subr_pool.c revision 1.143 1 /* $NetBSD: subr_pool.c,v 1.143 2007/12/22 03:28:48 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.143 2007/12/22 03:28:48 yamt Exp $");
42
43 #include "opt_ddb.h"
44 #include "opt_pool.h"
45 #include "opt_poollog.h"
46 #include "opt_lockdebug.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bitops.h>
51 #include <sys/proc.h>
52 #include <sys/errno.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/lock.h>
56 #include <sys/pool.h>
57 #include <sys/syslog.h>
58 #include <sys/debug.h>
59 #include <sys/lockdebug.h>
60 #include <sys/xcall.h>
61 #include <sys/cpu.h>
62
63 #include <uvm/uvm.h>
64
65 /*
66 * Pool resource management utility.
67 *
68 * Memory is allocated in pages which are split into pieces according to
69 * the pool item size. Each page is kept on one of three lists in the
70 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
71 * for empty, full and partially-full pages respectively. The individual
72 * pool items are on a linked list headed by `ph_itemlist' in each page
73 * header. The memory for building the page list is either taken from
74 * the allocated pages themselves (for small pool items) or taken from
75 * an internal pool of page headers (`phpool').
76 */
77
78 /* List of all pools */
79 LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
80
81 /* List of all caches. */
82 LIST_HEAD(,pool_cache) pool_cache_head =
83 LIST_HEAD_INITIALIZER(pool_cache_head);
84
85 /* Private pool for page header structures */
86 #define PHPOOL_MAX 8
87 static struct pool phpool[PHPOOL_MAX];
88 #define PHPOOL_FREELIST_NELEM(idx) \
89 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
90
91 #ifdef POOL_SUBPAGE
92 /* Pool of subpages for use by normal pools. */
93 static struct pool psppool;
94 #endif
95
96 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
97 SLIST_HEAD_INITIALIZER(pa_deferinitq);
98
99 static void *pool_page_alloc_meta(struct pool *, int);
100 static void pool_page_free_meta(struct pool *, void *);
101
102 /* allocator for pool metadata */
103 struct pool_allocator pool_allocator_meta = {
104 pool_page_alloc_meta, pool_page_free_meta,
105 .pa_backingmapptr = &kmem_map,
106 };
107
108 /* # of seconds to retain page after last use */
109 int pool_inactive_time = 10;
110
111 /* Next candidate for drainage (see pool_drain()) */
112 static struct pool *drainpp;
113
114 /* This lock protects both pool_head and drainpp. */
115 static kmutex_t pool_head_lock;
116 static kcondvar_t pool_busy;
117
118 typedef uint32_t pool_item_bitmap_t;
119 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
120 #define BITMAP_MASK (BITMAP_SIZE - 1)
121
122 struct pool_item_header {
123 /* Page headers */
124 LIST_ENTRY(pool_item_header)
125 ph_pagelist; /* pool page list */
126 SPLAY_ENTRY(pool_item_header)
127 ph_node; /* Off-page page headers */
128 void * ph_page; /* this page's address */
129 struct timeval ph_time; /* last referenced */
130 uint16_t ph_nmissing; /* # of chunks in use */
131 uint16_t ph_off; /* start offset in page */
132 union {
133 /* !PR_NOTOUCH */
134 struct {
135 LIST_HEAD(, pool_item)
136 phu_itemlist; /* chunk list for this page */
137 } phu_normal;
138 /* PR_NOTOUCH */
139 struct {
140 pool_item_bitmap_t phu_bitmap[1];
141 } phu_notouch;
142 } ph_u;
143 };
144 #define ph_itemlist ph_u.phu_normal.phu_itemlist
145 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
146
147 struct pool_item {
148 #ifdef DIAGNOSTIC
149 u_int pi_magic;
150 #endif
151 #define PI_MAGIC 0xdeaddeadU
152 /* Other entries use only this list entry */
153 LIST_ENTRY(pool_item) pi_list;
154 };
155
156 #define POOL_NEEDS_CATCHUP(pp) \
157 ((pp)->pr_nitems < (pp)->pr_minitems)
158
159 /*
160 * Pool cache management.
161 *
162 * Pool caches provide a way for constructed objects to be cached by the
163 * pool subsystem. This can lead to performance improvements by avoiding
164 * needless object construction/destruction; it is deferred until absolutely
165 * necessary.
166 *
167 * Caches are grouped into cache groups. Each cache group references up
168 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
169 * object from the pool, it calls the object's constructor and places it
170 * into a cache group. When a cache group frees an object back to the
171 * pool, it first calls the object's destructor. This allows the object
172 * to persist in constructed form while freed to the cache.
173 *
174 * The pool references each cache, so that when a pool is drained by the
175 * pagedaemon, it can drain each individual cache as well. Each time a
176 * cache is drained, the most idle cache group is freed to the pool in
177 * its entirety.
178 *
179 * Pool caches are layed on top of pools. By layering them, we can avoid
180 * the complexity of cache management for pools which would not benefit
181 * from it.
182 */
183
184 static struct pool pcg_normal_pool;
185 static struct pool pcg_large_pool;
186 static struct pool cache_pool;
187 static struct pool cache_cpu_pool;
188
189 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
190 void *, paddr_t);
191 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
192 void **, paddr_t *, int);
193 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
194 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
195 static void pool_cache_xcall(pool_cache_t);
196
197 static int pool_catchup(struct pool *);
198 static void pool_prime_page(struct pool *, void *,
199 struct pool_item_header *);
200 static void pool_update_curpage(struct pool *);
201
202 static int pool_grow(struct pool *, int);
203 static void *pool_allocator_alloc(struct pool *, int);
204 static void pool_allocator_free(struct pool *, void *);
205
206 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
207 void (*)(const char *, ...));
208 static void pool_print1(struct pool *, const char *,
209 void (*)(const char *, ...));
210
211 static int pool_chk_page(struct pool *, const char *,
212 struct pool_item_header *);
213
214 /*
215 * Pool log entry. An array of these is allocated in pool_init().
216 */
217 struct pool_log {
218 const char *pl_file;
219 long pl_line;
220 int pl_action;
221 #define PRLOG_GET 1
222 #define PRLOG_PUT 2
223 void *pl_addr;
224 };
225
226 #ifdef POOL_DIAGNOSTIC
227 /* Number of entries in pool log buffers */
228 #ifndef POOL_LOGSIZE
229 #define POOL_LOGSIZE 10
230 #endif
231
232 int pool_logsize = POOL_LOGSIZE;
233
234 static inline void
235 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
236 {
237 int n = pp->pr_curlogentry;
238 struct pool_log *pl;
239
240 if ((pp->pr_roflags & PR_LOGGING) == 0)
241 return;
242
243 /*
244 * Fill in the current entry. Wrap around and overwrite
245 * the oldest entry if necessary.
246 */
247 pl = &pp->pr_log[n];
248 pl->pl_file = file;
249 pl->pl_line = line;
250 pl->pl_action = action;
251 pl->pl_addr = v;
252 if (++n >= pp->pr_logsize)
253 n = 0;
254 pp->pr_curlogentry = n;
255 }
256
257 static void
258 pr_printlog(struct pool *pp, struct pool_item *pi,
259 void (*pr)(const char *, ...))
260 {
261 int i = pp->pr_logsize;
262 int n = pp->pr_curlogentry;
263
264 if ((pp->pr_roflags & PR_LOGGING) == 0)
265 return;
266
267 /*
268 * Print all entries in this pool's log.
269 */
270 while (i-- > 0) {
271 struct pool_log *pl = &pp->pr_log[n];
272 if (pl->pl_action != 0) {
273 if (pi == NULL || pi == pl->pl_addr) {
274 (*pr)("\tlog entry %d:\n", i);
275 (*pr)("\t\taction = %s, addr = %p\n",
276 pl->pl_action == PRLOG_GET ? "get" : "put",
277 pl->pl_addr);
278 (*pr)("\t\tfile: %s at line %lu\n",
279 pl->pl_file, pl->pl_line);
280 }
281 }
282 if (++n >= pp->pr_logsize)
283 n = 0;
284 }
285 }
286
287 static inline void
288 pr_enter(struct pool *pp, const char *file, long line)
289 {
290
291 if (__predict_false(pp->pr_entered_file != NULL)) {
292 printf("pool %s: reentrancy at file %s line %ld\n",
293 pp->pr_wchan, file, line);
294 printf(" previous entry at file %s line %ld\n",
295 pp->pr_entered_file, pp->pr_entered_line);
296 panic("pr_enter");
297 }
298
299 pp->pr_entered_file = file;
300 pp->pr_entered_line = line;
301 }
302
303 static inline void
304 pr_leave(struct pool *pp)
305 {
306
307 if (__predict_false(pp->pr_entered_file == NULL)) {
308 printf("pool %s not entered?\n", pp->pr_wchan);
309 panic("pr_leave");
310 }
311
312 pp->pr_entered_file = NULL;
313 pp->pr_entered_line = 0;
314 }
315
316 static inline void
317 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
318 {
319
320 if (pp->pr_entered_file != NULL)
321 (*pr)("\n\tcurrently entered from file %s line %ld\n",
322 pp->pr_entered_file, pp->pr_entered_line);
323 }
324 #else
325 #define pr_log(pp, v, action, file, line)
326 #define pr_printlog(pp, pi, pr)
327 #define pr_enter(pp, file, line)
328 #define pr_leave(pp)
329 #define pr_enter_check(pp, pr)
330 #endif /* POOL_DIAGNOSTIC */
331
332 static inline unsigned int
333 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
334 const void *v)
335 {
336 const char *cp = v;
337 unsigned int idx;
338
339 KASSERT(pp->pr_roflags & PR_NOTOUCH);
340 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
341 KASSERT(idx < pp->pr_itemsperpage);
342 return idx;
343 }
344
345 static inline void
346 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
347 void *obj)
348 {
349 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
350 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
351 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
352
353 KASSERT((*bitmap & mask) == 0);
354 *bitmap |= mask;
355 }
356
357 static inline void *
358 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
359 {
360 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
361 unsigned int idx;
362 int i;
363
364 for (i = 0; ; i++) {
365 int bit;
366
367 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
368 bit = ffs32(bitmap[i]);
369 if (bit) {
370 pool_item_bitmap_t mask;
371
372 bit--;
373 idx = (i * BITMAP_SIZE) + bit;
374 mask = 1 << bit;
375 KASSERT((bitmap[i] & mask) != 0);
376 bitmap[i] &= ~mask;
377 break;
378 }
379 }
380 KASSERT(idx < pp->pr_itemsperpage);
381 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
382 }
383
384 static inline void
385 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
386 {
387 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
388 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
389 int i;
390
391 for (i = 0; i < n; i++) {
392 bitmap[i] = (pool_item_bitmap_t)-1;
393 }
394 }
395
396 static inline int
397 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
398 {
399
400 /*
401 * we consider pool_item_header with smaller ph_page bigger.
