Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.140
      1 /*	$NetBSD: subr_pool.c,v 1.140 2007/12/13 01:22:50 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.140 2007/12/13 01:22:50 yamt Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/bitops.h>
     50 #include <sys/proc.h>
     51 #include <sys/errno.h>
     52 #include <sys/kernel.h>
     53 #include <sys/malloc.h>
     54 #include <sys/lock.h>
     55 #include <sys/pool.h>
     56 #include <sys/syslog.h>
     57 #include <sys/debug.h>
     58 #include <sys/lockdebug.h>
     59 #include <sys/xcall.h>
     60 #include <sys/cpu.h>
     61 
     62 #include <uvm/uvm.h>
     63 
     64 /*
     65  * Pool resource management utility.
     66  *
     67  * Memory is allocated in pages which are split into pieces according to
     68  * the pool item size. Each page is kept on one of three lists in the
     69  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     70  * for empty, full and partially-full pages respectively. The individual
     71  * pool items are on a linked list headed by `ph_itemlist' in each page
     72  * header. The memory for building the page list is either taken from
     73  * the allocated pages themselves (for small pool items) or taken from
     74  * an internal pool of page headers (`phpool').
     75  */
     76 
     77 /* List of all pools */
     78 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
     79 
     80 /* List of all caches. */
     81 LIST_HEAD(,pool_cache) pool_cache_head =
     82     LIST_HEAD_INITIALIZER(pool_cache_head);
     83 
     84 /* Private pool for page header structures */
     85 #define	PHPOOL_MAX	8
     86 static struct pool phpool[PHPOOL_MAX];
     87 #define	PHPOOL_FREELIST_NELEM(idx) \
     88 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     89 
     90 #ifdef POOL_SUBPAGE
     91 /* Pool of subpages for use by normal pools. */
     92 static struct pool psppool;
     93 #endif
     94 
     95 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     96     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     97 
     98 static void *pool_page_alloc_meta(struct pool *, int);
     99 static void pool_page_free_meta(struct pool *, void *);
    100 
    101 /* allocator for pool metadata */
    102 struct pool_allocator pool_allocator_meta = {
    103 	pool_page_alloc_meta, pool_page_free_meta,
    104 	.pa_backingmapptr = &kmem_map,
    105 };
    106 
    107 /* # of seconds to retain page after last use */
    108 int pool_inactive_time = 10;
    109 
    110 /* Next candidate for drainage (see pool_drain()) */
    111 static struct pool	*drainpp;
    112 
    113 /* This lock protects both pool_head and drainpp. */
    114 static kmutex_t pool_head_lock;
    115 static kcondvar_t pool_busy;
    116 
    117 typedef uint32_t pool_item_bitmap_t;
    118 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    119 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    120 
    121 struct pool_item_header {
    122 	/* Page headers */
    123 	LIST_ENTRY(pool_item_header)
    124 				ph_pagelist;	/* pool page list */
    125 	SPLAY_ENTRY(pool_item_header)
    126 				ph_node;	/* Off-page page headers */
    127 	void *			ph_page;	/* this page's address */
    128 	struct timeval		ph_time;	/* last referenced */
    129 	uint16_t		ph_nmissing;	/* # of chunks in use */
    130 	union {
    131 		/* !PR_NOTOUCH */
    132 		struct {
    133 			LIST_HEAD(, pool_item)
    134 				phu_itemlist;	/* chunk list for this page */
    135 		} phu_normal;
    136 		/* PR_NOTOUCH */
    137 		struct {
    138 			uint16_t phu_off;	/* start offset in page */
    139 			pool_item_bitmap_t phu_bitmap[];
    140 		} phu_notouch;
    141 	} ph_u;
    142 };
    143 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    144 #define	ph_off		ph_u.phu_notouch.phu_off
    145 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    146 
    147 struct pool_item {
    148 #ifdef DIAGNOSTIC
    149 	u_int pi_magic;
    150 #endif
    151 #define	PI_MAGIC 0xdeaddeadU
    152 	/* Other entries use only this list entry */
    153 	LIST_ENTRY(pool_item)	pi_list;
    154 };
    155 
    156 #define	POOL_NEEDS_CATCHUP(pp)						\
    157 	((pp)->pr_nitems < (pp)->pr_minitems)
    158 
    159 /*
    160  * Pool cache management.
    161  *
    162  * Pool caches provide a way for constructed objects to be cached by the
    163  * pool subsystem.  This can lead to performance improvements by avoiding
    164  * needless object construction/destruction; it is deferred until absolutely
    165  * necessary.
    166  *
    167  * Caches are grouped into cache groups.  Each cache group references up
    168  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    169  * object from the pool, it calls the object's constructor and places it
    170  * into a cache group.  When a cache group frees an object back to the
    171  * pool, it first calls the object's destructor.  This allows the object
    172  * to persist in constructed form while freed to the cache.
    173  *
    174  * The pool references each cache, so that when a pool is drained by the
    175  * pagedaemon, it can drain each individual cache as well.  Each time a
    176  * cache is drained, the most idle cache group is freed to the pool in
    177  * its entirety.
    178  *
    179  * Pool caches are layed on top of pools.  By layering them, we can avoid
    180  * the complexity of cache management for pools which would not benefit
    181  * from it.
    182  */
    183 
    184 static struct pool pcgpool;
    185 static struct pool cache_pool;
    186 static struct pool cache_cpu_pool;
    187 
    188 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    189 					     void *, paddr_t);
    190 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    191 					     void **, paddr_t *, int);
    192 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    193 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    194 static void	pool_cache_xcall(pool_cache_t);
    195 
    196 static int	pool_catchup(struct pool *);
    197 static void	pool_prime_page(struct pool *, void *,
    198 		    struct pool_item_header *);
    199 static void	pool_update_curpage(struct pool *);
    200 
    201 static int	pool_grow(struct pool *, int);
    202 static void	*pool_allocator_alloc(struct pool *, int);
    203 static void	pool_allocator_free(struct pool *, void *);
    204 
    205 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    206 	void (*)(const char *, ...));
    207 static void pool_print1(struct pool *, const char *,
    208 	void (*)(const char *, ...));
    209 
    210 static int pool_chk_page(struct pool *, const char *,
    211 			 struct pool_item_header *);
    212 
    213 /*
    214  * Pool log entry. An array of these is allocated in pool_init().
    215  */
    216 struct pool_log {
    217 	const char	*pl_file;
    218 	long		pl_line;
    219 	int		pl_action;
    220 #define	PRLOG_GET	1
    221 #define	PRLOG_PUT	2
    222 	void		*pl_addr;
    223 };
    224 
    225 #ifdef POOL_DIAGNOSTIC
    226 /* Number of entries in pool log buffers */
    227 #ifndef POOL_LOGSIZE
    228 #define	POOL_LOGSIZE	10
    229 #endif
    230 
    231 int pool_logsize = POOL_LOGSIZE;
    232 
    233 static inline void
    234 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    235 {
    236 	int n = pp->pr_curlogentry;
    237 	struct pool_log *pl;
    238 
    239 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    240 		return;
    241 
    242 	/*
    243 	 * Fill in the current entry. Wrap around and overwrite
    244 	 * the oldest entry if necessary.
    245 	 */
    246 	pl = &pp->pr_log[n];
    247 	pl->pl_file = file;
    248 	pl->pl_line = line;
    249 	pl->pl_action = action;
    250 	pl->pl_addr = v;
    251 	if (++n >= pp->pr_logsize)
    252 		n = 0;
    253 	pp->pr_curlogentry = n;
    254 }
    255 
    256 static void
    257 pr_printlog(struct pool *pp, struct pool_item *pi,
    258     void (*pr)(const char *, ...))
    259 {
    260 	int i = pp->pr_logsize;
    261 	int n = pp->pr_curlogentry;
    262 
    263 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    264 		return;
    265 
    266 	/*
    267 	 * Print all entries in this pool's log.
    268 	 */
    269 	while (i-- > 0) {
    270 		struct pool_log *pl = &pp->pr_log[n];
    271 		if (pl->pl_action != 0) {
    272 			if (pi == NULL || pi == pl->pl_addr) {
    273 				(*pr)("\tlog entry %d:\n", i);
    274 				(*pr)("\t\taction = %s, addr = %p\n",
    275 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    276 				    pl->pl_addr);
    277 				(*pr)("\t\tfile: %s at line %lu\n",
    278 				    pl->pl_file, pl->pl_line);
    279 			}
    280 		}
    281 		if (++n >= pp->pr_logsize)
    282 			n = 0;
    283 	}
    284 }
    285 
    286 static inline void
    287 pr_enter(struct pool *pp, const char *file, long line)
    288 {
    289 
    290 	if (__predict_false(pp->pr_entered_file != NULL)) {
    291 		printf("pool %s: reentrancy at file %s line %ld\n",
    292 		    pp->pr_wchan, file, line);
    293 		printf("         previous entry at file %s line %ld\n",
    294 		    pp->pr_entered_file, pp->pr_entered_line);
    295 		panic("pr_enter");
    296 	}
    297 
    298 	pp->pr_entered_file = file;
    299 	pp->pr_entered_line = line;
    300 }
    301 
    302 static inline void
    303 pr_leave(struct pool *pp)
    304 {
    305 
    306 	if (__predict_false(pp->pr_entered_file == NULL)) {
    307 		printf("pool %s not entered?\n", pp->pr_wchan);
    308 		panic("pr_leave");
    309 	}
    310 
    311 	pp->pr_entered_file = NULL;
    312 	pp->pr_entered_line = 0;
    313 }
    314 
    315 static inline void
    316 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    317 {
    318 
    319 	if (pp->pr_entered_file != NULL)
    320 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    321 		    pp->pr_entered_file, pp->pr_entered_line);
    322 }
    323 #else
    324 #define	pr_log(pp, v, action, file, line)
    325 #define	pr_printlog(pp, pi, pr)
    326 #define	pr_enter(pp, file, line)
    327 #define	pr_leave(pp)
    328 #define	pr_enter_check(pp, pr)
    329 #endif /* POOL_DIAGNOSTIC */
    330 
    331 static inline unsigned int
    332 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    333     const void *v)
    334 {
    335 	const char *cp = v;
    336 	unsigned int idx;
    337 
    338 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    339 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    340 	KASSERT(idx < pp->pr_itemsperpage);
    341 	return idx;
    342 }
    343 
    344 static inline void
    345 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    346     void *obj)
    347 {
    348 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    349 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    350 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    351 
    352 	KASSERT((*bitmap & mask) == 0);
    353 	*bitmap |= mask;
    354 }
    355 
    356 static inline void *
    357 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    358 {
    359 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    360 	unsigned int idx;
    361 	int i;
    362 
    363 	for (i = 0; ; i++) {
    364 		int bit;
    365 
    366 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    367 		bit = ffs32(bitmap[i]);
    368 		if (bit) {
    369 			pool_item_bitmap_t mask;
    370 
    371 			bit--;
    372 			idx = (i * BITMAP_SIZE) + bit;
    373 			mask = 1 << bit;
    374 			KASSERT((bitmap[i] & mask) != 0);
    375 			bitmap[i] &= ~mask;
    376 			break;
    377 		}
    378 	}
    379 	KASSERT(idx < pp->pr_itemsperpage);
    380 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    381 }
    382 
    383 static inline void
    384 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph,
    385     unsigned int offset)
    386 {
    387 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    388 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    389 	int i;
    390 
    391 	ph->ph_off = offset;
    392 	for (i = 0; i < n; i++) {
    393 		bitmap[i] = (pool_item_bitmap_t)-1;
    394 	}
    395 }
    396 
    397 static inline int
    398 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    399 {
    400 
    401 	/*
    402 	 * we consider pool_item_header with smaller ph_page bigger.
