Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.146
      1 /*	$NetBSD: subr_pool.c,v 1.146 2008/01/02 11:48:53 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.146 2008/01/02 11:48:53 ad Exp $");
     42 
     43 #include "opt_ddb.h"
     44 #include "opt_pool.h"
     45 #include "opt_poollog.h"
     46 #include "opt_lockdebug.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/bitops.h>
     51 #include <sys/proc.h>
     52 #include <sys/errno.h>
     53 #include <sys/kernel.h>
     54 #include <sys/malloc.h>
     55 #include <sys/lock.h>
     56 #include <sys/pool.h>
     57 #include <sys/syslog.h>
     58 #include <sys/debug.h>
     59 #include <sys/lockdebug.h>
     60 #include <sys/xcall.h>
     61 #include <sys/cpu.h>
     62 #include <sys/atomic.h>
     63 
     64 #include <uvm/uvm.h>
     65 
     66 /*
     67  * Pool resource management utility.
     68  *
     69  * Memory is allocated in pages which are split into pieces according to
     70  * the pool item size. Each page is kept on one of three lists in the
     71  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     72  * for empty, full and partially-full pages respectively. The individual
     73  * pool items are on a linked list headed by `ph_itemlist' in each page
     74  * header. The memory for building the page list is either taken from
     75  * the allocated pages themselves (for small pool items) or taken from
     76  * an internal pool of page headers (`phpool').
     77  */
     78 
     79 /* List of all pools */
     80 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     81 
     82 /* Private pool for page header structures */
     83 #define	PHPOOL_MAX	8
     84 static struct pool phpool[PHPOOL_MAX];
     85 #define	PHPOOL_FREELIST_NELEM(idx) \
     86 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     87 
     88 #ifdef POOL_SUBPAGE
     89 /* Pool of subpages for use by normal pools. */
     90 static struct pool psppool;
     91 #endif
     92 
     93 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     94     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     95 
     96 static void *pool_page_alloc_meta(struct pool *, int);
     97 static void pool_page_free_meta(struct pool *, void *);
     98 
     99 /* allocator for pool metadata */
    100 struct pool_allocator pool_allocator_meta = {
    101 	pool_page_alloc_meta, pool_page_free_meta,
    102 	.pa_backingmapptr = &kmem_map,
    103 };
    104 
    105 /* # of seconds to retain page after last use */
    106 int pool_inactive_time = 10;
    107 
    108 /* Next candidate for drainage (see pool_drain()) */
    109 static struct pool	*drainpp;
    110 
    111 /* This lock protects both pool_head and drainpp. */
    112 static kmutex_t pool_head_lock;
    113 static kcondvar_t pool_busy;
    114 
    115 typedef uint32_t pool_item_bitmap_t;
    116 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    117 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    118 
    119 struct pool_item_header {
    120 	/* Page headers */
    121 	LIST_ENTRY(pool_item_header)
    122 				ph_pagelist;	/* pool page list */
    123 	SPLAY_ENTRY(pool_item_header)
    124 				ph_node;	/* Off-page page headers */
    125 	void *			ph_page;	/* this page's address */
    126 	struct timeval		ph_time;	/* last referenced */
    127 	uint16_t		ph_nmissing;	/* # of chunks in use */
    128 	uint16_t		ph_off;		/* start offset in page */
    129 	union {
    130 		/* !PR_NOTOUCH */
    131 		struct {
    132 			LIST_HEAD(, pool_item)
    133 				phu_itemlist;	/* chunk list for this page */
    134 		} phu_normal;
    135 		/* PR_NOTOUCH */
    136 		struct {
    137 			pool_item_bitmap_t phu_bitmap[1];
    138 		} phu_notouch;
    139 	} ph_u;
    140 };
    141 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    142 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    143 
    144 struct pool_item {
    145 #ifdef DIAGNOSTIC
    146 	u_int pi_magic;
    147 #endif
    148 #define	PI_MAGIC 0xdeaddeadU
    149 	/* Other entries use only this list entry */
    150 	LIST_ENTRY(pool_item)	pi_list;
    151 };
    152 
    153 #define	POOL_NEEDS_CATCHUP(pp)						\
    154 	((pp)->pr_nitems < (pp)->pr_minitems)
    155 
    156 /*
    157  * Pool cache management.
    158  *
    159  * Pool caches provide a way for constructed objects to be cached by the
    160  * pool subsystem.  This can lead to performance improvements by avoiding
    161  * needless object construction/destruction; it is deferred until absolutely
    162  * necessary.
    163  *
    164  * Caches are grouped into cache groups.  Each cache group references up
    165  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    166  * object from the pool, it calls the object's constructor and places it
    167  * into a cache group.  When a cache group frees an object back to the
    168  * pool, it first calls the object's destructor.  This allows the object
    169  * to persist in constructed form while freed to the cache.
    170  *
    171  * The pool references each cache, so that when a pool is drained by the
    172  * pagedaemon, it can drain each individual cache as well.  Each time a
    173  * cache is drained, the most idle cache group is freed to the pool in
    174  * its entirety.
    175  *
    176  * Pool caches are layed on top of pools.  By layering them, we can avoid
    177  * the complexity of cache management for pools which would not benefit
    178  * from it.
    179  */
    180 
    181 static struct pool pcg_normal_pool;
    182 static struct pool pcg_large_pool;
    183 static struct pool cache_pool;
    184 static struct pool cache_cpu_pool;
    185 
    186 /* List of all caches. */
    187 TAILQ_HEAD(,pool_cache) pool_cache_head =
    188     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    189 
    190 int pool_cache_disable;
    191 
    192 
    193 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    194 					     void *, paddr_t);
    195 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    196 					     void **, paddr_t *, int);
    197 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    198 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    199 static void	pool_cache_xcall(pool_cache_t);
    200 
    201 static int	pool_catchup(struct pool *);
    202 static void	pool_prime_page(struct pool *, void *,
    203 		    struct pool_item_header *);
    204 static void	pool_update_curpage(struct pool *);
    205 
    206 static int	pool_grow(struct pool *, int);
    207 static void	*pool_allocator_alloc(struct pool *, int);
    208 static void	pool_allocator_free(struct pool *, void *);
    209 
    210 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    211 	void (*)(const char *, ...));
    212 static void pool_print1(struct pool *, const char *,
    213 	void (*)(const char *, ...));
    214 
    215 static int pool_chk_page(struct pool *, const char *,
    216 			 struct pool_item_header *);
    217 
    218 /*
    219  * Pool log entry. An array of these is allocated in pool_init().
    220  */
    221 struct pool_log {
    222 	const char	*pl_file;
    223 	long		pl_line;
    224 	int		pl_action;
    225 #define	PRLOG_GET	1
    226 #define	PRLOG_PUT	2
    227 	void		*pl_addr;
    228 };
    229 
    230 #ifdef POOL_DIAGNOSTIC
    231 /* Number of entries in pool log buffers */
    232 #ifndef POOL_LOGSIZE
    233 #define	POOL_LOGSIZE	10
    234 #endif
    235 
    236 int pool_logsize = POOL_LOGSIZE;
    237 
    238 static inline void
    239 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    240 {
    241 	int n = pp->pr_curlogentry;
    242 	struct pool_log *pl;
    243 
    244 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    245 		return;
    246 
    247 	/*
    248 	 * Fill in the current entry. Wrap around and overwrite
    249 	 * the oldest entry if necessary.
    250 	 */
    251 	pl = &pp->pr_log[n];
    252 	pl->pl_file = file;
    253 	pl->pl_line = line;
    254 	pl->pl_action = action;
    255 	pl->pl_addr = v;
    256 	if (++n >= pp->pr_logsize)
    257 		n = 0;
    258 	pp->pr_curlogentry = n;
    259 }
    260 
    261 static void
    262 pr_printlog(struct pool *pp, struct pool_item *pi,
    263     void (*pr)(const char *, ...))
    264 {
    265 	int i = pp->pr_logsize;
    266 	int n = pp->pr_curlogentry;
    267 
    268 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    269 		return;
    270 
    271 	/*
    272 	 * Print all entries in this pool's log.
    273 	 */
    274 	while (i-- > 0) {
    275 		struct pool_log *pl = &pp->pr_log[n];
    276 		if (pl->pl_action != 0) {
    277 			if (pi == NULL || pi == pl->pl_addr) {
    278 				(*pr)("\tlog entry %d:\n", i);
    279 				(*pr)("\t\taction = %s, addr = %p\n",
    280 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    281 				    pl->pl_addr);
    282 				(*pr)("\t\tfile: %s at line %lu\n",
    283 				    pl->pl_file, pl->pl_line);
    284 			}
    285 		}
    286 		if (++n >= pp->pr_logsize)
    287 			n = 0;
    288 	}
    289 }
    290 
    291 static inline void
    292 pr_enter(struct pool *pp, const char *file, long line)
    293 {
    294 
    295 	if (__predict_false(pp->pr_entered_file != NULL)) {
    296 		printf("pool %s: reentrancy at file %s line %ld\n",
    297 		    pp->pr_wchan, file, line);
    298 		printf("         previous entry at file %s line %ld\n",
    299 		    pp->pr_entered_file, pp->pr_entered_line);
    300 		panic("pr_enter");
    301 	}
    302 
    303 	pp->pr_entered_file = file;
    304 	pp->pr_entered_line = line;
    305 }
    306 
    307 static inline void
    308 pr_leave(struct pool *pp)
    309 {
    310 
    311 	if (__predict_false(pp->pr_entered_file == NULL)) {
    312 		printf("pool %s not entered?\n", pp->pr_wchan);
    313 		panic("pr_leave");
    314 	}
    315 
    316 	pp->pr_entered_file = NULL;
    317 	pp->pr_entered_line = 0;
    318 }
    319 
    320 static inline void
    321 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    322 {
    323 
    324 	if (pp->pr_entered_file != NULL)
    325 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    326 		    pp->pr_entered_file, pp->pr_entered_line);
    327 }
    328 #else
    329 #define	pr_log(pp, v, action, file, line)
    330 #define	pr_printlog(pp, pi, pr)
    331 #define	pr_enter(pp, file, line)
    332 #define	pr_leave(pp)
    333 #define	pr_enter_check(pp, pr)
    334 #endif /* POOL_DIAGNOSTIC */
    335 
    336 static inline unsigned int
    337 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    338     const void *v)
    339 {
    340 	const char *cp = v;
    341 	unsigned int idx;
    342 
    343 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    344 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    345 	KASSERT(idx < pp->pr_itemsperpage);
    346 	return idx;
    347 }
    348 
    349 static inline void
    350 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    351     void *obj)
    352 {
    353 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    354 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    355 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    356 
    357 	KASSERT((*bitmap & mask) == 0);
    358 	*bitmap |= mask;
    359 }
    360 
    361 static inline void *
    362 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    363 {
    364 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    365 	unsigned int idx;
    366 	int i;
    367 
    368 	for (i = 0; ; i++) {
    369 		int bit;
    370 
    371 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    372 		bit = ffs32(bitmap[i]);
    373 		if (bit) {
    374 			pool_item_bitmap_t mask;
    375 
    376 			bit--;
    377 			idx = (i * BITMAP_SIZE) + bit;
    378 			mask = 1 << bit;
    379 			KASSERT((bitmap[i] & mask) != 0);
    380 			bitmap[i] &= ~mask;
    381 			break;
    382 		}
    383 	}
    384 	KASSERT(idx < pp->pr_itemsperpage);
    385 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    386 }
    387 
    388 static inline void
    389 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    390 {
    391 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    392 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    393 	int i;
    394 
    395 	for (i = 0; i < n; i++) {
    396 		bitmap[i] = (pool_item_bitmap_t)-1;
    397 	}
    398 }
    399 
    400 static inline int
    401 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    402 {
    403 
    404 	/*
    405 	 * we consider pool_item_header with smaller ph_page bigger.