402 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
403 */
404
405 if (a->ph_page < b->ph_page)
406 return (1);
407 else if (a->ph_page > b->ph_page)
408 return (-1);
409 else
410 return (0);
411 }
412
413 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
414 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
415
416 static inline struct pool_item_header *
417 pr_find_pagehead_noalign(struct pool *pp, void *v)
418 {
419 struct pool_item_header *ph, tmp;
420
421 tmp.ph_page = (void *)(uintptr_t)v;
422 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
423 if (ph == NULL) {
424 ph = SPLAY_ROOT(&pp->pr_phtree);
425 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
426 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
427 }
428 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
429 }
430
431 return ph;
432 }
433
434 /*
435 * Return the pool page header based on item address.
436 */
437 static inline struct pool_item_header *
438 pr_find_pagehead(struct pool *pp, void *v)
439 {
440 struct pool_item_header *ph, tmp;
441
442 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
443 ph = pr_find_pagehead_noalign(pp, v);
444 } else {
445 void *page =
446 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
447
448 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
449 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
450 } else {
451 tmp.ph_page = page;
452 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
453 }
454 }
455
456 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
457 ((char *)ph->ph_page <= (char *)v &&
458 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
459 return ph;
460 }
461
462 static void
463 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
464 {
465 struct pool_item_header *ph;
466
467 while ((ph = LIST_FIRST(pq)) != NULL) {
468 LIST_REMOVE(ph, ph_pagelist);
469 pool_allocator_free(pp, ph->ph_page);
470 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
471 pool_put(pp->pr_phpool, ph);
472 }
473 }
474
475 /*
476 * Remove a page from the pool.
477 */
478 static inline void
479 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
480 struct pool_pagelist *pq)
481 {
482
483 KASSERT(mutex_owned(&pp->pr_lock));
484
485 /*
486 * If the page was idle, decrement the idle page count.
487 */
488 if (ph->ph_nmissing == 0) {
489 #ifdef DIAGNOSTIC
490 if (pp->pr_nidle == 0)
491 panic("pr_rmpage: nidle inconsistent");
492 if (pp->pr_nitems < pp->pr_itemsperpage)
493 panic("pr_rmpage: nitems inconsistent");
494 #endif
495 pp->pr_nidle--;
496 }
497
498 pp->pr_nitems -= pp->pr_itemsperpage;
499
500 /*
501 * Unlink the page from the pool and queue it for release.
502 */
503 LIST_REMOVE(ph, ph_pagelist);
504 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
505 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
506 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
507
508 pp->pr_npages--;
509 pp->pr_npagefree++;
510
511 pool_update_curpage(pp);
512 }
513
514 static bool
515 pa_starved_p(struct pool_allocator *pa)
516 {
517
518 if (pa->pa_backingmap != NULL) {
519 return vm_map_starved_p(pa->pa_backingmap);
520 }
521 return false;
522 }
523
524 static int
525 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
526 {
527 struct pool *pp = obj;
528 struct pool_allocator *pa = pp->pr_alloc;
529
530 KASSERT(&pp->pr_reclaimerentry == ce);
531 pool_reclaim(pp);
532 if (!pa_starved_p(pa)) {
533 return CALLBACK_CHAIN_ABORT;
534 }
535 return CALLBACK_CHAIN_CONTINUE;
536 }
537
538 static void
539 pool_reclaim_register(struct pool *pp)
540 {
541 struct vm_map *map = pp->pr_alloc->pa_backingmap;
542 int s;
543
544 if (map == NULL) {
545 return;
546 }
547
548 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
549 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
550 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
551 splx(s);
552 }
553
554 static void
555 pool_reclaim_unregister(struct pool *pp)
556 {
557 struct vm_map *map = pp->pr_alloc->pa_backingmap;
558 int s;
559
560 if (map == NULL) {
561 return;
562 }
563
564 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
565 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
566 &pp->pr_reclaimerentry);
567 splx(s);
568 }
569
570 static void
571 pa_reclaim_register(struct pool_allocator *pa)
572 {
573 struct vm_map *map = *pa->pa_backingmapptr;
574 struct pool *pp;
575
576 KASSERT(pa->pa_backingmap == NULL);
577 if (map == NULL) {
578 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
579 return;
580 }
581 pa->pa_backingmap = map;
582 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
583 pool_reclaim_register(pp);
584 }
585 }
586
587 /*
588 * Initialize all the pools listed in the "pools" link set.
589 */
590 void
591 pool_subsystem_init(void)
592 {
593 struct pool_allocator *pa;
594 __link_set_decl(pools, struct link_pool_init);
595 struct link_pool_init * const *pi;
596
597 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
598 cv_init(&pool_busy, "poolbusy");
599
600 __link_set_foreach(pi, pools)
601 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
602 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
603 (*pi)->palloc, (*pi)->ipl);
604
605 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
606 KASSERT(pa->pa_backingmapptr != NULL);
607 KASSERT(*pa->pa_backingmapptr != NULL);
608 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
609 pa_reclaim_register(pa);
610 }
611
612 pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
613 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
614
615 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
616 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
617 }
618
619 /*
620 * Initialize the given pool resource structure.
621 *
622 * We export this routine to allow other kernel parts to declare
623 * static pools that must be initialized before malloc() is available.
624 */
625 void
626 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
627 const char *wchan, struct pool_allocator *palloc, int ipl)
628 {
629 #ifdef DEBUG
630 struct pool *pp1;
631 #endif
632 size_t trysize, phsize;
633 int off, slack;
634
635 #ifdef DEBUG
636 /*
637 * Check that the pool hasn't already been initialised and
638 * added to the list of all pools.
639 */
640 LIST_FOREACH(pp1, &pool_head, pr_poollist) {
641 if (pp == pp1)
642 panic("pool_init: pool %s already initialised",
643 wchan);
644 }
645 #endif
646
647 #ifdef POOL_DIAGNOSTIC
648 /*
649 * Always log if POOL_DIAGNOSTIC is defined.
650 */
651 if (pool_logsize != 0)
652 flags |= PR_LOGGING;
653 #endif
654
655 if (palloc == NULL)
656 palloc = &pool_allocator_kmem;
657 #ifdef POOL_SUBPAGE
658 if (size > palloc->pa_pagesz) {
659 if (palloc == &pool_allocator_kmem)
660 palloc = &pool_allocator_kmem_fullpage;
661 else if (palloc == &pool_allocator_nointr)
662 palloc = &pool_allocator_nointr_fullpage;
663 }
664 #endif /* POOL_SUBPAGE */
665 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
666 if (palloc->pa_pagesz == 0)
667 palloc->pa_pagesz = PAGE_SIZE;
668
669 TAILQ_INIT(&palloc->pa_list);
670
671 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
672 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
673 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
674
675 if (palloc->pa_backingmapptr != NULL) {
676 pa_reclaim_register(palloc);
677 }
678 palloc->pa_flags |= PA_INITIALIZED;
679 }
680
681 if (align == 0)
682 align = ALIGN(1);
683
684 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
685 size = sizeof(struct pool_item);
686
687 size = roundup(size, align);
688 #ifdef DIAGNOSTIC
689 if (size > palloc->pa_pagesz)
690 panic("pool_init: pool item size (%zu) too large", size);
691 #endif
692
693 /*
694 * Initialize the pool structure.
695 */
696 LIST_INIT(&pp->pr_emptypages);
697 LIST_INIT(&pp->pr_fullpages);
698 LIST_INIT(&pp->pr_partpages);
699 pp->pr_cache = NULL;
700 pp->pr_curpage = NULL;
701 pp->pr_npages = 0;
702 pp->pr_minitems = 0;
703 pp->pr_minpages = 0;
704 pp->pr_maxpages = UINT_MAX;
705 pp->pr_roflags = flags;
706 pp->pr_flags = 0;
707 pp->pr_size = size;
708 pp->pr_align = align;
709 pp->pr_wchan = wchan;
710 pp->pr_alloc = palloc;
711 pp->pr_nitems = 0;
712 pp->pr_nout = 0;
713 pp->pr_hardlimit = UINT_MAX;
714 pp->pr_hardlimit_warning = NULL;
715 pp->pr_hardlimit_ratecap.tv_sec = 0;
716 pp->pr_hardlimit_ratecap.tv_usec = 0;
717 pp->pr_hardlimit_warning_last.tv_sec = 0;
718 pp->pr_hardlimit_warning_last.tv_usec = 0;
719 pp->pr_drain_hook = NULL;
720 pp->pr_drain_hook_arg = NULL;
721 pp->pr_freecheck = NULL;
722
723 /*
724 * Decide whether to put the page header off page to avoid
725 * wasting too large a part of the page or too big item.
726 * Off-page page headers go on a hash table, so we can match
727 * a returned item with its header based on the page address.
728 * We use 1/16 of the page size and about 8 times of the item
729 * size as the threshold (XXX: tune)
730 *
731 * However, we'll put the header into the page if we can put
732 * it without wasting any items.
733 *
734 * Silently enforce `0 <= ioff < align'.
735 */
736 pp->pr_itemoffset = ioff %= align;
737 /* See the comment below about reserved bytes. */
738 trysize = palloc->pa_pagesz - ((align - ioff) % align);
739 phsize = ALIGN(sizeof(struct pool_item_header));
740 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
741 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
742 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
743 /* Use the end of the page for the page header */
744 pp->pr_roflags |= PR_PHINPAGE;
745 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
746 } else {
747 /* The page header will be taken from our page header pool */
748 pp->pr_phoffset = 0;
749 off = palloc->pa_pagesz;
750 SPLAY_INIT(&pp->pr_phtree);
751 }
752
753 /*
754 * Alignment is to take place at `ioff' within the item. This means
755 * we must reserve up to `align - 1' bytes on the page to allow
756 * appropriate positioning of each item.
757 */
758 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
759 KASSERT(pp->pr_itemsperpage != 0);
760 if ((pp->pr_roflags & PR_NOTOUCH)) {
761 int idx;
762
763 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
764 idx++) {
765 /* nothing */
766 }
767 if (idx >= PHPOOL_MAX) {
768 /*
769 * if you see this panic, consider to tweak
770 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
771 */
772 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
773 pp->pr_wchan, pp->pr_itemsperpage);
774 }
775 pp->pr_phpool = &phpool[idx];
776 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
777 pp->pr_phpool = &phpool[0];
778 }
779 #if defined(DIAGNOSTIC)
780 else {
781 pp->pr_phpool = NULL;
782 }
783 #endif
784
785 /*
786 * Use the slack between the chunks and the page header
787 * for "cache coloring".
788 */
789 slack = off - pp->pr_itemsperpage * pp->pr_size;
790 pp->pr_maxcolor = (slack / align) * align;
791 pp->pr_curcolor = 0;
792
793 pp->pr_nget = 0;
794 pp->pr_nfail = 0;
795 pp->pr_nput = 0;
796 pp->pr_npagealloc = 0;
797 pp->pr_npagefree = 0;
798 pp->pr_hiwat = 0;
799 pp->pr_nidle = 0;
800 pp->pr_refcnt = 0;
801
802 #ifdef POOL_DIAGNOSTIC
803 if (flags & PR_LOGGING) {
804 if (kmem_map == NULL ||
805 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
806 M_TEMP, M_NOWAIT)) == NULL)
807 pp->pr_roflags &= ~PR_LOGGING;
808 pp->pr_curlogentry = 0;
809 pp->pr_logsize = pool_logsize;
810 }
811 #endif
812
813 pp->pr_entered_file = NULL;
814 pp->pr_entered_line = 0;
815
816 /*
817 * XXXAD hack to prevent IP input processing from blocking.
