Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.158.2.3
      1 /*	$NetBSD: subr_pool.c,v 1.158.2.3 2009/09/16 13:38:01 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.158.2.3 2009/09/16 13:38:01 yamt Exp $");
     35 
     36 #include "opt_ddb.h"
     37 #include "opt_pool.h"
     38 #include "opt_poollog.h"
     39 #include "opt_lockdebug.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/bitops.h>
     44 #include <sys/proc.h>
     45 #include <sys/errno.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #include <sys/pool.h>
     49 #include <sys/syslog.h>
     50 #include <sys/debug.h>
     51 #include <sys/lockdebug.h>
     52 #include <sys/xcall.h>
     53 #include <sys/cpu.h>
     54 #include <sys/atomic.h>
     55 
     56 #include <uvm/uvm.h>
     57 
     58 /*
     59  * Pool resource management utility.
     60  *
     61  * Memory is allocated in pages which are split into pieces according to
     62  * the pool item size. Each page is kept on one of three lists in the
     63  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     64  * for empty, full and partially-full pages respectively. The individual
     65  * pool items are on a linked list headed by `ph_itemlist' in each page
     66  * header. The memory for building the page list is either taken from
     67  * the allocated pages themselves (for small pool items) or taken from
     68  * an internal pool of page headers (`phpool').
     69  */
     70 
     71 /* List of all pools */
     72 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     73 
     74 /* Private pool for page header structures */
     75 #define	PHPOOL_MAX	8
     76 static struct pool phpool[PHPOOL_MAX];
     77 #define	PHPOOL_FREELIST_NELEM(idx) \
     78 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     79 
     80 #ifdef POOL_SUBPAGE
     81 /* Pool of subpages for use by normal pools. */
     82 static struct pool psppool;
     83 #endif
     84 
     85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     86     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     87 
     88 static void *pool_page_alloc_meta(struct pool *, int);
     89 static void pool_page_free_meta(struct pool *, void *);
     90 
     91 /* allocator for pool metadata */
     92 struct pool_allocator pool_allocator_meta = {
     93 	pool_page_alloc_meta, pool_page_free_meta,
     94 	.pa_backingmapptr = &kmem_map,
     95 };
     96 
     97 /* # of seconds to retain page after last use */
     98 int pool_inactive_time = 10;
     99 
    100 /* Next candidate for drainage (see pool_drain()) */
    101 static struct pool	*drainpp;
    102 
    103 /* This lock protects both pool_head and drainpp. */
    104 static kmutex_t pool_head_lock;
    105 static kcondvar_t pool_busy;
    106 
    107 typedef uint32_t pool_item_bitmap_t;
    108 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    109 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    110 
    111 struct pool_item_header {
    112 	/* Page headers */
    113 	LIST_ENTRY(pool_item_header)
    114 				ph_pagelist;	/* pool page list */
    115 	SPLAY_ENTRY(pool_item_header)
    116 				ph_node;	/* Off-page page headers */
    117 	void *			ph_page;	/* this page's address */
    118 	uint32_t		ph_time;	/* last referenced */
    119 	uint16_t		ph_nmissing;	/* # of chunks in use */
    120 	uint16_t		ph_off;		/* start offset in page */
    121 	union {
    122 		/* !PR_NOTOUCH */
    123 		struct {
    124 			LIST_HEAD(, pool_item)
    125 				phu_itemlist;	/* chunk list for this page */
    126 		} phu_normal;
    127 		/* PR_NOTOUCH */
    128 		struct {
    129 			pool_item_bitmap_t phu_bitmap[1];
    130 		} phu_notouch;
    131 	} ph_u;
    132 };
    133 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    134 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    135 
    136 struct pool_item {
    137 #ifdef DIAGNOSTIC
    138 	u_int pi_magic;
    139 #endif
    140 #define	PI_MAGIC 0xdeaddeadU
    141 	/* Other entries use only this list entry */
    142 	LIST_ENTRY(pool_item)	pi_list;
    143 };
    144 
    145 #define	POOL_NEEDS_CATCHUP(pp)						\
    146 	((pp)->pr_nitems < (pp)->pr_minitems)
    147 
    148 /*
    149  * Pool cache management.
    150  *
    151  * Pool caches provide a way for constructed objects to be cached by the
    152  * pool subsystem.  This can lead to performance improvements by avoiding
    153  * needless object construction/destruction; it is deferred until absolutely
    154  * necessary.
    155  *
    156  * Caches are grouped into cache groups.  Each cache group references up
    157  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    158  * object from the pool, it calls the object's constructor and places it
    159  * into a cache group.  When a cache group frees an object back to the
    160  * pool, it first calls the object's destructor.  This allows the object
    161  * to persist in constructed form while freed to the cache.
    162  *
    163  * The pool references each cache, so that when a pool is drained by the
    164  * pagedaemon, it can drain each individual cache as well.  Each time a
    165  * cache is drained, the most idle cache group is freed to the pool in
    166  * its entirety.
    167  *
    168  * Pool caches are layed on top of pools.  By layering them, we can avoid
    169  * the complexity of cache management for pools which would not benefit
    170  * from it.
    171  */
    172 
    173 static struct pool pcg_normal_pool;
    174 static struct pool pcg_large_pool;
    175 static struct pool cache_pool;
    176 static struct pool cache_cpu_pool;
    177 
    178 /* List of all caches. */
    179 TAILQ_HEAD(,pool_cache) pool_cache_head =
    180     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    181 
    182 int pool_cache_disable;		/* global disable for caching */
    183 static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
    184 
    185 static bool	pool_cache_put_slow(pool_cache_cpu_t *, int,
    186 				    void *);
    187 static bool	pool_cache_get_slow(pool_cache_cpu_t *, int,
    188 				    void **, paddr_t *, int);
    189 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    190 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    191 static void	pool_cache_xcall(pool_cache_t);
    192 
    193 static int	pool_catchup(struct pool *);
    194 static void	pool_prime_page(struct pool *, void *,
    195 		    struct pool_item_header *);
    196 static void	pool_update_curpage(struct pool *);
    197 
    198 static int	pool_grow(struct pool *, int);
    199 static void	*pool_allocator_alloc(struct pool *, int);
    200 static void	pool_allocator_free(struct pool *, void *);
    201 
    202 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    203 	void (*)(const char *, ...));
    204 static void pool_print1(struct pool *, const char *,
    205 	void (*)(const char *, ...));
    206 
    207 static int pool_chk_page(struct pool *, const char *,
    208 			 struct pool_item_header *);
    209 
    210 /*
    211  * Pool log entry. An array of these is allocated in pool_init().
    212  */
    213 struct pool_log {
    214 	const char	*pl_file;
    215 	long		pl_line;
    216 	int		pl_action;
    217 #define	PRLOG_GET	1
    218 #define	PRLOG_PUT	2
    219 	void		*pl_addr;
    220 };
    221 
    222 #ifdef POOL_DIAGNOSTIC
    223 /* Number of entries in pool log buffers */
    224 #ifndef POOL_LOGSIZE
    225 #define	POOL_LOGSIZE	10
    226 #endif
    227 
    228 int pool_logsize = POOL_LOGSIZE;
    229 
    230 static inline void
    231 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    232 {
    233 	int n = pp->pr_curlogentry;
    234 	struct pool_log *pl;
    235 
    236 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    237 		return;
    238 
    239 	/*
    240 	 * Fill in the current entry. Wrap around and overwrite
    241 	 * the oldest entry if necessary.