    406 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    407 	 */
    408 
    409 	if (a->ph_page < b->ph_page)
    410 		return (1);
    411 	else if (a->ph_page > b->ph_page)
    412 		return (-1);
    413 	else
    414 		return (0);
    415 }
    416 
    417 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    418 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    419 
    420 static inline struct pool_item_header *
    421 pr_find_pagehead_noalign(struct pool *pp, void *v)
    422 {
    423 	struct pool_item_header *ph, tmp;
    424 
    425 	tmp.ph_page = (void *)(uintptr_t)v;
    426 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    427 	if (ph == NULL) {
    428 		ph = SPLAY_ROOT(&pp->pr_phtree);
    429 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    430 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    431 		}
    432 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    433 	}
    434 
    435 	return ph;
    436 }
    437 
    438 /*
    439  * Return the pool page header based on item address.
    440  */
    441 static inline struct pool_item_header *
    442 pr_find_pagehead(struct pool *pp, void *v)
    443 {
    444 	struct pool_item_header *ph, tmp;
    445 
    446 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    447 		ph = pr_find_pagehead_noalign(pp, v);
    448 	} else {
    449 		void *page =
    450 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    451 
    452 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    453 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    454 		} else {
    455 			tmp.ph_page = page;
    456 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    457 		}
    458 	}
    459 
    460 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    461 	    ((char *)ph->ph_page <= (char *)v &&
    462 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    463 	return ph;
    464 }
    465 
    466 static void
    467 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    468 {
    469 	struct pool_item_header *ph;
    470 
    471 	while ((ph = LIST_FIRST(pq)) != NULL) {
    472 		LIST_REMOVE(ph, ph_pagelist);
    473 		pool_allocator_free(pp, ph->ph_page);
    474 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    475 			pool_put(pp->pr_phpool, ph);
    476 	}
    477 }
    478 
    479 /*
    480  * Remove a page from the pool.
    481  */
    482 static inline void
    483 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    484      struct pool_pagelist *pq)
    485 {
    486 
    487 	KASSERT(mutex_owned(&pp->pr_lock));
    488 
    489 	/*
    490 	 * If the page was idle, decrement the idle page count.
    491 	 */
    492 	if (ph->ph_nmissing == 0) {
    493 #ifdef DIAGNOSTIC
    494 		if (pp->pr_nidle == 0)
    495 			panic("pr_rmpage: nidle inconsistent");
    496 		if (pp->pr_nitems < pp->pr_itemsperpage)
    497 			panic("pr_rmpage: nitems inconsistent");
    498 #endif
    499 		pp->pr_nidle--;
    500 	}
    501 
    502 	pp->pr_nitems -= pp->pr_itemsperpage;
    503 
    504 	/*
    505 	 * Unlink the page from the pool and queue it for release.
    506 	 */
    507 	LIST_REMOVE(ph, ph_pagelist);
    508 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    509 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    510 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    511 
    512 	pp->pr_npages--;
    513 	pp->pr_npagefree++;
    514 
    515 	pool_update_curpage(pp);
    516 }
    517 
    518 static bool
    519 pa_starved_p(struct pool_allocator *pa)
    520 {
    521 
    522 	if (pa->pa_backingmap != NULL) {
    523 		return vm_map_starved_p(pa->pa_backingmap);
    524 	}
    525 	return false;
    526 }
    527 
    528 static int
    529 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    530 {
    531 	struct pool *pp = obj;
    532 	struct pool_allocator *pa = pp->pr_alloc;
    533 
    534 	KASSERT(&pp->pr_reclaimerentry == ce);
    535 	pool_reclaim(pp);
    536 	if (!pa_starved_p(pa)) {
    537 		return CALLBACK_CHAIN_ABORT;
    538 	}
    539 	return CALLBACK_CHAIN_CONTINUE;
    540 }
    541 
    542 static void
    543 pool_reclaim_register(struct pool *pp)
    544 {
    545 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    546 	int s;
    547 
    548 	if (map == NULL) {
    549 		return;
    550 	}
    551 
    552 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    553 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    554 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    555 	splx(s);
    556 }
    557 
    558 static void
    559 pool_reclaim_unregister(struct pool *pp)
    560 {
    561 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    562 	int s;
    563 
    564 	if (map == NULL) {
    565 		return;
    566 	}
    567 
    568 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    569 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    570 	    &pp->pr_reclaimerentry);
    571 	splx(s);
    572 }
    573 
    574 static void
    575 pa_reclaim_register(struct pool_allocator *pa)
    576 {
    577 	struct vm_map *map = *pa->pa_backingmapptr;
    578 	struct pool *pp;
    579 
    580 	KASSERT(pa->pa_backingmap == NULL);
    581 	if (map == NULL) {
    582 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    583 		return;
    584 	}
    585 	pa->pa_backingmap = map;
    586 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    587 		pool_reclaim_register(pp);
    588 	}
    589 }
    590 
    591 /*
    592  * Initialize all the pools listed in the "pools" link set.
    593  */
    594 void
    595 pool_subsystem_init(void)
    596 {
    597 	struct pool_allocator *pa;
    598 	__link_set_decl(pools, struct link_pool_init);
    599 	struct link_pool_init * const *pi;
    600 
    601 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    602 	cv_init(&pool_busy, "poolbusy");
    603 
    604 	__link_set_foreach(pi, pools)
    605 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    606 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    607 		    (*pi)->palloc, (*pi)->ipl);
    608 
    609 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    610 		KASSERT(pa->pa_backingmapptr != NULL);
    611 		KASSERT(*pa->pa_backingmapptr != NULL);
    612 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    613 		pa_reclaim_register(pa);
    614 	}
    615 
    616 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
    617 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    618 
    619 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
    620 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    621 }
    622 
    623 /*
    624  * Initialize the given pool resource structure.
    625  *
    626  * We export this routine to allow other kernel parts to declare
    627  * static pools that must be initialized before malloc() is available.
    628  */
    629 void
    630 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    631     const char *wchan, struct pool_allocator *palloc, int ipl)
    632 {
    633 	struct pool *pp1;
    634 	size_t trysize, phsize;
    635 	int off, slack;
    636 
    637 #ifdef DEBUG
    638 	/*
    639 	 * Check that the pool hasn't already been initialised and
    640 	 * added to the list of all pools.
    641 	 */
    642 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    643 		if (pp == pp1)
    644 			panic("pool_init: pool %s already initialised",
    645 			    wchan);
    646 	}
    647 #endif
    648 
    649 #ifdef POOL_DIAGNOSTIC
    650 	/*
    651 	 * Always log if POOL_DIAGNOSTIC is defined.
    652 	 */
    653 	if (pool_logsize != 0)
    654 		flags |= PR_LOGGING;
    655 #endif
    656 
    657 	if (palloc == NULL)
    658 		palloc = &pool_allocator_kmem;
    659 #ifdef POOL_SUBPAGE
    660 	if (size > palloc->pa_pagesz) {
    661 		if (palloc == &pool_allocator_kmem)
    662 			palloc = &pool_allocator_kmem_fullpage;
    663 		else if (palloc == &pool_allocator_nointr)
    664 			palloc = &pool_allocator_nointr_fullpage;
    665 	}
    666 #endif /* POOL_SUBPAGE */
    667 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    668 		if (palloc->pa_pagesz == 0)
    669 			palloc->pa_pagesz = PAGE_SIZE;
    670 
    671 		TAILQ_INIT(&palloc->pa_list);
    672 
    673 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    674 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    675 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    676 
    677 		if (palloc->pa_backingmapptr != NULL) {
    678 			pa_reclaim_register(palloc);
    679 		}
    680 		palloc->pa_flags |= PA_INITIALIZED;
    681 	}
    682 
    683 	if (align == 0)
    684 		align = ALIGN(1);
    685 
    686 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    687 		size = sizeof(struct pool_item);
    688 
    689 	size = roundup(size, align);
    690 #ifdef DIAGNOSTIC
    691 	if (size > palloc->pa_pagesz)
    692 		panic("pool_init: pool item size (%zu) too large", size);
    693 #endif
    694 
    695 	/*
    696 	 * Initialize the pool structure.
    697 	 */
    698 	LIST_INIT(&pp->pr_emptypages);
    699 	LIST_INIT(&pp->pr_fullpages);
    700 	LIST_INIT(&pp->pr_partpages);
    701 	pp->pr_cache = NULL;
    702 	pp->pr_curpage = NULL;
    703 	pp->pr_npages = 0;
    704 	pp->pr_minitems = 0;
    705 	pp->pr_minpages = 0;
    706 	pp->pr_maxpages = UINT_MAX;
    707 	pp->pr_roflags = flags;
    708 	pp->pr_flags = 0;
    709 	pp->pr_size = size;
    710 	pp->pr_align = align;
    711 	pp->pr_wchan = wchan;
    712 	pp->pr_alloc = palloc;
    713 	pp->pr_nitems = 0;
    714 	pp->pr_nout = 0;
    715 	pp->pr_hardlimit = UINT_MAX;
    716 	pp->pr_hardlimit_warning = NULL;
    717 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    718 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    719 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    720 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    721 	pp->pr_drain_hook = NULL;
    722 	pp->pr_drain_hook_arg = NULL;
    723 	pp->pr_freecheck = NULL;
    724 
    725 	/*
    726 	 * Decide whether to put the page header off page to avoid
    727 	 * wasting too large a part of the page or too big item.
    728 	 * Off-page page headers go on a hash table, so we can match
    729 	 * a returned item with its header based on the page address.
    730 	 * We use 1/16 of the page size and about 8 times of the item
    731 	 * size as the threshold (XXX: tune)
    732 	 *
    733 	 * However, we'll put the header into the page if we can put
    734 	 * it without wasting any items.
    735 	 *
    736 	 * Silently enforce `0 <= ioff < align'.
    737 	 */
    738 	pp->pr_itemoffset = ioff %= align;
    739 	/* See the comment below about reserved bytes. */
    740 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    741 	phsize = ALIGN(sizeof(struct pool_item_header));
    742 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    743 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    744 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    745 		/* Use the end of the page for the page header */
    746 		pp->pr_roflags |= PR_PHINPAGE;
    747 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    748 	} else {
    749 		/* The page header will be taken from our page header pool */
    750 		pp->pr_phoffset = 0;
    751 		off = palloc->pa_pagesz;
    752 		SPLAY_INIT(&pp->pr_phtree);
    753 	}
    754 
    755 	/*
    756 	 * Alignment is to take place at `ioff' within the item. This means
    757 	 * we must reserve up to `align - 1' bytes on the page to allow
    758 	 * appropriate positioning of each item.
    759 	 */
    760 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    761 	KASSERT(pp->pr_itemsperpage != 0);
    762 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    763 		int idx;
    764 
    765 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    766 		    idx++) {
    767 			/* nothing */
    768 		}
    769 		if (idx >= PHPOOL_MAX) {
    770 			/*
    771 			 * if you see this panic, consider to tweak
    772 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    773 			 */
    774 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    775 			    pp->pr_wchan, pp->pr_itemsperpage);
    776 		}
    777 		pp->pr_phpool = &phpool[idx];
    778 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    779 		pp->pr_phpool = &phpool[0];
    780 	}
    781 #if defined(DIAGNOSTIC)
    782 	else {
    783 		pp->pr_phpool = NULL;
    784 	}
    785 #endif
    786 
    787 	/*
    788 	 * Use the slack between the chunks and the page header
    789 	 * for "cache coloring".
    790 	 */
    791 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    792 	pp->pr_maxcolor = (slack / align) * align;
    793 	pp->pr_curcolor = 0;
    794 
    795 	pp->pr_nget = 0;
    796 	pp->pr_nfail = 0;
    797 	pp->pr_nput = 0;
    798 	pp->pr_npagealloc = 0;
    799 	pp->pr_npagefree = 0;
    800 	pp->pr_hiwat = 0;
    801 	pp->pr_nidle = 0;
    802 	pp->pr_refcnt = 0;
    803 
    804 #ifdef POOL_DIAGNOSTIC
    805 	if (flags & PR_LOGGING) {
    806 		if (kmem_map == NULL ||
    807 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    808 		     M_TEMP, M_NOWAIT)) == NULL)
    809 			pp->pr_roflags &= ~PR_LOGGING;
    810 		pp->pr_curlogentry = 0;
    811 		pp->pr_logsize = pool_logsize;
    812 	}
    813 #endif
    814 
    815 	pp->pr_entered_file = NULL;
    816 	pp->pr_entered_line = 0;
    817 
    818 	/*
    819 	 * XXXAD hack to prevent IP input processing from blocking.