818 */
819 if (ipl == IPL_SOFTNET) {
820 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
821 } else {
822 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
823 }
824 cv_init(&pp->pr_cv, wchan);
825 pp->pr_ipl = ipl;
826
827 /*
828 * Initialize private page header pool and cache magazine pool if we
829 * haven't done so yet.
830 * XXX LOCKING.
831 */
832 if (phpool[0].pr_size == 0) {
833 int idx;
834 for (idx = 0; idx < PHPOOL_MAX; idx++) {
835 static char phpool_names[PHPOOL_MAX][6+1+6+1];
836 int nelem;
837 size_t sz;
838
839 nelem = PHPOOL_FREELIST_NELEM(idx);
840 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
841 "phpool-%d", nelem);
842 sz = sizeof(struct pool_item_header);
843 if (nelem) {
844 sz = offsetof(struct pool_item_header,
845 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
846 }
847 pool_init(&phpool[idx], sz, 0, 0, 0,
848 phpool_names[idx], &pool_allocator_meta, IPL_VM);
849 }
850 #ifdef POOL_SUBPAGE
851 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
852 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
853 #endif
854
855 size = sizeof(pcg_t) +
856 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
857 pool_init(&pcg_normal_pool, size, CACHE_LINE_SIZE, 0, 0,
858 "pcgnormal", &pool_allocator_meta, IPL_VM);
859
860 size = sizeof(pcg_t) +
861 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
862 pool_init(&pcg_large_pool, size, CACHE_LINE_SIZE, 0, 0,
863 "pcglarge", &pool_allocator_meta, IPL_VM);
864 }
865
866 if (__predict_true(!cold)) {
867 /* Insert into the list of all pools. */
868 mutex_enter(&pool_head_lock);
869 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
870 mutex_exit(&pool_head_lock);
871
872 /* Insert this into the list of pools using this allocator. */
873 mutex_enter(&palloc->pa_lock);
874 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
875 mutex_exit(&palloc->pa_lock);
876 } else {
877 LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
878 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
879 }
880
881 pool_reclaim_register(pp);
882 }
883
884 /*
885 * De-commision a pool resource.
886 */
887 void
888 pool_destroy(struct pool *pp)
889 {
890 struct pool_pagelist pq;
891 struct pool_item_header *ph;
892
893 /* Remove from global pool list */
894 mutex_enter(&pool_head_lock);
895 while (pp->pr_refcnt != 0)
896 cv_wait(&pool_busy, &pool_head_lock);
897 LIST_REMOVE(pp, pr_poollist);
898 if (drainpp == pp)
899 drainpp = NULL;
900 mutex_exit(&pool_head_lock);
901
902 /* Remove this pool from its allocator's list of pools. */
903 pool_reclaim_unregister(pp);
904 mutex_enter(&pp->pr_alloc->pa_lock);
905 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
906 mutex_exit(&pp->pr_alloc->pa_lock);
907
908 mutex_enter(&pp->pr_lock);
909
910 KASSERT(pp->pr_cache == NULL);
911
912 #ifdef DIAGNOSTIC
913 if (pp->pr_nout != 0) {
914 pr_printlog(pp, NULL, printf);
915 panic("pool_destroy: pool busy: still out: %u",
916 pp->pr_nout);
917 }
918 #endif
919
920 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
921 KASSERT(LIST_EMPTY(&pp->pr_partpages));
922
923 /* Remove all pages */
924 LIST_INIT(&pq);
925 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
926 pr_rmpage(pp, ph, &pq);
927
928 mutex_exit(&pp->pr_lock);
929
930 pr_pagelist_free(pp, &pq);
931
932 #ifdef POOL_DIAGNOSTIC
933 if ((pp->pr_roflags & PR_LOGGING) != 0)
934 free(pp->pr_log, M_TEMP);
935 #endif
936
937 cv_destroy(&pp->pr_cv);
938 mutex_destroy(&pp->pr_lock);
939 }
940
941 void
942 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
943 {
944
945 /* XXX no locking -- must be used just after pool_init() */
946 #ifdef DIAGNOSTIC
947 if (pp->pr_drain_hook != NULL)
948 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
949 #endif
950 pp->pr_drain_hook = fn;
951 pp->pr_drain_hook_arg = arg;
952 }
953
954 static struct pool_item_header *
955 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
956 {
957 struct pool_item_header *ph;
958
959 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
960 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
961 else
962 ph = pool_get(pp->pr_phpool, flags);
963
964 return (ph);
965 }
966
967 /*
968 * Grab an item from the pool.
969 */
970 void *
971 #ifdef POOL_DIAGNOSTIC
972 _pool_get(struct pool *pp, int flags, const char *file, long line)
973 #else
974 pool_get(struct pool *pp, int flags)
975 #endif
976 {
977 struct pool_item *pi;
978 struct pool_item_header *ph;
979 void *v;
980
981 #ifdef DIAGNOSTIC
982 if (__predict_false(pp->pr_itemsperpage == 0))
983 panic("pool_get: pool %p: pr_itemsperpage is zero, "
984 "pool not initialized?", pp);
985 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
986 (flags & PR_WAITOK) != 0))
987 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
988
989 #endif /* DIAGNOSTIC */
990 #ifdef LOCKDEBUG
991 if (flags & PR_WAITOK)
992 ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
993 #endif
994
995 mutex_enter(&pp->pr_lock);
996 pr_enter(pp, file, line);
997
998 startover:
999 /*
1000 * Check to see if we've reached the hard limit. If we have,
1001 * and we can wait, then wait until an item has been returned to
1002 * the pool.
1003 */
1004 #ifdef DIAGNOSTIC
1005 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1006 pr_leave(pp);
1007 mutex_exit(&pp->pr_lock);
1008 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1009 }
1010 #endif
1011 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1012 if (pp->pr_drain_hook != NULL) {
1013 /*
1014 * Since the drain hook is going to free things
1015 * back to the pool, unlock, call the hook, re-lock,
1016 * and check the hardlimit condition again.
1017 */
1018 pr_leave(pp);
1019 mutex_exit(&pp->pr_lock);
1020 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1021 mutex_enter(&pp->pr_lock);
1022 pr_enter(pp, file, line);
1023 if (pp->pr_nout < pp->pr_hardlimit)
1024 goto startover;
1025 }
1026
1027 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1028 /*
1029 * XXX: A warning isn't logged in this case. Should
1030 * it be?
1031 */
1032 pp->pr_flags |= PR_WANTED;
1033 pr_leave(pp);
1034 cv_wait(&pp->pr_cv, &pp->pr_lock);
1035 pr_enter(pp, file, line);
1036 goto startover;
1037 }
1038
1039 /*
1040 * Log a message that the hard limit has been hit.
1041 */
1042 if (pp->pr_hardlimit_warning != NULL &&
1043 ratecheck(&pp->pr_hardlimit_warning_last,
1044 &pp->pr_hardlimit_ratecap))
1045 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1046
1047 pp->pr_nfail++;
1048
1049 pr_leave(pp);
1050 mutex_exit(&pp->pr_lock);
1051 return (NULL);
1052 }
1053
1054 /*
1055 * The convention we use is that if `curpage' is not NULL, then
1056 * it points at a non-empty bucket. In particular, `curpage'
1057 * never points at a page header which has PR_PHINPAGE set and
1058 * has no items in its bucket.
1059 */
1060 if ((ph = pp->pr_curpage) == NULL) {
1061 int error;
1062
1063 #ifdef DIAGNOSTIC
1064 if (pp->pr_nitems != 0) {
1065 mutex_exit(&pp->pr_lock);
1066 printf("pool_get: %s: curpage NULL, nitems %u\n",
1067 pp->pr_wchan, pp->pr_nitems);
1068 panic("pool_get: nitems inconsistent");
1069 }
1070 #endif
1071
1072 /*
1073 * Call the back-end page allocator for more memory.
1074 * Release the pool lock, as the back-end page allocator
1075 * may block.
1076 */
1077 pr_leave(pp);
1078 error = pool_grow(pp, flags);
1079 pr_enter(pp, file, line);
1080 if (error != 0) {
1081 /*
1082 * We were unable to allocate a page or item
1083 * header, but we released the lock during
1084 * allocation, so perhaps items were freed
1085 * back to the pool. Check for this case.
1086 */
1087 if (pp->pr_curpage != NULL)
1088 goto startover;
1089
1090 pp->pr_nfail++;
1091 pr_leave(pp);
1092 mutex_exit(&pp->pr_lock);
1093 return (NULL);
1094 }
1095
1096 /* Start the allocation process over. */
1097 goto startover;
1098 }
1099 if (pp->pr_roflags & PR_NOTOUCH) {
1100 #ifdef DIAGNOSTIC
1101 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1102 pr_leave(pp);
1103 mutex_exit(&pp->pr_lock);
1104 panic("pool_get: %s: page empty", pp->pr_wchan);
1105 }
1106 #endif
1107 v = pr_item_notouch_get(pp, ph);
1108 #ifdef POOL_DIAGNOSTIC
1109 pr_log(pp, v, PRLOG_GET, file, line);
1110 #endif
1111 } else {
1112 v = pi = LIST_FIRST(&ph->ph_itemlist);
1113 if (__predict_false(v == NULL)) {
1114 pr_leave(pp);
1115 mutex_exit(&pp->pr_lock);
1116 panic("pool_get: %s: page empty", pp->pr_wchan);
1117 }
1118 #ifdef DIAGNOSTIC
1119 if (__predict_false(pp->pr_nitems == 0)) {
1120 pr_leave(pp);
1121 mutex_exit(&pp->pr_lock);
1122 printf("pool_get: %s: items on itemlist, nitems %u\n",
1123 pp->pr_wchan, pp->pr_nitems);
1124 panic("pool_get: nitems inconsistent");
1125 }
1126 #endif
1127
1128 #ifdef POOL_DIAGNOSTIC
1129 pr_log(pp, v, PRLOG_GET, file, line);
1130 #endif
1131
1132 #ifdef DIAGNOSTIC
1133 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1134 pr_printlog(pp, pi, printf);
1135 panic("pool_get(%s): free list modified: "
1136 "magic=%x; page %p; item addr %p\n",
1137 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1138 }
1139 #endif
1140
1141 /*
1142 * Remove from item list.
1143 */
1144 LIST_REMOVE(pi, pi_list);
1145 }
1146 pp->pr_nitems--;
1147 pp->pr_nout++;
1148 if (ph->ph_nmissing == 0) {
1149 #ifdef DIAGNOSTIC
1150 if (__predict_false(pp->pr_nidle == 0))
1151 panic("pool_get: nidle inconsistent");
1152 #endif
1153 pp->pr_nidle--;
1154
1155 /*
1156 * This page was previously empty. Move it to the list of
1157 * partially-full pages. This page is already curpage.
