Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.138.4.1
      1 /*	$NetBSD: subr_pool.c,v 1.138.4.1 2007/12/13 21:56:54 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.138.4.1 2007/12/13 21:56:54 bouyer Exp $");
     42 
     43 #include "opt_ddb.h"
     44 #include "opt_pool.h"
     45 #include "opt_poollog.h"
     46 #include "opt_lockdebug.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/bitops.h>
     51 #include <sys/proc.h>
     52 #include <sys/errno.h>
     53 #include <sys/kernel.h>
     54 #include <sys/malloc.h>
     55 #include <sys/lock.h>
     56 #include <sys/pool.h>
     57 #include <sys/syslog.h>
     58 #include <sys/debug.h>
     59 #include <sys/lockdebug.h>
     60 #include <sys/xcall.h>
     61 #include <sys/cpu.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 /*
     66  * Pool resource management utility.
     67  *
     68  * Memory is allocated in pages which are split into pieces according to
     69  * the pool item size. Each page is kept on one of three lists in the
     70  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     71  * for empty, full and partially-full pages respectively. The individual
     72  * pool items are on a linked list headed by `ph_itemlist' in each page
     73  * header. The memory for building the page list is either taken from
     74  * the allocated pages themselves (for small pool items) or taken from
     75  * an internal pool of page headers (`phpool').
     76  */
     77 
     78 /* List of all pools */
     79 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     80 
     81 /* List of all caches. */
     82 LIST_HEAD(,pool_cache) pool_cache_head =
     83     LIST_HEAD_INITIALIZER(pool_cache_head);
     84 
     85 /* Private pool for page header structures */
     86 #define	PHPOOL_MAX	8
     87 static struct pool phpool[PHPOOL_MAX];
     88 #define	PHPOOL_FREELIST_NELEM(idx) \
     89 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     90 
     91 #ifdef POOL_SUBPAGE
     92 /* Pool of subpages for use by normal pools. */
     93 static struct pool psppool;
     94 #endif
     95 
     96 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     97     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     98 
     99 static void *pool_page_alloc_meta(struct pool *, int);
    100 static void pool_page_free_meta(struct pool *, void *);
    101 
    102 /* allocator for pool metadata */
    103 struct pool_allocator pool_allocator_meta = {
    104 	pool_page_alloc_meta, pool_page_free_meta,
    105 	.pa_backingmapptr = &kmem_map,
    106 };
    107 
    108 /* # of seconds to retain page after last use */
    109 int pool_inactive_time = 10;
    110 
    111 /* Next candidate for drainage (see pool_drain()) */
    112 static struct pool	*drainpp;
    113 
    114 /* This lock protects both pool_head and drainpp. */
    115 static kmutex_t pool_head_lock;
    116 static kcondvar_t pool_busy;
    117 
    118 typedef uint32_t pool_item_bitmap_t;
    119 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    120 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    121 
    122 struct pool_item_header {
    123 	/* Page headers */
    124 	LIST_ENTRY(pool_item_header)
    125 				ph_pagelist;	/* pool page list */
    126 	SPLAY_ENTRY(pool_item_header)
    127 				ph_node;	/* Off-page page headers */
    128 	void *			ph_page;	/* this page's address */
    129 	struct timeval		ph_time;	/* last referenced */
    130 	uint16_t		ph_nmissing;	/* # of chunks in use */
    131 	uint16_t		ph_off;		/* start offset in page */
    132 	union {
    133 		/* !PR_NOTOUCH */
    134 		struct {
    135 			LIST_HEAD(, pool_item)
    136 				phu_itemlist;	/* chunk list for this page */
    137 		} phu_normal;
    138 		/* PR_NOTOUCH */
    139 		struct {
    140 			pool_item_bitmap_t phu_bitmap[1];
    141 		} phu_notouch;
    142 	} ph_u;
    143 };
    144 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    145 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    146 
    147 struct pool_item {
    148 #ifdef DIAGNOSTIC
    149 	u_int pi_magic;
    150 #endif
    151 #define	PI_MAGIC 0xdeaddeadU
    152 	/* Other entries use only this list entry */
    153 	LIST_ENTRY(pool_item)	pi_list;
    154 };
    155 
    156 #define	POOL_NEEDS_CATCHUP(pp)						\
    157 	((pp)->pr_nitems < (pp)->pr_minitems)
    158 
    159 /*
    160  * Pool cache management.
    161  *
    162  * Pool caches provide a way for constructed objects to be cached by the
    163  * pool subsystem.  This can lead to performance improvements by avoiding
    164  * needless object construction/destruction; it is deferred until absolutely
    165  * necessary.
    166  *
    167  * Caches are grouped into cache groups.  Each cache group references up
    168  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    169  * object from the pool, it calls the object's constructor and places it
    170  * into a cache group.  When a cache group frees an object back to the
    171  * pool, it first calls the object's destructor.  This allows the object
    172  * to persist in constructed form while freed to the cache.
    173  *
    174  * The pool references each cache, so that when a pool is drained by the
    175  * pagedaemon, it can drain each individual cache as well.  Each time a
    176  * cache is drained, the most idle cache group is freed to the pool in
    177  * its entirety.
    178  *
    179  * Pool caches are layed on top of pools.  By layering them, we can avoid
    180  * the complexity of cache management for pools which would not benefit
    181  * from it.
    182  */
    183 
    184 static struct pool pcgpool;
    185 static struct pool cache_pool;
    186 static struct pool cache_cpu_pool;
    187 
    188 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    189 					     void *, paddr_t);
    190 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    191 					     void **, paddr_t *, int);
    192 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    193 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    194 static void	pool_cache_xcall(pool_cache_t);
    195 
    196 static int	pool_catchup(struct pool *);
    197 static void	pool_prime_page(struct pool *, void *,
    198 		    struct pool_item_header *);
    199 static void	pool_update_curpage(struct pool *);
    200 
    201 static int	pool_grow(struct pool *, int);
    202 static void	*pool_allocator_alloc(struct pool *, int);
    203 static void	pool_allocator_free(struct pool *, void *);
    204 
    205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    206 	void (*)(const char *, ...));
    207 static void pool_print1(struct pool *, const char *,
    208 	void (*)(const char *, ...));
    209 
    210 static int pool_chk_page(struct pool *, const char *,
    211 			 struct pool_item_header *);
    212 
    213 /*
    214  * Pool log entry. An array of these is allocated in pool_init().
    215  */
    216 struct pool_log {
    217 	const char	*pl_file;
    218 	long		pl_line;
    219 	int		pl_action;
    220 #define	PRLOG_GET	1
    221 #define	PRLOG_PUT	2
    222 	void		*pl_addr;
    223 };
    224 
    225 #ifdef POOL_DIAGNOSTIC
    226 /* Number of entries in pool log buffers */
    227 #ifndef POOL_LOGSIZE
    228 #define	POOL_LOGSIZE	10
    229 #endif
    230 
    231 int pool_logsize = POOL_LOGSIZE;
    232 
    233 static inline void
    234 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    235 {
    236 	int n = pp->pr_curlogentry;
    237 	struct pool_log *pl;
    238 
    239 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    240 		return;
    241 
    242 	/*
    243 	 * Fill in the current entry. Wrap around and overwrite
    244 	 * the oldest entry if necessary.
    245 	 */
    246 	pl = &pp->pr_log[n];
    247 	pl->pl_file = file;
    248 	pl->pl_line = line;
    249 	pl->pl_action = action;
    250 	pl->pl_addr = v;
    251 	if (++n >= pp->pr_logsize)
    252 		n = 0;
    253 	pp->pr_curlogentry = n;
    254 }
    255 
    256 static void
    257 pr_printlog(struct pool *pp, struct pool_item *pi,
    258     void (*pr)(const char *, ...))
    259 {
    260 	int i = pp->pr_logsize;
    261 	int n = pp->pr_curlogentry;
    262 
    263 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    264 		return;
    265 
    266 	/*
    267 	 * Print all entries in this pool's log.
    268 	 */
    269 	while (i-- > 0) {
    270 		struct pool_log *pl = &pp->pr_log[n];
    271 		if (pl->pl_action != 0) {
    272 			if (pi == NULL || pi == pl->pl_addr) {
    273 				(*pr)("\tlog entry %d:\n", i);
    274 				(*pr)("\t\taction = %s, addr = %p\n",
    275 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    276 				    pl->pl_addr);
    277 				(*pr)("\t\tfile: %s at line %lu\n",
    278 				    pl->pl_file, pl->pl_line);
    279 			}
    280 		}
    281 		if (++n >= pp->pr_logsize)
    282 			n = 0;
    283 	}
    284 }
    285 
    286 static inline void
    287 pr_enter(struct pool *pp, const char *file, long line)
    288 {
    289 
    290 	if (__predict_false(pp->pr_entered_file != NULL)) {
    291 		printf("pool %s: reentrancy at file %s line %ld\n",
    292 		    pp->pr_wchan, file, line);
    293 		printf("         previous entry at file %s line %ld\n",
    294 		    pp->pr_entered_file, pp->pr_entered_line);
    295 		panic("pr_enter");
    296 	}
    297 
    298 	pp->pr_entered_file = file;
    299 	pp->pr_entered_line = line;
    300 }
    301 
    302 static inline void
    303 pr_leave(struct pool *pp)
    304 {
    305 
    306 	if (__predict_false(pp->pr_entered_file == NULL)) {
    307 		printf("pool %s not entered?\n", pp->pr_wchan);
    308 		panic("pr_leave");
    309 	}
    310 
    311 	pp->pr_entered_file = NULL;
    312 	pp->pr_entered_line = 0;
    313 }
    314 
    315 static inline void
    316 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    317 {
    318 
    319 	if (pp->pr_entered_file != NULL)
    320 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    321 		    pp->pr_entered_file, pp->pr_entered_line);
    322 }
    323 #else
    324 #define	pr_log(pp, v, action, file, line)
    325 #define	pr_printlog(pp, pi, pr)
    326 #define	pr_enter(pp, file, line)
    327 #define	pr_leave(pp)
    328 #define	pr_enter_check(pp, pr)
    329 #endif /* POOL_DIAGNOSTIC */
    330 
    331 static inline unsigned int
    332 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    333     const void *v)
    334 {
    335 	const char *cp = v;
    336 	unsigned int idx;
    337 
    338 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    339 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    340 	KASSERT(idx < pp->pr_itemsperpage);
    341 	return idx;
    342 }
    343 
    344 static inline void
    345 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    346     void *obj)
    347 {
    348 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    349 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    350 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    351 
    352 	KASSERT((*bitmap & mask) == 0);
    353 	*bitmap |= mask;
    354 }
    355 
    356 static inline void *
    357 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    358 {
    359 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    360 	unsigned int idx;
    361 	int i;
    362 
    363 	for (i = 0; ; i++) {
    364 		int bit;
    365 
    366 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    367 		bit = ffs32(bitmap[i]);
    368 		if (bit) {
    369 			pool_item_bitmap_t mask;
    370 
    371 			bit--;
    372 			idx = (i * BITMAP_SIZE) + bit;
    373 			mask = 1 << bit;
    374 			KASSERT((bitmap[i] & mask) != 0);
    375 			bitmap[i] &= ~mask;
    376 			break;
    377 		}
    378 	}
    379 	KASSERT(idx < pp->pr_itemsperpage);
    380 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    381 }
    382 
    383 static inline void
    384 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    385 {
    386 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    387 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    388 	int i;
    389 
    390 	for (i = 0; i < n; i++) {
    391 		bitmap[i] = (pool_item_bitmap_t)-1;
    392 	}
    393 }
    394 
    395 static inline int
    396 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    397 {
    398 
    399 	/*
    400 	 * we consider pool_item_header with smaller ph_page bigger.
