subr_pool.c revision 1.156.2.1 1 /* $NetBSD: subr_pool.c,v 1.156.2.1 2008/05/18 12:35:09 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.156.2.1 2008/05/18 12:35:09 yamt Exp $");
35
36 #include "opt_ddb.h"
37 #include "opt_pool.h"
38 #include "opt_poollog.h"
39 #include "opt_lockdebug.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bitops.h>
44 #include <sys/proc.h>
45 #include <sys/errno.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/pool.h>
49 #include <sys/syslog.h>
50 #include <sys/debug.h>
51 #include <sys/lockdebug.h>
52 #include <sys/xcall.h>
53 #include <sys/cpu.h>
54 #include <sys/atomic.h>
55
56 #include <uvm/uvm.h>
57
58 /*
59 * Pool resource management utility.
60 *
61 * Memory is allocated in pages which are split into pieces according to
62 * the pool item size. Each page is kept on one of three lists in the
63 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
64 * for empty, full and partially-full pages respectively. The individual
65 * pool items are on a linked list headed by `ph_itemlist' in each page
66 * header. The memory for building the page list is either taken from
67 * the allocated pages themselves (for small pool items) or taken from
68 * an internal pool of page headers (`phpool').
69 */
70
71 /* List of all pools */
72 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
73
74 /* Private pool for page header structures */
75 #define PHPOOL_MAX 8
76 static struct pool phpool[PHPOOL_MAX];
77 #define PHPOOL_FREELIST_NELEM(idx) \
78 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
79
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84
85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
86 SLIST_HEAD_INITIALIZER(pa_deferinitq);
87
88 static void *pool_page_alloc_meta(struct pool *, int);
89 static void pool_page_free_meta(struct pool *, void *);
90
91 /* allocator for pool metadata */
92 struct pool_allocator pool_allocator_meta = {
93 pool_page_alloc_meta, pool_page_free_meta,
94 .pa_backingmapptr = &kmem_map,
95 };
96
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
99
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool *drainpp;
102
103 /* This lock protects both pool_head and drainpp. */
104 static kmutex_t pool_head_lock;
105 static kcondvar_t pool_busy;
106
107 typedef uint32_t pool_item_bitmap_t;
108 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
109 #define BITMAP_MASK (BITMAP_SIZE - 1)
110
111 struct pool_item_header {
112 /* Page headers */
113 LIST_ENTRY(pool_item_header)
114 ph_pagelist; /* pool page list */
115 SPLAY_ENTRY(pool_item_header)
116 ph_node; /* Off-page page headers */
117 void * ph_page; /* this page's address */
118 uint32_t ph_time; /* last referenced */
119 uint16_t ph_nmissing; /* # of chunks in use */
120 uint16_t ph_off; /* start offset in page */
121 union {
122 /* !PR_NOTOUCH */
123 struct {
124 LIST_HEAD(, pool_item)
125 phu_itemlist; /* chunk list for this page */
126 } phu_normal;
127 /* PR_NOTOUCH */
128 struct {
129 pool_item_bitmap_t phu_bitmap[1];
130 } phu_notouch;
131 } ph_u;
132 };
133 #define ph_itemlist ph_u.phu_normal.phu_itemlist
134 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
135
136 struct pool_item {
137 #ifdef DIAGNOSTIC
138 u_int pi_magic;
139 #endif
140 #define PI_MAGIC 0xdeaddeadU
141 /* Other entries use only this list entry */
142 LIST_ENTRY(pool_item) pi_list;
143 };
144
145 #define POOL_NEEDS_CATCHUP(pp) \
146 ((pp)->pr_nitems < (pp)->pr_minitems)
147
148 /*
149 * Pool cache management.
150 *
151 * Pool caches provide a way for constructed objects to be cached by the
152 * pool subsystem. This can lead to performance improvements by avoiding
153 * needless object construction/destruction; it is deferred until absolutely
154 * necessary.
155 *
156 * Caches are grouped into cache groups. Each cache group references up
157 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
158 * object from the pool, it calls the object's constructor and places it
159 * into a cache group. When a cache group frees an object back to the
160 * pool, it first calls the object's destructor. This allows the object
161 * to persist in constructed form while freed to the cache.
162 *
163 * The pool references each cache, so that when a pool is drained by the
164 * pagedaemon, it can drain each individual cache as well. Each time a
165 * cache is drained, the most idle cache group is freed to the pool in
166 * its entirety.
167 *
168 * Pool caches are layed on top of pools. By layering them, we can avoid
169 * the complexity of cache management for pools which would not benefit
170 * from it.
171 */
172
173 static struct pool pcg_normal_pool;
174 static struct pool pcg_large_pool;
175 static struct pool cache_pool;
176 static struct pool cache_cpu_pool;
177
178 /* List of all caches. */
179 TAILQ_HEAD(,pool_cache) pool_cache_head =
180 TAILQ_HEAD_INITIALIZER(pool_cache_head);
181
182 int pool_cache_disable;
183
184
185 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
186 void *, paddr_t);
187 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
188 void **, paddr_t *, int);
189 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
190 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
191 static void pool_cache_xcall(pool_cache_t);
192
193 static int pool_catchup(struct pool *);
194 static void pool_prime_page(struct pool *, void *,
195 struct pool_item_header *);
196 static void pool_update_curpage(struct pool *);
197
198 static int pool_grow(struct pool *, int);
199 static void *pool_allocator_alloc(struct pool *, int);
200 static void pool_allocator_free(struct pool *, void *);
201
202 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
203 void (*)(const char *, ...));
204 static void pool_print1(struct pool *, const char *,
205 void (*)(const char *, ...));
206
207 static int pool_chk_page(struct pool *, const char *,
208 struct pool_item_header *);
209
210 /*
211 * Pool log entry. An array of these is allocated in pool_init().
212 */
213 struct pool_log {
214 const char *pl_file;
215 long pl_line;
216 int pl_action;
217 #define PRLOG_GET 1
218 #define PRLOG_PUT 2
219 void *pl_addr;
220 };
221
222 #ifdef POOL_DIAGNOSTIC
223 /* Number of entries in pool log buffers */
224 #ifndef POOL_LOGSIZE
225 #define POOL_LOGSIZE 10
226 #endif
227
228 int pool_logsize = POOL_LOGSIZE;
229
230 static inline void
231 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
232 {
233 int n = pp->pr_curlogentry;
234 struct pool_log *pl;
235
236 if ((pp->pr_roflags & PR_LOGGING) == 0)
237 return;
238
239 /*
240 * Fill in the current entry. Wrap around and overwrite
241 * the oldest entry if necessary.
242 */
243 pl = &pp->pr_log[n];
244 pl->pl_file = file;
245 pl->pl_line = line;
246 pl->pl_action = action;
247 pl->pl_addr = v;
248 if (++n >= pp->pr_logsize)
249 n = 0;
250 pp->pr_curlogentry = n;
251 }
252
253 static void
254 pr_printlog(struct pool *pp, struct pool_item *pi,
255 void (*pr)(const char *, ...))
256 {
257 int i = pp->pr_logsize;
258 int n = pp->pr_curlogentry;
259
260 if ((pp->pr_roflags & PR_LOGGING) == 0)
261 return;
262
263 /*
264 * Print all entries in this pool's log.
265 */
266 while (i-- > 0) {
267 struct pool_log *pl = &pp->pr_log[n];
268 if (pl->pl_action != 0) {
269 if (pi == NULL || pi == pl->pl_addr) {
270 (*pr)("\tlog entry %d:\n", i);
271 (*pr)("\t\taction = %s, addr = %p\n",
272 pl->pl_action == PRLOG_GET ? "get" : "put",
273 pl->pl_addr);
274 (*pr)("\t\tfile: %s at line %lu\n",
275 pl->pl_file, pl->pl_line);
276 }
277 }
278 if (++n >= pp->pr_logsize)
279 n = 0;
280 }
281 }
282
283 static inline void
284 pr_enter(struct pool *pp, const char *file, long line)
285 {
286
287 if (__predict_false(pp->pr_entered_file != NULL)) {
288 printf("pool %s: reentrancy at file %s line %ld\n",
289 pp->pr_wchan, file, line);
290 printf(" previous entry at file %s line %ld\n",
291 pp->pr_entered_file, pp->pr_entered_line);
292 panic("pr_enter");
293 }
294
295 pp->pr_entered_file = file;
296 pp->pr_entered_line = line;
297 }
298
299 static inline void
300 pr_leave(struct pool *pp)
301 {
302
303 if (__predict_false(pp->pr_entered_file == NULL)) {
304 printf("pool %s not entered?\n", pp->pr_wchan);
305 panic("pr_leave");
306 }
307
308 pp->pr_entered_file = NULL;
309 pp->pr_entered_line = 0;
310 }
311
312 static inline void
313 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
314 {
315
316 if (pp->pr_entered_file != NULL)
317 (*pr)("\n\tcurrently entered from file %s line %ld\n",
318 pp->pr_entered_file, pp->pr_entered_line);
319 }
320 #else
321 #define pr_log(pp, v, action, file, line)
322 #define pr_printlog(pp, pi, pr)
323 #define pr_enter(pp, file, line)
324 #define pr_leave(pp)
325 #define pr_enter_check(pp, pr)
326 #endif /* POOL_DIAGNOSTIC */
327
328 static inline unsigned int
329 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
330 const void *v)
331 {
332 const char *cp = v;
333 unsigned int idx;
334
335 KASSERT(pp->pr_roflags & PR_NOTOUCH);
336 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
337 KASSERT(idx < pp->pr_itemsperpage);
338 return idx;
339 }
340
341 static inline void
342 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
343 void *obj)
344 {
345 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
346 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
347 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
348
349 KASSERT((*bitmap & mask) == 0);
350 *bitmap |= mask;
351 }
352
353 static inline void *
354 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
355 {
356 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
357 unsigned int idx;
358 int i;
359
360 for (i = 0; ; i++) {
361 int bit;
362
363 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
364 bit = ffs32(bitmap[i]);
365 if (bit) {
366 pool_item_bitmap_t mask;
367
368 bit--;
369 idx = (i * BITMAP_SIZE) + bit;
370 mask = 1 << bit;
371 KASSERT((bitmap[i] & mask) != 0);
372 bitmap[i] &= ~mask;
373 break;
374 }
375 }
376 KASSERT(idx < pp->pr_itemsperpage);
377 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
378 }
379
380 static inline void
381 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
382 {
383 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
384 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
385 int i;
386
387 for (i = 0; i < n; i++) {
388 bitmap[i] = (pool_item_bitmap_t)-1;
389 }
390 }
391
392 static inline int
393 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
394 {
395
396 /*
397 * we consider pool_item_header with smaller ph_page bigger.
398 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
399 */
400
401 if (a->ph_page < b->ph_page)
402 return (1);
403 else if (a->ph_page > b->ph_page)
404 return (-1);
405 else
406 return (0);
407 }
408
409 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
410 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
411
412 static inline struct pool_item_header *
413 pr_find_pagehead_noalign(struct pool *pp, void *v)
414 {
415 struct pool_item_header *ph, tmp;
416
417 tmp.ph_page = (void *)(uintptr_t)v;
418 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
419 if (ph == NULL) {
420 ph = SPLAY_ROOT(&pp->pr_phtree);
421 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
422 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
423 }
424 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
425 }
426
427 return ph;
428 }
429
430 /*
431 * Return the pool page header based on item address.
