached.
2218 */
2219 void
2220 pool_cache_cpu_init(struct cpu_info *ci)
2221 {
2222 pool_cache_t pc;
2223
2224 mutex_enter(&pool_head_lock);
2225 LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2226 pc->pc_refcnt++;
2227 mutex_exit(&pool_head_lock);
2228
2229 pool_cache_cpu_init1(ci, pc);
2230
2231 mutex_enter(&pool_head_lock);
2232 pc->pc_refcnt--;
2233 cv_broadcast(&pool_busy);
2234 }
2235 mutex_exit(&pool_head_lock);
2236 }
2237
2238 /*
2239 * pool_cache_reclaim:
2240 *
2241 * Reclaim memory from a pool cache.
2242 */
2243 bool
2244 pool_cache_reclaim(pool_cache_t pc)
2245 {
2246
2247 return pool_reclaim(&pc->pc_pool);
2248 }
2249
2250 static void
2251 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2252 {
2253
2254 (*pc->pc_dtor)(pc->pc_arg, object);
2255 pool_put(&pc->pc_pool, object);
2256 }
2257
2258 /*
2259 * pool_cache_destruct_object:
2260 *
2261 * Force destruction of an object and its release back into
2262 * the pool.
2263 */
2264 void
2265 pool_cache_destruct_object(pool_cache_t pc, void *object)
2266 {
2267
2268 FREECHECK_IN(&pc->pc_freecheck, object);
2269
2270 pool_cache_destruct_object1(pc, object);
2271 }
2272
2273 /*
2274 * pool_cache_invalidate_groups:
2275 *
2276 * Invalidate a chain of groups and destruct all objects.
2277 */
2278 static void
2279 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2280 {
2281 void *object;
2282 pcg_t *next;
2283 int i;
2284
2285 for (; pcg != NULL; pcg = next) {
2286 next = pcg->pcg_next;
2287
2288 for (i = 0; i < pcg->pcg_avail; i++) {
2289 object = pcg->pcg_objects[i].pcgo_va;
2290 pool_cache_destruct_object1(pc, object);
2291 }
2292
2293 pool_put(&pcgpool, pcg);
2294 }
2295 }
2296
2297 /*
2298 * pool_cache_invalidate:
2299 *
2300 * Invalidate a pool cache (destruct and release all of the
2301 * cached objects). Does not reclaim objects from the pool.
2302 */
2303 void
2304 pool_cache_invalidate(pool_cache_t pc)
2305 {
2306 pcg_t *full, *empty, *part;
2307
2308 mutex_enter(&pc->pc_lock);
2309 full = pc->pc_fullgroups;
2310 empty = pc->pc_emptygroups;
2311 part = pc->pc_partgroups;
2312 pc->pc_fullgroups = NULL;
2313 pc->pc_emptygroups = NULL;
2314 pc->pc_partgroups = NULL;
2315 pc->pc_nfull = 0;
2316 pc->pc_nempty = 0;
2317 pc->pc_npart = 0;
2318 mutex_exit(&pc->pc_lock);
2319
2320 pool_cache_invalidate_groups(pc, full);
2321 pool_cache_invalidate_groups(pc, empty);
2322 pool_cache_invalidate_groups(pc, part);
2323 }
2324
2325 void
2326 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2327 {
2328
2329 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2330 }
2331
2332 void
2333 pool_cache_setlowat(pool_cache_t pc, int n)
2334 {
2335
2336 pool_setlowat(&pc->pc_pool, n);
2337 }
2338
2339 void
2340 pool_cache_sethiwat(pool_cache_t pc, int n)
2341 {
2342
2343 pool_sethiwat(&pc->pc_pool, n);
2344 }
2345
2346 void
2347 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2348 {
2349
2350 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2351 }
2352
2353 static inline pool_cache_cpu_t *
2354 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2355 {
2356 pool_cache_cpu_t *cc;
2357
2358 /*
2359 * Prevent other users of the cache from accessing our
2360 * CPU-local data. To avoid touching shared state, we
2361 * pull the neccessary information from CPU local data.