    820 	 */
    821 	if (ipl == IPL_SOFTNET) {
    822 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
    823 	} else {
    824 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    825 	}
    826 	cv_init(&pp->pr_cv, wchan);
    827 	pp->pr_ipl = ipl;
    828 
    829 	/*
    830 	 * Initialize private page header pool and cache magazine pool if we
    831 	 * haven't done so yet.
    832 	 * XXX LOCKING.
    833 	 */
    834 	if (phpool[0].pr_size == 0) {
    835 		int idx;
    836 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    837 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    838 			int nelem;
    839 			size_t sz;
    840 
    841 			nelem = PHPOOL_FREELIST_NELEM(idx);
    842 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    843 			    "phpool-%d", nelem);
    844 			sz = sizeof(struct pool_item_header);
    845 			if (nelem) {
    846 				sz = offsetof(struct pool_item_header,
    847 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    848 			}
    849 			pool_init(&phpool[idx], sz, 0, 0, 0,
    850 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    851 		}
    852 #ifdef POOL_SUBPAGE
    853 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    854 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    855 #endif
    856 
    857 		size = sizeof(pcg_t) +
    858 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    859 		pool_init(&pcg_normal_pool, size, CACHE_LINE_SIZE, 0, 0,
    860 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    861 
    862 		size = sizeof(pcg_t) +
    863 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    864 		pool_init(&pcg_large_pool, size, CACHE_LINE_SIZE, 0, 0,
    865 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    866 	}
    867 
    868 	/* Insert into the list of all pools. */
    869 	if (__predict_true(!cold))
    870 		mutex_enter(&pool_head_lock);
    871 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    872 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    873 			break;
    874 	}
    875 	if (pp1 == NULL)
    876 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    877 	else
    878 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    879 	if (__predict_true(!cold))
    880 		mutex_exit(&pool_head_lock);
    881 
    882 		/* Insert this into the list of pools using this allocator. */
    883 	if (__predict_true(!cold))
    884 		mutex_enter(&palloc->pa_lock);
    885 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    886 	if (__predict_true(!cold))
    887 		mutex_exit(&palloc->pa_lock);
    888 
    889 	pool_reclaim_register(pp);
    890 }
    891 
    892 /*
    893  * De-commision a pool resource.
    894  */
    895 void
    896 pool_destroy(struct pool *pp)
    897 {
    898 	struct pool_pagelist pq;
    899 	struct pool_item_header *ph;
    900 
    901 	/* Remove from global pool list */
    902 	mutex_enter(&pool_head_lock);
    903 	while (pp->pr_refcnt != 0)
    904 		cv_wait(&pool_busy, &pool_head_lock);
    905 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    906 	if (drainpp == pp)
    907 		drainpp = NULL;
    908 	mutex_exit(&pool_head_lock);
    909 
    910 	/* Remove this pool from its allocator's list of pools. */
    911 	pool_reclaim_unregister(pp);
    912 	mutex_enter(&pp->pr_alloc->pa_lock);
    913 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    914 	mutex_exit(&pp->pr_alloc->pa_lock);
    915 
    916 	mutex_enter(&pp->pr_lock);
    917 
    918 	KASSERT(pp->pr_cache == NULL);
    919 
    920 #ifdef DIAGNOSTIC
    921 	if (pp->pr_nout != 0) {
    922 		pr_printlog(pp, NULL, printf);
    923 		panic("pool_destroy: pool busy: still out: %u",
    924 		    pp->pr_nout);
    925 	}
    926 #endif
    927 
    928 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    929 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    930 
    931 	/* Remove all pages */
    932 	LIST_INIT(&pq);
    933 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    934 		pr_rmpage(pp, ph, &pq);
    935 
    936 	mutex_exit(&pp->pr_lock);
    937 
    938 	pr_pagelist_free(pp, &pq);
    939 
    940 #ifdef POOL_DIAGNOSTIC
    941 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    942 		free(pp->pr_log, M_TEMP);
    943 #endif
    944 
    945 	cv_destroy(&pp->pr_cv);
    946 	mutex_destroy(&pp->pr_lock);
    947 }
    948 
    949 void
    950 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    951 {
    952 
    953 	/* XXX no locking -- must be used just after pool_init() */
    954 #ifdef DIAGNOSTIC
    955 	if (pp->pr_drain_hook != NULL)
    956 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    957 #endif
    958 	pp->pr_drain_hook = fn;
    959 	pp->pr_drain_hook_arg = arg;
    960 }
    961 
    962 static struct pool_item_header *
    963 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    964 {
    965 	struct pool_item_header *ph;
    966 
    967 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    968 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    969 	else
    970 		ph = pool_get(pp->pr_phpool, flags);
    971 
    972 	return (ph);
    973 }
    974 
    975 /*
    976  * Grab an item from the pool.
    977  */
    978 void *
    979 #ifdef POOL_DIAGNOSTIC
    980 _pool_get(struct pool *pp, int flags, const char *file, long line)
    981 #else
    982 pool_get(struct pool *pp, int flags)
    983 #endif
    984 {
    985 	struct pool_item *pi;
    986 	struct pool_item_header *ph;
    987 	void *v;
    988 
    989 #ifdef DIAGNOSTIC
    990 	if (__predict_false(pp->pr_itemsperpage == 0))
    991 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    992 		    "pool not initialized?", pp);
    993 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    994 			    (flags & PR_WAITOK) != 0))
    995 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    996 
    997 #endif /* DIAGNOSTIC */
    998 #ifdef LOCKDEBUG
    999 	if (flags & PR_WAITOK)
   1000 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
   1001 #endif
   1002 
   1003 	mutex_enter(&pp->pr_lock);
   1004 	pr_enter(pp, file, line);
   1005 
   1006  startover:
   1007 	/*
   1008 	 * Check to see if we've reached the hard limit.  If we have,
   1009 	 * and we can wait, then wait until an item has been returned to
   1010 	 * the pool.
   1011 	 */
   1012 #ifdef DIAGNOSTIC
   1013 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1014 		pr_leave(pp);
   1015 		mutex_exit(&pp->pr_lock);
   1016 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1017 	}
   1018 #endif
   1019 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1020 		if (pp->pr_drain_hook != NULL) {
   1021 			/*
   1022 			 * Since the drain hook is going to free things
   1023 			 * back to the pool, unlock, call the hook, re-lock,
   1024 			 * and check the hardlimit condition again.
   1025 			 */
   1026 			pr_leave(pp);
   1027 			mutex_exit(&pp->pr_lock);
   1028 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1029 			mutex_enter(&pp->pr_lock);
   1030 			pr_enter(pp, file, line);
   1031 			if (pp->pr_nout < pp->pr_hardlimit)
   1032 				goto startover;
   1033 		}
   1034 
   1035 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1036 			/*
   1037 			 * XXX: A warning isn't logged in this case.  Should
   1038 			 * it be?
   1039 			 */
   1040 			pp->pr_flags |= PR_WANTED;
   1041 			pr_leave(pp);
   1042 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1043 			pr_enter(pp, file, line);
   1044 			goto startover;
   1045 		}
   1046 
   1047 		/*
   1048 		 * Log a message that the hard limit has been hit.
   1049 		 */
   1050 		if (pp->pr_hardlimit_warning != NULL &&
   1051 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1052 			      &pp->pr_hardlimit_ratecap))
   1053 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1054 
   1055 		pp->pr_nfail++;
   1056 
   1057 		pr_leave(pp);
   1058 		mutex_exit(&pp->pr_lock);
   1059 		return (NULL);
   1060 	}
   1061 
   1062 	/*
   1063 	 * The convention we use is that if `curpage' is not NULL, then
   1064 	 * it points at a non-empty bucket. In particular, `curpage'
   1065 	 * never points at a page header which has PR_PHINPAGE set and
   1066 	 * has no items in its bucket.
   1067 	 */
   1068 	if ((ph = pp->pr_curpage) == NULL) {
   1069 		int error;
   1070 
   1071 #ifdef DIAGNOSTIC
   1072 		if (pp->pr_nitems != 0) {
   1073 			mutex_exit(&pp->pr_lock);
   1074 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1075 			    pp->pr_wchan, pp->pr_nitems);
   1076 			panic("pool_get: nitems inconsistent");
   1077 		}
   1078 #endif
   1079 
   1080 		/*
   1081 		 * Call the back-end page allocator for more memory.
   1082 		 * Release the pool lock, as the back-end page allocator
   1083 		 * may block.
   1084 		 */
   1085 		pr_leave(pp);
   1086 		error = pool_grow(pp, flags);
   1087 		pr_enter(pp, file, line);
   1088 		if (error != 0) {
   1089 			/*
   1090 			 * We were unable to allocate a page or item
   1091 			 * header, but we released the lock during
   1092 			 * allocation, so perhaps items were freed
   1093 			 * back to the pool.  Check for this case.
   1094 			 */
   1095 			if (pp->pr_curpage != NULL)
   1096 				goto startover;
   1097 
   1098 			pp->pr_nfail++;
   1099 			pr_leave(pp);
   1100 			mutex_exit(&pp->pr_lock);
   1101 			return (NULL);
   1102 		}
   1103 
   1104 		/* Start the allocation process over. */
   1105 		goto startover;
   1106 	}
   1107 	if (pp->pr_roflags & PR_NOTOUCH) {
   1108 #ifdef DIAGNOSTIC
   1109 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1110 			pr_leave(pp);
   1111 			mutex_exit(&pp->pr_lock);
   1112 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1113 		}
   1114 #endif
   1115 		v = pr_item_notouch_get(pp, ph);
   1116 #ifdef POOL_DIAGNOSTIC
   1117 		pr_log(pp, v, PRLOG_GET, file, line);
   1118 #endif
   1119 	} else {
   1120 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1121 		if (__predict_false(v == NULL)) {
   1122 			pr_leave(pp);
   1123 			mutex_exit(&pp->pr_lock);
   1124 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1125 		}
   1126 #ifdef DIAGNOSTIC
   1127 		if (__predict_false(pp->pr_nitems == 0)) {
   1128 			pr_leave(pp);
   1129 			mutex_exit(&pp->pr_lock);
   1130 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1131 			    pp->pr_wchan, pp->pr_nitems);
   1132 			panic("pool_get: nitems inconsistent");
   1133 		}
   1134 #endif
   1135 
   1136 #ifdef POOL_DIAGNOSTIC
   1137 		pr_log(pp, v, PRLOG_GET, file, line);
   1138 #endif
   1139 
   1140 #ifdef DIAGNOSTIC
   1141 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1142 			pr_printlog(pp, pi, printf);
   1143 			panic("pool_get(%s): free list modified: "
   1144 			    "magic=%x; page %p; item addr %p\n",
   1145 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1146 		}
   1147 #endif
   1148 
   1149 		/*
   1150 		 * Remove from item list.
   1151 		 */
   1152 		LIST_REMOVE(pi, pi_list);
   1153 	}
   1154 	pp->pr_nitems--;
   1155 	pp->pr_nout++;
   1156 	if (ph->ph_nmissing == 0) {
   1157 #ifdef DIAGNOSTIC
   1158 		if (__predict_false(pp->pr_nidle == 0))
   1159 			panic("pool_get: nidle inconsistent");
   1160 #endif
   1161 		pp->pr_nidle--;
   1162 
   1163 		/*
   1164 		 * This page was previously empty.  Move it to the list of
   1165 		 * partially-full pages.  This page is already curpage.
   1166 		 */
   1167 		LIST_REMOVE(ph, ph_pagelist);
   1168 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1169 	}
   1170 	ph->ph_nmissing++;
   1171 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1172 #ifdef DIAGNOSTIC
   1173 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1174 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1175 			pr_leave(pp);
   1176 			mutex_exit(&pp->pr_lock);
   1177 			panic("pool_get: %s: nmissing inconsistent",
   1178 			    pp->pr_wchan);
   1179 		}
   1180 #endif
   1181 		/*
   1182 		 * This page is now full.  Move it to the full list
   1183 		 * and select a new current page.
