subr_pool.c revision 1.157 1 /* $NetBSD: subr_pool.c,v 1.157 2008/04/24 11:38:36 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.157 2008/04/24 11:38:36 ad Exp $");
42
43 #include "opt_ddb.h"
44 #include "opt_pool.h"
45 #include "opt_poollog.h"
46 #include "opt_lockdebug.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bitops.h>
51 #include <sys/proc.h>
52 #include <sys/errno.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/pool.h>
56 #include <sys/syslog.h>
57 #include <sys/debug.h>
58 #include <sys/lockdebug.h>
59 #include <sys/xcall.h>
60 #include <sys/cpu.h>
61 #include <sys/atomic.h>
62
63 #include <uvm/uvm.h>
64
65 /*
66 * Pool resource management utility.
67 *
68 * Memory is allocated in pages which are split into pieces according to
69 * the pool item size. Each page is kept on one of three lists in the
70 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
71 * for empty, full and partially-full pages respectively. The individual
72 * pool items are on a linked list headed by `ph_itemlist' in each page
73 * header. The memory for building the page list is either taken from
74 * the allocated pages themselves (for small pool items) or taken from
75 * an internal pool of page headers (`phpool').
76 */
77
78 /* List of all pools */
79 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
80
81 /* Private pool for page header structures */
82 #define PHPOOL_MAX 8
83 static struct pool phpool[PHPOOL_MAX];
84 #define PHPOOL_FREELIST_NELEM(idx) \
85 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
86
87 #ifdef POOL_SUBPAGE
88 /* Pool of subpages for use by normal pools. */
89 static struct pool psppool;
90 #endif
91
92 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
93 SLIST_HEAD_INITIALIZER(pa_deferinitq);
94
95 static void *pool_page_alloc_meta(struct pool *, int);
96 static void pool_page_free_meta(struct pool *, void *);
97
98 /* allocator for pool metadata */
99 struct pool_allocator pool_allocator_meta = {
100 pool_page_alloc_meta, pool_page_free_meta,
101 .pa_backingmapptr = &kmem_map,
102 };
103
104 /* # of seconds to retain page after last use */
105 int pool_inactive_time = 10;
106
107 /* Next candidate for drainage (see pool_drain()) */
108 static struct pool *drainpp;
109
110 /* This lock protects both pool_head and drainpp. */
111 static kmutex_t pool_head_lock;
112 static kcondvar_t pool_busy;
113
114 typedef uint32_t pool_item_bitmap_t;
115 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
116 #define BITMAP_MASK (BITMAP_SIZE - 1)
117
118 struct pool_item_header {
119 /* Page headers */
120 LIST_ENTRY(pool_item_header)
121 ph_pagelist; /* pool page list */
122 SPLAY_ENTRY(pool_item_header)
123 ph_node; /* Off-page page headers */
124 void * ph_page; /* this page's address */
125 uint32_t ph_time; /* last referenced */
126 uint16_t ph_nmissing; /* # of chunks in use */
127 uint16_t ph_off; /* start offset in page */
128 union {
129 /* !PR_NOTOUCH */
130 struct {
131 LIST_HEAD(, pool_item)
132 phu_itemlist; /* chunk list for this page */
133 } phu_normal;
134 /* PR_NOTOUCH */
135 struct {
136 pool_item_bitmap_t phu_bitmap[1];
137 } phu_notouch;
138 } ph_u;
139 };
140 #define ph_itemlist ph_u.phu_normal.phu_itemlist
141 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
142
143 struct pool_item {
144 #ifdef DIAGNOSTIC
145 u_int pi_magic;
146 #endif
147 #define PI_MAGIC 0xdeaddeadU
148 /* Other entries use only this list entry */
149 LIST_ENTRY(pool_item) pi_list;
150 };
151
152 #define POOL_NEEDS_CATCHUP(pp) \
153 ((pp)->pr_nitems < (pp)->pr_minitems)
154
155 /*
156 * Pool cache management.
157 *
158 * Pool caches provide a way for constructed objects to be cached by the
159 * pool subsystem. This can lead to performance improvements by avoiding
160 * needless object construction/destruction; it is deferred until absolutely
161 * necessary.
162 *
163 * Caches are grouped into cache groups. Each cache group references up
164 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
165 * object from the pool, it calls the object's constructor and places it
166 * into a cache group. When a cache group frees an object back to the
167 * pool, it first calls the object's destructor. This allows the object
168 * to persist in constructed form while freed to the cache.
169 *
170 * The pool references each cache, so that when a pool is drained by the
171 * pagedaemon, it can drain each individual cache as well. Each time a
172 * cache is drained, the most idle cache group is freed to the pool in
173 * its entirety.
174 *
175 * Pool caches are layed on top of pools. By layering them, we can avoid
176 * the complexity of cache management for pools which would not benefit
177 * from it.
178 */
179
180 static struct pool pcg_normal_pool;
181 static struct pool pcg_large_pool;
182 static struct pool cache_pool;
183 static struct pool cache_cpu_pool;
184
185 /* List of all caches. */
186 TAILQ_HEAD(,pool_cache) pool_cache_head =
187 TAILQ_HEAD_INITIALIZER(pool_cache_head);
188
189 int pool_cache_disable;
190
191
192 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
193 void *, paddr_t);
194 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
195 void **, paddr_t *, int);
196 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
197 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
198 static void pool_cache_xcall(pool_cache_t);
199
200 static int pool_catchup(struct pool *);
201 static void pool_prime_page(struct pool *, void *,
202 struct pool_item_header *);
203 static void pool_update_curpage(struct pool *);
204
205 static int pool_grow(struct pool *, int);
206 static void *pool_allocator_alloc(struct pool *, int);
207 static void pool_allocator_free(struct pool *, void *);
208
209 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
210 void (*)(const char *, ...));
211 static void pool_print1(struct pool *, const char *,
212 void (*)(const char *, ...));
213
214 static int pool_chk_page(struct pool *, const char *,
215 struct pool_item_header *);
216
217 /*
218 * Pool log entry. An array of these is allocated in pool_init().
219 */
220 struct pool_log {
221 const char *pl_file;
222 long pl_line;
223 int pl_action;
224 #define PRLOG_GET 1
225 #define PRLOG_PUT 2
226 void *pl_addr;
227 };
228
229 #ifdef POOL_DIAGNOSTIC
230 /* Number of entries in pool log buffers */
231 #ifndef POOL_LOGSIZE
232 #define POOL_LOGSIZE 10
233 #endif
234
235 int pool_logsize = POOL_LOGSIZE;
236
237 static inline void
238 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
239 {
240 int n = pp->pr_curlogentry;
241 struct pool_log *pl;
242
243 if ((pp->pr_roflags & PR_LOGGING) == 0)
244 return;
245
246 /*
247 * Fill in the current entry. Wrap around and overwrite
248 * the oldest entry if necessary.
249 */
250 pl = &pp->pr_log[n];
251 pl->pl_file = file;
252 pl->pl_line = line;
253 pl->pl_action = action;
254 pl->pl_addr = v;
255 if (++n >= pp->pr_logsize)
256 n = 0;
257 pp->pr_curlogentry = n;
258 }
259
260 static void
261 pr_printlog(struct pool *pp, struct pool_item *pi,
262 void (*pr)(const char *, ...))
263 {
264 int i = pp->pr_logsize;
265 int n = pp->pr_curlogentry;
266
267 if ((pp->pr_roflags & PR_LOGGING) == 0)
268 return;
269
270 /*
271 * Print all entries in this pool's log.
272 */
273 while (i-- > 0) {
274 struct pool_log *pl = &pp->pr_log[n];
275 if (pl->pl_action != 0) {
276 if (pi == NULL || pi == pl->pl_addr) {
277 (*pr)("\tlog entry %d:\n", i);
278 (*pr)("\t\taction = %s, addr = %p\n",
279 pl->pl_action == PRLOG_GET ? "get" : "put",
280 pl->pl_addr);
281 (*pr)("\t\tfile: %s at line %lu\n",
282 pl->pl_file, pl->pl_line);
283 }
284 }
285 if (++n >= pp->pr_logsize)
286 n = 0;
287 }
288 }
289
290 static inline void
291 pr_enter(struct pool *pp, const char *file, long line)
292 {
293
294 if (__predict_false(pp->pr_entered_file != NULL)) {
295 printf("pool %s: reentrancy at file %s line %ld\n",
296 pp->pr_wchan, file, line);
297 printf(" previous entry at file %s line %ld\n",
298 pp->pr_entered_file, pp->pr_entered_line);
299 panic("pr_enter");
300 }
301
302 pp->pr_entered_file = file;
303 pp->pr_entered_line = line;
304 }
305
306 static inline void
307 pr_leave(struct pool *pp)
308 {
309
310 if (__predict_false(pp->pr_entered_file == NULL)) {
311 printf("pool %s not entered?\n", pp->pr_wchan);
312 panic("pr_leave");
313 }
314
315 pp->pr_entered_file = NULL;
316 pp->pr_entered_line = 0;
317 }
318
319 static inline void
320 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
321 {
322
323 if (pp->pr_entered_file != NULL)
324 (*pr)("\n\tcurrently entered from file %s line %ld\n",
325 pp->pr_entered_file, pp->pr_entered_line);
326 }
327 #else
328 #define pr_log(pp, v, action, file, line)
329 #define pr_printlog(pp, pi, pr)
330 #define pr_enter(pp, file, line)
331 #define pr_leave(pp)
332 #define pr_enter_check(pp, pr)
333 #endif /* POOL_DIAGNOSTIC */
334
335 static inline unsigned int
336 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
337 const void *v)
338 {
339 const char *cp = v;
340 unsigned int idx;
341
342 KASSERT(pp->pr_roflags & PR_NOTOUCH);
343 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
344 KASSERT(idx < pp->pr_itemsperpage);
345 return idx;
346 }
347
348 static inline void
349 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
350 void *obj)
351 {
352 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
353 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
354 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
355
356 KASSERT((*bitmap & mask) == 0);
357 *bitmap |= mask;
358 }
359
360 static inline void *
361 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
362 {
363 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
364 unsigned int idx;
365 int i;
366
367 for (i = 0; ; i++) {
368 int bit;
369
370 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
371 bit = ffs32(bitmap[i]);
372 if (bit) {
373 pool_item_bitmap_t mask;
374
375 bit--;
376 idx = (i * BITMAP_SIZE) + bit;
377 mask = 1 << bit;
378 KASSERT((bitmap[i] & mask) != 0);
379 bitmap[i] &= ~mask;
380 break;
381 }
382 }
383 KASSERT(idx < pp->pr_itemsperpage);
384 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
385 }
386
387 static inline void
388 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
389 {
390 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
391 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
392 int i;
393
394 for (i = 0; i < n; i++) {
395 bitmap[i] = (pool_item_bitmap_t)-1;
396 }
397 }
398
399 static inline int
400 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
401 {
402
403 /*
404 * we consider pool_item_header with smaller ph_page bigger.