    401 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    402 	 */
    403 
    404 	if (a->ph_page < b->ph_page)
    405 		return (1);
    406 	else if (a->ph_page > b->ph_page)
    407 		return (-1);
    408 	else
    409 		return (0);
    410 }
    411 
    412 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    413 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    414 
    415 static inline struct pool_item_header *
    416 pr_find_pagehead_noalign(struct pool *pp, void *v)
    417 {
    418 	struct pool_item_header *ph, tmp;
    419 
    420 	tmp.ph_page = (void *)(uintptr_t)v;
    421 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    422 	if (ph == NULL) {
    423 		ph = SPLAY_ROOT(&pp->pr_phtree);
    424 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    425 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    426 		}
    427 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    428 	}
    429 
    430 	return ph;
    431 }
    432 
    433 /*
    434  * Return the pool page header based on item address.
    435  */
    436 static inline struct pool_item_header *
    437 pr_find_pagehead(struct pool *pp, void *v)
    438 {
    439 	struct pool_item_header *ph, tmp;
    440 
    441 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    442 		ph = pr_find_pagehead_noalign(pp, v);
    443 	} else {
    444 		void *page =
    445 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    446 
    447 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    448 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    449 		} else {
    450 			tmp.ph_page = page;
    451 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    452 		}
    453 	}
    454 
    455 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    456 	    ((char *)ph->ph_page <= (char *)v &&
    457 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    458 	return ph;
    459 }
    460 
    461 static void
    462 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    463 {
    464 	struct pool_item_header *ph;
    465 
    466 	while ((ph = LIST_FIRST(pq)) != NULL) {
    467 		LIST_REMOVE(ph, ph_pagelist);
    468 		pool_allocator_free(pp, ph->ph_page);
    469 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    470 			pool_put(pp->pr_phpool, ph);
    471 	}
    472 }
    473 
    474 /*
    475  * Remove a page from the pool.
    476  */
    477 static inline void
    478 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    479      struct pool_pagelist *pq)
    480 {
    481 
    482 	KASSERT(mutex_owned(&pp->pr_lock));
    483 
    484 	/*
    485 	 * If the page was idle, decrement the idle page count.
    486 	 */
    487 	if (ph->ph_nmissing == 0) {
    488 #ifdef DIAGNOSTIC
    489 		if (pp->pr_nidle == 0)
    490 			panic("pr_rmpage: nidle inconsistent");
    491 		if (pp->pr_nitems < pp->pr_itemsperpage)
    492 			panic("pr_rmpage: nitems inconsistent");
    493 #endif
    494 		pp->pr_nidle--;
    495 	}
    496 
    497 	pp->pr_nitems -= pp->pr_itemsperpage;
    498 
    499 	/*
    500 	 * Unlink the page from the pool and queue it for release.
    501 	 */
    502 	LIST_REMOVE(ph, ph_pagelist);
    503 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    504 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    505 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    506 
    507 	pp->pr_npages--;
    508 	pp->pr_npagefree++;
    509 
    510 	pool_update_curpage(pp);
    511 }
    512 
    513 static bool
    514 pa_starved_p(struct pool_allocator *pa)
    515 {
    516 
    517 	if (pa->pa_backingmap != NULL) {
    518 		return vm_map_starved_p(pa->pa_backingmap);
    519 	}
    520 	return false;
    521 }
    522 
    523 static int
    524 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    525 {
    526 	struct pool *pp = obj;
    527 	struct pool_allocator *pa = pp->pr_alloc;
    528 
    529 	KASSERT(&pp->pr_reclaimerentry == ce);
    530 	pool_reclaim(pp);
    531 	if (!pa_starved_p(pa)) {
    532 		return CALLBACK_CHAIN_ABORT;
    533 	}
    534 	return CALLBACK_CHAIN_CONTINUE;
    535 }
    536 
    537 static void
    538 pool_reclaim_register(struct pool *pp)
    539 {
    540 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    541 	int s;
    542 
    543 	if (map == NULL) {
    544 		return;
    545 	}
    546 
    547 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    548 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    549 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    550 	splx(s);
    551 }
    552 
    553 static void
    554 pool_reclaim_unregister(struct pool *pp)
    555 {
    556 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    557 	int s;
    558 
    559 	if (map == NULL) {
    560 		return;
    561 	}
    562 
    563 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    564 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    565 	    &pp->pr_reclaimerentry);
    566 	splx(s);
    567 }
    568 
    569 static void
    570 pa_reclaim_register(struct pool_allocator *pa)
    571 {
    572 	struct vm_map *map = *pa->pa_backingmapptr;
    573 	struct pool *pp;
    574 
    575 	KASSERT(pa->pa_backingmap == NULL);
    576 	if (map == NULL) {
    577 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    578 		return;
    579 	}
    580 	pa->pa_backingmap = map;
    581 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    582 		pool_reclaim_register(pp);
    583 	}
    584 }
    585 
    586 /*
    587  * Initialize all the pools listed in the "pools" link set.
    588  */
    589 void
    590 pool_subsystem_init(void)
    591 {
    592 	struct pool_allocator *pa;
    593 	__link_set_decl(pools, struct link_pool_init);
    594 	struct link_pool_init * const *pi;
    595 
    596 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    597 	cv_init(&pool_busy, "poolbusy");
    598 
    599 	__link_set_foreach(pi, pools)
    600 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    601 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    602 		    (*pi)->palloc, (*pi)->ipl);
    603 
    604 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    605 		KASSERT(pa->pa_backingmapptr != NULL);
    606 		KASSERT(*pa->pa_backingmapptr != NULL);
    607 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    608 		pa_reclaim_register(pa);
    609 	}
    610 
    611 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
    612 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    613 
    614 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
    615 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    616 }
    617 
    618 /*
    619  * Initialize the given pool resource structure.
    620  *
    621  * We export this routine to allow other kernel parts to declare
    622  * static pools that must be initialized before malloc() is available.
    623  */
    624 void
    625 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    626     const char *wchan, struct pool_allocator *palloc, int ipl)
    627 {
    628 #ifdef DEBUG
    629 	struct pool *pp1;
    630 #endif
    631 	size_t trysize, phsize;
    632 	int off, slack;
    633 
    634 #ifdef DEBUG
    635 	/*
    636 	 * Check that the pool hasn't already been initialised and
    637 	 * added to the list of all pools.
    638 	 */
    639 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
    640 		if (pp == pp1)
    641 			panic("pool_init: pool %s already initialised",
    642 			    wchan);
    643 	}
    644 #endif
    645 
    646 #ifdef POOL_DIAGNOSTIC
    647 	/*
    648 	 * Always log if POOL_DIAGNOSTIC is defined.
    649 	 */
    650 	if (pool_logsize != 0)
    651 		flags |= PR_LOGGING;
    652 #endif
    653 
    654 	if (palloc == NULL)
    655 		palloc = &pool_allocator_kmem;
    656 #ifdef POOL_SUBPAGE
    657 	if (size > palloc->pa_pagesz) {
    658 		if (palloc == &pool_allocator_kmem)
    659 			palloc = &pool_allocator_kmem_fullpage;
    660 		else if (palloc == &pool_allocator_nointr)
    661 			palloc = &pool_allocator_nointr_fullpage;
    662 	}
    663 #endif /* POOL_SUBPAGE */
    664 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    665 		if (palloc->pa_pagesz == 0)
    666 			palloc->pa_pagesz = PAGE_SIZE;
    667 
    668 		TAILQ_INIT(&palloc->pa_list);
    669 
    670 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    671 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    672 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    673 
    674 		if (palloc->pa_backingmapptr != NULL) {
    675 			pa_reclaim_register(palloc);
    676 		}
    677 		palloc->pa_flags |= PA_INITIALIZED;
    678 	}
    679 
    680 	if (align == 0)
    681 		align = ALIGN(1);
    682 
    683 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    684 		size = sizeof(struct pool_item);
    685 
    686 	size = roundup(size, align);
    687 #ifdef DIAGNOSTIC
    688 	if (size > palloc->pa_pagesz)
    689 		panic("pool_init: pool item size (%zu) too large", size);
    690 #endif
    691 
    692 	/*
    693 	 * Initialize the pool structure.
    694 	 */
    695 	LIST_INIT(&pp->pr_emptypages);
    696 	LIST_INIT(&pp->pr_fullpages);
    697 	LIST_INIT(&pp->pr_partpages);
    698 	pp->pr_cache = NULL;
    699 	pp->pr_curpage = NULL;
    700 	pp->pr_npages = 0;
    701 	pp->pr_minitems = 0;
    702 	pp->pr_minpages = 0;
    703 	pp->pr_maxpages = UINT_MAX;
    704 	pp->pr_roflags = flags;
    705 	pp->pr_flags = 0;
    706 	pp->pr_size = size;
    707 	pp->pr_align = align;
    708 	pp->pr_wchan = wchan;
    709 	pp->pr_alloc = palloc;
    710 	pp->pr_nitems = 0;
    711 	pp->pr_nout = 0;
    712 	pp->pr_hardlimit = UINT_MAX;
    713 	pp->pr_hardlimit_warning = NULL;
    714 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    715 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    716 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    717 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    718 	pp->pr_drain_hook = NULL;
    719 	pp->pr_drain_hook_arg = NULL;
    720 	pp->pr_freecheck = NULL;
    721 
    722 	/*
    723 	 * Decide whether to put the page header off page to avoid
    724 	 * wasting too large a part of the page or too big item.
    725 	 * Off-page page headers go on a hash table, so we can match
    726 	 * a returned item with its header based on the page address.
    727 	 * We use 1/16 of the page size and about 8 times of the item
    728 	 * size as the threshold (XXX: tune)
    729 	 *
    730 	 * However, we'll put the header into the page if we can put
    731 	 * it without wasting any items.
    732 	 *
    733 	 * Silently enforce `0 <= ioff < align'.
    734 	 */
    735 	pp->pr_itemoffset = ioff %= align;
    736 	/* See the comment below about reserved bytes. */
    737 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    738 	phsize = ALIGN(sizeof(struct pool_item_header));
    739 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    740 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    741 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    742 		/* Use the end of the page for the page header */
    743 		pp->pr_roflags |= PR_PHINPAGE;
    744 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    745 	} else {
    746 		/* The page header will be taken from our page header pool */
    747 		pp->pr_phoffset = 0;
    748 		off = palloc->pa_pagesz;
    749 		SPLAY_INIT(&pp->pr_phtree);
    750 	}
    751 
    752 	/*
    753 	 * Alignment is to take place at `ioff' within the item. This means
    754 	 * we must reserve up to `align - 1' bytes on the page to allow
    755 	 * appropriate positioning of each item.
    756 	 */
    757 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    758 	KASSERT(pp->pr_itemsperpage != 0);
    759 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    760 		int idx;
    761 
    762 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    763 		    idx++) {
    764 			/* nothing */
    765 		}
    766 		if (idx >= PHPOOL_MAX) {
    767 			/*
    768 			 * if you see this panic, consider to tweak
    769 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    770 			 */
    771 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    772 			    pp->pr_wchan, pp->pr_itemsperpage);
    773 		}
    774 		pp->pr_phpool = &phpool[idx];
    775 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    776 		pp->pr_phpool = &phpool[0];
    777 	}
    778 #if defined(DIAGNOSTIC)
    779 	else {
    780 		pp->pr_phpool = NULL;
    781 	}
    782 #endif
    783 
    784 	/*
    785 	 * Use the slack between the chunks and the page header
    786 	 * for "cache coloring".