   1184 		 */
   1185 		LIST_REMOVE(ph, ph_pagelist);
   1186 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1187 		pool_update_curpage(pp);
   1188 	}
   1189 
   1190 	pp->pr_nget++;
   1191 	pr_leave(pp);
   1192 
   1193 	/*
   1194 	 * If we have a low water mark and we are now below that low
   1195 	 * water mark, add more items to the pool.
   1196 	 */
   1197 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1198 		/*
   1199 		 * XXX: Should we log a warning?  Should we set up a timeout
   1200 		 * to try again in a second or so?  The latter could break
   1201 		 * a caller's assumptions about interrupt protection, etc.
   1202 		 */
   1203 	}
   1204 
   1205 	mutex_exit(&pp->pr_lock);
   1206 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1207 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1208 	return (v);
   1209 }
   1210 
   1211 /*
   1212  * Internal version of pool_put().  Pool is already locked/entered.
   1213  */
   1214 static void
   1215 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1216 {
   1217 	struct pool_item *pi = v;
   1218 	struct pool_item_header *ph;
   1219 
   1220 	KASSERT(mutex_owned(&pp->pr_lock));
   1221 	FREECHECK_IN(&pp->pr_freecheck, v);
   1222 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1223 
   1224 #ifdef DIAGNOSTIC
   1225 	if (__predict_false(pp->pr_nout == 0)) {
   1226 		printf("pool %s: putting with none out\n",
   1227 		    pp->pr_wchan);
   1228 		panic("pool_put");
   1229 	}
   1230 #endif
   1231 
   1232 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1233 		pr_printlog(pp, NULL, printf);
   1234 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1235 	}
   1236 
   1237 	/*
   1238 	 * Return to item list.
   1239 	 */
   1240 	if (pp->pr_roflags & PR_NOTOUCH) {
   1241 		pr_item_notouch_put(pp, ph, v);
   1242 	} else {
   1243 #ifdef DIAGNOSTIC
   1244 		pi->pi_magic = PI_MAGIC;
   1245 #endif
   1246 #ifdef DEBUG
   1247 		{
   1248 			int i, *ip = v;
   1249 
   1250 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1251 				*ip++ = PI_MAGIC;
   1252 			}
   1253 		}
   1254 #endif
   1255 
   1256 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1257 	}
   1258 	KDASSERT(ph->ph_nmissing != 0);
   1259 	ph->ph_nmissing--;
   1260 	pp->pr_nput++;
   1261 	pp->pr_nitems++;
   1262 	pp->pr_nout--;
   1263 
   1264 	/* Cancel "pool empty" condition if it exists */
   1265 	if (pp->pr_curpage == NULL)
   1266 		pp->pr_curpage = ph;
   1267 
   1268 	if (pp->pr_flags & PR_WANTED) {
   1269 		pp->pr_flags &= ~PR_WANTED;
   1270 		if (ph->ph_nmissing == 0)
   1271 			pp->pr_nidle++;
   1272 		cv_broadcast(&pp->pr_cv);
   1273 		return;
   1274 	}
   1275 
   1276 	/*
   1277 	 * If this page is now empty, do one of two things:
   1278 	 *
   1279 	 *	(1) If we have more pages than the page high water mark,
   1280 	 *	    free the page back to the system.  ONLY CONSIDER
   1281 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1282 	 *	    CLAIM.
   1283 	 *
   1284 	 *	(2) Otherwise, move the page to the empty page list.
   1285 	 *
   1286 	 * Either way, select a new current page (so we use a partially-full
   1287 	 * page if one is available).
   1288 	 */
   1289 	if (ph->ph_nmissing == 0) {
   1290 		pp->pr_nidle++;
   1291 		if (pp->pr_npages > pp->pr_minpages &&
   1292 		    (pp->pr_npages > pp->pr_maxpages ||
   1293 		     pa_starved_p(pp->pr_alloc))) {
   1294 			pr_rmpage(pp, ph, pq);
   1295 		} else {
   1296 			LIST_REMOVE(ph, ph_pagelist);
   1297 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1298 
   1299 			/*
   1300 			 * Update the timestamp on the page.  A page must
   1301 			 * be idle for some period of time before it can
   1302 			 * be reclaimed by the pagedaemon.  This minimizes
   1303 			 * ping-pong'ing for memory.
   1304 			 */
   1305 			getmicrotime(&ph->ph_time);
   1306 		}
   1307 		pool_update_curpage(pp);
   1308 	}
   1309 
   1310 	/*
   1311 	 * If the page was previously completely full, move it to the
   1312 	 * partially-full list and make it the current page.  The next
   1313 	 * allocation will get the item from this page, instead of
   1314 	 * further fragmenting the pool.
   1315 	 */
   1316 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1317 		LIST_REMOVE(ph, ph_pagelist);
   1318 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1319 		pp->pr_curpage = ph;
   1320 	}
   1321 }
   1322 
   1323 /*
   1324  * Return resource to the pool.
   1325  */
   1326 #ifdef POOL_DIAGNOSTIC
   1327 void
   1328 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1329 {
   1330 	struct pool_pagelist pq;
   1331 
   1332 	LIST_INIT(&pq);
   1333 
   1334 	mutex_enter(&pp->pr_lock);
   1335 	pr_enter(pp, file, line);
   1336 
   1337 	pr_log(pp, v, PRLOG_PUT, file, line);
   1338 
   1339 	pool_do_put(pp, v, &pq);
   1340 
   1341 	pr_leave(pp);
   1342 	mutex_exit(&pp->pr_lock);
   1343 
   1344 	pr_pagelist_free(pp, &pq);
   1345 }
   1346 #undef pool_put
   1347 #endif /* POOL_DIAGNOSTIC */
   1348 
   1349 void
   1350 pool_put(struct pool *pp, void *v)
   1351 {
   1352 	struct pool_pagelist pq;
   1353 
   1354 	LIST_INIT(&pq);
   1355 
   1356 	mutex_enter(&pp->pr_lock);
   1357 	pool_do_put(pp, v, &pq);
   1358 	mutex_exit(&pp->pr_lock);
   1359 
   1360 	pr_pagelist_free(pp, &pq);
   1361 }
   1362 
   1363 #ifdef POOL_DIAGNOSTIC
   1364 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1365 #endif
   1366 
   1367 /*
   1368  * pool_grow: grow a pool by a page.
   1369  *
   1370  * => called with pool locked.
   1371  * => unlock and relock the pool.
   1372  * => return with pool locked.
   1373  */
   1374 
   1375 static int
   1376 pool_grow(struct pool *pp, int flags)
   1377 {
   1378 	struct pool_item_header *ph = NULL;
   1379 	char *cp;
   1380 
   1381 	mutex_exit(&pp->pr_lock);
   1382 	cp = pool_allocator_alloc(pp, flags);
   1383 	if (__predict_true(cp != NULL)) {
   1384 		ph = pool_alloc_item_header(pp, cp, flags);
   1385 	}
   1386 	if (__predict_false(cp == NULL || ph == NULL)) {
   1387 		if (cp != NULL) {
   1388 			pool_allocator_free(pp, cp);
   1389 		}
   1390 		mutex_enter(&pp->pr_lock);
   1391 		return ENOMEM;
   1392 	}
   1393 
   1394 	mutex_enter(&pp->pr_lock);
   1395 	pool_prime_page(pp, cp, ph);
   1396 	pp->pr_npagealloc++;
   1397 	return 0;
   1398 }
   1399 
   1400 /*
   1401  * Add N items to the pool.
   1402  */
   1403 int
   1404 pool_prime(struct pool *pp, int n)
   1405 {
   1406 	int newpages;
   1407 	int error = 0;
   1408 
   1409 	mutex_enter(&pp->pr_lock);
   1410 
   1411 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1412 
   1413 	while (newpages-- > 0) {
   1414 		error = pool_grow(pp, PR_NOWAIT);
   1415 		if (error) {
   1416 			break;
   1417 		}
   1418 		pp->pr_minpages++;
   1419 	}
   1420 
   1421 	if (pp->pr_minpages >= pp->pr_maxpages)
   1422 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1423 
   1424 	mutex_exit(&pp->pr_lock);
   1425 	return error;
   1426 }
   1427 
   1428 /*
   1429  * Add a page worth of items to the pool.
   1430  *
   1431  * Note, we must be called with the pool descriptor LOCKED.
   1432  */
   1433 static void
   1434 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1435 {
   1436 	struct pool_item *pi;
   1437 	void *cp = storage;
   1438 	const unsigned int align = pp->pr_align;
   1439 	const unsigned int ioff = pp->pr_itemoffset;
   1440 	int n;
   1441 
   1442 	KASSERT(mutex_owned(&pp->pr_lock));
   1443 
   1444 #ifdef DIAGNOSTIC
   1445 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1446 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1447 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1448 #endif
   1449 
   1450 	/*
   1451 	 * Insert page header.
   1452 	 */
   1453 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1454 	LIST_INIT(&ph->ph_itemlist);
   1455 	ph->ph_page = storage;
   1456 	ph->ph_nmissing = 0;
   1457 	getmicrotime(&ph->ph_time);
   1458 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1459 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1460 
   1461 	pp->pr_nidle++;
   1462 
   1463 	/*
   1464 	 * Color this page.
   1465 	 */
   1466 	ph->ph_off = pp->pr_curcolor;
   1467 	cp = (char *)cp + ph->ph_off;
   1468 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1469 		pp->pr_curcolor = 0;
   1470 
   1471 	/*
   1472 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1473 	 */
   1474 	if (ioff != 0)
   1475 		cp = (char *)cp + align - ioff;
   1476 
   1477 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1478 
   1479 	/*
   1480 	 * Insert remaining chunks on the bucket list.
   1481 	 */
   1482 	n = pp->pr_itemsperpage;
   1483 	pp->pr_nitems += n;
   1484 
   1485 	if (pp->pr_roflags & PR_NOTOUCH) {
   1486 		pr_item_notouch_init(pp, ph);
   1487 	} else {
   1488 		while (n--) {
   1489 			pi = (struct pool_item *)cp;
   1490 
   1491 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1492 
   1493 			/* Insert on page list */
   1494 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1495 #ifdef DIAGNOSTIC
   1496 			pi->pi_magic = PI_MAGIC;
   1497 #endif
   1498 			cp = (char *)cp + pp->pr_size;
   1499 
   1500 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1501 		}
   1502 	}
   1503 
   1504 	/*
   1505 	 * If the pool was depleted, point at the new page.
   1506 	 */
   1507 	if (pp->pr_curpage == NULL)
   1508 		pp->pr_curpage = ph;
   1509 
   1510 	if (++pp->pr_npages > pp->pr_hiwat)
   1511 		pp->pr_hiwat = pp->pr_npages;
   1512 }
   1513 
   1514 /*
   1515  * Used by pool_get() when nitems drops below the low water mark.  This
   1516  * is used to catch up pr_nitems with the low water mark.
   1517  *
   1518  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1519  *
   1520  * Note 2, we must be called with the pool already locked, and we return
   1521  * with it locked.
   1522  */
   1523 static int
   1524 pool_catchup(struct pool *pp)
   1525 {
   1526 	int error = 0;
   1527 
   1528 	while (POOL_NEEDS_CATCHUP(pp)) {
   1529 		error = pool_grow(pp, PR_NOWAIT);
   1530 		if (error) {
   1531 			break;
   1532 		}
   1533 	}
   1534 	return error;
   1535 }
   1536 
   1537 static void
   1538 pool_update_curpage(struct pool *pp)
   1539 {
   1540 
   1541 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1542 	if (pp->pr_curpage == NULL) {
   1543 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1544 	}
   1545 }
   1546 
   1547 void
   1548 pool_setlowat(struct pool *pp, int n)
   1549 {
   1550 
   1551 	mutex_enter(&pp->pr_lock);
   1552 
   1553 	pp->pr_minitems = n;
   1554 	pp->pr_minpages = (n == 0)
   1555 		? 0
   1556 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1557 
   1558 	/* Make sure we're caught up with the newly-set low water mark. */
   1559 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1560 		/*
   1561 		 * XXX: Should we log a warning?  Should we set up a timeout
   1562 		 * to try again in a second or so?  The latter could break
   1563 		 * a caller's assumptions about interrupt protection, etc.