    403 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    404 	 */
    405 
    406 	if (a->ph_page < b->ph_page)
    407 		return (1);
    408 	else if (a->ph_page > b->ph_page)
    409 		return (-1);
    410 	else
    411 		return (0);
    412 }
    413 
    414 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    415 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    416 
    417 /*
    418  * Return the pool page header based on item address.
    419  */
    420 static inline struct pool_item_header *
    421 pr_find_pagehead(struct pool *pp, void *v)
    422 {
    423 	struct pool_item_header *ph, tmp;
    424 
    425 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    426 		tmp.ph_page = (void *)(uintptr_t)v;
    427 		ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    428 		if (ph == NULL) {
    429 			ph = SPLAY_ROOT(&pp->pr_phtree);
    430 			if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    431 				ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    432 			}
    433 			KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    434 		}
    435 	} else {
    436 		void *page =
    437 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    438 
    439 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    440 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    441 		} else {
    442 			tmp.ph_page = page;
    443 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    444 		}
    445 	}
    446 
    447 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    448 	    ((char *)ph->ph_page <= (char *)v &&
    449 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    450 	return ph;
    451 }
    452 
    453 static void
    454 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    455 {
    456 	struct pool_item_header *ph;
    457 
    458 	while ((ph = LIST_FIRST(pq)) != NULL) {
    459 		LIST_REMOVE(ph, ph_pagelist);
    460 		pool_allocator_free(pp, ph->ph_page);
    461 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    462 			pool_put(pp->pr_phpool, ph);
    463 	}
    464 }
    465 
    466 /*
    467  * Remove a page from the pool.
    468  */
    469 static inline void
    470 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    471      struct pool_pagelist *pq)
    472 {
    473 
    474 	KASSERT(mutex_owned(&pp->pr_lock));
    475 
    476 	/*
    477 	 * If the page was idle, decrement the idle page count.
    478 	 */
    479 	if (ph->ph_nmissing == 0) {
    480 #ifdef DIAGNOSTIC
    481 		if (pp->pr_nidle == 0)
    482 			panic("pr_rmpage: nidle inconsistent");
    483 		if (pp->pr_nitems < pp->pr_itemsperpage)
    484 			panic("pr_rmpage: nitems inconsistent");
    485 #endif
    486 		pp->pr_nidle--;
    487 	}
    488 
    489 	pp->pr_nitems -= pp->pr_itemsperpage;
    490 
    491 	/*
    492 	 * Unlink the page from the pool and queue it for release.
    493 	 */
    494 	LIST_REMOVE(ph, ph_pagelist);
    495 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    496 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    497 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    498 
    499 	pp->pr_npages--;
    500 	pp->pr_npagefree++;
    501 
    502 	pool_update_curpage(pp);
    503 }
    504 
    505 static bool
    506 pa_starved_p(struct pool_allocator *pa)
    507 {
    508 
    509 	if (pa->pa_backingmap != NULL) {
    510 		return vm_map_starved_p(pa->pa_backingmap);
    511 	}
    512 	return false;
    513 }
    514 
    515 static int
    516 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    517 {
    518 	struct pool *pp = obj;
    519 	struct pool_allocator *pa = pp->pr_alloc;
    520 
    521 	KASSERT(&pp->pr_reclaimerentry == ce);
    522 	pool_reclaim(pp);
    523 	if (!pa_starved_p(pa)) {
    524 		return CALLBACK_CHAIN_ABORT;
    525 	}
    526 	return CALLBACK_CHAIN_CONTINUE;
    527 }
    528 
    529 static void
    530 pool_reclaim_register(struct pool *pp)
    531 {
    532 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    533 	int s;
    534 
    535 	if (map == NULL) {
    536 		return;
    537 	}
    538 
    539 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    540 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    541 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    542 	splx(s);
    543 }
    544 
    545 static void
    546 pool_reclaim_unregister(struct pool *pp)
    547 {
    548 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    549 	int s;
    550 
    551 	if (map == NULL) {
    552 		return;
    553 	}
    554 
    555 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    556 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    557 	    &pp->pr_reclaimerentry);
    558 	splx(s);
    559 }
    560 
    561 static void
    562 pa_reclaim_register(struct pool_allocator *pa)
    563 {
    564 	struct vm_map *map = *pa->pa_backingmapptr;
    565 	struct pool *pp;
    566 
    567 	KASSERT(pa->pa_backingmap == NULL);
    568 	if (map == NULL) {
    569 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    570 		return;
    571 	}
    572 	pa->pa_backingmap = map;
    573 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    574 		pool_reclaim_register(pp);
    575 	}
    576 }
    577 
    578 /*
    579  * Initialize all the pools listed in the "pools" link set.
    580  */
    581 void
    582 pool_subsystem_init(void)
    583 {
    584 	struct pool_allocator *pa;
    585 	__link_set_decl(pools, struct link_pool_init);
    586 	struct link_pool_init * const *pi;
    587 
    588 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    589 	cv_init(&pool_busy, "poolbusy");
    590 
    591 	__link_set_foreach(pi, pools)
    592 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    593 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    594 		    (*pi)->palloc, (*pi)->ipl);
    595 
    596 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    597 		KASSERT(pa->pa_backingmapptr != NULL);
    598 		KASSERT(*pa->pa_backingmapptr != NULL);
    599 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    600 		pa_reclaim_register(pa);
    601 	}
    602 
    603 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
    604 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    605 
    606 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
    607 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    608 }
    609 
    610 /*
    611  * Initialize the given pool resource structure.
    612  *
    613  * We export this routine to allow other kernel parts to declare
    614  * static pools that must be initialized before malloc() is available.
    615  */
    616 void
    617 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    618     const char *wchan, struct pool_allocator *palloc, int ipl)
    619 {
    620 #ifdef DEBUG
    621 	struct pool *pp1;
    622 #endif
    623 	size_t trysize, phsize;
    624 	int off, slack;
    625 
    626 #ifdef DEBUG
    627 	/*
    628 	 * Check that the pool hasn't already been initialised and
    629 	 * added to the list of all pools.
    630 	 */
    631 	LIST_FOREACH(pp1, &pool_head, pr_poollist) {
    632 		if (pp == pp1)
    633 			panic("pool_init: pool %s already initialised",
    634 			    wchan);
    635 	}
    636 #endif
    637 
    638 #ifdef POOL_DIAGNOSTIC
    639 	/*
    640 	 * Always log if POOL_DIAGNOSTIC is defined.
    641 	 */
    642 	if (pool_logsize != 0)
    643 		flags |= PR_LOGGING;
    644 #endif
    645 
    646 	if (palloc == NULL)
    647 		palloc = &pool_allocator_kmem;
    648 #ifdef POOL_SUBPAGE
    649 	if (size > palloc->pa_pagesz) {
    650 		if (palloc == &pool_allocator_kmem)
    651 			palloc = &pool_allocator_kmem_fullpage;
    652 		else if (palloc == &pool_allocator_nointr)
    653 			palloc = &pool_allocator_nointr_fullpage;
    654 	}
    655 #endif /* POOL_SUBPAGE */
    656 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    657 		if (palloc->pa_pagesz == 0)
    658 			palloc->pa_pagesz = PAGE_SIZE;
    659 
    660 		TAILQ_INIT(&palloc->pa_list);
    661 
    662 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    663 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    664 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    665 
    666 		if (palloc->pa_backingmapptr != NULL) {
    667 			pa_reclaim_register(palloc);
    668 		}
    669 		palloc->pa_flags |= PA_INITIALIZED;
    670 	}
    671 
    672 	if (align == 0)
    673 		align = ALIGN(1);
    674 
    675 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    676 		size = sizeof(struct pool_item);
    677 
    678 	size = roundup(size, align);
    679 #ifdef DIAGNOSTIC
    680 	if (size > palloc->pa_pagesz)
    681 		panic("pool_init: pool item size (%zu) too large", size);
    682 #endif
    683 
    684 	/*
    685 	 * Initialize the pool structure.
    686 	 */
    687 	LIST_INIT(&pp->pr_emptypages);
    688 	LIST_INIT(&pp->pr_fullpages);
    689 	LIST_INIT(&pp->pr_partpages);
    690 	pp->pr_cache = NULL;
    691 	pp->pr_curpage = NULL;
    692 	pp->pr_npages = 0;
    693 	pp->pr_minitems = 0;
    694 	pp->pr_minpages = 0;
    695 	pp->pr_maxpages = UINT_MAX;
    696 	pp->pr_roflags = flags;
    697 	pp->pr_flags = 0;
    698 	pp->pr_size = size;
    699 	pp->pr_align = align;
    700 	pp->pr_wchan = wchan;
    701 	pp->pr_alloc = palloc;
    702 	pp->pr_nitems = 0;
    703 	pp->pr_nout = 0;
    704 	pp->pr_hardlimit = UINT_MAX;
    705 	pp->pr_hardlimit_warning = NULL;
    706 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    707 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    708 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    709 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    710 	pp->pr_drain_hook = NULL;
    711 	pp->pr_drain_hook_arg = NULL;
    712 	pp->pr_freecheck = NULL;
    713 
    714 	/*
    715 	 * Decide whether to put the page header off page to avoid
    716 	 * wasting too large a part of the page or too big item.
    717 	 * Off-page page headers go on a hash table, so we can match
    718 	 * a returned item with its header based on the page address.
    719 	 * We use 1/16 of the page size and about 8 times of the item
    720 	 * size as the threshold (XXX: tune)
    721 	 *
    722 	 * However, we'll put the header into the page if we can put
    723 	 * it without wasting any items.
    724 	 *
    725 	 * Silently enforce `0 <= ioff < align'.
    726 	 */
    727 	pp->pr_itemoffset = ioff %= align;
    728 	/* See the comment below about reserved bytes. */
    729 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    730 	phsize = ALIGN(sizeof(struct pool_item_header));
    731 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    732 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    733 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    734 		/* Use the end of the page for the page header */
    735 		pp->pr_roflags |= PR_PHINPAGE;
    736 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    737 	} else {
    738 		/* The page header will be taken from our page header pool */
    739 		pp->pr_phoffset = 0;
    740 		off = palloc->pa_pagesz;
    741 		SPLAY_INIT(&pp->pr_phtree);
    742 	}
    743 
    744 	/*
    745 	 * Alignment is to take place at `ioff' within the item. This means
    746 	 * we must reserve up to `align - 1' bytes on the page to allow
    747 	 * appropriate positioning of each item.
    748 	 */
    749 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    750 	KASSERT(pp->pr_itemsperpage != 0);
    751 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    752 		int idx;
    753 
    754 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    755 		    idx++) {
    756 			/* nothing */
    757 		}
    758 		if (idx >= PHPOOL_MAX) {
    759 			/*
    760 			 * if you see this panic, consider to tweak
    761 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    762 			 */
    763 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    764 			    pp->pr_wchan, pp->pr_itemsperpage);
    765 		}
    766 		pp->pr_phpool = &phpool[idx];
    767 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    768 		pp->pr_phpool = &phpool[0];
    769 	}
    770 #if defined(DIAGNOSTIC)
    771 	else {
    772 		pp->pr_phpool = NULL;
    773 	}
    774 #endif
    775 
    776 	/*
    777 	 * Use the slack between the chunks and the page header
    778 	 * for "cache coloring".