1158 */
1159 LIST_REMOVE(ph, ph_pagelist);
1160 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1161 }
1162 ph->ph_nmissing++;
1163 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1164 #ifdef DIAGNOSTIC
1165 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1166 !LIST_EMPTY(&ph->ph_itemlist))) {
1167 pr_leave(pp);
1168 mutex_exit(&pp->pr_lock);
1169 panic("pool_get: %s: nmissing inconsistent",
1170 pp->pr_wchan);
1171 }
1172 #endif
1173 /*
1174 * This page is now full. Move it to the full list
1175 * and select a new current page.
1176 */
1177 LIST_REMOVE(ph, ph_pagelist);
1178 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1179 pool_update_curpage(pp);
1180 }
1181
1182 pp->pr_nget++;
1183 pr_leave(pp);
1184
1185 /*
1186 * If we have a low water mark and we are now below that low
1187 * water mark, add more items to the pool.
1188 */
1189 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1190 /*
1191 * XXX: Should we log a warning? Should we set up a timeout
1192 * to try again in a second or so? The latter could break
1193 * a caller's assumptions about interrupt protection, etc.
1194 */
1195 }
1196
1197 mutex_exit(&pp->pr_lock);
1198 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1199 FREECHECK_OUT(&pp->pr_freecheck, v);
1200 return (v);
1201 }
1202
1203 /*
1204 * Internal version of pool_put(). Pool is already locked/entered.
1205 */
1206 static void
1207 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1208 {
1209 struct pool_item *pi = v;
1210 struct pool_item_header *ph;
1211
1212 KASSERT(mutex_owned(&pp->pr_lock));
1213 FREECHECK_IN(&pp->pr_freecheck, v);
1214 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1215
1216 #ifdef DIAGNOSTIC
1217 if (__predict_false(pp->pr_nout == 0)) {
1218 printf("pool %s: putting with none out\n",
1219 pp->pr_wchan);
1220 panic("pool_put");
1221 }
1222 #endif
1223
1224 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1225 pr_printlog(pp, NULL, printf);
1226 panic("pool_put: %s: page header missing", pp->pr_wchan);
1227 }
1228
1229 /*
1230 * Return to item list.
1231 */
1232 if (pp->pr_roflags & PR_NOTOUCH) {
1233 pr_item_notouch_put(pp, ph, v);
1234 } else {
1235 #ifdef DIAGNOSTIC
1236 pi->pi_magic = PI_MAGIC;
1237 #endif
1238 #ifdef DEBUG
1239 {
1240 int i, *ip = v;
1241
1242 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1243 *ip++ = PI_MAGIC;
1244 }
1245 }
1246 #endif
1247
1248 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1249 }
1250 KDASSERT(ph->ph_nmissing != 0);
1251 ph->ph_nmissing--;
1252 pp->pr_nput++;
1253 pp->pr_nitems++;
1254 pp->pr_nout--;
1255
1256 /* Cancel "pool empty" condition if it exists */
1257 if (pp->pr_curpage == NULL)
1258 pp->pr_curpage = ph;
1259
1260 if (pp->pr_flags & PR_WANTED) {
1261 pp->pr_flags &= ~PR_WANTED;
1262 if (ph->ph_nmissing == 0)
1263 pp->pr_nidle++;
1264 cv_broadcast(&pp->pr_cv);
1265 return;
1266 }
1267
1268 /*
1269 * If this page is now empty, do one of two things:
1270 *
1271 * (1) If we have more pages than the page high water mark,
1272 * free the page back to the system. ONLY CONSIDER
1273 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1274 * CLAIM.
1275 *
1276 * (2) Otherwise, move the page to the empty page list.
1277 *
1278 * Either way, select a new current page (so we use a partially-full
1279 * page if one is available).
1280 */
1281 if (ph->ph_nmissing == 0) {
1282 pp->pr_nidle++;
1283 if (pp->pr_npages > pp->pr_minpages &&
1284 (pp->pr_npages > pp->pr_maxpages ||
1285 pa_starved_p(pp->pr_alloc))) {
1286 pr_rmpage(pp, ph, pq);
1287 } else {
1288 LIST_REMOVE(ph, ph_pagelist);
1289 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1290
1291 /*
1292 * Update the timestamp on the page. A page must
1293 * be idle for some period of time before it can
1294 * be reclaimed by the pagedaemon. This minimizes
1295 * ping-pong'ing for memory.
1296 */
1297 getmicrotime(&ph->ph_time);
1298 }
1299 pool_update_curpage(pp);
1300 }
1301
1302 /*
1303 * If the page was previously completely full, move it to the
1304 * partially-full list and make it the current page. The next
1305 * allocation will get the item from this page, instead of
1306 * further fragmenting the pool.
1307 */
1308 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1309 LIST_REMOVE(ph, ph_pagelist);
1310 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1311 pp->pr_curpage = ph;
1312 }
1313 }
1314
1315 /*
1316 * Return resource to the pool.
1317 */
1318 #ifdef POOL_DIAGNOSTIC
1319 void
1320 _pool_put(struct pool *pp, void *v, const char *file, long line)
1321 {
1322 struct pool_pagelist pq;
1323
1324 LIST_INIT(&pq);
1325
1326 mutex_enter(&pp->pr_lock);
1327 pr_enter(pp, file, line);
1328
1329 pr_log(pp, v, PRLOG_PUT, file, line);
1330
1331 pool_do_put(pp, v, &pq);
1332
1333 pr_leave(pp);
1334 mutex_exit(&pp->pr_lock);
1335
1336 pr_pagelist_free(pp, &pq);
1337 }
1338 #undef pool_put
1339 #endif /* POOL_DIAGNOSTIC */
1340
1341 void
1342 pool_put(struct pool *pp, void *v)
1343 {
1344 struct pool_pagelist pq;
1345
1346 LIST_INIT(&pq);
1347
1348 mutex_enter(&pp->pr_lock);
1349 pool_do_put(pp, v, &pq);
1350 mutex_exit(&pp->pr_lock);
1351
1352 pr_pagelist_free(pp, &pq);
1353 }
1354
1355 #ifdef POOL_DIAGNOSTIC
1356 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1357 #endif
1358
1359 /*
1360 * pool_grow: grow a pool by a page.
1361 *
1362 * => called with pool locked.
1363 * => unlock and relock the pool.
1364 * => return with pool locked.
1365 */
1366
1367 static int
1368 pool_grow(struct pool *pp, int flags)
1369 {
1370 struct pool_item_header *ph = NULL;
1371 char *cp;
1372
1373 mutex_exit(&pp->pr_lock);
1374 cp = pool_allocator_alloc(pp, flags);
1375 if (__predict_true(cp != NULL)) {
1376 ph = pool_alloc_item_header(pp, cp, flags);
1377 }
1378 if (__predict_false(cp == NULL || ph == NULL)) {
1379 if (cp != NULL) {
1380 pool_allocator_free(pp, cp);
1381 }
1382 mutex_enter(&pp->pr_lock);
1383 return ENOMEM;
1384 }
1385
1386 mutex_enter(&pp->pr_lock);
1387 pool_prime_page(pp, cp, ph);
1388 pp->pr_npagealloc++;
1389 return 0;
1390 }
1391
1392 /*
1393 * Add N items to the pool.
1394 */
1395 int
1396 pool_prime(struct pool *pp, int n)
1397 {
1398 int newpages;
1399 int error = 0;
1400
1401 mutex_enter(&pp->pr_lock);
1402
1403 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1404
1405 while (newpages-- > 0) {
1406 error = pool_grow(pp, PR_NOWAIT);
1407 if (error) {
1408 break;
1409 }
1410 pp->pr_minpages++;
1411 }
1412
1413 if (pp->pr_minpages >= pp->pr_maxpages)
1414 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1415
1416 mutex_exit(&pp->pr_lock);
1417 return error;
1418 }
1419
1420 /*
1421 * Add a page worth of items to the pool.
1422 *
1423 * Note, we must be called with the pool descriptor LOCKED.
1424 */
1425 static void
1426 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1427 {
1428 struct pool_item *pi;
1429 void *cp = storage;
1430 const unsigned int align = pp->pr_align;
1431 const unsigned int ioff = pp->pr_itemoffset;
1432 int n;
1433
1434 KASSERT(mutex_owned(&pp->pr_lock));
1435
1436 #ifdef DIAGNOSTIC
1437 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1438 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1439 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1440 #endif
1441
1442 /*
1443 * Insert page header.
1444 */
1445 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1446 LIST_INIT(&ph->ph_itemlist);
1447 ph->ph_page = storage;
1448 ph->ph_nmissing = 0;
1449 getmicrotime(&ph->ph_time);
1450 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1451 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1452
1453 pp->pr_nidle++;
1454
1455 /*
1456 * Color this page.
1457 */
1458 ph->ph_off = pp->pr_curcolor;
1459 cp = (char *)cp + ph->ph_off;
1460 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1461 pp->pr_curcolor = 0;
1462
1463 /*
1464 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1465 */
1466 if (ioff != 0)
1467 cp = (char *)cp + align - ioff;
1468
1469 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1470
1471 /*
1472 * Insert remaining chunks on the bucket list.
1473 */
1474 n = pp->pr_itemsperpage;
1475 pp->pr_nitems += n;
1476
1477 if (pp->pr_roflags & PR_NOTOUCH) {
1478 pr_item_notouch_init(pp, ph);
1479 } else {
1480 while (n--) {
1481 pi = (struct pool_item *)cp;
1482
1483 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1484
1485 /* Insert on page list */
1486 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1487 #ifdef DIAGNOSTIC
1488 pi->pi_magic = PI_MAGIC;
1489 #endif
1490 cp = (char *)cp + pp->pr_size;
1491
1492 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1493 }
1494 }
1495
1496 /*
1497 * If the pool was depleted, point at the new page.
1498 */
1499 if (pp->pr_curpage == NULL)
1500 pp->pr_curpage = ph;
1501
1502 if (++pp->pr_npages > pp->pr_hiwat)
1503 pp->pr_hiwat = pp->pr_npages;
1504 }
1505
1506 /*
1507 * Used by pool_get() when nitems drops below the low water mark. This
1508 * is used to catch up pr_nitems with the low water mark.
1509 *
1510 * Note 1, we never wait for memory here, we let the caller decide what to do.
1511 *
1512 * Note 2, we must be called with the pool already locked, and we return
1513 * with it locked.
1514 */
1515 static int
1516 pool_catchup(struct pool *pp)
1517 {
1518 int error = 0;
1519
1520 while (POOL_NEEDS_CATCHUP(pp)) {
1521 error = pool_grow(pp, PR_NOWAIT);
1522 if (error) {
1523 break;
1524 }
1525 }
1526 return error;
1527 }
1528
1529 static void
1530 pool_update_curpage(struct pool *pp)
1531 {
1532
1533 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1534 if (pp->pr_curpage == NULL) {
1535 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1536 }
1537 }
1538
1539 void
1540 pool_setlowat(struct pool *pp, int n)
1541 {
1542
1543 mutex_enter(&pp->pr_lock);
1544
1545 pp->pr_minitems = n;
1546 pp->pr_minpages = (n == 0)
1547 ? 0
1548 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1549
1550 /* Make sure we're caught up with the newly-set low water mark. */
1551 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1552 /*
1553 * XXX: Should we log a warning? Should we set up a timeout
1554 * to try again in a second or so? The latter could break
1555 * a caller's assumptions about interrupt protection, etc.