    242 	 */
    243 	pl = &pp->pr_log[n];
    244 	pl->pl_file = file;
    245 	pl->pl_line = line;
    246 	pl->pl_action = action;
    247 	pl->pl_addr = v;
    248 	if (++n >= pp->pr_logsize)
    249 		n = 0;
    250 	pp->pr_curlogentry = n;
    251 }
    252 
    253 static void
    254 pr_printlog(struct pool *pp, struct pool_item *pi,
    255     void (*pr)(const char *, ...))
    256 {
    257 	int i = pp->pr_logsize;
    258 	int n = pp->pr_curlogentry;
    259 
    260 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    261 		return;
    262 
    263 	/*
    264 	 * Print all entries in this pool's log.
    265 	 */
    266 	while (i-- > 0) {
    267 		struct pool_log *pl = &pp->pr_log[n];
    268 		if (pl->pl_action != 0) {
    269 			if (pi == NULL || pi == pl->pl_addr) {
    270 				(*pr)("\tlog entry %d:\n", i);
    271 				(*pr)("\t\taction = %s, addr = %p\n",
    272 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    273 				    pl->pl_addr);
    274 				(*pr)("\t\tfile: %s at line %lu\n",
    275 				    pl->pl_file, pl->pl_line);
    276 			}
    277 		}
    278 		if (++n >= pp->pr_logsize)
    279 			n = 0;
    280 	}
    281 }
    282 
    283 static inline void
    284 pr_enter(struct pool *pp, const char *file, long line)
    285 {
    286 
    287 	if (__predict_false(pp->pr_entered_file != NULL)) {
    288 		printf("pool %s: reentrancy at file %s line %ld\n",
    289 		    pp->pr_wchan, file, line);
    290 		printf("         previous entry at file %s line %ld\n",
    291 		    pp->pr_entered_file, pp->pr_entered_line);
    292 		panic("pr_enter");
    293 	}
    294 
    295 	pp->pr_entered_file = file;
    296 	pp->pr_entered_line = line;
    297 }
    298 
    299 static inline void
    300 pr_leave(struct pool *pp)
    301 {
    302 
    303 	if (__predict_false(pp->pr_entered_file == NULL)) {
    304 		printf("pool %s not entered?\n", pp->pr_wchan);
    305 		panic("pr_leave");
    306 	}
    307 
    308 	pp->pr_entered_file = NULL;
    309 	pp->pr_entered_line = 0;
    310 }
    311 
    312 static inline void
    313 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    314 {
    315 
    316 	if (pp->pr_entered_file != NULL)
    317 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    318 		    pp->pr_entered_file, pp->pr_entered_line);
    319 }
    320 #else
    321 #define	pr_log(pp, v, action, file, line)
    322 #define	pr_printlog(pp, pi, pr)
    323 #define	pr_enter(pp, file, line)
    324 #define	pr_leave(pp)
    325 #define	pr_enter_check(pp, pr)
    326 #endif /* POOL_DIAGNOSTIC */
    327 
    328 static inline unsigned int
    329 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    330     const void *v)
    331 {
    332 	const char *cp = v;
    333 	unsigned int idx;
    334 
    335 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    336 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    337 	KASSERT(idx < pp->pr_itemsperpage);
    338 	return idx;
    339 }
    340 
    341 static inline void
    342 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    343     void *obj)
    344 {
    345 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    346 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    347 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    348 
    349 	KASSERT((*bitmap & mask) == 0);
    350 	*bitmap |= mask;
    351 }
    352 
    353 static inline void *
    354 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    355 {
    356 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    357 	unsigned int idx;
    358 	int i;
    359 
    360 	for (i = 0; ; i++) {
    361 		int bit;
    362 
    363 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    364 		bit = ffs32(bitmap[i]);
    365 		if (bit) {
    366 			pool_item_bitmap_t mask;
    367 
    368 			bit--;
    369 			idx = (i * BITMAP_SIZE) + bit;
    370 			mask = 1 << bit;
    371 			KASSERT((bitmap[i] & mask) != 0);
    372 			bitmap[i] &= ~mask;
    373 			break;
    374 		}
    375 	}
    376 	KASSERT(idx < pp->pr_itemsperpage);
    377 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    378 }
    379 
    380 static inline void
    381 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    382 {
    383 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    384 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    385 	int i;
    386 
    387 	for (i = 0; i < n; i++) {
    388 		bitmap[i] = (pool_item_bitmap_t)-1;
    389 	}
    390 }
    391 
    392 static inline int
    393 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    394 {
    395 
    396 	/*
    397 	 * we consider pool_item_header with smaller ph_page bigger.
    398 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    399 	 */
    400 
    401 	if (a->ph_page < b->ph_page)
    402 		return (1);
    403 	else if (a->ph_page > b->ph_page)
    404 		return (-1);
    405 	else
    406 		return (0);
    407 }
    408 
    409 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    410 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    411 
    412 static inline struct pool_item_header *
    413 pr_find_pagehead_noalign(struct pool *pp, void *v)
    414 {
    415 	struct pool_item_header *ph, tmp;
    416 
    417 	tmp.ph_page = (void *)(uintptr_t)v;
    418 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    419 	if (ph == NULL) {
    420 		ph = SPLAY_ROOT(&pp->pr_phtree);
    421 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    422 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    423 		}
    424 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    425 	}
    426 
    427 	return ph;
    428 }
    429 
    430 /*
    431  * Return the pool page header based on item address.
    432  */
    433 static inline struct pool_item_header *
    434 pr_find_pagehead(struct pool *pp, void *v)
    435 {
    436 	struct pool_item_header *ph, tmp;
    437 
    438 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    439 		ph = pr_find_pagehead_noalign(pp, v);
    440 	} else {
    441 		void *page =
    442 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    443 
    444 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    445 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    446 		} else {
    447 			tmp.ph_page = page;
    448 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    449 		}
    450 	}
    451 
    452 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    453 	    ((char *)ph->ph_page <= (char *)v &&
    454 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    455 	return ph;
    456 }
    457 
    458 static void
    459 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    460 {
    461 	struct pool_item_header *ph;
    462 
    463 	while ((ph = LIST_FIRST(pq)) != NULL) {
    464 		LIST_REMOVE(ph, ph_pagelist);
    465 		pool_allocator_free(pp, ph->ph_page);
    466 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    467 			pool_put(pp->pr_phpool, ph);
    468 	}
    469 }
    470 
    471 /*
    472  * Remove a page from the pool.
    473  */
    474 static inline void
    475 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    476      struct pool_pagelist *pq)
    477 {
    478 
    479 	KASSERT(mutex_owned(&pp->pr_lock));
    480 
    481 	/*
    482 	 * If the page was idle, decrement the idle page count.
    483 	 */
    484 	if (ph->ph_nmissing == 0) {
    485 #ifdef DIAGNOSTIC
    486 		if (pp->pr_nidle == 0)
    487 			panic("pr_rmpage: nidle inconsistent");
    488 		if (pp->pr_nitems < pp->pr_itemsperpage)
    489 			panic("pr_rmpage: nitems inconsistent");
    490 #endif
    491 		pp->pr_nidle--;
    492 	}
    493 
    494 	pp->pr_nitems -= pp->pr_itemsperpage;
    495 
    496 	/*
    497 	 * Unlink the page from the pool and queue it for release.