   1564 		 */
   1565 	}
   1566 
   1567 	mutex_exit(&pp->pr_lock);
   1568 }
   1569 
   1570 void
   1571 pool_sethiwat(struct pool *pp, int n)
   1572 {
   1573 
   1574 	mutex_enter(&pp->pr_lock);
   1575 
   1576 	pp->pr_maxpages = (n == 0)
   1577 		? 0
   1578 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1579 
   1580 	mutex_exit(&pp->pr_lock);
   1581 }
   1582 
   1583 void
   1584 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1585 {
   1586 
   1587 	mutex_enter(&pp->pr_lock);
   1588 
   1589 	pp->pr_hardlimit = n;
   1590 	pp->pr_hardlimit_warning = warnmess;
   1591 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1592 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1593 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1594 
   1595 	/*
   1596 	 * In-line version of pool_sethiwat(), because we don't want to
   1597 	 * release the lock.
   1598 	 */
   1599 	pp->pr_maxpages = (n == 0)
   1600 		? 0
   1601 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1602 
   1603 	mutex_exit(&pp->pr_lock);
   1604 }
   1605 
   1606 /*
   1607  * Release all complete pages that have not been used recently.
   1608  */
   1609 int
   1610 #ifdef POOL_DIAGNOSTIC
   1611 _pool_reclaim(struct pool *pp, const char *file, long line)
   1612 #else
   1613 pool_reclaim(struct pool *pp)
   1614 #endif
   1615 {
   1616 	struct pool_item_header *ph, *phnext;
   1617 	struct pool_pagelist pq;
   1618 	struct timeval curtime, diff;
   1619 	bool klock;
   1620 	int rv;
   1621 
   1622 	if (pp->pr_drain_hook != NULL) {
   1623 		/*
   1624 		 * The drain hook must be called with the pool unlocked.
   1625 		 */
   1626 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1627 	}
   1628 
   1629 	/*
   1630 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
   1631 	 * and we are called from the pagedaemon without kernel_lock.
   1632 	 * Does not apply to IPL_SOFTBIO.
   1633 	 */
   1634 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1635 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1636 		KERNEL_LOCK(1, NULL);
   1637 		klock = true;
   1638 	} else
   1639 		klock = false;
   1640 
   1641 	/* Reclaim items from the pool's cache (if any). */
   1642 	if (pp->pr_cache != NULL)
   1643 		pool_cache_invalidate(pp->pr_cache);
   1644 
   1645 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1646 		if (klock) {
   1647 			KERNEL_UNLOCK_ONE(NULL);
   1648 		}
   1649 		return (0);
   1650 	}
   1651 	pr_enter(pp, file, line);
   1652 
   1653 	LIST_INIT(&pq);
   1654 
   1655 	getmicrotime(&curtime);
   1656 
   1657 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1658 		phnext = LIST_NEXT(ph, ph_pagelist);
   1659 
   1660 		/* Check our minimum page claim */
   1661 		if (pp->pr_npages <= pp->pr_minpages)
   1662 			break;
   1663 
   1664 		KASSERT(ph->ph_nmissing == 0);
   1665 		timersub(&curtime, &ph->ph_time, &diff);
   1666 		if (diff.tv_sec < pool_inactive_time
   1667 		    && !pa_starved_p(pp->pr_alloc))
   1668 			continue;
   1669 
   1670 		/*
   1671 		 * If freeing this page would put us below
   1672 		 * the low water mark, stop now.
   1673 		 */
   1674 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1675 		    pp->pr_minitems)
   1676 			break;
   1677 
   1678 		pr_rmpage(pp, ph, &pq);
   1679 	}
   1680 
   1681 	pr_leave(pp);
   1682 	mutex_exit(&pp->pr_lock);
   1683 
   1684 	if (LIST_EMPTY(&pq))
   1685 		rv = 0;
   1686 	else {
   1687 		pr_pagelist_free(pp, &pq);
   1688 		rv = 1;
   1689 	}
   1690 
   1691 	if (klock) {
   1692 		KERNEL_UNLOCK_ONE(NULL);
   1693 	}
   1694 
   1695 	return (rv);
   1696 }
   1697 
   1698 /*
   1699  * Drain pools, one at a time.  This is a two stage process;
   1700  * drain_start kicks off a cross call to drain CPU-level caches
   1701  * if the pool has an associated pool_cache.  drain_end waits
   1702  * for those cross calls to finish, and then drains the cache
   1703  * (if any) and pool.
   1704  *
   1705  * Note, must never be called from interrupt context.
   1706  */
   1707 void
   1708 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1709 {
   1710 	struct pool *pp;
   1711 
   1712 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1713 
   1714 	pp = NULL;
   1715 
   1716 	/* Find next pool to drain, and add a reference. */
   1717 	mutex_enter(&pool_head_lock);
   1718 	do {
   1719 		if (drainpp == NULL) {
   1720 			drainpp = TAILQ_FIRST(&pool_head);
   1721 		}
   1722 		if (drainpp != NULL) {
   1723 			pp = drainpp;
   1724 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1725 		}
   1726 		/*
   1727 		 * Skip completely idle pools.  We depend on at least
   1728 		 * one pool in the system being active.
   1729 		 */
   1730 	} while (pp == NULL || pp->pr_npages == 0);
   1731 	pp->pr_refcnt++;
   1732 	mutex_exit(&pool_head_lock);
   1733 
   1734 	/* If there is a pool_cache, drain CPU level caches. */
   1735 	*ppp = pp;
   1736 	if (pp->pr_cache != NULL) {
   1737 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1738 		    pp->pr_cache, NULL);
   1739 	}
   1740 }
   1741 
   1742 void
   1743 pool_drain_end(struct pool *pp, uint64_t where)
   1744 {
   1745 
   1746 	if (pp == NULL)
   1747 		return;
   1748 
   1749 	KASSERT(pp->pr_refcnt > 0);
   1750 
   1751 	/* Wait for remote draining to complete. */
   1752 	if (pp->pr_cache != NULL)
   1753 		xc_wait(where);
   1754 
   1755 	/* Drain the cache (if any) and pool.. */
   1756 	pool_reclaim(pp);
   1757 
   1758 	/* Finally, unlock the pool. */
   1759 	mutex_enter(&pool_head_lock);
   1760 	pp->pr_refcnt--;
   1761 	cv_broadcast(&pool_busy);
   1762 	mutex_exit(&pool_head_lock);
   1763 }
   1764 
   1765 /*
   1766  * Diagnostic helpers.
   1767  */
   1768 void
   1769 pool_print(struct pool *pp, const char *modif)
   1770 {
   1771 
   1772 	pool_print1(pp, modif, printf);
   1773 }
   1774 
   1775 void
   1776 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1777 {
   1778 	struct pool *pp;
   1779 
   1780 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1781 		pool_printit(pp, modif, pr);
   1782 	}
   1783 }
   1784 
   1785 void
   1786 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1787 {
   1788 
   1789 	if (pp == NULL) {
   1790 		(*pr)("Must specify a pool to print.\n");
   1791 		return;
   1792 	}
   1793 
   1794 	pool_print1(pp, modif, pr);
   1795 }
   1796 
   1797 static void
   1798 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1799     void (*pr)(const char *, ...))
   1800 {
   1801 	struct pool_item_header *ph;
   1802 #ifdef DIAGNOSTIC
   1803 	struct pool_item *pi;
   1804 #endif
   1805 
   1806 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1807 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1808 		    ph->ph_page, ph->ph_nmissing,
   1809 		    (u_long)ph->ph_time.tv_sec,
   1810 		    (u_long)ph->ph_time.tv_usec);
   1811 #ifdef DIAGNOSTIC
   1812 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1813 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1814 				if (pi->pi_magic != PI_MAGIC) {
   1815 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1816 					    pi, pi->pi_magic);
   1817 				}
   1818 			}
   1819 		}
   1820 #endif
   1821 	}
   1822 }
   1823 
   1824 static void
   1825 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1826 {
   1827 	struct pool_item_header *ph;
   1828 	pool_cache_t pc;
   1829 	pcg_t *pcg;
   1830 	pool_cache_cpu_t *cc;
   1831 	uint64_t cpuhit, cpumiss;
   1832 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1833 	char c;
   1834 
   1835 	while ((c = *modif++) != '\0') {
   1836 		if (c == 'l')
   1837 			print_log = 1;
   1838 		if (c == 'p')
   1839 			print_pagelist = 1;
   1840 		if (c == 'c')
   1841 			print_cache = 1;
   1842 	}
   1843 
   1844 	if ((pc = pp->pr_cache) != NULL) {
   1845 		(*pr)("POOL CACHE");
   1846 	} else {
   1847 		(*pr)("POOL");
   1848 	}
   1849 
   1850 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1851 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1852 	    pp->pr_roflags);
   1853 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1854 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1855 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1856 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1857 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1858 
   1859 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1860 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1861 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1862 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1863 
   1864 	if (print_pagelist == 0)
   1865 		goto skip_pagelist;
   1866 
   1867 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1868 		(*pr)("\n\tempty page list:\n");
   1869 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1870 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1871 		(*pr)("\n\tfull page list:\n");
   1872 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1873 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1874 		(*pr)("\n\tpartial-page list:\n");
   1875 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1876 
   1877 	if (pp->pr_curpage == NULL)
   1878 		(*pr)("\tno current page\n");
   1879 	else
   1880 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1881 
   1882  skip_pagelist:
   1883 	if (print_log == 0)
   1884 		goto skip_log;
   1885 
   1886 	(*pr)("\n");
   1887 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1888 		(*pr)("\tno log\n");
   1889 	else {
   1890 		pr_printlog(pp, NULL, pr);
   1891 	}
   1892 
   1893  skip_log:
   1894 
   1895 #define PR_GROUPLIST(pcg)						\
   1896 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1897 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1898 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1899 		    POOL_PADDR_INVALID) {				\
   1900 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1901 			    pcg->pcg_objects[i].pcgo_va,		\
   1902 			    (unsigned long long)			\
   1903 			    pcg->pcg_objects[i].pcgo_pa);		\
   1904 		} else {						\
   1905 			(*pr)("\t\t\t%p\n",				\
   1906 			    pcg->pcg_objects[i].pcgo_va);		\
   1907 		}							\
   1908 	}
   1909 
   1910 	if (pc != NULL) {
   1911 		cpuhit = 0;
   1912 		cpumiss = 0;
   1913 		for (i = 0; i < MAXCPUS; i++) {
   1914 			if ((cc = pc->pc_cpus[i]) == NULL)
   1915 				continue;
   1916 			cpuhit += cc->cc_hits;
   1917 			cpumiss += cc->cc_misses;
   1918 		}
   1919 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1920 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1921 		    pc->pc_hits, pc->pc_misses);
   1922 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1923 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1924 		    pc->pc_contended);
   1925 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1926 		    pc->pc_nempty, pc->pc_nfull);
   1927 		if (print_cache) {
   1928 			(*pr)("\tfull cache groups:\n");
   1929 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1930 			    pcg = pcg->pcg_next) {
   1931 				PR_GROUPLIST(pcg);
   1932 			}
   1933 			(*pr)("\tempty cache groups:\n");
   1934 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1935 			    pcg = pcg->pcg_next) {
   1936 				PR_GROUPLIST(pcg);
   1937 			}
   1938 		}
   1939 	}
   1940 #undef PR_GROUPLIST
   1941 
   1942 	pr_enter_check(pp, pr);
   1943 }
   1944 
   1945 static int
   1946 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1947 {
   1948 	struct pool_item *pi;
   1949 	void *page;
   1950 	int n;
   1951 
   1952 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1953 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1954 		if (page != ph->ph_page &&
   1955 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1956 			if (label != NULL)
   1957 				printf("%s: ", label);
   1958 			printf("pool(%p:%s): page inconsistency: page %p;"
   1959 			       " at page head addr %p (p %p)\n", pp,
   1960 				pp->pr_wchan, ph->ph_page,
   1961 				ph, page);
   1962 			return 1;
   1963 		}
   1964 	}
   1965 
   1966 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1967 		return 0;
   1968 
   1969 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1970 	     pi != NULL;
   1971 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1972 
   1973 #ifdef DIAGNOSTIC
   1974 		if (pi->pi_magic != PI_MAGIC) {
   1975 			if (label != NULL)
   1976 				printf("%s: ", label);
   1977 			printf("pool(%s): free list modified: magic=%x;"
   1978 			       " page %p; item ordinal %d; addr %p\n",
   1979 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1980 				n, pi);
   1981 			panic("pool");
   1982 		}
   1983 #endif
   1984 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1985 			continue;
   1986 		}
   1987 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1988 		if (page == ph->ph_page)
   1989 			continue;
   1990 
   1991 		if (label != NULL)
   1992 			printf("%s: ", label);
   1993 		printf("pool(%p:%s): page inconsistency: page %p;"
   1994 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1995 			pp->pr_wchan, ph->ph_page,
   1996 			n, pi, page);
   1997 		return 1;
   1998 	}
   1999 	return 0;
   2000 }
   2001 
   2002 
   2003 int
   2004 pool_chk(struct pool *pp, const char *label)
   2005 {
   2006 	struct pool_item_header *ph;
   2007 	int r = 0;
   2008 
   2009 	mutex_enter(&pp->pr_lock);
   2010 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2011 		r = pool_chk_page(pp, label, ph);
   2012 		if (r) {
   2013 			goto out;
   2014 		}
   2015 	}
   2016 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2017 		r = pool_chk_page(pp, label, ph);
   2018 		if (r) {
   2019 			goto out;
   2020 		}
   2021 	}
   2022 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2023 		r = pool_chk_page(pp, label, ph);
   2024 		if (r) {
   2025 			goto out;
   2026 		}
   2027 	}
   2028 
   2029 out:
   2030 	mutex_exit(&pp->pr_lock);
   2031 	return (r);
   2032 }
   2033 
   2034 /*
   2035  * pool_cache_init:
   2036  *
   2037  *	Initialize a pool cache.