432 */
433 static inline struct pool_item_header *
434 pr_find_pagehead(struct pool *pp, void *v)
435 {
436 struct pool_item_header *ph, tmp;
437
438 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
439 ph = pr_find_pagehead_noalign(pp, v);
440 } else {
441 void *page =
442 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
443
444 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
445 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
446 } else {
447 tmp.ph_page = page;
448 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
449 }
450 }
451
452 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
453 ((char *)ph->ph_page <= (char *)v &&
454 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
455 return ph;
456 }
457
458 static void
459 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
460 {
461 struct pool_item_header *ph;
462
463 while ((ph = LIST_FIRST(pq)) != NULL) {
464 LIST_REMOVE(ph, ph_pagelist);
465 pool_allocator_free(pp, ph->ph_page);
466 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
467 pool_put(pp->pr_phpool, ph);
468 }
469 }
470
471 /*
472 * Remove a page from the pool.
473 */
474 static inline void
475 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
476 struct pool_pagelist *pq)
477 {
478
479 KASSERT(mutex_owned(&pp->pr_lock));
480
481 /*
482 * If the page was idle, decrement the idle page count.
483 */
484 if (ph->ph_nmissing == 0) {
485 #ifdef DIAGNOSTIC
486 if (pp->pr_nidle == 0)
487 panic("pr_rmpage: nidle inconsistent");
488 if (pp->pr_nitems < pp->pr_itemsperpage)
489 panic("pr_rmpage: nitems inconsistent");
490 #endif
491 pp->pr_nidle--;
492 }
493
494 pp->pr_nitems -= pp->pr_itemsperpage;
495
496 /*
497 * Unlink the page from the pool and queue it for release.
498 */
499 LIST_REMOVE(ph, ph_pagelist);
500 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
501 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
502 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
503
504 pp->pr_npages--;
505 pp->pr_npagefree++;
506
507 pool_update_curpage(pp);
508 }
509
510 static bool
511 pa_starved_p(struct pool_allocator *pa)
512 {
513
514 if (pa->pa_backingmap != NULL) {
515 return vm_map_starved_p(pa->pa_backingmap);
516 }
517 return false;
518 }
519
520 static int
521 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
522 {
523 struct pool *pp = obj;
524 struct pool_allocator *pa = pp->pr_alloc;
525
526 KASSERT(&pp->pr_reclaimerentry == ce);
527 pool_reclaim(pp);
528 if (!pa_starved_p(pa)) {
529 return CALLBACK_CHAIN_ABORT;
530 }
531 return CALLBACK_CHAIN_CONTINUE;
532 }
533
534 static void
535 pool_reclaim_register(struct pool *pp)
536 {
537 struct vm_map *map = pp->pr_alloc->pa_backingmap;
538 int s;
539
540 if (map == NULL) {
541 return;
542 }
543
544 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
545 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
546 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
547 splx(s);
548 }
549
550 static void
551 pool_reclaim_unregister(struct pool *pp)
552 {
553 struct vm_map *map = pp->pr_alloc->pa_backingmap;
554 int s;
555
556 if (map == NULL) {
557 return;
558 }
559
560 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
561 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
562 &pp->pr_reclaimerentry);
563 splx(s);
564 }
565
566 static void
567 pa_reclaim_register(struct pool_allocator *pa)
568 {
569 struct vm_map *map = *pa->pa_backingmapptr;
570 struct pool *pp;
571
572 KASSERT(pa->pa_backingmap == NULL);
573 if (map == NULL) {
574 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
575 return;
576 }
577 pa->pa_backingmap = map;
578 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
579 pool_reclaim_register(pp);
580 }
581 }
582
583 /*
584 * Initialize all the pools listed in the "pools" link set.
585 */
586 void
587 pool_subsystem_init(void)
588 {
589 struct pool_allocator *pa;
590 __link_set_decl(pools, struct link_pool_init);
591 struct link_pool_init * const *pi;
592
593 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
594 cv_init(&pool_busy, "poolbusy");
595
596 __link_set_foreach(pi, pools)
597 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
598 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
599 (*pi)->palloc, (*pi)->ipl);
600
601 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
602 KASSERT(pa->pa_backingmapptr != NULL);
603 KASSERT(*pa->pa_backingmapptr != NULL);
604 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
605 pa_reclaim_register(pa);
606 }
607
608 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
609 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
610
611 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
612 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
613 }
614
615 /*
616 * Initialize the given pool resource structure.
617 *
618 * We export this routine to allow other kernel parts to declare
619 * static pools that must be initialized before malloc() is available.
620 */
621 void
622 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
623 const char *wchan, struct pool_allocator *palloc, int ipl)
624 {
625 struct pool *pp1;
626 size_t trysize, phsize;
627 int off, slack;
628
629 #ifdef DEBUG
630 /*
631 * Check that the pool hasn't already been initialised and
632 * added to the list of all pools.
633 */
634 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
635 if (pp == pp1)
636 panic("pool_init: pool %s already initialised",
637 wchan);
638 }
639 #endif
640
641 #ifdef POOL_DIAGNOSTIC
642 /*
643 * Always log if POOL_DIAGNOSTIC is defined.
644 */
645 if (pool_logsize != 0)
646 flags |= PR_LOGGING;
647 #endif
648
649 if (palloc == NULL)
650 palloc = &pool_allocator_kmem;
651 #ifdef POOL_SUBPAGE
652 if (size > palloc->pa_pagesz) {
653 if (palloc == &pool_allocator_kmem)
654 palloc = &pool_allocator_kmem_fullpage;
655 else if (palloc == &pool_allocator_nointr)
656 palloc = &pool_allocator_nointr_fullpage;
657 }
658 #endif /* POOL_SUBPAGE */
659 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
660 if (palloc->pa_pagesz == 0)
661 palloc->pa_pagesz = PAGE_SIZE;
662
663 TAILQ_INIT(&palloc->pa_list);
664
665 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
666 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
667 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
668
669 if (palloc->pa_backingmapptr != NULL) {
670 pa_reclaim_register(palloc);
671 }
672 palloc->pa_flags |= PA_INITIALIZED;
673 }
674
675 if (align == 0)
676 align = ALIGN(1);
677
678 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
679 size = sizeof(struct pool_item);
680
681 size = roundup(size, align);
682 #ifdef DIAGNOSTIC
683 if (size > palloc->pa_pagesz)
684 panic("pool_init: pool item size (%zu) too large", size);
685 #endif
686
687 /*
688 * Initialize the pool structure.
689 */
690 LIST_INIT(&pp->pr_emptypages);
691 LIST_INIT(&pp->pr_fullpages);
692 LIST_INIT(&pp->pr_partpages);
693 pp->pr_cache = NULL;
694 pp->pr_curpage = NULL;
695 pp->pr_npages = 0;
696 pp->pr_minitems = 0;
697 pp->pr_minpages = 0;
698 pp->pr_maxpages = UINT_MAX;
699 pp->pr_roflags = flags;
700 pp->pr_flags = 0;
701 pp->pr_size = size;
702 pp->pr_align = align;
703 pp->pr_wchan = wchan;
704 pp->pr_alloc = palloc;
705 pp->pr_nitems = 0;
706 pp->pr_nout = 0;
707 pp->pr_hardlimit = UINT_MAX;
708 pp->pr_hardlimit_warning = NULL;
709 pp->pr_hardlimit_ratecap.tv_sec = 0;
710 pp->pr_hardlimit_ratecap.tv_usec = 0;
711 pp->pr_hardlimit_warning_last.tv_sec = 0;
712 pp->pr_hardlimit_warning_last.tv_usec = 0;
713 pp->pr_drain_hook = NULL;
714 pp->pr_drain_hook_arg = NULL;
715 pp->pr_freecheck = NULL;
716
717 /*
718 * Decide whether to put the page header off page to avoid
719 * wasting too large a part of the page or too big item.
720 * Off-page page headers go on a hash table, so we can match
721 * a returned item with its header based on the page address.
722 * We use 1/16 of the page size and about 8 times of the item
723 * size as the threshold (XXX: tune)
724 *
725 * However, we'll put the header into the page if we can put
726 * it without wasting any items.
727 *
728 * Silently enforce `0 <= ioff < align'.
729 */
730 pp->pr_itemoffset = ioff %= align;
731 /* See the comment below about reserved bytes. */
732 trysize = palloc->pa_pagesz - ((align - ioff) % align);
733 phsize = ALIGN(sizeof(struct pool_item_header));
734 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
735 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
736 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
737 /* Use the end of the page for the page header */
738 pp->pr_roflags |= PR_PHINPAGE;
739 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
740 } else {
741 /* The page header will be taken from our page header pool */
742 pp->pr_phoffset = 0;
743 off = palloc->pa_pagesz;
744 SPLAY_INIT(&pp->pr_phtree);
745 }
746
747 /*
748 * Alignment is to take place at `ioff' within the item. This means
749 * we must reserve up to `align - 1' bytes on the page to allow
750 * appropriate positioning of each item.
751 */
752 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
753 KASSERT(pp->pr_itemsperpage != 0);
754 if ((pp->pr_roflags & PR_NOTOUCH)) {
755 int idx;
756
757 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
758 idx++) {
759 /* nothing */
760 }
761 if (idx >= PHPOOL_MAX) {
762 /*
763 * if you see this panic, consider to tweak
764 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
765 */
766 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
767 pp->pr_wchan, pp->pr_itemsperpage);
768 }
769 pp->pr_phpool = &phpool[idx];
770 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
771 pp->pr_phpool = &phpool[0];
772 }
773 #if defined(DIAGNOSTIC)
774 else {
775 pp->pr_phpool = NULL;
776 }
777 #endif
778
779 /*
780 * Use the slack between the chunks and the page header
781 * for "cache coloring".
782 */
783 slack = off - pp->pr_itemsperpage * pp->pr_size;
784 pp->pr_maxcolor = (slack / align) * align;
785 pp->pr_curcolor = 0;
786
787 pp->pr_nget = 0;
788 pp->pr_nfail = 0;
789 pp->pr_nput = 0;
790 pp->pr_npagealloc = 0;
791 pp->pr_npagefree = 0;
792 pp->pr_hiwat = 0;
793 pp->pr_nidle = 0;
794 pp->pr_refcnt = 0;
795
796 #ifdef POOL_DIAGNOSTIC
797 if (flags & PR_LOGGING) {
798 if (kmem_map == NULL ||
799 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
800 M_TEMP, M_NOWAIT)) == NULL)
801 pp->pr_roflags &= ~PR_LOGGING;
802 pp->pr_curlogentry = 0;
803 pp->pr_logsize = pool_logsize;
804 }
805 #endif
806
807 pp->pr_entered_file = NULL;
808 pp->pr_entered_line = 0;
809
810 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
811 cv_init(&pp->pr_cv, wchan);
812 pp->pr_ipl = ipl;
813
814 /*
815 * Initialize private page header pool and cache magazine pool if we
816 * haven't done so yet.