    787 	 */
    788 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    789 	pp->pr_maxcolor = (slack / align) * align;
    790 	pp->pr_curcolor = 0;
    791 
    792 	pp->pr_nget = 0;
    793 	pp->pr_nfail = 0;
    794 	pp->pr_nput = 0;
    795 	pp->pr_npagealloc = 0;
    796 	pp->pr_npagefree = 0;
    797 	pp->pr_hiwat = 0;
    798 	pp->pr_nidle = 0;
    799 	pp->pr_refcnt = 0;
    800 
    801 #ifdef POOL_DIAGNOSTIC
    802 	if (flags & PR_LOGGING) {
    803 		if (kmem_map == NULL ||
    804 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    805 		     M_TEMP, M_NOWAIT)) == NULL)
    806 			pp->pr_roflags &= ~PR_LOGGING;
    807 		pp->pr_curlogentry = 0;
    808 		pp->pr_logsize = pool_logsize;
    809 	}
    810 #endif
    811 
    812 	pp->pr_entered_file = NULL;
    813 	pp->pr_entered_line = 0;
    814 
    815 	/*
    816 	 * XXXAD hack to prevent IP input processing from blocking.
    817 	 */
    818 	if (ipl == IPL_SOFTNET) {
    819 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
    820 	} else {
    821 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    822 	}
    823 	cv_init(&pp->pr_cv, wchan);
    824 	pp->pr_ipl = ipl;
    825 
    826 	/*
    827 	 * Initialize private page header pool and cache magazine pool if we
    828 	 * haven't done so yet.
    829 	 * XXX LOCKING.
    830 	 */
    831 	if (phpool[0].pr_size == 0) {
    832 		int idx;
    833 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    834 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    835 			int nelem;
    836 			size_t sz;
    837 
    838 			nelem = PHPOOL_FREELIST_NELEM(idx);
    839 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    840 			    "phpool-%d", nelem);
    841 			sz = sizeof(struct pool_item_header);
    842 			if (nelem) {
    843 				sz = offsetof(struct pool_item_header,
    844 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    845 			}
    846 			pool_init(&phpool[idx], sz, 0, 0, 0,
    847 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    848 		}
    849 #ifdef POOL_SUBPAGE
    850 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    851 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    852 #endif
    853 		pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
    854 		    "cachegrp", &pool_allocator_meta, IPL_VM);
    855 	}
    856 
    857 	if (__predict_true(!cold)) {
    858 		/* Insert into the list of all pools. */
    859 		mutex_enter(&pool_head_lock);
    860 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    861 		mutex_exit(&pool_head_lock);
    862 
    863 		/* Insert this into the list of pools using this allocator. */
    864 		mutex_enter(&palloc->pa_lock);
    865 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    866 		mutex_exit(&palloc->pa_lock);
    867 	} else {
    868 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    869 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    870 	}
    871 
    872 	pool_reclaim_register(pp);
    873 }
    874 
    875 /*
    876  * De-commision a pool resource.
    877  */
    878 void
    879 pool_destroy(struct pool *pp)
    880 {
    881 	struct pool_pagelist pq;
    882 	struct pool_item_header *ph;
    883 
    884 	/* Remove from global pool list */
    885 	mutex_enter(&pool_head_lock);
    886 	while (pp->pr_refcnt != 0)
    887 		cv_wait(&pool_busy, &pool_head_lock);
    888 	LIST_REMOVE(pp, pr_poollist);
    889 	if (drainpp == pp)
    890 		drainpp = NULL;
    891 	mutex_exit(&pool_head_lock);
    892 
    893 	/* Remove this pool from its allocator's list of pools. */
    894 	pool_reclaim_unregister(pp);
    895 	mutex_enter(&pp->pr_alloc->pa_lock);
    896 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    897 	mutex_exit(&pp->pr_alloc->pa_lock);
    898 
    899 	mutex_enter(&pp->pr_lock);
    900 
    901 	KASSERT(pp->pr_cache == NULL);
    902 
    903 #ifdef DIAGNOSTIC
    904 	if (pp->pr_nout != 0) {
    905 		pr_printlog(pp, NULL, printf);
    906 		panic("pool_destroy: pool busy: still out: %u",
    907 		    pp->pr_nout);
    908 	}
    909 #endif
    910 
    911 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    912 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    913 
    914 	/* Remove all pages */
    915 	LIST_INIT(&pq);
    916 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    917 		pr_rmpage(pp, ph, &pq);
    918 
    919 	mutex_exit(&pp->pr_lock);
    920 
    921 	pr_pagelist_free(pp, &pq);
    922 
    923 #ifdef POOL_DIAGNOSTIC
    924 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    925 		free(pp->pr_log, M_TEMP);
    926 #endif
    927 
    928 	cv_destroy(&pp->pr_cv);
    929 	mutex_destroy(&pp->pr_lock);
    930 }
    931 
    932 void
    933 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    934 {
    935 
    936 	/* XXX no locking -- must be used just after pool_init() */
    937 #ifdef DIAGNOSTIC
    938 	if (pp->pr_drain_hook != NULL)
    939 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    940 #endif
    941 	pp->pr_drain_hook = fn;
    942 	pp->pr_drain_hook_arg = arg;
    943 }
    944 
    945 static struct pool_item_header *
    946 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    947 {
    948 	struct pool_item_header *ph;
    949 
    950 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    951 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    952 	else
    953 		ph = pool_get(pp->pr_phpool, flags);
    954 
    955 	return (ph);
    956 }
    957 
    958 /*
    959  * Grab an item from the pool.
    960  */
    961 void *
    962 #ifdef POOL_DIAGNOSTIC
    963 _pool_get(struct pool *pp, int flags, const char *file, long line)
    964 #else
    965 pool_get(struct pool *pp, int flags)
    966 #endif
    967 {
    968 	struct pool_item *pi;
    969 	struct pool_item_header *ph;
    970 	void *v;
    971 
    972 #ifdef DIAGNOSTIC
    973 	if (__predict_false(pp->pr_itemsperpage == 0))
    974 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    975 		    "pool not initialized?", pp);
    976 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    977 			    (flags & PR_WAITOK) != 0))
    978 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    979 
    980 #endif /* DIAGNOSTIC */
    981 #ifdef LOCKDEBUG
    982 	if (flags & PR_WAITOK)
    983 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
    984 #endif
    985 
    986 	mutex_enter(&pp->pr_lock);
    987 	pr_enter(pp, file, line);
    988 
    989  startover:
    990 	/*
    991 	 * Check to see if we've reached the hard limit.  If we have,
    992 	 * and we can wait, then wait until an item has been returned to
    993 	 * the pool.
    994 	 */
    995 #ifdef DIAGNOSTIC
    996 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    997 		pr_leave(pp);
    998 		mutex_exit(&pp->pr_lock);
    999 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1000 	}
   1001 #endif
   1002 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1003 		if (pp->pr_drain_hook != NULL) {
   1004 			/*
   1005 			 * Since the drain hook is going to free things
   1006 			 * back to the pool, unlock, call the hook, re-lock,
   1007 			 * and check the hardlimit condition again.
   1008 			 */
   1009 			pr_leave(pp);
   1010 			mutex_exit(&pp->pr_lock);
   1011 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1012 			mutex_enter(&pp->pr_lock);
   1013 			pr_enter(pp, file, line);
   1014 			if (pp->pr_nout < pp->pr_hardlimit)
   1015 				goto startover;
   1016 		}
   1017 
   1018 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1019 			/*
   1020 			 * XXX: A warning isn't logged in this case.  Should
   1021 			 * it be?
   1022 			 */
   1023 			pp->pr_flags |= PR_WANTED;
   1024 			pr_leave(pp);
   1025 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1026 			pr_enter(pp, file, line);
   1027 			goto startover;
   1028 		}
   1029 
   1030 		/*
   1031 		 * Log a message that the hard limit has been hit.
   1032 		 */
   1033 		if (pp->pr_hardlimit_warning != NULL &&
   1034 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1035 			      &pp->pr_hardlimit_ratecap))
   1036 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1037 
   1038 		pp->pr_nfail++;
   1039 
   1040 		pr_leave(pp);
   1041 		mutex_exit(&pp->pr_lock);
   1042 		return (NULL);
   1043 	}
   1044 
   1045 	/*
   1046 	 * The convention we use is that if `curpage' is not NULL, then
   1047 	 * it points at a non-empty bucket. In particular, `curpage'
   1048 	 * never points at a page header which has PR_PHINPAGE set and
   1049 	 * has no items in its bucket.
   1050 	 */
   1051 	if ((ph = pp->pr_curpage) == NULL) {
   1052 		int error;
   1053 
   1054 #ifdef DIAGNOSTIC
   1055 		if (pp->pr_nitems != 0) {
   1056 			mutex_exit(&pp->pr_lock);
   1057 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1058 			    pp->pr_wchan, pp->pr_nitems);
   1059 			panic("pool_get: nitems inconsistent");
   1060 		}
   1061 #endif
   1062 
   1063 		/*
   1064 		 * Call the back-end page allocator for more memory.
   1065 		 * Release the pool lock, as the back-end page allocator
   1066 		 * may block.
   1067 		 */
   1068 		pr_leave(pp);
   1069 		error = pool_grow(pp, flags);
   1070 		pr_enter(pp, file, line);
   1071 		if (error != 0) {
   1072 			/*
   1073 			 * We were unable to allocate a page or item
   1074 			 * header, but we released the lock during
   1075 			 * allocation, so perhaps items were freed
   1076 			 * back to the pool.  Check for this case.
   1077 			 */
   1078 			if (pp->pr_curpage != NULL)
   1079 				goto startover;
   1080 
   1081 			pp->pr_nfail++;
   1082 			pr_leave(pp);
   1083 			mutex_exit(&pp->pr_lock);
   1084 			return (NULL);
   1085 		}
   1086 
   1087 		/* Start the allocation process over. */
   1088 		goto startover;
   1089 	}
   1090 	if (pp->pr_roflags & PR_NOTOUCH) {
   1091 #ifdef DIAGNOSTIC
   1092 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1093 			pr_leave(pp);
   1094 			mutex_exit(&pp->pr_lock);
   1095 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1096 		}
   1097 #endif
   1098 		v = pr_item_notouch_get(pp, ph);
   1099 #ifdef POOL_DIAGNOSTIC
   1100 		pr_log(pp, v, PRLOG_GET, file, line);
   1101 #endif
   1102 	} else {
   1103 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1104 		if (__predict_false(v == NULL)) {
   1105 			pr_leave(pp);
   1106 			mutex_exit(&pp->pr_lock);
   1107 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1108 		}
   1109 #ifdef DIAGNOSTIC
   1110 		if (__predict_false(pp->pr_nitems == 0)) {
   1111 			pr_leave(pp);
   1112 			mutex_exit(&pp->pr_lock);
   1113 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1114 			    pp->pr_wchan, pp->pr_nitems);
   1115 			panic("pool_get: nitems inconsistent");
   1116 		}
   1117 #endif
   1118 
   1119 #ifdef POOL_DIAGNOSTIC
   1120 		pr_log(pp, v, PRLOG_GET, file, line);
   1121 #endif
   1122 
   1123 #ifdef DIAGNOSTIC
   1124 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1125 			pr_printlog(pp, pi, printf);
   1126 			panic("pool_get(%s): free list modified: "
   1127 			    "magic=%x; page %p; item addr %p\n",
   1128 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1129 		}
   1130 #endif
   1131 
   1132 		/*
   1133 		 * Remove from item list.