    498 	 */
    499 	LIST_REMOVE(ph, ph_pagelist);
    500 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    501 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    502 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    503 
    504 	pp->pr_npages--;
    505 	pp->pr_npagefree++;
    506 
    507 	pool_update_curpage(pp);
    508 }
    509 
    510 static bool
    511 pa_starved_p(struct pool_allocator *pa)
    512 {
    513 
    514 	if (pa->pa_backingmap != NULL) {
    515 		return vm_map_starved_p(pa->pa_backingmap);
    516 	}
    517 	return false;
    518 }
    519 
    520 static int
    521 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    522 {
    523 	struct pool *pp = obj;
    524 	struct pool_allocator *pa = pp->pr_alloc;
    525 
    526 	KASSERT(&pp->pr_reclaimerentry == ce);
    527 	pool_reclaim(pp);
    528 	if (!pa_starved_p(pa)) {
    529 		return CALLBACK_CHAIN_ABORT;
    530 	}
    531 	return CALLBACK_CHAIN_CONTINUE;
    532 }
    533 
    534 static void
    535 pool_reclaim_register(struct pool *pp)
    536 {
    537 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    538 	int s;
    539 
    540 	if (map == NULL) {
    541 		return;
    542 	}
    543 
    544 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    545 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    546 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    547 	splx(s);
    548 }
    549 
    550 static void
    551 pool_reclaim_unregister(struct pool *pp)
    552 {
    553 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    554 	int s;
    555 
    556 	if (map == NULL) {
    557 		return;
    558 	}
    559 
    560 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    561 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    562 	    &pp->pr_reclaimerentry);
    563 	splx(s);
    564 }
    565 
    566 static void
    567 pa_reclaim_register(struct pool_allocator *pa)
    568 {
    569 	struct vm_map *map = *pa->pa_backingmapptr;
    570 	struct pool *pp;
    571 
    572 	KASSERT(pa->pa_backingmap == NULL);
    573 	if (map == NULL) {
    574 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    575 		return;
    576 	}
    577 	pa->pa_backingmap = map;
    578 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    579 		pool_reclaim_register(pp);
    580 	}
    581 }
    582 
    583 /*
    584  * Initialize all the pools listed in the "pools" link set.
    585  */
    586 void
    587 pool_subsystem_init(void)
    588 {
    589 	struct pool_allocator *pa;
    590 
    591 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    592 	cv_init(&pool_busy, "poolbusy");
    593 
    594 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    595 		KASSERT(pa->pa_backingmapptr != NULL);
    596 		KASSERT(*pa->pa_backingmapptr != NULL);
    597 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    598 		pa_reclaim_register(pa);
    599 	}
    600 
    601 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    602 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    603 
    604 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    605 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    606 }
    607 
    608 /*
    609  * Initialize the given pool resource structure.
    610  *
    611  * We export this routine to allow other kernel parts to declare
    612  * static pools that must be initialized before malloc() is available.
    613  */
    614 void
    615 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    616     const char *wchan, struct pool_allocator *palloc, int ipl)
    617 {
    618 	struct pool *pp1;
    619 	size_t trysize, phsize;
    620 	int off, slack;
    621 
    622 #ifdef DEBUG
    623 	/*
    624 	 * Check that the pool hasn't already been initialised and
    625 	 * added to the list of all pools.
    626 	 */
    627 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    628 		if (pp == pp1)
    629 			panic("pool_init: pool %s already initialised",
    630 			    wchan);
    631 	}
    632 #endif
    633 
    634 #ifdef POOL_DIAGNOSTIC
    635 	/*
    636 	 * Always log if POOL_DIAGNOSTIC is defined.
    637 	 */
    638 	if (pool_logsize != 0)
    639 		flags |= PR_LOGGING;
    640 #endif
    641 
    642 	if (palloc == NULL)
    643 		palloc = &pool_allocator_kmem;
    644 #ifdef POOL_SUBPAGE
    645 	if (size > palloc->pa_pagesz) {
    646 		if (palloc == &pool_allocator_kmem)
    647 			palloc = &pool_allocator_kmem_fullpage;
    648 		else if (palloc == &pool_allocator_nointr)
    649 			palloc = &pool_allocator_nointr_fullpage;
    650 	}
    651 #endif /* POOL_SUBPAGE */
    652 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    653 		if (palloc->pa_pagesz == 0)
    654 			palloc->pa_pagesz = PAGE_SIZE;
    655 
    656 		TAILQ_INIT(&palloc->pa_list);
    657 
    658 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    659 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    660 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    661 
    662 		if (palloc->pa_backingmapptr != NULL) {
    663 			pa_reclaim_register(palloc);
    664 		}
    665 		palloc->pa_flags |= PA_INITIALIZED;
    666 	}
    667 
    668 	if (align == 0)
    669 		align = ALIGN(1);
    670 
    671 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    672 		size = sizeof(struct pool_item);
    673 
    674 	size = roundup(size, align);
    675 #ifdef DIAGNOSTIC
    676 	if (size > palloc->pa_pagesz)
    677 		panic("pool_init: pool item size (%zu) too large", size);
    678 #endif
    679 
    680 	/*
    681 	 * Initialize the pool structure.
    682 	 */
    683 	LIST_INIT(&pp->pr_emptypages);
    684 	LIST_INIT(&pp->pr_fullpages);
    685 	LIST_INIT(&pp->pr_partpages);
    686 	pp->pr_cache = NULL;
    687 	pp->pr_curpage = NULL;
    688 	pp->pr_npages = 0;
    689 	pp->pr_minitems = 0;
    690 	pp->pr_minpages = 0;
    691 	pp->pr_maxpages = UINT_MAX;
    692 	pp->pr_roflags = flags;
    693 	pp->pr_flags = 0;
    694 	pp->pr_size = size;
    695 	pp->pr_align = align;
    696 	pp->pr_wchan = wchan;
    697 	pp->pr_alloc = palloc;
    698 	pp->pr_nitems = 0;
    699 	pp->pr_nout = 0;
    700 	pp->pr_hardlimit = UINT_MAX;
    701 	pp->pr_hardlimit_warning = NULL;
    702 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    703 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    704 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    705 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    706 	pp->pr_drain_hook = NULL;
    707 	pp->pr_drain_hook_arg = NULL;
    708 	pp->pr_freecheck = NULL;
    709 
    710 	/*
    711 	 * Decide whether to put the page header off page to avoid
    712 	 * wasting too large a part of the page or too big item.
    713 	 * Off-page page headers go on a hash table, so we can match
    714 	 * a returned item with its header based on the page address.
    715 	 * We use 1/16 of the page size and about 8 times of the item
    716 	 * size as the threshold (XXX: tune)
    717 	 *
    718 	 * However, we'll put the header into the page if we can put
    719 	 * it without wasting any items.
    720 	 *
    721 	 * Silently enforce `0 <= ioff < align'.
    722 	 */
    723 	pp->pr_itemoffset = ioff %= align;
    724 	/* See the comment below about reserved bytes. */
    725 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    726 	phsize = ALIGN(sizeof(struct pool_item_header));
    727 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    728 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    729 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    730 		/* Use the end of the page for the page header */
    731 		pp->pr_roflags |= PR_PHINPAGE;
    732 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    733 	} else {
    734 		/* The page header will be taken from our page header pool */
    735 		pp->pr_phoffset = 0;
    736 		off = palloc->pa_pagesz;
    737 		SPLAY_INIT(&pp->pr_phtree);
    738 	}
    739 
    740 	/*
    741 	 * Alignment is to take place at `ioff' within the item. This means
    742 	 * we must reserve up to `align - 1' bytes on the page to allow
    743 	 * appropriate positioning of each item.