1556 */
1557 }
1558
1559 mutex_exit(&pp->pr_lock);
1560 }
1561
1562 void
1563 pool_sethiwat(struct pool *pp, int n)
1564 {
1565
1566 mutex_enter(&pp->pr_lock);
1567
1568 pp->pr_maxpages = (n == 0)
1569 ? 0
1570 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1571
1572 mutex_exit(&pp->pr_lock);
1573 }
1574
1575 void
1576 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1577 {
1578
1579 mutex_enter(&pp->pr_lock);
1580
1581 pp->pr_hardlimit = n;
1582 pp->pr_hardlimit_warning = warnmess;
1583 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1584 pp->pr_hardlimit_warning_last.tv_sec = 0;
1585 pp->pr_hardlimit_warning_last.tv_usec = 0;
1586
1587 /*
1588 * In-line version of pool_sethiwat(), because we don't want to
1589 * release the lock.
1590 */
1591 pp->pr_maxpages = (n == 0)
1592 ? 0
1593 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1594
1595 mutex_exit(&pp->pr_lock);
1596 }
1597
1598 /*
1599 * Release all complete pages that have not been used recently.
1600 */
1601 int
1602 #ifdef POOL_DIAGNOSTIC
1603 _pool_reclaim(struct pool *pp, const char *file, long line)
1604 #else
1605 pool_reclaim(struct pool *pp)
1606 #endif
1607 {
1608 struct pool_item_header *ph, *phnext;
1609 struct pool_pagelist pq;
1610 struct timeval curtime, diff;
1611 bool klock;
1612 int rv;
1613
1614 if (pp->pr_drain_hook != NULL) {
1615 /*
1616 * The drain hook must be called with the pool unlocked.
1617 */
1618 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1619 }
1620
1621 /*
1622 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
1623 * and we are called from the pagedaemon without kernel_lock.
1624 * Does not apply to IPL_SOFTBIO.
1625 */
1626 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1627 pp->pr_ipl == IPL_SOFTSERIAL) {
1628 KERNEL_LOCK(1, NULL);
1629 klock = true;
1630 } else
1631 klock = false;
1632
1633 /* Reclaim items from the pool's cache (if any). */
1634 if (pp->pr_cache != NULL)
1635 pool_cache_invalidate(pp->pr_cache);
1636
1637 if (mutex_tryenter(&pp->pr_lock) == 0) {
1638 if (klock) {
1639 KERNEL_UNLOCK_ONE(NULL);
1640 }
1641 return (0);
1642 }
1643 pr_enter(pp, file, line);
1644
1645 LIST_INIT(&pq);
1646
1647 getmicrotime(&curtime);
1648
1649 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1650 phnext = LIST_NEXT(ph, ph_pagelist);
1651
1652 /* Check our minimum page claim */
1653 if (pp->pr_npages <= pp->pr_minpages)
1654 break;
1655
1656 KASSERT(ph->ph_nmissing == 0);
1657 timersub(&curtime, &ph->ph_time, &diff);
1658 if (diff.tv_sec < pool_inactive_time
1659 && !pa_starved_p(pp->pr_alloc))
1660 continue;
1661
1662 /*
1663 * If freeing this page would put us below
1664 * the low water mark, stop now.
1665 */
1666 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1667 pp->pr_minitems)
1668 break;
1669
1670 pr_rmpage(pp, ph, &pq);
1671 }
1672
1673 pr_leave(pp);
1674 mutex_exit(&pp->pr_lock);
1675
1676 if (LIST_EMPTY(&pq))
1677 rv = 0;
1678 else {
1679 pr_pagelist_free(pp, &pq);
1680 rv = 1;
1681 }
1682
1683 if (klock) {
1684 KERNEL_UNLOCK_ONE(NULL);
1685 }
1686
1687 return (rv);
1688 }
1689
1690 /*
1691 * Drain pools, one at a time. This is a two stage process;
1692 * drain_start kicks off a cross call to drain CPU-level caches
1693 * if the pool has an associated pool_cache. drain_end waits
1694 * for those cross calls to finish, and then drains the cache
1695 * (if any) and pool.
1696 *
1697 * Note, must never be called from interrupt context.
1698 */
1699 void
1700 pool_drain_start(struct pool **ppp, uint64_t *wp)
1701 {
1702 struct pool *pp;
1703
1704 KASSERT(!LIST_EMPTY(&pool_head));
1705
1706 pp = NULL;
1707
1708 /* Find next pool to drain, and add a reference. */
1709 mutex_enter(&pool_head_lock);
1710 do {
1711 if (drainpp == NULL) {
1712 drainpp = LIST_FIRST(&pool_head);
1713 }
1714 if (drainpp != NULL) {
1715 pp = drainpp;
1716 drainpp = LIST_NEXT(pp, pr_poollist);
1717 }
1718 /*
1719 * Skip completely idle pools. We depend on at least
1720 * one pool in the system being active.
1721 */
1722 } while (pp == NULL || pp->pr_npages == 0);
1723 pp->pr_refcnt++;
1724 mutex_exit(&pool_head_lock);
1725
1726 /* If there is a pool_cache, drain CPU level caches. */
1727 *ppp = pp;
1728 if (pp->pr_cache != NULL) {
1729 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1730 pp->pr_cache, NULL);
1731 }
1732 }
1733
1734 void
1735 pool_drain_end(struct pool *pp, uint64_t where)
1736 {
1737
1738 if (pp == NULL)
1739 return;
1740
1741 KASSERT(pp->pr_refcnt > 0);
1742
1743 /* Wait for remote draining to complete. */
1744 if (pp->pr_cache != NULL)
1745 xc_wait(where);
1746
1747 /* Drain the cache (if any) and pool.. */
1748 pool_reclaim(pp);
1749
1750 /* Finally, unlock the pool. */
1751 mutex_enter(&pool_head_lock);
1752 pp->pr_refcnt--;
1753 cv_broadcast(&pool_busy);
1754 mutex_exit(&pool_head_lock);
1755 }
1756
1757 /*
1758 * Diagnostic helpers.
1759 */
1760 void
1761 pool_print(struct pool *pp, const char *modif)
1762 {
1763
1764 pool_print1(pp, modif, printf);
1765 }
1766
1767 void
1768 pool_printall(const char *modif, void (*pr)(const char *, ...))
1769 {
1770 struct pool *pp;
1771
1772 LIST_FOREACH(pp, &pool_head, pr_poollist) {
1773 pool_printit(pp, modif, pr);
1774 }
1775 }
1776
1777 void
1778 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1779 {
1780
1781 if (pp == NULL) {
1782 (*pr)("Must specify a pool to print.\n");
1783 return;
1784 }
1785
1786 pool_print1(pp, modif, pr);
1787 }
1788
1789 static void
1790 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1791 void (*pr)(const char *, ...))
1792 {
1793 struct pool_item_header *ph;
1794 #ifdef DIAGNOSTIC
1795 struct pool_item *pi;
1796 #endif
1797
1798 LIST_FOREACH(ph, pl, ph_pagelist) {
1799 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1800 ph->ph_page, ph->ph_nmissing,
1801 (u_long)ph->ph_time.tv_sec,
1802 (u_long)ph->ph_time.tv_usec);
1803 #ifdef DIAGNOSTIC
1804 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1805 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1806 if (pi->pi_magic != PI_MAGIC) {
1807 (*pr)("\t\t\titem %p, magic 0x%x\n",
1808 pi, pi->pi_magic);
1809 }
1810 }
1811 }
1812 #endif
1813 }
1814 }
1815
1816 static void
1817 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1818 {
1819 struct pool_item_header *ph;
1820 pool_cache_t pc;
1821 pcg_t *pcg;
1822 pool_cache_cpu_t *cc;
1823 uint64_t cpuhit, cpumiss;
1824 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1825 char c;
1826
1827 while ((c = *modif++) != '\0') {
1828 if (c == 'l')
1829 print_log = 1;
1830 if (c == 'p')
1831 print_pagelist = 1;
1832 if (c == 'c')
1833 print_cache = 1;
1834 }
1835
1836 if ((pc = pp->pr_cache) != NULL) {
1837 (*pr)("POOL CACHE");
1838 } else {
1839 (*pr)("POOL");
1840 }
1841
1842 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1843 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1844 pp->pr_roflags);
1845 (*pr)("\talloc %p\n", pp->pr_alloc);
1846 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1847 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1848 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1849 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1850
1851 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1852 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1853 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1854 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1855
1856 if (print_pagelist == 0)
1857 goto skip_pagelist;
1858
1859 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1860 (*pr)("\n\tempty page list:\n");
1861 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1862 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1863 (*pr)("\n\tfull page list:\n");
1864 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1865 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1866 (*pr)("\n\tpartial-page list:\n");
1867 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1868
1869 if (pp->pr_curpage == NULL)
1870 (*pr)("\tno current page\n");
1871 else
1872 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1873
1874 skip_pagelist:
1875 if (print_log == 0)
1876 goto skip_log;
1877
1878 (*pr)("\n");
1879 if ((pp->pr_roflags & PR_LOGGING) == 0)
1880 (*pr)("\tno log\n");
1881 else {
1882 pr_printlog(pp, NULL, pr);
1883 }
1884
1885 skip_log:
1886
1887 #define PR_GROUPLIST(pcg) \
1888 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1889 for (i = 0; i < pcg->pcg_size; i++) { \
1890 if (pcg->pcg_objects[i].pcgo_pa != \
1891 POOL_PADDR_INVALID) { \
1892 (*pr)("\t\t\t%p, 0x%llx\n", \
1893 pcg->pcg_objects[i].pcgo_va, \
1894 (unsigned long long) \
1895 pcg->pcg_objects[i].pcgo_pa); \
1896 } else { \
1897 (*pr)("\t\t\t%p\n", \
1898 pcg->pcg_objects[i].pcgo_va); \
1899 } \
1900 }
1901
1902 if (pc != NULL) {
1903 cpuhit = 0;
1904 cpumiss = 0;
1905 for (i = 0; i < MAXCPUS; i++) {
1906 if ((cc = pc->pc_cpus[i]) == NULL)
1907 continue;
1908 cpuhit += cc->cc_hits;
1909 cpumiss += cc->cc_misses;
1910 }
1911 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1912 (*pr)("\tcache layer hits %llu misses %llu\n",
1913 pc->pc_hits, pc->pc_misses);
1914 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1915 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1916 pc->pc_contended);
1917 (*pr)("\tcache layer empty groups %u full groups %u\n",
1918 pc->pc_nempty, pc->pc_nfull);
1919 if (print_cache) {
1920 (*pr)("\tfull cache groups:\n");
1921 for (pcg = pc->pc_fullgroups; pcg != NULL;
1922 pcg = pcg->pcg_next) {
1923 PR_GROUPLIST(pcg);
1924 }
1925 (*pr)("\tempty cache groups:\n");
1926 for (pcg = pc->pc_emptygroups; pcg != NULL;
1927 pcg = pcg->pcg_next) {
1928 PR_GROUPLIST(pcg);
1929 }
1930 }
1931 }
1932 #undef PR_GROUPLIST
1933
1934 pr_enter_check(pp, pr);
1935 }
1936
1937 static int
1938 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1939 {
1940 struct pool_item *pi;
1941 void *page;
1942 int n;
1943
1944 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1945 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1946 if (page != ph->ph_page &&
1947 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1948 if (label != NULL)
1949 printf("%s: ", label);
1950 printf("pool(%p:%s): page inconsistency: page %p;"
1951 " at page head addr %p (p %p)\n", pp,
1952 pp->pr_wchan, ph->ph_page,
1953 ph, page);
1954 return 1;
1955 }
1956 }
1957
1958 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1959 return 0;
1960
1961 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1962 pi != NULL;
1963 pi = LIST_NEXT(pi,pi_list), n++) {
1964
1965 #ifdef DIAGNOSTIC
1966 if (pi->pi_magic != PI_MAGIC) {
1967 if (label != NULL)
1968 printf("%s: ", label);
1969 printf("pool(%s): free list modified: magic=%x;"
1970 " page %p; item ordinal %d; addr %p\n",
1971 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1972 n, pi);
1973 panic("pool");
1974 }
1975 #endif
1976 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1977 continue;
1978 }
1979 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1980 if (page == ph->ph_page)
1981 continue;
1982
1983 if (label != NULL)
1984 printf("%s: ", label);
1985 printf("pool(%p:%s): page inconsistency: page %p;"
1986 " item ordinal %d; addr %p (p %p)\n", pp,
1987 pp->pr_wchan, ph->ph_page,
1988 n, pi, page);
1989 return 1;
1990 }
1991 return 0;
1992 }
1993
1994
1995 int
1996 pool_chk(struct pool *pp, const char *label)
1997 {
1998 struct pool_item_header *ph;
1999 int r = 0;
2000
2001 mutex_enter(&pp->pr_lock);
2002 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2003 r = pool_chk_page(pp, label, ph);
2004 if (r) {
2005 goto out;
2006 }
2007 }
2008 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2009 r = pool_chk_page(pp, label, ph);
2010 if (r) {
2011 goto out;
2012 }
2013 }
2014 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2015 r = pool_chk_page(pp, label, ph);
2016 if (r) {
2017 goto out;
2018 }
2019 }
2020
2021 out:
2022 mutex_exit(&pp->pr_lock);
2023 return (r);
2024 }
2025
2026 /*
2027 * pool_cache_init:
2028 *
2029 * Initialize a pool cache.