    779 	 */
    780 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    781 	pp->pr_maxcolor = (slack / align) * align;
    782 	pp->pr_curcolor = 0;
    783 
    784 	pp->pr_nget = 0;
    785 	pp->pr_nfail = 0;
    786 	pp->pr_nput = 0;
    787 	pp->pr_npagealloc = 0;
    788 	pp->pr_npagefree = 0;
    789 	pp->pr_hiwat = 0;
    790 	pp->pr_nidle = 0;
    791 	pp->pr_refcnt = 0;
    792 
    793 #ifdef POOL_DIAGNOSTIC
    794 	if (flags & PR_LOGGING) {
    795 		if (kmem_map == NULL ||
    796 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    797 		     M_TEMP, M_NOWAIT)) == NULL)
    798 			pp->pr_roflags &= ~PR_LOGGING;
    799 		pp->pr_curlogentry = 0;
    800 		pp->pr_logsize = pool_logsize;
    801 	}
    802 #endif
    803 
    804 	pp->pr_entered_file = NULL;
    805 	pp->pr_entered_line = 0;
    806 
    807 	/*
    808 	 * XXXAD hack to prevent IP input processing from blocking.
    809 	 */
    810 	if (ipl == IPL_SOFTNET) {
    811 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
    812 	} else {
    813 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    814 	}
    815 	cv_init(&pp->pr_cv, wchan);
    816 	pp->pr_ipl = ipl;
    817 
    818 	/*
    819 	 * Initialize private page header pool and cache magazine pool if we
    820 	 * haven't done so yet.
    821 	 * XXX LOCKING.
    822 	 */
    823 	if (phpool[0].pr_size == 0) {
    824 		int idx;
    825 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    826 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    827 			int nelem;
    828 			size_t sz;
    829 
    830 			nelem = PHPOOL_FREELIST_NELEM(idx);
    831 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    832 			    "phpool-%d", nelem);
    833 			sz = sizeof(struct pool_item_header);
    834 			if (nelem) {
    835 				sz = offsetof(struct pool_item_header,
    836 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    837 			}
    838 			pool_init(&phpool[idx], sz, 0, 0, 0,
    839 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    840 		}
    841 #ifdef POOL_SUBPAGE
    842 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    843 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    844 #endif
    845 		pool_init(&pcgpool, sizeof(pcg_t), CACHE_LINE_SIZE, 0, 0,
    846 		    "cachegrp", &pool_allocator_meta, IPL_VM);
    847 	}
    848 
    849 	if (__predict_true(!cold)) {
    850 		/* Insert into the list of all pools. */
    851 		mutex_enter(&pool_head_lock);
    852 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    853 		mutex_exit(&pool_head_lock);
    854 
    855 		/* Insert this into the list of pools using this allocator. */
    856 		mutex_enter(&palloc->pa_lock);
    857 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    858 		mutex_exit(&palloc->pa_lock);
    859 	} else {
    860 		LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
    861 		TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    862 	}
    863 
    864 	pool_reclaim_register(pp);
    865 }
    866 
    867 /*
    868  * De-commision a pool resource.
    869  */
    870 void
    871 pool_destroy(struct pool *pp)
    872 {
    873 	struct pool_pagelist pq;
    874 	struct pool_item_header *ph;
    875 
    876 	/* Remove from global pool list */
    877 	mutex_enter(&pool_head_lock);
    878 	while (pp->pr_refcnt != 0)
    879 		cv_wait(&pool_busy, &pool_head_lock);
    880 	LIST_REMOVE(pp, pr_poollist);
    881 	if (drainpp == pp)
    882 		drainpp = NULL;
    883 	mutex_exit(&pool_head_lock);
    884 
    885 	/* Remove this pool from its allocator's list of pools. */
    886 	pool_reclaim_unregister(pp);
    887 	mutex_enter(&pp->pr_alloc->pa_lock);
    888 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    889 	mutex_exit(&pp->pr_alloc->pa_lock);
    890 
    891 	mutex_enter(&pp->pr_lock);
    892 
    893 	KASSERT(pp->pr_cache == NULL);
    894 
    895 #ifdef DIAGNOSTIC
    896 	if (pp->pr_nout != 0) {
    897 		pr_printlog(pp, NULL, printf);
    898 		panic("pool_destroy: pool busy: still out: %u",
    899 		    pp->pr_nout);
    900 	}
    901 #endif
    902 
    903 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    904 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    905 
    906 	/* Remove all pages */
    907 	LIST_INIT(&pq);
    908 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    909 		pr_rmpage(pp, ph, &pq);
    910 
    911 	mutex_exit(&pp->pr_lock);
    912 
    913 	pr_pagelist_free(pp, &pq);
    914 
    915 #ifdef POOL_DIAGNOSTIC
    916 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    917 		free(pp->pr_log, M_TEMP);
    918 #endif
    919 
    920 	cv_destroy(&pp->pr_cv);
    921 	mutex_destroy(&pp->pr_lock);
    922 }
    923 
    924 void
    925 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    926 {
    927 
    928 	/* XXX no locking -- must be used just after pool_init() */
    929 #ifdef DIAGNOSTIC
    930 	if (pp->pr_drain_hook != NULL)
    931 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    932 #endif
    933 	pp->pr_drain_hook = fn;
    934 	pp->pr_drain_hook_arg = arg;
    935 }
    936 
    937 static struct pool_item_header *
    938 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    939 {
    940 	struct pool_item_header *ph;
    941 
    942 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    943 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    944 	else
    945 		ph = pool_get(pp->pr_phpool, flags);
    946 
    947 	return (ph);
    948 }
    949 
    950 /*
    951  * Grab an item from the pool.
    952  */
    953 void *
    954 #ifdef POOL_DIAGNOSTIC
    955 _pool_get(struct pool *pp, int flags, const char *file, long line)
    956 #else
    957 pool_get(struct pool *pp, int flags)
    958 #endif
    959 {
    960 	struct pool_item *pi;
    961 	struct pool_item_header *ph;
    962 	void *v;
    963 
    964 #ifdef DIAGNOSTIC
    965 	if (__predict_false(pp->pr_itemsperpage == 0))
    966 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    967 		    "pool not initialized?", pp);
    968 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    969 			    (flags & PR_WAITOK) != 0))
    970 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    971 
    972 #endif /* DIAGNOSTIC */
    973 #ifdef LOCKDEBUG
    974 	if (flags & PR_WAITOK)
    975 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
    976 #endif
    977 
    978 	mutex_enter(&pp->pr_lock);
    979 	pr_enter(pp, file, line);
    980 
    981  startover:
    982 	/*
    983 	 * Check to see if we've reached the hard limit.  If we have,
    984 	 * and we can wait, then wait until an item has been returned to
    985 	 * the pool.
    986 	 */
    987 #ifdef DIAGNOSTIC
    988 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    989 		pr_leave(pp);
    990 		mutex_exit(&pp->pr_lock);
    991 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    992 	}
    993 #endif
    994 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    995 		if (pp->pr_drain_hook != NULL) {
    996 			/*
    997 			 * Since the drain hook is going to free things
    998 			 * back to the pool, unlock, call the hook, re-lock,
    999 			 * and check the hardlimit condition again.
   1000 			 */
   1001 			pr_leave(pp);
   1002 			mutex_exit(&pp->pr_lock);
   1003 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1004 			mutex_enter(&pp->pr_lock);
   1005 			pr_enter(pp, file, line);
   1006 			if (pp->pr_nout < pp->pr_hardlimit)
   1007 				goto startover;
   1008 		}
   1009 
   1010 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1011 			/*
   1012 			 * XXX: A warning isn't logged in this case.  Should
   1013 			 * it be?
   1014 			 */
   1015 			pp->pr_flags |= PR_WANTED;
   1016 			pr_leave(pp);
   1017 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1018 			pr_enter(pp, file, line);
   1019 			goto startover;
   1020 		}
   1021 
   1022 		/*
   1023 		 * Log a message that the hard limit has been hit.
   1024 		 */
   1025 		if (pp->pr_hardlimit_warning != NULL &&
   1026 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1027 			      &pp->pr_hardlimit_ratecap))
   1028 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1029 
   1030 		pp->pr_nfail++;
   1031 
   1032 		pr_leave(pp);
   1033 		mutex_exit(&pp->pr_lock);
   1034 		return (NULL);
   1035 	}
   1036 
   1037 	/*
   1038 	 * The convention we use is that if `curpage' is not NULL, then
   1039 	 * it points at a non-empty bucket. In particular, `curpage'
   1040 	 * never points at a page header which has PR_PHINPAGE set and
   1041 	 * has no items in its bucket.
   1042 	 */
   1043 	if ((ph = pp->pr_curpage) == NULL) {
   1044 		int error;
   1045 
   1046 #ifdef DIAGNOSTIC
   1047 		if (pp->pr_nitems != 0) {
   1048 			mutex_exit(&pp->pr_lock);
   1049 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1050 			    pp->pr_wchan, pp->pr_nitems);
   1051 			panic("pool_get: nitems inconsistent");
   1052 		}
   1053 #endif
   1054 
   1055 		/*
   1056 		 * Call the back-end page allocator for more memory.
   1057 		 * Release the pool lock, as the back-end page allocator
   1058 		 * may block.
   1059 		 */
   1060 		pr_leave(pp);
   1061 		error = pool_grow(pp, flags);
   1062 		pr_enter(pp, file, line);
   1063 		if (error != 0) {
   1064 			/*
   1065 			 * We were unable to allocate a page or item
   1066 			 * header, but we released the lock during
   1067 			 * allocation, so perhaps items were freed
   1068 			 * back to the pool.  Check for this case.
   1069 			 */
   1070 			if (pp->pr_curpage != NULL)
   1071 				goto startover;
   1072 
   1073 			pp->pr_nfail++;
   1074 			pr_leave(pp);
   1075 			mutex_exit(&pp->pr_lock);
   1076 			return (NULL);
   1077 		}
   1078 
   1079 		/* Start the allocation process over. */
   1080 		goto startover;
   1081 	}
   1082 	if (pp->pr_roflags & PR_NOTOUCH) {
   1083 #ifdef DIAGNOSTIC
   1084 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1085 			pr_leave(pp);
   1086 			mutex_exit(&pp->pr_lock);
   1087 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1088 		}
   1089 #endif
   1090 		v = pr_item_notouch_get(pp, ph);
   1091 #ifdef POOL_DIAGNOSTIC
   1092 		pr_log(pp, v, PRLOG_GET, file, line);
   1093 #endif
   1094 	} else {
   1095 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1096 		if (__predict_false(v == NULL)) {
   1097 			pr_leave(pp);
   1098 			mutex_exit(&pp->pr_lock);
   1099 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1100 		}
   1101 #ifdef DIAGNOSTIC
   1102 		if (__predict_false(pp->pr_nitems == 0)) {
   1103 			pr_leave(pp);
   1104 			mutex_exit(&pp->pr_lock);
   1105 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1106 			    pp->pr_wchan, pp->pr_nitems);
   1107 			panic("pool_get: nitems inconsistent");
   1108 		}
   1109 #endif
   1110 
   1111 #ifdef POOL_DIAGNOSTIC
   1112 		pr_log(pp, v, PRLOG_GET, file, line);
   1113 #endif
   1114 
   1115 #ifdef DIAGNOSTIC
   1116 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1117 			pr_printlog(pp, pi, printf);
   1118 			panic("pool_get(%s): free list modified: "
   1119 			    "magic=%x; page %p; item addr %p\n",
   1120 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1121 		}
   1122 #endif
   1123 
   1124 		/*
   1125 		 * Remove from item list.