    744 	 */
    745 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    746 	KASSERT(pp->pr_itemsperpage != 0);
    747 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    748 		int idx;
    749 
    750 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    751 		    idx++) {
    752 			/* nothing */
    753 		}
    754 		if (idx >= PHPOOL_MAX) {
    755 			/*
    756 			 * if you see this panic, consider to tweak
    757 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    758 			 */
    759 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    760 			    pp->pr_wchan, pp->pr_itemsperpage);
    761 		}
    762 		pp->pr_phpool = &phpool[idx];
    763 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    764 		pp->pr_phpool = &phpool[0];
    765 	}
    766 #if defined(DIAGNOSTIC)
    767 	else {
    768 		pp->pr_phpool = NULL;
    769 	}
    770 #endif
    771 
    772 	/*
    773 	 * Use the slack between the chunks and the page header
    774 	 * for "cache coloring".
    775 	 */
    776 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    777 	pp->pr_maxcolor = (slack / align) * align;
    778 	pp->pr_curcolor = 0;
    779 
    780 	pp->pr_nget = 0;
    781 	pp->pr_nfail = 0;
    782 	pp->pr_nput = 0;
    783 	pp->pr_npagealloc = 0;
    784 	pp->pr_npagefree = 0;
    785 	pp->pr_hiwat = 0;
    786 	pp->pr_nidle = 0;
    787 	pp->pr_refcnt = 0;
    788 
    789 #ifdef POOL_DIAGNOSTIC
    790 	if (flags & PR_LOGGING) {
    791 		if (kmem_map == NULL ||
    792 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    793 		     M_TEMP, M_NOWAIT)) == NULL)
    794 			pp->pr_roflags &= ~PR_LOGGING;
    795 		pp->pr_curlogentry = 0;
    796 		pp->pr_logsize = pool_logsize;
    797 	}
    798 #endif
    799 
    800 	pp->pr_entered_file = NULL;
    801 	pp->pr_entered_line = 0;
    802 
    803 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    804 	cv_init(&pp->pr_cv, wchan);
    805 	pp->pr_ipl = ipl;
    806 
    807 	/*
    808 	 * Initialize private page header pool and cache magazine pool if we
    809 	 * haven't done so yet.
    810 	 * XXX LOCKING.
    811 	 */
    812 	if (phpool[0].pr_size == 0) {
    813 		int idx;
    814 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    815 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    816 			int nelem;
    817 			size_t sz;
    818 
    819 			nelem = PHPOOL_FREELIST_NELEM(idx);
    820 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    821 			    "phpool-%d", nelem);
    822 			sz = sizeof(struct pool_item_header);
    823 			if (nelem) {
    824 				sz = offsetof(struct pool_item_header,
    825 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    826 			}
    827 			pool_init(&phpool[idx], sz, 0, 0, 0,
    828 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    829 		}
    830 #ifdef POOL_SUBPAGE
    831 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    832 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    833 #endif
    834 
    835 		size = sizeof(pcg_t) +
    836 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    837 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    838 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    839 
    840 		size = sizeof(pcg_t) +
    841 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    842 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    843 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    844 	}
    845 
    846 	/* Insert into the list of all pools. */
    847 	if (__predict_true(!cold))
    848 		mutex_enter(&pool_head_lock);
    849 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    850 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    851 			break;
    852 	}
    853 	if (pp1 == NULL)
    854 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    855 	else
    856 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    857 	if (__predict_true(!cold))
    858 		mutex_exit(&pool_head_lock);
    859 
    860 	/* Insert this into the list of pools using this allocator. */
    861 	if (__predict_true(!cold))
    862 		mutex_enter(&palloc->pa_lock);
    863 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    864 	if (__predict_true(!cold))
    865 		mutex_exit(&palloc->pa_lock);
    866 
    867 	pool_reclaim_register(pp);
    868 }
    869 
    870 /*
    871  * De-commision a pool resource.
    872  */
    873 void
    874 pool_destroy(struct pool *pp)
    875 {
    876 	struct pool_pagelist pq;
    877 	struct pool_item_header *ph;
    878 
    879 	/* Remove from global pool list */
    880 	mutex_enter(&pool_head_lock);
    881 	while (pp->pr_refcnt != 0)
    882 		cv_wait(&pool_busy, &pool_head_lock);
    883 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    884 	if (drainpp == pp)
    885 		drainpp = NULL;
    886 	mutex_exit(&pool_head_lock);
    887 
    888 	/* Remove this pool from its allocator's list of pools. */
    889 	pool_reclaim_unregister(pp);
    890 	mutex_enter(&pp->pr_alloc->pa_lock);
    891 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    892 	mutex_exit(&pp->pr_alloc->pa_lock);
    893 
    894 	mutex_enter(&pp->pr_lock);
    895 
    896 	KASSERT(pp->pr_cache == NULL);
    897 
    898 #ifdef DIAGNOSTIC
    899 	if (pp->pr_nout != 0) {
    900 		pr_printlog(pp, NULL, printf);
    901 		panic("pool_destroy: pool busy: still out: %u",
    902 		    pp->pr_nout);
    903 	}
    904 #endif
    905 
    906 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    907 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    908 
    909 	/* Remove all pages */
    910 	LIST_INIT(&pq);
    911 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    912 		pr_rmpage(pp, ph, &pq);
    913 
    914 	mutex_exit(&pp->pr_lock);
    915 
    916 	pr_pagelist_free(pp, &pq);
    917 
    918 #ifdef POOL_DIAGNOSTIC
    919 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    920 		free(pp->pr_log, M_TEMP);
    921 #endif
    922 
    923 	cv_destroy(&pp->pr_cv);
    924 	mutex_destroy(&pp->pr_lock);
    925 }
    926 
    927 void
    928 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    929 {
    930 
    931 	/* XXX no locking -- must be used just after pool_init() */
    932 #ifdef DIAGNOSTIC
    933 	if (pp->pr_drain_hook != NULL)
    934 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    935 #endif
    936 	pp->pr_drain_hook = fn;
    937 	pp->pr_drain_hook_arg = arg;
    938 }
    939 
    940 static struct pool_item_header *
    941 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    942 {
    943 	struct pool_item_header *ph;
    944 
    945 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    946 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    947 	else
    948 		ph = pool_get(pp->pr_phpool, flags);
    949 
    950 	return (ph);
    951 }
    952 
    953 /*
    954  * Grab an item from the pool.
    955  */
    956 void *
    957 #ifdef POOL_DIAGNOSTIC
    958 _pool_get(struct pool *pp, int flags, const char *file, long line)
    959 #else
    960 pool_get(struct pool *pp, int flags)
    961 #endif
    962 {
    963 	struct pool_item *pi;
    964 	struct pool_item_header *ph;
    965 	void *v;
    966 
    967 #ifdef DIAGNOSTIC
    968 	if (__predict_false(pp->pr_itemsperpage == 0))
    969 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    970 		    "pool not initialized?", pp);
    971 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    972 			    (flags & PR_WAITOK) != 0))
    973 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    974 
    975 #endif /* DIAGNOSTIC */
    976 #ifdef LOCKDEBUG
    977 	if (flags & PR_WAITOK) {
    978 		ASSERT_SLEEPABLE();
    979 	}
    980 #endif
    981 
    982 	mutex_enter(&pp->pr_lock);
    983 	pr_enter(pp, file, line);
    984 
    985  startover:
    986 	/*
    987 	 * Check to see if we've reached the hard limit.  If we have,
    988 	 * and we can wait, then wait until an item has been returned to
    989 	 * the pool.