2030 */
2031 pool_cache_t
2032 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2033 const char *wchan, struct pool_allocator *palloc, int ipl,
2034 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2035 {
2036 pool_cache_t pc;
2037
2038 pc = pool_get(&cache_pool, PR_WAITOK);
2039 if (pc == NULL)
2040 return NULL;
2041
2042 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2043 palloc, ipl, ctor, dtor, arg);
2044
2045 return pc;
2046 }
2047
2048 /*
2049 * pool_cache_bootstrap:
2050 *
2051 * Kernel-private version of pool_cache_init(). The caller
2052 * provides initial storage.
2053 */
2054 void
2055 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2056 u_int align_offset, u_int flags, const char *wchan,
2057 struct pool_allocator *palloc, int ipl,
2058 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2059 void *arg)
2060 {
2061 CPU_INFO_ITERATOR cii;
2062 struct cpu_info *ci;
2063 struct pool *pp;
2064
2065 pp = &pc->pc_pool;
2066 if (palloc == NULL && ipl == IPL_NONE)
2067 palloc = &pool_allocator_nointr;
2068 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2069
2070 /*
2071 * XXXAD hack to prevent IP input processing from blocking.
2072 */
2073 if (ipl == IPL_SOFTNET) {
2074 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
2075 } else {
2076 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2077 }
2078
2079 if (ctor == NULL) {
2080 ctor = (int (*)(void *, void *, int))nullop;
2081 }
2082 if (dtor == NULL) {
2083 dtor = (void (*)(void *, void *))nullop;
2084 }
2085
2086 pc->pc_emptygroups = NULL;
2087 pc->pc_fullgroups = NULL;
2088 pc->pc_partgroups = NULL;
2089 pc->pc_ctor = ctor;
2090 pc->pc_dtor = dtor;
2091 pc->pc_arg = arg;
2092 pc->pc_hits = 0;
2093 pc->pc_misses = 0;
2094 pc->pc_nempty = 0;
2095 pc->pc_npart = 0;
2096 pc->pc_nfull = 0;
2097 pc->pc_contended = 0;
2098 pc->pc_refcnt = 0;
2099 pc->pc_freecheck = NULL;
2100
2101 if ((flags & PR_LARGECACHE) != 0) {
2102 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2103 } else {
2104 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2105 }
2106
2107 /* Allocate per-CPU caches. */
2108 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2109 pc->pc_ncpu = 0;
2110 if (ncpu < 2) {
2111 /* XXX For sparc: boot CPU is not attached yet. */
2112 pool_cache_cpu_init1(curcpu(), pc);
2113 } else {
2114 for (CPU_INFO_FOREACH(cii, ci)) {
2115 pool_cache_cpu_init1(ci, pc);
2116 }
2117 }
2118
2119 if (__predict_true(!cold)) {
2120 mutex_enter(&pp->pr_lock);
2121 pp->pr_cache = pc;
2122 mutex_exit(&pp->pr_lock);
2123 mutex_enter(&pool_head_lock);
2124 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2125 mutex_exit(&pool_head_lock);
2126 } else {
2127 pp->pr_cache = pc;
2128 LIST_INSERT_HEAD(&pool_cache_head, pc, pc_cachelist);
2129 }
2130 }
2131
2132 /*
2133 * pool_cache_destroy:
2134 *
2135 * Destroy a pool cache.
2136 */
2137 void
2138 pool_cache_destroy(pool_cache_t pc)
2139 {
2140 struct pool *pp = &pc->pc_pool;
2141 pool_cache_cpu_t *cc;
2142 pcg_t *pcg;
2143 int i;
2144
2145 /* Remove it from the global list. */
2146 mutex_enter(&pool_head_lock);
2147 while (pc->pc_refcnt != 0)
2148 cv_wait(&pool_busy, &pool_head_lock);
2149 LIST_REMOVE(pc, pc_cachelist);
2150 mutex_exit(&pool_head_lock);
2151
2152 /* First, invalidate the entire cache. */
2153 pool_cache_invalidate(pc);
2154
2155 /* Disassociate it from the pool. */
2156 mutex_enter(&pp->pr_lock);
2157 pp->pr_cache = NULL;
2158 mutex_exit(&pp->pr_lock);
2159
2160 /* Destroy per-CPU data */
2161 for (i = 0; i < MAXCPUS; i++) {
2162 if ((cc = pc->pc_cpus[i]) == NULL)
2163 continue;
2164 if ((pcg = cc->cc_current) != NULL) {
2165 pcg->pcg_next = NULL;
2166 pool_cache_invalidate_groups(pc, pcg);
2167 }
2168 if ((pcg = cc->cc_previous) != NULL) {
2169 pcg->pcg_next = NULL;
2170 pool_cache_invalidate_groups(pc, pcg);
2171 }
2172 if (cc != &pc->pc_cpu0)
2173 pool_put(&cache_cpu_pool, cc);
2174 }
2175
2176 /* Finally, destroy it. */
2177 mutex_destroy(&pc->pc_lock);
2178 pool_destroy(pp);
2179 pool_put(&cache_pool, pc);
2180 }
2181
2182 /*
2183 * pool_cache_cpu_init1:
2184 *
2185 * Called for each pool_cache whenever a new CPU is attached.
2186 */
2187 static void
2188 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2189 {
2190 pool_cache_cpu_t *cc;
2191 int index;
2192
2193 index = ci->ci_index;
2194
2195 KASSERT(index < MAXCPUS);
2196 KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
2197
2198 if ((cc = pc->pc_cpus[index]) != NULL) {
2199 KASSERT(cc->cc_cpuindex == index);
2200 return;
2201 }
2202
2203 /*
2204 * The first CPU is 'free'. This needs to be the case for
2205 * bootstrap - we may not be able to allocate yet.
2206 */
2207 if (pc->pc_ncpu == 0) {
2208 cc = &pc->pc_cpu0;
2209 pc->pc_ncpu = 1;
2210 } else {
2211 mutex_enter(&pc->pc_lock);
2212 pc->pc_ncpu++;
2213 mutex_exit(&pc->pc_lock);
2214 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2215 }
2216
2217 cc->cc_ipl = pc->pc_pool.pr_ipl;
2218 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2219 cc->cc_cache = pc;
2220 cc->cc_cpuindex = index;
2221 cc->cc_hits = 0;
2222 cc->cc_misses = 0;
2223 cc->cc_current = NULL;
2224 cc->cc_previous = NULL;
2225
2226 pc->pc_cpus[index] = cc;
2227 }
2228
2229 /*
2230 * pool_cache_cpu_init:
2231 *
2232 * Called whenever a new CPU is attached.
2233 */
2234 void
2235 pool_cache_cpu_init(struct cpu_info *ci)
2236 {
2237 pool_cache_t pc;
2238
2239 mutex_enter(&pool_head_lock);
2240 LIST_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2241 pc->pc_refcnt++;
2242 mutex_exit(&pool_head_lock);
2243
2244 pool_cache_cpu_init1(ci, pc);
2245
2246 mutex_enter(&pool_head_lock);
2247 pc->pc_refcnt--;
2248 cv_broadcast(&pool_busy);
2249 }
2250 mutex_exit(&pool_head_lock);
2251 }
2252
2253 /*
2254 * pool_cache_reclaim:
2255 *
2256 * Reclaim memory from a pool cache.
2257 */
2258 bool
2259 pool_cache_reclaim(pool_cache_t pc)
2260 {
2261
2262 return pool_reclaim(&pc->pc_pool);
2263 }
2264
2265 static void
2266 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2267 {
2268
2269 (*pc->pc_dtor)(pc->pc_arg, object);
2270 pool_put(&pc->pc_pool, object);
2271 }
2272
2273 /*
2274 * pool_cache_destruct_object:
2275 *
2276 * Force destruction of an object and its release back into
2277 * the pool.
2278 */
2279 void
2280 pool_cache_destruct_object(pool_cache_t pc, void *object)
2281 {
2282
2283 FREECHECK_IN(&pc->pc_freecheck, object);
2284
2285 pool_cache_destruct_object1(pc, object);
2286 }
2287
2288 /*
2289 * pool_cache_invalidate_groups:
2290 *
2291 * Invalidate a chain of groups and destruct all objects.
2292 */
2293 static void
2294 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2295 {
2296 void *object;
2297 pcg_t *next;
2298 int i;
2299
2300 for (; pcg != NULL; pcg = next) {
2301 next = pcg->pcg_next;
2302
2303 for (i = 0; i < pcg->pcg_avail; i++) {
2304 object = pcg->pcg_objects[i].pcgo_va;
2305 pool_cache_destruct_object1(pc, object);
2306 }
2307
2308 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2309 pool_put(&pcg_large_pool, pcg);
2310 } else {
2311 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2312 pool_put(&pcg_normal_pool, pcg);
2313 }
2314 }
2315 }
2316
2317 /*
2318 * pool_cache_invalidate:
2319 *
2320 * Invalidate a pool cache (destruct and release all of the
2321 * cached objects). Does not reclaim objects from the pool.