   1134 		 */
   1135 		LIST_REMOVE(pi, pi_list);
   1136 	}
   1137 	pp->pr_nitems--;
   1138 	pp->pr_nout++;
   1139 	if (ph->ph_nmissing == 0) {
   1140 #ifdef DIAGNOSTIC
   1141 		if (__predict_false(pp->pr_nidle == 0))
   1142 			panic("pool_get: nidle inconsistent");
   1143 #endif
   1144 		pp->pr_nidle--;
   1145 
   1146 		/*
   1147 		 * This page was previously empty.  Move it to the list of
   1148 		 * partially-full pages.  This page is already curpage.
   1149 		 */
   1150 		LIST_REMOVE(ph, ph_pagelist);
   1151 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1152 	}
   1153 	ph->ph_nmissing++;
   1154 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1155 #ifdef DIAGNOSTIC
   1156 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1157 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1158 			pr_leave(pp);
   1159 			mutex_exit(&pp->pr_lock);
   1160 			panic("pool_get: %s: nmissing inconsistent",
   1161 			    pp->pr_wchan);
   1162 		}
   1163 #endif
   1164 		/*
   1165 		 * This page is now full.  Move it to the full list
   1166 		 * and select a new current page.
   1167 		 */
   1168 		LIST_REMOVE(ph, ph_pagelist);
   1169 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1170 		pool_update_curpage(pp);
   1171 	}
   1172 
   1173 	pp->pr_nget++;
   1174 	pr_leave(pp);
   1175 
   1176 	/*
   1177 	 * If we have a low water mark and we are now below that low
   1178 	 * water mark, add more items to the pool.
   1179 	 */
   1180 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1181 		/*
   1182 		 * XXX: Should we log a warning?  Should we set up a timeout
   1183 		 * to try again in a second or so?  The latter could break
   1184 		 * a caller's assumptions about interrupt protection, etc.
   1185 		 */
   1186 	}
   1187 
   1188 	mutex_exit(&pp->pr_lock);
   1189 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1190 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1191 	return (v);
   1192 }
   1193 
   1194 /*
   1195  * Internal version of pool_put().  Pool is already locked/entered.
   1196  */
   1197 static void
   1198 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1199 {
   1200 	struct pool_item *pi = v;
   1201 	struct pool_item_header *ph;
   1202 
   1203 	KASSERT(mutex_owned(&pp->pr_lock));
   1204 	FREECHECK_IN(&pp->pr_freecheck, v);
   1205 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1206 
   1207 #ifdef DIAGNOSTIC
   1208 	if (__predict_false(pp->pr_nout == 0)) {
   1209 		printf("pool %s: putting with none out\n",
   1210 		    pp->pr_wchan);
   1211 		panic("pool_put");
   1212 	}
   1213 #endif
   1214 
   1215 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1216 		pr_printlog(pp, NULL, printf);
   1217 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1218 	}
   1219 
   1220 	/*
   1221 	 * Return to item list.
   1222 	 */
   1223 	if (pp->pr_roflags & PR_NOTOUCH) {
   1224 		pr_item_notouch_put(pp, ph, v);
   1225 	} else {
   1226 #ifdef DIAGNOSTIC
   1227 		pi->pi_magic = PI_MAGIC;
   1228 #endif
   1229 #ifdef DEBUG
   1230 		{
   1231 			int i, *ip = v;
   1232 
   1233 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1234 				*ip++ = PI_MAGIC;
   1235 			}
   1236 		}
   1237 #endif
   1238 
   1239 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1240 	}
   1241 	KDASSERT(ph->ph_nmissing != 0);
   1242 	ph->ph_nmissing--;
   1243 	pp->pr_nput++;
   1244 	pp->pr_nitems++;
   1245 	pp->pr_nout--;
   1246 
   1247 	/* Cancel "pool empty" condition if it exists */
   1248 	if (pp->pr_curpage == NULL)
   1249 		pp->pr_curpage = ph;
   1250 
   1251 	if (pp->pr_flags & PR_WANTED) {
   1252 		pp->pr_flags &= ~PR_WANTED;
   1253 		if (ph->ph_nmissing == 0)
   1254 			pp->pr_nidle++;
   1255 		cv_broadcast(&pp->pr_cv);
   1256 		return;
   1257 	}
   1258 
   1259 	/*
   1260 	 * If this page is now empty, do one of two things:
   1261 	 *
   1262 	 *	(1) If we have more pages than the page high water mark,
   1263 	 *	    free the page back to the system.  ONLY CONSIDER
   1264 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1265 	 *	    CLAIM.
   1266 	 *
   1267 	 *	(2) Otherwise, move the page to the empty page list.
   1268 	 *
   1269 	 * Either way, select a new current page (so we use a partially-full
   1270 	 * page if one is available).
   1271 	 */
   1272 	if (ph->ph_nmissing == 0) {
   1273 		pp->pr_nidle++;
   1274 		if (pp->pr_npages > pp->pr_minpages &&
   1275 		    (pp->pr_npages > pp->pr_maxpages ||
   1276 		     pa_starved_p(pp->pr_alloc))) {
   1277 			pr_rmpage(pp, ph, pq);
   1278 		} else {
   1279 			LIST_REMOVE(ph, ph_pagelist);
   1280 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1281 
   1282 			/*
   1283 			 * Update the timestamp on the page.  A page must
   1284 			 * be idle for some period of time before it can
   1285 			 * be reclaimed by the pagedaemon.  This minimizes
   1286 			 * ping-pong'ing for memory.
   1287 			 */
   1288 			getmicrotime(&ph->ph_time);
   1289 		}
   1290 		pool_update_curpage(pp);
   1291 	}
   1292 
   1293 	/*
   1294 	 * If the page was previously completely full, move it to the
   1295 	 * partially-full list and make it the current page.  The next
   1296 	 * allocation will get the item from this page, instead of
   1297 	 * further fragmenting the pool.
   1298 	 */
   1299 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1300 		LIST_REMOVE(ph, ph_pagelist);
   1301 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1302 		pp->pr_curpage = ph;
   1303 	}
   1304 }
   1305 
   1306 /*
   1307  * Return resource to the pool.
   1308  */
   1309 #ifdef POOL_DIAGNOSTIC
   1310 void
   1311 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1312 {
   1313 	struct pool_pagelist pq;
   1314 
   1315 	LIST_INIT(&pq);
   1316 
   1317 	mutex_enter(&pp->pr_lock);
   1318 	pr_enter(pp, file, line);
   1319 
   1320 	pr_log(pp, v, PRLOG_PUT, file, line);
   1321 
   1322 	pool_do_put(pp, v, &pq);
   1323 
   1324 	pr_leave(pp);
   1325 	mutex_exit(&pp->pr_lock);
   1326 
   1327 	pr_pagelist_free(pp, &pq);
   1328 }
   1329 #undef pool_put
   1330 #endif /* POOL_DIAGNOSTIC */
   1331 
   1332 void
   1333 pool_put(struct pool *pp, void *v)
   1334 {
   1335 	struct pool_pagelist pq;
   1336 
   1337 	LIST_INIT(&pq);
   1338 
   1339 	mutex_enter(&pp->pr_lock);
   1340 	pool_do_put(pp, v, &pq);
   1341 	mutex_exit(&pp->pr_lock);
   1342 
   1343 	pr_pagelist_free(pp, &pq);
   1344 }
   1345 
   1346 #ifdef POOL_DIAGNOSTIC
   1347 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1348 #endif
   1349 
   1350 /*
   1351  * pool_grow: grow a pool by a page.
   1352  *
   1353  * => called with pool locked.
   1354  * => unlock and relock the pool.
   1355  * => return with pool locked.
   1356  */
   1357 
   1358 static int
   1359 pool_grow(struct pool *pp, int flags)
   1360 {
   1361 	struct pool_item_header *ph = NULL;
   1362 	char *cp;
   1363 
   1364 	mutex_exit(&pp->pr_lock);
   1365 	cp = pool_allocator_alloc(pp, flags);
   1366 	if (__predict_true(cp != NULL)) {
   1367 		ph = pool_alloc_item_header(pp, cp, flags);
   1368 	}
   1369 	if (__predict_false(cp == NULL || ph == NULL)) {
   1370 		if (cp != NULL) {
   1371 			pool_allocator_free(pp, cp);
   1372 		}
   1373 		mutex_enter(&pp->pr_lock);
   1374 		return ENOMEM;
   1375 	}
   1376 
   1377 	mutex_enter(&pp->pr_lock);
   1378 	pool_prime_page(pp, cp, ph);
   1379 	pp->pr_npagealloc++;
   1380 	return 0;
   1381 }
   1382 
   1383 /*
   1384  * Add N items to the pool.
   1385  */
   1386 int
   1387 pool_prime(struct pool *pp, int n)
   1388 {
   1389 	int newpages;
   1390 	int error = 0;
   1391 
   1392 	mutex_enter(&pp->pr_lock);
   1393 
   1394 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1395 
   1396 	while (newpages-- > 0) {
   1397 		error = pool_grow(pp, PR_NOWAIT);
   1398 		if (error) {
   1399 			break;
   1400 		}
   1401 		pp->pr_minpages++;
   1402 	}
   1403 
   1404 	if (pp->pr_minpages >= pp->pr_maxpages)
   1405 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1406 
   1407 	mutex_exit(&pp->pr_lock);
   1408 	return error;
   1409 }
   1410 
   1411 /*
   1412  * Add a page worth of items to the pool.
   1413  *
   1414  * Note, we must be called with the pool descriptor LOCKED.
   1415  */
   1416 static void
   1417 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1418 {
   1419 	struct pool_item *pi;
   1420 	void *cp = storage;
   1421 	const unsigned int align = pp->pr_align;
   1422 	const unsigned int ioff = pp->pr_itemoffset;
   1423 	int n;
   1424 
   1425 	KASSERT(mutex_owned(&pp->pr_lock));
   1426 
   1427 #ifdef DIAGNOSTIC
   1428 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1429 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1430 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1431 #endif
   1432 
   1433 	/*
   1434 	 * Insert page header.
   1435 	 */
   1436 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1437 	LIST_INIT(&ph->ph_itemlist);
   1438 	ph->ph_page = storage;
   1439 	ph->ph_nmissing = 0;
   1440 	getmicrotime(&ph->ph_time);
   1441 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1442 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1443 
   1444 	pp->pr_nidle++;
   1445 
   1446 	/*
   1447 	 * Color this page.
   1448 	 */
   1449 	ph->ph_off = pp->pr_curcolor;
   1450 	cp = (char *)cp + ph->ph_off;
   1451 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1452 		pp->pr_curcolor = 0;
   1453 
   1454 	/*
   1455 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1456 	 */
   1457 	if (ioff != 0)
   1458 		cp = (char *)cp + align - ioff;
   1459 
   1460 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1461 
   1462 	/*
   1463 	 * Insert remaining chunks on the bucket list.
   1464 	 */
   1465 	n = pp->pr_itemsperpage;
   1466 	pp->pr_nitems += n;
   1467 
   1468 	if (pp->pr_roflags & PR_NOTOUCH) {
   1469 		pr_item_notouch_init(pp, ph);
   1470 	} else {
   1471 		while (n--) {
   1472 			pi = (struct pool_item *)cp;
   1473 
   1474 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1475 
   1476 			/* Insert on page list */
   1477 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1478 #ifdef DIAGNOSTIC
   1479 			pi->pi_magic = PI_MAGIC;
   1480 #endif
   1481 			cp = (char *)cp + pp->pr_size;
   1482 
   1483 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1484 		}
   1485 	}
   1486 
   1487 	/*
   1488 	 * If the pool was depleted, point at the new page.