   2038  */
   2039 pool_cache_t
   2040 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2041     const char *wchan, struct pool_allocator *palloc, int ipl,
   2042     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2043 {
   2044 	pool_cache_t pc;
   2045 
   2046 	pc = pool_get(&cache_pool, PR_WAITOK);
   2047 	if (pc == NULL)
   2048 		return NULL;
   2049 
   2050 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2051 	   palloc, ipl, ctor, dtor, arg);
   2052 
   2053 	return pc;
   2054 }
   2055 
   2056 /*
   2057  * pool_cache_bootstrap:
   2058  *
   2059  *	Kernel-private version of pool_cache_init().  The caller
   2060  *	provides initial storage.
   2061  */
   2062 void
   2063 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2064     u_int align_offset, u_int flags, const char *wchan,
   2065     struct pool_allocator *palloc, int ipl,
   2066     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2067     void *arg)
   2068 {
   2069 	CPU_INFO_ITERATOR cii;
   2070 	pool_cache_t pc1;
   2071 	struct cpu_info *ci;
   2072 	struct pool *pp;
   2073 
   2074 	pp = &pc->pc_pool;
   2075 	if (palloc == NULL && ipl == IPL_NONE)
   2076 		palloc = &pool_allocator_nointr;
   2077 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2078 
   2079 	/*
   2080 	 * XXXAD hack to prevent IP input processing from blocking.
   2081 	 */
   2082 	if (ipl == IPL_SOFTNET) {
   2083 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
   2084 	} else {
   2085 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2086 	}
   2087 
   2088 	if (ctor == NULL) {
   2089 		ctor = (int (*)(void *, void *, int))nullop;
   2090 	}
   2091 	if (dtor == NULL) {
   2092 		dtor = (void (*)(void *, void *))nullop;
   2093 	}
   2094 
   2095 	pc->pc_emptygroups = NULL;
   2096 	pc->pc_fullgroups = NULL;
   2097 	pc->pc_partgroups = NULL;
   2098 	pc->pc_ctor = ctor;
   2099 	pc->pc_dtor = dtor;
   2100 	pc->pc_arg  = arg;
   2101 	pc->pc_hits  = 0;
   2102 	pc->pc_misses = 0;
   2103 	pc->pc_nempty = 0;
   2104 	pc->pc_npart = 0;
   2105 	pc->pc_nfull = 0;
   2106 	pc->pc_contended = 0;
   2107 	pc->pc_refcnt = 0;
   2108 	pc->pc_freecheck = NULL;
   2109 
   2110 	if ((flags & PR_LARGECACHE) != 0) {
   2111 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2112 	} else {
   2113 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2114 	}
   2115 
   2116 	/* Allocate per-CPU caches. */
   2117 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2118 	pc->pc_ncpu = 0;
   2119 	if (ncpu < 2) {
   2120 		/* XXX For sparc: boot CPU is not attached yet. */
   2121 		pool_cache_cpu_init1(curcpu(), pc);
   2122 	} else {
   2123 		for (CPU_INFO_FOREACH(cii, ci)) {
   2124 			pool_cache_cpu_init1(ci, pc);
   2125 		}
   2126 	}
   2127 
   2128 	/* Add to list of all pools. */
   2129 	if (__predict_true(!cold))
   2130 		mutex_enter(&pool_head_lock);
   2131 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2132 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2133 			break;
   2134 	}
   2135 	if (pc1 == NULL)
   2136 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2137 	else
   2138 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2139 	if (__predict_true(!cold))
   2140 		mutex_exit(&pool_head_lock);
   2141 
   2142 	membar_sync();
   2143 	pp->pr_cache = pc;
   2144 }
   2145 
   2146 /*
   2147  * pool_cache_destroy:
   2148  *
   2149  *	Destroy a pool cache.
   2150  */
   2151 void
   2152 pool_cache_destroy(pool_cache_t pc)
   2153 {
   2154 	struct pool *pp = &pc->pc_pool;
   2155 	pool_cache_cpu_t *cc;
   2156 	pcg_t *pcg;
   2157 	int i;
   2158 
   2159 	/* Remove it from the global list. */
   2160 	mutex_enter(&pool_head_lock);
   2161 	while (pc->pc_refcnt != 0)
   2162 		cv_wait(&pool_busy, &pool_head_lock);
   2163 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2164 	mutex_exit(&pool_head_lock);
   2165 
   2166 	/* First, invalidate the entire cache. */
   2167 	pool_cache_invalidate(pc);
   2168 
   2169 	/* Disassociate it from the pool. */
   2170 	mutex_enter(&pp->pr_lock);
   2171 	pp->pr_cache = NULL;
   2172 	mutex_exit(&pp->pr_lock);
   2173 
   2174 	/* Destroy per-CPU data */
   2175 	for (i = 0; i < MAXCPUS; i++) {
   2176 		if ((cc = pc->pc_cpus[i]) == NULL)
   2177 			continue;
   2178 		if ((pcg = cc->cc_current) != NULL) {
   2179 			pcg->pcg_next = NULL;
   2180 			pool_cache_invalidate_groups(pc, pcg);
   2181 		}
   2182 		if ((pcg = cc->cc_previous) != NULL) {
   2183 			pcg->pcg_next = NULL;
   2184 			pool_cache_invalidate_groups(pc, pcg);
   2185 		}
   2186 		if (cc != &pc->pc_cpu0)
   2187 			pool_put(&cache_cpu_pool, cc);
   2188 	}
   2189 
   2190 	/* Finally, destroy it. */
   2191 	mutex_destroy(&pc->pc_lock);
   2192 	pool_destroy(pp);
   2193 	pool_put(&cache_pool, pc);
   2194 }
   2195 
   2196 /*
   2197  * pool_cache_cpu_init1:
   2198  *
   2199  *	Called for each pool_cache whenever a new CPU is attached.
   2200  */
   2201 static void
   2202 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2203 {
   2204 	pool_cache_cpu_t *cc;
   2205 	int index;
   2206 
   2207 	index = ci->ci_index;
   2208 
   2209 	KASSERT(index < MAXCPUS);
   2210 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
   2211 
   2212 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2213 		KASSERT(cc->cc_cpuindex == index);
   2214 		return;
   2215 	}
   2216 
   2217 	/*
   2218 	 * The first CPU is 'free'.  This needs to be the case for
   2219 	 * bootstrap - we may not be able to allocate yet.
   2220 	 */
   2221 	if (pc->pc_ncpu == 0) {
   2222 		cc = &pc->pc_cpu0;
   2223 		pc->pc_ncpu = 1;
   2224 	} else {
   2225 		mutex_enter(&pc->pc_lock);
   2226 		pc->pc_ncpu++;
   2227 		mutex_exit(&pc->pc_lock);
   2228 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2229 	}
   2230 
   2231 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2232 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2233 	cc->cc_cache = pc;
   2234 	cc->cc_cpuindex = index;
   2235 	cc->cc_hits = 0;
   2236 	cc->cc_misses = 0;
   2237 	cc->cc_current = NULL;
   2238 	cc->cc_previous = NULL;
   2239 
   2240 	pc->pc_cpus[index] = cc;
   2241 }
   2242 
   2243 /*
   2244  * pool_cache_cpu_init:
   2245  *
   2246  *	Called whenever a new CPU is attached.
   2247  */
   2248 void
   2249 pool_cache_cpu_init(struct cpu_info *ci)
   2250 {
   2251 	pool_cache_t pc;
   2252 
   2253 	mutex_enter(&pool_head_lock);
   2254 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2255 		pc->pc_refcnt++;
   2256 		mutex_exit(&pool_head_lock);
   2257 
   2258 		pool_cache_cpu_init1(ci, pc);
   2259 
   2260 		mutex_enter(&pool_head_lock);
   2261 		pc->pc_refcnt--;
   2262 		cv_broadcast(&pool_busy);
   2263 	}
   2264 	mutex_exit(&pool_head_lock);
   2265 }
   2266 
   2267 /*
   2268  * pool_cache_reclaim:
   2269  *
   2270  *	Reclaim memory from a pool cache.
   2271  */
   2272 bool
   2273 pool_cache_reclaim(pool_cache_t pc)
   2274 {
   2275 
   2276 	return pool_reclaim(&pc->pc_pool);
   2277 }
   2278 
   2279 static void
   2280 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2281 {
   2282 
   2283 	(*pc->pc_dtor)(pc->pc_arg, object);
   2284 	pool_put(&pc->pc_pool, object);
   2285 }
   2286 
   2287 /*
   2288  * pool_cache_destruct_object:
   2289  *
   2290  *	Force destruction of an object and its release back into
   2291  *	the pool.
   2292  */
   2293 void
   2294 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2295 {
   2296 
   2297 	FREECHECK_IN(&pc->pc_freecheck, object);
   2298 
   2299 	pool_cache_destruct_object1(pc, object);
   2300 }
   2301 
   2302 /*
   2303  * pool_cache_invalidate_groups:
   2304  *
   2305  *	Invalidate a chain of groups and destruct all objects.
   2306  */
   2307 static void
   2308 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2309 {
   2310 	void *object;
   2311 	pcg_t *next;
   2312 	int i;
   2313 
   2314 	for (; pcg != NULL; pcg = next) {
   2315 		next = pcg->pcg_next;
   2316 
   2317 		for (i = 0; i < pcg->pcg_avail; i++) {
   2318 			object = pcg->pcg_objects[i].pcgo_va;
   2319 			pool_cache_destruct_object1(pc, object);
   2320 		}
   2321 
   2322 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2323 			pool_put(&pcg_large_pool, pcg);
   2324 		} else {
   2325 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2326 			pool_put(&pcg_normal_pool, pcg);
   2327 		}
   2328 	}
   2329 }
   2330 
   2331 /*
   2332  * pool_cache_invalidate:
   2333  *
   2334  *	Invalidate a pool cache (destruct and release all of the
   2335  *	cached objects).  Does not reclaim objects from the pool.
