Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.149
      1 /*	$NetBSD: subr_pool.c,v 1.149 2008/02/02 20:21:55 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.149 2008/02/02 20:21:55 skrll Exp $");
     42 
     43 #include "opt_ddb.h"
     44 #include "opt_pool.h"
     45 #include "opt_poollog.h"
     46 #include "opt_lockdebug.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/bitops.h>
     51 #include <sys/proc.h>
     52 #include <sys/errno.h>
     53 #include <sys/kernel.h>
     54 #include <sys/malloc.h>
     55 #include <sys/pool.h>
     56 #include <sys/syslog.h>
     57 #include <sys/debug.h>
     58 #include <sys/lockdebug.h>
     59 #include <sys/xcall.h>
     60 #include <sys/cpu.h>
     61 #include <sys/atomic.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 /*
     66  * Pool resource management utility.
     67  *
     68  * Memory is allocated in pages which are split into pieces according to
     69  * the pool item size. Each page is kept on one of three lists in the
     70  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     71  * for empty, full and partially-full pages respectively. The individual
     72  * pool items are on a linked list headed by `ph_itemlist' in each page
     73  * header. The memory for building the page list is either taken from
     74  * the allocated pages themselves (for small pool items) or taken from
     75  * an internal pool of page headers (`phpool').
     76  */
     77 
     78 /* List of all pools */
     79 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     80 
     81 /* Private pool for page header structures */
     82 #define	PHPOOL_MAX	8
     83 static struct pool phpool[PHPOOL_MAX];
     84 #define	PHPOOL_FREELIST_NELEM(idx) \
     85 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     86 
     87 #ifdef POOL_SUBPAGE
     88 /* Pool of subpages for use by normal pools. */
     89 static struct pool psppool;
     90 #endif
     91 
     92 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     93     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     94 
     95 static void *pool_page_alloc_meta(struct pool *, int);
     96 static void pool_page_free_meta(struct pool *, void *);
     97 
     98 /* allocator for pool metadata */
     99 struct pool_allocator pool_allocator_meta = {
    100 	pool_page_alloc_meta, pool_page_free_meta,
    101 	.pa_backingmapptr = &kmem_map,
    102 };
    103 
    104 /* # of seconds to retain page after last use */
    105 int pool_inactive_time = 10;
    106 
    107 /* Next candidate for drainage (see pool_drain()) */
    108 static struct pool	*drainpp;
    109 
    110 /* This lock protects both pool_head and drainpp. */
    111 static kmutex_t pool_head_lock;
    112 static kcondvar_t pool_busy;
    113 
    114 typedef uint32_t pool_item_bitmap_t;
    115 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    116 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    117 
    118 struct pool_item_header {
    119 	/* Page headers */
    120 	LIST_ENTRY(pool_item_header)
    121 				ph_pagelist;	/* pool page list */
    122 	SPLAY_ENTRY(pool_item_header)
    123 				ph_node;	/* Off-page page headers */
    124 	void *			ph_page;	/* this page's address */
    125 	struct timeval		ph_time;	/* last referenced */
    126 	uint16_t		ph_nmissing;	/* # of chunks in use */
    127 	uint16_t		ph_off;		/* start offset in page */
    128 	union {
    129 		/* !PR_NOTOUCH */
    130 		struct {
    131 			LIST_HEAD(, pool_item)
    132 				phu_itemlist;	/* chunk list for this page */
    133 		} phu_normal;
    134 		/* PR_NOTOUCH */
    135 		struct {
    136 			pool_item_bitmap_t phu_bitmap[1];
    137 		} phu_notouch;
    138 	} ph_u;
    139 };
    140 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    141 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    142 
    143 struct pool_item {
    144 #ifdef DIAGNOSTIC
    145 	u_int pi_magic;
    146 #endif
    147 #define	PI_MAGIC 0xdeaddeadU
    148 	/* Other entries use only this list entry */
    149 	LIST_ENTRY(pool_item)	pi_list;
    150 };
    151 
    152 #define	POOL_NEEDS_CATCHUP(pp)						\
    153 	((pp)->pr_nitems < (pp)->pr_minitems)
    154 
    155 /*
    156  * Pool cache management.
    157  *
    158  * Pool caches provide a way for constructed objects to be cached by the
    159  * pool subsystem.  This can lead to performance improvements by avoiding
    160  * needless object construction/destruction; it is deferred until absolutely
    161  * necessary.
    162  *
    163  * Caches are grouped into cache groups.  Each cache group references up
    164  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    165  * object from the pool, it calls the object's constructor and places it
    166  * into a cache group.  When a cache group frees an object back to the
    167  * pool, it first calls the object's destructor.  This allows the object
    168  * to persist in constructed form while freed to the cache.
    169  *
    170  * The pool references each cache, so that when a pool is drained by the
    171  * pagedaemon, it can drain each individual cache as well.  Each time a
    172  * cache is drained, the most idle cache group is freed to the pool in
    173  * its entirety.
    174  *
    175  * Pool caches are layed on top of pools.  By layering them, we can avoid
    176  * the complexity of cache management for pools which would not benefit
    177  * from it.
    178  */
    179 
    180 static struct pool pcg_normal_pool;
    181 static struct pool pcg_large_pool;
    182 static struct pool cache_pool;
    183 static struct pool cache_cpu_pool;
    184 
    185 /* List of all caches. */
    186 TAILQ_HEAD(,pool_cache) pool_cache_head =
    187     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    188 
    189 int pool_cache_disable;
    190 
    191 
    192 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    193 					     void *, paddr_t);
    194 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    195 					     void **, paddr_t *, int);
    196 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    197 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    198 static void	pool_cache_xcall(pool_cache_t);
    199 
    200 static int	pool_catchup(struct pool *);
    201 static void	pool_prime_page(struct pool *, void *,
    202 		    struct pool_item_header *);
    203 static void	pool_update_curpage(struct pool *);
    204 
    205 static int	pool_grow(struct pool *, int);
    206 static void	*pool_allocator_alloc(struct pool *, int);
    207 static void	pool_allocator_free(struct pool *, void *);
    208 
    209 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    210 	void (*)(const char *, ...));
    211 static void pool_print1(struct pool *, const char *,
    212 	void (*)(const char *, ...));
    213 
    214 static int pool_chk_page(struct pool *, const char *,
    215 			 struct pool_item_header *);
    216 
    217 /*
    218  * Pool log entry. An array of these is allocated in pool_init().
    219  */
    220 struct pool_log {
    221 	const char	*pl_file;
    222 	long		pl_line;
    223 	int		pl_action;
    224 #define	PRLOG_GET	1
    225 #define	PRLOG_PUT	2
    226 	void		*pl_addr;
    227 };
    228 
    229 #ifdef POOL_DIAGNOSTIC
    230 /* Number of entries in pool log buffers */
    231 #ifndef POOL_LOGSIZE
    232 #define	POOL_LOGSIZE	10
    233 #endif
    234 
    235 int pool_logsize = POOL_LOGSIZE;
    236 
    237 static inline void
    238 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    239 {
    240 	int n = pp->pr_curlogentry;
    241 	struct pool_log *pl;
    242 
    243 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    244 		return;
    245 
    246 	/*
    247 	 * Fill in the current entry. Wrap around and overwrite
    248 	 * the oldest entry if necessary.
    249 	 */
    250 	pl = &pp->pr_log[n];
    251 	pl->pl_file = file;
    252 	pl->pl_line = line;
    253 	pl->pl_action = action;
    254 	pl->pl_addr = v;
    255 	if (++n >= pp->pr_logsize)
    256 		n = 0;
    257 	pp->pr_curlogentry = n;
    258 }
    259 
    260 static void
    261 pr_printlog(struct pool *pp, struct pool_item *pi,
    262     void (*pr)(const char *, ...))
    263 {
    264 	int i = pp->pr_logsize;
    265 	int n = pp->pr_curlogentry;
    266 
    267 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    268 		return;
    269 
    270 	/*
    271 	 * Print all entries in this pool's log.
    272 	 */
    273 	while (i-- > 0) {
    274 		struct pool_log *pl = &pp->pr_log[n];
    275 		if (pl->pl_action != 0) {
    276 			if (pi == NULL || pi == pl->pl_addr) {
    277 				(*pr)("\tlog entry %d:\n", i);
    278 				(*pr)("\t\taction = %s, addr = %p\n",
    279 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    280 				    pl->pl_addr);
    281 				(*pr)("\t\tfile: %s at line %lu\n",
    282 				    pl->pl_file, pl->pl_line);
    283 			}
    284 		}
    285 		if (++n >= pp->pr_logsize)
    286 			n = 0;
    287 	}
    288 }
    289 
    290 static inline void
    291 pr_enter(struct pool *pp, const char *file, long line)
    292 {
    293 
    294 	if (__predict_false(pp->pr_entered_file != NULL)) {
    295 		printf("pool %s: reentrancy at file %s line %ld\n",
    296 		    pp->pr_wchan, file, line);
    297 		printf("         previous entry at file %s line %ld\n",
    298 		    pp->pr_entered_file, pp->pr_entered_line);
    299 		panic("pr_enter");
    300 	}
    301 
    302 	pp->pr_entered_file = file;
    303 	pp->pr_entered_line = line;
    304 }
    305 
    306 static inline void
    307 pr_leave(struct pool *pp)
    308 {
    309 
    310 	if (__predict_false(pp->pr_entered_file == NULL)) {
    311 		printf("pool %s not entered?\n", pp->pr_wchan);
    312 		panic("pr_leave");
    313 	}
    314 
    315 	pp->pr_entered_file = NULL;
    316 	pp->pr_entered_line = 0;
    317 }
    318 
    319 static inline void
    320 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    321 {
    322 
    323 	if (pp->pr_entered_file != NULL)
    324 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    325 		    pp->pr_entered_file, pp->pr_entered_line);
    326 }
    327 #else
    328 #define	pr_log(pp, v, action, file, line)
    329 #define	pr_printlog(pp, pi, pr)
    330 #define	pr_enter(pp, file, line)
    331 #define	pr_leave(pp)
    332 #define	pr_enter_check(pp, pr)
    333 #endif /* POOL_DIAGNOSTIC */
    334 
    335 static inline unsigned int
    336 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    337     const void *v)
    338 {
    339 	const char *cp = v;
    340 	unsigned int idx;
    341 
    342 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    343 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    344 	KASSERT(idx < pp->pr_itemsperpage);
    345 	return idx;
    346 }
    347 
    348 static inline void
    349 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    350     void *obj)
    351 {
    352 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    353 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    354 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    355 
    356 	KASSERT((*bitmap & mask) == 0);
    357 	*bitmap |= mask;
    358 }
    359 
    360 static inline void *
    361 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    362 {
    363 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    364 	unsigned int idx;
    365 	int i;
    366 
    367 	for (i = 0; ; i++) {
    368 		int bit;
    369 
    370 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    371 		bit = ffs32(bitmap[i]);
    372 		if (bit) {
    373 			pool_item_bitmap_t mask;
    374 
    375 			bit--;
    376 			idx = (i * BITMAP_SIZE) + bit;
    377 			mask = 1 << bit;
    378 			KASSERT((bitmap[i] & mask) != 0);
    379 			bitmap[i] &= ~mask;
    380 			break;
    381 		}
    382 	}
    383 	KASSERT(idx < pp->pr_itemsperpage);
    384 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    385 }
    386 
    387 static inline void
    388 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    389 {
    390 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    391 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    392 	int i;
    393 
    394 	for (i = 0; i < n; i++) {
    395 		bitmap[i] = (pool_item_bitmap_t)-1;
    396 	}
    397 }
    398 
    399 static inline int
    400 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    401 {
    402 
    403 	/*
    404 	 * we consider pool_item_header with smaller ph_page bigger.