   1489 	 */
   1490 	if (pp->pr_curpage == NULL)
   1491 		pp->pr_curpage = ph;
   1492 
   1493 	if (++pp->pr_npages > pp->pr_hiwat)
   1494 		pp->pr_hiwat = pp->pr_npages;
   1495 }
   1496 
   1497 /*
   1498  * Used by pool_get() when nitems drops below the low water mark.  This
   1499  * is used to catch up pr_nitems with the low water mark.
   1500  *
   1501  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1502  *
   1503  * Note 2, we must be called with the pool already locked, and we return
   1504  * with it locked.
   1505  */
   1506 static int
   1507 pool_catchup(struct pool *pp)
   1508 {
   1509 	int error = 0;
   1510 
   1511 	while (POOL_NEEDS_CATCHUP(pp)) {
   1512 		error = pool_grow(pp, PR_NOWAIT);
   1513 		if (error) {
   1514 			break;
   1515 		}
   1516 	}
   1517 	return error;
   1518 }
   1519 
   1520 static void
   1521 pool_update_curpage(struct pool *pp)
   1522 {
   1523 
   1524 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1525 	if (pp->pr_curpage == NULL) {
   1526 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1527 	}
   1528 }
   1529 
   1530 void
   1531 pool_setlowat(struct pool *pp, int n)
   1532 {
   1533 
   1534 	mutex_enter(&pp->pr_lock);
   1535 
   1536 	pp->pr_minitems = n;
   1537 	pp->pr_minpages = (n == 0)
   1538 		? 0
   1539 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1540 
   1541 	/* Make sure we're caught up with the newly-set low water mark. */
   1542 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1543 		/*
   1544 		 * XXX: Should we log a warning?  Should we set up a timeout
   1545 		 * to try again in a second or so?  The latter could break
   1546 		 * a caller's assumptions about interrupt protection, etc.
   1547 		 */
   1548 	}
   1549 
   1550 	mutex_exit(&pp->pr_lock);
   1551 }
   1552 
   1553 void
   1554 pool_sethiwat(struct pool *pp, int n)
   1555 {
   1556 
   1557 	mutex_enter(&pp->pr_lock);
   1558 
   1559 	pp->pr_maxpages = (n == 0)
   1560 		? 0
   1561 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1562 
   1563 	mutex_exit(&pp->pr_lock);
   1564 }
   1565 
   1566 void
   1567 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1568 {
   1569 
   1570 	mutex_enter(&pp->pr_lock);
   1571 
   1572 	pp->pr_hardlimit = n;
   1573 	pp->pr_hardlimit_warning = warnmess;
   1574 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1575 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1576 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1577 
   1578 	/*
   1579 	 * In-line version of pool_sethiwat(), because we don't want to
   1580 	 * release the lock.
   1581 	 */
   1582 	pp->pr_maxpages = (n == 0)
   1583 		? 0
   1584 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1585 
   1586 	mutex_exit(&pp->pr_lock);
   1587 }
   1588 
   1589 /*
   1590  * Release all complete pages that have not been used recently.
   1591  */
   1592 int
   1593 #ifdef POOL_DIAGNOSTIC
   1594 _pool_reclaim(struct pool *pp, const char *file, long line)
   1595 #else
   1596 pool_reclaim(struct pool *pp)
   1597 #endif
   1598 {
   1599 	struct pool_item_header *ph, *phnext;
   1600 	struct pool_pagelist pq;
   1601 	struct timeval curtime, diff;
   1602 	bool klock;
   1603 	int rv;
   1604 
   1605 	if (pp->pr_drain_hook != NULL) {
   1606 		/*
   1607 		 * The drain hook must be called with the pool unlocked.
   1608 		 */
   1609 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1610 	}
   1611 
   1612 	/*
   1613 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
   1614 	 * and we are called from the pagedaemon without kernel_lock.
   1615 	 * Does not apply to IPL_SOFTBIO.
   1616 	 */
   1617 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1618 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1619 		KERNEL_LOCK(1, NULL);
   1620 		klock = true;
   1621 	} else
   1622 		klock = false;
   1623 
   1624 	/* Reclaim items from the pool's cache (if any). */
   1625 	if (pp->pr_cache != NULL)
   1626 		pool_cache_invalidate(pp->pr_cache);
   1627 
   1628 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1629 		if (klock) {
   1630 			KERNEL_UNLOCK_ONE(NULL);
   1631 		}
   1632 		return (0);
   1633 	}
   1634 	pr_enter(pp, file, line);
   1635 
   1636 	LIST_INIT(&pq);
   1637 
   1638 	getmicrotime(&curtime);
   1639 
   1640 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1641 		phnext = LIST_NEXT(ph, ph_pagelist);
   1642 
   1643 		/* Check our minimum page claim */
   1644 		if (pp->pr_npages <= pp->pr_minpages)
   1645 			break;
   1646 
   1647 		KASSERT(ph->ph_nmissing == 0);
   1648 		timersub(&curtime, &ph->ph_time, &diff);
   1649 		if (diff.tv_sec < pool_inactive_time
   1650 		    && !pa_starved_p(pp->pr_alloc))
   1651 			continue;
   1652 
   1653 		/*
   1654 		 * If freeing this page would put us below
   1655 		 * the low water mark, stop now.
   1656 		 */
   1657 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1658 		    pp->pr_minitems)
   1659 			break;
   1660 
   1661 		pr_rmpage(pp, ph, &pq);
   1662 	}
   1663 
   1664 	pr_leave(pp);
   1665 	mutex_exit(&pp->pr_lock);
   1666 
   1667 	if (LIST_EMPTY(&pq))
   1668 		rv = 0;
   1669 	else {
   1670 		pr_pagelist_free(pp, &pq);
   1671 		rv = 1;
   1672 	}
   1673 
   1674 	if (klock) {
   1675 		KERNEL_UNLOCK_ONE(NULL);
   1676 	}
   1677 
   1678 	return (rv);
   1679 }
   1680 
   1681 /*
   1682  * Drain pools, one at a time.  This is a two stage process;
   1683  * drain_start kicks off a cross call to drain CPU-level caches
   1684  * if the pool has an associated pool_cache.  drain_end waits
   1685  * for those cross calls to finish, and then drains the cache
   1686  * (if any) and pool.
   1687  *
   1688  * Note, must never be called from interrupt context.
   1689  */
   1690 void
   1691 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1692 {
   1693 	struct pool *pp;
   1694 
   1695 	KASSERT(!LIST_EMPTY(&pool_head));
   1696 
   1697 	pp = NULL;
   1698 
   1699 	/* Find next pool to drain, and add a reference. */
   1700 	mutex_enter(&pool_head_lock);
   1701 	do {
   1702 		if (drainpp == NULL) {
   1703 			drainpp = LIST_FIRST(&pool_head);
   1704 		}
   1705 		if (drainpp != NULL) {
   1706 			pp = drainpp;
   1707 			drainpp = LIST_NEXT(pp, pr_poollist);
   1708 		}
   1709 		/*
   1710 		 * Skip completely idle pools.  We depend on at least
   1711 		 * one pool in the system being active.
   1712 		 */
   1713 	} while (pp == NULL || pp->pr_npages == 0);
   1714 	pp->pr_refcnt++;
   1715 	mutex_exit(&pool_head_lock);
   1716 
   1717 	/* If there is a pool_cache, drain CPU level caches. */
   1718 	*ppp = pp;
   1719 	if (pp->pr_cache != NULL) {
   1720 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1721 		    pp->pr_cache, NULL);
   1722 	}
   1723 }
   1724 
   1725 void
   1726 pool_drain_end(struct pool *pp, uint64_t where)
   1727 {
   1728 
   1729 	if (pp == NULL)
   1730 		return;
   1731 
   1732 	KASSERT(pp->pr_refcnt > 0);
   1733 
   1734 	/* Wait for remote draining to complete. */
   1735 	if (pp->pr_cache != NULL)
   1736 		xc_wait(where);
   1737 
   1738 	/* Drain the cache (if any) and pool.. */
   1739 	pool_reclaim(pp);
   1740 
   1741 	/* Finally, unlock the pool. */
   1742 	mutex_enter(&pool_head_lock);
   1743 	pp->pr_refcnt--;
   1744 	cv_broadcast(&pool_busy);
   1745 	mutex_exit(&pool_head_lock);
   1746 }
   1747 
   1748 /*
   1749  * Diagnostic helpers.
   1750  */
   1751 void
   1752 pool_print(struct pool *pp, const char *modif)
   1753 {
   1754 
   1755 	pool_print1(pp, modif, printf);
   1756 }
   1757 
   1758 void
   1759 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1760 {
   1761 	struct pool *pp;
   1762 
   1763 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   1764 		pool_printit(pp, modif, pr);
   1765 	}
   1766 }
   1767 
   1768 void
   1769 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1770 {
   1771 
   1772 	if (pp == NULL) {
   1773 		(*pr)("Must specify a pool to print.\n");
   1774 		return;
   1775 	}
   1776 
   1777 	pool_print1(pp, modif, pr);
   1778 }
   1779 
   1780 static void
   1781 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1782     void (*pr)(const char *, ...))