   1126 		 */
   1127 		LIST_REMOVE(pi, pi_list);
   1128 	}
   1129 	pp->pr_nitems--;
   1130 	pp->pr_nout++;
   1131 	if (ph->ph_nmissing == 0) {
   1132 #ifdef DIAGNOSTIC
   1133 		if (__predict_false(pp->pr_nidle == 0))
   1134 			panic("pool_get: nidle inconsistent");
   1135 #endif
   1136 		pp->pr_nidle--;
   1137 
   1138 		/*
   1139 		 * This page was previously empty.  Move it to the list of
   1140 		 * partially-full pages.  This page is already curpage.
   1141 		 */
   1142 		LIST_REMOVE(ph, ph_pagelist);
   1143 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1144 	}
   1145 	ph->ph_nmissing++;
   1146 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1147 #ifdef DIAGNOSTIC
   1148 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1149 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1150 			pr_leave(pp);
   1151 			mutex_exit(&pp->pr_lock);
   1152 			panic("pool_get: %s: nmissing inconsistent",
   1153 			    pp->pr_wchan);
   1154 		}
   1155 #endif
   1156 		/*
   1157 		 * This page is now full.  Move it to the full list
   1158 		 * and select a new current page.
   1159 		 */
   1160 		LIST_REMOVE(ph, ph_pagelist);
   1161 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1162 		pool_update_curpage(pp);
   1163 	}
   1164 
   1165 	pp->pr_nget++;
   1166 	pr_leave(pp);
   1167 
   1168 	/*
   1169 	 * If we have a low water mark and we are now below that low
   1170 	 * water mark, add more items to the pool.
   1171 	 */
   1172 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1173 		/*
   1174 		 * XXX: Should we log a warning?  Should we set up a timeout
   1175 		 * to try again in a second or so?  The latter could break
   1176 		 * a caller's assumptions about interrupt protection, etc.
   1177 		 */
   1178 	}
   1179 
   1180 	mutex_exit(&pp->pr_lock);
   1181 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1182 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1183 	return (v);
   1184 }
   1185 
   1186 /*
   1187  * Internal version of pool_put().  Pool is already locked/entered.
   1188  */
   1189 static void
   1190 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1191 {
   1192 	struct pool_item *pi = v;
   1193 	struct pool_item_header *ph;
   1194 
   1195 	KASSERT(mutex_owned(&pp->pr_lock));
   1196 	FREECHECK_IN(&pp->pr_freecheck, v);
   1197 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1198 
   1199 #ifdef DIAGNOSTIC
   1200 	if (__predict_false(pp->pr_nout == 0)) {
   1201 		printf("pool %s: putting with none out\n",
   1202 		    pp->pr_wchan);
   1203 		panic("pool_put");
   1204 	}
   1205 #endif
   1206 
   1207 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1208 		pr_printlog(pp, NULL, printf);
   1209 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1210 	}
   1211 
   1212 	/*
   1213 	 * Return to item list.
   1214 	 */
   1215 	if (pp->pr_roflags & PR_NOTOUCH) {
   1216 		pr_item_notouch_put(pp, ph, v);
   1217 	} else {
   1218 #ifdef DIAGNOSTIC
   1219 		pi->pi_magic = PI_MAGIC;
   1220 #endif
   1221 #ifdef DEBUG
   1222 		{
   1223 			int i, *ip = v;
   1224 
   1225 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1226 				*ip++ = PI_MAGIC;
   1227 			}
   1228 		}
   1229 #endif
   1230 
   1231 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1232 	}
   1233 	KDASSERT(ph->ph_nmissing != 0);
   1234 	ph->ph_nmissing--;
   1235 	pp->pr_nput++;
   1236 	pp->pr_nitems++;
   1237 	pp->pr_nout--;
   1238 
   1239 	/* Cancel "pool empty" condition if it exists */
   1240 	if (pp->pr_curpage == NULL)
   1241 		pp->pr_curpage = ph;
   1242 
   1243 	if (pp->pr_flags & PR_WANTED) {
   1244 		pp->pr_flags &= ~PR_WANTED;
   1245 		if (ph->ph_nmissing == 0)
   1246 			pp->pr_nidle++;
   1247 		cv_broadcast(&pp->pr_cv);
   1248 		return;
   1249 	}
   1250 
   1251 	/*
   1252 	 * If this page is now empty, do one of two things:
   1253 	 *
   1254 	 *	(1) If we have more pages than the page high water mark,
   1255 	 *	    free the page back to the system.  ONLY CONSIDER
   1256 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1257 	 *	    CLAIM.
   1258 	 *
   1259 	 *	(2) Otherwise, move the page to the empty page list.
   1260 	 *
   1261 	 * Either way, select a new current page (so we use a partially-full
   1262 	 * page if one is available).
   1263 	 */
   1264 	if (ph->ph_nmissing == 0) {
   1265 		pp->pr_nidle++;
   1266 		if (pp->pr_npages > pp->pr_minpages &&
   1267 		    (pp->pr_npages > pp->pr_maxpages ||
   1268 		     pa_starved_p(pp->pr_alloc))) {
   1269 			pr_rmpage(pp, ph, pq);
   1270 		} else {
   1271 			LIST_REMOVE(ph, ph_pagelist);
   1272 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1273 
   1274 			/*
   1275 			 * Update the timestamp on the page.  A page must
   1276 			 * be idle for some period of time before it can
   1277 			 * be reclaimed by the pagedaemon.  This minimizes
   1278 			 * ping-pong'ing for memory.
   1279 			 */
   1280 			getmicrotime(&ph->ph_time);
   1281 		}
   1282 		pool_update_curpage(pp);
   1283 	}
   1284 
   1285 	/*
   1286 	 * If the page was previously completely full, move it to the
   1287 	 * partially-full list and make it the current page.  The next
   1288 	 * allocation will get the item from this page, instead of
   1289 	 * further fragmenting the pool.
   1290 	 */
   1291 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1292 		LIST_REMOVE(ph, ph_pagelist);
   1293 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1294 		pp->pr_curpage = ph;
   1295 	}
   1296 }
   1297 
   1298 /*
   1299  * Return resource to the pool.
   1300  */
   1301 #ifdef POOL_DIAGNOSTIC
   1302 void
   1303 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1304 {
   1305 	struct pool_pagelist pq;
   1306 
   1307 	LIST_INIT(&pq);
   1308 
   1309 	mutex_enter(&pp->pr_lock);
   1310 	pr_enter(pp, file, line);
   1311 
   1312 	pr_log(pp, v, PRLOG_PUT, file, line);
   1313 
   1314 	pool_do_put(pp, v, &pq);
   1315 
   1316 	pr_leave(pp);
   1317 	mutex_exit(&pp->pr_lock);
   1318 
   1319 	pr_pagelist_free(pp, &pq);
   1320 }
   1321 #undef pool_put
   1322 #endif /* POOL_DIAGNOSTIC */
   1323 
   1324 void
   1325 pool_put(struct pool *pp, void *v)
   1326 {
   1327 	struct pool_pagelist pq;
   1328 
   1329 	LIST_INIT(&pq);
   1330 
   1331 	mutex_enter(&pp->pr_lock);
   1332 	pool_do_put(pp, v, &pq);
   1333 	mutex_exit(&pp->pr_lock);
   1334 
   1335 	pr_pagelist_free(pp, &pq);
   1336 }
   1337 
   1338 #ifdef POOL_DIAGNOSTIC
   1339 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1340 #endif
   1341 
   1342 /*
   1343  * pool_grow: grow a pool by a page.
   1344  *
   1345  * => called with pool locked.
   1346  * => unlock and relock the pool.
   1347  * => return with pool locked.
   1348  */
   1349 
   1350 static int
   1351 pool_grow(struct pool *pp, int flags)
   1352 {
   1353 	struct pool_item_header *ph = NULL;
   1354 	char *cp;
   1355 
   1356 	mutex_exit(&pp->pr_lock);
   1357 	cp = pool_allocator_alloc(pp, flags);
   1358 	if (__predict_true(cp != NULL)) {
   1359 		ph = pool_alloc_item_header(pp, cp, flags);
   1360 	}
   1361 	if (__predict_false(cp == NULL || ph == NULL)) {
   1362 		if (cp != NULL) {
   1363 			pool_allocator_free(pp, cp);
   1364 		}
   1365 		mutex_enter(&pp->pr_lock);
   1366 		return ENOMEM;
   1367 	}
   1368 
   1369 	mutex_enter(&pp->pr_lock);
   1370 	pool_prime_page(pp, cp, ph);
   1371 	pp->pr_npagealloc++;
   1372 	return 0;
   1373 }
   1374 
   1375 /*
   1376  * Add N items to the pool.
   1377  */
   1378 int
   1379 pool_prime(struct pool *pp, int n)
   1380 {
   1381 	int newpages;
   1382 	int error = 0;
   1383 
   1384 	mutex_enter(&pp->pr_lock);
   1385 
   1386 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1387 
   1388 	while (newpages-- > 0) {
   1389 		error = pool_grow(pp, PR_NOWAIT);
   1390 		if (error) {
   1391 			break;
   1392 		}
   1393 		pp->pr_minpages++;
   1394 	}
   1395 
   1396 	if (pp->pr_minpages >= pp->pr_maxpages)
   1397 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1398 
   1399 	mutex_exit(&pp->pr_lock);
   1400 	return error;
   1401 }
   1402 
   1403 /*
   1404  * Add a page worth of items to the pool.
   1405  *
   1406  * Note, we must be called with the pool descriptor LOCKED.
   1407  */
   1408 static void
   1409 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1410 {
   1411 	struct pool_item *pi;
   1412 	void *cp = storage;
   1413 	const unsigned int align = pp->pr_align;
   1414 	const unsigned int ioff = pp->pr_itemoffset;
   1415 	int n;
   1416 
   1417 	KASSERT(mutex_owned(&pp->pr_lock));
   1418 
   1419 #ifdef DIAGNOSTIC
   1420 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1421 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1422 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1423 #endif
   1424 
   1425 	/*
   1426 	 * Insert page header.
   1427 	 */
   1428 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1429 	LIST_INIT(&ph->ph_itemlist);
   1430 	ph->ph_page = storage;
   1431 	ph->ph_nmissing = 0;
   1432 	getmicrotime(&ph->ph_time);
   1433 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1434 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1435 
   1436 	pp->pr_nidle++;
   1437 
   1438 	/*
   1439 	 * Color this page.
   1440 	 */
   1441 	cp = (char *)cp + pp->pr_curcolor;
   1442 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1443 		pp->pr_curcolor = 0;
   1444 
   1445 	/*
   1446 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1447 	 */
   1448 	if (ioff != 0)
   1449 		cp = (char *)cp + align - ioff;
   1450 
   1451 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1452 
   1453 	/*
   1454 	 * Insert remaining chunks on the bucket list.
   1455 	 */
   1456 	n = pp->pr_itemsperpage;
   1457 	pp->pr_nitems += n;
   1458 
   1459 	if (pp->pr_roflags & PR_NOTOUCH) {
   1460 		pr_item_notouch_init(pp, ph, (char *)cp - (char *)storage);
   1461 	} else {
   1462 		while (n--) {
   1463 			pi = (struct pool_item *)cp;
   1464 
   1465 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1466 
   1467 			/* Insert on page list */
   1468 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1469 #ifdef DIAGNOSTIC
   1470 			pi->pi_magic = PI_MAGIC;
   1471 #endif
   1472 			cp = (char *)cp + pp->pr_size;
   1473 
   1474 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1475 		}
   1476 	}
   1477 
   1478 	/*
   1479 	 * If the pool was depleted, point at the new page.