    990 	 */
    991 #ifdef DIAGNOSTIC
    992 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    993 		pr_leave(pp);
    994 		mutex_exit(&pp->pr_lock);
    995 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    996 	}
    997 #endif
    998 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    999 		if (pp->pr_drain_hook != NULL) {
   1000 			/*
   1001 			 * Since the drain hook is going to free things
   1002 			 * back to the pool, unlock, call the hook, re-lock,
   1003 			 * and check the hardlimit condition again.
   1004 			 */
   1005 			pr_leave(pp);
   1006 			mutex_exit(&pp->pr_lock);
   1007 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1008 			mutex_enter(&pp->pr_lock);
   1009 			pr_enter(pp, file, line);
   1010 			if (pp->pr_nout < pp->pr_hardlimit)
   1011 				goto startover;
   1012 		}
   1013 
   1014 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1015 			/*
   1016 			 * XXX: A warning isn't logged in this case.  Should
   1017 			 * it be?
   1018 			 */
   1019 			pp->pr_flags |= PR_WANTED;
   1020 			pr_leave(pp);
   1021 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1022 			pr_enter(pp, file, line);
   1023 			goto startover;
   1024 		}
   1025 
   1026 		/*
   1027 		 * Log a message that the hard limit has been hit.
   1028 		 */
   1029 		if (pp->pr_hardlimit_warning != NULL &&
   1030 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1031 			      &pp->pr_hardlimit_ratecap))
   1032 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1033 
   1034 		pp->pr_nfail++;
   1035 
   1036 		pr_leave(pp);
   1037 		mutex_exit(&pp->pr_lock);
   1038 		return (NULL);
   1039 	}
   1040 
   1041 	/*
   1042 	 * The convention we use is that if `curpage' is not NULL, then
   1043 	 * it points at a non-empty bucket. In particular, `curpage'
   1044 	 * never points at a page header which has PR_PHINPAGE set and
   1045 	 * has no items in its bucket.
   1046 	 */
   1047 	if ((ph = pp->pr_curpage) == NULL) {
   1048 		int error;
   1049 
   1050 #ifdef DIAGNOSTIC
   1051 		if (pp->pr_nitems != 0) {
   1052 			mutex_exit(&pp->pr_lock);
   1053 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1054 			    pp->pr_wchan, pp->pr_nitems);
   1055 			panic("pool_get: nitems inconsistent");
   1056 		}
   1057 #endif
   1058 
   1059 		/*
   1060 		 * Call the back-end page allocator for more memory.
   1061 		 * Release the pool lock, as the back-end page allocator
   1062 		 * may block.
   1063 		 */
   1064 		pr_leave(pp);
   1065 		error = pool_grow(pp, flags);
   1066 		pr_enter(pp, file, line);
   1067 		if (error != 0) {
   1068 			/*
   1069 			 * We were unable to allocate a page or item
   1070 			 * header, but we released the lock during
   1071 			 * allocation, so perhaps items were freed
   1072 			 * back to the pool.  Check for this case.
   1073 			 */
   1074 			if (pp->pr_curpage != NULL)
   1075 				goto startover;
   1076 
   1077 			pp->pr_nfail++;
   1078 			pr_leave(pp);
   1079 			mutex_exit(&pp->pr_lock);
   1080 			return (NULL);
   1081 		}
   1082 
   1083 		/* Start the allocation process over. */
   1084 		goto startover;
   1085 	}
   1086 	if (pp->pr_roflags & PR_NOTOUCH) {
   1087 #ifdef DIAGNOSTIC
   1088 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1089 			pr_leave(pp);
   1090 			mutex_exit(&pp->pr_lock);
   1091 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1092 		}
   1093 #endif
   1094 		v = pr_item_notouch_get(pp, ph);
   1095 #ifdef POOL_DIAGNOSTIC
   1096 		pr_log(pp, v, PRLOG_GET, file, line);
   1097 #endif
   1098 	} else {
   1099 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1100 		if (__predict_false(v == NULL)) {
   1101 			pr_leave(pp);
   1102 			mutex_exit(&pp->pr_lock);
   1103 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1104 		}
   1105 #ifdef DIAGNOSTIC
   1106 		if (__predict_false(pp->pr_nitems == 0)) {
   1107 			pr_leave(pp);
   1108 			mutex_exit(&pp->pr_lock);
   1109 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1110 			    pp->pr_wchan, pp->pr_nitems);
   1111 			panic("pool_get: nitems inconsistent");
   1112 		}
   1113 #endif
   1114 
   1115 #ifdef POOL_DIAGNOSTIC
   1116 		pr_log(pp, v, PRLOG_GET, file, line);
   1117 #endif
   1118 
   1119 #ifdef DIAGNOSTIC
   1120 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1121 			pr_printlog(pp, pi, printf);
   1122 			panic("pool_get(%s): free list modified: "
   1123 			    "magic=%x; page %p; item addr %p\n",
   1124 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1125 		}
   1126 #endif
   1127 
   1128 		/*
   1129 		 * Remove from item list.
   1130 		 */
   1131 		LIST_REMOVE(pi, pi_list);
   1132 	}
   1133 	pp->pr_nitems--;
   1134 	pp->pr_nout++;
   1135 	if (ph->ph_nmissing == 0) {
   1136 #ifdef DIAGNOSTIC
   1137 		if (__predict_false(pp->pr_nidle == 0))
   1138 			panic("pool_get: nidle inconsistent");
   1139 #endif
   1140 		pp->pr_nidle--;
   1141 
   1142 		/*
   1143 		 * This page was previously empty.  Move it to the list of
   1144 		 * partially-full pages.  This page is already curpage.
   1145 		 */
   1146 		LIST_REMOVE(ph, ph_pagelist);
   1147 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1148 	}
   1149 	ph->ph_nmissing++;
   1150 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1151 #ifdef DIAGNOSTIC
   1152 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1153 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1154 			pr_leave(pp);
   1155 			mutex_exit(&pp->pr_lock);
   1156 			panic("pool_get: %s: nmissing inconsistent",
   1157 			    pp->pr_wchan);
   1158 		}
   1159 #endif
   1160 		/*
   1161 		 * This page is now full.  Move it to the full list
   1162 		 * and select a new current page.
   1163 		 */
   1164 		LIST_REMOVE(ph, ph_pagelist);
   1165 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1166 		pool_update_curpage(pp);
   1167 	}
   1168 
   1169 	pp->pr_nget++;
   1170 	pr_leave(pp);
   1171 
   1172 	/*
   1173 	 * If we have a low water mark and we are now below that low
   1174 	 * water mark, add more items to the pool.
   1175 	 */
   1176 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1177 		/*
   1178 		 * XXX: Should we log a warning?  Should we set up a timeout
   1179 		 * to try again in a second or so?  The latter could break
   1180 		 * a caller's assumptions about interrupt protection, etc.