2322 */
2323 void
2324 pool_cache_invalidate(pool_cache_t pc)
2325 {
2326 pcg_t *full, *empty, *part;
2327
2328 mutex_enter(&pc->pc_lock);
2329 full = pc->pc_fullgroups;
2330 empty = pc->pc_emptygroups;
2331 part = pc->pc_partgroups;
2332 pc->pc_fullgroups = NULL;
2333 pc->pc_emptygroups = NULL;
2334 pc->pc_partgroups = NULL;
2335 pc->pc_nfull = 0;
2336 pc->pc_nempty = 0;
2337 pc->pc_npart = 0;
2338 mutex_exit(&pc->pc_lock);
2339
2340 pool_cache_invalidate_groups(pc, full);
2341 pool_cache_invalidate_groups(pc, empty);
2342 pool_cache_invalidate_groups(pc, part);
2343 }
2344
2345 void
2346 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2347 {
2348
2349 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2350 }
2351
2352 void
2353 pool_cache_setlowat(pool_cache_t pc, int n)
2354 {
2355
2356 pool_setlowat(&pc->pc_pool, n);
2357 }
2358
2359 void
2360 pool_cache_sethiwat(pool_cache_t pc, int n)
2361 {
2362
2363 pool_sethiwat(&pc->pc_pool, n);
2364 }
2365
2366 void
2367 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2368 {
2369
2370 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2371 }
2372
2373 static inline pool_cache_cpu_t *
2374 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2375 {
2376 pool_cache_cpu_t *cc;
2377
2378 /*
2379 * Prevent other users of the cache from accessing our
2380 * CPU-local data. To avoid touching shared state, we
2381 * pull the neccessary information from CPU local data.
2382 */
2383 crit_enter();
2384 cc = pc->pc_cpus[curcpu()->ci_index];
2385 KASSERT(cc->cc_cache == pc);
2386 if (cc->cc_ipl != IPL_NONE) {
2387 *s = splraiseipl(cc->cc_iplcookie);
2388 }
2389 KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
2390
2391 return cc;
2392 }
2393
2394 static inline void
2395 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2396 {
2397
2398 /* No longer need exclusive access to the per-CPU data. */
2399 if (cc->cc_ipl != IPL_NONE) {
2400 splx(*s);
2401 }
2402 crit_exit();
2403 }
2404
2405 #if __GNUC_PREREQ__(3, 0)
2406 __attribute ((noinline))
2407 #endif
2408 pool_cache_cpu_t *
2409 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2410 paddr_t *pap, int flags)
2411 {
2412 pcg_t *pcg, *cur;
2413 uint64_t ncsw;
2414 pool_cache_t pc;
2415 void *object;
2416
2417 pc = cc->cc_cache;
2418 cc->cc_misses++;
2419
2420 /*
2421 * Nothing was available locally. Try and grab a group
2422 * from the cache.
2423 */
2424 if (!mutex_tryenter(&pc->pc_lock)) {
2425 ncsw = curlwp->l_ncsw;
2426 mutex_enter(&pc->pc_lock);
2427 pc->pc_contended++;
2428
2429 /*
2430 * If we context switched while locking, then
2431 * our view of the per-CPU data is invalid:
2432 * retry.
2433 */
2434 if (curlwp->l_ncsw != ncsw) {
2435 mutex_exit(&pc->pc_lock);
2436 pool_cache_cpu_exit(cc, s);
2437 return pool_cache_cpu_enter(pc, s);
2438 }
2439 }
2440
2441 if ((pcg = pc->pc_fullgroups) != NULL) {
2442 /*
2443 * If there's a full group, release our empty
2444 * group back to the cache. Install the full
2445 * group as cc_current and return.
2446 */
2447 if ((cur = cc->cc_current) != NULL) {
2448 KASSERT(cur->pcg_avail == 0);
2449 cur->pcg_next = pc->pc_emptygroups;
2450 pc->pc_emptygroups = cur;
2451 pc->pc_nempty++;
2452 }
2453 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2454 cc->cc_current = pcg;
2455 pc->pc_fullgroups = pcg->pcg_next;
2456 pc->pc_hits++;
2457 pc->pc_nfull--;
2458 mutex_exit(&pc->pc_lock);
2459 return cc;
2460 }
2461
2462 /*
2463 * Nothing available locally or in cache. Take the slow
2464 * path: fetch a new object from the pool and construct
2465 * it.
2466 */
2467 pc->pc_misses++;
2468 mutex_exit(&pc->pc_lock);
2469 pool_cache_cpu_exit(cc, s);
2470
2471 object = pool_get(&pc->pc_pool, flags);
2472 *objectp = object;
2473 if (object == NULL)
2474 return NULL;
2475
2476 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2477 pool_put(&pc->pc_pool, object);
2478 *objectp = NULL;
2479 return NULL;
2480 }
2481
2482 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2483 (pc->pc_pool.pr_align - 1)) == 0);
2484
2485 if (pap != NULL) {
2486 #ifdef POOL_VTOPHYS
2487 *pap = POOL_VTOPHYS(object);
2488 #else
2489 *pap = POOL_PADDR_INVALID;
2490 #endif
2491 }
2492
2493 FREECHECK_OUT(&pc->pc_freecheck, object);
2494 return NULL;
2495 }
2496
2497 /*
2498 * pool_cache_get{,_paddr}:
2499 *
2500 * Get an object from a pool cache (optionally returning
2501 * the physical address of the object).
2502 */
2503 void *
2504 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2505 {
2506 pool_cache_cpu_t *cc;
2507 pcg_t *pcg;
2508 void *object;
2509 int s;
2510
2511 #ifdef LOCKDEBUG
2512 if (flags & PR_WAITOK)
2513 ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
2514 #endif
2515
2516 cc = pool_cache_cpu_enter(pc, &s);
2517 do {
2518 /* Try and allocate an object from the current group. */
2519 pcg = cc->cc_current;
2520 if (pcg != NULL && pcg->pcg_avail > 0) {
2521 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2522 if (pap != NULL)
2523 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2524 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2525 KASSERT(pcg->pcg_avail <= pcg->pcg_size);
2526 KASSERT(object != NULL);
2527 cc->cc_hits++;
2528 pool_cache_cpu_exit(cc, &s);
2529 FREECHECK_OUT(&pc->pc_freecheck, object);
2530 return object;
2531 }
2532
2533 /*
2534 * That failed. If the previous group isn't empty, swap
2535 * it with the current group and allocate from there.
2536 */
2537 pcg = cc->cc_previous;
2538 if (pcg != NULL && pcg->pcg_avail > 0) {
2539 cc->cc_previous = cc->cc_current;
2540 cc->cc_current = pcg;
2541 continue;
2542 }
2543
2544 /*
2545 * Can't allocate from either group: try the slow path.
2546 * If get_slow() allocated an object for us, or if
2547 * no more objects are available, it will return NULL.
2548 * Otherwise, we need to retry.
2549 */
2550 cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2551 } while (cc != NULL);
2552
2553 return object;
2554 }
2555
2556 #if __GNUC_PREREQ__(3, 0)
2557 __attribute ((noinline))
2558 #endif
2559 pool_cache_cpu_t *
2560 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2561 {
2562 pcg_t *pcg, *cur;
2563 uint64_t ncsw;
2564 pool_cache_t pc;
2565 u_int nobj;
2566
2567 pc = cc->cc_cache;
2568 cc->cc_misses++;
2569
2570 /*
2571 * No free slots locally. Try to grab an empty, unused
2572 * group from the cache.
2573 */
2574 if (!mutex_tryenter(&pc->pc_lock)) {
2575 ncsw = curlwp->l_ncsw;
2576 mutex_enter(&pc->pc_lock);
2577 pc->pc_contended++;
2578
2579 /*
2580 * If we context switched while locking, then
2581 * our view of the per-CPU data is invalid:
2582 * retry.
2583 */
2584 if (curlwp->l_ncsw != ncsw) {
2585 mutex_exit(&pc->pc_lock);
2586 pool_cache_cpu_exit(cc, s);
2587 return pool_cache_cpu_enter(pc, s);
2588 }
2589 }
2590
2591 if ((pcg = pc->pc_emptygroups) != NULL) {
2592 /*
2593 * If there's a empty group, release our full
2594 * group back to the cache. Install the empty
2595 * group as cc_current and return.
2596 */
2597 if ((cur = cc->cc_current) != NULL) {
2598 KASSERT(cur->pcg_avail == pcg->pcg_size);
2599 cur->pcg_next = pc->pc_fullgroups;
2600 pc->pc_fullgroups = cur;
2601 pc->pc_nfull++;
2602 }
2603 KASSERT(pcg->pcg_avail == 0);
2604 cc->cc_current = pcg;
2605 pc->pc_emptygroups = pcg->pcg_next;
2606 pc->pc_hits++;
2607 pc->pc_nempty--;
2608 mutex_exit(&pc->pc_lock);
2609 return cc;
2610 }
2611
2612 /*
2613 * Nothing available locally or in cache. Take the
2614 * slow path and try to allocate a new group that we
2615 * can release to.
2616 */
2617 pc->pc_misses++;
2618 mutex_exit(&pc->pc_lock);
2619 pool_cache_cpu_exit(cc, s);
2620
2621 /*
2622 * If we can't allocate a new group, just throw the
2623 * object away.
2624 */
2625 nobj = pc->pc_pcgsize;
2626 if (nobj == PCG_NOBJECTS_LARGE) {
2627 pcg = pool_get(&pcg_large_pool, PR_NOWAIT);
2628 } else {
2629 pcg = pool_get(&pcg_normal_pool, PR_NOWAIT);
2630 }
2631 if (pcg == NULL) {
2632 pool_cache_destruct_object(pc, object);
2633 return NULL;
2634 }
2635 pcg->pcg_avail = 0;
2636 pcg->pcg_size = nobj;
2637
2638 /*
2639 * Add the empty group to the cache and try again.
2640 */
2641 mutex_enter(&pc->pc_lock);
2642 pcg->pcg_next = pc->pc_emptygroups;
2643 pc->pc_emptygroups = pcg;
2644 pc->pc_nempty++;
2645 mutex_exit(&pc->pc_lock);
2646
2647 return pool_cache_cpu_enter(pc, s);
2648 }
2649
2650 /*
2651 * pool_cache_put{,_paddr}:
2652 *
2653 * Put an object back to the pool cache (optionally caching the
2654 * physical address of the object).
2655 */
2656 void
2657 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2658 {
2659 pool_cache_cpu_t *cc;
2660 pcg_t *pcg;
2661 int s;
2662
2663 FREECHECK_IN(&pc->pc_freecheck, object);
2664
2665 cc = pool_cache_cpu_enter(pc, &s);
2666 do {
2667 /* If the current group isn't full, release it there. */
2668 pcg = cc->cc_current;
2669 if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) {
2670 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2671 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2672 pcg->pcg_avail++;
2673 cc->cc_hits++;
2674 pool_cache_cpu_exit(cc, &s);
2675 return;
2676 }
2677
2678 /*
2679 * That failed. If the previous group is empty, swap
2680 * it with the current group and try again.