405 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
406 */
407
408 if (a->ph_page < b->ph_page)
409 return (1);
410 else if (a->ph_page > b->ph_page)
411 return (-1);
412 else
413 return (0);
414 }
415
416 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
417 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
418
419 static inline struct pool_item_header *
420 pr_find_pagehead_noalign(struct pool *pp, void *v)
421 {
422 struct pool_item_header *ph, tmp;
423
424 tmp.ph_page = (void *)(uintptr_t)v;
425 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
426 if (ph == NULL) {
427 ph = SPLAY_ROOT(&pp->pr_phtree);
428 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
429 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
430 }
431 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
432 }
433
434 return ph;
435 }
436
437 /*
438 * Return the pool page header based on item address.
439 */
440 static inline struct pool_item_header *
441 pr_find_pagehead(struct pool *pp, void *v)
442 {
443 struct pool_item_header *ph, tmp;
444
445 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
446 ph = pr_find_pagehead_noalign(pp, v);
447 } else {
448 void *page =
449 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
450
451 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
452 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
453 } else {
454 tmp.ph_page = page;
455 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
456 }
457 }
458
459 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
460 ((char *)ph->ph_page <= (char *)v &&
461 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
462 return ph;
463 }
464
465 static void
466 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
467 {
468 struct pool_item_header *ph;
469
470 while ((ph = LIST_FIRST(pq)) != NULL) {
471 LIST_REMOVE(ph, ph_pagelist);
472 pool_allocator_free(pp, ph->ph_page);
473 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
474 pool_put(pp->pr_phpool, ph);
475 }
476 }
477
478 /*
479 * Remove a page from the pool.
480 */
481 static inline void
482 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
483 struct pool_pagelist *pq)
484 {
485
486 KASSERT(mutex_owned(&pp->pr_lock));
487
488 /*
489 * If the page was idle, decrement the idle page count.
490 */
491 if (ph->ph_nmissing == 0) {
492 #ifdef DIAGNOSTIC
493 if (pp->pr_nidle == 0)
494 panic("pr_rmpage: nidle inconsistent");
495 if (pp->pr_nitems < pp->pr_itemsperpage)
496 panic("pr_rmpage: nitems inconsistent");
497 #endif
498 pp->pr_nidle--;
499 }
500
501 pp->pr_nitems -= pp->pr_itemsperpage;
502
503 /*
504 * Unlink the page from the pool and queue it for release.
505 */
506 LIST_REMOVE(ph, ph_pagelist);
507 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
508 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
509 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
510
511 pp->pr_npages--;
512 pp->pr_npagefree++;
513
514 pool_update_curpage(pp);
515 }
516
517 static bool
518 pa_starved_p(struct pool_allocator *pa)
519 {
520
521 if (pa->pa_backingmap != NULL) {
522 return vm_map_starved_p(pa->pa_backingmap);
523 }
524 return false;
525 }
526
527 static int
528 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
529 {
530 struct pool *pp = obj;
531 struct pool_allocator *pa = pp->pr_alloc;
532
533 KASSERT(&pp->pr_reclaimerentry == ce);
534 pool_reclaim(pp);
535 if (!pa_starved_p(pa)) {
536 return CALLBACK_CHAIN_ABORT;
537 }
538 return CALLBACK_CHAIN_CONTINUE;
539 }
540
541 static void
542 pool_reclaim_register(struct pool *pp)
543 {
544 struct vm_map *map = pp->pr_alloc->pa_backingmap;
545 int s;
546
547 if (map == NULL) {
548 return;
549 }
550
551 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
552 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
553 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
554 splx(s);
555 }
556
557 static void
558 pool_reclaim_unregister(struct pool *pp)
559 {
560 struct vm_map *map = pp->pr_alloc->pa_backingmap;
561 int s;
562
563 if (map == NULL) {
564 return;
565 }
566
567 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
568 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
569 &pp->pr_reclaimerentry);
570 splx(s);
571 }
572
573 static void
574 pa_reclaim_register(struct pool_allocator *pa)
575 {
576 struct vm_map *map = *pa->pa_backingmapptr;
577 struct pool *pp;
578
579 KASSERT(pa->pa_backingmap == NULL);
580 if (map == NULL) {
581 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
582 return;
583 }
584 pa->pa_backingmap = map;
585 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
586 pool_reclaim_register(pp);
587 }
588 }
589
590 /*
591 * Initialize all the pools listed in the "pools" link set.
592 */
593 void
594 pool_subsystem_init(void)
595 {
596 struct pool_allocator *pa;
597 __link_set_decl(pools, struct link_pool_init);
598 struct link_pool_init * const *pi;
599
600 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
601 cv_init(&pool_busy, "poolbusy");
602
603 __link_set_foreach(pi, pools)
604 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
605 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
606 (*pi)->palloc, (*pi)->ipl);
607
608 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
609 KASSERT(pa->pa_backingmapptr != NULL);
610 KASSERT(*pa->pa_backingmapptr != NULL);
611 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
612 pa_reclaim_register(pa);
613 }
614
615 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
616 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
617
618 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
619 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
620 }
621
622 /*
623 * Initialize the given pool resource structure.
624 *
625 * We export this routine to allow other kernel parts to declare
626 * static pools that must be initialized before malloc() is available.
627 */
628 void
629 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
630 const char *wchan, struct pool_allocator *palloc, int ipl)
631 {
632 struct pool *pp1;
633 size_t trysize, phsize;
634 int off, slack;
635
636 #ifdef DEBUG
637 /*
638 * Check that the pool hasn't already been initialised and
639 * added to the list of all pools.
640 */
641 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
642 if (pp == pp1)
643 panic("pool_init: pool %s already initialised",
644 wchan);
645 }
646 #endif
647
648 #ifdef POOL_DIAGNOSTIC
649 /*
650 * Always log if POOL_DIAGNOSTIC is defined.
651 */
652 if (pool_logsize != 0)
653 flags |= PR_LOGGING;
654 #endif
655
656 if (palloc == NULL)
657 palloc = &pool_allocator_kmem;
658 #ifdef POOL_SUBPAGE
659 if (size > palloc->pa_pagesz) {
660 if (palloc == &pool_allocator_kmem)
661 palloc = &pool_allocator_kmem_fullpage;
662 else if (palloc == &pool_allocator_nointr)
663 palloc = &pool_allocator_nointr_fullpage;
664 }
665 #endif /* POOL_SUBPAGE */
666 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
667 if (palloc->pa_pagesz == 0)
668 palloc->pa_pagesz = PAGE_SIZE;
669
670 TAILQ_INIT(&palloc->pa_list);
671
672 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
673 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
674 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
675
676 if (palloc->pa_backingmapptr != NULL) {
677 pa_reclaim_register(palloc);
678 }
679 palloc->pa_flags |= PA_INITIALIZED;
680 }
681
682 if (align == 0)
683 align = ALIGN(1);
684
685 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
686 size = sizeof(struct pool_item);
687
688 size = roundup(size, align);
689 #ifdef DIAGNOSTIC
690 if (size > palloc->pa_pagesz)
691 panic("pool_init: pool item size (%zu) too large", size);
692 #endif
693
694 /*
695 * Initialize the pool structure.
696 */
697 LIST_INIT(&pp->pr_emptypages);
698 LIST_INIT(&pp->pr_fullpages);
699 LIST_INIT(&pp->pr_partpages);
700 pp->pr_cache = NULL;
701 pp->pr_curpage = NULL;
702 pp->pr_npages = 0;
703 pp->pr_minitems = 0;
704 pp->pr_minpages = 0;
705 pp->pr_maxpages = UINT_MAX;
706 pp->pr_roflags = flags;
707 pp->pr_flags = 0;
708 pp->pr_size = size;
709 pp->pr_align = align;
710 pp->pr_wchan = wchan;
711 pp->pr_alloc = palloc;
712 pp->pr_nitems = 0;
713 pp->pr_nout = 0;
714 pp->pr_hardlimit = UINT_MAX;
715 pp->pr_hardlimit_warning = NULL;
716 pp->pr_hardlimit_ratecap.tv_sec = 0;
717 pp->pr_hardlimit_ratecap.tv_usec = 0;
718 pp->pr_hardlimit_warning_last.tv_sec = 0;
719 pp->pr_hardlimit_warning_last.tv_usec = 0;
720 pp->pr_drain_hook = NULL;
721 pp->pr_drain_hook_arg = NULL;
722 pp->pr_freecheck = NULL;
723
724 /*
725 * Decide whether to put the page header off page to avoid
726 * wasting too large a part of the page or too big item.
727 * Off-page page headers go on a hash table, so we can match
728 * a returned item with its header based on the page address.
729 * We use 1/16 of the page size and about 8 times of the item
730 * size as the threshold (XXX: tune)
731 *
732 * However, we'll put the header into the page if we can put
733 * it without wasting any items.
734 *
735 * Silently enforce `0 <= ioff < align'.
736 */
737 pp->pr_itemoffset = ioff %= align;
738 /* See the comment below about reserved bytes. */
739 trysize = palloc->pa_pagesz - ((align - ioff) % align);
740 phsize = ALIGN(sizeof(struct pool_item_header));
741 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
742 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
743 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
744 /* Use the end of the page for the page header */
745 pp->pr_roflags |= PR_PHINPAGE;
746 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
747 } else {
748 /* The page header will be taken from our page header pool */
749 pp->pr_phoffset = 0;
750 off = palloc->pa_pagesz;
751 SPLAY_INIT(&pp->pr_phtree);
752 }
753
754 /*
755 * Alignment is to take place at `ioff' within the item. This means
756 * we must reserve up to `align - 1' bytes on the page to allow
757 * appropriate positioning of each item.
758 */
759 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
760 KASSERT(pp->pr_itemsperpage != 0);
761 if ((pp->pr_roflags & PR_NOTOUCH)) {
762 int idx;
763
764 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
765 idx++) {
766 /* nothing */
767 }
768 if (idx >= PHPOOL_MAX) {
769 /*
770 * if you see this panic, consider to tweak
771 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
772 */
773 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
774 pp->pr_wchan, pp->pr_itemsperpage);
775 }
776 pp->pr_phpool = &phpool[idx];
777 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
778 pp->pr_phpool = &phpool[0];
779 }
780 #if defined(DIAGNOSTIC)
781 else {
782 pp->pr_phpool = NULL;
783 }
784 #endif
785
786 /*
787 * Use the slack between the chunks and the page header
788 * for "cache coloring".
789 */
790 slack = off - pp->pr_itemsperpage * pp->pr_size;
791 pp->pr_maxcolor = (slack / align) * align;
792 pp->pr_curcolor = 0;
793
794 pp->pr_nget = 0;
795 pp->pr_nfail = 0;
796 pp->pr_nput = 0;
797 pp->pr_npagealloc = 0;
798 pp->pr_npagefree = 0;
799 pp->pr_hiwat = 0;
800 pp->pr_nidle = 0;
801 pp->pr_refcnt = 0;
802
803 #ifdef POOL_DIAGNOSTIC
804 if (flags & PR_LOGGING) {
805 if (kmem_map == NULL ||
806 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
807 M_TEMP, M_NOWAIT)) == NULL)
808 pp->pr_roflags &= ~PR_LOGGING;
809 pp->pr_curlogentry = 0;
810 pp->pr_logsize = pool_logsize;
811 }
812 #endif
813
814 pp->pr_entered_file = NULL;
815 pp->pr_entered_line = 0;
816
817 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
818 cv_init(&pp->pr_cv, wchan);
819 pp->pr_ipl = ipl;
820
821 /*
822 * Initialize private page header pool and cache magazine pool if we
823 * haven't done so yet.