   1181 		 */
   1182 	}
   1183 
   1184 	mutex_exit(&pp->pr_lock);
   1185 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1186 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1187 	return (v);
   1188 }
   1189 
   1190 /*
   1191  * Internal version of pool_put().  Pool is already locked/entered.
   1192  */
   1193 static void
   1194 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1195 {
   1196 	struct pool_item *pi = v;
   1197 	struct pool_item_header *ph;
   1198 
   1199 	KASSERT(mutex_owned(&pp->pr_lock));
   1200 	FREECHECK_IN(&pp->pr_freecheck, v);
   1201 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1202 
   1203 #ifdef DIAGNOSTIC
   1204 	if (__predict_false(pp->pr_nout == 0)) {
   1205 		printf("pool %s: putting with none out\n",
   1206 		    pp->pr_wchan);
   1207 		panic("pool_put");
   1208 	}
   1209 #endif
   1210 
   1211 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1212 		pr_printlog(pp, NULL, printf);
   1213 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1214 	}
   1215 
   1216 	/*
   1217 	 * Return to item list.
   1218 	 */
   1219 	if (pp->pr_roflags & PR_NOTOUCH) {
   1220 		pr_item_notouch_put(pp, ph, v);
   1221 	} else {
   1222 #ifdef DIAGNOSTIC
   1223 		pi->pi_magic = PI_MAGIC;
   1224 #endif
   1225 #ifdef DEBUG
   1226 		{
   1227 			int i, *ip = v;
   1228 
   1229 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1230 				*ip++ = PI_MAGIC;
   1231 			}
   1232 		}
   1233 #endif
   1234 
   1235 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1236 	}
   1237 	KDASSERT(ph->ph_nmissing != 0);
   1238 	ph->ph_nmissing--;
   1239 	pp->pr_nput++;
   1240 	pp->pr_nitems++;
   1241 	pp->pr_nout--;
   1242 
   1243 	/* Cancel "pool empty" condition if it exists */
   1244 	if (pp->pr_curpage == NULL)
   1245 		pp->pr_curpage = ph;
   1246 
   1247 	if (pp->pr_flags & PR_WANTED) {
   1248 		pp->pr_flags &= ~PR_WANTED;
   1249 		cv_broadcast(&pp->pr_cv);
   1250 	}
   1251 
   1252 	/*
   1253 	 * If this page is now empty, do one of two things:
   1254 	 *
   1255 	 *	(1) If we have more pages than the page high water mark,
   1256 	 *	    free the page back to the system.  ONLY CONSIDER
   1257 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1258 	 *	    CLAIM.
   1259 	 *
   1260 	 *	(2) Otherwise, move the page to the empty page list.
   1261 	 *
   1262 	 * Either way, select a new current page (so we use a partially-full
   1263 	 * page if one is available).
   1264 	 */
   1265 	if (ph->ph_nmissing == 0) {
   1266 		pp->pr_nidle++;
   1267 		if (pp->pr_npages > pp->pr_minpages &&
   1268 		    pp->pr_npages > pp->pr_maxpages) {
   1269 			pr_rmpage(pp, ph, pq);
   1270 		} else {
   1271 			LIST_REMOVE(ph, ph_pagelist);
   1272 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1273 
   1274 			/*
   1275 			 * Update the timestamp on the page.  A page must
   1276 			 * be idle for some period of time before it can
   1277 			 * be reclaimed by the pagedaemon.  This minimizes
   1278 			 * ping-pong'ing for memory.
   1279 			 *
   1280 			 * note for 64-bit time_t: truncating to 32-bit is not
   1281 			 * a problem for our usage.
   1282 			 */
   1283 			ph->ph_time = time_uptime;
   1284 		}
   1285 		pool_update_curpage(pp);
   1286 	}
   1287 
   1288 	/*
   1289 	 * If the page was previously completely full, move it to the
   1290 	 * partially-full list and make it the current page.  The next
   1291 	 * allocation will get the item from this page, instead of
   1292 	 * further fragmenting the pool.
   1293 	 */
   1294 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1295 		LIST_REMOVE(ph, ph_pagelist);
   1296 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1297 		pp->pr_curpage = ph;
   1298 	}
   1299 }
   1300 
   1301 /*
   1302  * Return resource to the pool.
   1303  */
   1304 #ifdef POOL_DIAGNOSTIC
   1305 void
   1306 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1307 {
   1308 	struct pool_pagelist pq;
   1309 
   1310 	LIST_INIT(&pq);
   1311 
   1312 	mutex_enter(&pp->pr_lock);
   1313 	pr_enter(pp, file, line);
   1314 
   1315 	pr_log(pp, v, PRLOG_PUT, file, line);
   1316 
   1317 	pool_do_put(pp, v, &pq);
   1318 
   1319 	pr_leave(pp);
   1320 	mutex_exit(&pp->pr_lock);
   1321 
   1322 	pr_pagelist_free(pp, &pq);
   1323 }
   1324 #undef pool_put
   1325 #endif /* POOL_DIAGNOSTIC */
   1326 
   1327 void
   1328 pool_put(struct pool *pp, void *v)
   1329 {
   1330 	struct pool_pagelist pq;
   1331 
   1332 	LIST_INIT(&pq);
   1333 
   1334 	mutex_enter(&pp->pr_lock);
   1335 	pool_do_put(pp, v, &pq);
   1336 	mutex_exit(&pp->pr_lock);
   1337 
   1338 	pr_pagelist_free(pp, &pq);
   1339 }
   1340 
   1341 #ifdef POOL_DIAGNOSTIC
   1342 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1343 #endif
   1344 
   1345 /*
   1346  * pool_grow: grow a pool by a page.
   1347  *
   1348  * => called with pool locked.
   1349  * => unlock and relock the pool.
   1350  * => return with pool locked.
   1351  */
   1352 
   1353 static int
   1354 pool_grow(struct pool *pp, int flags)
   1355 {
   1356 	struct pool_item_header *ph = NULL;
   1357 	char *cp;
   1358 
   1359 	mutex_exit(&pp->pr_lock);
   1360 	cp = pool_allocator_alloc(pp, flags);
   1361 	if (__predict_true(cp != NULL)) {
   1362 		ph = pool_alloc_item_header(pp, cp, flags);
   1363 	}
   1364 	if (__predict_false(cp == NULL || ph == NULL)) {
   1365 		if (cp != NULL) {
   1366 			pool_allocator_free(pp, cp);
   1367 		}
   1368 		mutex_enter(&pp->pr_lock);
   1369 		return ENOMEM;
   1370 	}
   1371 
   1372 	mutex_enter(&pp->pr_lock);
   1373 	pool_prime_page(pp, cp, ph);
   1374 	pp->pr_npagealloc++;
   1375 	return 0;
   1376 }
   1377 
   1378 /*
   1379  * Add N items to the pool.
   1380  */
   1381 int
   1382 pool_prime(struct pool *pp, int n)
   1383 {
   1384 	int newpages;
   1385 	int error = 0;
   1386 
   1387 	mutex_enter(&pp->pr_lock);
   1388 
   1389 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1390 
   1391 	while (newpages-- > 0) {
   1392 		error = pool_grow(pp, PR_NOWAIT);
   1393 		if (error) {
   1394 			break;
   1395 		}
   1396 		pp->pr_minpages++;
   1397 	}
   1398 
   1399 	if (pp->pr_minpages >= pp->pr_maxpages)
   1400 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1401 
   1402 	mutex_exit(&pp->pr_lock);
   1403 	return error;
   1404 }
   1405 
   1406 /*
   1407  * Add a page worth of items to the pool.