   2336  */
   2337 void
   2338 pool_cache_invalidate(pool_cache_t pc)
   2339 {
   2340 	pcg_t *full, *empty, *part;
   2341 
   2342 	mutex_enter(&pc->pc_lock);
   2343 	full = pc->pc_fullgroups;
   2344 	empty = pc->pc_emptygroups;
   2345 	part = pc->pc_partgroups;
   2346 	pc->pc_fullgroups = NULL;
   2347 	pc->pc_emptygroups = NULL;
   2348 	pc->pc_partgroups = NULL;
   2349 	pc->pc_nfull = 0;
   2350 	pc->pc_nempty = 0;
   2351 	pc->pc_npart = 0;
   2352 	mutex_exit(&pc->pc_lock);
   2353 
   2354 	pool_cache_invalidate_groups(pc, full);
   2355 	pool_cache_invalidate_groups(pc, empty);
   2356 	pool_cache_invalidate_groups(pc, part);
   2357 }
   2358 
   2359 void
   2360 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2361 {
   2362 
   2363 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2364 }
   2365 
   2366 void
   2367 pool_cache_setlowat(pool_cache_t pc, int n)
   2368 {
   2369 
   2370 	pool_setlowat(&pc->pc_pool, n);
   2371 }
   2372 
   2373 void
   2374 pool_cache_sethiwat(pool_cache_t pc, int n)
   2375 {
   2376 
   2377 	pool_sethiwat(&pc->pc_pool, n);
   2378 }
   2379 
   2380 void
   2381 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2382 {
   2383 
   2384 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2385 }
   2386 
   2387 static inline pool_cache_cpu_t *
   2388 pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2389 {
   2390 	pool_cache_cpu_t *cc;
   2391 
   2392 	/*
   2393 	 * Prevent other users of the cache from accessing our
   2394 	 * CPU-local data.  To avoid touching shared state, we
   2395 	 * pull the neccessary information from CPU local data.
   2396 	 */
   2397 	crit_enter();
   2398 	cc = pc->pc_cpus[curcpu()->ci_index];
   2399 	KASSERT(cc->cc_cache == pc);
   2400 	if (cc->cc_ipl != IPL_NONE) {
   2401 		*s = splraiseipl(cc->cc_iplcookie);
   2402 	}
   2403 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
   2404 
   2405 	return cc;
   2406 }
   2407 
   2408 static inline void
   2409 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2410 {
   2411 
   2412 	/* No longer need exclusive access to the per-CPU data. */
   2413 	if (cc->cc_ipl != IPL_NONE) {
   2414 		splx(*s);
   2415 	}
   2416 	crit_exit();
   2417 }
   2418 
   2419 #if __GNUC_PREREQ__(3, 0)
   2420 __attribute ((noinline))
   2421 #endif
   2422 pool_cache_cpu_t *
   2423 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2424 		    paddr_t *pap, int flags)
   2425 {
   2426 	pcg_t *pcg, *cur;
   2427 	uint64_t ncsw;
   2428 	pool_cache_t pc;
   2429 	void *object;
   2430 
   2431 	pc = cc->cc_cache;
   2432 	cc->cc_misses++;
   2433 
   2434 	/*
   2435 	 * Nothing was available locally.  Try and grab a group
   2436 	 * from the cache.
   2437 	 */
   2438 	if (!mutex_tryenter(&pc->pc_lock)) {
   2439 		ncsw = curlwp->l_ncsw;
   2440 		mutex_enter(&pc->pc_lock);
   2441 		pc->pc_contended++;
   2442 
   2443 		/*
   2444 		 * If we context switched while locking, then
   2445 		 * our view of the per-CPU data is invalid:
   2446 		 * retry.
   2447 		 */
   2448 		if (curlwp->l_ncsw != ncsw) {
   2449 			mutex_exit(&pc->pc_lock);
   2450 			pool_cache_cpu_exit(cc, s);
   2451 			return pool_cache_cpu_enter(pc, s);
   2452 		}
   2453 	}
   2454 
   2455 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2456 		/*
   2457 		 * If there's a full group, release our empty
   2458 		 * group back to the cache.  Install the full
   2459 		 * group as cc_current and return.
   2460 		 */
   2461 		if ((cur = cc->cc_current) != NULL) {
   2462 			KASSERT(cur->pcg_avail == 0);
   2463 			cur->pcg_next = pc->pc_emptygroups;
   2464 			pc->pc_emptygroups = cur;
   2465 			pc->pc_nempty++;
   2466 		}
   2467 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2468 		cc->cc_current = pcg;
   2469 		pc->pc_fullgroups = pcg->pcg_next;
   2470 		pc->pc_hits++;
   2471 		pc->pc_nfull--;
   2472 		mutex_exit(&pc->pc_lock);
   2473 		return cc;
   2474 	}
   2475 
   2476 	/*
   2477 	 * Nothing available locally or in cache.  Take the slow
   2478 	 * path: fetch a new object from the pool and construct
   2479 	 * it.
   2480 	 */
   2481 	pc->pc_misses++;
   2482 	mutex_exit(&pc->pc_lock);
   2483 	pool_cache_cpu_exit(cc, s);
   2484 
   2485 	object = pool_get(&pc->pc_pool, flags);
   2486 	*objectp = object;
   2487 	if (object == NULL)
   2488 		return NULL;
   2489 
   2490 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2491 		pool_put(&pc->pc_pool, object);
   2492 		*objectp = NULL;
   2493 		return NULL;
   2494 	}
   2495 
   2496 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2497 	    (pc->pc_pool.pr_align - 1)) == 0);
   2498 
   2499 	if (pap != NULL) {
   2500 #ifdef POOL_VTOPHYS
   2501 		*pap = POOL_VTOPHYS(object);
   2502 #else
   2503 		*pap = POOL_PADDR_INVALID;
   2504 #endif
   2505 	}
   2506 
   2507 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2508 	return NULL;
   2509 }
   2510 
   2511 /*
   2512  * pool_cache_get{,_paddr}:
   2513  *
   2514  *	Get an object from a pool cache (optionally returning
   2515  *	the physical address of the object).
   2516  */
   2517 void *
   2518 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2519 {
   2520 	pool_cache_cpu_t *cc;
   2521 	pcg_t *pcg;
   2522 	void *object;
   2523 	int s;
   2524 
   2525 #ifdef LOCKDEBUG
   2526 	if (flags & PR_WAITOK)
   2527 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2528 #endif
   2529 
   2530 	cc = pool_cache_cpu_enter(pc, &s);
   2531 	do {
   2532 		/* Try and allocate an object from the current group. */
   2533 	 	pcg = cc->cc_current;
   2534 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2535 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2536 			if (pap != NULL)
   2537 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2538 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2539 			KASSERT(pcg->pcg_avail <= pcg->pcg_size);
   2540 			KASSERT(object != NULL);
   2541 			cc->cc_hits++;
   2542 			pool_cache_cpu_exit(cc, &s);
   2543 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2544 			return object;
   2545 		}
   2546 
   2547 		/*
   2548 		 * That failed.  If the previous group isn't empty, swap
   2549 		 * it with the current group and allocate from there.
   2550 		 */
   2551 		pcg = cc->cc_previous;
   2552 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2553 			cc->cc_previous = cc->cc_current;
   2554 			cc->cc_current = pcg;
   2555 			continue;
   2556 		}
   2557 
   2558 		/*
   2559 		 * Can't allocate from either group: try the slow path.
   2560 		 * If get_slow() allocated an object for us, or if
   2561 		 * no more objects are available, it will return NULL.
   2562 		 * Otherwise, we need to retry.
   2563 		 */
   2564 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2565 	} while (cc != NULL);
   2566 
   2567 	return object;
   2568 }
   2569 
   2570 #if __GNUC_PREREQ__(3, 0)
   2571 __attribute ((noinline))
   2572 #endif
   2573 pool_cache_cpu_t *
   2574 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2575 {
   2576 	pcg_t *pcg, *cur;
   2577 	uint64_t ncsw;
   2578 	pool_cache_t pc;
   2579 	u_int nobj;
   2580 
   2581 	pc = cc->cc_cache;
   2582 	cc->cc_misses++;
   2583 
   2584 	/*
   2585 	 * No free slots locally.  Try to grab an empty, unused
   2586 	 * group from the cache.
   2587 	 */
   2588 	if (!mutex_tryenter(&pc->pc_lock)) {
   2589 		ncsw = curlwp->l_ncsw;
   2590 		mutex_enter(&pc->pc_lock);
   2591 		pc->pc_contended++;
   2592 
   2593 		/*
   2594 		 * If we context switched while locking, then
   2595 		 * our view of the per-CPU data is invalid:
   2596 		 * retry.
   2597 		 */
   2598 		if (curlwp->l_ncsw != ncsw) {
   2599 			mutex_exit(&pc->pc_lock);
   2600 			pool_cache_cpu_exit(cc, s);
   2601 			return pool_cache_cpu_enter(pc, s);
   2602 		}
   2603 	}
   2604 
   2605 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2606 		/*
   2607 		 * If there's a empty group, release our full
   2608 		 * group back to the cache.  Install the empty
   2609 		 * group and return.
   2610 		 */
   2611 		KASSERT(pcg->pcg_avail == 0);
   2612 		pc->pc_emptygroups = pcg->pcg_next;
   2613 		if (cc->cc_previous == NULL) {
   2614 			cc->cc_previous = pcg;
   2615 		} else {
   2616 			if ((cur = cc->cc_current) != NULL) {
   2617 				KASSERT(cur->pcg_avail == pcg->pcg_size);
   2618 				cur->pcg_next = pc->pc_fullgroups;
   2619 				pc->pc_fullgroups = cur;
   2620 				pc->pc_nfull++;
   2621 			}
   2622 			cc->cc_current = pcg;
   2623 		}
   2624 		pc->pc_hits++;
   2625 		pc->pc_nempty--;
   2626 		mutex_exit(&pc->pc_lock);
   2627 		return cc;
   2628 	}
   2629 
   2630 	/*
   2631 	 * Nothing available locally or in cache.  Take the
   2632 	 * slow path and try to allocate a new group that we
   2633 	 * can release to.
   2634 	 */
   2635 	pc->pc_misses++;
   2636 	mutex_exit(&pc->pc_lock);
   2637 	pool_cache_cpu_exit(cc, s);
   2638 
   2639 	/*
   2640 	 * If we can't allocate a new group, just throw the
   2641 	 * object away.
   2642 	 */
   2643 	nobj = pc->pc_pcgsize;
   2644 	if (pool_cache_disable) {
   2645 		pcg = NULL;
   2646 	} else if (nobj == PCG_NOBJECTS_LARGE) {
   2647 		pcg = pool_get(&pcg_large_pool, PR_NOWAIT);
   2648 	} else {
   2649 		pcg = pool_get(&pcg_normal_pool, PR_NOWAIT);
   2650 	}
   2651 	if (pcg == NULL) {
   2652 		pool_cache_destruct_object(pc, object);
   2653 		return NULL;
   2654 	}
   2655 	pcg->pcg_avail = 0;
   2656 	pcg->pcg_size = nobj;
   2657 
   2658 	/*
   2659 	 * Add the empty group to the cache and try again.
   2660 	 */
   2661 	mutex_enter(&pc->pc_lock);
   2662 	pcg->pcg_next = pc->pc_emptygroups;
   2663 	pc->pc_emptygroups = pcg;
   2664 	pc->pc_nempty++;
   2665 	mutex_exit(&pc->pc_lock);
   2666 
   2667 	return pool_cache_cpu_enter(pc, s);
   2668 }
   2669 
   2670 /*
   2671  * pool_cache_put{,_paddr}:
   2672  *
   2673  *	Put an object back to the pool cache (optionally caching the
   2674  *	physical address of the object).