   1783 {
   1784 	struct pool_item_header *ph;
   1785 #ifdef DIAGNOSTIC
   1786 	struct pool_item *pi;
   1787 #endif
   1788 
   1789 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1790 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1791 		    ph->ph_page, ph->ph_nmissing,
   1792 		    (u_long)ph->ph_time.tv_sec,
   1793 		    (u_long)ph->ph_time.tv_usec);
   1794 #ifdef DIAGNOSTIC
   1795 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1796 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1797 				if (pi->pi_magic != PI_MAGIC) {
   1798 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1799 					    pi, pi->pi_magic);
   1800 				}
   1801 			}
   1802 		}
   1803 #endif
   1804 	}
   1805 }
   1806 
   1807 static void
   1808 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1809 {
   1810 	struct pool_item_header *ph;
   1811 	pool_cache_t pc;
   1812 	pcg_t *pcg;
   1813 	pool_cache_cpu_t *cc;
   1814 	uint64_t cpuhit, cpumiss;
   1815 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1816 	char c;
   1817 
   1818 	while ((c = *modif++) != '\0') {
   1819 		if (c == 'l')
   1820 			print_log = 1;
   1821 		if (c == 'p')
   1822 			print_pagelist = 1;
   1823 		if (c == 'c')
   1824 			print_cache = 1;
   1825 	}
   1826 
   1827 	if ((pc = pp->pr_cache) != NULL) {
   1828 		(*pr)("POOL CACHE");
   1829 	} else {
   1830 		(*pr)("POOL");
   1831 	}
   1832 
   1833 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1834 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1835 	    pp->pr_roflags);
   1836 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1837 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1838 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1839 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1840 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1841 
   1842 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1843 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1844 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1845 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1846 
   1847 	if (print_pagelist == 0)
   1848 		goto skip_pagelist;
   1849 
   1850 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1851 		(*pr)("\n\tempty page list:\n");
   1852 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1853 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1854 		(*pr)("\n\tfull page list:\n");
   1855 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1856 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1857 		(*pr)("\n\tpartial-page list:\n");
   1858 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1859 
   1860 	if (pp->pr_curpage == NULL)
   1861 		(*pr)("\tno current page\n");
   1862 	else
   1863 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1864 
   1865  skip_pagelist:
   1866 	if (print_log == 0)
   1867 		goto skip_log;
   1868 
   1869 	(*pr)("\n");
   1870 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1871 		(*pr)("\tno log\n");
   1872 	else {
   1873 		pr_printlog(pp, NULL, pr);
   1874 	}
   1875 
   1876  skip_log:
   1877 
   1878 #define PR_GROUPLIST(pcg)						\
   1879 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1880 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1881 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1882 		    POOL_PADDR_INVALID) {				\
   1883 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1884 			    pcg->pcg_objects[i].pcgo_va,		\
   1885 			    (unsigned long long)			\
   1886 			    pcg->pcg_objects[i].pcgo_pa);		\
   1887 		} else {						\
   1888 			(*pr)("\t\t\t%p\n",				\
   1889 			    pcg->pcg_objects[i].pcgo_va);		\
   1890 		}							\
   1891 	}
   1892 
   1893 	if (pc != NULL) {
   1894 		cpuhit = 0;
   1895 		cpumiss = 0;
   1896 		for (i = 0; i < MAXCPUS; i++) {
   1897 			if ((cc = pc->pc_cpus[i]) == NULL)
   1898 				continue;
   1899 			cpuhit += cc->cc_hits;
   1900 			cpumiss += cc->cc_misses;
   1901 		}
   1902 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1903 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1904 		    pc->pc_hits, pc->pc_misses);
   1905 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1906 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1907 		    pc->pc_contended);
   1908 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1909 		    pc->pc_nempty, pc->pc_nfull);
   1910 		if (print_cache) {
   1911 			(*pr)("\tfull cache groups:\n");
   1912 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1913 			    pcg = pcg->pcg_next) {
   1914 				PR_GROUPLIST(pcg);
   1915 			}
   1916 			(*pr)("\tempty cache groups:\n");
   1917 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1918 			    pcg = pcg->pcg_next) {
   1919 				PR_GROUPLIST(pcg);
   1920 			}
   1921 		}
   1922 	}
   1923 #undef PR_GROUPLIST
   1924 
   1925 	pr_enter_check(pp, pr);
   1926 }
   1927 
   1928 static int
   1929 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1930 {
   1931 	struct pool_item *pi;
   1932 	void *page;
   1933 	int n;
   1934 
   1935 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1936 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1937 		if (page != ph->ph_page &&
   1938 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1939 			if (label != NULL)
   1940 				printf("%s: ", label);
   1941 			printf("pool(%p:%s): page inconsistency: page %p;"
   1942 			       " at page head addr %p (p %p)\n", pp,
   1943 				pp->pr_wchan, ph->ph_page,
   1944 				ph, page);
   1945 			return 1;
   1946 		}
   1947 	}
   1948 
   1949 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1950 		return 0;
   1951 
   1952 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1953 	     pi != NULL;
   1954 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1955 
   1956 #ifdef DIAGNOSTIC
   1957 		if (pi->pi_magic != PI_MAGIC) {
   1958 			if (label != NULL)
   1959 				printf("%s: ", label);
   1960 			printf("pool(%s): free list modified: magic=%x;"
   1961 			       " page %p; item ordinal %d; addr %p\n",
   1962 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1963 				n, pi);
   1964 			panic("pool");
   1965 		}
   1966 #endif
   1967 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1968 			continue;
   1969 		}
   1970 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1971 		if (page == ph->ph_page)
   1972 			continue;
   1973 
   1974 		if (label != NULL)
   1975 			printf("%s: ", label);
   1976 		printf("pool(%p:%s): page inconsistency: page %p;"
   1977 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1978 			pp->pr_wchan, ph->ph_page,
   1979 			n, pi, page);
   1980 		return 1;
   1981 	}
   1982 	return 0;
   1983 }
   1984 
   1985 
   1986 int
   1987 pool_chk(struct pool *pp, const char *label)
   1988 {
   1989 	struct pool_item_header *ph;
   1990 	int r = 0;
   1991 
   1992 	mutex_enter(&pp->pr_lock);
   1993 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1994 		r = pool_chk_page(pp, label, ph);
   1995 		if (r) {
   1996 			goto out;
   1997 		}
   1998 	}
   1999 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2000 		r = pool_chk_page(pp, label, ph);
   2001 		if (r) {
   2002 			goto out;
   2003 		}
   2004 	}
   2005 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2006 		r = pool_chk_page(pp, label, ph);
   2007 		if (r) {
   2008 			goto out;
   2009 		}
   2010 	}
   2011 
   2012 out:
   2013 	mutex_exit(&pp->pr_lock);
   2014 	return (r);
   2015 }
   2016 
   2017 /*
   2018  * pool_cache_init:
   2019  *
   2020  *	Initialize a pool cache.
   2021  */
   2022 pool_cache_t
   2023 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2024     const char *wchan, struct pool_allocator *palloc, int ipl,
   2025     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2026 {
   2027 	pool_cache_t pc;
   2028 
   2029 	pc = pool_get(&cache_pool, PR_WAITOK);
   2030 	if (pc == NULL)
   2031 		return NULL;
   2032 
   2033 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2034 	   palloc, ipl, ctor, dtor, arg);
   2035 
   2036 	return pc;
   2037 }
   2038 
   2039 /*
   2040  * pool_cache_bootstrap:
   2041  *
   2042  *	Kernel-private version of pool_cache_init().  The caller
   2043  *	provides initial storage.
   2044  */
   2045 void
   2046 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2047     u_int align_offset, u_int flags, const char *wchan,
   2048     struct pool_allocator *palloc, int ipl,
   2049     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2050     void *arg)
   2051 {
   2052 	CPU_INFO_ITERATOR cii;
   2053 	struct cpu_info *ci;
   2054 	struct pool *pp;
   2055 
   2056 	pp = &pc->pc_pool;
   2057 	if (palloc == NULL && ipl == IPL_NONE)
   2058 		palloc = &pool_allocator_nointr;
   2059 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2060 
   2061 	/*
   2062 	 * XXXAD hack to prevent IP input processing from blocking.
   2063 	 */
   2064 	if (ipl == IPL_SOFTNET) {
   2065 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
   2066 	} else {
   2067 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2068 	}
   2069 
   2070 	if (ctor == NULL) {
   2071 		ctor = (int (*)(void *, void *, int))nullop;
   2072 	}
   2073 	if (dtor == NULL) {
   2074 		dtor = (void (*)(void *, void *))nullop;
   2075 	}
   2076 
   2077 	pc->pc_emptygroups = NULL;
   2078 	pc->pc_fullgroups = NULL;
   2079 	pc->pc_partgroups = NULL;
   2080 	pc->pc_ctor = ctor;
   2081 	pc->pc_dtor = dtor;
   2082 	pc->pc_arg  = arg;
   2083 	pc->pc_hits  = 0;
   2084 	pc->pc_misses = 0;
   2085 	pc->pc_nempty = 0;
   2086 	pc->pc_npart = 0;
   2087 	pc->pc_nfull = 0;
   2088 	pc->pc_contended = 0;
   2089 	pc->pc_refcnt = 0;
   2090 	pc->pc_freecheck = NULL;
   2091 
   2092 	/* Allocate per-CPU caches. */
   2093 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2094 	pc->pc_ncpu = 0;
   2095 	if (ncpu < 2) {
   2096 		/* XXX For sparc: boot CPU is not attached yet. */
   2097 		pool_cache_cpu_init1(curcpu(), pc);
   2098 	} else {
   2099 		for (CPU_INFO_FOREACH(cii, ci)) {
   2100 			pool_cache_cpu_init1(ci, pc);
   2101 		}
   2102 	}
   2103 
   2104 	if (__predict_true(!cold)) {
   2105 		mutex_enter(&pp->pr_lock);
   2106 		pp->pr_cache = pc;
   2107 		mutex_exit(&pp->pr_lock);
   2108 		mutex_enter(&pool_head_lock);
   2109 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2110 		mutex_exit(&pool_head_lock);
   2111 	} else {
   2112 		pp->pr_cache = pc;
   2113 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2114 	}
   2115 }
   2116 
   2117 /*
   2118  * pool_cache_destroy:
   2119  *
   2120  *	Destroy a pool cache.
   2121  */
   2122 void
   2123 pool_cache_destroy(pool_cache_t pc)
   2124 {
   2125 	struct pool *pp = &pc->pc_pool;
   2126 	pool_cache_cpu_t *cc;
   2127 	pcg_t *pcg;
   2128 	int i;
   2129 
   2130 	/* Remove it from the global list. */
   2131 	mutex_enter(&pool_head_lock);
   2132 	while (pc->pc_refcnt != 0)
   2133 		cv_wait(&pool_busy, &pool_head_lock);
   2134 	LIST_REMOVE(pc, pc_cachelist);
   2135 	mutex_exit(&pool_head_lock);
   2136 
   2137 	/* First, invalidate the entire cache. */
   2138 	pool_cache_invalidate(pc);
   2139 
   2140 	/* Disassociate it from the pool. */
   2141 	mutex_enter(&pp->pr_lock);
   2142 	pp->pr_cache = NULL;
   2143 	mutex_exit(&pp->pr_lock);
   2144 
   2145 	/* Destroy per-CPU data */
   2146 	for (i = 0; i < MAXCPUS; i++) {
   2147 		if ((cc = pc->pc_cpus[i]) == NULL)
   2148 			continue;
   2149 		if ((pcg = cc->cc_current) != NULL) {
   2150 			pcg->pcg_next = NULL;
   2151 			pool_cache_invalidate_groups(pc, pcg);
   2152 		}
   2153 		if ((pcg = cc->cc_previous) != NULL) {
   2154 			pcg->pcg_next = NULL;
   2155 			pool_cache_invalidate_groups(pc, pcg);
   2156 		}
   2157 		if (cc != &pc->pc_cpu0)
   2158 			pool_put(&cache_cpu_pool, cc);
   2159 	}
   2160 
   2161 	/* Finally, destroy it. */
   2162 	mutex_destroy(&pc->pc_lock);
   2163 	pool_destroy(pp);
   2164 	pool_put(&cache_pool, pc);
   2165 }
   2166 
   2167 /*
   2168  * pool_cache_cpu_init1:
   2169  *
   2170  *	Called for each pool_cache whenever a new CPU is attached.
   2171  */
   2172 static void
   2173 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2174 {
   2175 	pool_cache_cpu_t *cc;
   2176 	int index;
   2177 
   2178 	index = ci->ci_index;
   2179 
   2180 	KASSERT(index < MAXCPUS);
   2181 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
   2182 
   2183 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2184 		KASSERT(cc->cc_cpuindex == index);
   2185 		return;
   2186 	}
   2187 
   2188 	/*
   2189 	 * The first CPU is 'free'.  This needs to be the case for
   2190 	 * bootstrap - we may not be able to allocate yet.
   2191 	 */
   2192 	if (pc->pc_ncpu == 0) {
   2193 		cc = &pc->pc_cpu0;
   2194 		pc->pc_ncpu = 1;
   2195 	} else {
   2196 		mutex_enter(&pc->pc_lock);
   2197 		pc->pc_ncpu++;
   2198 		mutex_exit(&pc->pc_lock);
   2199 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2200 	}
   2201 
   2202 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2203 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2204 	cc->cc_cache = pc;
   2205 	cc->cc_cpuindex = index;
   2206 	cc->cc_hits = 0;
   2207 	cc->cc_misses = 0;
   2208 	cc->cc_current = NULL;
   2209 	cc->cc_previous = NULL;
   2210 
   2211 	pc->pc_cpus[index] = cc;
   2212 }
   2213 
   2214 /*
   2215  * pool_cache_cpu_init:
   2216  *
   2217  *	Called whenever a new CPU is attached.
   2218  */
   2219 void
   2220 pool_cache_cpu_init(struct cpu_info *ci)
   2221 {
   2222 	pool_cache_t pc;
   2223 
   2224 	mutex_enter(&pool_head_lock);
   2225 	LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2226 		pc->pc_refcnt++;
   2227 		mutex_exit(&pool_head_lock);
   2228 
   2229 		pool_cache_cpu_init1(ci, pc);
   2230 
   2231 		mutex_enter(&pool_head_lock);
   2232 		pc->pc_refcnt--;
   2233 		cv_broadcast(&pool_busy);
   2234 	}
   2235 	mutex_exit(&pool_head_lock);
   2236 }
   2237 
   2238 /*
   2239  * pool_cache_reclaim:
   2240  *
   2241  *	Reclaim memory from a pool cache.