    405 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    406 	 */
    407 
    408 	if (a->ph_page < b->ph_page)
    409 		return (1);
    410 	else if (a->ph_page > b->ph_page)
    411 		return (-1);
    412 	else
    413 		return (0);
    414 }
    415 
    416 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    417 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    418 
    419 static inline struct pool_item_header *
    420 pr_find_pagehead_noalign(struct pool *pp, void *v)
    421 {
    422 	struct pool_item_header *ph, tmp;
    423 
    424 	tmp.ph_page = (void *)(uintptr_t)v;
    425 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    426 	if (ph == NULL) {
    427 		ph = SPLAY_ROOT(&pp->pr_phtree);
    428 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    429 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    430 		}
    431 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    432 	}
    433 
    434 	return ph;
    435 }
    436 
    437 /*
    438  * Return the pool page header based on item address.
    439  */
    440 static inline struct pool_item_header *
    441 pr_find_pagehead(struct pool *pp, void *v)
    442 {
    443 	struct pool_item_header *ph, tmp;
    444 
    445 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    446 		ph = pr_find_pagehead_noalign(pp, v);
    447 	} else {
    448 		void *page =
    449 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    450 
    451 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    452 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    453 		} else {
    454 			tmp.ph_page = page;
    455 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    456 		}
    457 	}
    458 
    459 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    460 	    ((char *)ph->ph_page <= (char *)v &&
    461 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    462 	return ph;
    463 }
    464 
    465 static void
    466 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    467 {
    468 	struct pool_item_header *ph;
    469 
    470 	while ((ph = LIST_FIRST(pq)) != NULL) {
    471 		LIST_REMOVE(ph, ph_pagelist);
    472 		pool_allocator_free(pp, ph->ph_page);
    473 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    474 			pool_put(pp->pr_phpool, ph);
    475 	}
    476 }
    477 
    478 /*
    479  * Remove a page from the pool.
    480  */
    481 static inline void
    482 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    483      struct pool_pagelist *pq)
    484 {
    485 
    486 	KASSERT(mutex_owned(&pp->pr_lock));
    487 
    488 	/*
    489 	 * If the page was idle, decrement the idle page count.
    490 	 */
    491 	if (ph->ph_nmissing == 0) {
    492 #ifdef DIAGNOSTIC
    493 		if (pp->pr_nidle == 0)
    494 			panic("pr_rmpage: nidle inconsistent");
    495 		if (pp->pr_nitems < pp->pr_itemsperpage)
    496 			panic("pr_rmpage: nitems inconsistent");
    497 #endif
    498 		pp->pr_nidle--;
    499 	}
    500 
    501 	pp->pr_nitems -= pp->pr_itemsperpage;
    502 
    503 	/*
    504 	 * Unlink the page from the pool and queue it for release.
    505 	 */
    506 	LIST_REMOVE(ph, ph_pagelist);
    507 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    508 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    509 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    510 
    511 	pp->pr_npages--;
    512 	pp->pr_npagefree++;
    513 
    514 	pool_update_curpage(pp);
    515 }
    516 
    517 static bool
    518 pa_starved_p(struct pool_allocator *pa)
    519 {
    520 
    521 	if (pa->pa_backingmap != NULL) {
    522 		return vm_map_starved_p(pa->pa_backingmap);
    523 	}
    524 	return false;
    525 }
    526 
    527 static int
    528 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    529 {
    530 	struct pool *pp = obj;
    531 	struct pool_allocator *pa = pp->pr_alloc;
    532 
    533 	KASSERT(&pp->pr_reclaimerentry == ce);
    534 	pool_reclaim(pp);
    535 	if (!pa_starved_p(pa)) {
    536 		return CALLBACK_CHAIN_ABORT;
    537 	}
    538 	return CALLBACK_CHAIN_CONTINUE;
    539 }
    540 
    541 static void
    542 pool_reclaim_register(struct pool *pp)
    543 {
    544 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    545 	int s;
    546 
    547 	if (map == NULL) {
    548 		return;
    549 	}
    550 
    551 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    552 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    553 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    554 	splx(s);
    555 }
    556 
    557 static void
    558 pool_reclaim_unregister(struct pool *pp)
    559 {
    560 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    561 	int s;
    562 
    563 	if (map == NULL) {
    564 		return;
    565 	}
    566 
    567 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    568 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    569 	    &pp->pr_reclaimerentry);
    570 	splx(s);
    571 }
    572 
    573 static void
    574 pa_reclaim_register(struct pool_allocator *pa)
    575 {
    576 	struct vm_map *map = *pa->pa_backingmapptr;
    577 	struct pool *pp;
    578 
    579 	KASSERT(pa->pa_backingmap == NULL);
    580 	if (map == NULL) {
    581 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    582 		return;
    583 	}
    584 	pa->pa_backingmap = map;
    585 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    586 		pool_reclaim_register(pp);
    587 	}
    588 }
    589 
    590 /*
    591  * Initialize all the pools listed in the "pools" link set.
    592  */
    593 void
    594 pool_subsystem_init(void)
    595 {
    596 	struct pool_allocator *pa;
    597 	__link_set_decl(pools, struct link_pool_init);
    598 	struct link_pool_init * const *pi;
    599 
    600 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    601 	cv_init(&pool_busy, "poolbusy");
    602 
    603 	__link_set_foreach(pi, pools)
    604 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    605 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    606 		    (*pi)->palloc, (*pi)->ipl);
    607 
    608 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    609 		KASSERT(pa->pa_backingmapptr != NULL);
    610 		KASSERT(*pa->pa_backingmapptr != NULL);
    611 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    612 		pa_reclaim_register(pa);
    613 	}
    614 
    615 	pool_init(&cache_pool, sizeof(struct pool_cache), CACHE_LINE_SIZE,
    616 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    617 
    618 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), CACHE_LINE_SIZE,
    619 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    620 }
    621 
    622 /*
    623  * Initialize the given pool resource structure.
    624  *
    625  * We export this routine to allow other kernel parts to declare
    626  * static pools that must be initialized before malloc() is available.
    627  */
    628 void
    629 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    630     const char *wchan, struct pool_allocator *palloc, int ipl)
    631 {
    632 	struct pool *pp1;
    633 	size_t trysize, phsize;
    634 	int off, slack;
    635 
    636 #ifdef DEBUG
    637 	/*
    638 	 * Check that the pool hasn't already been initialised and
    639 	 * added to the list of all pools.
    640 	 */
    641 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    642 		if (pp == pp1)
    643 			panic("pool_init: pool %s already initialised",
    644 			    wchan);
    645 	}
    646 #endif
    647 
    648 #ifdef POOL_DIAGNOSTIC
    649 	/*
    650 	 * Always log if POOL_DIAGNOSTIC is defined.
    651 	 */
    652 	if (pool_logsize != 0)
    653 		flags |= PR_LOGGING;
    654 #endif
    655 
    656 	if (palloc == NULL)
    657 		palloc = &pool_allocator_kmem;
    658 #ifdef POOL_SUBPAGE
    659 	if (size > palloc->pa_pagesz) {
    660 		if (palloc == &pool_allocator_kmem)
    661 			palloc = &pool_allocator_kmem_fullpage;
    662 		else if (palloc == &pool_allocator_nointr)
    663 			palloc = &pool_allocator_nointr_fullpage;
    664 	}
    665 #endif /* POOL_SUBPAGE */
    666 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    667 		if (palloc->pa_pagesz == 0)
    668 			palloc->pa_pagesz = PAGE_SIZE;
    669 
    670 		TAILQ_INIT(&palloc->pa_list);
    671 
    672 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    673 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    674 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    675 
    676 		if (palloc->pa_backingmapptr != NULL) {
    677 			pa_reclaim_register(palloc);
    678 		}
    679 		palloc->pa_flags |= PA_INITIALIZED;
    680 	}
    681 
    682 	if (align == 0)
    683 		align = ALIGN(1);
    684 
    685 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    686 		size = sizeof(struct pool_item);
    687 
    688 	size = roundup(size, align);
    689 #ifdef DIAGNOSTIC
    690 	if (size > palloc->pa_pagesz)
    691 		panic("pool_init: pool item size (%zu) too large", size);
    692 #endif
    693 
    694 	/*
    695 	 * Initialize the pool structure.
    696 	 */
    697 	LIST_INIT(&pp->pr_emptypages);
    698 	LIST_INIT(&pp->pr_fullpages);
    699 	LIST_INIT(&pp->pr_partpages);
    700 	pp->pr_cache = NULL;
    701 	pp->pr_curpage = NULL;
    702 	pp->pr_npages = 0;
    703 	pp->pr_minitems = 0;
    704 	pp->pr_minpages = 0;
    705 	pp->pr_maxpages = UINT_MAX;
    706 	pp->pr_roflags = flags;
    707 	pp->pr_flags = 0;
    708 	pp->pr_size = size;
    709 	pp->pr_align = align;
    710 	pp->pr_wchan = wchan;
    711 	pp->pr_alloc = palloc;
    712 	pp->pr_nitems = 0;
    713 	pp->pr_nout = 0;
    714 	pp->pr_hardlimit = UINT_MAX;
    715 	pp->pr_hardlimit_warning = NULL;
    716 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    717 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    718 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    719 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    720 	pp->pr_drain_hook = NULL;
    721 	pp->pr_drain_hook_arg = NULL;
    722 	pp->pr_freecheck = NULL;
    723 
    724 	/*
    725 	 * Decide whether to put the page header off page to avoid
    726 	 * wasting too large a part of the page or too big item.
    727 	 * Off-page page headers go on a hash table, so we can match
    728 	 * a returned item with its header based on the page address.
    729 	 * We use 1/16 of the page size and about 8 times of the item
    730 	 * size as the threshold (XXX: tune)
    731 	 *
    732 	 * However, we'll put the header into the page if we can put
    733 	 * it without wasting any items.
    734 	 *
    735 	 * Silently enforce `0 <= ioff < align'.
    736 	 */
    737 	pp->pr_itemoffset = ioff %= align;
    738 	/* See the comment below about reserved bytes. */
    739 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    740 	phsize = ALIGN(sizeof(struct pool_item_header));
    741 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    742 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    743 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    744 		/* Use the end of the page for the page header */
    745 		pp->pr_roflags |= PR_PHINPAGE;
    746 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    747 	} else {
    748 		/* The page header will be taken from our page header pool */
    749 		pp->pr_phoffset = 0;
    750 		off = palloc->pa_pagesz;
    751 		SPLAY_INIT(&pp->pr_phtree);
    752 	}
    753 
    754 	/*
    755 	 * Alignment is to take place at `ioff' within the item. This means
    756 	 * we must reserve up to `align - 1' bytes on the page to allow
    757 	 * appropriate positioning of each item.
    758 	 */
    759 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    760 	KASSERT(pp->pr_itemsperpage != 0);
    761 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    762 		int idx;
    763 
    764 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    765 		    idx++) {
    766 			/* nothing */
    767 		}
    768 		if (idx >= PHPOOL_MAX) {
    769 			/*
    770 			 * if you see this panic, consider to tweak
    771 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    772 			 */
    773 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    774 			    pp->pr_wchan, pp->pr_itemsperpage);
    775 		}
    776 		pp->pr_phpool = &phpool[idx];
    777 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    778 		pp->pr_phpool = &phpool[0];
    779 	}
    780 #if defined(DIAGNOSTIC)
    781 	else {
    782 		pp->pr_phpool = NULL;
    783 	}
    784 #endif
    785 
    786 	/*
    787 	 * Use the slack between the chunks and the page header
    788 	 * for "cache coloring".
    789 	 */
    790 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    791 	pp->pr_maxcolor = (slack / align) * align;
    792 	pp->pr_curcolor = 0;
    793 
    794 	pp->pr_nget = 0;
    795 	pp->pr_nfail = 0;
    796 	pp->pr_nput = 0;
    797 	pp->pr_npagealloc = 0;
    798 	pp->pr_npagefree = 0;
    799 	pp->pr_hiwat = 0;
    800 	pp->pr_nidle = 0;
    801 	pp->pr_refcnt = 0;
    802 
    803 #ifdef POOL_DIAGNOSTIC
    804 	if (flags & PR_LOGGING) {
    805 		if (kmem_map == NULL ||
    806 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    807 		     M_TEMP, M_NOWAIT)) == NULL)
    808 			pp->pr_roflags &= ~PR_LOGGING;
    809 		pp->pr_curlogentry = 0;
    810 		pp->pr_logsize = pool_logsize;
    811 	}
    812 #endif
    813 
    814 	pp->pr_entered_file = NULL;
    815 	pp->pr_entered_line = 0;
    816 
    817 	/*
    818 	 * XXXAD hack to prevent IP input processing from blocking.