817 * XXX LOCKING.
818 */
819 if (phpool[0].pr_size == 0) {
820 int idx;
821 for (idx = 0; idx < PHPOOL_MAX; idx++) {
822 static char phpool_names[PHPOOL_MAX][6+1+6+1];
823 int nelem;
824 size_t sz;
825
826 nelem = PHPOOL_FREELIST_NELEM(idx);
827 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
828 "phpool-%d", nelem);
829 sz = sizeof(struct pool_item_header);
830 if (nelem) {
831 sz = offsetof(struct pool_item_header,
832 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
833 }
834 pool_init(&phpool[idx], sz, 0, 0, 0,
835 phpool_names[idx], &pool_allocator_meta, IPL_VM);
836 }
837 #ifdef POOL_SUBPAGE
838 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
839 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
840 #endif
841
842 size = sizeof(pcg_t) +
843 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
844 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
845 "pcgnormal", &pool_allocator_meta, IPL_VM);
846
847 size = sizeof(pcg_t) +
848 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
849 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
850 "pcglarge", &pool_allocator_meta, IPL_VM);
851 }
852
853 /* Insert into the list of all pools. */
854 if (__predict_true(!cold))
855 mutex_enter(&pool_head_lock);
856 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
857 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
858 break;
859 }
860 if (pp1 == NULL)
861 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
862 else
863 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
864 if (__predict_true(!cold))
865 mutex_exit(&pool_head_lock);
866
867 /* Insert this into the list of pools using this allocator. */
868 if (__predict_true(!cold))
869 mutex_enter(&palloc->pa_lock);
870 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
871 if (__predict_true(!cold))
872 mutex_exit(&palloc->pa_lock);
873
874 pool_reclaim_register(pp);
875 }
876
877 /*
878 * De-commision a pool resource.
879 */
880 void
881 pool_destroy(struct pool *pp)
882 {
883 struct pool_pagelist pq;
884 struct pool_item_header *ph;
885
886 /* Remove from global pool list */
887 mutex_enter(&pool_head_lock);
888 while (pp->pr_refcnt != 0)
889 cv_wait(&pool_busy, &pool_head_lock);
890 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
891 if (drainpp == pp)
892 drainpp = NULL;
893 mutex_exit(&pool_head_lock);
894
895 /* Remove this pool from its allocator's list of pools. */
896 pool_reclaim_unregister(pp);
897 mutex_enter(&pp->pr_alloc->pa_lock);
898 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
899 mutex_exit(&pp->pr_alloc->pa_lock);
900
901 mutex_enter(&pp->pr_lock);
902
903 KASSERT(pp->pr_cache == NULL);
904
905 #ifdef DIAGNOSTIC
906 if (pp->pr_nout != 0) {
907 pr_printlog(pp, NULL, printf);
908 panic("pool_destroy: pool busy: still out: %u",
909 pp->pr_nout);
910 }
911 #endif
912
913 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
914 KASSERT(LIST_EMPTY(&pp->pr_partpages));
915
916 /* Remove all pages */
917 LIST_INIT(&pq);
918 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
919 pr_rmpage(pp, ph, &pq);
920
921 mutex_exit(&pp->pr_lock);
922
923 pr_pagelist_free(pp, &pq);
924
925 #ifdef POOL_DIAGNOSTIC
926 if ((pp->pr_roflags & PR_LOGGING) != 0)
927 free(pp->pr_log, M_TEMP);
928 #endif
929
930 cv_destroy(&pp->pr_cv);
931 mutex_destroy(&pp->pr_lock);
932 }
933
934 void
935 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
936 {
937
938 /* XXX no locking -- must be used just after pool_init() */
939 #ifdef DIAGNOSTIC
940 if (pp->pr_drain_hook != NULL)
941 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
942 #endif
943 pp->pr_drain_hook = fn;
944 pp->pr_drain_hook_arg = arg;
945 }
946
947 static struct pool_item_header *
948 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
949 {
950 struct pool_item_header *ph;
951
952 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
953 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
954 else
955 ph = pool_get(pp->pr_phpool, flags);
956
957 return (ph);
958 }
959
960 /*
961 * Grab an item from the pool.
962 */
963 void *
964 #ifdef POOL_DIAGNOSTIC
965 _pool_get(struct pool *pp, int flags, const char *file, long line)
966 #else
967 pool_get(struct pool *pp, int flags)
968 #endif
969 {
970 struct pool_item *pi;
971 struct pool_item_header *ph;
972 void *v;
973
974 #ifdef DIAGNOSTIC
975 if (__predict_false(pp->pr_itemsperpage == 0))
976 panic("pool_get: pool %p: pr_itemsperpage is zero, "
977 "pool not initialized?", pp);
978 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
979 (flags & PR_WAITOK) != 0))
980 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
981
982 #endif /* DIAGNOSTIC */
983 #ifdef LOCKDEBUG
984 if (flags & PR_WAITOK) {
985 ASSERT_SLEEPABLE();
986 }
987 #endif
988
989 mutex_enter(&pp->pr_lock);
990 pr_enter(pp, file, line);
991
992 startover:
993 /*
994 * Check to see if we've reached the hard limit. If we have,
995 * and we can wait, then wait until an item has been returned to
996 * the pool.
997 */
998 #ifdef DIAGNOSTIC
999 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1000 pr_leave(pp);
1001 mutex_exit(&pp->pr_lock);
1002 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1003 }
1004 #endif
1005 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1006 if (pp->pr_drain_hook != NULL) {
1007 /*
1008 * Since the drain hook is going to free things
1009 * back to the pool, unlock, call the hook, re-lock,
1010 * and check the hardlimit condition again.
1011 */
1012 pr_leave(pp);
1013 mutex_exit(&pp->pr_lock);
1014 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1015 mutex_enter(&pp->pr_lock);
1016 pr_enter(pp, file, line);
1017 if (pp->pr_nout < pp->pr_hardlimit)
1018 goto startover;
1019 }
1020
1021 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1022 /*
1023 * XXX: A warning isn't logged in this case. Should
1024 * it be?
1025 */
1026 pp->pr_flags |= PR_WANTED;
1027 pr_leave(pp);
1028 cv_wait(&pp->pr_cv, &pp->pr_lock);
1029 pr_enter(pp, file, line);
1030 goto startover;
1031 }
1032
1033 /*
1034 * Log a message that the hard limit has been hit.
1035 */
1036 if (pp->pr_hardlimit_warning != NULL &&
1037 ratecheck(&pp->pr_hardlimit_warning_last,
1038 &pp->pr_hardlimit_ratecap))
1039 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1040
1041 pp->pr_nfail++;
1042
1043 pr_leave(pp);
1044 mutex_exit(&pp->pr_lock);
1045 return (NULL);
1046 }
1047
1048 /*
1049 * The convention we use is that if `curpage' is not NULL, then
1050 * it points at a non-empty bucket. In particular, `curpage'
1051 * never points at a page header which has PR_PHINPAGE set and
1052 * has no items in its bucket.
1053 */
1054 if ((ph = pp->pr_curpage) == NULL) {
1055 int error;
1056
1057 #ifdef DIAGNOSTIC
1058 if (pp->pr_nitems != 0) {
1059 mutex_exit(&pp->pr_lock);
1060 printf("pool_get: %s: curpage NULL, nitems %u\n",
1061 pp->pr_wchan, pp->pr_nitems);
1062 panic("pool_get: nitems inconsistent");
1063 }
1064 #endif
1065
1066 /*
1067 * Call the back-end page allocator for more memory.
1068 * Release the pool lock, as the back-end page allocator
1069 * may block.
1070 */
1071 pr_leave(pp);
1072 error = pool_grow(pp, flags);
1073 pr_enter(pp, file, line);
1074 if (error != 0) {
1075 /*
1076 * We were unable to allocate a page or item
1077 * header, but we released the lock during
1078 * allocation, so perhaps items were freed
1079 * back to the pool. Check for this case.
1080 */
1081 if (pp->pr_curpage != NULL)
1082 goto startover;
1083
1084 pp->pr_nfail++;
1085 pr_leave(pp);
1086 mutex_exit(&pp->pr_lock);
1087 return (NULL);
1088 }
1089
1090 /* Start the allocation process over. */
1091 goto startover;
1092 }
1093 if (pp->pr_roflags & PR_NOTOUCH) {
1094 #ifdef DIAGNOSTIC
1095 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1096 pr_leave(pp);
1097 mutex_exit(&pp->pr_lock);
1098 panic("pool_get: %s: page empty", pp->pr_wchan);
1099 }
1100 #endif
1101 v = pr_item_notouch_get(pp, ph);
1102 #ifdef POOL_DIAGNOSTIC
1103 pr_log(pp, v, PRLOG_GET, file, line);
1104 #endif
1105 } else {
1106 v = pi = LIST_FIRST(&ph->ph_itemlist);
1107 if (__predict_false(v == NULL)) {
1108 pr_leave(pp);
1109 mutex_exit(&pp->pr_lock);
1110 panic("pool_get: %s: page empty", pp->pr_wchan);
1111 }
1112 #ifdef DIAGNOSTIC
1113 if (__predict_false(pp->pr_nitems == 0)) {
1114 pr_leave(pp);
1115 mutex_exit(&pp->pr_lock);
1116 printf("pool_get: %s: items on itemlist, nitems %u\n",
1117 pp->pr_wchan, pp->pr_nitems);
1118 panic("pool_get: nitems inconsistent");
1119 }
1120 #endif
1121
1122 #ifdef POOL_DIAGNOSTIC
1123 pr_log(pp, v, PRLOG_GET, file, line);
1124 #endif
1125
1126 #ifdef DIAGNOSTIC
1127 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1128 pr_printlog(pp, pi, printf);
1129 panic("pool_get(%s): free list modified: "
1130 "magic=%x; page %p; item addr %p\n",
1131 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1132 }
1133 #endif
1134
1135 /*
1136 * Remove from item list.
1137 */
1138 LIST_REMOVE(pi, pi_list);
1139 }
1140 pp->pr_nitems--;
1141 pp->pr_nout++;
1142 if (ph->ph_nmissing == 0) {
1143 #ifdef DIAGNOSTIC
1144 if (__predict_false(pp->pr_nidle == 0))
1145 panic("pool_get: nidle inconsistent");
1146 #endif
1147 pp->pr_nidle--;
1148
1149 /*
1150 * This page was previously empty. Move it to the list of
1151 * partially-full pages. This page is already curpage.
1152 */
1153 LIST_REMOVE(ph, ph_pagelist);
1154 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1155 }
1156 ph->ph_nmissing++;
1157 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1158 #ifdef DIAGNOSTIC
1159 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1160 !LIST_EMPTY(&ph->ph_itemlist))) {
1161 pr_leave(pp);
1162 mutex_exit(&pp->pr_lock);
1163 panic("pool_get: %s: nmissing inconsistent",
1164 pp->pr_wchan);
1165 }
1166 #endif
1167 /*
1168 * This page is now full. Move it to the full list
1169 * and select a new current page.