   2242  */
   2243 bool
   2244 pool_cache_reclaim(pool_cache_t pc)
   2245 {
   2246 
   2247 	return pool_reclaim(&pc->pc_pool);
   2248 }
   2249 
   2250 static void
   2251 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2252 {
   2253 
   2254 	(*pc->pc_dtor)(pc->pc_arg, object);
   2255 	pool_put(&pc->pc_pool, object);
   2256 }
   2257 
   2258 /*
   2259  * pool_cache_destruct_object:
   2260  *
   2261  *	Force destruction of an object and its release back into
   2262  *	the pool.
   2263  */
   2264 void
   2265 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2266 {
   2267 
   2268 	FREECHECK_IN(&pc->pc_freecheck, object);
   2269 
   2270 	pool_cache_destruct_object1(pc, object);
   2271 }
   2272 
   2273 /*
   2274  * pool_cache_invalidate_groups:
   2275  *
   2276  *	Invalidate a chain of groups and destruct all objects.
   2277  */
   2278 static void
   2279 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2280 {
   2281 	void *object;
   2282 	pcg_t *next;
   2283 	int i;
   2284 
   2285 	for (; pcg != NULL; pcg = next) {
   2286 		next = pcg->pcg_next;
   2287 
   2288 		for (i = 0; i < pcg->pcg_avail; i++) {
   2289 			object = pcg->pcg_objects[i].pcgo_va;
   2290 			pool_cache_destruct_object1(pc, object);
   2291 		}
   2292 
   2293 		pool_put(&pcgpool, pcg);
   2294 	}
   2295 }
   2296 
   2297 /*
   2298  * pool_cache_invalidate:
   2299  *
   2300  *	Invalidate a pool cache (destruct and release all of the
   2301  *	cached objects).  Does not reclaim objects from the pool.
   2302  */
   2303 void
   2304 pool_cache_invalidate(pool_cache_t pc)
   2305 {
   2306 	pcg_t *full, *empty, *part;
   2307 
   2308 	mutex_enter(&pc->pc_lock);
   2309 	full = pc->pc_fullgroups;
   2310 	empty = pc->pc_emptygroups;
   2311 	part = pc->pc_partgroups;
   2312 	pc->pc_fullgroups = NULL;
   2313 	pc->pc_emptygroups = NULL;
   2314 	pc->pc_partgroups = NULL;
   2315 	pc->pc_nfull = 0;
   2316 	pc->pc_nempty = 0;
   2317 	pc->pc_npart = 0;
   2318 	mutex_exit(&pc->pc_lock);
   2319 
   2320 	pool_cache_invalidate_groups(pc, full);
   2321 	pool_cache_invalidate_groups(pc, empty);
   2322 	pool_cache_invalidate_groups(pc, part);
   2323 }
   2324 
   2325 void
   2326 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2327 {
   2328 
   2329 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2330 }
   2331 
   2332 void
   2333 pool_cache_setlowat(pool_cache_t pc, int n)
   2334 {
   2335 
   2336 	pool_setlowat(&pc->pc_pool, n);
   2337 }
   2338 
   2339 void
   2340 pool_cache_sethiwat(pool_cache_t pc, int n)
   2341 {
   2342 
   2343 	pool_sethiwat(&pc->pc_pool, n);
   2344 }
   2345 
   2346 void
   2347 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2348 {
   2349 
   2350 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2351 }
   2352 
   2353 static inline pool_cache_cpu_t *
   2354 pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2355 {
   2356 	pool_cache_cpu_t *cc;
   2357 
   2358 	/*
   2359 	 * Prevent other users of the cache from accessing our
   2360 	 * CPU-local data.  To avoid touching shared state, we
   2361 	 * pull the neccessary information from CPU local data.
   2362 	 */
   2363 	crit_enter();
   2364 	cc = pc->pc_cpus[curcpu()->ci_index];
   2365 	KASSERT(cc->cc_cache == pc);
   2366 	if (cc->cc_ipl != IPL_NONE) {
   2367 		*s = splraiseipl(cc->cc_iplcookie);
   2368 	}
   2369 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
   2370 
   2371 	return cc;
   2372 }
   2373 
   2374 static inline void
   2375 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2376 {
   2377 
   2378 	/* No longer need exclusive access to the per-CPU data. */
   2379 	if (cc->cc_ipl != IPL_NONE) {
   2380 		splx(*s);
   2381 	}
   2382 	crit_exit();
   2383 }
   2384 
   2385 #if __GNUC_PREREQ__(3, 0)
   2386 __attribute ((noinline))
   2387 #endif
   2388 pool_cache_cpu_t *
   2389 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2390 		    paddr_t *pap, int flags)
   2391 {
   2392 	pcg_t *pcg, *cur;
   2393 	uint64_t ncsw;
   2394 	pool_cache_t pc;
   2395 	void *object;
   2396 
   2397 	pc = cc->cc_cache;
   2398 	cc->cc_misses++;
   2399 
   2400 	/*
   2401 	 * Nothing was available locally.  Try and grab a group
   2402 	 * from the cache.
   2403 	 */
   2404 	if (!mutex_tryenter(&pc->pc_lock)) {
   2405 		ncsw = curlwp->l_ncsw;
   2406 		mutex_enter(&pc->pc_lock);
   2407 		pc->pc_contended++;
   2408 
   2409 		/*
   2410 		 * If we context switched while locking, then
   2411 		 * our view of the per-CPU data is invalid:
   2412 		 * retry.
   2413 		 */
   2414 		if (curlwp->l_ncsw != ncsw) {
   2415 			mutex_exit(&pc->pc_lock);
   2416 			pool_cache_cpu_exit(cc, s);
   2417 			return pool_cache_cpu_enter(pc, s);
   2418 		}
   2419 	}
   2420 
   2421 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2422 		/*
   2423 		 * If there's a full group, release our empty
   2424 		 * group back to the cache.  Install the full
   2425 		 * group as cc_current and return.
   2426 		 */
   2427 		if ((cur = cc->cc_current) != NULL) {
   2428 			KASSERT(cur->pcg_avail == 0);
   2429 			cur->pcg_next = pc->pc_emptygroups;
   2430 			pc->pc_emptygroups = cur;
   2431 			pc->pc_nempty++;
   2432 		}
   2433 		KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
   2434 		cc->cc_current = pcg;
   2435 		pc->pc_fullgroups = pcg->pcg_next;
   2436 		pc->pc_hits++;
   2437 		pc->pc_nfull--;
   2438 		mutex_exit(&pc->pc_lock);
   2439 		return cc;
   2440 	}
   2441 
   2442 	/*
   2443 	 * Nothing available locally or in cache.  Take the slow
   2444 	 * path: fetch a new object from the pool and construct
   2445 	 * it.
   2446 	 */
   2447 	pc->pc_misses++;
   2448 	mutex_exit(&pc->pc_lock);
   2449 	pool_cache_cpu_exit(cc, s);
   2450 
   2451 	object = pool_get(&pc->pc_pool, flags);
   2452 	*objectp = object;
   2453 	if (object == NULL)
   2454 		return NULL;
   2455 
   2456 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2457 		pool_put(&pc->pc_pool, object);
   2458 		*objectp = NULL;
   2459 		return NULL;
   2460 	}
   2461 
   2462 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2463 	    (pc->pc_pool.pr_align - 1)) == 0);
   2464 
   2465 	if (pap != NULL) {
   2466 #ifdef POOL_VTOPHYS
   2467 		*pap = POOL_VTOPHYS(object);
   2468 #else
   2469 		*pap = POOL_PADDR_INVALID;
   2470 #endif
   2471 	}
   2472 
   2473 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2474 	return NULL;
   2475 }
   2476 
   2477 /*
   2478  * pool_cache_get{,_paddr}:
   2479  *
   2480  *	Get an object from a pool cache (optionally returning
   2481  *	the physical address of the object).
   2482  */
   2483 void *
   2484 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2485 {
   2486 	pool_cache_cpu_t *cc;
   2487 	pcg_t *pcg;
   2488 	void *object;
   2489 	int s;
   2490 
   2491 #ifdef LOCKDEBUG
   2492 	if (flags & PR_WAITOK)
   2493 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2494 #endif
   2495 
   2496 	cc = pool_cache_cpu_enter(pc, &s);
   2497 	do {
   2498 		/* Try and allocate an object from the current group. */
   2499 	 	pcg = cc->cc_current;
   2500 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2501 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2502 			if (pap != NULL)
   2503 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2504 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2505 			KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   2506 			KASSERT(object != NULL);
   2507 			cc->cc_hits++;
   2508 			pool_cache_cpu_exit(cc, &s);
   2509 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2510 			return object;
   2511 		}
   2512 
   2513 		/*
   2514 		 * That failed.  If the previous group isn't empty, swap
   2515 		 * it with the current group and allocate from there.
   2516 		 */
   2517 		pcg = cc->cc_previous;
   2518 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2519 			cc->cc_previous = cc->cc_current;
   2520 			cc->cc_current = pcg;
   2521 			continue;
   2522 		}
   2523 
   2524 		/*
   2525 		 * Can't allocate from either group: try the slow path.
   2526 		 * If get_slow() allocated an object for us, or if
   2527 		 * no more objects are available, it will return NULL.
   2528 		 * Otherwise, we need to retry.
   2529 		 */
   2530 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2531 	} while (cc != NULL);
   2532 
   2533 	return object;
   2534 }
   2535 
   2536 #if __GNUC_PREREQ__(3, 0)
   2537 __attribute ((noinline))
   2538 #endif
   2539 pool_cache_cpu_t *
   2540 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2541 {
   2542 	pcg_t *pcg, *cur;
   2543 	uint64_t ncsw;
   2544 	pool_cache_t pc;
   2545 
   2546 	pc = cc->cc_cache;
   2547 	cc->cc_misses++;
   2548 
   2549 	/*
   2550 	 * No free slots locally.  Try to grab an empty, unused
   2551 	 * group from the cache.
   2552 	 */
   2553 	if (!mutex_tryenter(&pc->pc_lock)) {
   2554 		ncsw = curlwp->l_ncsw;
   2555 		mutex_enter(&pc->pc_lock);
   2556 		pc->pc_contended++;
   2557 
   2558 		/*
   2559 		 * If we context switched while locking, then
   2560 		 * our view of the per-CPU data is invalid:
   2561 		 * retry.
   2562 		 */
   2563 		if (curlwp->l_ncsw != ncsw) {
   2564 			mutex_exit(&pc->pc_lock);
   2565 			pool_cache_cpu_exit(cc, s);
   2566 			return pool_cache_cpu_enter(pc, s);
   2567 		}
   2568 	}
   2569 
   2570 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2571 		/*
   2572 		 * If there's a empty group, release our full
   2573 		 * group back to the cache.  Install the empty
   2574 		 * group as cc_current and return.
   2575 		 */
   2576 		if ((cur = cc->cc_current) != NULL) {
   2577 			KASSERT(cur->pcg_avail == PCG_NOBJECTS);
   2578 			cur->pcg_next = pc->pc_fullgroups;
   2579 			pc->pc_fullgroups = cur;
   2580 			pc->pc_nfull++;
   2581 		}
   2582 		KASSERT(pcg->pcg_avail == 0);
   2583 		cc->cc_current = pcg;
   2584 		pc->pc_emptygroups = pcg->pcg_next;
   2585 		pc->pc_hits++;
   2586 		pc->pc_nempty--;
   2587 		mutex_exit(&pc->pc_lock);
   2588 		return cc;
   2589 	}
   2590 
   2591 	/*
   2592 	 * Nothing available locally or in cache.  Take the
   2593 	 * slow path and try to allocate a new group that we
   2594 	 * can release to.