   1480 	 */
   1481 	if (pp->pr_curpage == NULL)
   1482 		pp->pr_curpage = ph;
   1483 
   1484 	if (++pp->pr_npages > pp->pr_hiwat)
   1485 		pp->pr_hiwat = pp->pr_npages;
   1486 }
   1487 
   1488 /*
   1489  * Used by pool_get() when nitems drops below the low water mark.  This
   1490  * is used to catch up pr_nitems with the low water mark.
   1491  *
   1492  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1493  *
   1494  * Note 2, we must be called with the pool already locked, and we return
   1495  * with it locked.
   1496  */
   1497 static int
   1498 pool_catchup(struct pool *pp)
   1499 {
   1500 	int error = 0;
   1501 
   1502 	while (POOL_NEEDS_CATCHUP(pp)) {
   1503 		error = pool_grow(pp, PR_NOWAIT);
   1504 		if (error) {
   1505 			break;
   1506 		}
   1507 	}
   1508 	return error;
   1509 }
   1510 
   1511 static void
   1512 pool_update_curpage(struct pool *pp)
   1513 {
   1514 
   1515 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1516 	if (pp->pr_curpage == NULL) {
   1517 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1518 	}
   1519 }
   1520 
   1521 void
   1522 pool_setlowat(struct pool *pp, int n)
   1523 {
   1524 
   1525 	mutex_enter(&pp->pr_lock);
   1526 
   1527 	pp->pr_minitems = n;
   1528 	pp->pr_minpages = (n == 0)
   1529 		? 0
   1530 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1531 
   1532 	/* Make sure we're caught up with the newly-set low water mark. */
   1533 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1534 		/*
   1535 		 * XXX: Should we log a warning?  Should we set up a timeout
   1536 		 * to try again in a second or so?  The latter could break
   1537 		 * a caller's assumptions about interrupt protection, etc.
   1538 		 */
   1539 	}
   1540 
   1541 	mutex_exit(&pp->pr_lock);
   1542 }
   1543 
   1544 void
   1545 pool_sethiwat(struct pool *pp, int n)
   1546 {
   1547 
   1548 	mutex_enter(&pp->pr_lock);
   1549 
   1550 	pp->pr_maxpages = (n == 0)
   1551 		? 0
   1552 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1553 
   1554 	mutex_exit(&pp->pr_lock);
   1555 }
   1556 
   1557 void
   1558 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1559 {
   1560 
   1561 	mutex_enter(&pp->pr_lock);
   1562 
   1563 	pp->pr_hardlimit = n;
   1564 	pp->pr_hardlimit_warning = warnmess;
   1565 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1566 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1567 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1568 
   1569 	/*
   1570 	 * In-line version of pool_sethiwat(), because we don't want to
   1571 	 * release the lock.
   1572 	 */
   1573 	pp->pr_maxpages = (n == 0)
   1574 		? 0
   1575 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1576 
   1577 	mutex_exit(&pp->pr_lock);
   1578 }
   1579 
   1580 /*
   1581  * Release all complete pages that have not been used recently.
   1582  */
   1583 int
   1584 #ifdef POOL_DIAGNOSTIC
   1585 _pool_reclaim(struct pool *pp, const char *file, long line)
   1586 #else
   1587 pool_reclaim(struct pool *pp)
   1588 #endif
   1589 {
   1590 	struct pool_item_header *ph, *phnext;
   1591 	struct pool_pagelist pq;
   1592 	struct timeval curtime, diff;
   1593 	bool klock;
   1594 	int rv;
   1595 
   1596 	if (pp->pr_drain_hook != NULL) {
   1597 		/*
   1598 		 * The drain hook must be called with the pool unlocked.
   1599 		 */
   1600 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1601 	}
   1602 
   1603 	/*
   1604 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
   1605 	 * and we are called from the pagedaemon without kernel_lock.
   1606 	 * Does not apply to IPL_SOFTBIO.
   1607 	 */
   1608 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1609 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1610 		KERNEL_LOCK(1, NULL);
   1611 		klock = true;
   1612 	} else
   1613 		klock = false;
   1614 
   1615 	/* Reclaim items from the pool's cache (if any). */
   1616 	if (pp->pr_cache != NULL)
   1617 		pool_cache_invalidate(pp->pr_cache);
   1618 
   1619 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1620 		if (klock) {
   1621 			KERNEL_UNLOCK_ONE(NULL);
   1622 		}
   1623 		return (0);
   1624 	}
   1625 	pr_enter(pp, file, line);
   1626 
   1627 	LIST_INIT(&pq);
   1628 
   1629 	getmicrotime(&curtime);
   1630 
   1631 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1632 		phnext = LIST_NEXT(ph, ph_pagelist);
   1633 
   1634 		/* Check our minimum page claim */
   1635 		if (pp->pr_npages <= pp->pr_minpages)
   1636 			break;
   1637 
   1638 		KASSERT(ph->ph_nmissing == 0);
   1639 		timersub(&curtime, &ph->ph_time, &diff);
   1640 		if (diff.tv_sec < pool_inactive_time
   1641 		    && !pa_starved_p(pp->pr_alloc))
   1642 			continue;
   1643 
   1644 		/*
   1645 		 * If freeing this page would put us below
   1646 		 * the low water mark, stop now.
   1647 		 */
   1648 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1649 		    pp->pr_minitems)
   1650 			break;
   1651 
   1652 		pr_rmpage(pp, ph, &pq);
   1653 	}
   1654 
   1655 	pr_leave(pp);
   1656 	mutex_exit(&pp->pr_lock);
   1657 
   1658 	if (LIST_EMPTY(&pq))
   1659 		rv = 0;
   1660 	else {
   1661 		pr_pagelist_free(pp, &pq);
   1662 		rv = 1;
   1663 	}
   1664 
   1665 	if (klock) {
   1666 		KERNEL_UNLOCK_ONE(NULL);
   1667 	}
   1668 
   1669 	return (rv);
   1670 }
   1671 
   1672 /*
   1673  * Drain pools, one at a time.  This is a two stage process;
   1674  * drain_start kicks off a cross call to drain CPU-level caches
   1675  * if the pool has an associated pool_cache.  drain_end waits
   1676  * for those cross calls to finish, and then drains the cache
   1677  * (if any) and pool.
   1678  *
   1679  * Note, must never be called from interrupt context.
   1680  */
   1681 void
   1682 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1683 {
   1684 	struct pool *pp;
   1685 
   1686 	KASSERT(!LIST_EMPTY(&pool_head));
   1687 
   1688 	pp = NULL;
   1689 
   1690 	/* Find next pool to drain, and add a reference. */
   1691 	mutex_enter(&pool_head_lock);
   1692 	do {
   1693 		if (drainpp == NULL) {
   1694 			drainpp = LIST_FIRST(&pool_head);
   1695 		}
   1696 		if (drainpp != NULL) {
   1697 			pp = drainpp;
   1698 			drainpp = LIST_NEXT(pp, pr_poollist);
   1699 		}
   1700 		/*
   1701 		 * Skip completely idle pools.  We depend on at least
   1702 		 * one pool in the system being active.
   1703 		 */
   1704 	} while (pp == NULL || pp->pr_npages == 0);
   1705 	pp->pr_refcnt++;
   1706 	mutex_exit(&pool_head_lock);
   1707 
   1708 	/* If there is a pool_cache, drain CPU level caches. */
   1709 	*ppp = pp;
   1710 	if (pp->pr_cache != NULL) {
   1711 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1712 		    pp->pr_cache, NULL);
   1713 	}
   1714 }
   1715 
   1716 void
   1717 pool_drain_end(struct pool *pp, uint64_t where)
   1718 {
   1719 
   1720 	if (pp == NULL)
   1721 		return;
   1722 
   1723 	KASSERT(pp->pr_refcnt > 0);
   1724 
   1725 	/* Wait for remote draining to complete. */
   1726 	if (pp->pr_cache != NULL)
   1727 		xc_wait(where);
   1728 
   1729 	/* Drain the cache (if any) and pool.. */
   1730 	pool_reclaim(pp);
   1731 
   1732 	/* Finally, unlock the pool. */
   1733 	mutex_enter(&pool_head_lock);
   1734 	pp->pr_refcnt--;
   1735 	cv_broadcast(&pool_busy);
   1736 	mutex_exit(&pool_head_lock);
   1737 }
   1738 
   1739 /*
   1740  * Diagnostic helpers.
   1741  */
   1742 void
   1743 pool_print(struct pool *pp, const char *modif)
   1744 {
   1745 
   1746 	pool_print1(pp, modif, printf);
   1747 }
   1748 
   1749 void
   1750 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1751 {
   1752 	struct pool *pp;
   1753 
   1754 	LIST_FOREACH(pp, &pool_head, pr_poollist) {
   1755 		pool_printit(pp, modif, pr);
   1756 	}
   1757 }
   1758 
   1759 void
   1760 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1761 {
   1762 
   1763 	if (pp == NULL) {
   1764 		(*pr)("Must specify a pool to print.\n");
   1765 		return;
   1766 	}
   1767 
   1768 	pool_print1(pp, modif, pr);
   1769 }
   1770 
   1771 static void
   1772 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1773     void (*pr)(const char *, ...))