1170 */
1171 LIST_REMOVE(ph, ph_pagelist);
1172 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1173 pool_update_curpage(pp);
1174 }
1175
1176 pp->pr_nget++;
1177 pr_leave(pp);
1178
1179 /*
1180 * If we have a low water mark and we are now below that low
1181 * water mark, add more items to the pool.
1182 */
1183 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1184 /*
1185 * XXX: Should we log a warning? Should we set up a timeout
1186 * to try again in a second or so? The latter could break
1187 * a caller's assumptions about interrupt protection, etc.
1188 */
1189 }
1190
1191 mutex_exit(&pp->pr_lock);
1192 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1193 FREECHECK_OUT(&pp->pr_freecheck, v);
1194 return (v);
1195 }
1196
1197 /*
1198 * Internal version of pool_put(). Pool is already locked/entered.
1199 */
1200 static void
1201 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1202 {
1203 struct pool_item *pi = v;
1204 struct pool_item_header *ph;
1205
1206 KASSERT(mutex_owned(&pp->pr_lock));
1207 FREECHECK_IN(&pp->pr_freecheck, v);
1208 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1209
1210 #ifdef DIAGNOSTIC
1211 if (__predict_false(pp->pr_nout == 0)) {
1212 printf("pool %s: putting with none out\n",
1213 pp->pr_wchan);
1214 panic("pool_put");
1215 }
1216 #endif
1217
1218 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1219 pr_printlog(pp, NULL, printf);
1220 panic("pool_put: %s: page header missing", pp->pr_wchan);
1221 }
1222
1223 /*
1224 * Return to item list.
1225 */
1226 if (pp->pr_roflags & PR_NOTOUCH) {
1227 pr_item_notouch_put(pp, ph, v);
1228 } else {
1229 #ifdef DIAGNOSTIC
1230 pi->pi_magic = PI_MAGIC;
1231 #endif
1232 #ifdef DEBUG
1233 {
1234 int i, *ip = v;
1235
1236 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1237 *ip++ = PI_MAGIC;
1238 }
1239 }
1240 #endif
1241
1242 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1243 }
1244 KDASSERT(ph->ph_nmissing != 0);
1245 ph->ph_nmissing--;
1246 pp->pr_nput++;
1247 pp->pr_nitems++;
1248 pp->pr_nout--;
1249
1250 /* Cancel "pool empty" condition if it exists */
1251 if (pp->pr_curpage == NULL)
1252 pp->pr_curpage = ph;
1253
1254 if (pp->pr_flags & PR_WANTED) {
1255 pp->pr_flags &= ~PR_WANTED;
1256 if (ph->ph_nmissing == 0)
1257 pp->pr_nidle++;
1258 cv_broadcast(&pp->pr_cv);
1259 return;
1260 }
1261
1262 /*
1263 * If this page is now empty, do one of two things:
1264 *
1265 * (1) If we have more pages than the page high water mark,
1266 * free the page back to the system. ONLY CONSIDER
1267 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1268 * CLAIM.
1269 *
1270 * (2) Otherwise, move the page to the empty page list.
1271 *
1272 * Either way, select a new current page (so we use a partially-full
1273 * page if one is available).
1274 */
1275 if (ph->ph_nmissing == 0) {
1276 pp->pr_nidle++;
1277 if (pp->pr_npages > pp->pr_minpages &&
1278 pp->pr_npages > pp->pr_maxpages) {
1279 pr_rmpage(pp, ph, pq);
1280 } else {
1281 LIST_REMOVE(ph, ph_pagelist);
1282 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1283
1284 /*
1285 * Update the timestamp on the page. A page must
1286 * be idle for some period of time before it can
1287 * be reclaimed by the pagedaemon. This minimizes
1288 * ping-pong'ing for memory.
1289 *
1290 * note for 64-bit time_t: truncating to 32-bit is not
1291 * a problem for our usage.
1292 */
1293 ph->ph_time = time_uptime;
1294 }
1295 pool_update_curpage(pp);
1296 }
1297
1298 /*
1299 * If the page was previously completely full, move it to the
1300 * partially-full list and make it the current page. The next
1301 * allocation will get the item from this page, instead of
1302 * further fragmenting the pool.
1303 */
1304 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1305 LIST_REMOVE(ph, ph_pagelist);
1306 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1307 pp->pr_curpage = ph;
1308 }
1309 }
1310
1311 /*
1312 * Return resource to the pool.
1313 */
1314 #ifdef POOL_DIAGNOSTIC
1315 void
1316 _pool_put(struct pool *pp, void *v, const char *file, long line)
1317 {
1318 struct pool_pagelist pq;
1319
1320 LIST_INIT(&pq);
1321
1322 mutex_enter(&pp->pr_lock);
1323 pr_enter(pp, file, line);
1324
1325 pr_log(pp, v, PRLOG_PUT, file, line);
1326
1327 pool_do_put(pp, v, &pq);
1328
1329 pr_leave(pp);
1330 mutex_exit(&pp->pr_lock);
1331
1332 pr_pagelist_free(pp, &pq);
1333 }
1334 #undef pool_put
1335 #endif /* POOL_DIAGNOSTIC */
1336
1337 void
1338 pool_put(struct pool *pp, void *v)
1339 {
1340 struct pool_pagelist pq;
1341
1342 LIST_INIT(&pq);
1343
1344 mutex_enter(&pp->pr_lock);
1345 pool_do_put(pp, v, &pq);
1346 mutex_exit(&pp->pr_lock);
1347
1348 pr_pagelist_free(pp, &pq);
1349 }
1350
1351 #ifdef POOL_DIAGNOSTIC
1352 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1353 #endif
1354
1355 /*
1356 * pool_grow: grow a pool by a page.
1357 *
1358 * => called with pool locked.
1359 * => unlock and relock the pool.
1360 * => return with pool locked.
1361 */
1362
1363 static int
1364 pool_grow(struct pool *pp, int flags)
1365 {
1366 struct pool_item_header *ph = NULL;
1367 char *cp;
1368
1369 mutex_exit(&pp->pr_lock);
1370 cp = pool_allocator_alloc(pp, flags);
1371 if (__predict_true(cp != NULL)) {
1372 ph = pool_alloc_item_header(pp, cp, flags);
1373 }
1374 if (__predict_false(cp == NULL || ph == NULL)) {
1375 if (cp != NULL) {
1376 pool_allocator_free(pp, cp);
1377 }
1378 mutex_enter(&pp->pr_lock);
1379 return ENOMEM;
1380 }
1381
1382 mutex_enter(&pp->pr_lock);
1383 pool_prime_page(pp, cp, ph);
1384 pp->pr_npagealloc++;
1385 return 0;
1386 }
1387
1388 /*
1389 * Add N items to the pool.
1390 */
1391 int
1392 pool_prime(struct pool *pp, int n)
1393 {
1394 int newpages;
1395 int error = 0;
1396
1397 mutex_enter(&pp->pr_lock);
1398
1399 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1400
1401 while (newpages-- > 0) {
1402 error = pool_grow(pp, PR_NOWAIT);
1403 if (error) {
1404 break;
1405 }
1406 pp->pr_minpages++;
1407 }
1408
1409 if (pp->pr_minpages >= pp->pr_maxpages)
1410 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1411
1412 mutex_exit(&pp->pr_lock);
1413 return error;
1414 }
1415
1416 /*
1417 * Add a page worth of items to the pool.
1418 *
1419 * Note, we must be called with the pool descriptor LOCKED.
1420 */
1421 static void
1422 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1423 {
1424 struct pool_item *pi;
1425 void *cp = storage;
1426 const unsigned int align = pp->pr_align;
1427 const unsigned int ioff = pp->pr_itemoffset;
1428 int n;
1429
1430 KASSERT(mutex_owned(&pp->pr_lock));
1431
1432 #ifdef DIAGNOSTIC
1433 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1434 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1435 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1436 #endif
1437
1438 /*
1439 * Insert page header.
1440 */
1441 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1442 LIST_INIT(&ph->ph_itemlist);
1443 ph->ph_page = storage;
1444 ph->ph_nmissing = 0;
1445 ph->ph_time = time_uptime;
1446 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1447 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1448
1449 pp->pr_nidle++;
1450
1451 /*
1452 * Color this page.
1453 */
1454 ph->ph_off = pp->pr_curcolor;
1455 cp = (char *)cp + ph->ph_off;
1456 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1457 pp->pr_curcolor = 0;
1458
1459 /*
1460 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1461 */
1462 if (ioff != 0)
1463 cp = (char *)cp + align - ioff;
1464
1465 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1466
1467 /*
1468 * Insert remaining chunks on the bucket list.
1469 */
1470 n = pp->pr_itemsperpage;
1471 pp->pr_nitems += n;
1472
1473 if (pp->pr_roflags & PR_NOTOUCH) {
1474 pr_item_notouch_init(pp, ph);
1475 } else {
1476 while (n--) {
1477 pi = (struct pool_item *)cp;
1478
1479 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1480
1481 /* Insert on page list */
1482 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1483 #ifdef DIAGNOSTIC
1484 pi->pi_magic = PI_MAGIC;
1485 #endif
1486 cp = (char *)cp + pp->pr_size;
1487
1488 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1489 }
1490 }
1491
1492 /*
1493 * If the pool was depleted, point at the new page.
1494 */
1495 if (pp->pr_curpage == NULL)
1496 pp->pr_curpage = ph;
1497
1498 if (++pp->pr_npages > pp->pr_hiwat)
1499 pp->pr_hiwat = pp->pr_npages;
1500 }
1501
1502 /*
1503 * Used by pool_get() when nitems drops below the low water mark. This
1504 * is used to catch up pr_nitems with the low water mark.
1505 *
1506 * Note 1, we never wait for memory here, we let the caller decide what to do.
1507 *
1508 * Note 2, we must be called with the pool already locked, and we return
1509 * with it locked.
1510 */
1511 static int
1512 pool_catchup(struct pool *pp)
1513 {
1514 int error = 0;
1515
1516 while (POOL_NEEDS_CATCHUP(pp)) {
1517 error = pool_grow(pp, PR_NOWAIT);
1518 if (error) {
1519 break;
1520 }
1521 }
1522 return error;
1523 }
1524
1525 static void
1526 pool_update_curpage(struct pool *pp)
1527 {
1528
1529 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1530 if (pp->pr_curpage == NULL) {
1531 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1532 }
1533 }
1534
1535 void
1536 pool_setlowat(struct pool *pp, int n)
1537 {
1538
1539 mutex_enter(&pp->pr_lock);
1540
1541 pp->pr_minitems = n;
1542 pp->pr_minpages = (n == 0)
1543 ? 0
1544 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1545
1546 /* Make sure we're caught up with the newly-set low water mark. */
1547 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1548 /*
1549 * XXX: Should we log a warning? Should we set up a timeout
1550 * to try again in a second or so? The latter could break
1551 * a caller's assumptions about interrupt protection, etc.