824 * XXX LOCKING.
825 */
826 if (phpool[0].pr_size == 0) {
827 int idx;
828 for (idx = 0; idx < PHPOOL_MAX; idx++) {
829 static char phpool_names[PHPOOL_MAX][6+1+6+1];
830 int nelem;
831 size_t sz;
832
833 nelem = PHPOOL_FREELIST_NELEM(idx);
834 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
835 "phpool-%d", nelem);
836 sz = sizeof(struct pool_item_header);
837 if (nelem) {
838 sz = offsetof(struct pool_item_header,
839 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
840 }
841 pool_init(&phpool[idx], sz, 0, 0, 0,
842 phpool_names[idx], &pool_allocator_meta, IPL_VM);
843 }
844 #ifdef POOL_SUBPAGE
845 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
846 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
847 #endif
848
849 size = sizeof(pcg_t) +
850 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
851 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
852 "pcgnormal", &pool_allocator_meta, IPL_VM);
853
854 size = sizeof(pcg_t) +
855 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
856 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
857 "pcglarge", &pool_allocator_meta, IPL_VM);
858 }
859
860 /* Insert into the list of all pools. */
861 if (__predict_true(!cold))
862 mutex_enter(&pool_head_lock);
863 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
864 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
865 break;
866 }
867 if (pp1 == NULL)
868 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
869 else
870 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
871 if (__predict_true(!cold))
872 mutex_exit(&pool_head_lock);
873
874 /* Insert this into the list of pools using this allocator. */
875 if (__predict_true(!cold))
876 mutex_enter(&palloc->pa_lock);
877 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
878 if (__predict_true(!cold))
879 mutex_exit(&palloc->pa_lock);
880
881 pool_reclaim_register(pp);
882 }
883
884 /*
885 * De-commision a pool resource.
886 */
887 void
888 pool_destroy(struct pool *pp)
889 {
890 struct pool_pagelist pq;
891 struct pool_item_header *ph;
892
893 /* Remove from global pool list */
894 mutex_enter(&pool_head_lock);
895 while (pp->pr_refcnt != 0)
896 cv_wait(&pool_busy, &pool_head_lock);
897 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
898 if (drainpp == pp)
899 drainpp = NULL;
900 mutex_exit(&pool_head_lock);
901
902 /* Remove this pool from its allocator's list of pools. */
903 pool_reclaim_unregister(pp);
904 mutex_enter(&pp->pr_alloc->pa_lock);
905 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
906 mutex_exit(&pp->pr_alloc->pa_lock);
907
908 mutex_enter(&pp->pr_lock);
909
910 KASSERT(pp->pr_cache == NULL);
911
912 #ifdef DIAGNOSTIC
913 if (pp->pr_nout != 0) {
914 pr_printlog(pp, NULL, printf);
915 panic("pool_destroy: pool busy: still out: %u",
916 pp->pr_nout);
917 }
918 #endif
919
920 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
921 KASSERT(LIST_EMPTY(&pp->pr_partpages));
922
923 /* Remove all pages */
924 LIST_INIT(&pq);
925 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
926 pr_rmpage(pp, ph, &pq);
927
928 mutex_exit(&pp->pr_lock);
929
930 pr_pagelist_free(pp, &pq);
931
932 #ifdef POOL_DIAGNOSTIC
933 if ((pp->pr_roflags & PR_LOGGING) != 0)
934 free(pp->pr_log, M_TEMP);
935 #endif
936
937 cv_destroy(&pp->pr_cv);
938 mutex_destroy(&pp->pr_lock);
939 }
940
941 void
942 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
943 {
944
945 /* XXX no locking -- must be used just after pool_init() */
946 #ifdef DIAGNOSTIC
947 if (pp->pr_drain_hook != NULL)
948 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
949 #endif
950 pp->pr_drain_hook = fn;
951 pp->pr_drain_hook_arg = arg;
952 }
953
954 static struct pool_item_header *
955 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
956 {
957 struct pool_item_header *ph;
958
959 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
960 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
961 else
962 ph = pool_get(pp->pr_phpool, flags);
963
964 return (ph);
965 }
966
967 /*
968 * Grab an item from the pool.
969 */
970 void *
971 #ifdef POOL_DIAGNOSTIC
972 _pool_get(struct pool *pp, int flags, const char *file, long line)
973 #else
974 pool_get(struct pool *pp, int flags)
975 #endif
976 {
977 struct pool_item *pi;
978 struct pool_item_header *ph;
979 void *v;
980
981 #ifdef DIAGNOSTIC
982 if (__predict_false(pp->pr_itemsperpage == 0))
983 panic("pool_get: pool %p: pr_itemsperpage is zero, "
984 "pool not initialized?", pp);
985 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
986 (flags & PR_WAITOK) != 0))
987 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
988
989 #endif /* DIAGNOSTIC */
990 #ifdef LOCKDEBUG
991 if (flags & PR_WAITOK) {
992 ASSERT_SLEEPABLE();
993 }
994 #endif
995
996 mutex_enter(&pp->pr_lock);
997 pr_enter(pp, file, line);
998
999 startover:
1000 /*
1001 * Check to see if we've reached the hard limit. If we have,
1002 * and we can wait, then wait until an item has been returned to
1003 * the pool.
1004 */
1005 #ifdef DIAGNOSTIC
1006 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
1007 pr_leave(pp);
1008 mutex_exit(&pp->pr_lock);
1009 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
1010 }
1011 #endif
1012 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1013 if (pp->pr_drain_hook != NULL) {
1014 /*
1015 * Since the drain hook is going to free things
1016 * back to the pool, unlock, call the hook, re-lock,
1017 * and check the hardlimit condition again.
1018 */
1019 pr_leave(pp);
1020 mutex_exit(&pp->pr_lock);
1021 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1022 mutex_enter(&pp->pr_lock);
1023 pr_enter(pp, file, line);
1024 if (pp->pr_nout < pp->pr_hardlimit)
1025 goto startover;
1026 }
1027
1028 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1029 /*
1030 * XXX: A warning isn't logged in this case. Should
1031 * it be?
1032 */
1033 pp->pr_flags |= PR_WANTED;
1034 pr_leave(pp);
1035 cv_wait(&pp->pr_cv, &pp->pr_lock);
1036 pr_enter(pp, file, line);
1037 goto startover;
1038 }
1039
1040 /*
1041 * Log a message that the hard limit has been hit.
1042 */
1043 if (pp->pr_hardlimit_warning != NULL &&
1044 ratecheck(&pp->pr_hardlimit_warning_last,
1045 &pp->pr_hardlimit_ratecap))
1046 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1047
1048 pp->pr_nfail++;
1049
1050 pr_leave(pp);
1051 mutex_exit(&pp->pr_lock);
1052 return (NULL);
1053 }
1054
1055 /*
1056 * The convention we use is that if `curpage' is not NULL, then
1057 * it points at a non-empty bucket. In particular, `curpage'
1058 * never points at a page header which has PR_PHINPAGE set and
1059 * has no items in its bucket.
1060 */
1061 if ((ph = pp->pr_curpage) == NULL) {
1062 int error;
1063
1064 #ifdef DIAGNOSTIC
1065 if (pp->pr_nitems != 0) {
1066 mutex_exit(&pp->pr_lock);
1067 printf("pool_get: %s: curpage NULL, nitems %u\n",
1068 pp->pr_wchan, pp->pr_nitems);
1069 panic("pool_get: nitems inconsistent");
1070 }
1071 #endif
1072
1073 /*
1074 * Call the back-end page allocator for more memory.
1075 * Release the pool lock, as the back-end page allocator
1076 * may block.
1077 */
1078 pr_leave(pp);
1079 error = pool_grow(pp, flags);
1080 pr_enter(pp, file, line);
1081 if (error != 0) {
1082 /*
1083 * We were unable to allocate a page or item
1084 * header, but we released the lock during
1085 * allocation, so perhaps items were freed
1086 * back to the pool. Check for this case.
1087 */
1088 if (pp->pr_curpage != NULL)
1089 goto startover;
1090
1091 pp->pr_nfail++;
1092 pr_leave(pp);
1093 mutex_exit(&pp->pr_lock);
1094 return (NULL);
1095 }
1096
1097 /* Start the allocation process over. */
1098 goto startover;
1099 }
1100 if (pp->pr_roflags & PR_NOTOUCH) {
1101 #ifdef DIAGNOSTIC
1102 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1103 pr_leave(pp);
1104 mutex_exit(&pp->pr_lock);
1105 panic("pool_get: %s: page empty", pp->pr_wchan);
1106 }
1107 #endif
1108 v = pr_item_notouch_get(pp, ph);
1109 #ifdef POOL_DIAGNOSTIC
1110 pr_log(pp, v, PRLOG_GET, file, line);
1111 #endif
1112 } else {
1113 v = pi = LIST_FIRST(&ph->ph_itemlist);
1114 if (__predict_false(v == NULL)) {
1115 pr_leave(pp);
1116 mutex_exit(&pp->pr_lock);
1117 panic("pool_get: %s: page empty", pp->pr_wchan);
1118 }
1119 #ifdef DIAGNOSTIC
1120 if (__predict_false(pp->pr_nitems == 0)) {
1121 pr_leave(pp);
1122 mutex_exit(&pp->pr_lock);
1123 printf("pool_get: %s: items on itemlist, nitems %u\n",
1124 pp->pr_wchan, pp->pr_nitems);
1125 panic("pool_get: nitems inconsistent");
1126 }
1127 #endif
1128
1129 #ifdef POOL_DIAGNOSTIC
1130 pr_log(pp, v, PRLOG_GET, file, line);
1131 #endif
1132
1133 #ifdef DIAGNOSTIC
1134 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1135 pr_printlog(pp, pi, printf);
1136 panic("pool_get(%s): free list modified: "
1137 "magic=%x; page %p; item addr %p\n",
1138 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1139 }
1140 #endif
1141
1142 /*
1143 * Remove from item list.
1144 */
1145 LIST_REMOVE(pi, pi_list);
1146 }
1147 pp->pr_nitems--;
1148 pp->pr_nout++;
1149 if (ph->ph_nmissing == 0) {
1150 #ifdef DIAGNOSTIC
1151 if (__predict_false(pp->pr_nidle == 0))
1152 panic("pool_get: nidle inconsistent");
1153 #endif
1154 pp->pr_nidle--;
1155
1156 /*
1157 * This page was previously empty. Move it to the list of
1158 * partially-full pages. This page is already curpage.
1159 */
1160 LIST_REMOVE(ph, ph_pagelist);
1161 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1162 }
1163 ph->ph_nmissing++;
1164 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1165 #ifdef DIAGNOSTIC
1166 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1167 !LIST_EMPTY(&ph->ph_itemlist))) {
1168 pr_leave(pp);
1169 mutex_exit(&pp->pr_lock);
1170 panic("pool_get: %s: nmissing inconsistent",
1171 pp->pr_wchan);
1172 }
1173 #endif
1174 /*
1175 * This page is now full. Move it to the full list
1176 * and select a new current page.