2362 */
2363 crit_enter();
2364 cc = pc->pc_cpus[curcpu()->ci_index];
2365 KASSERT(cc->cc_cache == pc);
2366 if (cc->cc_ipl != IPL_NONE) {
2367 *s = splraiseipl(cc->cc_iplcookie);
2368 }
2369 KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2370
2371 return cc;
2372 }
2373
2374 static inline void
2375 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2376 {
2377
2378 /* No longer need exclusive access to the per-CPU data. */
2379 if (cc->cc_ipl != IPL_NONE) {
2380 splx(*s);
2381 }
2382 crit_exit();
2383 }
2384
2385 #if __GNUC_PREREQ__(3, 0)
2386 __attribute ((noinline))
2387 #endif
2388 pool_cache_cpu_t *
2389 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2390 paddr_t *pap, int flags)
2391 {
2392 pcg_t *pcg, *cur;
2393 uint64_t ncsw;
2394 pool_cache_t pc;
2395 void *object;
2396
2397 pc = cc->cc_cache;
2398 cc->cc_misses++;
2399
2400 /*
2401 * Nothing was available locally. Try and grab a group
2402 * from the cache.
2403 */
2404 if (!mutex_tryenter(&pc->pc_lock)) {
2405 ncsw = curlwp->l_ncsw;
2406 mutex_enter(&pc->pc_lock);
2407 pc->pc_contended++;
2408
2409 /*
2410 * If we context switched while locking, then
2411 * our view of the per-CPU data is invalid:
2412 * retry.
2413 */
2414 if (curlwp->l_ncsw != ncsw) {
2415 mutex_exit(&pc->pc_lock);
2416 pool_cache_cpu_exit(cc, s);
2417 return pool_cache_cpu_enter(pc, s);
2418 }
2419 }
2420
2421 if ((pcg = pc->pc_fullgroups) != NULL) {
2422 /*
2423 * If there's a full group, release our empty
2424 * group back to the cache. Install the full
2425 * group as cc_current and return.
2426 */
2427 if ((cur = cc->cc_current) != NULL) {
2428 KASSERT(cur->pcg_avail == 0);
2429 cur->pcg_next = pc->pc_emptygroups;
2430 pc->pc_emptygroups = cur;
2431 pc->pc_nempty++;
2432 }
2433 KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
2434 cc->cc_current = pcg;
2435 pc->pc_fullgroups = pcg->pcg_next;
2436 pc->pc_hits++;
2437 pc->pc_nfull--;
2438 mutex_exit(&pc->pc_lock);
2439 return cc;
2440 }
2441
2442 /*
2443 * Nothing available locally or in cache. Take the slow
2444 * path: fetch a new object from the pool and construct
2445 * it.
2446 */
2447 pc->pc_misses++;
2448 mutex_exit(&pc->pc_lock);
2449 pool_cache_cpu_exit(cc, s);
2450
2451 object = pool_get(&pc->pc_pool, flags);
2452 *objectp = object;
2453 if (object == NULL)
2454 return NULL;
2455
2456 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2457 pool_put(&pc->pc_pool, object);
2458 *objectp = NULL;
2459 return NULL;
2460 }
2461
2462 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2463 (pc->pc_pool.pr_align - 1)) == 0);
2464
2465 if (pap != NULL) {
2466 #ifdef POOL_VTOPHYS
2467 *pap = POOL_VTOPHYS(object);
2468 #else
2469 *pap = POOL_PADDR_INVALID;
2470 #endif
2471 }
2472
2473 FREECHECK_OUT(&pc->pc_freecheck, object);
2474 return NULL;
2475 }
2476
2477 /*
2478 * pool_cache_get{,_paddr}:
2479 *
2480 * Get an object from a pool cache (optionally returning
2481 * the physical address of the object).
2482 */
2483 void *
2484 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2485 {
2486 pool_cache_cpu_t *cc;
2487 pcg_t *pcg;
2488 void *object;
2489 int s;
2490
2491 #ifdef LOCKDEBUG
2492 if (flags & PR_WAITOK)
2493 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2494 #endif
2495
2496 cc = pool_cache_cpu_enter(pc, &s);
2497 do {
2498 /* Try and allocate an object from the current group. */
2499 pcg = cc->cc_current;
2500 if (pcg != NULL && pcg->pcg_avail > 0) {
2501 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2502 if (pap != NULL)
2503 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2504 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2505 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
2506 KASSERT(object != NULL);
2507 cc->cc_hits++;
2508 pool_cache_cpu_exit(cc, &s);
2509 FREECHECK_OUT(&pc->pc_freecheck, object);
2510 return object;
2511 }
2512
2513 /*
2514 * That failed. If the previous group isn't empty, swap
2515 * it with the current group and allocate from there.