1552 */
1553 }
1554
1555 mutex_exit(&pp->pr_lock);
1556 }
1557
1558 void
1559 pool_sethiwat(struct pool *pp, int n)
1560 {
1561
1562 mutex_enter(&pp->pr_lock);
1563
1564 pp->pr_maxpages = (n == 0)
1565 ? 0
1566 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1567
1568 mutex_exit(&pp->pr_lock);
1569 }
1570
1571 void
1572 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1573 {
1574
1575 mutex_enter(&pp->pr_lock);
1576
1577 pp->pr_hardlimit = n;
1578 pp->pr_hardlimit_warning = warnmess;
1579 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1580 pp->pr_hardlimit_warning_last.tv_sec = 0;
1581 pp->pr_hardlimit_warning_last.tv_usec = 0;
1582
1583 /*
1584 * In-line version of pool_sethiwat(), because we don't want to
1585 * release the lock.
1586 */
1587 pp->pr_maxpages = (n == 0)
1588 ? 0
1589 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1590
1591 mutex_exit(&pp->pr_lock);
1592 }
1593
1594 /*
1595 * Release all complete pages that have not been used recently.
1596 */
1597 int
1598 #ifdef POOL_DIAGNOSTIC
1599 _pool_reclaim(struct pool *pp, const char *file, long line)
1600 #else
1601 pool_reclaim(struct pool *pp)
1602 #endif
1603 {
1604 struct pool_item_header *ph, *phnext;
1605 struct pool_pagelist pq;
1606 uint32_t curtime;
1607 bool klock;
1608 int rv;
1609
1610 if (pp->pr_drain_hook != NULL) {
1611 /*
1612 * The drain hook must be called with the pool unlocked.
1613 */
1614 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1615 }
1616
1617 /*
1618 * XXXSMP Because we do not want to cause non-MPSAFE code
1619 * to block.
1620 */
1621 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1622 pp->pr_ipl == IPL_SOFTSERIAL) {
1623 KERNEL_LOCK(1, NULL);
1624 klock = true;
1625 } else
1626 klock = false;
1627
1628 /* Reclaim items from the pool's cache (if any). */
1629 if (pp->pr_cache != NULL)
1630 pool_cache_invalidate(pp->pr_cache);
1631
1632 if (mutex_tryenter(&pp->pr_lock) == 0) {
1633 if (klock) {
1634 KERNEL_UNLOCK_ONE(NULL);
1635 }
1636 return (0);
1637 }
1638 pr_enter(pp, file, line);
1639
1640 LIST_INIT(&pq);
1641
1642 curtime = time_uptime;
1643
1644 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1645 phnext = LIST_NEXT(ph, ph_pagelist);
1646
1647 /* Check our minimum page claim */
1648 if (pp->pr_npages <= pp->pr_minpages)
1649 break;
1650
1651 KASSERT(ph->ph_nmissing == 0);
1652 if (curtime - ph->ph_time < pool_inactive_time
1653 && !pa_starved_p(pp->pr_alloc))
1654 continue;
1655
1656 /*
1657 * If freeing this page would put us below
1658 * the low water mark, stop now.
1659 */
1660 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1661 pp->pr_minitems)
1662 break;
1663
1664 pr_rmpage(pp, ph, &pq);
1665 }
1666
1667 pr_leave(pp);
1668 mutex_exit(&pp->pr_lock);
1669
1670 if (LIST_EMPTY(&pq))
1671 rv = 0;
1672 else {
1673 pr_pagelist_free(pp, &pq);
1674 rv = 1;
1675 }
1676
1677 if (klock) {
1678 KERNEL_UNLOCK_ONE(NULL);
1679 }
1680
1681 return (rv);
1682 }
1683
1684 /*
1685 * Drain pools, one at a time. This is a two stage process;
1686 * drain_start kicks off a cross call to drain CPU-level caches
1687 * if the pool has an associated pool_cache. drain_end waits
1688 * for those cross calls to finish, and then drains the cache
1689 * (if any) and pool.
1690 *
1691 * Note, must never be called from interrupt context.
1692 */
1693 void
1694 pool_drain_start(struct pool **ppp, uint64_t *wp)
1695 {
1696 struct pool *pp;
1697
1698 KASSERT(!TAILQ_EMPTY(&pool_head));
1699
1700 pp = NULL;
1701
1702 /* Find next pool to drain, and add a reference. */
1703 mutex_enter(&pool_head_lock);
1704 do {
1705 if (drainpp == NULL) {
1706 drainpp = TAILQ_FIRST(&pool_head);
1707 }
1708 if (drainpp != NULL) {
1709 pp = drainpp;
1710 drainpp = TAILQ_NEXT(pp, pr_poollist);
1711 }
1712 /*
1713 * Skip completely idle pools. We depend on at least
1714 * one pool in the system being active.
1715 */
1716 } while (pp == NULL || pp->pr_npages == 0);
1717 pp->pr_refcnt++;
1718 mutex_exit(&pool_head_lock);
1719
1720 /* If there is a pool_cache, drain CPU level caches. */
1721 *ppp = pp;
1722 if (pp->pr_cache != NULL) {
1723 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1724 pp->pr_cache, NULL);
1725 }
1726 }
1727
1728 void
1729 pool_drain_end(struct pool *pp, uint64_t where)
1730 {
1731
1732 if (pp == NULL)
1733 return;
1734
1735 KASSERT(pp->pr_refcnt > 0);
1736
1737 /* Wait for remote draining to complete. */
1738 if (pp->pr_cache != NULL)
1739 xc_wait(where);
1740
1741 /* Drain the cache (if any) and pool.. */
1742 pool_reclaim(pp);
1743
1744 /* Finally, unlock the pool. */
1745 mutex_enter(&pool_head_lock);
1746 pp->pr_refcnt--;
1747 cv_broadcast(&pool_busy);
1748 mutex_exit(&pool_head_lock);
1749 }
1750
1751 /*
1752 * Diagnostic helpers.
1753 */
1754 void
1755 pool_print(struct pool *pp, const char *modif)
1756 {
1757
1758 pool_print1(pp, modif, printf);
1759 }
1760
1761 void
1762 pool_printall(const char *modif, void (*pr)(const char *, ...))
1763 {
1764 struct pool *pp;
1765
1766 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1767 pool_printit(pp, modif, pr);
1768 }
1769 }
1770
1771 void
1772 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1773 {
1774
1775 if (pp == NULL) {
1776 (*pr)("Must specify a pool to print.\n");
1777 return;
1778 }
1779
1780 pool_print1(pp, modif, pr);
1781 }
1782
1783 static void
1784 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1785 void (*pr)(const char *, ...))
1786 {
1787 struct pool_item_header *ph;
1788 #ifdef DIAGNOSTIC
1789 struct pool_item *pi;
1790 #endif
1791
1792 LIST_FOREACH(ph, pl, ph_pagelist) {
1793 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1794 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1795 #ifdef DIAGNOSTIC
1796 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1797 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1798 if (pi->pi_magic != PI_MAGIC) {
1799 (*pr)("\t\t\titem %p, magic 0x%x\n",
1800 pi, pi->pi_magic);
1801 }
1802 }
1803 }
1804 #endif
1805 }
1806 }
1807
1808 static void
1809 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1810 {
1811 struct pool_item_header *ph;
1812 pool_cache_t pc;
1813 pcg_t *pcg;
1814 pool_cache_cpu_t *cc;
1815 uint64_t cpuhit, cpumiss;
1816 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1817 char c;
1818
1819 while ((c = *modif++) != '\0') {
1820 if (c == 'l')
1821 print_log = 1;
1822 if (c == 'p')
1823 print_pagelist = 1;
1824 if (c == 'c')
1825 print_cache = 1;
1826 }
1827
1828 if ((pc = pp->pr_cache) != NULL) {
1829 (*pr)("POOL CACHE");
1830 } else {
1831 (*pr)("POOL");
1832 }
1833
1834 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1835 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1836 pp->pr_roflags);
1837 (*pr)("\talloc %p\n", pp->pr_alloc);
1838 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1839 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1840 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1841 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1842
1843 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1844 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1845 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1846 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1847
1848 if (print_pagelist == 0)
1849 goto skip_pagelist;
1850
1851 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1852 (*pr)("\n\tempty page list:\n");
1853 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1854 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1855 (*pr)("\n\tfull page list:\n");
1856 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1857 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1858 (*pr)("\n\tpartial-page list:\n");
1859 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1860
1861 if (pp->pr_curpage == NULL)
1862 (*pr)("\tno current page\n");
1863 else
1864 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1865
1866 skip_pagelist:
1867 if (print_log == 0)
1868 goto skip_log;
1869
1870 (*pr)("\n");
1871 if ((pp->pr_roflags & PR_LOGGING) == 0)
1872 (*pr)("\tno log\n");
1873 else {
1874 pr_printlog(pp, NULL, pr);
1875 }
1876
1877 skip_log:
1878
1879 #define PR_GROUPLIST(pcg) \
1880 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1881 for (i = 0; i < pcg->pcg_size; i++) { \
1882 if (pcg->pcg_objects[i].pcgo_pa != \
1883 POOL_PADDR_INVALID) { \
1884 (*pr)("\t\t\t%p, 0x%llx\n", \
1885 pcg->pcg_objects[i].pcgo_va, \
1886 (unsigned long long) \
1887 pcg->pcg_objects[i].pcgo_pa); \
1888 } else { \
1889 (*pr)("\t\t\t%p\n", \
1890 pcg->pcg_objects[i].pcgo_va); \
1891 } \
1892 }
1893
1894 if (pc != NULL) {
1895 cpuhit = 0;
1896 cpumiss = 0;
1897 for (i = 0; i < MAXCPUS; i++) {
1898 if ((cc = pc->pc_cpus[i]) == NULL)
1899 continue;
1900 cpuhit += cc->cc_hits;
1901 cpumiss += cc->cc_misses;
1902 }
1903 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1904 (*pr)("\tcache layer hits %llu misses %llu\n",
1905 pc->pc_hits, pc->pc_misses);
1906 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1907 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1908 pc->pc_contended);
1909 (*pr)("\tcache layer empty groups %u full groups %u\n",
1910 pc->pc_nempty, pc->pc_nfull);
1911 if (print_cache) {
1912 (*pr)("\tfull cache groups:\n");
1913 for (pcg = pc->pc_fullgroups; pcg != NULL;
1914 pcg = pcg->pcg_next) {
1915 PR_GROUPLIST(pcg);
1916 }
1917 (*pr)("\tempty cache groups:\n");
1918 for (pcg = pc->pc_emptygroups; pcg != NULL;
1919 pcg = pcg->pcg_next) {
1920 PR_GROUPLIST(pcg);
1921 }
1922 }
1923 }
1924 #undef PR_GROUPLIST
1925
1926 pr_enter_check(pp, pr);
1927 }
1928
1929 static int
1930 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1931 {
1932 struct pool_item *pi;
1933 void *page;
1934 int n;
1935
1936 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1937 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1938 if (page != ph->ph_page &&
1939 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1940 if (label != NULL)
1941 printf("%s: ", label);
1942 printf("pool(%p:%s): page inconsistency: page %p;"
1943 " at page head addr %p (p %p)\n", pp,
1944 pp->pr_wchan, ph->ph_page,
1945 ph, page);
1946 return 1;
1947 }
1948 }
1949
1950 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1951 return 0;
1952
1953 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1954 pi != NULL;
1955 pi = LIST_NEXT(pi,pi_list), n++) {
1956
1957 #ifdef DIAGNOSTIC
1958 if (pi->pi_magic != PI_MAGIC) {
1959 if (label != NULL)
1960 printf("%s: ", label);
1961 printf("pool(%s): free list modified: magic=%x;"
1962 " page %p; item ordinal %d; addr %p\n",
1963 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1964 n, pi);
1965 panic("pool");
1966 }
1967 #endif
1968 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1969 continue;
1970 }
1971 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1972 if (page == ph->ph_page)
1973 continue;
1974
1975 if (label != NULL)
1976 printf("%s: ", label);
1977 printf("pool(%p:%s): page inconsistency: page %p;"
1978 " item ordinal %d; addr %p (p %p)\n", pp,
1979 pp->pr_wchan, ph->ph_page,
1980 n, pi, page);
1981 return 1;
1982 }
1983 return 0;
1984 }
1985
1986
1987 int
1988 pool_chk(struct pool *pp, const char *label)
1989 {
1990 struct pool_item_header *ph;
1991 int r = 0;
1992
1993 mutex_enter(&pp->pr_lock);
1994 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1995 r = pool_chk_page(pp, label, ph);
1996 if (r) {
1997 goto out;
1998 }
1999 }
2000 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2001 r = pool_chk_page(pp, label, ph);
2002 if (r) {
2003 goto out;
2004 }
2005 }
2006 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2007 r = pool_chk_page(pp, label, ph);
2008 if (r) {
2009 goto out;
2010 }
2011 }
2012
2013 out:
2014 mutex_exit(&pp->pr_lock);
2015 return (r);
2016 }
2017
2018 /*
2019 * pool_cache_init:
2020 *
2021 * Initialize a pool cache.