   2675  */
   2676 void
   2677 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2678 {
   2679 	pool_cache_cpu_t *cc;
   2680 	pcg_t *pcg;
   2681 	int s;
   2682 
   2683 	FREECHECK_IN(&pc->pc_freecheck, object);
   2684 
   2685 	cc = pool_cache_cpu_enter(pc, &s);
   2686 	do {
   2687 		/* If the current group isn't full, release it there. */
   2688 	 	pcg = cc->cc_current;
   2689 		if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) {
   2690 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2691 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2692 			pcg->pcg_avail++;
   2693 			cc->cc_hits++;
   2694 			pool_cache_cpu_exit(cc, &s);
   2695 			return;
   2696 		}
   2697 
   2698 		/*
   2699 		 * That failed.  If the previous group is empty, swap
   2700 		 * it with the current group and try again.
   2701 		 */
   2702 		pcg = cc->cc_previous;
   2703 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2704 			cc->cc_previous = cc->cc_current;
   2705 			cc->cc_current = pcg;
   2706 			continue;
   2707 		}
   2708 
   2709 		/*
   2710 		 * Can't free to either group: try the slow path.
   2711 		 * If put_slow() releases the object for us, it
   2712 		 * will return NULL.  Otherwise we need to retry.
   2713 		 */
   2714 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2715 	} while (cc != NULL);
   2716 }
   2717 
   2718 /*
   2719  * pool_cache_xcall:
   2720  *
   2721  *	Transfer objects from the per-CPU cache to the global cache.
   2722  *	Run within a cross-call thread.
   2723  */
   2724 static void
   2725 pool_cache_xcall(pool_cache_t pc)
   2726 {
   2727 	pool_cache_cpu_t *cc;
   2728 	pcg_t *prev, *cur, **list;
   2729 	int s = 0; /* XXXgcc */
   2730 
   2731 	cc = pool_cache_cpu_enter(pc, &s);
   2732 	cur = cc->cc_current;
   2733 	cc->cc_current = NULL;
   2734 	prev = cc->cc_previous;
   2735 	cc->cc_previous = NULL;
   2736 	pool_cache_cpu_exit(cc, &s);
   2737 
   2738 	/*
   2739 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2740 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2741 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2742 	 * kernel_lock.
   2743 	 */
   2744 	s = splvm();
   2745 	mutex_enter(&pc->pc_lock);
   2746 	if (cur != NULL) {
   2747 		if (cur->pcg_avail == cur->pcg_size) {
   2748 			list = &pc->pc_fullgroups;
   2749 			pc->pc_nfull++;
   2750 		} else if (cur->pcg_avail == 0) {
   2751 			list = &pc->pc_emptygroups;
   2752 			pc->pc_nempty++;
   2753 		} else {
   2754 			list = &pc->pc_partgroups;
   2755 			pc->pc_npart++;
   2756 		}
   2757 		cur->pcg_next = *list;
   2758 		*list = cur;
   2759 	}
   2760 	if (prev != NULL) {
   2761 		if (prev->pcg_avail == prev->pcg_size) {
   2762 			list = &pc->pc_fullgroups;
   2763 			pc->pc_nfull++;
   2764 		} else if (prev->pcg_avail == 0) {
   2765 			list = &pc->pc_emptygroups;
   2766 			pc->pc_nempty++;
   2767 		} else {
   2768 			list = &pc->pc_partgroups;
   2769 			pc->pc_npart++;
   2770 		}
   2771 		prev->pcg_next = *list;
   2772 		*list = prev;
   2773 	}
   2774 	mutex_exit(&pc->pc_lock);
   2775 	splx(s);
   2776 }
   2777 
   2778 /*
   2779  * Pool backend allocators.
   2780  *
   2781  * Each pool has a backend allocator that handles allocation, deallocation,
   2782  * and any additional draining that might be needed.
   2783  *
   2784  * We provide two standard allocators:
   2785  *
   2786  *	pool_allocator_kmem - the default when no allocator is specified
   2787  *
   2788  *	pool_allocator_nointr - used for pools that will not be accessed
   2789  *	in interrupt context.
   2790  */
   2791 void	*pool_page_alloc(struct pool *, int);
   2792 void	pool_page_free(struct pool *, void *);
   2793 
   2794 #ifdef POOL_SUBPAGE
   2795 struct pool_allocator pool_allocator_kmem_fullpage = {
   2796 	pool_page_alloc, pool_page_free, 0,
   2797 	.pa_backingmapptr = &kmem_map,
   2798 };
   2799 #else
   2800 struct pool_allocator pool_allocator_kmem = {
   2801 	pool_page_alloc, pool_page_free, 0,
   2802 	.pa_backingmapptr = &kmem_map,
   2803 };
   2804 #endif
   2805 
   2806 void	*pool_page_alloc_nointr(struct pool *, int);
   2807 void	pool_page_free_nointr(struct pool *, void *);
   2808 
   2809 #ifdef POOL_SUBPAGE
   2810 struct pool_allocator pool_allocator_nointr_fullpage = {
   2811 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2812 	.pa_backingmapptr = &kernel_map,
   2813 };
   2814 #else
   2815 struct pool_allocator pool_allocator_nointr = {
   2816 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2817 	.pa_backingmapptr = &kernel_map,
   2818 };
   2819 #endif
   2820 
   2821 #ifdef POOL_SUBPAGE
   2822 void	*pool_subpage_alloc(struct pool *, int);
   2823 void	pool_subpage_free(struct pool *, void *);
   2824 
   2825 struct pool_allocator pool_allocator_kmem = {
   2826 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2827 	.pa_backingmapptr = &kmem_map,
   2828 };
   2829 
   2830 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2831 void	pool_subpage_free_nointr(struct pool *, void *);
   2832 
   2833 struct pool_allocator pool_allocator_nointr = {
   2834 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2835 	.pa_backingmapptr = &kmem_map,
   2836 };
   2837 #endif /* POOL_SUBPAGE */
   2838 
   2839 static void *
   2840 pool_allocator_alloc(struct pool *pp, int flags)
   2841 {
   2842 	struct pool_allocator *pa = pp->pr_alloc;
   2843 	void *res;
   2844 
   2845 	res = (*pa->pa_alloc)(pp, flags);
   2846 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2847 		/*
   2848 		 * We only run the drain hook here if PR_NOWAIT.
   2849 		 * In other cases, the hook will be run in
   2850 		 * pool_reclaim().
   2851 		 */
   2852 		if (pp->pr_drain_hook != NULL) {
   2853 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2854 			res = (*pa->pa_alloc)(pp, flags);
   2855 		}
   2856 	}
   2857 	return res;
   2858 }
   2859 
   2860 static void
   2861 pool_allocator_free(struct pool *pp, void *v)
   2862 {
   2863 	struct pool_allocator *pa = pp->pr_alloc;
   2864 
   2865 	(*pa->pa_free)(pp, v);
   2866 }
   2867 
   2868 void *
   2869 pool_page_alloc(struct pool *pp, int flags)
   2870 {
   2871 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2872 
   2873 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2874 }
   2875 
   2876 void
   2877 pool_page_free(struct pool *pp, void *v)
   2878 {
   2879 
   2880 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2881 }
   2882 
   2883 static void *
   2884 pool_page_alloc_meta(struct pool *pp, int flags)
   2885 {
   2886 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2887 
   2888 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2889 }
   2890 
   2891 static void
   2892 pool_page_free_meta(struct pool *pp, void *v)
   2893 {
   2894 
   2895 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2896 }
   2897 
   2898 #ifdef POOL_SUBPAGE
   2899 /* Sub-page allocator, for machines with large hardware pages. */
   2900 void *
   2901 pool_subpage_alloc(struct pool *pp, int flags)
   2902 {
   2903 	return pool_get(&psppool, flags);
   2904 }
   2905 
   2906 void
   2907 pool_subpage_free(struct pool *pp, void *v)
   2908 {
   2909 	pool_put(&psppool, v);
   2910 }
   2911 
   2912 /* We don't provide a real nointr allocator.  Maybe later. */
   2913 void *
   2914 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2915 {
   2916 
   2917 	return (pool_subpage_alloc(pp, flags));
   2918 }
   2919 
   2920 void
   2921 pool_subpage_free_nointr(struct pool *pp, void *v)
   2922 {
   2923 
   2924 	pool_subpage_free(pp, v);
   2925 }
   2926 #endif /* POOL_SUBPAGE */
   2927 void *
   2928 pool_page_alloc_nointr(struct pool *pp, int flags)
   2929 {
   2930 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2931 
   2932 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2933 }
   2934 
   2935 void
   2936 pool_page_free_nointr(struct pool *pp, void *v)
   2937 {
   2938 
   2939 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2940 }
   2941 
   2942 #if defined(DDB)
   2943 static bool
   2944 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2945 {
   2946 
   2947 	return (uintptr_t)ph->ph_page <= addr &&
   2948 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2949 }
   2950 
   2951 static bool
   2952 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2953 {
   2954 
   2955 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2956 }
   2957 
   2958 static bool
   2959 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2960 {
   2961 	int i;
   2962 
   2963 	if (pcg == NULL) {
   2964 		return false;
   2965 	}
   2966 	for (i = 0; i < pcg->pcg_avail; i++) {
   2967 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2968 			return true;
   2969 		}
   2970 	}
   2971 	return false;
   2972 }
   2973 
   2974 static bool
   2975 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2976 {
   2977 
   2978 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2979 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2980 		pool_item_bitmap_t *bitmap =
   2981 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2982 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2983 
   2984 		return (*bitmap & mask) == 0;
   2985 	} else {
   2986 		struct pool_item *pi;
   2987 
   2988 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2989 			if (pool_in_item(pp, pi, addr)) {
   2990 				return false;
   2991 			}
   2992 		}
   2993 		return true;
   2994 	}
   2995 }
   2996 
   2997 void
   2998 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2999 {
   3000 	struct pool *pp;
   3001 
   3002 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3003 		struct pool_item_header *ph;
   3004 		uintptr_t item;
   3005 		bool allocated = true;
   3006 		bool incache = false;
   3007 		bool incpucache = false;
   3008 		char cpucachestr[32];
   3009 
   3010 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3011 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3012 				if (pool_in_page(pp, ph, addr)) {
   3013 					goto found;
   3014 				}
   3015 			}
   3016 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3017 				if (pool_in_page(pp, ph, addr)) {
   3018 					allocated =
   3019 					    pool_allocated(pp, ph, addr);
   3020 					goto found;
   3021 				}
   3022 			}
   3023 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3024 				if (pool_in_page(pp, ph, addr)) {
   3025 					allocated = false;
   3026 					goto found;
   3027 				}
   3028 			}
   3029 			continue;
   3030 		} else {
   3031 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3032 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3033 				continue;
   3034 			}
   3035 			allocated = pool_allocated(pp, ph, addr);
   3036 		}
   3037 found:
   3038 		if (allocated && pp->pr_cache) {
   3039 			pool_cache_t pc = pp->pr_cache;
   3040 			struct pool_cache_group *pcg;
   3041 			int i;
   3042 
   3043 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3044 			    pcg = pcg->pcg_next) {
   3045 				if (pool_in_cg(pp, pcg, addr)) {
   3046 					incache = true;
   3047 					goto print;
   3048 				}
   3049 			}
   3050 			for (i = 0; i < MAXCPUS; i++) {
   3051 				pool_cache_cpu_t *cc;
   3052 
   3053 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3054 					continue;
   3055 				}
   3056 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3057 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3058 					struct cpu_info *ci =
   3059 					    cpu_lookup_byindex(i);
   3060 
   3061 					incpucache = true;
   3062 					snprintf(cpucachestr,
   3063 					    sizeof(cpucachestr),
   3064 					    "cached by CPU %u",
   3065 					    (u_int)ci->ci_cpuid);
   3066 					goto print;
   3067 				}
   3068 			}
   3069 		}
   3070 print:
   3071 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3072 		item = item + rounddown(addr - item, pp->pr_size);
   3073 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3074 		    (void *)addr, item, (size_t)(addr - item),
   3075 		    pp->pr_wchan,
   3076 		    incpucache ? cpucachestr :
   3077 		    incache ? "cached" : allocated ? "allocated" : "free");
   3078 	}
   3079 }
   3080 #endif /* defined(DDB) */
   3081