2516 */
2517 pcg = cc->cc_previous;
2518 if (pcg != NULL && pcg->pcg_avail > 0) {
2519 cc->cc_previous = cc->cc_current;
2520 cc->cc_current = pcg;
2521 continue;
2522 }
2523
2524 /*
2525 * Can't allocate from either group: try the slow path.
2526 * If get_slow() allocated an object for us, or if
2527 * no more objects are available, it will return NULL.
2528 * Otherwise, we need to retry.
2529 */
2530 cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2531 } while (cc != NULL);
2532
2533 return object;
2534 }
2535
2536 #if __GNUC_PREREQ__(3, 0)
2537 __attribute ((noinline))
2538 #endif
2539 pool_cache_cpu_t *
2540 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2541 {
2542 pcg_t *pcg, *cur;
2543 uint64_t ncsw;
2544 pool_cache_t pc;
2545
2546 pc = cc->cc_cache;
2547 cc->cc_misses++;
2548
2549 /*
2550 * No free slots locally. Try to grab an empty, unused
2551 * group from the cache.
2552 */
2553 if (!mutex_tryenter(&pc->pc_lock)) {
2554 ncsw = curlwp->l_ncsw;
2555 mutex_enter(&pc->pc_lock);
2556 pc->pc_contended++;
2557
2558 /*
2559 * If we context switched while locking, then
2560 * our view of the per-CPU data is invalid:
2561 * retry.
2562 */
2563 if (curlwp->l_ncsw != ncsw) {
2564 mutex_exit(&pc->pc_lock);
2565 pool_cache_cpu_exit(cc, s);
2566 return pool_cache_cpu_enter(pc, s);
2567 }
2568 }
2569
2570 if ((pcg = pc->pc_emptygroups) != NULL) {
2571 /*
2572 * If there's a empty group, release our full
2573 * group back to the cache. Install the empty
2574 * group as cc_current and return.
2575 */
2576 if ((cur = cc->cc_current) != NULL) {
2577 KASSERT(cur->pcg_avail == PCG_NOBJECTS);
2578 cur->pcg_next = pc->pc_fullgroups;
2579 pc->pc_fullgroups = cur;
2580 pc->pc_nfull++;
2581 }
2582 KASSERT(pcg->pcg_avail == 0);
2583 cc->cc_current = pcg;
2584 pc->pc_emptygroups = pcg->pcg_next;
2585 pc->pc_hits++;
2586 pc->pc_nempty--;
2587 mutex_exit(&pc->pc_lock);
2588 return cc;
2589 }
2590
2591 /*
2592 * Nothing available locally or in cache. Take the
2593 * slow path and try to allocate a new group that we
2594 * can release to.
2595 */
2596 pc->pc_misses++;
2597 mutex_exit(&pc->pc_lock);
2598 pool_cache_cpu_exit(cc, s);
2599
2600 /*
2601 * If we can't allocate a new group, just throw the
2602 * object away.
2603 */
2604 pcg = pool_get(&pcgpool, PR_NOWAIT);
2605 if (pcg == NULL) {
2606 pool_cache_destruct_object(pc, object);
2607 return NULL;
2608 }
2609 #ifdef DIAGNOSTIC
2610 memset(pcg, 0, sizeof(*pcg));
2611 #else
2612 pcg->pcg_avail = 0;
2613 #endif
2614
2615 /*
2616 * Add the empty group to the cache and try again.
2617 */
2618 mutex_enter(&pc->pc_lock);
2619 pcg->pcg_next = pc->pc_emptygroups;
2620 pc->pc_emptygroups = pcg;
2621 pc->pc_nempty++;
2622 mutex_exit(&pc->pc_lock);
2623
2624 return pool_cache_cpu_enter(pc, s);
2625 }
2626
2627 /*
2628 * pool_cache_put{,_paddr}:
2629 *
2630 * Put an object back to the pool cache (optionally caching the
2631 * physical address of the object).
2632 */
2633 void
2634 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2635 {
2636 pool_cache_cpu_t *cc;
2637 pcg_t *pcg;
2638 int s;
2639
2640 FREECHECK_IN(&pc->pc_freecheck, object);
2641
2642 cc = pool_cache_cpu_enter(pc, &s);
2643 do {
2644 /* If the current group isn't full, release it there. */
2645 pcg = cc->cc_current;
2646 if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
2647 KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
2648 == NULL);
2649 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2650 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2651 pcg->pcg_avail++;
2652 cc->cc_hits++;
2653 pool_cache_cpu_exit(cc, &s);
2654 return;
2655 }
2656
2657 /*
2658 * That failed. If the previous group is empty, swap
2659 * it with the current group and try again.