   1408  *
   1409  * Note, we must be called with the pool descriptor LOCKED.
   1410  */
   1411 static void
   1412 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1413 {
   1414 	struct pool_item *pi;
   1415 	void *cp = storage;
   1416 	const unsigned int align = pp->pr_align;
   1417 	const unsigned int ioff = pp->pr_itemoffset;
   1418 	int n;
   1419 
   1420 	KASSERT(mutex_owned(&pp->pr_lock));
   1421 
   1422 #ifdef DIAGNOSTIC
   1423 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1424 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1425 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1426 #endif
   1427 
   1428 	/*
   1429 	 * Insert page header.
   1430 	 */
   1431 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1432 	LIST_INIT(&ph->ph_itemlist);
   1433 	ph->ph_page = storage;
   1434 	ph->ph_nmissing = 0;
   1435 	ph->ph_time = time_uptime;
   1436 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1437 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1438 
   1439 	pp->pr_nidle++;
   1440 
   1441 	/*
   1442 	 * Color this page.
   1443 	 */
   1444 	ph->ph_off = pp->pr_curcolor;
   1445 	cp = (char *)cp + ph->ph_off;
   1446 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1447 		pp->pr_curcolor = 0;
   1448 
   1449 	/*
   1450 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1451 	 */
   1452 	if (ioff != 0)
   1453 		cp = (char *)cp + align - ioff;
   1454 
   1455 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1456 
   1457 	/*
   1458 	 * Insert remaining chunks on the bucket list.
   1459 	 */
   1460 	n = pp->pr_itemsperpage;
   1461 	pp->pr_nitems += n;
   1462 
   1463 	if (pp->pr_roflags & PR_NOTOUCH) {
   1464 		pr_item_notouch_init(pp, ph);
   1465 	} else {
   1466 		while (n--) {
   1467 			pi = (struct pool_item *)cp;
   1468 
   1469 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1470 
   1471 			/* Insert on page list */
   1472 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1473 #ifdef DIAGNOSTIC
   1474 			pi->pi_magic = PI_MAGIC;
   1475 #endif
   1476 			cp = (char *)cp + pp->pr_size;
   1477 
   1478 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1479 		}
   1480 	}
   1481 
   1482 	/*
   1483 	 * If the pool was depleted, point at the new page.
   1484 	 */
   1485 	if (pp->pr_curpage == NULL)
   1486 		pp->pr_curpage = ph;
   1487 
   1488 	if (++pp->pr_npages > pp->pr_hiwat)
   1489 		pp->pr_hiwat = pp->pr_npages;
   1490 }
   1491 
   1492 /*
   1493  * Used by pool_get() when nitems drops below the low water mark.  This
   1494  * is used to catch up pr_nitems with the low water mark.
   1495  *
   1496  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1497  *
   1498  * Note 2, we must be called with the pool already locked, and we return
   1499  * with it locked.
   1500  */
   1501 static int
   1502 pool_catchup(struct pool *pp)
   1503 {
   1504 	int error = 0;
   1505 
   1506 	while (POOL_NEEDS_CATCHUP(pp)) {
   1507 		error = pool_grow(pp, PR_NOWAIT);
   1508 		if (error) {
   1509 			break;
   1510 		}
   1511 	}
   1512 	return error;
   1513 }
   1514 
   1515 static void
   1516 pool_update_curpage(struct pool *pp)
   1517 {
   1518 
   1519 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1520 	if (pp->pr_curpage == NULL) {
   1521 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1522 	}
   1523 	KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
   1524 	    (pp->pr_curpage != NULL && pp->pr_nitems > 0));
   1525 }
   1526 
   1527 void
   1528 pool_setlowat(struct pool *pp, int n)
   1529 {
   1530 
   1531 	mutex_enter(&pp->pr_lock);
   1532 
   1533 	pp->pr_minitems = n;
   1534 	pp->pr_minpages = (n == 0)
   1535 		? 0
   1536 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1537 
   1538 	/* Make sure we're caught up with the newly-set low water mark. */
   1539 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1540 		/*
   1541 		 * XXX: Should we log a warning?  Should we set up a timeout
   1542 		 * to try again in a second or so?  The latter could break
   1543 		 * a caller's assumptions about interrupt protection, etc.
   1544 		 */
   1545 	}
   1546 
   1547 	mutex_exit(&pp->pr_lock);
   1548 }
   1549 
   1550 void
   1551 pool_sethiwat(struct pool *pp, int n)
   1552 {
   1553 
   1554 	mutex_enter(&pp->pr_lock);
   1555 
   1556 	pp->pr_maxpages = (n == 0)
   1557 		? 0
   1558 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1559 
   1560 	mutex_exit(&pp->pr_lock);
   1561 }
   1562 
   1563 void
   1564 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1565 {
   1566 
   1567 	mutex_enter(&pp->pr_lock);
   1568 
   1569 	pp->pr_hardlimit = n;
   1570 	pp->pr_hardlimit_warning = warnmess;
   1571 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1572 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1573 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1574 
   1575 	/*
   1576 	 * In-line version of pool_sethiwat(), because we don't want to
   1577 	 * release the lock.
   1578 	 */
   1579 	pp->pr_maxpages = (n == 0)
   1580 		? 0
   1581 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1582 
   1583 	mutex_exit(&pp->pr_lock);
   1584 }
   1585 
   1586 /*
   1587  * Release all complete pages that have not been used recently.
   1588  */
   1589 int
   1590 #ifdef POOL_DIAGNOSTIC
   1591 _pool_reclaim(struct pool *pp, const char *file, long line)
   1592 #else
   1593 pool_reclaim(struct pool *pp)
   1594 #endif
   1595 {
   1596 	struct pool_item_header *ph, *phnext;
   1597 	struct pool_pagelist pq;
   1598 	uint32_t curtime;
   1599 	bool klock;
   1600 	int rv;
   1601 
   1602 	if (pp->pr_drain_hook != NULL) {
   1603 		/*
   1604 		 * The drain hook must be called with the pool unlocked.
   1605 		 */
   1606 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1607 	}
   1608 
   1609 	/*
   1610 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1611 	 * to block.
   1612 	 */
   1613 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1614 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1615 		KERNEL_LOCK(1, NULL);
   1616 		klock = true;
   1617 	} else
   1618 		klock = false;
   1619 
   1620 	/* Reclaim items from the pool's cache (if any). */
   1621 	if (pp->pr_cache != NULL)
   1622 		pool_cache_invalidate(pp->pr_cache);
   1623 
   1624 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1625 		if (klock) {
   1626 			KERNEL_UNLOCK_ONE(NULL);
   1627 		}
   1628 		return (0);
   1629 	}
   1630 	pr_enter(pp, file, line);
   1631 
   1632 	LIST_INIT(&pq);
   1633 
   1634 	curtime = time_uptime;
   1635 
   1636 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1637 		phnext = LIST_NEXT(ph, ph_pagelist);
   1638 
   1639 		/* Check our minimum page claim */
   1640 		if (pp->pr_npages <= pp->pr_minpages)
   1641 			break;
   1642 
   1643 		KASSERT(ph->ph_nmissing == 0);
   1644 		if (curtime - ph->ph_time < pool_inactive_time
   1645 		    && !pa_starved_p(pp->pr_alloc))
   1646 			continue;
   1647 
   1648 		/*
   1649 		 * If freeing this page would put us below
   1650 		 * the low water mark, stop now.