1177 */
1178 LIST_REMOVE(ph, ph_pagelist);
1179 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1180 pool_update_curpage(pp);
1181 }
1182
1183 pp->pr_nget++;
1184 pr_leave(pp);
1185
1186 /*
1187 * If we have a low water mark and we are now below that low
1188 * water mark, add more items to the pool.
1189 */
1190 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1191 /*
1192 * XXX: Should we log a warning? Should we set up a timeout
1193 * to try again in a second or so? The latter could break
1194 * a caller's assumptions about interrupt protection, etc.
1195 */
1196 }
1197
1198 mutex_exit(&pp->pr_lock);
1199 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1200 FREECHECK_OUT(&pp->pr_freecheck, v);
1201 return (v);
1202 }
1203
1204 /*
1205 * Internal version of pool_put(). Pool is already locked/entered.
1206 */
1207 static void
1208 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1209 {
1210 struct pool_item *pi = v;
1211 struct pool_item_header *ph;
1212
1213 KASSERT(mutex_owned(&pp->pr_lock));
1214 FREECHECK_IN(&pp->pr_freecheck, v);
1215 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1216
1217 #ifdef DIAGNOSTIC
1218 if (__predict_false(pp->pr_nout == 0)) {
1219 printf("pool %s: putting with none out\n",
1220 pp->pr_wchan);
1221 panic("pool_put");
1222 }
1223 #endif
1224
1225 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1226 pr_printlog(pp, NULL, printf);
1227 panic("pool_put: %s: page header missing", pp->pr_wchan);
1228 }
1229
1230 /*
1231 * Return to item list.
1232 */
1233 if (pp->pr_roflags & PR_NOTOUCH) {
1234 pr_item_notouch_put(pp, ph, v);
1235 } else {
1236 #ifdef DIAGNOSTIC
1237 pi->pi_magic = PI_MAGIC;
1238 #endif
1239 #ifdef DEBUG
1240 {
1241 int i, *ip = v;
1242
1243 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1244 *ip++ = PI_MAGIC;
1245 }
1246 }
1247 #endif
1248
1249 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1250 }
1251 KDASSERT(ph->ph_nmissing != 0);
1252 ph->ph_nmissing--;
1253 pp->pr_nput++;
1254 pp->pr_nitems++;
1255 pp->pr_nout--;
1256
1257 /* Cancel "pool empty" condition if it exists */
1258 if (pp->pr_curpage == NULL)
1259 pp->pr_curpage = ph;
1260
1261 if (pp->pr_flags & PR_WANTED) {
1262 pp->pr_flags &= ~PR_WANTED;
1263 if (ph->ph_nmissing == 0)
1264 pp->pr_nidle++;
1265 cv_broadcast(&pp->pr_cv);
1266 return;
1267 }
1268
1269 /*
1270 * If this page is now empty, do one of two things:
1271 *
1272 * (1) If we have more pages than the page high water mark,
1273 * free the page back to the system. ONLY CONSIDER
1274 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1275 * CLAIM.
1276 *
1277 * (2) Otherwise, move the page to the empty page list.
1278 *
1279 * Either way, select a new current page (so we use a partially-full
1280 * page if one is available).
1281 */
1282 if (ph->ph_nmissing == 0) {
1283 pp->pr_nidle++;
1284 if (pp->pr_npages > pp->pr_minpages &&
1285 pp->pr_npages > pp->pr_maxpages) {
1286 pr_rmpage(pp, ph, pq);
1287 } else {
1288 LIST_REMOVE(ph, ph_pagelist);
1289 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1290
1291 /*
1292 * Update the timestamp on the page. A page must
1293 * be idle for some period of time before it can
1294 * be reclaimed by the pagedaemon. This minimizes
1295 * ping-pong'ing for memory.
1296 *
1297 * note for 64-bit time_t: truncating to 32-bit is not
1298 * a problem for our usage.
1299 */
1300 ph->ph_time = time_uptime;
1301 }
1302 pool_update_curpage(pp);
1303 }
1304
1305 /*
1306 * If the page was previously completely full, move it to the
1307 * partially-full list and make it the current page. The next
1308 * allocation will get the item from this page, instead of
1309 * further fragmenting the pool.
1310 */
1311 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1312 LIST_REMOVE(ph, ph_pagelist);
1313 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1314 pp->pr_curpage = ph;
1315 }
1316 }
1317
1318 /*
1319 * Return resource to the pool.
1320 */
1321 #ifdef POOL_DIAGNOSTIC
1322 void
1323 _pool_put(struct pool *pp, void *v, const char *file, long line)
1324 {
1325 struct pool_pagelist pq;
1326
1327 LIST_INIT(&pq);
1328
1329 mutex_enter(&pp->pr_lock);
1330 pr_enter(pp, file, line);
1331
1332 pr_log(pp, v, PRLOG_PUT, file, line);
1333
1334 pool_do_put(pp, v, &pq);
1335
1336 pr_leave(pp);
1337 mutex_exit(&pp->pr_lock);
1338
1339 pr_pagelist_free(pp, &pq);
1340 }
1341 #undef pool_put
1342 #endif /* POOL_DIAGNOSTIC */
1343
1344 void
1345 pool_put(struct pool *pp, void *v)
1346 {
1347 struct pool_pagelist pq;
1348
1349 LIST_INIT(&pq);
1350
1351 mutex_enter(&pp->pr_lock);
1352 pool_do_put(pp, v, &pq);
1353 mutex_exit(&pp->pr_lock);
1354
1355 pr_pagelist_free(pp, &pq);
1356 }
1357
1358 #ifdef POOL_DIAGNOSTIC
1359 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1360 #endif
1361
1362 /*
1363 * pool_grow: grow a pool by a page.
1364 *
1365 * => called with pool locked.
1366 * => unlock and relock the pool.
1367 * => return with pool locked.
1368 */
1369
1370 static int
1371 pool_grow(struct pool *pp, int flags)
1372 {
1373 struct pool_item_header *ph = NULL;
1374 char *cp;
1375
1376 mutex_exit(&pp->pr_lock);
1377 cp = pool_allocator_alloc(pp, flags);
1378 if (__predict_true(cp != NULL)) {
1379 ph = pool_alloc_item_header(pp, cp, flags);
1380 }
1381 if (__predict_false(cp == NULL || ph == NULL)) {
1382 if (cp != NULL) {
1383 pool_allocator_free(pp, cp);
1384 }
1385 mutex_enter(&pp->pr_lock);
1386 return ENOMEM;
1387 }
1388
1389 mutex_enter(&pp->pr_lock);
1390 pool_prime_page(pp, cp, ph);
1391 pp->pr_npagealloc++;
1392 return 0;
1393 }
1394
1395 /*
1396 * Add N items to the pool.
1397 */
1398 int
1399 pool_prime(struct pool *pp, int n)
1400 {
1401 int newpages;
1402 int error = 0;
1403
1404 mutex_enter(&pp->pr_lock);
1405
1406 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1407
1408 while (newpages-- > 0) {
1409 error = pool_grow(pp, PR_NOWAIT);
1410 if (error) {
1411 break;
1412 }
1413 pp->pr_minpages++;
1414 }
1415
1416 if (pp->pr_minpages >= pp->pr_maxpages)
1417 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1418
1419 mutex_exit(&pp->pr_lock);
1420 return error;
1421 }
1422
1423 /*
1424 * Add a page worth of items to the pool.
1425 *
1426 * Note, we must be called with the pool descriptor LOCKED.
1427 */
1428 static void
1429 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1430 {
1431 struct pool_item *pi;
1432 void *cp = storage;
1433 const unsigned int align = pp->pr_align;
1434 const unsigned int ioff = pp->pr_itemoffset;
1435 int n;
1436
1437 KASSERT(mutex_owned(&pp->pr_lock));
1438
1439 #ifdef DIAGNOSTIC
1440 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1441 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1442 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1443 #endif
1444
1445 /*
1446 * Insert page header.
1447 */
1448 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1449 LIST_INIT(&ph->ph_itemlist);
1450 ph->ph_page = storage;
1451 ph->ph_nmissing = 0;
1452 ph->ph_time = time_uptime;
1453 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1454 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1455
1456 pp->pr_nidle++;
1457
1458 /*
1459 * Color this page.
1460 */
1461 ph->ph_off = pp->pr_curcolor;
1462 cp = (char *)cp + ph->ph_off;
1463 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1464 pp->pr_curcolor = 0;
1465
1466 /*
1467 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1468 */
1469 if (ioff != 0)
1470 cp = (char *)cp + align - ioff;
1471
1472 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1473
1474 /*
1475 * Insert remaining chunks on the bucket list.
1476 */
1477 n = pp->pr_itemsperpage;
1478 pp->pr_nitems += n;
1479
1480 if (pp->pr_roflags & PR_NOTOUCH) {
1481 pr_item_notouch_init(pp, ph);
1482 } else {
1483 while (n--) {
1484 pi = (struct pool_item *)cp;
1485
1486 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1487
1488 /* Insert on page list */
1489 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1490 #ifdef DIAGNOSTIC
1491 pi->pi_magic = PI_MAGIC;
1492 #endif
1493 cp = (char *)cp + pp->pr_size;
1494
1495 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1496 }
1497 }
1498
1499 /*
1500 * If the pool was depleted, point at the new page.
1501 */
1502 if (pp->pr_curpage == NULL)
1503 pp->pr_curpage = ph;
1504
1505 if (++pp->pr_npages > pp->pr_hiwat)
1506 pp->pr_hiwat = pp->pr_npages;
1507 }
1508
1509 /*
1510 * Used by pool_get() when nitems drops below the low water mark. This
1511 * is used to catch up pr_nitems with the low water mark.
1512 *
1513 * Note 1, we never wait for memory here, we let the caller decide what to do.
1514 *
1515 * Note 2, we must be called with the pool already locked, and we return
1516 * with it locked.
1517 */
1518 static int
1519 pool_catchup(struct pool *pp)
1520 {
1521 int error = 0;
1522
1523 while (POOL_NEEDS_CATCHUP(pp)) {
1524 error = pool_grow(pp, PR_NOWAIT);
1525 if (error) {
1526 break;
1527 }
1528 }
1529 return error;
1530 }
1531
1532 static void
1533 pool_update_curpage(struct pool *pp)
1534 {
1535
1536 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1537 if (pp->pr_curpage == NULL) {
1538 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1539 }
1540 }
1541
1542 void
1543 pool_setlowat(struct pool *pp, int n)
1544 {
1545
1546 mutex_enter(&pp->pr_lock);
1547
1548 pp->pr_minitems = n;
1549 pp->pr_minpages = (n == 0)
1550 ? 0
1551 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1552
1553 /* Make sure we're caught up with the newly-set low water mark. */
1554 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1555 /*
1556 * XXX: Should we log a warning? Should we set up a timeout
1557 * to try again in a second or so? The latter could break
1558 * a caller's assumptions about interrupt protection, etc.