    819 	 */
    820 	if (ipl == IPL_SOFTNET) {
    821 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, IPL_VM);
    822 	} else {
    823 		mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    824 	}
    825 	cv_init(&pp->pr_cv, wchan);
    826 	pp->pr_ipl = ipl;
    827 
    828 	/*
    829 	 * Initialize private page header pool and cache magazine pool if we
    830 	 * haven't done so yet.
    831 	 * XXX LOCKING.
    832 	 */
    833 	if (phpool[0].pr_size == 0) {
    834 		int idx;
    835 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    836 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    837 			int nelem;
    838 			size_t sz;
    839 
    840 			nelem = PHPOOL_FREELIST_NELEM(idx);
    841 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    842 			    "phpool-%d", nelem);
    843 			sz = sizeof(struct pool_item_header);
    844 			if (nelem) {
    845 				sz = offsetof(struct pool_item_header,
    846 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    847 			}
    848 			pool_init(&phpool[idx], sz, 0, 0, 0,
    849 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    850 		}
    851 #ifdef POOL_SUBPAGE
    852 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    853 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    854 #endif
    855 
    856 		size = sizeof(pcg_t) +
    857 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    858 		pool_init(&pcg_normal_pool, size, CACHE_LINE_SIZE, 0, 0,
    859 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    860 
    861 		size = sizeof(pcg_t) +
    862 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    863 		pool_init(&pcg_large_pool, size, CACHE_LINE_SIZE, 0, 0,
    864 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    865 	}
    866 
    867 	/* Insert into the list of all pools. */
    868 	if (__predict_true(!cold))
    869 		mutex_enter(&pool_head_lock);
    870 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    871 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    872 			break;
    873 	}
    874 	if (pp1 == NULL)
    875 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    876 	else
    877 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    878 	if (__predict_true(!cold))
    879 		mutex_exit(&pool_head_lock);
    880 
    881 		/* Insert this into the list of pools using this allocator. */
    882 	if (__predict_true(!cold))
    883 		mutex_enter(&palloc->pa_lock);
    884 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    885 	if (__predict_true(!cold))
    886 		mutex_exit(&palloc->pa_lock);
    887 
    888 	pool_reclaim_register(pp);
    889 }
    890 
    891 /*
    892  * De-commision a pool resource.
    893  */
    894 void
    895 pool_destroy(struct pool *pp)
    896 {
    897 	struct pool_pagelist pq;
    898 	struct pool_item_header *ph;
    899 
    900 	/* Remove from global pool list */
    901 	mutex_enter(&pool_head_lock);
    902 	while (pp->pr_refcnt != 0)
    903 		cv_wait(&pool_busy, &pool_head_lock);
    904 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    905 	if (drainpp == pp)
    906 		drainpp = NULL;
    907 	mutex_exit(&pool_head_lock);
    908 
    909 	/* Remove this pool from its allocator's list of pools. */
    910 	pool_reclaim_unregister(pp);
    911 	mutex_enter(&pp->pr_alloc->pa_lock);
    912 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    913 	mutex_exit(&pp->pr_alloc->pa_lock);
    914 
    915 	mutex_enter(&pp->pr_lock);
    916 
    917 	KASSERT(pp->pr_cache == NULL);
    918 
    919 #ifdef DIAGNOSTIC
    920 	if (pp->pr_nout != 0) {
    921 		pr_printlog(pp, NULL, printf);
    922 		panic("pool_destroy: pool busy: still out: %u",
    923 		    pp->pr_nout);
    924 	}
    925 #endif
    926 
    927 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    928 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    929 
    930 	/* Remove all pages */
    931 	LIST_INIT(&pq);
    932 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    933 		pr_rmpage(pp, ph, &pq);
    934 
    935 	mutex_exit(&pp->pr_lock);
    936 
    937 	pr_pagelist_free(pp, &pq);
    938 
    939 #ifdef POOL_DIAGNOSTIC
    940 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    941 		free(pp->pr_log, M_TEMP);
    942 #endif
    943 
    944 	cv_destroy(&pp->pr_cv);
    945 	mutex_destroy(&pp->pr_lock);
    946 }
    947 
    948 void
    949 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    950 {
    951 
    952 	/* XXX no locking -- must be used just after pool_init() */
    953 #ifdef DIAGNOSTIC
    954 	if (pp->pr_drain_hook != NULL)
    955 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    956 #endif
    957 	pp->pr_drain_hook = fn;
    958 	pp->pr_drain_hook_arg = arg;
    959 }
    960 
    961 static struct pool_item_header *
    962 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    963 {
    964 	struct pool_item_header *ph;
    965 
    966 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    967 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    968 	else
    969 		ph = pool_get(pp->pr_phpool, flags);
    970 
    971 	return (ph);
    972 }
    973 
    974 /*
    975  * Grab an item from the pool.
    976  */
    977 void *
    978 #ifdef POOL_DIAGNOSTIC
    979 _pool_get(struct pool *pp, int flags, const char *file, long line)
    980 #else
    981 pool_get(struct pool *pp, int flags)
    982 #endif
    983 {
    984 	struct pool_item *pi;
    985 	struct pool_item_header *ph;
    986 	void *v;
    987 
    988 #ifdef DIAGNOSTIC
    989 	if (__predict_false(pp->pr_itemsperpage == 0))
    990 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    991 		    "pool not initialized?", pp);
    992 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    993 			    (flags & PR_WAITOK) != 0))
    994 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    995 
    996 #endif /* DIAGNOSTIC */
    997 #ifdef LOCKDEBUG
    998 	if (flags & PR_WAITOK)
    999 		ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
   1000 #endif
   1001 
   1002 	mutex_enter(&pp->pr_lock);
   1003 	pr_enter(pp, file, line);
   1004 
   1005  startover:
   1006 	/*
   1007 	 * Check to see if we've reached the hard limit.  If we have,
   1008 	 * and we can wait, then wait until an item has been returned to
   1009 	 * the pool.
   1010 	 */
   1011 #ifdef DIAGNOSTIC
   1012 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1013 		pr_leave(pp);
   1014 		mutex_exit(&pp->pr_lock);
   1015 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1016 	}
   1017 #endif
   1018 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1019 		if (pp->pr_drain_hook != NULL) {
   1020 			/*
   1021 			 * Since the drain hook is going to free things
   1022 			 * back to the pool, unlock, call the hook, re-lock,
   1023 			 * and check the hardlimit condition again.
   1024 			 */
   1025 			pr_leave(pp);
   1026 			mutex_exit(&pp->pr_lock);
   1027 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1028 			mutex_enter(&pp->pr_lock);
   1029 			pr_enter(pp, file, line);
   1030 			if (pp->pr_nout < pp->pr_hardlimit)
   1031 				goto startover;
   1032 		}
   1033 
   1034 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1035 			/*
   1036 			 * XXX: A warning isn't logged in this case.  Should
   1037 			 * it be?
   1038 			 */
   1039 			pp->pr_flags |= PR_WANTED;
   1040 			pr_leave(pp);
   1041 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1042 			pr_enter(pp, file, line);
   1043 			goto startover;
   1044 		}
   1045 
   1046 		/*
   1047 		 * Log a message that the hard limit has been hit.
   1048 		 */
   1049 		if (pp->pr_hardlimit_warning != NULL &&
   1050 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1051 			      &pp->pr_hardlimit_ratecap))
   1052 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1053 
   1054 		pp->pr_nfail++;
   1055 
   1056 		pr_leave(pp);
   1057 		mutex_exit(&pp->pr_lock);
   1058 		return (NULL);
   1059 	}
   1060 
   1061 	/*
   1062 	 * The convention we use is that if `curpage' is not NULL, then
   1063 	 * it points at a non-empty bucket. In particular, `curpage'
   1064 	 * never points at a page header which has PR_PHINPAGE set and
   1065 	 * has no items in its bucket.
   1066 	 */
   1067 	if ((ph = pp->pr_curpage) == NULL) {
   1068 		int error;
   1069 
   1070 #ifdef DIAGNOSTIC
   1071 		if (pp->pr_nitems != 0) {
   1072 			mutex_exit(&pp->pr_lock);
   1073 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1074 			    pp->pr_wchan, pp->pr_nitems);
   1075 			panic("pool_get: nitems inconsistent");
   1076 		}
   1077 #endif
   1078 
   1079 		/*
   1080 		 * Call the back-end page allocator for more memory.
   1081 		 * Release the pool lock, as the back-end page allocator
   1082 		 * may block.
   1083 		 */
   1084 		pr_leave(pp);
   1085 		error = pool_grow(pp, flags);
   1086 		pr_enter(pp, file, line);
   1087 		if (error != 0) {
   1088 			/*
   1089 			 * We were unable to allocate a page or item
   1090 			 * header, but we released the lock during
   1091 			 * allocation, so perhaps items were freed
   1092 			 * back to the pool.  Check for this case.
   1093 			 */
   1094 			if (pp->pr_curpage != NULL)
   1095 				goto startover;
   1096 
   1097 			pp->pr_nfail++;
   1098 			pr_leave(pp);
   1099 			mutex_exit(&pp->pr_lock);
   1100 			return (NULL);
   1101 		}
   1102 
   1103 		/* Start the allocation process over. */
   1104 		goto startover;
   1105 	}
   1106 	if (pp->pr_roflags & PR_NOTOUCH) {
   1107 #ifdef DIAGNOSTIC
   1108 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1109 			pr_leave(pp);
   1110 			mutex_exit(&pp->pr_lock);
   1111 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1112 		}
   1113 #endif
   1114 		v = pr_item_notouch_get(pp, ph);
   1115 #ifdef POOL_DIAGNOSTIC
   1116 		pr_log(pp, v, PRLOG_GET, file, line);
   1117 #endif
   1118 	} else {
   1119 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1120 		if (__predict_false(v == NULL)) {
   1121 			pr_leave(pp);
   1122 			mutex_exit(&pp->pr_lock);
   1123 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1124 		}
   1125 #ifdef DIAGNOSTIC
   1126 		if (__predict_false(pp->pr_nitems == 0)) {
   1127 			pr_leave(pp);
   1128 			mutex_exit(&pp->pr_lock);
   1129 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1130 			    pp->pr_wchan, pp->pr_nitems);
   1131 			panic("pool_get: nitems inconsistent");
   1132 		}
   1133 #endif
   1134 
   1135 #ifdef POOL_DIAGNOSTIC
   1136 		pr_log(pp, v, PRLOG_GET, file, line);
   1137 #endif
   1138 
   1139 #ifdef DIAGNOSTIC
   1140 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1141 			pr_printlog(pp, pi, printf);
   1142 			panic("pool_get(%s): free list modified: "
   1143 			    "magic=%x; page %p; item addr %p\n",
   1144 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1145 		}
   1146 #endif
   1147 
   1148 		/*
   1149 		 * Remove from item list.
   1150 		 */
   1151 		LIST_REMOVE(pi, pi_list);
   1152 	}
   1153 	pp->pr_nitems--;
   1154 	pp->pr_nout++;
   1155 	if (ph->ph_nmissing == 0) {
   1156 #ifdef DIAGNOSTIC
   1157 		if (__predict_false(pp->pr_nidle == 0))
   1158 			panic("pool_get: nidle inconsistent");
   1159 #endif
   1160 		pp->pr_nidle--;
   1161 
   1162 		/*
   1163 		 * This page was previously empty.  Move it to the list of
   1164 		 * partially-full pages.  This page is already curpage.
   1165 		 */
   1166 		LIST_REMOVE(ph, ph_pagelist);
   1167 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1168 	}
   1169 	ph->ph_nmissing++;
   1170 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1171 #ifdef DIAGNOSTIC
   1172 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1173 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1174 			pr_leave(pp);
   1175 			mutex_exit(&pp->pr_lock);
   1176 			panic("pool_get: %s: nmissing inconsistent",
   1177 			    pp->pr_wchan);
   1178 		}
   1179 #endif
   1180 		/*
   1181 		 * This page is now full.  Move it to the full list
   1182 		 * and select a new current page.