   2595 	 */
   2596 	pc->pc_misses++;
   2597 	mutex_exit(&pc->pc_lock);
   2598 	pool_cache_cpu_exit(cc, s);
   2599 
   2600 	/*
   2601 	 * If we can't allocate a new group, just throw the
   2602 	 * object away.
   2603 	 */
   2604 	pcg = pool_get(&pcgpool, PR_NOWAIT);
   2605 	if (pcg == NULL) {
   2606 		pool_cache_destruct_object(pc, object);
   2607 		return NULL;
   2608 	}
   2609 #ifdef DIAGNOSTIC
   2610 	memset(pcg, 0, sizeof(*pcg));
   2611 #else
   2612 	pcg->pcg_avail = 0;
   2613 #endif
   2614 
   2615 	/*
   2616 	 * Add the empty group to the cache and try again.
   2617 	 */
   2618 	mutex_enter(&pc->pc_lock);
   2619 	pcg->pcg_next = pc->pc_emptygroups;
   2620 	pc->pc_emptygroups = pcg;
   2621 	pc->pc_nempty++;
   2622 	mutex_exit(&pc->pc_lock);
   2623 
   2624 	return pool_cache_cpu_enter(pc, s);
   2625 }
   2626 
   2627 /*
   2628  * pool_cache_put{,_paddr}:
   2629  *
   2630  *	Put an object back to the pool cache (optionally caching the
   2631  *	physical address of the object).
   2632  */
   2633 void
   2634 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2635 {
   2636 	pool_cache_cpu_t *cc;
   2637 	pcg_t *pcg;
   2638 	int s;
   2639 
   2640 	FREECHECK_IN(&pc->pc_freecheck, object);
   2641 
   2642 	cc = pool_cache_cpu_enter(pc, &s);
   2643 	do {
   2644 		/* If the current group isn't full, release it there. */
   2645 	 	pcg = cc->cc_current;
   2646 		if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
   2647 			KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
   2648 			    == NULL);
   2649 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2650 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2651 			pcg->pcg_avail++;
   2652 			cc->cc_hits++;
   2653 			pool_cache_cpu_exit(cc, &s);
   2654 			return;
   2655 		}
   2656 
   2657 		/*
   2658 		 * That failed.  If the previous group is empty, swap
   2659 		 * it with the current group and try again.
   2660 		 */
   2661 		pcg = cc->cc_previous;
   2662 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2663 			cc->cc_previous = cc->cc_current;
   2664 			cc->cc_current = pcg;
   2665 			continue;
   2666 		}
   2667 
   2668 		/*
   2669 		 * Can't free to either group: try the slow path.
   2670 		 * If put_slow() releases the object for us, it
   2671 		 * will return NULL.  Otherwise we need to retry.
   2672 		 */
   2673 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2674 	} while (cc != NULL);
   2675 }
   2676 
   2677 /*
   2678  * pool_cache_xcall:
   2679  *
   2680  *	Transfer objects from the per-CPU cache to the global cache.
   2681  *	Run within a cross-call thread.
   2682  */
   2683 static void
   2684 pool_cache_xcall(pool_cache_t pc)
   2685 {
   2686 	pool_cache_cpu_t *cc;
   2687 	pcg_t *prev, *cur, **list;
   2688 	int s = 0; /* XXXgcc */
   2689 
   2690 	cc = pool_cache_cpu_enter(pc, &s);
   2691 	cur = cc->cc_current;
   2692 	cc->cc_current = NULL;
   2693 	prev = cc->cc_previous;
   2694 	cc->cc_previous = NULL;
   2695 	pool_cache_cpu_exit(cc, &s);
   2696 
   2697 	/*
   2698 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2699 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2700 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2701 	 * kernel_lock.
   2702 	 */
   2703 	s = splvm();
   2704 	mutex_enter(&pc->pc_lock);
   2705 	if (cur != NULL) {
   2706 		if (cur->pcg_avail == PCG_NOBJECTS) {
   2707 			list = &pc->pc_fullgroups;
   2708 			pc->pc_nfull++;
   2709 		} else if (cur->pcg_avail == 0) {
   2710 			list = &pc->pc_emptygroups;
   2711 			pc->pc_nempty++;
   2712 		} else {
   2713 			list = &pc->pc_partgroups;
   2714 			pc->pc_npart++;
   2715 		}
   2716 		cur->pcg_next = *list;
   2717 		*list = cur;
   2718 	}
   2719 	if (prev != NULL) {
   2720 		if (prev->pcg_avail == PCG_NOBJECTS) {
   2721 			list = &pc->pc_fullgroups;
   2722 			pc->pc_nfull++;
   2723 		} else if (prev->pcg_avail == 0) {
   2724 			list = &pc->pc_emptygroups;
   2725 			pc->pc_nempty++;
   2726 		} else {
   2727 			list = &pc->pc_partgroups;
   2728 			pc->pc_npart++;
   2729 		}
   2730 		prev->pcg_next = *list;
   2731 		*list = prev;
   2732 	}
   2733 	mutex_exit(&pc->pc_lock);
   2734 	splx(s);
   2735 }
   2736 
   2737 /*
   2738  * Pool backend allocators.
   2739  *
   2740  * Each pool has a backend allocator that handles allocation, deallocation,
   2741  * and any additional draining that might be needed.
   2742  *
   2743  * We provide two standard allocators:
   2744  *
   2745  *	pool_allocator_kmem - the default when no allocator is specified
   2746  *
   2747  *	pool_allocator_nointr - used for pools that will not be accessed
   2748  *	in interrupt context.
   2749  */
   2750 void	*pool_page_alloc(struct pool *, int);
   2751 void	pool_page_free(struct pool *, void *);
   2752 
   2753 #ifdef POOL_SUBPAGE
   2754 struct pool_allocator pool_allocator_kmem_fullpage = {
   2755 	pool_page_alloc, pool_page_free, 0,
   2756 	.pa_backingmapptr = &kmem_map,
   2757 };
   2758 #else
   2759 struct pool_allocator pool_allocator_kmem = {
   2760 	pool_page_alloc, pool_page_free, 0,
   2761 	.pa_backingmapptr = &kmem_map,
   2762 };
   2763 #endif
   2764 
   2765 void	*pool_page_alloc_nointr(struct pool *, int);
   2766 void	pool_page_free_nointr(struct pool *, void *);
   2767 
   2768 #ifdef POOL_SUBPAGE
   2769 struct pool_allocator pool_allocator_nointr_fullpage = {
   2770 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2771 	.pa_backingmapptr = &kernel_map,
   2772 };
   2773 #else
   2774 struct pool_allocator pool_allocator_nointr = {
   2775 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2776 	.pa_backingmapptr = &kernel_map,
   2777 };
   2778 #endif
   2779 
   2780 #ifdef POOL_SUBPAGE
   2781 void	*pool_subpage_alloc(struct pool *, int);
   2782 void	pool_subpage_free(struct pool *, void *);
   2783 
   2784 struct pool_allocator pool_allocator_kmem = {
   2785 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2786 	.pa_backingmapptr = &kmem_map,
   2787 };
   2788 
   2789 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2790 void	pool_subpage_free_nointr(struct pool *, void *);
   2791 
   2792 struct pool_allocator pool_allocator_nointr = {
   2793 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2794 	.pa_backingmapptr = &kmem_map,
   2795 };
   2796 #endif /* POOL_SUBPAGE */
   2797 
   2798 static void *
   2799 pool_allocator_alloc(struct pool *pp, int flags)
   2800 {
   2801 	struct pool_allocator *pa = pp->pr_alloc;
   2802 	void *res;
   2803 
   2804 	res = (*pa->pa_alloc)(pp, flags);
   2805 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2806 		/*
   2807 		 * We only run the drain hook here if PR_NOWAIT.
   2808 		 * In other cases, the hook will be run in
   2809 		 * pool_reclaim().
   2810 		 */
   2811 		if (pp->pr_drain_hook != NULL) {
   2812 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2813 			res = (*pa->pa_alloc)(pp, flags);
   2814 		}
   2815 	}
   2816 	return res;
   2817 }
   2818 
   2819 static void
   2820 pool_allocator_free(struct pool *pp, void *v)
   2821 {
   2822 	struct pool_allocator *pa = pp->pr_alloc;
   2823 
   2824 	(*pa->pa_free)(pp, v);
   2825 }
   2826 
   2827 void *
   2828 pool_page_alloc(struct pool *pp, int flags)
   2829 {
   2830 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2831 
   2832 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2833 }
   2834 
   2835 void
   2836 pool_page_free(struct pool *pp, void *v)
   2837 {
   2838 
   2839 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2840 }
   2841 
   2842 static void *
   2843 pool_page_alloc_meta(struct pool *pp, int flags)
   2844 {
   2845 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2846 
   2847 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2848 }
   2849 
   2850 static void
   2851 pool_page_free_meta(struct pool *pp, void *v)
   2852 {
   2853 
   2854 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2855 }
   2856 
   2857 #ifdef POOL_SUBPAGE
   2858 /* Sub-page allocator, for machines with large hardware pages. */
   2859 void *
   2860 pool_subpage_alloc(struct pool *pp, int flags)
   2861 {
   2862 	return pool_get(&psppool, flags);
   2863 }
   2864 
   2865 void
   2866 pool_subpage_free(struct pool *pp, void *v)
   2867 {
   2868 	pool_put(&psppool, v);
   2869 }
   2870 
   2871 /* We don't provide a real nointr allocator.  Maybe later. */
   2872 void *
   2873 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2874 {
   2875 
   2876 	return (pool_subpage_alloc(pp, flags));
   2877 }
   2878 
   2879 void
   2880 pool_subpage_free_nointr(struct pool *pp, void *v)
   2881 {
   2882 
   2883 	pool_subpage_free(pp, v);
   2884 }
   2885 #endif /* POOL_SUBPAGE */
   2886 void *
   2887 pool_page_alloc_nointr(struct pool *pp, int flags)
   2888 {
   2889 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2890 
   2891 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2892 }
   2893 
   2894 void
   2895 pool_page_free_nointr(struct pool *pp, void *v)
   2896 {
   2897 
   2898 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2899 }
   2900 
   2901 #if defined(DDB)
   2902 static bool
   2903 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2904 {
   2905 
   2906 	return (uintptr_t)ph->ph_page <= addr &&
   2907 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2908 }
   2909 
   2910 void
   2911 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2912 {
   2913 	struct pool *pp;
   2914 
   2915 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   2916 		struct pool_item_header *ph;
   2917 		uintptr_t item;
   2918 
   2919 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2920 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2921 				if (pool_in_page(pp, ph, addr)) {
   2922 					goto found;
   2923 				}
   2924 			}
   2925 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2926 				if (pool_in_page(pp, ph, addr)) {
   2927 					goto found;
   2928 				}
   2929 			}
   2930 			continue;
   2931 		} else {
   2932 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2933 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2934 				continue;
   2935 			}
   2936 		}
   2937 found:
   2938 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   2939 		item = item + rounddown(addr - item, pp->pr_size);
   2940 		(*pr)("%p is %p+%zu from POOL '%s'\n",
   2941 		    (void *)addr, item, (size_t)(addr - item),
   2942 		    pp->pr_wchan);
   2943 	}
   2944 }
   2945 #endif /* defined(DDB) */
   2946