2022 */
2023 pool_cache_t
2024 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2025 const char *wchan, struct pool_allocator *palloc, int ipl,
2026 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2027 {
2028 pool_cache_t pc;
2029
2030 pc = pool_get(&cache_pool, PR_WAITOK);
2031 if (pc == NULL)
2032 return NULL;
2033
2034 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2035 palloc, ipl, ctor, dtor, arg);
2036
2037 return pc;
2038 }
2039
2040 /*
2041 * pool_cache_bootstrap:
2042 *
2043 * Kernel-private version of pool_cache_init(). The caller
2044 * provides initial storage.
2045 */
2046 void
2047 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2048 u_int align_offset, u_int flags, const char *wchan,
2049 struct pool_allocator *palloc, int ipl,
2050 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2051 void *arg)
2052 {
2053 CPU_INFO_ITERATOR cii;
2054 pool_cache_t pc1;
2055 struct cpu_info *ci;
2056 struct pool *pp;
2057
2058 pp = &pc->pc_pool;
2059 if (palloc == NULL && ipl == IPL_NONE)
2060 palloc = &pool_allocator_nointr;
2061 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2062 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2063
2064 if (ctor == NULL) {
2065 ctor = (int (*)(void *, void *, int))nullop;
2066 }
2067 if (dtor == NULL) {
2068 dtor = (void (*)(void *, void *))nullop;
2069 }
2070
2071 pc->pc_emptygroups = NULL;
2072 pc->pc_fullgroups = NULL;
2073 pc->pc_partgroups = NULL;
2074 pc->pc_ctor = ctor;
2075 pc->pc_dtor = dtor;
2076 pc->pc_arg = arg;
2077 pc->pc_hits = 0;
2078 pc->pc_misses = 0;
2079 pc->pc_nempty = 0;
2080 pc->pc_npart = 0;
2081 pc->pc_nfull = 0;
2082 pc->pc_contended = 0;
2083 pc->pc_refcnt = 0;
2084 pc->pc_freecheck = NULL;
2085
2086 if ((flags & PR_LARGECACHE) != 0) {
2087 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2088 } else {
2089 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2090 }
2091
2092 /* Allocate per-CPU caches. */
2093 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2094 pc->pc_ncpu = 0;
2095 if (ncpu < 2) {
2096 /* XXX For sparc: boot CPU is not attached yet. */
2097 pool_cache_cpu_init1(curcpu(), pc);
2098 } else {
2099 for (CPU_INFO_FOREACH(cii, ci)) {
2100 pool_cache_cpu_init1(ci, pc);
2101 }
2102 }
2103
2104 /* Add to list of all pools. */
2105 if (__predict_true(!cold))
2106 mutex_enter(&pool_head_lock);
2107 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2108 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2109 break;
2110 }
2111 if (pc1 == NULL)
2112 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2113 else
2114 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2115 if (__predict_true(!cold))
2116 mutex_exit(&pool_head_lock);
2117
2118 membar_sync();
2119 pp->pr_cache = pc;
2120 }
2121
2122 /*
2123 * pool_cache_destroy:
2124 *
2125 * Destroy a pool cache.
2126 */
2127 void
2128 pool_cache_destroy(pool_cache_t pc)
2129 {
2130 struct pool *pp = &pc->pc_pool;
2131 pool_cache_cpu_t *cc;
2132 pcg_t *pcg;
2133 int i;
2134
2135 /* Remove it from the global list. */
2136 mutex_enter(&pool_head_lock);
2137 while (pc->pc_refcnt != 0)
2138 cv_wait(&pool_busy, &pool_head_lock);
2139 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2140 mutex_exit(&pool_head_lock);
2141
2142 /* First, invalidate the entire cache. */
2143 pool_cache_invalidate(pc);
2144
2145 /* Disassociate it from the pool. */
2146 mutex_enter(&pp->pr_lock);
2147 pp->pr_cache = NULL;
2148 mutex_exit(&pp->pr_lock);
2149
2150 /* Destroy per-CPU data */
2151 for (i = 0; i < MAXCPUS; i++) {
2152 if ((cc = pc->pc_cpus[i]) == NULL)
2153 continue;
2154 if ((pcg = cc->cc_current) != NULL) {
2155 pcg->pcg_next = NULL;
2156 pool_cache_invalidate_groups(pc, pcg);
2157 }
2158 if ((pcg = cc->cc_previous) != NULL) {
2159 pcg->pcg_next = NULL;
2160 pool_cache_invalidate_groups(pc, pcg);
2161 }
2162 if (cc != &pc->pc_cpu0)
2163 pool_put(&cache_cpu_pool, cc);
2164 }
2165
2166 /* Finally, destroy it. */
2167 mutex_destroy(&pc->pc_lock);
2168 pool_destroy(pp);
2169 pool_put(&cache_pool, pc);
2170 }
2171
2172 /*
2173 * pool_cache_cpu_init1:
2174 *
2175 * Called for each pool_cache whenever a new CPU is attached.
2176 */
2177 static void
2178 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2179 {
2180 pool_cache_cpu_t *cc;
2181 int index;
2182
2183 index = ci->ci_index;
2184
2185 KASSERT(index < MAXCPUS);
2186
2187 if ((cc = pc->pc_cpus[index]) != NULL) {
2188 KASSERT(cc->cc_cpuindex == index);
2189 return;
2190 }
2191
2192 /*
2193 * The first CPU is 'free'. This needs to be the case for
2194 * bootstrap - we may not be able to allocate yet.
2195 */
2196 if (pc->pc_ncpu == 0) {
2197 cc = &pc->pc_cpu0;
2198 pc->pc_ncpu = 1;
2199 } else {
2200 mutex_enter(&pc->pc_lock);
2201 pc->pc_ncpu++;
2202 mutex_exit(&pc->pc_lock);
2203 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2204 }
2205
2206 cc->cc_ipl = pc->pc_pool.pr_ipl;
2207 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2208 cc->cc_cache = pc;
2209 cc->cc_cpuindex = index;
2210 cc->cc_hits = 0;
2211 cc->cc_misses = 0;
2212 cc->cc_current = NULL;
2213 cc->cc_previous = NULL;
2214
2215 pc->pc_cpus[index] = cc;
2216 }
2217
2218 /*
2219 * pool_cache_cpu_init:
2220 *
2221 * Called whenever a new CPU is attached.
2222 */
2223 void
2224 pool_cache_cpu_init(struct cpu_info *ci)
2225 {
2226 pool_cache_t pc;
2227
2228 mutex_enter(&pool_head_lock);
2229 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2230 pc->pc_refcnt++;
2231 mutex_exit(&pool_head_lock);
2232
2233 pool_cache_cpu_init1(ci, pc);
2234
2235 mutex_enter(&pool_head_lock);
2236 pc->pc_refcnt--;
2237 cv_broadcast(&pool_busy);
2238 }
2239 mutex_exit(&pool_head_lock);
2240 }
2241
2242 /*
2243 * pool_cache_reclaim:
2244 *
2245 * Reclaim memory from a pool cache.
2246 */
2247 bool
2248 pool_cache_reclaim(pool_cache_t pc)
2249 {
2250
2251 return pool_reclaim(&pc->pc_pool);
2252 }
2253
2254 static void
2255 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2256 {
2257
2258 (*pc->pc_dtor)(pc->pc_arg, object);
2259 pool_put(&pc->pc_pool, object);
2260 }
2261
2262 /*
2263 * pool_cache_destruct_object:
2264 *
2265 * Force destruction of an object and its release back into
2266 * the pool.
2267 */
2268 void
2269 pool_cache_destruct_object(pool_cache_t pc, void *object)
2270 {
2271
2272 FREECHECK_IN(&pc->pc_freecheck, object);
2273
2274 pool_cache_destruct_object1(pc, object);
2275 }
2276
2277 /*
2278 * pool_cache_invalidate_groups:
2279 *
2280 * Invalidate a chain of groups and destruct all objects.
2281 */
2282 static void
2283 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2284 {
2285 void *object;
2286 pcg_t *next;
2287 int i;
2288
2289 for (; pcg != NULL; pcg = next) {
2290 next = pcg->pcg_next;
2291
2292 for (i = 0; i < pcg->pcg_avail; i++) {
2293 object = pcg->pcg_objects[i].pcgo_va;
2294 pool_cache_destruct_object1(pc, object);
2295 }
2296
2297 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2298 pool_put(&pcg_large_pool, pcg);
2299 } else {
2300 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2301 pool_put(&pcg_normal_pool, pcg);
2302 }
2303 }
2304 }
2305
2306 /*
2307 * pool_cache_invalidate:
2308 *
2309 * Invalidate a pool cache (destruct and release all of the
2310 * cached objects). Does not reclaim objects from the pool.