1559 */
1560 }
1561
1562 mutex_exit(&pp->pr_lock);
1563 }
1564
1565 void
1566 pool_sethiwat(struct pool *pp, int n)
1567 {
1568
1569 mutex_enter(&pp->pr_lock);
1570
1571 pp->pr_maxpages = (n == 0)
1572 ? 0
1573 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1574
1575 mutex_exit(&pp->pr_lock);
1576 }
1577
1578 void
1579 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1580 {
1581
1582 mutex_enter(&pp->pr_lock);
1583
1584 pp->pr_hardlimit = n;
1585 pp->pr_hardlimit_warning = warnmess;
1586 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1587 pp->pr_hardlimit_warning_last.tv_sec = 0;
1588 pp->pr_hardlimit_warning_last.tv_usec = 0;
1589
1590 /*
1591 * In-line version of pool_sethiwat(), because we don't want to
1592 * release the lock.
1593 */
1594 pp->pr_maxpages = (n == 0)
1595 ? 0
1596 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1597
1598 mutex_exit(&pp->pr_lock);
1599 }
1600
1601 /*
1602 * Release all complete pages that have not been used recently.
1603 */
1604 int
1605 #ifdef POOL_DIAGNOSTIC
1606 _pool_reclaim(struct pool *pp, const char *file, long line)
1607 #else
1608 pool_reclaim(struct pool *pp)
1609 #endif
1610 {
1611 struct pool_item_header *ph, *phnext;
1612 struct pool_pagelist pq;
1613 uint32_t curtime;
1614 bool klock;
1615 int rv;
1616
1617 if (pp->pr_drain_hook != NULL) {
1618 /*
1619 * The drain hook must be called with the pool unlocked.
1620 */
1621 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1622 }
1623
1624 /*
1625 * XXXSMP Because we do not want to cause non-MPSAFE code
1626 * to block.
1627 */
1628 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1629 pp->pr_ipl == IPL_SOFTSERIAL) {
1630 KERNEL_LOCK(1, NULL);
1631 klock = true;
1632 } else
1633 klock = false;
1634
1635 /* Reclaim items from the pool's cache (if any). */
1636 if (pp->pr_cache != NULL)
1637 pool_cache_invalidate(pp->pr_cache);
1638
1639 if (mutex_tryenter(&pp->pr_lock) == 0) {
1640 if (klock) {
1641 KERNEL_UNLOCK_ONE(NULL);
1642 }
1643 return (0);
1644 }
1645 pr_enter(pp, file, line);
1646
1647 LIST_INIT(&pq);
1648
1649 curtime = time_uptime;
1650
1651 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1652 phnext = LIST_NEXT(ph, ph_pagelist);
1653
1654 /* Check our minimum page claim */
1655 if (pp->pr_npages <= pp->pr_minpages)
1656 break;
1657
1658 KASSERT(ph->ph_nmissing == 0);
1659 if (curtime - ph->ph_time < pool_inactive_time
1660 && !pa_starved_p(pp->pr_alloc))
1661 continue;
1662
1663 /*
1664 * If freeing this page would put us below
1665 * the low water mark, stop now.
1666 */
1667 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1668 pp->pr_minitems)
1669 break;
1670
1671 pr_rmpage(pp, ph, &pq);
1672 }
1673
1674 pr_leave(pp);
1675 mutex_exit(&pp->pr_lock);
1676
1677 if (LIST_EMPTY(&pq))
1678 rv = 0;
1679 else {
1680 pr_pagelist_free(pp, &pq);
1681 rv = 1;
1682 }
1683
1684 if (klock) {
1685 KERNEL_UNLOCK_ONE(NULL);
1686 }
1687
1688 return (rv);
1689 }
1690
1691 /*
1692 * Drain pools, one at a time. This is a two stage process;
1693 * drain_start kicks off a cross call to drain CPU-level caches
1694 * if the pool has an associated pool_cache. drain_end waits
1695 * for those cross calls to finish, and then drains the cache
1696 * (if any) and pool.
1697 *
1698 * Note, must never be called from interrupt context.
1699 */
1700 void
1701 pool_drain_start(struct pool **ppp, uint64_t *wp)
1702 {
1703 struct pool *pp;
1704
1705 KASSERT(!TAILQ_EMPTY(&pool_head));
1706
1707 pp = NULL;
1708
1709 /* Find next pool to drain, and add a reference. */
1710 mutex_enter(&pool_head_lock);
1711 do {
1712 if (drainpp == NULL) {
1713 drainpp = TAILQ_FIRST(&pool_head);
1714 }
1715 if (drainpp != NULL) {
1716 pp = drainpp;
1717 drainpp = TAILQ_NEXT(pp, pr_poollist);
1718 }
1719 /*
1720 * Skip completely idle pools. We depend on at least
1721 * one pool in the system being active.
1722 */
1723 } while (pp == NULL || pp->pr_npages == 0);
1724 pp->pr_refcnt++;
1725 mutex_exit(&pool_head_lock);
1726
1727 /* If there is a pool_cache, drain CPU level caches. */
1728 *ppp = pp;
1729 if (pp->pr_cache != NULL) {
1730 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1731 pp->pr_cache, NULL);
1732 }
1733 }
1734
1735 void
1736 pool_drain_end(struct pool *pp, uint64_t where)
1737 {
1738
1739 if (pp == NULL)
1740 return;
1741
1742 KASSERT(pp->pr_refcnt > 0);
1743
1744 /* Wait for remote draining to complete. */
1745 if (pp->pr_cache != NULL)
1746 xc_wait(where);
1747
1748 /* Drain the cache (if any) and pool.. */
1749 pool_reclaim(pp);
1750
1751 /* Finally, unlock the pool. */
1752 mutex_enter(&pool_head_lock);
1753 pp->pr_refcnt--;
1754 cv_broadcast(&pool_busy);
1755 mutex_exit(&pool_head_lock);
1756 }
1757
1758 /*
1759 * Diagnostic helpers.
1760 */
1761 void
1762 pool_print(struct pool *pp, const char *modif)
1763 {
1764
1765 pool_print1(pp, modif, printf);
1766 }
1767
1768 void
1769 pool_printall(const char *modif, void (*pr)(const char *, ...))
1770 {
1771 struct pool *pp;
1772
1773 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1774 pool_printit(pp, modif, pr);
1775 }
1776 }
1777
1778 void
1779 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1780 {
1781
1782 if (pp == NULL) {
1783 (*pr)("Must specify a pool to print.\n");
1784 return;
1785 }
1786
1787 pool_print1(pp, modif, pr);
1788 }
1789
1790 static void
1791 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1792 void (*pr)(const char *, ...))
1793 {
1794 struct pool_item_header *ph;
1795 #ifdef DIAGNOSTIC
1796 struct pool_item *pi;
1797 #endif
1798
1799 LIST_FOREACH(ph, pl, ph_pagelist) {
1800 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1801 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1802 #ifdef DIAGNOSTIC
1803 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1804 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1805 if (pi->pi_magic != PI_MAGIC) {
1806 (*pr)("\t\t\titem %p, magic 0x%x\n",
1807 pi, pi->pi_magic);
1808 }
1809 }
1810 }
1811 #endif
1812 }
1813 }
1814
1815 static void
1816 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1817 {
1818 struct pool_item_header *ph;
1819 pool_cache_t pc;
1820 pcg_t *pcg;
1821 pool_cache_cpu_t *cc;
1822 uint64_t cpuhit, cpumiss;
1823 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1824 char c;
1825
1826 while ((c = *modif++) != '\0') {
1827 if (c == 'l')
1828 print_log = 1;
1829 if (c == 'p')
1830 print_pagelist = 1;
1831 if (c == 'c')
1832 print_cache = 1;
1833 }
1834
1835 if ((pc = pp->pr_cache) != NULL) {
1836 (*pr)("POOL CACHE");
1837 } else {
1838 (*pr)("POOL");
1839 }
1840
1841 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1842 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1843 pp->pr_roflags);
1844 (*pr)("\talloc %p\n", pp->pr_alloc);
1845 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1846 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1847 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1848 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1849
1850 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1851 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1852 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1853 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1854
1855 if (print_pagelist == 0)
1856 goto skip_pagelist;
1857
1858 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1859 (*pr)("\n\tempty page list:\n");
1860 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1861 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1862 (*pr)("\n\tfull page list:\n");
1863 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1864 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1865 (*pr)("\n\tpartial-page list:\n");
1866 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1867
1868 if (pp->pr_curpage == NULL)
1869 (*pr)("\tno current page\n");
1870 else
1871 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1872
1873 skip_pagelist:
1874 if (print_log == 0)
1875 goto skip_log;
1876
1877 (*pr)("\n");
1878 if ((pp->pr_roflags & PR_LOGGING) == 0)
1879 (*pr)("\tno log\n");
1880 else {
1881 pr_printlog(pp, NULL, pr);
1882 }
1883
1884 skip_log:
1885
1886 #define PR_GROUPLIST(pcg) \
1887 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1888 for (i = 0; i < pcg->pcg_size; i++) { \
1889 if (pcg->pcg_objects[i].pcgo_pa != \
1890 POOL_PADDR_INVALID) { \
1891 (*pr)("\t\t\t%p, 0x%llx\n", \
1892 pcg->pcg_objects[i].pcgo_va, \
1893 (unsigned long long) \
1894 pcg->pcg_objects[i].pcgo_pa); \
1895 } else { \
1896 (*pr)("\t\t\t%p\n", \
1897 pcg->pcg_objects[i].pcgo_va); \
1898 } \
1899 }
1900
1901 if (pc != NULL) {
1902 cpuhit = 0;
1903 cpumiss = 0;
1904 for (i = 0; i < MAXCPUS; i++) {
1905 if ((cc = pc->pc_cpus[i]) == NULL)
1906 continue;
1907 cpuhit += cc->cc_hits;
1908 cpumiss += cc->cc_misses;
1909 }
1910 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1911 (*pr)("\tcache layer hits %llu misses %llu\n",
1912 pc->pc_hits, pc->pc_misses);
1913 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1914 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1915 pc->pc_contended);
1916 (*pr)("\tcache layer empty groups %u full groups %u\n",
1917 pc->pc_nempty, pc->pc_nfull);
1918 if (print_cache) {
1919 (*pr)("\tfull cache groups:\n");
1920 for (pcg = pc->pc_fullgroups; pcg != NULL;
1921 pcg = pcg->pcg_next) {
1922 PR_GROUPLIST(pcg);
1923 }
1924 (*pr)("\tempty cache groups:\n");
1925 for (pcg = pc->pc_emptygroups; pcg != NULL;
1926 pcg = pcg->pcg_next) {
1927 PR_GROUPLIST(pcg);
1928 }
1929 }
1930 }
1931 #undef PR_GROUPLIST
1932
1933 pr_enter_check(pp, pr);
1934 }
1935
1936 static int
1937 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1938 {
1939 struct pool_item *pi;
1940 void *page;
1941 int n;
1942
1943 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1944 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1945 if (page != ph->ph_page &&
1946 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1947 if (label != NULL)
1948 printf("%s: ", label);
1949 printf("pool(%p:%s): page inconsistency: page %p;"
1950 " at page head addr %p (p %p)\n", pp,
1951 pp->pr_wchan, ph->ph_page,
1952 ph, page);
1953 return 1;
1954 }
1955 }
1956
1957 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1958 return 0;
1959
1960 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1961 pi != NULL;
1962 pi = LIST_NEXT(pi,pi_list), n++) {
1963
1964 #ifdef DIAGNOSTIC
1965 if (pi->pi_magic != PI_MAGIC) {
1966 if (label != NULL)
1967 printf("%s: ", label);
1968 printf("pool(%s): free list modified: magic=%x;"
1969 " page %p; item ordinal %d; addr %p\n",
1970 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1971 n, pi);
1972 panic("pool");
1973 }
1974 #endif
1975 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1976 continue;
1977 }
1978 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1979 if (page == ph->ph_page)
1980 continue;
1981
1982 if (label != NULL)
1983 printf("%s: ", label);
1984 printf("pool(%p:%s): page inconsistency: page %p;"
1985 " item ordinal %d; addr %p (p %p)\n", pp,
1986 pp->pr_wchan, ph->ph_page,
1987 n, pi, page);
1988 return 1;
1989 }
1990 return 0;
1991 }
1992
1993
1994 int
1995 pool_chk(struct pool *pp, const char *label)
1996 {
1997 struct pool_item_header *ph;
1998 int r = 0;
1999
2000 mutex_enter(&pp->pr_lock);
2001 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2002 r = pool_chk_page(pp, label, ph);
2003 if (r) {
2004 goto out;
2005 }
2006 }
2007 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2008 r = pool_chk_page(pp, label, ph);
2009 if (r) {
2010 goto out;
2011 }
2012 }
2013 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2014 r = pool_chk_page(pp, label, ph);
2015 if (r) {
2016 goto out;
2017 }
2018 }
2019
2020 out:
2021 mutex_exit(&pp->pr_lock);
2022 return (r);
2023 }
2024
2025 /*
2026 * pool_cache_init:
2027 *
2028 * Initialize a pool cache.