   1774 {
   1775 	struct pool_item_header *ph;
   1776 #ifdef DIAGNOSTIC
   1777 	struct pool_item *pi;
   1778 #endif
   1779 
   1780 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1781 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1782 		    ph->ph_page, ph->ph_nmissing,
   1783 		    (u_long)ph->ph_time.tv_sec,
   1784 		    (u_long)ph->ph_time.tv_usec);
   1785 #ifdef DIAGNOSTIC
   1786 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1787 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1788 				if (pi->pi_magic != PI_MAGIC) {
   1789 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1790 					    pi, pi->pi_magic);
   1791 				}
   1792 			}
   1793 		}
   1794 #endif
   1795 	}
   1796 }
   1797 
   1798 static void
   1799 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1800 {
   1801 	struct pool_item_header *ph;
   1802 	pool_cache_t pc;
   1803 	pcg_t *pcg;
   1804 	pool_cache_cpu_t *cc;
   1805 	uint64_t cpuhit, cpumiss;
   1806 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1807 	char c;
   1808 
   1809 	while ((c = *modif++) != '\0') {
   1810 		if (c == 'l')
   1811 			print_log = 1;
   1812 		if (c == 'p')
   1813 			print_pagelist = 1;
   1814 		if (c == 'c')
   1815 			print_cache = 1;
   1816 	}
   1817 
   1818 	if ((pc = pp->pr_cache) != NULL) {
   1819 		(*pr)("POOL CACHE");
   1820 	} else {
   1821 		(*pr)("POOL");
   1822 	}
   1823 
   1824 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1825 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1826 	    pp->pr_roflags);
   1827 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1828 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1829 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1830 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1831 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1832 
   1833 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1834 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1835 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1836 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1837 
   1838 	if (print_pagelist == 0)
   1839 		goto skip_pagelist;
   1840 
   1841 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1842 		(*pr)("\n\tempty page list:\n");
   1843 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1844 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1845 		(*pr)("\n\tfull page list:\n");
   1846 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1847 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1848 		(*pr)("\n\tpartial-page list:\n");
   1849 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1850 
   1851 	if (pp->pr_curpage == NULL)
   1852 		(*pr)("\tno current page\n");
   1853 	else
   1854 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1855 
   1856  skip_pagelist:
   1857 	if (print_log == 0)
   1858 		goto skip_log;
   1859 
   1860 	(*pr)("\n");
   1861 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1862 		(*pr)("\tno log\n");
   1863 	else {
   1864 		pr_printlog(pp, NULL, pr);
   1865 	}
   1866 
   1867  skip_log:
   1868 
   1869 #define PR_GROUPLIST(pcg)						\
   1870 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1871 	for (i = 0; i < PCG_NOBJECTS; i++) {				\
   1872 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1873 		    POOL_PADDR_INVALID) {				\
   1874 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1875 			    pcg->pcg_objects[i].pcgo_va,		\
   1876 			    (unsigned long long)			\
   1877 			    pcg->pcg_objects[i].pcgo_pa);		\
   1878 		} else {						\
   1879 			(*pr)("\t\t\t%p\n",				\
   1880 			    pcg->pcg_objects[i].pcgo_va);		\
   1881 		}							\
   1882 	}
   1883 
   1884 	if (pc != NULL) {
   1885 		cpuhit = 0;
   1886 		cpumiss = 0;
   1887 		for (i = 0; i < MAXCPUS; i++) {
   1888 			if ((cc = pc->pc_cpus[i]) == NULL)
   1889 				continue;
   1890 			cpuhit += cc->cc_hits;
   1891 			cpumiss += cc->cc_misses;
   1892 		}
   1893 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1894 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1895 		    pc->pc_hits, pc->pc_misses);
   1896 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1897 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1898 		    pc->pc_contended);
   1899 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1900 		    pc->pc_nempty, pc->pc_nfull);
   1901 		if (print_cache) {
   1902 			(*pr)("\tfull cache groups:\n");
   1903 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1904 			    pcg = pcg->pcg_next) {
   1905 				PR_GROUPLIST(pcg);
   1906 			}
   1907 			(*pr)("\tempty cache groups:\n");
   1908 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1909 			    pcg = pcg->pcg_next) {
   1910 				PR_GROUPLIST(pcg);
   1911 			}
   1912 		}
   1913 	}
   1914 #undef PR_GROUPLIST
   1915 
   1916 	pr_enter_check(pp, pr);
   1917 }
   1918 
   1919 static int
   1920 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1921 {
   1922 	struct pool_item *pi;
   1923 	void *page;
   1924 	int n;
   1925 
   1926 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1927 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1928 		if (page != ph->ph_page &&
   1929 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1930 			if (label != NULL)
   1931 				printf("%s: ", label);
   1932 			printf("pool(%p:%s): page inconsistency: page %p;"
   1933 			       " at page head addr %p (p %p)\n", pp,
   1934 				pp->pr_wchan, ph->ph_page,
   1935 				ph, page);
   1936 			return 1;
   1937 		}
   1938 	}
   1939 
   1940 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1941 		return 0;
   1942 
   1943 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1944 	     pi != NULL;
   1945 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1946 
   1947 #ifdef DIAGNOSTIC
   1948 		if (pi->pi_magic != PI_MAGIC) {
   1949 			if (label != NULL)
   1950 				printf("%s: ", label);
   1951 			printf("pool(%s): free list modified: magic=%x;"
   1952 			       " page %p; item ordinal %d; addr %p\n",
   1953 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1954 				n, pi);
   1955 			panic("pool");
   1956 		}
   1957 #endif
   1958 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1959 			continue;
   1960 		}
   1961 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1962 		if (page == ph->ph_page)
   1963 			continue;
   1964 
   1965 		if (label != NULL)
   1966 			printf("%s: ", label);
   1967 		printf("pool(%p:%s): page inconsistency: page %p;"
   1968 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1969 			pp->pr_wchan, ph->ph_page,
   1970 			n, pi, page);
   1971 		return 1;
   1972 	}
   1973 	return 0;
   1974 }
   1975 
   1976 
   1977 int
   1978 pool_chk(struct pool *pp, const char *label)
   1979 {
   1980 	struct pool_item_header *ph;
   1981 	int r = 0;
   1982 
   1983 	mutex_enter(&pp->pr_lock);
   1984 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1985 		r = pool_chk_page(pp, label, ph);
   1986 		if (r) {
   1987 			goto out;
   1988 		}
   1989 	}
   1990 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1991 		r = pool_chk_page(pp, label, ph);
   1992 		if (r) {
   1993 			goto out;
   1994 		}
   1995 	}
   1996 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1997 		r = pool_chk_page(pp, label, ph);
   1998 		if (r) {
   1999 			goto out;
   2000 		}
   2001 	}
   2002 
   2003 out:
   2004 	mutex_exit(&pp->pr_lock);
   2005 	return (r);
   2006 }
   2007 
   2008 /*
   2009  * pool_cache_init:
   2010  *
   2011  *	Initialize a pool cache.
   2012  */
   2013 pool_cache_t
   2014 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2015     const char *wchan, struct pool_allocator *palloc, int ipl,
   2016     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2017 {
   2018 	pool_cache_t pc;
   2019 
   2020 	pc = pool_get(&cache_pool, PR_WAITOK);
   2021 	if (pc == NULL)
   2022 		return NULL;
   2023 
   2024 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2025 	   palloc, ipl, ctor, dtor, arg);
   2026 
   2027 	return pc;
   2028 }
   2029 
   2030 /*
   2031  * pool_cache_bootstrap:
   2032  *
   2033  *	Kernel-private version of pool_cache_init().  The caller
   2034  *	provides initial storage.
   2035  */
   2036 void
   2037 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2038     u_int align_offset, u_int flags, const char *wchan,
   2039     struct pool_allocator *palloc, int ipl,
   2040     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2041     void *arg)
   2042 {
   2043 	CPU_INFO_ITERATOR cii;
   2044 	struct cpu_info *ci;
   2045 	struct pool *pp;
   2046 
   2047 	pp = &pc->pc_pool;
   2048 	if (palloc == NULL && ipl == IPL_NONE)
   2049 		palloc = &pool_allocator_nointr;
   2050 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2051 
   2052 	/*
   2053 	 * XXXAD hack to prevent IP input processing from blocking.
   2054 	 */
   2055 	if (ipl == IPL_SOFTNET) {
   2056 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
   2057 	} else {
   2058 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2059 	}
   2060 
   2061 	if (ctor == NULL) {
   2062 		ctor = (int (*)(void *, void *, int))nullop;
   2063 	}
   2064 	if (dtor == NULL) {
   2065 		dtor = (void (*)(void *, void *))nullop;
   2066 	}
   2067 
   2068 	pc->pc_emptygroups = NULL;
   2069 	pc->pc_fullgroups = NULL;
   2070 	pc->pc_partgroups = NULL;
   2071 	pc->pc_ctor = ctor;
   2072 	pc->pc_dtor = dtor;
   2073 	pc->pc_arg  = arg;
   2074 	pc->pc_hits  = 0;
   2075 	pc->pc_misses = 0;
   2076 	pc->pc_nempty = 0;
   2077 	pc->pc_npart = 0;
   2078 	pc->pc_nfull = 0;
   2079 	pc->pc_contended = 0;
   2080 	pc->pc_refcnt = 0;
   2081 	pc->pc_freecheck = NULL;
   2082 
   2083 	/* Allocate per-CPU caches. */
   2084 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2085 	pc->pc_ncpu = 0;
   2086 	if (ncpu < 2) {
   2087 		/* XXX For sparc: boot CPU is not attached yet. */
   2088 		pool_cache_cpu_init1(curcpu(), pc);
   2089 	} else {
   2090 		for (CPU_INFO_FOREACH(cii, ci)) {
   2091 			pool_cache_cpu_init1(ci, pc);
   2092 		}
   2093 	}
   2094 
   2095 	if (__predict_true(!cold)) {
   2096 		mutex_enter(&pp->pr_lock);
   2097 		pp->pr_cache = pc;
   2098 		mutex_exit(&pp->pr_lock);
   2099 		mutex_enter(&pool_head_lock);
   2100 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2101 		mutex_exit(&pool_head_lock);
   2102 	} else {
   2103 		pp->pr_cache = pc;
   2104 		LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
   2105 	}
   2106 }
   2107 
   2108 /*
   2109  * pool_cache_destroy:
   2110  *
   2111  *	Destroy a pool cache.
   2112  */
   2113 void
   2114 pool_cache_destroy(pool_cache_t pc)
   2115 {
   2116 	struct pool *pp = &pc->pc_pool;
   2117 	pool_cache_cpu_t *cc;
   2118 	pcg_t *pcg;
   2119 	int i;
   2120 
   2121 	/* Remove it from the global list. */
   2122 	mutex_enter(&pool_head_lock);
   2123 	while (pc->pc_refcnt != 0)
   2124 		cv_wait(&pool_busy, &pool_head_lock);
   2125 	LIST_REMOVE(pc, pc_cachelist);
   2126 	mutex_exit(&pool_head_lock);
   2127 
   2128 	/* First, invalidate the entire cache. */
   2129 	pool_cache_invalidate(pc);
   2130 
   2131 	/* Disassociate it from the pool. */
   2132 	mutex_enter(&pp->pr_lock);
   2133 	pp->pr_cache = NULL;
   2134 	mutex_exit(&pp->pr_lock);
   2135 
   2136 	/* Destroy per-CPU data */
   2137 	for (i = 0; i < MAXCPUS; i++) {
   2138 		if ((cc = pc->pc_cpus[i]) == NULL)
   2139 			continue;
   2140 		if ((pcg = cc->cc_current) != NULL) {
   2141 			pcg->pcg_next = NULL;
   2142 			pool_cache_invalidate_groups(pc, pcg);
   2143 		}
   2144 		if ((pcg = cc->cc_previous) != NULL) {
   2145 			pcg->pcg_next = NULL;
   2146 			pool_cache_invalidate_groups(pc, pcg);
   2147 		}
   2148 		if (cc != &pc->pc_cpu0)
   2149 			pool_put(&cache_cpu_pool, cc);
   2150 	}
   2151 
   2152 	/* Finally, destroy it. */
   2153 	mutex_destroy(&pc->pc_lock);
   2154 	pool_destroy(pp);
   2155 	pool_put(&cache_pool, pc);
   2156 }
   2157 
   2158 /*
   2159  * pool_cache_cpu_init1:
   2160  *
   2161  *	Called for each pool_cache whenever a new CPU is attached.
   2162  */
   2163 static void
   2164 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2165 {
   2166 	pool_cache_cpu_t *cc;
   2167 	int index;
   2168 
   2169 	index = ci->ci_index;
   2170 
   2171 	KASSERT(index < MAXCPUS);
   2172 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
   2173 
   2174 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2175 		KASSERT(cc->cc_cpuindex == index);
   2176 		return;
   2177 	}
   2178 
   2179 	/*
   2180 	 * The first CPU is 'free'.  This needs to be the case for
   2181 	 * bootstrap - we may not be able to allocate yet.
   2182 	 */
   2183 	if (pc->pc_ncpu == 0) {
   2184 		cc = &pc->pc_cpu0;
   2185 		pc->pc_ncpu = 1;
   2186 	} else {
   2187 		mutex_enter(&pc->pc_lock);
   2188 		pc->pc_ncpu++;
   2189 		mutex_exit(&pc->pc_lock);
   2190 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2191 	}
   2192 
   2193 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2194 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2195 	cc->cc_cache = pc;
   2196 	cc->cc_cpuindex = index;
   2197 	cc->cc_hits = 0;
   2198 	cc->cc_misses = 0;
   2199 	cc->cc_current = NULL;
   2200 	cc->cc_previous = NULL;
   2201 
   2202 	pc->pc_cpus[index] = cc;
   2203 }
   2204 
   2205 /*
   2206  * pool_cache_cpu_init:
   2207  *
   2208  *	Called whenever a new CPU is attached.