2660 */
2661 pcg = cc->cc_previous;
2662 if (pcg != NULL && pcg->pcg_avail == 0) {
2663 cc->cc_previous = cc->cc_current;
2664 cc->cc_current = pcg;
2665 continue;
2666 }
2667
2668 /*
2669 * Can't free to either group: try the slow path.
2670 * If put_slow() releases the object for us, it
2671 * will return NULL. Otherwise we need to retry.
2672 */
2673 cc = pool_cache_put_slow(cc, &s, object, pa);
2674 } while (cc != NULL);
2675 }
2676
2677 /*
2678 * pool_cache_xcall:
2679 *
2680 * Transfer objects from the per-CPU cache to the global cache.
2681 * Run within a cross-call thread.
2682 */
2683 static void
2684 pool_cache_xcall(pool_cache_t pc)
2685 {
2686 pool_cache_cpu_t *cc;
2687 pcg_t *prev, *cur, **list;
2688 int s = 0; /* XXXgcc */
2689
2690 cc = pool_cache_cpu_enter(pc, &s);
2691 cur = cc->cc_current;
2692 cc->cc_current = NULL;
2693 prev = cc->cc_previous;
2694 cc->cc_previous = NULL;
2695 pool_cache_cpu_exit(cc, &s);
2696
2697 /*
2698 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2699 * because locks at IPL_SOFTXXX are still spinlocks. Does not
2700 * apply to IPL_SOFTBIO. Cross-call threads do not take the
2701 * kernel_lock.
2702 */
2703 s = splvm();
2704 mutex_enter(&pc->pc_lock);
2705 if (cur != NULL) {
2706 if (cur->pcg_avail == PCG_NOBJECTS) {
2707 list = &pc->pc_fullgroups;
2708 pc->pc_nfull++;
2709 } else if (cur->pcg_avail == 0) {
2710 list = &pc->pc_emptygroups;
2711 pc->pc_nempty++;
2712 } else {
2713 list = &pc->pc_partgroups;
2714 pc->pc_npart++;
2715 }
2716 cur->pcg_next = *list;
2717 *list = cur;
2718 }
2719 if (prev != NULL) {
2720 if (prev->pcg_avail == PCG_NOBJECTS) {
2721 list = &pc->pc_fullgroups;
2722 pc->pc_nfull++;
2723 } else if (prev->pcg_avail == 0) {
2724 list = &pc->pc_emptygroups;
2725 pc->pc_nempty++;
2726 } else {
2727 list = &pc->pc_partgroups;
2728 pc->pc_npart++;
2729 }
2730 prev->pcg_next = *list;
2731 *list = prev;
2732 }
2733 mutex_exit(&pc->pc_lock);
2734 splx(s);
2735 }
2736
2737 /*
2738 * Pool backend allocators.
2739 *
2740 * Each pool has a backend allocator that handles allocation, deallocation,
2741 * and any additional draining that might be needed.
2742 *
2743 * We provide two standard allocators:
2744 *
2745 * pool_allocator_kmem - the default when no allocator is specified
2746 *
2747 * pool_allocator_nointr - used for pools that will not be accessed
2748 * in interrupt context.
2749 */
2750 void *pool_page_alloc(struct pool *, int);
2751 void pool_page_free(struct pool *, void *);
2752
2753 #ifdef POOL_SUBPAGE
2754 struct pool_allocator pool_allocator_kmem_fullpage = {
2755 pool_page_alloc, pool_page_free, 0,
2756 .pa_backingmapptr = &kmem_map,
2757 };
2758 #else
2759 struct pool_allocator pool_allocator_kmem = {
2760 pool_page_alloc, pool_page_free, 0,
2761 .pa_backingmapptr = &kmem_map,
2762 };
2763 #endif
2764
2765 void *pool_page_alloc_nointr(struct pool *, int);
2766 void pool_page_free_nointr(struct pool *, void *);
2767
2768 #ifdef POOL_SUBPAGE
2769 struct pool_allocator pool_allocator_nointr_fullpage = {
2770 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2771 .pa_backingmapptr = &kernel_map,
2772 };
2773 #else
2774 struct pool_allocator pool_allocator_nointr = {
2775 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2776 .pa_backingmapptr = &kernel_map,
2777 };
2778 #endif
2779
2780 #ifdef POOL_SUBPAGE
2781 void *pool_subpage_alloc(struct pool *, int);
2782 void pool_subpage_free(struct pool *, void *);
2783
2784 struct pool_allocator pool_allocator_kmem = {
2785 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2786 .pa_backingmapptr = &kmem_map,
2787 };
2788
2789 void *pool_subpage_alloc_nointr(struct pool *, int);
2790 void pool_subpage_free_nointr(struct pool *, void *);
2791
2792 struct pool_allocator pool_allocator_nointr = {
2793 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2794 .pa_backingmapptr = &kmem_map,
2795 };
2796 #endif /* POOL_SUBPAGE */
2797
2798 static void *
2799 pool_allocator_alloc(struct pool *pp, int flags)
2800 {
2801 struct pool_allocator *pa = pp->pr_alloc;
2802 void *res;
2803
2804 res = (*pa->pa_alloc)(pp, flags);
2805 if (res == NULL && (flags & PR_WAITOK) == 0) {
2806 /*
2807 * We only run the drain hook here if PR_NOWAIT.