   1183 		 */
   1184 		LIST_REMOVE(ph, ph_pagelist);
   1185 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1186 		pool_update_curpage(pp);
   1187 	}
   1188 
   1189 	pp->pr_nget++;
   1190 	pr_leave(pp);
   1191 
   1192 	/*
   1193 	 * If we have a low water mark and we are now below that low
   1194 	 * water mark, add more items to the pool.
   1195 	 */
   1196 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1197 		/*
   1198 		 * XXX: Should we log a warning?  Should we set up a timeout
   1199 		 * to try again in a second or so?  The latter could break
   1200 		 * a caller's assumptions about interrupt protection, etc.
   1201 		 */
   1202 	}
   1203 
   1204 	mutex_exit(&pp->pr_lock);
   1205 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1206 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1207 	return (v);
   1208 }
   1209 
   1210 /*
   1211  * Internal version of pool_put().  Pool is already locked/entered.
   1212  */
   1213 static void
   1214 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1215 {
   1216 	struct pool_item *pi = v;
   1217 	struct pool_item_header *ph;
   1218 
   1219 	KASSERT(mutex_owned(&pp->pr_lock));
   1220 	FREECHECK_IN(&pp->pr_freecheck, v);
   1221 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1222 
   1223 #ifdef DIAGNOSTIC
   1224 	if (__predict_false(pp->pr_nout == 0)) {
   1225 		printf("pool %s: putting with none out\n",
   1226 		    pp->pr_wchan);
   1227 		panic("pool_put");
   1228 	}
   1229 #endif
   1230 
   1231 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1232 		pr_printlog(pp, NULL, printf);
   1233 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1234 	}
   1235 
   1236 	/*
   1237 	 * Return to item list.
   1238 	 */
   1239 	if (pp->pr_roflags & PR_NOTOUCH) {
   1240 		pr_item_notouch_put(pp, ph, v);
   1241 	} else {
   1242 #ifdef DIAGNOSTIC
   1243 		pi->pi_magic = PI_MAGIC;
   1244 #endif
   1245 #ifdef DEBUG
   1246 		{
   1247 			int i, *ip = v;
   1248 
   1249 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1250 				*ip++ = PI_MAGIC;
   1251 			}
   1252 		}
   1253 #endif
   1254 
   1255 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1256 	}
   1257 	KDASSERT(ph->ph_nmissing != 0);
   1258 	ph->ph_nmissing--;
   1259 	pp->pr_nput++;
   1260 	pp->pr_nitems++;
   1261 	pp->pr_nout--;
   1262 
   1263 	/* Cancel "pool empty" condition if it exists */
   1264 	if (pp->pr_curpage == NULL)
   1265 		pp->pr_curpage = ph;
   1266 
   1267 	if (pp->pr_flags & PR_WANTED) {
   1268 		pp->pr_flags &= ~PR_WANTED;
   1269 		if (ph->ph_nmissing == 0)
   1270 			pp->pr_nidle++;
   1271 		cv_broadcast(&pp->pr_cv);
   1272 		return;
   1273 	}
   1274 
   1275 	/*
   1276 	 * If this page is now empty, do one of two things:
   1277 	 *
   1278 	 *	(1) If we have more pages than the page high water mark,
   1279 	 *	    free the page back to the system.  ONLY CONSIDER
   1280 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1281 	 *	    CLAIM.
   1282 	 *
   1283 	 *	(2) Otherwise, move the page to the empty page list.
   1284 	 *
   1285 	 * Either way, select a new current page (so we use a partially-full
   1286 	 * page if one is available).
   1287 	 */
   1288 	if (ph->ph_nmissing == 0) {
   1289 		pp->pr_nidle++;
   1290 		if (pp->pr_npages > pp->pr_minpages &&
   1291 		    (pp->pr_npages > pp->pr_maxpages ||
   1292 		     pa_starved_p(pp->pr_alloc))) {
   1293 			pr_rmpage(pp, ph, pq);
   1294 		} else {
   1295 			LIST_REMOVE(ph, ph_pagelist);
   1296 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1297 
   1298 			/*
   1299 			 * Update the timestamp on the page.  A page must
   1300 			 * be idle for some period of time before it can
   1301 			 * be reclaimed by the pagedaemon.  This minimizes
   1302 			 * ping-pong'ing for memory.
   1303 			 */
   1304 			getmicrotime(&ph->ph_time);
   1305 		}
   1306 		pool_update_curpage(pp);
   1307 	}
   1308 
   1309 	/*
   1310 	 * If the page was previously completely full, move it to the
   1311 	 * partially-full list and make it the current page.  The next
   1312 	 * allocation will get the item from this page, instead of
   1313 	 * further fragmenting the pool.
   1314 	 */
   1315 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1316 		LIST_REMOVE(ph, ph_pagelist);
   1317 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1318 		pp->pr_curpage = ph;
   1319 	}
   1320 }
   1321 
   1322 /*
   1323  * Return resource to the pool.
   1324  */
   1325 #ifdef POOL_DIAGNOSTIC
   1326 void
   1327 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1328 {
   1329 	struct pool_pagelist pq;
   1330 
   1331 	LIST_INIT(&pq);
   1332 
   1333 	mutex_enter(&pp->pr_lock);
   1334 	pr_enter(pp, file, line);
   1335 
   1336 	pr_log(pp, v, PRLOG_PUT, file, line);
   1337 
   1338 	pool_do_put(pp, v, &pq);
   1339 
   1340 	pr_leave(pp);
   1341 	mutex_exit(&pp->pr_lock);
   1342 
   1343 	pr_pagelist_free(pp, &pq);
   1344 }
   1345 #undef pool_put
   1346 #endif /* POOL_DIAGNOSTIC */
   1347 
   1348 void
   1349 pool_put(struct pool *pp, void *v)
   1350 {
   1351 	struct pool_pagelist pq;
   1352 
   1353 	LIST_INIT(&pq);
   1354 
   1355 	mutex_enter(&pp->pr_lock);
   1356 	pool_do_put(pp, v, &pq);
   1357 	mutex_exit(&pp->pr_lock);
   1358 
   1359 	pr_pagelist_free(pp, &pq);
   1360 }
   1361 
   1362 #ifdef POOL_DIAGNOSTIC
   1363 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1364 #endif
   1365 
   1366 /*
   1367  * pool_grow: grow a pool by a page.
   1368  *
   1369  * => called with pool locked.
   1370  * => unlock and relock the pool.
   1371  * => return with pool locked.
   1372  */
   1373 
   1374 static int
   1375 pool_grow(struct pool *pp, int flags)
   1376 {
   1377 	struct pool_item_header *ph = NULL;
   1378 	char *cp;
   1379 
   1380 	mutex_exit(&pp->pr_lock);
   1381 	cp = pool_allocator_alloc(pp, flags);
   1382 	if (__predict_true(cp != NULL)) {
   1383 		ph = pool_alloc_item_header(pp, cp, flags);
   1384 	}
   1385 	if (__predict_false(cp == NULL || ph == NULL)) {
   1386 		if (cp != NULL) {
   1387 			pool_allocator_free(pp, cp);
   1388 		}
   1389 		mutex_enter(&pp->pr_lock);
   1390 		return ENOMEM;
   1391 	}
   1392 
   1393 	mutex_enter(&pp->pr_lock);
   1394 	pool_prime_page(pp, cp, ph);
   1395 	pp->pr_npagealloc++;
   1396 	return 0;
   1397 }
   1398 
   1399 /*
   1400  * Add N items to the pool.
   1401  */
   1402 int
   1403 pool_prime(struct pool *pp, int n)
   1404 {
   1405 	int newpages;
   1406 	int error = 0;
   1407 
   1408 	mutex_enter(&pp->pr_lock);
   1409 
   1410 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1411 
   1412 	while (newpages-- > 0) {
   1413 		error = pool_grow(pp, PR_NOWAIT);
   1414 		if (error) {
   1415 			break;
   1416 		}
   1417 		pp->pr_minpages++;
   1418 	}
   1419 
   1420 	if (pp->pr_minpages >= pp->pr_maxpages)
   1421 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1422 
   1423 	mutex_exit(&pp->pr_lock);
   1424 	return error;
   1425 }
   1426 
   1427 /*
   1428  * Add a page worth of items to the pool.
   1429  *
   1430  * Note, we must be called with the pool descriptor LOCKED.
   1431  */
   1432 static void
   1433 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1434 {
   1435 	struct pool_item *pi;
   1436 	void *cp = storage;
   1437 	const unsigned int align = pp->pr_align;
   1438 	const unsigned int ioff = pp->pr_itemoffset;
   1439 	int n;
   1440 
   1441 	KASSERT(mutex_owned(&pp->pr_lock));
   1442 
   1443 #ifdef DIAGNOSTIC
   1444 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1445 	    ((uintptr_t)cp & (align - 1)) != 0)
   1446 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1447 #endif
   1448 
   1449 	/*
   1450 	 * Insert page header.
   1451 	 */
   1452 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1453 	LIST_INIT(&ph->ph_itemlist);
   1454 	ph->ph_page = storage;
   1455 	ph->ph_nmissing = 0;
   1456 	getmicrotime(&ph->ph_time);
   1457 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1458 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1459 
   1460 	pp->pr_nidle++;
   1461 
   1462 	/*
   1463 	 * Color this page.
   1464 	 */
   1465 	ph->ph_off = pp->pr_curcolor;
   1466 	cp = (char *)cp + ph->ph_off;
   1467 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1468 		pp->pr_curcolor = 0;
   1469 
   1470 	/*
   1471 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1472 	 */
   1473 	if (ioff != 0)
   1474 		cp = (char *)cp + align - ioff;
   1475 
   1476 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1477 
   1478 	/*
   1479 	 * Insert remaining chunks on the bucket list.
   1480 	 */
   1481 	n = pp->pr_itemsperpage;
   1482 	pp->pr_nitems += n;
   1483 
   1484 	if (pp->pr_roflags & PR_NOTOUCH) {
   1485 		pr_item_notouch_init(pp, ph);
   1486 	} else {
   1487 		while (n--) {
   1488 			pi = (struct pool_item *)cp;
   1489 
   1490 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1491 
   1492 			/* Insert on page list */
   1493 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1494 #ifdef DIAGNOSTIC
   1495 			pi->pi_magic = PI_MAGIC;
   1496 #endif
   1497 			cp = (char *)cp + pp->pr_size;
   1498 
   1499 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1500 		}
   1501 	}
   1502 
   1503 	/*
   1504 	 * If the pool was depleted, point at the new page.
   1505 	 */
   1506 	if (pp->pr_curpage == NULL)
   1507 		pp->pr_curpage = ph;
   1508 
   1509 	if (++pp->pr_npages > pp->pr_hiwat)
   1510 		pp->pr_hiwat = pp->pr_npages;
   1511 }
   1512 
   1513 /*
   1514  * Used by pool_get() when nitems drops below the low water mark.  This
   1515  * is used to catch up pr_nitems with the low water mark.
   1516  *
   1517  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1518  *
   1519  * Note 2, we must be called with the pool already locked, and we return
   1520  * with it locked.
   1521  */
   1522 static int
   1523 pool_catchup(struct pool *pp)
   1524 {
   1525 	int error = 0;
   1526 
   1527 	while (POOL_NEEDS_CATCHUP(pp)) {
   1528 		error = pool_grow(pp, PR_NOWAIT);
   1529 		if (error) {
   1530 			break;
   1531 		}
   1532 	}
   1533 	return error;
   1534 }
   1535 
   1536 static void
   1537 pool_update_curpage(struct pool *pp)
   1538 {
   1539 
   1540 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1541 	if (pp->pr_curpage == NULL) {
   1542 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1543 	}
   1544 }
   1545 
   1546 void
   1547 pool_setlowat(struct pool *pp, int n)
   1548 {
   1549 
   1550 	mutex_enter(&pp->pr_lock);
   1551 
   1552 	pp->pr_minitems = n;
   1553 	pp->pr_minpages = (n == 0)
   1554 		? 0
   1555 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1556 
   1557 	/* Make sure we're caught up with the newly-set low water mark. */
   1558 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1559 		/*
   1560 		 * XXX: Should we log a warning?  Should we set up a timeout
   1561 		 * to try again in a second or so?  The latter could break
   1562 		 * a caller's assumptions about interrupt protection, etc.