2311 */
2312 void
2313 pool_cache_invalidate(pool_cache_t pc)
2314 {
2315 pcg_t *full, *empty, *part;
2316
2317 mutex_enter(&pc->pc_lock);
2318 full = pc->pc_fullgroups;
2319 empty = pc->pc_emptygroups;
2320 part = pc->pc_partgroups;
2321 pc->pc_fullgroups = NULL;
2322 pc->pc_emptygroups = NULL;
2323 pc->pc_partgroups = NULL;
2324 pc->pc_nfull = 0;
2325 pc->pc_nempty = 0;
2326 pc->pc_npart = 0;
2327 mutex_exit(&pc->pc_lock);
2328
2329 pool_cache_invalidate_groups(pc, full);
2330 pool_cache_invalidate_groups(pc, empty);
2331 pool_cache_invalidate_groups(pc, part);
2332 }
2333
2334 void
2335 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2336 {
2337
2338 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2339 }
2340
2341 void
2342 pool_cache_setlowat(pool_cache_t pc, int n)
2343 {
2344
2345 pool_setlowat(&pc->pc_pool, n);
2346 }
2347
2348 void
2349 pool_cache_sethiwat(pool_cache_t pc, int n)
2350 {
2351
2352 pool_sethiwat(&pc->pc_pool, n);
2353 }
2354
2355 void
2356 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2357 {
2358
2359 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2360 }
2361
2362 static inline pool_cache_cpu_t *
2363 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2364 {
2365 pool_cache_cpu_t *cc;
2366
2367 /*
2368 * Prevent other users of the cache from accessing our
2369 * CPU-local data. To avoid touching shared state, we
2370 * pull the neccessary information from CPU local data.
2371 */
2372 KPREEMPT_DISABLE(curlwp);
2373 cc = pc->pc_cpus[curcpu()->ci_index];
2374 KASSERT(cc->cc_cache == pc);
2375 if (cc->cc_ipl != IPL_NONE) {
2376 *s = splraiseipl(cc->cc_iplcookie);
2377 }
2378
2379 return cc;
2380 }
2381
2382 static inline void
2383 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2384 {
2385
2386 /* No longer need exclusive access to the per-CPU data. */
2387 if (cc->cc_ipl != IPL_NONE) {
2388 splx(*s);
2389 }
2390 KPREEMPT_ENABLE(curlwp);
2391 }
2392
2393 #if __GNUC_PREREQ__(3, 0)
2394 __attribute ((noinline))
2395 #endif
2396 pool_cache_cpu_t *
2397 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2398 paddr_t *pap, int flags)
2399 {
2400 pcg_t *pcg, *cur;
2401 uint64_t ncsw;
2402 pool_cache_t pc;
2403 void *object;
2404
2405 pc = cc->cc_cache;
2406 cc->cc_misses++;
2407
2408 /*
2409 * Nothing was available locally. Try and grab a group
2410 * from the cache.
2411 */
2412 if (!mutex_tryenter(&pc->pc_lock)) {
2413 ncsw = curlwp->l_ncsw;
2414 mutex_enter(&pc->pc_lock);
2415 pc->pc_contended++;
2416
2417 /*
2418 * If we context switched while locking, then
2419 * our view of the per-CPU data is invalid:
2420 * retry.
2421 */
2422 if (curlwp->l_ncsw != ncsw) {
2423 mutex_exit(&pc->pc_lock);
2424 pool_cache_cpu_exit(cc, s);
2425 return pool_cache_cpu_enter(pc, s);
2426 }
2427 }
2428
2429 if ((pcg = pc->pc_fullgroups) != NULL) {
2430 /*
2431 * If there's a full group, release our empty
2432 * group back to the cache. Install the full
2433 * group as cc_current and return.
2434 */
2435 if ((cur = cc->cc_current) != NULL) {
2436 KASSERT(cur->pcg_avail == 0);
2437 cur->pcg_next = pc->pc_emptygroups;
2438 pc->pc_emptygroups = cur;
2439 pc->pc_nempty++;
2440 }
2441 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2442 cc->cc_current = pcg;
2443 pc->pc_fullgroups = pcg->pcg_next;
2444 pc->pc_hits++;
2445 pc->pc_nfull--;
2446 mutex_exit(&pc->pc_lock);
2447 return cc;
2448 }
2449
2450 /*
2451 * Nothing available locally or in cache. Take the slow
2452 * path: fetch a new object from the pool and construct
2453 * it.
2454 */
2455 pc->pc_misses++;
2456 mutex_exit(&pc->pc_lock);
2457 pool_cache_cpu_exit(cc, s);
2458
2459 object = pool_get(&pc->pc_pool, flags);
2460 *objectp = object;
2461 if (object == NULL)
2462 return NULL;
2463
2464 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2465 pool_put(&pc->pc_pool, object);
2466 *objectp = NULL;
2467 return NULL;
2468 }
2469
2470 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2471 (pc->pc_pool.pr_align - 1)) == 0);
2472
2473 if (pap != NULL) {
2474 #ifdef POOL_VTOPHYS
2475 *pap = POOL_VTOPHYS(object);
2476 #else
2477 *pap = POOL_PADDR_INVALID;
2478 #endif
2479 }
2480
2481 FREECHECK_OUT(&pc->pc_freecheck, object);
2482 return NULL;
2483 }
2484
2485 /*
2486 * pool_cache_get{,_paddr}:
2487 *
2488 * Get an object from a pool cache (optionally returning
2489 * the physical address of the object).
2490 */
2491 void *
2492 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2493 {
2494 pool_cache_cpu_t *cc;
2495 pcg_t *pcg;
2496 void *object;
2497 int s;
2498
2499 #ifdef LOCKDEBUG
2500 if (flags & PR_WAITOK) {
2501 ASSERT_SLEEPABLE();
2502 }
2503 #endif
2504
2505 cc = pool_cache_cpu_enter(pc, &s);
2506 do {
2507 /* Try and allocate an object from the current group. */
2508 pcg = cc->cc_current;
2509 if (pcg != NULL && pcg->pcg_avail > 0) {
2510 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2511 if (pap != NULL)
2512 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2513 #if defined(DIAGNOSTIC)
2514 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2515 #endif /* defined(DIAGNOSTIC) */
2516 KASSERT(pcg->pcg_avail <= pcg->pcg_size);
2517 KASSERT(object != NULL);
2518 cc->cc_hits++;
2519 pool_cache_cpu_exit(cc, &s);
2520 FREECHECK_OUT(&pc->pc_freecheck, object);
2521 return object;
2522 }
2523
2524 /*
2525 * That failed. If the previous group isn't empty, swap
2526 * it with the current group and allocate from there.
2527 */
2528 pcg = cc->cc_previous;
2529 if (pcg != NULL && pcg->pcg_avail > 0) {
2530 cc->cc_previous = cc->cc_current;
2531 cc->cc_current = pcg;
2532 continue;
2533 }
2534
2535 /*
2536 * Can't allocate from either group: try the slow path.
2537 * If get_slow() allocated an object for us, or if
2538 * no more objects are available, it will return NULL.
2539 * Otherwise, we need to retry.
2540 */
2541 cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2542 } while (cc != NULL);
2543
2544 return object;
2545 }
2546
2547 #if __GNUC_PREREQ__(3, 0)
2548 __attribute ((noinline))
2549 #endif
2550 pool_cache_cpu_t *
2551 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2552 {
2553 pcg_t *pcg, *cur;
2554 uint64_t ncsw;
2555 pool_cache_t pc;
2556 u_int nobj;
2557
2558 pc = cc->cc_cache;
2559 cc->cc_misses++;
2560
2561 /*
2562 * No free slots locally. Try to grab an empty, unused
2563 * group from the cache.
2564 */
2565 if (!mutex_tryenter(&pc->pc_lock)) {
2566 ncsw = curlwp->l_ncsw;
2567 mutex_enter(&pc->pc_lock);
2568 pc->pc_contended++;
2569
2570 /*
2571 * If we context switched while locking, then
2572 * our view of the per-CPU data is invalid:
2573 * retry.
2574 */
2575 if (curlwp->l_ncsw != ncsw) {
2576 mutex_exit(&pc->pc_lock);
2577 pool_cache_cpu_exit(cc, s);
2578 return pool_cache_cpu_enter(pc, s);
2579 }
2580 }
2581
2582 if ((pcg = pc->pc_emptygroups) != NULL) {
2583 /*
2584 * If there's a empty group, release our full
2585 * group back to the cache. Install the empty
2586 * group and return.
2587 */
2588 KASSERT(pcg->pcg_avail == 0);
2589 pc->pc_emptygroups = pcg->pcg_next;
2590 if (cc->cc_previous == NULL) {
2591 cc->cc_previous = pcg;
2592 } else {
2593 if ((cur = cc->cc_current) != NULL) {
2594 KASSERT(cur->pcg_avail == pcg->pcg_size);
2595 cur->pcg_next = pc->pc_fullgroups;
2596 pc->pc_fullgroups = cur;
2597 pc->pc_nfull++;
2598 }
2599 cc->cc_current = pcg;
2600 }
2601 pc->pc_hits++;
2602 pc->pc_nempty--;
2603 mutex_exit(&pc->pc_lock);
2604 return cc;
2605 }
2606
2607 /*
2608 * Nothing available locally or in cache. Take the
2609 * slow path and try to allocate a new group that we
2610 * can release to.
2611 */
2612 pc->pc_misses++;
2613 mutex_exit(&pc->pc_lock);
2614 pool_cache_cpu_exit(cc, s);
2615
2616 /*
2617 * If we can't allocate a new group, just throw the
2618 * object away.
2619 */
2620 nobj = pc->pc_pcgsize;
2621 if (pool_cache_disable) {
2622 pcg = NULL;
2623 } else if (nobj == PCG_NOBJECTS_LARGE) {
2624 pcg = pool_get(&pcg_large_pool, PR_NOWAIT);
2625 } else {
2626 pcg = pool_get(&pcg_normal_pool, PR_NOWAIT);
2627 }
2628 if (pcg == NULL) {
2629 pool_cache_destruct_object(pc, object);
2630 return NULL;
2631 }
2632 pcg->pcg_avail = 0;
2633 pcg->pcg_size = nobj;
2634
2635 /*
2636 * Add the empty group to the cache and try again.
2637 */
2638 mutex_enter(&pc->pc_lock);
2639 pcg->pcg_next = pc->pc_emptygroups;
2640 pc->pc_emptygroups = pcg;
2641 pc->pc_nempty++;
2642 mutex_exit(&pc->pc_lock);
2643
2644 return pool_cache_cpu_enter(pc, s);
2645 }
2646
2647 /*
2648 * pool_cache_put{,_paddr}:
2649 *
2650 * Put an object back to the pool cache (optionally caching the
2651 * physical address of the object).
2652 */
2653 void
2654 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2655 {
2656 pool_cache_cpu_t *cc;
2657 pcg_t *pcg;
2658 int s;
2659
2660 FREECHECK_IN(&pc->pc_freecheck, object);
2661
2662 cc = pool_cache_cpu_enter(pc, &s);
2663 do {
2664 /* If the current group isn't full, release it there. */
2665 pcg = cc->cc_current;
2666 if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) {
2667 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2668 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2669 pcg->pcg_avail++;
2670 cc->cc_hits++;
2671 pool_cache_cpu_exit(cc, &s);
2672 return;
2673 }
2674
2675 /*
2676 * That failed. If the previous group is empty, swap
2677 * it with the current group and try again.