2029 */
2030 pool_cache_t
2031 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2032 const char *wchan, struct pool_allocator *palloc, int ipl,
2033 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2034 {
2035 pool_cache_t pc;
2036
2037 pc = pool_get(&cache_pool, PR_WAITOK);
2038 if (pc == NULL)
2039 return NULL;
2040
2041 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2042 palloc, ipl, ctor, dtor, arg);
2043
2044 return pc;
2045 }
2046
2047 /*
2048 * pool_cache_bootstrap:
2049 *
2050 * Kernel-private version of pool_cache_init(). The caller
2051 * provides initial storage.
2052 */
2053 void
2054 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2055 u_int align_offset, u_int flags, const char *wchan,
2056 struct pool_allocator *palloc, int ipl,
2057 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2058 void *arg)
2059 {
2060 CPU_INFO_ITERATOR cii;
2061 pool_cache_t pc1;
2062 struct cpu_info *ci;
2063 struct pool *pp;
2064
2065 pp = &pc->pc_pool;
2066 if (palloc == NULL && ipl == IPL_NONE)
2067 palloc = &pool_allocator_nointr;
2068 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2069 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2070
2071 if (ctor == NULL) {
2072 ctor = (int (*)(void *, void *, int))nullop;
2073 }
2074 if (dtor == NULL) {
2075 dtor = (void (*)(void *, void *))nullop;
2076 }
2077
2078 pc->pc_emptygroups = NULL;
2079 pc->pc_fullgroups = NULL;
2080 pc->pc_partgroups = NULL;
2081 pc->pc_ctor = ctor;
2082 pc->pc_dtor = dtor;
2083 pc->pc_arg = arg;
2084 pc->pc_hits = 0;
2085 pc->pc_misses = 0;
2086 pc->pc_nempty = 0;
2087 pc->pc_npart = 0;
2088 pc->pc_nfull = 0;
2089 pc->pc_contended = 0;
2090 pc->pc_refcnt = 0;
2091 pc->pc_freecheck = NULL;
2092
2093 if ((flags & PR_LARGECACHE) != 0) {
2094 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2095 } else {
2096 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2097 }
2098
2099 /* Allocate per-CPU caches. */
2100 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2101 pc->pc_ncpu = 0;
2102 if (ncpu < 2) {
2103 /* XXX For sparc: boot CPU is not attached yet. */
2104 pool_cache_cpu_init1(curcpu(), pc);
2105 } else {
2106 for (CPU_INFO_FOREACH(cii, ci)) {
2107 pool_cache_cpu_init1(ci, pc);
2108 }
2109 }
2110
2111 /* Add to list of all pools. */
2112 if (__predict_true(!cold))
2113 mutex_enter(&pool_head_lock);
2114 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2115 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2116 break;
2117 }
2118 if (pc1 == NULL)
2119 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2120 else
2121 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2122 if (__predict_true(!cold))
2123 mutex_exit(&pool_head_lock);
2124
2125 membar_sync();
2126 pp->pr_cache = pc;
2127 }
2128
2129 /*
2130 * pool_cache_destroy:
2131 *
2132 * Destroy a pool cache.
2133 */
2134 void
2135 pool_cache_destroy(pool_cache_t pc)
2136 {
2137 struct pool *pp = &pc->pc_pool;
2138 pool_cache_cpu_t *cc;
2139 pcg_t *pcg;
2140 int i;
2141
2142 /* Remove it from the global list. */
2143 mutex_enter(&pool_head_lock);
2144 while (pc->pc_refcnt != 0)
2145 cv_wait(&pool_busy, &pool_head_lock);
2146 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2147 mutex_exit(&pool_head_lock);
2148
2149 /* First, invalidate the entire cache. */
2150 pool_cache_invalidate(pc);
2151
2152 /* Disassociate it from the pool. */
2153 mutex_enter(&pp->pr_lock);
2154 pp->pr_cache = NULL;
2155 mutex_exit(&pp->pr_lock);
2156
2157 /* Destroy per-CPU data */
2158 for (i = 0; i < MAXCPUS; i++) {
2159 if ((cc = pc->pc_cpus[i]) == NULL)
2160 continue;
2161 if ((pcg = cc->cc_current) != NULL) {
2162 pcg->pcg_next = NULL;
2163 pool_cache_invalidate_groups(pc, pcg);
2164 }
2165 if ((pcg = cc->cc_previous) != NULL) {
2166 pcg->pcg_next = NULL;
2167 pool_cache_invalidate_groups(pc, pcg);
2168 }
2169 if (cc != &pc->pc_cpu0)
2170 pool_put(&cache_cpu_pool, cc);
2171 }
2172
2173 /* Finally, destroy it. */
2174 mutex_destroy(&pc->pc_lock);
2175 pool_destroy(pp);
2176 pool_put(&cache_pool, pc);
2177 }
2178
2179 /*
2180 * pool_cache_cpu_init1:
2181 *
2182 * Called for each pool_cache whenever a new CPU is attached.
2183 */
2184 static void
2185 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2186 {
2187 pool_cache_cpu_t *cc;
2188 int index;
2189
2190 index = ci->ci_index;
2191
2192 KASSERT(index < MAXCPUS);
2193
2194 if ((cc = pc->pc_cpus[index]) != NULL) {
2195 KASSERT(cc->cc_cpuindex == index);
2196 return;
2197 }
2198
2199 /*
2200 * The first CPU is 'free'. This needs to be the case for
2201 * bootstrap - we may not be able to allocate yet.
2202 */
2203 if (pc->pc_ncpu == 0) {
2204 cc = &pc->pc_cpu0;
2205 pc->pc_ncpu = 1;
2206 } else {
2207 mutex_enter(&pc->pc_lock);
2208 pc->pc_ncpu++;
2209 mutex_exit(&pc->pc_lock);
2210 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2211 }
2212
2213 cc->cc_ipl = pc->pc_pool.pr_ipl;
2214 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2215 cc->cc_cache = pc;
2216 cc->cc_cpuindex = index;
2217 cc->cc_hits = 0;
2218 cc->cc_misses = 0;
2219 cc->cc_current = NULL;
2220 cc->cc_previous = NULL;
2221
2222 pc->pc_cpus[index] = cc;
2223 }
2224
2225 /*
2226 * pool_cache_cpu_init:
2227 *
2228 * Called whenever a new CPU is attached.
2229 */
2230 void
2231 pool_cache_cpu_init(struct cpu_info *ci)
2232 {
2233 pool_cache_t pc;
2234
2235 mutex_enter(&pool_head_lock);
2236 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2237 pc->pc_refcnt++;
2238 mutex_exit(&pool_head_lock);
2239
2240 pool_cache_cpu_init1(ci, pc);
2241
2242 mutex_enter(&pool_head_lock);
2243 pc->pc_refcnt--;
2244 cv_broadcast(&pool_busy);
2245 }
2246 mutex_exit(&pool_head_lock);
2247 }
2248
2249 /*
2250 * pool_cache_reclaim:
2251 *
2252 * Reclaim memory from a pool cache.
2253 */
2254 bool
2255 pool_cache_reclaim(pool_cache_t pc)
2256 {
2257
2258 return pool_reclaim(&pc->pc_pool);
2259 }
2260
2261 static void
2262 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2263 {
2264
2265 (*pc->pc_dtor)(pc->pc_arg, object);
2266 pool_put(&pc->pc_pool, object);
2267 }
2268
2269 /*
2270 * pool_cache_destruct_object:
2271 *
2272 * Force destruction of an object and its release back into
2273 * the pool.
2274 */
2275 void
2276 pool_cache_destruct_object(pool_cache_t pc, void *object)
2277 {
2278
2279 FREECHECK_IN(&pc->pc_freecheck, object);
2280
2281 pool_cache_destruct_object1(pc, object);
2282 }
2283
2284 /*
2285 * pool_cache_invalidate_groups:
2286 *
2287 * Invalidate a chain of groups and destruct all objects.
2288 */
2289 static void
2290 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2291 {
2292 void *object;
2293 pcg_t *next;
2294 int i;
2295
2296 for (; pcg != NULL; pcg = next) {
2297 next = pcg->pcg_next;
2298
2299 for (i = 0; i < pcg->pcg_avail; i++) {
2300 object = pcg->pcg_objects[i].pcgo_va;
2301 pool_cache_destruct_object1(pc, object);
2302 }
2303
2304 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2305 pool_put(&pcg_large_pool, pcg);
2306 } else {
2307 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2308 pool_put(&pcg_normal_pool, pcg);
2309 }
2310 }
2311 }
2312
2313 /*
2314 * pool_cache_invalidate:
2315 *
2316 * Invalidate a pool cache (destruct and release all of the
2317 * cached objects). Does not reclaim objects from the pool.