   1563 		 */
   1564 	}
   1565 
   1566 	mutex_exit(&pp->pr_lock);
   1567 }
   1568 
   1569 void
   1570 pool_sethiwat(struct pool *pp, int n)
   1571 {
   1572 
   1573 	mutex_enter(&pp->pr_lock);
   1574 
   1575 	pp->pr_maxpages = (n == 0)
   1576 		? 0
   1577 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1578 
   1579 	mutex_exit(&pp->pr_lock);
   1580 }
   1581 
   1582 void
   1583 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1584 {
   1585 
   1586 	mutex_enter(&pp->pr_lock);
   1587 
   1588 	pp->pr_hardlimit = n;
   1589 	pp->pr_hardlimit_warning = warnmess;
   1590 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1591 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1592 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1593 
   1594 	/*
   1595 	 * In-line version of pool_sethiwat(), because we don't want to
   1596 	 * release the lock.
   1597 	 */
   1598 	pp->pr_maxpages = (n == 0)
   1599 		? 0
   1600 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1601 
   1602 	mutex_exit(&pp->pr_lock);
   1603 }
   1604 
   1605 /*
   1606  * Release all complete pages that have not been used recently.
   1607  */
   1608 int
   1609 #ifdef POOL_DIAGNOSTIC
   1610 _pool_reclaim(struct pool *pp, const char *file, long line)
   1611 #else
   1612 pool_reclaim(struct pool *pp)
   1613 #endif
   1614 {
   1615 	struct pool_item_header *ph, *phnext;
   1616 	struct pool_pagelist pq;
   1617 	struct timeval curtime, diff;
   1618 	bool klock;
   1619 	int rv;
   1620 
   1621 	if (pp->pr_drain_hook != NULL) {
   1622 		/*
   1623 		 * The drain hook must be called with the pool unlocked.
   1624 		 */
   1625 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1626 	}
   1627 
   1628 	/*
   1629 	 * XXXSMP Because mutexes at IPL_SOFTXXX are still spinlocks,
   1630 	 * and we are called from the pagedaemon without kernel_lock.
   1631 	 * Does not apply to IPL_SOFTBIO.
   1632 	 */
   1633 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1634 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1635 		KERNEL_LOCK(1, NULL);
   1636 		klock = true;
   1637 	} else
   1638 		klock = false;
   1639 
   1640 	/* Reclaim items from the pool's cache (if any). */
   1641 	if (pp->pr_cache != NULL)
   1642 		pool_cache_invalidate(pp->pr_cache);
   1643 
   1644 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1645 		if (klock) {
   1646 			KERNEL_UNLOCK_ONE(NULL);
   1647 		}
   1648 		return (0);
   1649 	}
   1650 	pr_enter(pp, file, line);
   1651 
   1652 	LIST_INIT(&pq);
   1653 
   1654 	getmicrotime(&curtime);
   1655 
   1656 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1657 		phnext = LIST_NEXT(ph, ph_pagelist);
   1658 
   1659 		/* Check our minimum page claim */
   1660 		if (pp->pr_npages <= pp->pr_minpages)
   1661 			break;
   1662 
   1663 		KASSERT(ph->ph_nmissing == 0);
   1664 		timersub(&curtime, &ph->ph_time, &diff);
   1665 		if (diff.tv_sec < pool_inactive_time
   1666 		    && !pa_starved_p(pp->pr_alloc))
   1667 			continue;
   1668 
   1669 		/*
   1670 		 * If freeing this page would put us below
   1671 		 * the low water mark, stop now.
   1672 		 */
   1673 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1674 		    pp->pr_minitems)
   1675 			break;
   1676 
   1677 		pr_rmpage(pp, ph, &pq);
   1678 	}
   1679 
   1680 	pr_leave(pp);
   1681 	mutex_exit(&pp->pr_lock);
   1682 
   1683 	if (LIST_EMPTY(&pq))
   1684 		rv = 0;
   1685 	else {
   1686 		pr_pagelist_free(pp, &pq);
   1687 		rv = 1;
   1688 	}
   1689 
   1690 	if (klock) {
   1691 		KERNEL_UNLOCK_ONE(NULL);
   1692 	}
   1693 
   1694 	return (rv);
   1695 }
   1696 
   1697 /*
   1698  * Drain pools, one at a time.  This is a two stage process;
   1699  * drain_start kicks off a cross call to drain CPU-level caches
   1700  * if the pool has an associated pool_cache.  drain_end waits
   1701  * for those cross calls to finish, and then drains the cache
   1702  * (if any) and pool.
   1703  *
   1704  * Note, must never be called from interrupt context.
   1705  */
   1706 void
   1707 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1708 {
   1709 	struct pool *pp;
   1710 
   1711 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1712 
   1713 	pp = NULL;
   1714 
   1715 	/* Find next pool to drain, and add a reference. */
   1716 	mutex_enter(&pool_head_lock);
   1717 	do {
   1718 		if (drainpp == NULL) {
   1719 			drainpp = TAILQ_FIRST(&pool_head);
   1720 		}
   1721 		if (drainpp != NULL) {
   1722 			pp = drainpp;
   1723 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1724 		}
   1725 		/*
   1726 		 * Skip completely idle pools.  We depend on at least
   1727 		 * one pool in the system being active.
   1728 		 */
   1729 	} while (pp == NULL || pp->pr_npages == 0);
   1730 	pp->pr_refcnt++;
   1731 	mutex_exit(&pool_head_lock);
   1732 
   1733 	/* If there is a pool_cache, drain CPU level caches. */
   1734 	*ppp = pp;
   1735 	if (pp->pr_cache != NULL) {
   1736 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1737 		    pp->pr_cache, NULL);
   1738 	}
   1739 }
   1740 
   1741 void
   1742 pool_drain_end(struct pool *pp, uint64_t where)
   1743 {
   1744 
   1745 	if (pp == NULL)
   1746 		return;
   1747 
   1748 	KASSERT(pp->pr_refcnt > 0);
   1749 
   1750 	/* Wait for remote draining to complete. */
   1751 	if (pp->pr_cache != NULL)
   1752 		xc_wait(where);
   1753 
   1754 	/* Drain the cache (if any) and pool.. */
   1755 	pool_reclaim(pp);
   1756 
   1757 	/* Finally, unlock the pool. */
   1758 	mutex_enter(&pool_head_lock);
   1759 	pp->pr_refcnt--;
   1760 	cv_broadcast(&pool_busy);
   1761 	mutex_exit(&pool_head_lock);
   1762 }
   1763 
   1764 /*
   1765  * Diagnostic helpers.
   1766  */
   1767 void
   1768 pool_print(struct pool *pp, const char *modif)
   1769 {
   1770 
   1771 	pool_print1(pp, modif, printf);
   1772 }
   1773 
   1774 void
   1775 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1776 {
   1777 	struct pool *pp;
   1778 
   1779 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1780 		pool_printit(pp, modif, pr);
   1781 	}
   1782 }
   1783 
   1784 void
   1785 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1786 {
   1787 
   1788 	if (pp == NULL) {
   1789 		(*pr)("Must specify a pool to print.\n");
   1790 		return;
   1791 	}
   1792 
   1793 	pool_print1(pp, modif, pr);
   1794 }
   1795 
   1796 static void
   1797 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1798     void (*pr)(const char *, ...))
   1799 {
   1800 	struct pool_item_header *ph;
   1801 #ifdef DIAGNOSTIC
   1802 	struct pool_item *pi;
   1803 #endif
   1804 
   1805 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1806 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1807 		    ph->ph_page, ph->ph_nmissing,
   1808 		    (u_long)ph->ph_time.tv_sec,
   1809 		    (u_long)ph->ph_time.tv_usec);
   1810 #ifdef DIAGNOSTIC
   1811 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1812 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1813 				if (pi->pi_magic != PI_MAGIC) {
   1814 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1815 					    pi, pi->pi_magic);
   1816 				}
   1817 			}
   1818 		}
   1819 #endif
   1820 	}
   1821 }
   1822 
   1823 static void
   1824 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1825 {
   1826 	struct pool_item_header *ph;
   1827 	pool_cache_t pc;
   1828 	pcg_t *pcg;
   1829 	pool_cache_cpu_t *cc;
   1830 	uint64_t cpuhit, cpumiss;
   1831 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1832 	char c;
   1833 
   1834 	while ((c = *modif++) != '\0') {
   1835 		if (c == 'l')
   1836 			print_log = 1;
   1837 		if (c == 'p')
   1838 			print_pagelist = 1;
   1839 		if (c == 'c')
   1840 			print_cache = 1;
   1841 	}
   1842 
   1843 	if ((pc = pp->pr_cache) != NULL) {
   1844 		(*pr)("POOL CACHE");
   1845 	} else {
   1846 		(*pr)("POOL");
   1847 	}
   1848 
   1849 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1850 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1851 	    pp->pr_roflags);
   1852 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1853 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1854 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1855 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1856 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1857 
   1858 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1859 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1860 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1861 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1862 
   1863 	if (print_pagelist == 0)
   1864 		goto skip_pagelist;
   1865 
   1866 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1867 		(*pr)("\n\tempty page list:\n");
   1868 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1869 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1870 		(*pr)("\n\tfull page list:\n");
   1871 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1872 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1873 		(*pr)("\n\tpartial-page list:\n");
   1874 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1875 
   1876 	if (pp->pr_curpage == NULL)
   1877 		(*pr)("\tno current page\n");
   1878 	else
   1879 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1880 
   1881  skip_pagelist:
   1882 	if (print_log == 0)
   1883 		goto skip_log;
   1884 
   1885 	(*pr)("\n");
   1886 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1887 		(*pr)("\tno log\n");
   1888 	else {
   1889 		pr_printlog(pp, NULL, pr);
   1890 	}
   1891 
   1892  skip_log:
   1893 
   1894 #define PR_GROUPLIST(pcg)						\
   1895 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1896 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1897 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1898 		    POOL_PADDR_INVALID) {				\
   1899 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1900 			    pcg->pcg_objects[i].pcgo_va,		\
   1901 			    (unsigned long long)			\
   1902 			    pcg->pcg_objects[i].pcgo_pa);		\
   1903 		} else {						\
   1904 			(*pr)("\t\t\t%p\n",				\
   1905 			    pcg->pcg_objects[i].pcgo_va);		\
   1906 		}							\
   1907 	}
   1908 
   1909 	if (pc != NULL) {
   1910 		cpuhit = 0;
   1911 		cpumiss = 0;
   1912 		for (i = 0; i < MAXCPUS; i++) {
   1913 			if ((cc = pc->pc_cpus[i]) == NULL)
   1914 				continue;
   1915 			cpuhit += cc->cc_hits;
   1916 			cpumiss += cc->cc_misses;
   1917 		}
   1918 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1919 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1920 		    pc->pc_hits, pc->pc_misses);
   1921 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1922 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1923 		    pc->pc_contended);
   1924 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1925 		    pc->pc_nempty, pc->pc_nfull);
   1926 		if (print_cache) {
   1927 			(*pr)("\tfull cache groups:\n");
   1928 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1929 			    pcg = pcg->pcg_next) {
   1930 				PR_GROUPLIST(pcg);
   1931 			}
   1932 			(*pr)("\tempty cache groups:\n");
   1933 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1934 			    pcg = pcg->pcg_next) {
   1935 				PR_GROUPLIST(pcg);
   1936 			}
   1937 		}
   1938 	}
   1939 #undef PR_GROUPLIST
   1940 
   1941 	pr_enter_check(pp, pr);
   1942 }
   1943 
   1944 static int
   1945 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1946 {
   1947 	struct pool_item *pi;
   1948 	void *page;
   1949 	int n;
   1950 
   1951 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1952 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1953 		if (page != ph->ph_page &&
   1954 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1955 			if (label != NULL)
   1956 				printf("%s: ", label);
   1957 			printf("pool(%p:%s): page inconsistency: page %p;"
   1958 			       " at page head addr %p (p %p)\n", pp,
   1959 				pp->pr_wchan, ph->ph_page,
   1960 				ph, page);
   1961 			return 1;
   1962 		}
   1963 	}
   1964 
   1965 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1966 		return 0;
   1967 
   1968 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1969 	     pi != NULL;
   1970 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1971 
   1972 #ifdef DIAGNOSTIC
   1973 		if (pi->pi_magic != PI_MAGIC) {
   1974 			if (label != NULL)
   1975 				printf("%s: ", label);
   1976 			printf("pool(%s): free list modified: magic=%x;"
   1977 			       " page %p; item ordinal %d; addr %p\n",
   1978 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1979 				n, pi);
   1980 			panic("pool");
   1981 		}
   1982 #endif
   1983 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1984 			continue;
   1985 		}
   1986 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1987 		if (page == ph->ph_page)
   1988 			continue;
   1989 
   1990 		if (label != NULL)
   1991 			printf("%s: ", label);
   1992 		printf("pool(%p:%s): page inconsistency: page %p;"
   1993 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1994 			pp->pr_wchan, ph->ph_page,
   1995 			n, pi, page);
   1996 		return 1;
   1997 	}
   1998 	return 0;
   1999 }
   2000 
   2001 
   2002 int
   2003 pool_chk(struct pool *pp, const char *label)
   2004 {
   2005 	struct pool_item_header *ph;
   2006 	int r = 0;
   2007 
   2008 	mutex_enter(&pp->pr_lock);
   2009 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2010 		r = pool_chk_page(pp, label, ph);
   2011 		if (r) {
   2012 			goto out;
   2013 		}
   2014 	}
   2015 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2016 		r = pool_chk_page(pp, label, ph);
   2017 		if (r) {
   2018 			goto out;
   2019 		}
   2020 	}
   2021 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2022 		r = pool_chk_page(pp, label, ph);
   2023 		if (r) {
   2024 			goto out;
   2025 		}
   2026 	}
   2027 
   2028 out:
   2029 	mutex_exit(&pp->pr_lock);
   2030 	return (r);
   2031 }
   2032 
   2033 /*
   2034  * pool_cache_init:
   2035  *
   2036  *	Initialize a pool cache.