2678 */
2679 pcg = cc->cc_previous;
2680 if (pcg != NULL && pcg->pcg_avail == 0) {
2681 cc->cc_previous = cc->cc_current;
2682 cc->cc_current = pcg;
2683 continue;
2684 }
2685
2686 /*
2687 * Can't free to either group: try the slow path.
2688 * If put_slow() releases the object for us, it
2689 * will return NULL. Otherwise we need to retry.
2690 */
2691 cc = pool_cache_put_slow(cc, &s, object, pa);
2692 } while (cc != NULL);
2693 }
2694
2695 /*
2696 * pool_cache_xcall:
2697 *
2698 * Transfer objects from the per-CPU cache to the global cache.
2699 * Run within a cross-call thread.
2700 */
2701 static void
2702 pool_cache_xcall(pool_cache_t pc)
2703 {
2704 pool_cache_cpu_t *cc;
2705 pcg_t *prev, *cur, **list;
2706 int s = 0; /* XXXgcc */
2707
2708 cc = pool_cache_cpu_enter(pc, &s);
2709 cur = cc->cc_current;
2710 cc->cc_current = NULL;
2711 prev = cc->cc_previous;
2712 cc->cc_previous = NULL;
2713 pool_cache_cpu_exit(cc, &s);
2714
2715 /*
2716 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2717 * because locks at IPL_SOFTXXX are still spinlocks. Does not
2718 * apply to IPL_SOFTBIO. Cross-call threads do not take the
2719 * kernel_lock.
2720 */
2721 s = splvm();
2722 mutex_enter(&pc->pc_lock);
2723 if (cur != NULL) {
2724 if (cur->pcg_avail == cur->pcg_size) {
2725 list = &pc->pc_fullgroups;
2726 pc->pc_nfull++;
2727 } else if (cur->pcg_avail == 0) {
2728 list = &pc->pc_emptygroups;
2729 pc->pc_nempty++;
2730 } else {
2731 list = &pc->pc_partgroups;
2732 pc->pc_npart++;
2733 }
2734 cur->pcg_next = *list;
2735 *list = cur;
2736 }
2737 if (prev != NULL) {
2738 if (prev->pcg_avail == prev->pcg_size) {
2739 list = &pc->pc_fullgroups;
2740 pc->pc_nfull++;
2741 } else if (prev->pcg_avail == 0) {
2742 list = &pc->pc_emptygroups;
2743 pc->pc_nempty++;
2744 } else {
2745 list = &pc->pc_partgroups;
2746 pc->pc_npart++;
2747 }
2748 prev->pcg_next = *list;
2749 *list = prev;
2750 }
2751 mutex_exit(&pc->pc_lock);
2752 splx(s);
2753 }
2754
2755 /*
2756 * Pool backend allocators.
2757 *
2758 * Each pool has a backend allocator that handles allocation, deallocation,
2759 * and any additional draining that might be needed.
2760 *
2761 * We provide two standard allocators:
2762 *
2763 * pool_allocator_kmem - the default when no allocator is specified
2764 *
2765 * pool_allocator_nointr - used for pools that will not be accessed
2766 * in interrupt context.
2767 */
2768 void *pool_page_alloc(struct pool *, int);
2769 void pool_page_free(struct pool *, void *);
2770
2771 #ifdef POOL_SUBPAGE
2772 struct pool_allocator pool_allocator_kmem_fullpage = {
2773 pool_page_alloc, pool_page_free, 0,
2774 .pa_backingmapptr = &kmem_map,
2775 };
2776 #else
2777 struct pool_allocator pool_allocator_kmem = {
2778 pool_page_alloc, pool_page_free, 0,
2779 .pa_backingmapptr = &kmem_map,
2780 };
2781 #endif
2782
2783 void *pool_page_alloc_nointr(struct pool *, int);
2784 void pool_page_free_nointr(struct pool *, void *);
2785
2786 #ifdef POOL_SUBPAGE
2787 struct pool_allocator pool_allocator_nointr_fullpage = {
2788 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2789 .pa_backingmapptr = &kernel_map,
2790 };
2791 #else
2792 struct pool_allocator pool_allocator_nointr = {
2793 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2794 .pa_backingmapptr = &kernel_map,
2795 };
2796 #endif
2797
2798 #ifdef POOL_SUBPAGE
2799 void *pool_subpage_alloc(struct pool *, int);
2800 void pool_subpage_free(struct pool *, void *);
2801
2802 struct pool_allocator pool_allocator_kmem = {
2803 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2804 .pa_backingmapptr = &kmem_map,
2805 };
2806
2807 void *pool_subpage_alloc_nointr(struct pool *, int);
2808 void pool_subpage_free_nointr(struct pool *, void *);
2809
2810 struct pool_allocator pool_allocator_nointr = {
2811 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2812 .pa_backingmapptr = &kmem_map,
2813 };
2814 #endif /* POOL_SUBPAGE */
2815
2816 static void *
2817 pool_allocator_alloc(struct pool *pp, int flags)
2818 {
2819 struct pool_allocator *pa = pp->pr_alloc;
2820 void *res;
2821
2822 res = (*pa->pa_alloc)(pp, flags);
2823 if (res == NULL && (flags & PR_WAITOK) == 0) {
2824 /*
2825 * We only run the drain hook here if PR_NOWAIT.
2826 * In other cases, the hook will be run in
2827 * pool_reclaim().
2828 */
2829 if (pp->pr_drain_hook != NULL) {
2830 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2831 res = (*pa->pa_alloc)(pp, flags);
2832 }
2833 }
2834 return res;
2835 }
2836
2837 static void
2838 pool_allocator_free(struct pool *pp, void *v)
2839 {
2840 struct pool_allocator *pa = pp->pr_alloc;
2841
2842 (*pa->pa_free)(pp, v);
2843 }
2844
2845 void *
2846 pool_page_alloc(struct pool *pp, int flags)
2847 {
2848 bool waitok = (flags & PR_WAITOK) ? true : false;
2849
2850 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2851 }
2852
2853 void
2854 pool_page_free(struct pool *pp, void *v)
2855 {
2856
2857 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2858 }
2859
2860 static void *
2861 pool_page_alloc_meta(struct pool *pp, int flags)
2862 {
2863 bool waitok = (flags & PR_WAITOK) ? true : false;
2864
2865 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2866 }
2867
2868 static void
2869 pool_page_free_meta(struct pool *pp, void *v)
2870 {
2871
2872 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2873 }
2874
2875 #ifdef POOL_SUBPAGE
2876 /* Sub-page allocator, for machines with large hardware pages. */
2877 void *
2878 pool_subpage_alloc(struct pool *pp, int flags)
2879 {
2880 return pool_get(&psppool, flags);
2881 }
2882
2883 void
2884 pool_subpage_free(struct pool *pp, void *v)
2885 {
2886 pool_put(&psppool, v);
2887 }
2888
2889 /* We don't provide a real nointr allocator. Maybe later. */
2890 void *
2891 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2892 {
2893
2894 return (pool_subpage_alloc(pp, flags));
2895 }
2896
2897 void
2898 pool_subpage_free_nointr(struct pool *pp, void *v)
2899 {
2900
2901 pool_subpage_free(pp, v);
2902 }
2903 #endif /* POOL_SUBPAGE */
2904 void *
2905 pool_page_alloc_nointr(struct pool *pp, int flags)
2906 {
2907 bool waitok = (flags & PR_WAITOK) ? true : false;
2908
2909 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2910 }
2911
2912 void
2913 pool_page_free_nointr(struct pool *pp, void *v)
2914 {
2915
2916 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2917 }
2918
2919 #if defined(DDB)
2920 static bool
2921 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2922 {
2923
2924 return (uintptr_t)ph->ph_page <= addr &&
2925 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2926 }
2927
2928 static bool
2929 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2930 {
2931
2932 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2933 }
2934
2935 static bool
2936 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2937 {
2938 int i;
2939
2940 if (pcg == NULL) {
2941 return false;
2942 }
2943 for (i = 0; i < pcg->pcg_avail; i++) {
2944 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2945 return true;
2946 }
2947 }
2948 return false;
2949 }
2950
2951 static bool
2952 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2953 {
2954
2955 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2956 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2957 pool_item_bitmap_t *bitmap =
2958 ph->ph_bitmap + (idx / BITMAP_SIZE);
2959 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2960
2961 return (*bitmap & mask) == 0;
2962 } else {
2963 struct pool_item *pi;
2964
2965 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2966 if (pool_in_item(pp, pi, addr)) {
2967 return false;
2968 }
2969 }
2970 return true;
2971 }
2972 }
2973
2974 void
2975 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2976 {
2977 struct pool *pp;
2978
2979 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2980 struct pool_item_header *ph;
2981 uintptr_t item;
2982 bool allocated = true;
2983 bool incache = false;
2984 bool incpucache = false;
2985 char cpucachestr[32];
2986
2987 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2988 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2989 if (pool_in_page(pp, ph, addr)) {
2990 goto found;
2991 }
2992 }
2993 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2994 if (pool_in_page(pp, ph, addr)) {
2995 allocated =
2996 pool_allocated(pp, ph, addr);
2997 goto found;
2998 }
2999 }
3000 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3001 if (pool_in_page(pp, ph, addr)) {
3002 allocated = false;
3003 goto found;
3004 }
3005 }
3006 continue;
3007 } else {
3008 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3009 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3010 continue;
3011 }
3012 allocated = pool_allocated(pp, ph, addr);
3013 }
3014 found:
3015 if (allocated && pp->pr_cache) {
3016 pool_cache_t pc = pp->pr_cache;
3017 struct pool_cache_group *pcg;
3018 int i;
3019
3020 for (pcg = pc->pc_fullgroups; pcg != NULL;
3021 pcg = pcg->pcg_next) {
3022 if (pool_in_cg(pp, pcg, addr)) {
3023 incache = true;
3024 goto print;
3025 }
3026 }
3027 for (i = 0; i < MAXCPUS; i++) {
3028 pool_cache_cpu_t *cc;
3029
3030 if ((cc = pc->pc_cpus[i]) == NULL) {
3031 continue;
3032 }
3033 if (pool_in_cg(pp, cc->cc_current, addr) ||
3034 pool_in_cg(pp, cc->cc_previous, addr)) {
3035 struct cpu_info *ci =
3036 cpu_lookup_byindex(i);
3037
3038 incpucache = true;
3039 snprintf(cpucachestr,
3040 sizeof(cpucachestr),
3041 "cached by CPU %u",
3042 ci->ci_index);
3043 goto print;
3044 }
3045 }
3046 }
3047 print:
3048 item = (uintptr_t)ph->ph_page + ph->ph_off;
3049 item = item + rounddown(addr - item, pp->pr_size);
3050 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3051 (void *)addr, item, (size_t)(addr - item),
3052 pp->pr_wchan,
3053 incpucache ? cpucachestr :
3054 incache ? "cached" : allocated ? "allocated" : "free");
3055 }
3056 }
3057 #endif /* defined(DDB) */
3058