2318 */
2319 void
2320 pool_cache_invalidate(pool_cache_t pc)
2321 {
2322 pcg_t *full, *empty, *part;
2323
2324 mutex_enter(&pc->pc_lock);
2325 full = pc->pc_fullgroups;
2326 empty = pc->pc_emptygroups;
2327 part = pc->pc_partgroups;
2328 pc->pc_fullgroups = NULL;
2329 pc->pc_emptygroups = NULL;
2330 pc->pc_partgroups = NULL;
2331 pc->pc_nfull = 0;
2332 pc->pc_nempty = 0;
2333 pc->pc_npart = 0;
2334 mutex_exit(&pc->pc_lock);
2335
2336 pool_cache_invalidate_groups(pc, full);
2337 pool_cache_invalidate_groups(pc, empty);
2338 pool_cache_invalidate_groups(pc, part);
2339 }
2340
2341 void
2342 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2343 {
2344
2345 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2346 }
2347
2348 void
2349 pool_cache_setlowat(pool_cache_t pc, int n)
2350 {
2351
2352 pool_setlowat(&pc->pc_pool, n);
2353 }
2354
2355 void
2356 pool_cache_sethiwat(pool_cache_t pc, int n)
2357 {
2358
2359 pool_sethiwat(&pc->pc_pool, n);
2360 }
2361
2362 void
2363 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2364 {
2365
2366 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2367 }
2368
2369 static inline pool_cache_cpu_t *
2370 pool_cache_cpu_enter(pool_cache_t pc, int *s)
2371 {
2372 pool_cache_cpu_t *cc;
2373
2374 /*
2375 * Prevent other users of the cache from accessing our
2376 * CPU-local data. To avoid touching shared state, we
2377 * pull the neccessary information from CPU local data.
2378 */
2379 crit_enter();
2380 cc = pc->pc_cpus[curcpu()->ci_index];
2381 KASSERT(cc->cc_cache == pc);
2382 if (cc->cc_ipl != IPL_NONE) {
2383 *s = splraiseipl(cc->cc_iplcookie);
2384 }
2385
2386 return cc;
2387 }
2388
2389 static inline void
2390 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
2391 {
2392
2393 /* No longer need exclusive access to the per-CPU data. */
2394 if (cc->cc_ipl != IPL_NONE) {
2395 splx(*s);
2396 }
2397 crit_exit();
2398 }
2399
2400 #if __GNUC_PREREQ__(3, 0)
2401 __attribute ((noinline))
2402 #endif
2403 pool_cache_cpu_t *
2404 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
2405 paddr_t *pap, int flags)
2406 {
2407 pcg_t *pcg, *cur;
2408 uint64_t ncsw;
2409 pool_cache_t pc;
2410 void *object;
2411
2412 pc = cc->cc_cache;
2413 cc->cc_misses++;
2414
2415 /*
2416 * Nothing was available locally. Try and grab a group
2417 * from the cache.
2418 */
2419 if (!mutex_tryenter(&pc->pc_lock)) {
2420 ncsw = curlwp->l_ncsw;
2421 mutex_enter(&pc->pc_lock);
2422 pc->pc_contended++;
2423
2424 /*
2425 * If we context switched while locking, then
2426 * our view of the per-CPU data is invalid:
2427 * retry.
2428 */
2429 if (curlwp->l_ncsw != ncsw) {
2430 mutex_exit(&pc->pc_lock);
2431 pool_cache_cpu_exit(cc, s);
2432 return pool_cache_cpu_enter(pc, s);
2433 }
2434 }
2435
2436 if ((pcg = pc->pc_fullgroups) != NULL) {
2437 /*
2438 * If there's a full group, release our empty
2439 * group back to the cache. Install the full
2440 * group as cc_current and return.
2441 */
2442 if ((cur = cc->cc_current) != NULL) {
2443 KASSERT(cur->pcg_avail == 0);
2444 cur->pcg_next = pc->pc_emptygroups;
2445 pc->pc_emptygroups = cur;
2446 pc->pc_nempty++;
2447 }
2448 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2449 cc->cc_current = pcg;
2450 pc->pc_fullgroups = pcg->pcg_next;
2451 pc->pc_hits++;
2452 pc->pc_nfull--;
2453 mutex_exit(&pc->pc_lock);
2454 return cc;
2455 }
2456
2457 /*
2458 * Nothing available locally or in cache. Take the slow
2459 * path: fetch a new object from the pool and construct
2460 * it.
2461 */
2462 pc->pc_misses++;
2463 mutex_exit(&pc->pc_lock);
2464 pool_cache_cpu_exit(cc, s);
2465
2466 object = pool_get(&pc->pc_pool, flags);
2467 *objectp = object;
2468 if (object == NULL)
2469 return NULL;
2470
2471 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
2472 pool_put(&pc->pc_pool, object);
2473 *objectp = NULL;
2474 return NULL;
2475 }
2476
2477 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2478 (pc->pc_pool.pr_align - 1)) == 0);
2479
2480 if (pap != NULL) {
2481 #ifdef POOL_VTOPHYS
2482 *pap = POOL_VTOPHYS(object);
2483 #else
2484 *pap = POOL_PADDR_INVALID;
2485 #endif
2486 }
2487
2488 FREECHECK_OUT(&pc->pc_freecheck, object);
2489 return NULL;
2490 }
2491
2492 /*
2493 * pool_cache_get{,_paddr}:
2494 *
2495 * Get an object from a pool cache (optionally returning
2496 * the physical address of the object).
2497 */
2498 void *
2499 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2500 {
2501 pool_cache_cpu_t *cc;
2502 pcg_t *pcg;
2503 void *object;
2504 int s;
2505
2506 #ifdef LOCKDEBUG
2507 if (flags & PR_WAITOK) {
2508 ASSERT_SLEEPABLE();
2509 }
2510 #endif
2511
2512 cc = pool_cache_cpu_enter(pc, &s);
2513 do {
2514 /* Try and allocate an object from the current group. */
2515 pcg = cc->cc_current;
2516 if (pcg != NULL && pcg->pcg_avail > 0) {
2517 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2518 if (pap != NULL)
2519 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2520 #if defined(DIAGNOSTIC)
2521 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2522 #endif /* defined(DIAGNOSTIC) */
2523 KASSERT(pcg->pcg_avail <= pcg->pcg_size);
2524 KASSERT(object != NULL);
2525 cc->cc_hits++;
2526 pool_cache_cpu_exit(cc, &s);
2527 FREECHECK_OUT(&pc->pc_freecheck, object);
2528 return object;
2529 }
2530
2531 /*
2532 * That failed. If the previous group isn't empty, swap
2533 * it with the current group and allocate from there.
2534 */
2535 pcg = cc->cc_previous;
2536 if (pcg != NULL && pcg->pcg_avail > 0) {
2537 cc->cc_previous = cc->cc_current;
2538 cc->cc_current = pcg;
2539 continue;
2540 }
2541
2542 /*
2543 * Can't allocate from either group: try the slow path.
2544 * If get_slow() allocated an object for us, or if
2545 * no more objects are available, it will return NULL.
2546 * Otherwise, we need to retry.
2547 */
2548 cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
2549 } while (cc != NULL);
2550
2551 return object;
2552 }
2553
2554 #if __GNUC_PREREQ__(3, 0)
2555 __attribute ((noinline))
2556 #endif
2557 pool_cache_cpu_t *
2558 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
2559 {
2560 pcg_t *pcg, *cur;
2561 uint64_t ncsw;
2562 pool_cache_t pc;
2563 u_int nobj;
2564
2565 pc = cc->cc_cache;
2566 cc->cc_misses++;
2567
2568 /*
2569 * No free slots locally. Try to grab an empty, unused
2570 * group from the cache.
2571 */
2572 if (!mutex_tryenter(&pc->pc_lock)) {
2573 ncsw = curlwp->l_ncsw;
2574 mutex_enter(&pc->pc_lock);
2575 pc->pc_contended++;
2576
2577 /*
2578 * If we context switched while locking, then
2579 * our view of the per-CPU data is invalid:
2580 * retry.
2581 */
2582 if (curlwp->l_ncsw != ncsw) {
2583 mutex_exit(&pc->pc_lock);
2584 pool_cache_cpu_exit(cc, s);
2585 return pool_cache_cpu_enter(pc, s);
2586 }
2587 }
2588
2589 if ((pcg = pc->pc_emptygroups) != NULL) {
2590 /*
2591 * If there's a empty group, release our full
2592 * group back to the cache. Install the empty
2593 * group and return.
2594 */
2595 KASSERT(pcg->pcg_avail == 0);
2596 pc->pc_emptygroups = pcg->pcg_next;
2597 if (cc->cc_previous == NULL) {
2598 cc->cc_previous = pcg;
2599 } else {
2600 if ((cur = cc->cc_current) != NULL) {
2601 KASSERT(cur->pcg_avail == pcg->pcg_size);
2602 cur->pcg_next = pc->pc_fullgroups;
2603 pc->pc_fullgroups = cur;
2604 pc->pc_nfull++;
2605 }
2606 cc->cc_current = pcg;
2607 }
2608 pc->pc_hits++;
2609 pc->pc_nempty--;
2610 mutex_exit(&pc->pc_lock);
2611 return cc;
2612 }
2613
2614 /*
2615 * Nothing available locally or in cache. Take the
2616 * slow path and try to allocate a new group that we
2617 * can release to.
2618 */
2619 pc->pc_misses++;
2620 mutex_exit(&pc->pc_lock);
2621 pool_cache_cpu_exit(cc, s);
2622
2623 /*
2624 * If we can't allocate a new group, just throw the
2625 * object away.
2626 */
2627 nobj = pc->pc_pcgsize;
2628 if (pool_cache_disable) {
2629 pcg = NULL;
2630 } else if (nobj == PCG_NOBJECTS_LARGE) {
2631 pcg = pool_get(&pcg_large_pool, PR_NOWAIT);
2632 } else {
2633 pcg = pool_get(&pcg_normal_pool, PR_NOWAIT);
2634 }
2635 if (pcg == NULL) {
2636 pool_cache_destruct_object(pc, object);
2637 return NULL;
2638 }
2639 pcg->pcg_avail = 0;
2640 pcg->pcg_size = nobj;
2641
2642 /*
2643 * Add the empty group to the cache and try again.
2644 */
2645 mutex_enter(&pc->pc_lock);
2646 pcg->pcg_next = pc->pc_emptygroups;
2647 pc->pc_emptygroups = pcg;
2648 pc->pc_nempty++;
2649 mutex_exit(&pc->pc_lock);
2650
2651 return pool_cache_cpu_enter(pc, s);
2652 }
2653
2654 /*
2655 * pool_cache_put{,_paddr}:
2656 *
2657 * Put an object back to the pool cache (optionally caching the
2658 * physical address of the object).
2659 */
2660 void
2661 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2662 {
2663 pool_cache_cpu_t *cc;
2664 pcg_t *pcg;
2665 int s;
2666
2667 FREECHECK_IN(&pc->pc_freecheck, object);
2668
2669 cc = pool_cache_cpu_enter(pc, &s);
2670 do {
2671 /* If the current group isn't full, release it there. */
2672 pcg = cc->cc_current;
2673 if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) {
2674 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2675 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2676 pcg->pcg_avail++;
2677 cc->cc_hits++;
2678 pool_cache_cpu_exit(cc, &s);
2679 return;
2680 }
2681
2682 /*
2683 * That failed. If the previous group is empty, swap
2684 * it with the current group and try again.