   2037  */
   2038 pool_cache_t
   2039 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2040     const char *wchan, struct pool_allocator *palloc, int ipl,
   2041     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2042 {
   2043 	pool_cache_t pc;
   2044 
   2045 	pc = pool_get(&cache_pool, PR_WAITOK);
   2046 	if (pc == NULL)
   2047 		return NULL;
   2048 
   2049 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2050 	   palloc, ipl, ctor, dtor, arg);
   2051 
   2052 	return pc;
   2053 }
   2054 
   2055 /*
   2056  * pool_cache_bootstrap:
   2057  *
   2058  *	Kernel-private version of pool_cache_init().  The caller
   2059  *	provides initial storage.
   2060  */
   2061 void
   2062 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2063     u_int align_offset, u_int flags, const char *wchan,
   2064     struct pool_allocator *palloc, int ipl,
   2065     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2066     void *arg)
   2067 {
   2068 	CPU_INFO_ITERATOR cii;
   2069 	pool_cache_t pc1;
   2070 	struct cpu_info *ci;
   2071 	struct pool *pp;
   2072 
   2073 	pp = &pc->pc_pool;
   2074 	if (palloc == NULL && ipl == IPL_NONE)
   2075 		palloc = &pool_allocator_nointr;
   2076 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2077 
   2078 	/*
   2079 	 * XXXAD hack to prevent IP input processing from blocking.
   2080 	 */
   2081 	if (ipl == IPL_SOFTNET) {
   2082 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, IPL_VM);
   2083 	} else {
   2084 		mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2085 	}
   2086 
   2087 	if (ctor == NULL) {
   2088 		ctor = (int (*)(void *, void *, int))nullop;
   2089 	}
   2090 	if (dtor == NULL) {
   2091 		dtor = (void (*)(void *, void *))nullop;
   2092 	}
   2093 
   2094 	pc->pc_emptygroups = NULL;
   2095 	pc->pc_fullgroups = NULL;
   2096 	pc->pc_partgroups = NULL;
   2097 	pc->pc_ctor = ctor;
   2098 	pc->pc_dtor = dtor;
   2099 	pc->pc_arg  = arg;
   2100 	pc->pc_hits  = 0;
   2101 	pc->pc_misses = 0;
   2102 	pc->pc_nempty = 0;
   2103 	pc->pc_npart = 0;
   2104 	pc->pc_nfull = 0;
   2105 	pc->pc_contended = 0;
   2106 	pc->pc_refcnt = 0;
   2107 	pc->pc_freecheck = NULL;
   2108 
   2109 	if ((flags & PR_LARGECACHE) != 0) {
   2110 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2111 	} else {
   2112 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2113 	}
   2114 
   2115 	/* Allocate per-CPU caches. */
   2116 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2117 	pc->pc_ncpu = 0;
   2118 	if (ncpu < 2) {
   2119 		/* XXX For sparc: boot CPU is not attached yet. */
   2120 		pool_cache_cpu_init1(curcpu(), pc);
   2121 	} else {
   2122 		for (CPU_INFO_FOREACH(cii, ci)) {
   2123 			pool_cache_cpu_init1(ci, pc);
   2124 		}
   2125 	}
   2126 
   2127 	/* Add to list of all pools. */
   2128 	if (__predict_true(!cold))
   2129 		mutex_enter(&pool_head_lock);
   2130 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2131 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2132 			break;
   2133 	}
   2134 	if (pc1 == NULL)
   2135 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2136 	else
   2137 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2138 	if (__predict_true(!cold))
   2139 		mutex_exit(&pool_head_lock);
   2140 
   2141 	membar_sync();
   2142 	pp->pr_cache = pc;
   2143 }
   2144 
   2145 /*
   2146  * pool_cache_destroy:
   2147  *
   2148  *	Destroy a pool cache.
   2149  */
   2150 void
   2151 pool_cache_destroy(pool_cache_t pc)
   2152 {
   2153 	struct pool *pp = &pc->pc_pool;
   2154 	pool_cache_cpu_t *cc;
   2155 	pcg_t *pcg;
   2156 	int i;
   2157 
   2158 	/* Remove it from the global list. */
   2159 	mutex_enter(&pool_head_lock);
   2160 	while (pc->pc_refcnt != 0)
   2161 		cv_wait(&pool_busy, &pool_head_lock);
   2162 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2163 	mutex_exit(&pool_head_lock);
   2164 
   2165 	/* First, invalidate the entire cache. */
   2166 	pool_cache_invalidate(pc);
   2167 
   2168 	/* Disassociate it from the pool. */
   2169 	mutex_enter(&pp->pr_lock);
   2170 	pp->pr_cache = NULL;
   2171 	mutex_exit(&pp->pr_lock);
   2172 
   2173 	/* Destroy per-CPU data */
   2174 	for (i = 0; i < MAXCPUS; i++) {
   2175 		if ((cc = pc->pc_cpus[i]) == NULL)
   2176 			continue;
   2177 		if ((pcg = cc->cc_current) != NULL) {
   2178 			pcg->pcg_next = NULL;
   2179 			pool_cache_invalidate_groups(pc, pcg);
   2180 		}
   2181 		if ((pcg = cc->cc_previous) != NULL) {
   2182 			pcg->pcg_next = NULL;
   2183 			pool_cache_invalidate_groups(pc, pcg);
   2184 		}
   2185 		if (cc != &pc->pc_cpu0)
   2186 			pool_put(&cache_cpu_pool, cc);
   2187 	}
   2188 
   2189 	/* Finally, destroy it. */
   2190 	mutex_destroy(&pc->pc_lock);
   2191 	pool_destroy(pp);
   2192 	pool_put(&cache_pool, pc);
   2193 }
   2194 
   2195 /*
   2196  * pool_cache_cpu_init1:
   2197  *
   2198  *	Called for each pool_cache whenever a new CPU is attached.
   2199  */
   2200 static void
   2201 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2202 {
   2203 	pool_cache_cpu_t *cc;
   2204 	int index;
   2205 
   2206 	index = ci->ci_index;
   2207 
   2208 	KASSERT(index < MAXCPUS);
   2209 	KASSERT(((uintptr_t)pc->pc_cpus & (CACHE_LINE_SIZE - 1)) == 0);
   2210 
   2211 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2212 		KASSERT(cc->cc_cpuindex == index);
   2213 		return;
   2214 	}
   2215 
   2216 	/*
   2217 	 * The first CPU is 'free'.  This needs to be the case for
   2218 	 * bootstrap - we may not be able to allocate yet.
   2219 	 */
   2220 	if (pc->pc_ncpu == 0) {
   2221 		cc = &pc->pc_cpu0;
   2222 		pc->pc_ncpu = 1;
   2223 	} else {
   2224 		mutex_enter(&pc->pc_lock);
   2225 		pc->pc_ncpu++;
   2226 		mutex_exit(&pc->pc_lock);
   2227 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2228 	}
   2229 
   2230 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2231 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2232 	cc->cc_cache = pc;
   2233 	cc->cc_cpuindex = index;
   2234 	cc->cc_hits = 0;
   2235 	cc->cc_misses = 0;
   2236 	cc->cc_current = NULL;
   2237 	cc->cc_previous = NULL;
   2238 
   2239 	pc->pc_cpus[index] = cc;
   2240 }
   2241 
   2242 /*
   2243  * pool_cache_cpu_init:
   2244  *
   2245  *	Called whenever a new CPU is attached.
   2246  */
   2247 void
   2248 pool_cache_cpu_init(struct cpu_info *ci)
   2249 {
   2250 	pool_cache_t pc;
   2251 
   2252 	mutex_enter(&pool_head_lock);
   2253 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2254 		pc->pc_refcnt++;
   2255 		mutex_exit(&pool_head_lock);
   2256 
   2257 		pool_cache_cpu_init1(ci, pc);
   2258 
   2259 		mutex_enter(&pool_head_lock);
   2260 		pc->pc_refcnt--;
   2261 		cv_broadcast(&pool_busy);
   2262 	}
   2263 	mutex_exit(&pool_head_lock);
   2264 }
   2265 
   2266 /*
   2267  * pool_cache_reclaim:
   2268  *
   2269  *	Reclaim memory from a pool cache.
   2270  */
   2271 bool
   2272 pool_cache_reclaim(pool_cache_t pc)
   2273 {
   2274 
   2275 	return pool_reclaim(&pc->pc_pool);
   2276 }
   2277 
   2278 static void
   2279 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2280 {
   2281 
   2282 	(*pc->pc_dtor)(pc->pc_arg, object);
   2283 	pool_put(&pc->pc_pool, object);
   2284 }
   2285 
   2286 /*
   2287  * pool_cache_destruct_object:
   2288  *
   2289  *	Force destruction of an object and its release back into
   2290  *	the pool.
   2291  */
   2292 void
   2293 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2294 {
   2295 
   2296 	FREECHECK_IN(&pc->pc_freecheck, object);
   2297 
   2298 	pool_cache_destruct_object1(pc, object);
   2299 }
   2300 
   2301 /*
   2302  * pool_cache_invalidate_groups:
   2303  *
   2304  *	Invalidate a chain of groups and destruct all objects.
   2305  */
   2306 static void
   2307 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2308 {
   2309 	void *object;
   2310 	pcg_t *next;
   2311 	int i;
   2312 
   2313 	for (; pcg != NULL; pcg = next) {
   2314 		next = pcg->pcg_next;
   2315 
   2316 		for (i = 0; i < pcg->pcg_avail; i++) {
   2317 			object = pcg->pcg_objects[i].pcgo_va;
   2318 			pool_cache_destruct_object1(pc, object);
   2319 		}
   2320 
   2321 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2322 			pool_put(&pcg_large_pool, pcg);
   2323 		} else {
   2324 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2325 			pool_put(&pcg_normal_pool, pcg);
   2326 		}
   2327 	}
   2328 }
   2329 
   2330 /*
   2331  * pool_cache_invalidate:
   2332  *
   2333  *	Invalidate a pool cache (destruct and release all of the
   2334  *	cached objects).  Does not reclaim objects from the pool.