   2209  */
   2210 void
   2211 pool_cache_cpu_init(struct cpu_info *ci)
   2212 {
   2213 	pool_cache_t pc;
   2214 
   2215 	mutex_enter(&pool_head_lock);
   2216 	LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2217 		pc->pc_refcnt++;
   2218 		mutex_exit(&pool_head_lock);
   2219 
   2220 		pool_cache_cpu_init1(ci, pc);
   2221 
   2222 		mutex_enter(&pool_head_lock);
   2223 		pc->pc_refcnt--;
   2224 		cv_broadcast(&pool_busy);
   2225 	}
   2226 	mutex_exit(&pool_head_lock);
   2227 }
   2228 
   2229 /*
   2230  * pool_cache_reclaim:
   2231  *
   2232  *	Reclaim memory from a pool cache.
   2233  */
   2234 bool
   2235 pool_cache_reclaim(pool_cache_t pc)
   2236 {
   2237 
   2238 	return pool_reclaim(&pc->pc_pool);
   2239 }
   2240 
   2241 static void
   2242 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2243 {
   2244 
   2245 	(*pc->pc_dtor)(pc->pc_arg, object);
   2246 	pool_put(&pc->pc_pool, object);
   2247 }
   2248 
   2249 /*
   2250  * pool_cache_destruct_object:
   2251  *
   2252  *	Force destruction of an object and its release back into
   2253  *	the pool.
   2254  */
   2255 void
   2256 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2257 {
   2258 
   2259 	FREECHECK_IN(&pc->pc_freecheck, object);
   2260 
   2261 	pool_cache_destruct_object1(pc, object);
   2262 }
   2263 
   2264 /*
   2265  * pool_cache_invalidate_groups:
   2266  *
   2267  *	Invalidate a chain of groups and destruct all objects.
   2268  */
   2269 static void
   2270 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2271 {
   2272 	void *object;
   2273 	pcg_t *next;
   2274 	int i;
   2275 
   2276 	for (; pcg != NULL; pcg = next) {
   2277 		next = pcg->pcg_next;
   2278 
   2279 		for (i = 0; i < pcg->pcg_avail; i++) {
   2280 			object = pcg->pcg_objects[i].pcgo_va;
   2281 			pool_cache_destruct_object1(pc, object);
   2282 		}
   2283 
   2284 		pool_put(&pcgpool, pcg);
   2285 	}
   2286 }
   2287 
   2288 /*
   2289  * pool_cache_invalidate:
   2290  *
   2291  *	Invalidate a pool cache (destruct and release all of the
   2292  *	cached objects).  Does not reclaim objects from the pool.
   2293  */
   2294 void
   2295 pool_cache_invalidate(pool_cache_t pc)
   2296 {
   2297 	pcg_t *full, *empty, *part;
   2298 
   2299 	mutex_enter(&pc->pc_lock);
   2300 	full = pc->pc_fullgroups;
   2301 	empty = pc->pc_emptygroups;
   2302 	part = pc->pc_partgroups;
   2303 	pc->pc_fullgroups = NULL;
   2304 	pc->pc_emptygroups = NULL;
   2305 	pc->pc_partgroups = NULL;
   2306 	pc->pc_nfull = 0;
   2307 	pc->pc_nempty = 0;
   2308 	pc->pc_npart = 0;
   2309 	mutex_exit(&pc->pc_lock);
   2310 
   2311 	pool_cache_invalidate_groups(pc, full);
   2312 	pool_cache_invalidate_groups(pc, empty);
   2313 	pool_cache_invalidate_groups(pc, part);
   2314 }
   2315 
   2316 void
   2317 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2318 {
   2319 
   2320 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2321 }
   2322 
   2323 void
   2324 pool_cache_setlowat(pool_cache_t pc, int n)
   2325 {
   2326 
   2327 	pool_setlowat(&pc->pc_pool, n);
   2328 }
   2329 
   2330 void
   2331 pool_cache_sethiwat(pool_cache_t pc, int n)
   2332 {
   2333 
   2334 	pool_sethiwat(&pc->pc_pool, n);
   2335 }
   2336 
   2337 void
   2338 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2339 {
   2340 
   2341 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2342 }
   2343 
   2344 static inline pool_cache_cpu_t *
   2345 pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2346 {
   2347 	pool_cache_cpu_t *cc;
   2348 
   2349 	/*
   2350 	 * Prevent other users of the cache from accessing our
   2351 	 * CPU-local data.  To avoid touching shared state, we
   2352 	 * pull the neccessary information from CPU local data.
   2353 	 */
   2354 	crit_enter();
   2355 	cc = pc->pc_cpus[curcpu()->ci_index];
   2356 	KASSERT(cc->cc_cache == pc);
   2357 	if (cc->cc_ipl != IPL_NONE) {
   2358 		*s = splraiseipl(cc->cc_iplcookie);
   2359 	}
   2360 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
   2361 
   2362 	return cc;
   2363 }
   2364 
   2365 static inline void
   2366 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2367 {
   2368 
   2369 	/* No longer need exclusive access to the per-CPU data. */
   2370 	if (cc->cc_ipl != IPL_NONE) {
   2371 		splx(*s);
   2372 	}
   2373 	crit_exit();
   2374 }
   2375 
   2376 #if __GNUC_PREREQ__(3, 0)
   2377 __attribute ((noinline))
   2378 #endif
   2379 pool_cache_cpu_t *
   2380 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2381 		    paddr_t *pap, int flags)
   2382 {
   2383 	pcg_t *pcg, *cur;
   2384 	uint64_t ncsw;
   2385 	pool_cache_t pc;
   2386 	void *object;
   2387 
   2388 	pc = cc->cc_cache;
   2389 	cc->cc_misses++;
   2390 
   2391 	/*
   2392 	 * Nothing was available locally.  Try and grab a group
   2393 	 * from the cache.
   2394 	 */
   2395 	if (!mutex_tryenter(&pc->pc_lock)) {
   2396 		ncsw = curlwp->l_ncsw;
   2397 		mutex_enter(&pc->pc_lock);
   2398 		pc->pc_contended++;
   2399 
   2400 		/*
   2401 		 * If we context switched while locking, then
   2402 		 * our view of the per-CPU data is invalid:
   2403 		 * retry.
   2404 		 */
   2405 		if (curlwp->l_ncsw != ncsw) {
   2406 			mutex_exit(&pc->pc_lock);
   2407 			pool_cache_cpu_exit(cc, s);
   2408 			return pool_cache_cpu_enter(pc, s);
   2409 		}
   2410 	}
   2411 
   2412 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2413 		/*
   2414 		 * If there's a full group, release our empty
   2415 		 * group back to the cache.  Install the full
   2416 		 * group as cc_current and return.
   2417 		 */
   2418 		if ((cur = cc->cc_current) != NULL) {
   2419 			KASSERT(cur->pcg_avail == 0);
   2420 			cur->pcg_next = pc->pc_emptygroups;
   2421 			pc->pc_emptygroups = cur;
   2422 			pc->pc_nempty++;
   2423 		}
   2424 		KASSERT(pcg->pcg_avail == PCG_NOBJECTS);
   2425 		cc->cc_current = pcg;
   2426 		pc->pc_fullgroups = pcg->pcg_next;
   2427 		pc->pc_hits++;
   2428 		pc->pc_nfull--;
   2429 		mutex_exit(&pc->pc_lock);
   2430 		return cc;
   2431 	}
   2432 
   2433 	/*
   2434 	 * Nothing available locally or in cache.  Take the slow
   2435 	 * path: fetch a new object from the pool and construct
   2436 	 * it.
   2437 	 */
   2438 	pc->pc_misses++;
   2439 	mutex_exit(&pc->pc_lock);
   2440 	pool_cache_cpu_exit(cc, s);
   2441 
   2442 	object = pool_get(&pc->pc_pool, flags);
   2443 	*objectp = object;
   2444 	if (object == NULL)
   2445 		return NULL;
   2446 
   2447 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2448 		pool_put(&pc->pc_pool, object);
   2449 		*objectp = NULL;
   2450 		return NULL;
   2451 	}
   2452 
   2453 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2454 	    (pc->pc_pool.pr_align - 1)) == 0);
   2455 
   2456 	if (pap != NULL) {
   2457 #ifdef POOL_VTOPHYS
   2458 		*pap = POOL_VTOPHYS(object);
   2459 #else
   2460 		*pap = POOL_PADDR_INVALID;
   2461 #endif
   2462 	}
   2463 
   2464 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2465 	return NULL;
   2466 }
   2467 
   2468 /*
   2469  * pool_cache_get{,_paddr}:
   2470  *
   2471  *	Get an object from a pool cache (optionally returning
   2472  *	the physical address of the object).
   2473  */
   2474 void *
   2475 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2476 {
   2477 	pool_cache_cpu_t *cc;
   2478 	pcg_t *pcg;
   2479 	void *object;
   2480 	int s;
   2481 
   2482 #ifdef LOCKDEBUG
   2483 	if (flags & PR_WAITOK)
   2484 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2485 #endif
   2486 
   2487 	cc = pool_cache_cpu_enter(pc, &s);
   2488 	do {
   2489 		/* Try and allocate an object from the current group. */
   2490 	 	pcg = cc->cc_current;
   2491 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2492 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2493 			if (pap != NULL)
   2494 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2495 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2496 			KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   2497 			KASSERT(object != NULL);
   2498 			cc->cc_hits++;
   2499 			pool_cache_cpu_exit(cc, &s);
   2500 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2501 			return object;
   2502 		}
   2503 
   2504 		/*
   2505 		 * That failed.  If the previous group isn't empty, swap
   2506 		 * it with the current group and allocate from there.
   2507 		 */
   2508 		pcg = cc->cc_previous;
   2509 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2510 			cc->cc_previous = cc->cc_current;
   2511 			cc->cc_current = pcg;
   2512 			continue;
   2513 		}
   2514 
   2515 		/*
   2516 		 * Can't allocate from either group: try the slow path.
   2517 		 * If get_slow() allocated an object for us, or if
   2518 		 * no more objects are available, it will return NULL.
   2519 		 * Otherwise, we need to retry.
   2520 		 */
   2521 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2522 	} while (cc != NULL);
   2523 
   2524 	return object;
   2525 }
   2526 
   2527 #if __GNUC_PREREQ__(3, 0)
   2528 __attribute ((noinline))
   2529 #endif
   2530 pool_cache_cpu_t *
   2531 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2532 {
   2533 	pcg_t *pcg, *cur;
   2534 	uint64_t ncsw;
   2535 	pool_cache_t pc;
   2536 
   2537 	pc = cc->cc_cache;
   2538 	cc->cc_misses++;
   2539 
   2540 	/*
   2541 	 * No free slots locally.  Try to grab an empty, unused
   2542 	 * group from the cache.
   2543 	 */
   2544 	if (!mutex_tryenter(&pc->pc_lock)) {
   2545 		ncsw = curlwp->l_ncsw;
   2546 		mutex_enter(&pc->pc_lock);
   2547 		pc->pc_contended++;
   2548 
   2549 		/*
   2550 		 * If we context switched while locking, then
   2551 		 * our view of the per-CPU data is invalid:
   2552 		 * retry.