2681 */
2682 pcg = cc->cc_previous;
2683 if (pcg != NULL && pcg->pcg_avail == 0) {
2684 cc->cc_previous = cc->cc_current;
2685 cc->cc_current = pcg;
2686 continue;
2687 }
2688
2689 /*
2690 * Can't free to either group: try the slow path.
2691 * If put_slow() releases the object for us, it
2692 * will return NULL. Otherwise we need to retry.
2693 */
2694 cc = pool_cache_put_slow(cc, &s, object, pa);
2695 } while (cc != NULL);
2696 }
2697
2698 /*
2699 * pool_cache_xcall:
2700 *
2701 * Transfer objects from the per-CPU cache to the global cache.
2702 * Run within a cross-call thread.
2703 */
2704 static void
2705 pool_cache_xcall(pool_cache_t pc)
2706 {
2707 pool_cache_cpu_t *cc;
2708 pcg_t *prev, *cur, **list;
2709 int s = 0; /* XXXgcc */
2710
2711 cc = pool_cache_cpu_enter(pc, &s);
2712 cur = cc->cc_current;
2713 cc->cc_current = NULL;
2714 prev = cc->cc_previous;
2715 cc->cc_previous = NULL;
2716 pool_cache_cpu_exit(cc, &s);
2717
2718 /*
2719 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2720 * because locks at IPL_SOFTXXX are still spinlocks. Does not
2721 * apply to IPL_SOFTBIO. Cross-call threads do not take the
2722 * kernel_lock.
2723 */
2724 s = splvm();
2725 mutex_enter(&pc->pc_lock);
2726 if (cur != NULL) {
2727 if (cur->pcg_avail == cur->pcg_size) {
2728 list = &pc->pc_fullgroups;
2729 pc->pc_nfull++;
2730 } else if (cur->pcg_avail == 0) {
2731 list = &pc->pc_emptygroups;
2732 pc->pc_nempty++;
2733 } else {
2734 list = &pc->pc_partgroups;
2735 pc->pc_npart++;
2736 }
2737 cur->pcg_next = *list;
2738 *list = cur;
2739 }
2740 if (prev != NULL) {
2741 if (prev->pcg_avail == prev->pcg_size) {
2742 list = &pc->pc_fullgroups;
2743 pc->pc_nfull++;
2744 } else if (prev->pcg_avail == 0) {
2745 list = &pc->pc_emptygroups;
2746 pc->pc_nempty++;
2747 } else {
2748 list = &pc->pc_partgroups;
2749 pc->pc_npart++;
2750 }
2751 prev->pcg_next = *list;
2752 *list = prev;
2753 }
2754 mutex_exit(&pc->pc_lock);
2755 splx(s);
2756 }
2757
2758 /*
2759 * Pool backend allocators.
2760 *
2761 * Each pool has a backend allocator that handles allocation, deallocation,
2762 * and any additional draining that might be needed.
2763 *
2764 * We provide two standard allocators:
2765 *
2766 * pool_allocator_kmem - the default when no allocator is specified
2767 *
2768 * pool_allocator_nointr - used for pools that will not be accessed
2769 * in interrupt context.
2770 */
2771 void *pool_page_alloc(struct pool *, int);
2772 void pool_page_free(struct pool *, void *);
2773
2774 #ifdef POOL_SUBPAGE
2775 struct pool_allocator pool_allocator_kmem_fullpage = {
2776 pool_page_alloc, pool_page_free, 0,
2777 .pa_backingmapptr = &kmem_map,
2778 };
2779 #else
2780 struct pool_allocator pool_allocator_kmem = {
2781 pool_page_alloc, pool_page_free, 0,
2782 .pa_backingmapptr = &kmem_map,
2783 };
2784 #endif
2785
2786 void *pool_page_alloc_nointr(struct pool *, int);
2787 void pool_page_free_nointr(struct pool *, void *);
2788
2789 #ifdef POOL_SUBPAGE
2790 struct pool_allocator pool_allocator_nointr_fullpage = {
2791 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2792 .pa_backingmapptr = &kernel_map,
2793 };
2794 #else
2795 struct pool_allocator pool_allocator_nointr = {
2796 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2797 .pa_backingmapptr = &kernel_map,
2798 };
2799 #endif
2800
2801 #ifdef POOL_SUBPAGE
2802 void *pool_subpage_alloc(struct pool *, int);
2803 void pool_subpage_free(struct pool *, void *);
2804
2805 struct pool_allocator pool_allocator_kmem = {
2806 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2807 .pa_backingmapptr = &kmem_map,
2808 };
2809
2810 void *pool_subpage_alloc_nointr(struct pool *, int);
2811 void pool_subpage_free_nointr(struct pool *, void *);
2812
2813 struct pool_allocator pool_allocator_nointr = {
2814 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2815 .pa_backingmapptr = &kmem_map,
2816 };
2817 #endif /* POOL_SUBPAGE */
2818
2819 static void *
2820 pool_allocator_alloc(struct pool *pp, int flags)
2821 {
2822 struct pool_allocator *pa = pp->pr_alloc;
2823 void *res;
2824
2825 res = (*pa->pa_alloc)(pp, flags);
2826 if (res == NULL && (flags & PR_WAITOK) == 0) {
2827 /*
2828 * We only run the drain hook here if PR_NOWAIT.
2829 * In other cases, the hook will be run in
2830 * pool_reclaim().
2831 */
2832 if (pp->pr_drain_hook != NULL) {
2833 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2834 res = (*pa->pa_alloc)(pp, flags);
2835 }
2836 }
2837 return res;
2838 }
2839
2840 static void
2841 pool_allocator_free(struct pool *pp, void *v)
2842 {
2843 struct pool_allocator *pa = pp->pr_alloc;
2844
2845 (*pa->pa_free)(pp, v);
2846 }
2847
2848 void *
2849 pool_page_alloc(struct pool *pp, int flags)
2850 {
2851 bool waitok = (flags & PR_WAITOK) ? true : false;
2852
2853 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2854 }
2855
2856 void
2857 pool_page_free(struct pool *pp, void *v)
2858 {
2859
2860 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2861 }
2862
2863 static void *
2864 pool_page_alloc_meta(struct pool *pp, int flags)
2865 {
2866 bool waitok = (flags & PR_WAITOK) ? true : false;
2867
2868 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2869 }
2870
2871 static void
2872 pool_page_free_meta(struct pool *pp, void *v)
2873 {
2874
2875 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2876 }
2877
2878 #ifdef POOL_SUBPAGE
2879 /* Sub-page allocator, for machines with large hardware pages. */
2880 void *
2881 pool_subpage_alloc(struct pool *pp, int flags)
2882 {
2883 return pool_get(&psppool, flags);
2884 }
2885
2886 void
2887 pool_subpage_free(struct pool *pp, void *v)
2888 {
2889 pool_put(&psppool, v);
2890 }
2891
2892 /* We don't provide a real nointr allocator. Maybe later. */
2893 void *
2894 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2895 {
2896
2897 return (pool_subpage_alloc(pp, flags));
2898 }
2899
2900 void
2901 pool_subpage_free_nointr(struct pool *pp, void *v)
2902 {
2903
2904 pool_subpage_free(pp, v);
2905 }
2906 #endif /* POOL_SUBPAGE */
2907 void *
2908 pool_page_alloc_nointr(struct pool *pp, int flags)
2909 {
2910 bool waitok = (flags & PR_WAITOK) ? true : false;
2911
2912 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2913 }
2914
2915 void
2916 pool_page_free_nointr(struct pool *pp, void *v)
2917 {
2918
2919 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2920 }
2921
2922 #if defined(DDB)
2923 static bool
2924 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2925 {
2926
2927 return (uintptr_t)ph->ph_page <= addr &&
2928 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2929 }
2930
2931 static bool
2932 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2933 {
2934
2935 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2936 }
2937
2938 static bool
2939 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2940 {
2941 int i;
2942
2943 if (pcg == NULL) {
2944 return false;
2945 }
2946 for (i = 0; i < pcg->pcg_size; i++) {
2947 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2948 return true;
2949 }
2950 }
2951 return false;
2952 }
2953
2954 static bool
2955 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2956 {
2957
2958 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2959 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2960 pool_item_bitmap_t *bitmap =
2961 ph->ph_bitmap + (idx / BITMAP_SIZE);
2962 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2963
2964 return (*bitmap & mask) == 0;
2965 } else {
2966 struct pool_item *pi;
2967
2968 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2969 if (pool_in_item(pp, pi, addr)) {
2970 return false;
2971 }
2972 }
2973 return true;
2974 }
2975 }
2976
2977 void
2978 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2979 {
2980 struct pool *pp;
2981
2982 LIST_FOREACH(pp, &pool_head, pr_poollist) {
2983 struct pool_item_header *ph;
2984 uintptr_t item;
2985 bool allocated = true;
2986 bool incache = false;
2987 bool incpucache = false;
2988 char cpucachestr[32];
2989
2990 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2991 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2992 if (pool_in_page(pp, ph, addr)) {
2993 goto found;
2994 }
2995 }
2996 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2997 if (pool_in_page(pp, ph, addr)) {
2998 allocated =
2999 pool_allocated(pp, ph, addr);
3000 goto found;
3001 }
3002 }
3003 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3004 if (pool_in_page(pp, ph, addr)) {
3005 allocated = false;
3006 goto found;
3007 }
3008 }
3009 continue;
3010 } else {
3011 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3012 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3013 continue;
3014 }
3015 allocated = pool_allocated(pp, ph, addr);
3016 }
3017 found:
3018 if (allocated && pp->pr_cache) {
3019 pool_cache_t pc = pp->pr_cache;
3020 struct pool_cache_group *pcg;
3021 int i;
3022
3023 for (pcg = pc->pc_fullgroups; pcg != NULL;
3024 pcg = pcg->pcg_next) {
3025 if (pool_in_cg(pp, pcg, addr)) {
3026 incache = true;
3027 goto print;
3028 }
3029 }
3030 for (i = 0; i < MAXCPUS; i++) {
3031 pool_cache_cpu_t *cc;
3032
3033 if ((cc = pc->pc_cpus[i]) == NULL) {
3034 continue;
3035 }
3036 if (pool_in_cg(pp, cc->cc_current, addr) ||
3037 pool_in_cg(pp, cc->cc_previous, addr)) {
3038 struct cpu_info *ci =
3039 cpu_lookup_byindex(i);
3040
3041 incpucache = true;
3042 snprintf(cpucachestr,
3043 sizeof(cpucachestr),
3044 "cached by CPU %u",
3045 (u_int)ci->ci_cpuid);
3046 goto print;
3047 }
3048 }
3049 }
3050 print:
3051 item = (uintptr_t)ph->ph_page + ph->ph_off;
3052 item = item + rounddown(addr - item, pp->pr_size);
3053 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3054 (void *)addr, item, (size_t)(addr - item),
3055 pp->pr_wchan,
3056 incpucache ? cpucachestr :
3057 incache ? "cached" : allocated ? "allocated" : "free");
3058 }
3059 }
3060 #endif /* defined(DDB) */
3061