   2335  */
   2336 void
   2337 pool_cache_invalidate(pool_cache_t pc)
   2338 {
   2339 	pcg_t *full, *empty, *part;
   2340 
   2341 	mutex_enter(&pc->pc_lock);
   2342 	full = pc->pc_fullgroups;
   2343 	empty = pc->pc_emptygroups;
   2344 	part = pc->pc_partgroups;
   2345 	pc->pc_fullgroups = NULL;
   2346 	pc->pc_emptygroups = NULL;
   2347 	pc->pc_partgroups = NULL;
   2348 	pc->pc_nfull = 0;
   2349 	pc->pc_nempty = 0;
   2350 	pc->pc_npart = 0;
   2351 	mutex_exit(&pc->pc_lock);
   2352 
   2353 	pool_cache_invalidate_groups(pc, full);
   2354 	pool_cache_invalidate_groups(pc, empty);
   2355 	pool_cache_invalidate_groups(pc, part);
   2356 }
   2357 
   2358 void
   2359 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2360 {
   2361 
   2362 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2363 }
   2364 
   2365 void
   2366 pool_cache_setlowat(pool_cache_t pc, int n)
   2367 {
   2368 
   2369 	pool_setlowat(&pc->pc_pool, n);
   2370 }
   2371 
   2372 void
   2373 pool_cache_sethiwat(pool_cache_t pc, int n)
   2374 {
   2375 
   2376 	pool_sethiwat(&pc->pc_pool, n);
   2377 }
   2378 
   2379 void
   2380 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2381 {
   2382 
   2383 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2384 }
   2385 
   2386 static inline pool_cache_cpu_t *
   2387 pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2388 {
   2389 	pool_cache_cpu_t *cc;
   2390 
   2391 	/*
   2392 	 * Prevent other users of the cache from accessing our
   2393 	 * CPU-local data.  To avoid touching shared state, we
   2394 	 * pull the neccessary information from CPU local data.
   2395 	 */
   2396 	crit_enter();
   2397 	cc = pc->pc_cpus[curcpu()->ci_index];
   2398 	KASSERT(cc->cc_cache == pc);
   2399 	if (cc->cc_ipl != IPL_NONE) {
   2400 		*s = splraiseipl(cc->cc_iplcookie);
   2401 	}
   2402 	KASSERT(((uintptr_t)cc & (CACHE_LINE_SIZE - 1)) == 0);
   2403 
   2404 	return cc;
   2405 }
   2406 
   2407 static inline void
   2408 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2409 {
   2410 
   2411 	/* No longer need exclusive access to the per-CPU data. */
   2412 	if (cc->cc_ipl != IPL_NONE) {
   2413 		splx(*s);
   2414 	}
   2415 	crit_exit();
   2416 }
   2417 
   2418 #if __GNUC_PREREQ__(3, 0)
   2419 __attribute ((noinline))
   2420 #endif
   2421 pool_cache_cpu_t *
   2422 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2423 		    paddr_t *pap, int flags)
   2424 {
   2425 	pcg_t *pcg, *cur;
   2426 	uint64_t ncsw;
   2427 	pool_cache_t pc;
   2428 	void *object;
   2429 
   2430 	pc = cc->cc_cache;
   2431 	cc->cc_misses++;
   2432 
   2433 	/*
   2434 	 * Nothing was available locally.  Try and grab a group
   2435 	 * from the cache.
   2436 	 */
   2437 	if (!mutex_tryenter(&pc->pc_lock)) {
   2438 		ncsw = curlwp->l_ncsw;
   2439 		mutex_enter(&pc->pc_lock);
   2440 		pc->pc_contended++;
   2441 
   2442 		/*
   2443 		 * If we context switched while locking, then
   2444 		 * our view of the per-CPU data is invalid:
   2445 		 * retry.
   2446 		 */
   2447 		if (curlwp->l_ncsw != ncsw) {
   2448 			mutex_exit(&pc->pc_lock);
   2449 			pool_cache_cpu_exit(cc, s);
   2450 			return pool_cache_cpu_enter(pc, s);
   2451 		}
   2452 	}
   2453 
   2454 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2455 		/*
   2456 		 * If there's a full group, release our empty
   2457 		 * group back to the cache.  Install the full
   2458 		 * group as cc_current and return.
   2459 		 */
   2460 		if ((cur = cc->cc_current) != NULL) {
   2461 			KASSERT(cur->pcg_avail == 0);
   2462 			cur->pcg_next = pc->pc_emptygroups;
   2463 			pc->pc_emptygroups = cur;
   2464 			pc->pc_nempty++;
   2465 		}
   2466 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2467 		cc->cc_current = pcg;
   2468 		pc->pc_fullgroups = pcg->pcg_next;
   2469 		pc->pc_hits++;
   2470 		pc->pc_nfull--;
   2471 		mutex_exit(&pc->pc_lock);
   2472 		return cc;
   2473 	}
   2474 
   2475 	/*
   2476 	 * Nothing available locally or in cache.  Take the slow
   2477 	 * path: fetch a new object from the pool and construct
   2478 	 * it.
   2479 	 */
   2480 	pc->pc_misses++;
   2481 	mutex_exit(&pc->pc_lock);
   2482 	pool_cache_cpu_exit(cc, s);
   2483 
   2484 	object = pool_get(&pc->pc_pool, flags);
   2485 	*objectp = object;
   2486 	if (object == NULL)
   2487 		return NULL;
   2488 
   2489 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2490 		pool_put(&pc->pc_pool, object);
   2491 		*objectp = NULL;
   2492 		return NULL;
   2493 	}
   2494 
   2495 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2496 	    (pc->pc_pool.pr_align - 1)) == 0);
   2497 
   2498 	if (pap != NULL) {
   2499 #ifdef POOL_VTOPHYS
   2500 		*pap = POOL_VTOPHYS(object);
   2501 #else
   2502 		*pap = POOL_PADDR_INVALID;
   2503 #endif
   2504 	}
   2505 
   2506 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2507 	return NULL;
   2508 }
   2509 
   2510 /*
   2511  * pool_cache_get{,_paddr}:
   2512  *
   2513  *	Get an object from a pool cache (optionally returning
   2514  *	the physical address of the object).
   2515  */
   2516 void *
   2517 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2518 {
   2519 	pool_cache_cpu_t *cc;
   2520 	pcg_t *pcg;
   2521 	void *object;
   2522 	int s;
   2523 
   2524 #ifdef LOCKDEBUG
   2525 	if (flags & PR_WAITOK)
   2526 		ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
   2527 #endif
   2528 
   2529 	cc = pool_cache_cpu_enter(pc, &s);
   2530 	do {
   2531 		/* Try and allocate an object from the current group. */
   2532 	 	pcg = cc->cc_current;
   2533 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2534 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2535 			if (pap != NULL)
   2536 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2537 #if defined(DIAGNOSTIC)
   2538 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2539 #endif /* defined(DIAGNOSTIC) */
   2540 			KASSERT(pcg->pcg_avail <= pcg->pcg_size);
   2541 			KASSERT(object != NULL);
   2542 			cc->cc_hits++;
   2543 			pool_cache_cpu_exit(cc, &s);
   2544 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2545 			return object;
   2546 		}
   2547 
   2548 		/*
   2549 		 * That failed.  If the previous group isn't empty, swap
   2550 		 * it with the current group and allocate from there.
   2551 		 */
   2552 		pcg = cc->cc_previous;
   2553 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2554 			cc->cc_previous = cc->cc_current;
   2555 			cc->cc_current = pcg;
   2556 			continue;
   2557 		}
   2558 
   2559 		/*
   2560 		 * Can't allocate from either group: try the slow path.
   2561 		 * If get_slow() allocated an object for us, or if
   2562 		 * no more objects are available, it will return NULL.
   2563 		 * Otherwise, we need to retry.
   2564 		 */
   2565 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2566 	} while (cc != NULL);
   2567 
   2568 	return object;
   2569 }
   2570 
   2571 #if __GNUC_PREREQ__(3, 0)
   2572 __attribute ((noinline))
   2573 #endif
   2574 pool_cache_cpu_t *
   2575 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2576 {
   2577 	pcg_t *pcg, *cur;
   2578 	uint64_t ncsw;
   2579 	pool_cache_t pc;
   2580 	u_int nobj;
   2581 
   2582 	pc = cc->cc_cache;
   2583 	cc->cc_misses++;
   2584 
   2585 	/*
   2586 	 * No free slots locally.  Try to grab an empty, unused
   2587 	 * group from the cache.
   2588 	 */
   2589 	if (!mutex_tryenter(&pc->pc_lock)) {
   2590 		ncsw = curlwp->l_ncsw;
   2591 		mutex_enter(&pc->pc_lock);
   2592 		pc->pc_contended++;
   2593 
   2594 		/*
   2595 		 * If we context switched while locking, then
   2596 		 * our view of the per-CPU data is invalid:
   2597 		 * retry.
   2598 		 */
   2599 		if (curlwp->l_ncsw != ncsw) {
   2600 			mutex_exit(&pc->pc_lock);
   2601 			pool_cache_cpu_exit(cc, s);
   2602 			return pool_cache_cpu_enter(pc, s);
   2603 		}
   2604 	}
   2605 
   2606 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2607 		/*
   2608 		 * If there's a empty group, release our full
   2609 		 * group back to the cache.  Install the empty
   2610 		 * group and return.
   2611 		 */
   2612 		KASSERT(pcg->pcg_avail == 0);
   2613 		pc->pc_emptygroups = pcg->pcg_next;
   2614 		if (cc->cc_previous == NULL) {
   2615 			cc->cc_previous = pcg;
   2616 		} else {
   2617 			if ((cur = cc->cc_current) != NULL) {
   2618 				KASSERT(cur->pcg_avail == pcg->pcg_size);
   2619 				cur->pcg_next = pc->pc_fullgroups;
   2620 				pc->pc_fullgroups = cur;
   2621 				pc->pc_nfull++;
   2622 			}
   2623 			cc->cc_current = pcg;
   2624 		}
   2625 		pc->pc_hits++;
   2626 		pc->pc_nempty--;
   2627 		mutex_exit(&pc->pc_lock);
   2628 		return cc;
   2629 	}
   2630 
   2631 	/*
   2632 	 * Nothing available locally or in cache.  Take the
   2633 	 * slow path and try to allocate a new group that we
   2634 	 * can release to.
   2635 	 */
   2636 	pc->pc_misses++;
   2637 	mutex_exit(&pc->pc_lock);
   2638 	pool_cache_cpu_exit(cc, s);
   2639 
   2640 	/*
   2641 	 * If we can't allocate a new group, just throw the
   2642 	 * object away.
   2643 	 */
   2644 	nobj = pc->pc_pcgsize;
   2645 	if (pool_cache_disable) {
   2646 		pcg = NULL;
   2647 	} else if (nobj == PCG_NOBJECTS_LARGE) {
   2648 		pcg = pool_get(&pcg_large_pool, PR_NOWAIT);
   2649 	} else {
   2650 		pcg = pool_get(&pcg_normal_pool, PR_NOWAIT);
   2651 	}
   2652 	if (pcg == NULL) {
   2653 		pool_cache_destruct_object(pc, object);
   2654 		return NULL;
   2655 	}
   2656 	pcg->pcg_avail = 0;
   2657 	pcg->pcg_size = nobj;
   2658 
   2659 	/*
   2660 	 * Add the empty group to the cache and try again.
   2661 	 */
   2662 	mutex_enter(&pc->pc_lock);
   2663 	pcg->pcg_next = pc->pc_emptygroups;
   2664 	pc->pc_emptygroups = pcg;
   2665 	pc->pc_nempty++;
   2666 	mutex_exit(&pc->pc_lock);
   2667 
   2668 	return pool_cache_cpu_enter(pc, s);
   2669 }
   2670 
   2671 /*
   2672  * pool_cache_put{,_paddr}:
   2673  *
   2674  *	Put an object back to the pool cache (optionally caching the
   2675  *	physical address of the object).