   2553 		 */
   2554 		if (curlwp->l_ncsw != ncsw) {
   2555 			mutex_exit(&pc->pc_lock);
   2556 			pool_cache_cpu_exit(cc, s);
   2557 			return pool_cache_cpu_enter(pc, s);
   2558 		}
   2559 	}
   2560 
   2561 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2562 		/*
   2563 		 * If there's a empty group, release our full
   2564 		 * group back to the cache.  Install the empty
   2565 		 * group as cc_current and return.
   2566 		 */
   2567 		if ((cur = cc->cc_current) != NULL) {
   2568 			KASSERT(cur->pcg_avail == PCG_NOBJECTS);
   2569 			cur->pcg_next = pc->pc_fullgroups;
   2570 			pc->pc_fullgroups = cur;
   2571 			pc->pc_nfull++;
   2572 		}
   2573 		KASSERT(pcg->pcg_avail == 0);
   2574 		cc->cc_current = pcg;
   2575 		pc->pc_emptygroups = pcg->pcg_next;
   2576 		pc->pc_hits++;
   2577 		pc->pc_nempty--;
   2578 		mutex_exit(&pc->pc_lock);
   2579 		return cc;
   2580 	}
   2581 
   2582 	/*
   2583 	 * Nothing available locally or in cache.  Take the
   2584 	 * slow path and try to allocate a new group that we
   2585 	 * can release to.
   2586 	 */
   2587 	pc->pc_misses++;
   2588 	mutex_exit(&pc->pc_lock);
   2589 	pool_cache_cpu_exit(cc, s);
   2590 
   2591 	/*
   2592 	 * If we can't allocate a new group, just throw the
   2593 	 * object away.
   2594 	 */
   2595 	pcg = pool_get(&pcgpool, PR_NOWAIT);
   2596 	if (pcg == NULL) {
   2597 		pool_cache_destruct_object(pc, object);
   2598 		return NULL;
   2599 	}
   2600 #ifdef DIAGNOSTIC
   2601 	memset(pcg, 0, sizeof(*pcg));
   2602 #else
   2603 	pcg->pcg_avail = 0;
   2604 #endif
   2605 
   2606 	/*
   2607 	 * Add the empty group to the cache and try again.
   2608 	 */
   2609 	mutex_enter(&pc->pc_lock);
   2610 	pcg->pcg_next = pc->pc_emptygroups;
   2611 	pc->pc_emptygroups = pcg;
   2612 	pc->pc_nempty++;
   2613 	mutex_exit(&pc->pc_lock);
   2614 
   2615 	return pool_cache_cpu_enter(pc, s);
   2616 }
   2617 
   2618 /*
   2619  * pool_cache_put{,_paddr}:
   2620  *
   2621  *	Put an object back to the pool cache (optionally caching the
   2622  *	physical address of the object).
   2623  */
   2624 void
   2625 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2626 {
   2627 	pool_cache_cpu_t *cc;
   2628 	pcg_t *pcg;
   2629 	int s;
   2630 
   2631 	FREECHECK_IN(&pc->pc_freecheck, object);
   2632 
   2633 	cc = pool_cache_cpu_enter(pc, &s);
   2634 	do {
   2635 		/* If the current group isn't full, release it there. */
   2636 	 	pcg = cc->cc_current;
   2637 		if (pcg != NULL && pcg->pcg_avail < PCG_NOBJECTS) {
   2638 			KASSERT(pcg->pcg_objects[pcg->pcg_avail].pcgo_va
   2639 			    == NULL);
   2640 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2641 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2642 			pcg->pcg_avail++;
   2643 			cc->cc_hits++;
   2644 			pool_cache_cpu_exit(cc, &s);
   2645 			return;
   2646 		}
   2647 
   2648 		/*
   2649 		 * That failed.  If the previous group is empty, swap
   2650 		 * it with the current group and try again.
   2651 		 */
   2652 		pcg = cc->cc_previous;
   2653 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2654 			cc->cc_previous = cc->cc_current;
   2655 			cc->cc_current = pcg;
   2656 			continue;
   2657 		}
   2658 
   2659 		/*
   2660 		 * Can't free to either group: try the slow path.
   2661 		 * If put_slow() releases the object for us, it
   2662 		 * will return NULL.  Otherwise we need to retry.
   2663 		 */
   2664 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2665 	} while (cc != NULL);
   2666 }
   2667 
   2668 /*
   2669  * pool_cache_xcall:
   2670  *
   2671  *	Transfer objects from the per-CPU cache to the global cache.
   2672  *	Run within a cross-call thread.
   2673  */
   2674 static void
   2675 pool_cache_xcall(pool_cache_t pc)
   2676 {
   2677 	pool_cache_cpu_t *cc;
   2678 	pcg_t *prev, *cur, **list;
   2679 	int s = 0; /* XXXgcc */
   2680 
   2681 	cc = pool_cache_cpu_enter(pc, &s);
   2682 	cur = cc->cc_current;
   2683 	cc->cc_current = NULL;
   2684 	prev = cc->cc_previous;
   2685 	cc->cc_previous = NULL;
   2686 	pool_cache_cpu_exit(cc, &s);
   2687 
   2688 	/*
   2689 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2690 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2691 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2692 	 * kernel_lock.
   2693 	 */
   2694 	s = splvm();
   2695 	mutex_enter(&pc->pc_lock);
   2696 	if (cur != NULL) {
   2697 		if (cur->pcg_avail == PCG_NOBJECTS) {
   2698 			list = &pc->pc_fullgroups;
   2699 			pc->pc_nfull++;
   2700 		} else if (cur->pcg_avail == 0) {
   2701 			list = &pc->pc_emptygroups;
   2702 			pc->pc_nempty++;
   2703 		} else {
   2704 			list = &pc->pc_partgroups;
   2705 			pc->pc_npart++;
   2706 		}
   2707 		cur->pcg_next = *list;
   2708 		*list = cur;
   2709 	}
   2710 	if (prev != NULL) {
   2711 		if (prev->pcg_avail == PCG_NOBJECTS) {
   2712 			list = &pc->pc_fullgroups;
   2713 			pc->pc_nfull++;
   2714 		} else if (prev->pcg_avail == 0) {
   2715 			list = &pc->pc_emptygroups;
   2716 			pc->pc_nempty++;
   2717 		} else {
   2718 			list = &pc->pc_partgroups;
   2719 			pc->pc_npart++;
   2720 		}
   2721 		prev->pcg_next = *list;
   2722 		*list = prev;
   2723 	}
   2724 	mutex_exit(&pc->pc_lock);
   2725 	splx(s);
   2726 }
   2727 
   2728 /*
   2729  * Pool backend allocators.
   2730  *
   2731  * Each pool has a backend allocator that handles allocation, deallocation,
   2732  * and any additional draining that might be needed.
   2733  *
   2734  * We provide two standard allocators:
   2735  *
   2736  *	pool_allocator_kmem - the default when no allocator is specified
   2737  *
   2738  *	pool_allocator_nointr - used for pools that will not be accessed
   2739  *	in interrupt context.
   2740  */
   2741 void	*pool_page_alloc(struct pool *, int);
   2742 void	pool_page_free(struct pool *, void *);
   2743 
   2744 #ifdef POOL_SUBPAGE
   2745 struct pool_allocator pool_allocator_kmem_fullpage = {
   2746 	pool_page_alloc, pool_page_free, 0,
   2747 	.pa_backingmapptr = &kmem_map,
   2748 };
   2749 #else
   2750 struct pool_allocator pool_allocator_kmem = {
   2751 	pool_page_alloc, pool_page_free, 0,
   2752 	.pa_backingmapptr = &kmem_map,
   2753 };
   2754 #endif
   2755 
   2756 void	*pool_page_alloc_nointr(struct pool *, int);
   2757 void	pool_page_free_nointr(struct pool *, void *);
   2758 
   2759 #ifdef POOL_SUBPAGE
   2760 struct pool_allocator pool_allocator_nointr_fullpage = {
   2761 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2762 	.pa_backingmapptr = &kernel_map,
   2763 };
   2764 #else
   2765 struct pool_allocator pool_allocator_nointr = {
   2766 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2767 	.pa_backingmapptr = &kernel_map,
   2768 };
   2769 #endif
   2770 
   2771 #ifdef POOL_SUBPAGE
   2772 void	*pool_subpage_alloc(struct pool *, int);
   2773 void	pool_subpage_free(struct pool *, void *);
   2774 
   2775 struct pool_allocator pool_allocator_kmem = {
   2776 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2777 	.pa_backingmapptr = &kmem_map,
   2778 };
   2779 
   2780 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2781 void	pool_subpage_free_nointr(struct pool *, void *);
   2782 
   2783 struct pool_allocator pool_allocator_nointr = {
   2784 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2785 	.pa_backingmapptr = &kmem_map,
   2786 };
   2787 #endif /* POOL_SUBPAGE */
   2788 
   2789 static void *
   2790 pool_allocator_alloc(struct pool *pp, int flags)
   2791 {
   2792 	struct pool_allocator *pa = pp->pr_alloc;
   2793 	void *res;
   2794 
   2795 	res = (*pa->pa_alloc)(pp, flags);
   2796 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2797 		/*
   2798 		 * We only run the drain hook here if PR_NOWAIT.
   2799 		 * In other cases, the hook will be run in
   2800 		 * pool_reclaim().
   2801 		 */
   2802 		if (pp->pr_drain_hook != NULL) {
   2803 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2804 			res = (*pa->pa_alloc)(pp, flags);
   2805 		}
   2806 	}
   2807 	return res;
   2808 }
   2809 
   2810 static void
   2811 pool_allocator_free(struct pool *pp, void *v)
   2812 {
   2813 	struct pool_allocator *pa = pp->pr_alloc;
   2814 
   2815 	(*pa->pa_free)(pp, v);
   2816 }
   2817 
   2818 void *
   2819 pool_page_alloc(struct pool *pp, int flags)
   2820 {
   2821 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2822 
   2823 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2824 }
   2825 
   2826 void
   2827 pool_page_free(struct pool *pp, void *v)
   2828 {
   2829 
   2830 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2831 }
   2832 
   2833 static void *
   2834 pool_page_alloc_meta(struct pool *pp, int flags)
   2835 {
   2836 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2837 
   2838 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2839 }
   2840 
   2841 static void
   2842 pool_page_free_meta(struct pool *pp, void *v)
   2843 {
   2844 
   2845 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2846 }
   2847 
   2848 #ifdef POOL_SUBPAGE
   2849 /* Sub-page allocator, for machines with large hardware pages. */
   2850 void *
   2851 pool_subpage_alloc(struct pool *pp, int flags)
   2852 {
   2853 	return pool_get(&psppool, flags);
   2854 }
   2855 
   2856 void
   2857 pool_subpage_free(struct pool *pp, void *v)
   2858 {
   2859 	pool_put(&psppool, v);
   2860 }
   2861 
   2862 /* We don't provide a real nointr allocator.  Maybe later. */
   2863 void *
   2864 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2865 {
   2866 
   2867 	return (pool_subpage_alloc(pp, flags));
   2868 }
   2869 
   2870 void
   2871 pool_subpage_free_nointr(struct pool *pp, void *v)
   2872 {
   2873 
   2874 	pool_subpage_free(pp, v);
   2875 }
   2876 #endif /* POOL_SUBPAGE */
   2877 void *
   2878 pool_page_alloc_nointr(struct pool *pp, int flags)
   2879 {
   2880 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2881 
   2882 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2883 }
   2884 
   2885 void
   2886 pool_page_free_nointr(struct pool *pp, void *v)
   2887 {
   2888 
   2889 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2890 }
   2891