2685 */
2686 pcg = cc->cc_previous;
2687 if (pcg != NULL && pcg->pcg_avail == 0) {
2688 cc->cc_previous = cc->cc_current;
2689 cc->cc_current = pcg;
2690 continue;
2691 }
2692
2693 /*
2694 * Can't free to either group: try the slow path.
2695 * If put_slow() releases the object for us, it
2696 * will return NULL. Otherwise we need to retry.
2697 */
2698 cc = pool_cache_put_slow(cc, &s, object, pa);
2699 } while (cc != NULL);
2700 }
2701
2702 /*
2703 * pool_cache_xcall:
2704 *
2705 * Transfer objects from the per-CPU cache to the global cache.
2706 * Run within a cross-call thread.
2707 */
2708 static void
2709 pool_cache_xcall(pool_cache_t pc)
2710 {
2711 pool_cache_cpu_t *cc;
2712 pcg_t *prev, *cur, **list;
2713 int s = 0; /* XXXgcc */
2714
2715 cc = pool_cache_cpu_enter(pc, &s);
2716 cur = cc->cc_current;
2717 cc->cc_current = NULL;
2718 prev = cc->cc_previous;
2719 cc->cc_previous = NULL;
2720 pool_cache_cpu_exit(cc, &s);
2721
2722 /*
2723 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
2724 * because locks at IPL_SOFTXXX are still spinlocks. Does not
2725 * apply to IPL_SOFTBIO. Cross-call threads do not take the
2726 * kernel_lock.
2727 */
2728 s = splvm();
2729 mutex_enter(&pc->pc_lock);
2730 if (cur != NULL) {
2731 if (cur->pcg_avail == cur->pcg_size) {
2732 list = &pc->pc_fullgroups;
2733 pc->pc_nfull++;
2734 } else if (cur->pcg_avail == 0) {
2735 list = &pc->pc_emptygroups;
2736 pc->pc_nempty++;
2737 } else {
2738 list = &pc->pc_partgroups;
2739 pc->pc_npart++;
2740 }
2741 cur->pcg_next = *list;
2742 *list = cur;
2743 }
2744 if (prev != NULL) {
2745 if (prev->pcg_avail == prev->pcg_size) {
2746 list = &pc->pc_fullgroups;
2747 pc->pc_nfull++;
2748 } else if (prev->pcg_avail == 0) {
2749 list = &pc->pc_emptygroups;
2750 pc->pc_nempty++;
2751 } else {
2752 list = &pc->pc_partgroups;
2753 pc->pc_npart++;
2754 }
2755 prev->pcg_next = *list;
2756 *list = prev;
2757 }
2758 mutex_exit(&pc->pc_lock);
2759 splx(s);
2760 }
2761
2762 /*
2763 * Pool backend allocators.
2764 *
2765 * Each pool has a backend allocator that handles allocation, deallocation,
2766 * and any additional draining that might be needed.
2767 *
2768 * We provide two standard allocators:
2769 *
2770 * pool_allocator_kmem - the default when no allocator is specified
2771 *
2772 * pool_allocator_nointr - used for pools that will not be accessed
2773 * in interrupt context.
2774 */
2775 void *pool_page_alloc(struct pool *, int);
2776 void pool_page_free(struct pool *, void *);
2777
2778 #ifdef POOL_SUBPAGE
2779 struct pool_allocator pool_allocator_kmem_fullpage = {
2780 pool_page_alloc, pool_page_free, 0,
2781 .pa_backingmapptr = &kmem_map,
2782 };
2783 #else
2784 struct pool_allocator pool_allocator_kmem = {
2785 pool_page_alloc, pool_page_free, 0,
2786 .pa_backingmapptr = &kmem_map,
2787 };
2788 #endif
2789
2790 void *pool_page_alloc_nointr(struct pool *, int);
2791 void pool_page_free_nointr(struct pool *, void *);
2792
2793 #ifdef POOL_SUBPAGE
2794 struct pool_allocator pool_allocator_nointr_fullpage = {
2795 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2796 .pa_backingmapptr = &kernel_map,
2797 };
2798 #else
2799 struct pool_allocator pool_allocator_nointr = {
2800 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2801 .pa_backingmapptr = &kernel_map,
2802 };
2803 #endif
2804
2805 #ifdef POOL_SUBPAGE
2806 void *pool_subpage_alloc(struct pool *, int);
2807 void pool_subpage_free(struct pool *, void *);
2808
2809 struct pool_allocator pool_allocator_kmem = {
2810 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2811 .pa_backingmapptr = &kmem_map,
2812 };
2813
2814 void *pool_subpage_alloc_nointr(struct pool *, int);
2815 void pool_subpage_free_nointr(struct pool *, void *);
2816
2817 struct pool_allocator pool_allocator_nointr = {
2818 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2819 .pa_backingmapptr = &kmem_map,
2820 };
2821 #endif /* POOL_SUBPAGE */
2822
2823 static void *
2824 pool_allocator_alloc(struct pool *pp, int flags)
2825 {
2826 struct pool_allocator *pa = pp->pr_alloc;
2827 void *res;
2828
2829 res = (*pa->pa_alloc)(pp, flags);
2830 if (res == NULL && (flags & PR_WAITOK) == 0) {
2831 /*
2832 * We only run the drain hook here if PR_NOWAIT.
2833 * In other cases, the hook will be run in
2834 * pool_reclaim().
2835 */
2836 if (pp->pr_drain_hook != NULL) {
2837 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2838 res = (*pa->pa_alloc)(pp, flags);
2839 }
2840 }
2841 return res;
2842 }
2843
2844 static void
2845 pool_allocator_free(struct pool *pp, void *v)
2846 {
2847 struct pool_allocator *pa = pp->pr_alloc;
2848
2849 (*pa->pa_free)(pp, v);
2850 }
2851
2852 void *
2853 pool_page_alloc(struct pool *pp, int flags)
2854 {
2855 bool waitok = (flags & PR_WAITOK) ? true : false;
2856
2857 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2858 }
2859
2860 void
2861 pool_page_free(struct pool *pp, void *v)
2862 {
2863
2864 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2865 }
2866
2867 static void *
2868 pool_page_alloc_meta(struct pool *pp, int flags)
2869 {
2870 bool waitok = (flags & PR_WAITOK) ? true : false;
2871
2872 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2873 }
2874
2875 static void
2876 pool_page_free_meta(struct pool *pp, void *v)
2877 {
2878
2879 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2880 }
2881
2882 #ifdef POOL_SUBPAGE
2883 /* Sub-page allocator, for machines with large hardware pages. */
2884 void *
2885 pool_subpage_alloc(struct pool *pp, int flags)
2886 {
2887 return pool_get(&psppool, flags);
2888 }
2889
2890 void
2891 pool_subpage_free(struct pool *pp, void *v)
2892 {
2893 pool_put(&psppool, v);
2894 }
2895
2896 /* We don't provide a real nointr allocator. Maybe later. */
2897 void *
2898 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2899 {
2900
2901 return (pool_subpage_alloc(pp, flags));
2902 }
2903
2904 void
2905 pool_subpage_free_nointr(struct pool *pp, void *v)
2906 {
2907
2908 pool_subpage_free(pp, v);
2909 }
2910 #endif /* POOL_SUBPAGE */
2911 void *
2912 pool_page_alloc_nointr(struct pool *pp, int flags)
2913 {
2914 bool waitok = (flags & PR_WAITOK) ? true : false;
2915
2916 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2917 }
2918
2919 void
2920 pool_page_free_nointr(struct pool *pp, void *v)
2921 {
2922
2923 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2924 }
2925
2926 #if defined(DDB)
2927 static bool
2928 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2929 {
2930
2931 return (uintptr_t)ph->ph_page <= addr &&
2932 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2933 }
2934
2935 static bool
2936 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2937 {
2938
2939 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2940 }
2941
2942 static bool
2943 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2944 {
2945 int i;
2946
2947 if (pcg == NULL) {
2948 return false;
2949 }
2950 for (i = 0; i < pcg->pcg_avail; i++) {
2951 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2952 return true;
2953 }
2954 }
2955 return false;
2956 }
2957
2958 static bool
2959 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2960 {
2961
2962 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2963 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2964 pool_item_bitmap_t *bitmap =
2965 ph->ph_bitmap + (idx / BITMAP_SIZE);
2966 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2967
2968 return (*bitmap & mask) == 0;
2969 } else {
2970 struct pool_item *pi;
2971
2972 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2973 if (pool_in_item(pp, pi, addr)) {
2974 return false;
2975 }
2976 }
2977 return true;
2978 }
2979 }
2980
2981 void
2982 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2983 {
2984 struct pool *pp;
2985
2986 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2987 struct pool_item_header *ph;
2988 uintptr_t item;
2989 bool allocated = true;
2990 bool incache = false;
2991 bool incpucache = false;
2992 char cpucachestr[32];
2993
2994 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2995 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2996 if (pool_in_page(pp, ph, addr)) {
2997 goto found;
2998 }
2999 }
3000 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3001 if (pool_in_page(pp, ph, addr)) {
3002 allocated =
3003 pool_allocated(pp, ph, addr);
3004 goto found;
3005 }
3006 }
3007 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3008 if (pool_in_page(pp, ph, addr)) {
3009 allocated = false;
3010 goto found;
3011 }
3012 }
3013 continue;
3014 } else {
3015 ph = pr_find_pagehead_noalign(pp, (void *)addr);
3016 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3017 continue;
3018 }
3019 allocated = pool_allocated(pp, ph, addr);
3020 }
3021 found:
3022 if (allocated && pp->pr_cache) {
3023 pool_cache_t pc = pp->pr_cache;
3024 struct pool_cache_group *pcg;
3025 int i;
3026
3027 for (pcg = pc->pc_fullgroups; pcg != NULL;
3028 pcg = pcg->pcg_next) {
3029 if (pool_in_cg(pp, pcg, addr)) {
3030 incache = true;
3031 goto print;
3032 }
3033 }
3034 for (i = 0; i < MAXCPUS; i++) {
3035 pool_cache_cpu_t *cc;
3036
3037 if ((cc = pc->pc_cpus[i]) == NULL) {
3038 continue;
3039 }
3040 if (pool_in_cg(pp, cc->cc_current, addr) ||
3041 pool_in_cg(pp, cc->cc_previous, addr)) {
3042 struct cpu_info *ci =
3043 cpu_lookup_byindex(i);
3044
3045 incpucache = true;
3046 snprintf(cpucachestr,
3047 sizeof(cpucachestr),
3048 "cached by CPU %u",
3049 ci->ci_index);
3050 goto print;
3051 }
3052 }
3053 }
3054 print:
3055 item = (uintptr_t)ph->ph_page + ph->ph_off;
3056 item = item + rounddown(addr - item, pp->pr_size);
3057 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3058 (void *)addr, item, (size_t)(addr - item),
3059 pp->pr_wchan,
3060 incpucache ? cpucachestr :
3061 incache ? "cached" : allocated ? "allocated" : "free");
3062 }
3063 }
3064 #endif /* defined(DDB) */
3065