   2676  */
   2677 void
   2678 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2679 {
   2680 	pool_cache_cpu_t *cc;
   2681 	pcg_t *pcg;
   2682 	int s;
   2683 
   2684 	FREECHECK_IN(&pc->pc_freecheck, object);
   2685 
   2686 	cc = pool_cache_cpu_enter(pc, &s);
   2687 	do {
   2688 		/* If the current group isn't full, release it there. */
   2689 	 	pcg = cc->cc_current;
   2690 		if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) {
   2691 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2692 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2693 			pcg->pcg_avail++;
   2694 			cc->cc_hits++;
   2695 			pool_cache_cpu_exit(cc, &s);
   2696 			return;
   2697 		}
   2698 
   2699 		/*
   2700 		 * That failed.  If the previous group is empty, swap
   2701 		 * it with the current group and try again.
   2702 		 */
   2703 		pcg = cc->cc_previous;
   2704 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2705 			cc->cc_previous = cc->cc_current;
   2706 			cc->cc_current = pcg;
   2707 			continue;
   2708 		}
   2709 
   2710 		/*
   2711 		 * Can't free to either group: try the slow path.
   2712 		 * If put_slow() releases the object for us, it
   2713 		 * will return NULL.  Otherwise we need to retry.
   2714 		 */
   2715 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2716 	} while (cc != NULL);
   2717 }
   2718 
   2719 /*
   2720  * pool_cache_xcall:
   2721  *
   2722  *	Transfer objects from the per-CPU cache to the global cache.
   2723  *	Run within a cross-call thread.
   2724  */
   2725 static void
   2726 pool_cache_xcall(pool_cache_t pc)
   2727 {
   2728 	pool_cache_cpu_t *cc;
   2729 	pcg_t *prev, *cur, **list;
   2730 	int s = 0; /* XXXgcc */
   2731 
   2732 	cc = pool_cache_cpu_enter(pc, &s);
   2733 	cur = cc->cc_current;
   2734 	cc->cc_current = NULL;
   2735 	prev = cc->cc_previous;
   2736 	cc->cc_previous = NULL;
   2737 	pool_cache_cpu_exit(cc, &s);
   2738 
   2739 	/*
   2740 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2741 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2742 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2743 	 * kernel_lock.
   2744 	 */
   2745 	s = splvm();
   2746 	mutex_enter(&pc->pc_lock);
   2747 	if (cur != NULL) {
   2748 		if (cur->pcg_avail == cur->pcg_size) {
   2749 			list = &pc->pc_fullgroups;
   2750 			pc->pc_nfull++;
   2751 		} else if (cur->pcg_avail == 0) {
   2752 			list = &pc->pc_emptygroups;
   2753 			pc->pc_nempty++;
   2754 		} else {
   2755 			list = &pc->pc_partgroups;
   2756 			pc->pc_npart++;
   2757 		}
   2758 		cur->pcg_next = *list;
   2759 		*list = cur;
   2760 	}
   2761 	if (prev != NULL) {
   2762 		if (prev->pcg_avail == prev->pcg_size) {
   2763 			list = &pc->pc_fullgroups;
   2764 			pc->pc_nfull++;
   2765 		} else if (prev->pcg_avail == 0) {
   2766 			list = &pc->pc_emptygroups;
   2767 			pc->pc_nempty++;
   2768 		} else {
   2769 			list = &pc->pc_partgroups;
   2770 			pc->pc_npart++;
   2771 		}
   2772 		prev->pcg_next = *list;
   2773 		*list = prev;
   2774 	}
   2775 	mutex_exit(&pc->pc_lock);
   2776 	splx(s);
   2777 }
   2778 
   2779 /*
   2780  * Pool backend allocators.
   2781  *
   2782  * Each pool has a backend allocator that handles allocation, deallocation,
   2783  * and any additional draining that might be needed.
   2784  *
   2785  * We provide two standard allocators:
   2786  *
   2787  *	pool_allocator_kmem - the default when no allocator is specified
   2788  *
   2789  *	pool_allocator_nointr - used for pools that will not be accessed
   2790  *	in interrupt context.
   2791  */
   2792 void	*pool_page_alloc(struct pool *, int);
   2793 void	pool_page_free(struct pool *, void *);
   2794 
   2795 #ifdef POOL_SUBPAGE
   2796 struct pool_allocator pool_allocator_kmem_fullpage = {
   2797 	pool_page_alloc, pool_page_free, 0,
   2798 	.pa_backingmapptr = &kmem_map,
   2799 };
   2800 #else
   2801 struct pool_allocator pool_allocator_kmem = {
   2802 	pool_page_alloc, pool_page_free, 0,
   2803 	.pa_backingmapptr = &kmem_map,
   2804 };
   2805 #endif
   2806 
   2807 void	*pool_page_alloc_nointr(struct pool *, int);
   2808 void	pool_page_free_nointr(struct pool *, void *);
   2809 
   2810 #ifdef POOL_SUBPAGE
   2811 struct pool_allocator pool_allocator_nointr_fullpage = {
   2812 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2813 	.pa_backingmapptr = &kernel_map,
   2814 };
   2815 #else
   2816 struct pool_allocator pool_allocator_nointr = {
   2817 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2818 	.pa_backingmapptr = &kernel_map,
   2819 };
   2820 #endif
   2821 
   2822 #ifdef POOL_SUBPAGE
   2823 void	*pool_subpage_alloc(struct pool *, int);
   2824 void	pool_subpage_free(struct pool *, void *);
   2825 
   2826 struct pool_allocator pool_allocator_kmem = {
   2827 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2828 	.pa_backingmapptr = &kmem_map,
   2829 };
   2830 
   2831 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2832 void	pool_subpage_free_nointr(struct pool *, void *);
   2833 
   2834 struct pool_allocator pool_allocator_nointr = {
   2835 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2836 	.pa_backingmapptr = &kmem_map,
   2837 };
   2838 #endif /* POOL_SUBPAGE */
   2839 
   2840 static void *
   2841 pool_allocator_alloc(struct pool *pp, int flags)
   2842 {
   2843 	struct pool_allocator *pa = pp->pr_alloc;
   2844 	void *res;
   2845 
   2846 	res = (*pa->pa_alloc)(pp, flags);
   2847 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2848 		/*
   2849 		 * We only run the drain hook here if PR_NOWAIT.
   2850 		 * In other cases, the hook will be run in
   2851 		 * pool_reclaim().
   2852 		 */
   2853 		if (pp->pr_drain_hook != NULL) {
   2854 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2855 			res = (*pa->pa_alloc)(pp, flags);
   2856 		}
   2857 	}
   2858 	return res;
   2859 }
   2860 
   2861 static void
   2862 pool_allocator_free(struct pool *pp, void *v)
   2863 {
   2864 	struct pool_allocator *pa = pp->pr_alloc;
   2865 
   2866 	(*pa->pa_free)(pp, v);
   2867 }
   2868 
   2869 void *
   2870 pool_page_alloc(struct pool *pp, int flags)
   2871 {
   2872 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2873 
   2874 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2875 }
   2876 
   2877 void
   2878 pool_page_free(struct pool *pp, void *v)
   2879 {
   2880 
   2881 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2882 }
   2883 
   2884 static void *
   2885 pool_page_alloc_meta(struct pool *pp, int flags)
   2886 {
   2887 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2888 
   2889 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2890 }
   2891 
   2892 static void
   2893 pool_page_free_meta(struct pool *pp, void *v)
   2894 {
   2895 
   2896 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2897 }
   2898 
   2899 #ifdef POOL_SUBPAGE
   2900 /* Sub-page allocator, for machines with large hardware pages. */
   2901 void *
   2902 pool_subpage_alloc(struct pool *pp, int flags)
   2903 {
   2904 	return pool_get(&psppool, flags);
   2905 }
   2906 
   2907 void
   2908 pool_subpage_free(struct pool *pp, void *v)
   2909 {
   2910 	pool_put(&psppool, v);
   2911 }
   2912 
   2913 /* We don't provide a real nointr allocator.  Maybe later. */
   2914 void *
   2915 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2916 {
   2917 
   2918 	return (pool_subpage_alloc(pp, flags));
   2919 }
   2920 
   2921 void
   2922 pool_subpage_free_nointr(struct pool *pp, void *v)
   2923 {
   2924 
   2925 	pool_subpage_free(pp, v);
   2926 }
   2927 #endif /* POOL_SUBPAGE */
   2928 void *
   2929 pool_page_alloc_nointr(struct pool *pp, int flags)
   2930 {
   2931 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2932 
   2933 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2934 }
   2935 
   2936 void
   2937 pool_page_free_nointr(struct pool *pp, void *v)
   2938 {
   2939 
   2940 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2941 }
   2942 
   2943 #if defined(DDB)
   2944 static bool
   2945 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2946 {
   2947 
   2948 	return (uintptr_t)ph->ph_page <= addr &&
   2949 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2950 }
   2951 
   2952 static bool
   2953 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2954 {
   2955 
   2956 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2957 }
   2958 
   2959 static bool
   2960 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2961 {
   2962 	int i;
   2963 
   2964 	if (pcg == NULL) {
   2965 		return false;
   2966 	}
   2967 	for (i = 0; i < pcg->pcg_avail; i++) {
   2968 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2969 			return true;
   2970 		}
   2971 	}
   2972 	return false;
   2973 }
   2974 
   2975 static bool
   2976 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2977 {
   2978 
   2979 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2980 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2981 		pool_item_bitmap_t *bitmap =
   2982 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2983 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2984 
   2985 		return (*bitmap & mask) == 0;
   2986 	} else {
   2987 		struct pool_item *pi;
   2988 
   2989 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2990 			if (pool_in_item(pp, pi, addr)) {
   2991 				return false;
   2992 			}
   2993 		}
   2994 		return true;
   2995 	}
   2996 }
   2997 
   2998 void
   2999 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   3000 {
   3001 	struct pool *pp;
   3002 
   3003 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   3004 		struct pool_item_header *ph;
   3005 		uintptr_t item;
   3006 		bool allocated = true;
   3007 		bool incache = false;
   3008 		bool incpucache = false;
   3009 		char cpucachestr[32];
   3010 
   3011 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   3012 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   3013 				if (pool_in_page(pp, ph, addr)) {
   3014 					goto found;
   3015 				}
   3016 			}
   3017 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3018 				if (pool_in_page(pp, ph, addr)) {
   3019 					allocated =
   3020 					    pool_allocated(pp, ph, addr);
   3021 					goto found;
   3022 				}
   3023 			}
   3024 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3025 				if (pool_in_page(pp, ph, addr)) {
   3026 					allocated = false;
   3027 					goto found;
   3028 				}
   3029 			}
   3030 			continue;
   3031 		} else {
   3032 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3033 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3034 				continue;
   3035 			}
   3036 			allocated = pool_allocated(pp, ph, addr);
   3037 		}
   3038 found:
   3039 		if (allocated && pp->pr_cache) {
   3040 			pool_cache_t pc = pp->pr_cache;
   3041 			struct pool_cache_group *pcg;
   3042 			int i;
   3043 
   3044 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3045 			    pcg = pcg->pcg_next) {
   3046 				if (pool_in_cg(pp, pcg, addr)) {
   3047 					incache = true;
   3048 					goto print;
   3049 				}
   3050 			}
   3051 			for (i = 0; i < MAXCPUS; i++) {
   3052 				pool_cache_cpu_t *cc;
   3053 
   3054 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3055 					continue;
   3056 				}
   3057 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3058 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3059 					struct cpu_info *ci =
   3060 					    cpu_lookup_byindex(i);
   3061 
   3062 					incpucache = true;
   3063 					snprintf(cpucachestr,
   3064 					    sizeof(cpucachestr),
   3065 					    "cached by CPU %u",
   3066 					    (u_int)ci->ci_cpuid);
   3067 					goto print;
   3068 				}
   3069 			}
   3070 		}
   3071 print:
   3072 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3073 		item = item + rounddown(addr - item, pp->pr_size);
   3074 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3075 		    (void *)addr, item, (size_t)(addr - item),
   3076 		    pp->pr_wchan,
   3077 		    incpucache ? cpucachestr :
   3078 		    incache ? "cached" : allocated ? "allocated" : "free");
   3079 	}
   3080 }
   3081 #endif /* defined(DDB) */
   3082