2808 * In other cases, the hook will be run in
2809 * pool_reclaim().
2810 */
2811 if (pp->pr_drain_hook != NULL) {
2812 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2813 res = (*pa->pa_alloc)(pp, flags);
2814 }
2815 }
2816 return res;
2817 }
2818
2819 static void
2820 pool_allocator_free(struct pool *pp, void *v)
2821 {
2822 struct pool_allocator *pa = pp->pr_alloc;
2823
2824 (*pa->pa_free)(pp, v);
2825 }
2826
2827 void *
2828 pool_page_alloc(struct pool *pp, int flags)
2829 {
2830 bool waitok = (flags & PR_WAITOK) ? true : false;
2831
2832 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2833 }
2834
2835 void
2836 pool_page_free(struct pool *pp, void *v)
2837 {
2838
2839 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2840 }
2841
2842 static void *
2843 pool_page_alloc_meta(struct pool *pp, int flags)
2844 {
2845 bool waitok = (flags & PR_WAITOK) ? true : false;
2846
2847 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2848 }
2849
2850 static void
2851 pool_page_free_meta(struct pool *pp, void *v)
2852 {
2853
2854 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2855 }
2856
2857 #ifdef POOL_SUBPAGE
2858 /* Sub-page allocator, for machines with large hardware pages. */
2859 void *
2860 pool_subpage_alloc(struct pool *pp, int flags)
2861 {
2862 return pool_get(&psppool, flags);
2863 }
2864
2865 void
2866 pool_subpage_free(struct pool *pp, void *v)
2867 {
2868 pool_put(&psppool, v);
2869 }
2870
2871 /* We don't provide a real nointr allocator. Maybe later. */
2872 void *
2873 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2874 {
2875
2876 return (pool_subpage_alloc(pp, flags));
2877 }
2878
2879 void
2880 pool_subpage_free_nointr(struct pool *pp, void *v)
2881 {
2882
2883 pool_subpage_free(pp, v);
2884 }
2885 #endif /* POOL_SUBPAGE */
2886 void *
2887 pool_page_alloc_nointr(struct pool *pp, int flags)
2888 {
2889 bool waitok = (flags & PR_WAITOK) ? true : false;
2890
2891 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2892 }
2893
2894 void
2895 pool_page_free_nointr(struct pool *pp, void *v)
2896 {
2897
2898 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2899 }
2900
2901 #if defined(DDB)
2902 static bool
2903 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2904 {
2905
2906 return (uintptr_t)ph->ph_page <= addr &&
2907 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2908 }
2909
2910 void
2911 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2912 {
2913 struct pool *pp;
2914
2915 LIST_FOREACH(pp, &pool_head, pr_poollist) {
2916 struct pool_item_header *ph;
2917 uintptr_t item;
2918
2919 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2920 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2921 if (pool_in_page(pp, ph, addr)) {
2922 goto found;
2923 }
2924 }
2925 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2926 if (pool_in_page(pp, ph, addr)) {
2927 goto found;
2928 }
2929 }
2930 continue;
2931 } else {
2932 ph = pr_find_pagehead_noalign(pp, (void *)addr);
2933 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2934 continue;
2935 }
2936 }
2937 found:
2938 item = (uintptr_t)ph->ph_page + ph->ph_off;
2939 item = item + rounddown(addr - item, pp->pr_size);
2940 (*pr)("%p is %p+%zu from POOL '%s'\n",
2941 (void *)addr, item, (size_t)(addr - item),
2942 pp->pr_wchan);
2943 }
2944 }
2945 #endif /* defined(DDB) */
2946