   1651 		 */
   1652 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1653 		    pp->pr_minitems)
   1654 			break;
   1655 
   1656 		pr_rmpage(pp, ph, &pq);
   1657 	}
   1658 
   1659 	pr_leave(pp);
   1660 	mutex_exit(&pp->pr_lock);
   1661 
   1662 	if (LIST_EMPTY(&pq))
   1663 		rv = 0;
   1664 	else {
   1665 		pr_pagelist_free(pp, &pq);
   1666 		rv = 1;
   1667 	}
   1668 
   1669 	if (klock) {
   1670 		KERNEL_UNLOCK_ONE(NULL);
   1671 	}
   1672 
   1673 	return (rv);
   1674 }
   1675 
   1676 /*
   1677  * Drain pools, one at a time.  This is a two stage process;
   1678  * drain_start kicks off a cross call to drain CPU-level caches
   1679  * if the pool has an associated pool_cache.  drain_end waits
   1680  * for those cross calls to finish, and then drains the cache
   1681  * (if any) and pool.
   1682  *
   1683  * Note, must never be called from interrupt context.
   1684  */
   1685 void
   1686 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1687 {
   1688 	struct pool *pp;
   1689 
   1690 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1691 
   1692 	pp = NULL;
   1693 
   1694 	/* Find next pool to drain, and add a reference. */
   1695 	mutex_enter(&pool_head_lock);
   1696 	do {
   1697 		if (drainpp == NULL) {
   1698 			drainpp = TAILQ_FIRST(&pool_head);
   1699 		}
   1700 		if (drainpp != NULL) {
   1701 			pp = drainpp;
   1702 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1703 		}
   1704 		/*
   1705 		 * Skip completely idle pools.  We depend on at least
   1706 		 * one pool in the system being active.
   1707 		 */
   1708 	} while (pp == NULL || pp->pr_npages == 0);
   1709 	pp->pr_refcnt++;
   1710 	mutex_exit(&pool_head_lock);
   1711 
   1712 	/* If there is a pool_cache, drain CPU level caches. */
   1713 	*ppp = pp;
   1714 	if (pp->pr_cache != NULL) {
   1715 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1716 		    pp->pr_cache, NULL);
   1717 	}
   1718 }
   1719 
   1720 void
   1721 pool_drain_end(struct pool *pp, uint64_t where)
   1722 {
   1723 
   1724 	if (pp == NULL)
   1725 		return;
   1726 
   1727 	KASSERT(pp->pr_refcnt > 0);
   1728 
   1729 	/* Wait for remote draining to complete. */
   1730 	if (pp->pr_cache != NULL)
   1731 		xc_wait(where);
   1732 
   1733 	/* Drain the cache (if any) and pool.. */
   1734 	pool_reclaim(pp);
   1735 
   1736 	/* Finally, unlock the pool. */
   1737 	mutex_enter(&pool_head_lock);
   1738 	pp->pr_refcnt--;
   1739 	cv_broadcast(&pool_busy);
   1740 	mutex_exit(&pool_head_lock);
   1741 }
   1742 
   1743 /*
   1744  * Diagnostic helpers.
   1745  */
   1746 void
   1747 pool_print(struct pool *pp, const char *modif)
   1748 {
   1749 
   1750 	pool_print1(pp, modif, printf);
   1751 }
   1752 
   1753 void
   1754 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1755 {
   1756 	struct pool *pp;
   1757 
   1758 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1759 		pool_printit(pp, modif, pr);
   1760 	}
   1761 }
   1762 
   1763 void
   1764 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1765 {
   1766 
   1767 	if (pp == NULL) {
   1768 		(*pr)("Must specify a pool to print.\n");
   1769 		return;
   1770 	}
   1771 
   1772 	pool_print1(pp, modif, pr);
   1773 }
   1774 
   1775 static void
   1776 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1777     void (*pr)(const char *, ...))
   1778 {
   1779 	struct pool_item_header *ph;
   1780 #ifdef DIAGNOSTIC
   1781 	struct pool_item *pi;
   1782 #endif
   1783 
   1784 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1785 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1786 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1787 #ifdef DIAGNOSTIC
   1788 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1789 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1790 				if (pi->pi_magic != PI_MAGIC) {
   1791 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1792 					    pi, pi->pi_magic);
   1793 				}
   1794 			}
   1795 		}
   1796 #endif
   1797 	}
   1798 }
   1799 
   1800 static void
   1801 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1802 {
   1803 	struct pool_item_header *ph;
   1804 	pool_cache_t pc;
   1805 	pcg_t *pcg;
   1806 	pool_cache_cpu_t *cc;
   1807 	uint64_t cpuhit, cpumiss;
   1808 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1809 	char c;
   1810 
   1811 	while ((c = *modif++) != '\0') {
   1812 		if (c == 'l')
   1813 			print_log = 1;
   1814 		if (c == 'p')
   1815 			print_pagelist = 1;
   1816 		if (c == 'c')
   1817 			print_cache = 1;
   1818 	}
   1819 
   1820 	if ((pc = pp->pr_cache) != NULL) {
   1821 		(*pr)("POOL CACHE");
   1822 	} else {
   1823 		(*pr)("POOL");
   1824 	}
   1825 
   1826 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1827 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1828 	    pp->pr_roflags);
   1829 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1830 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1831 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1832 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1833 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1834 
   1835 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1836 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1837 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1838 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1839 
   1840 	if (print_pagelist == 0)
   1841 		goto skip_pagelist;
   1842 
   1843 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1844 		(*pr)("\n\tempty page list:\n");
   1845 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1846 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1847 		(*pr)("\n\tfull page list:\n");
   1848 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1849 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1850 		(*pr)("\n\tpartial-page list:\n");
   1851 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1852 
   1853 	if (pp->pr_curpage == NULL)
   1854 		(*pr)("\tno current page\n");
   1855 	else
   1856 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1857 
   1858  skip_pagelist:
   1859 	if (print_log == 0)
   1860 		goto skip_log;
   1861 
   1862 	(*pr)("\n");
   1863 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1864 		(*pr)("\tno log\n");
   1865 	else {
   1866 		pr_printlog(pp, NULL, pr);
   1867 	}
   1868 
   1869  skip_log:
   1870 
   1871 #define PR_GROUPLIST(pcg)						\
   1872 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1873 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1874 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1875 		    POOL_PADDR_INVALID) {				\
   1876 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1877 			    pcg->pcg_objects[i].pcgo_va,		\
   1878 			    (unsigned long long)			\
   1879 			    pcg->pcg_objects[i].pcgo_pa);		\
   1880 		} else {						\
   1881 			(*pr)("\t\t\t%p\n",				\
   1882 			    pcg->pcg_objects[i].pcgo_va);		\
   1883 		}							\
   1884 	}
   1885 
   1886 	if (pc != NULL) {
   1887 		cpuhit = 0;
   1888 		cpumiss = 0;
   1889 		for (i = 0; i < MAXCPUS; i++) {
   1890 			if ((cc = pc->pc_cpus[i]) == NULL)
   1891 				continue;
   1892 			cpuhit += cc->cc_hits;
   1893 			cpumiss += cc->cc_misses;
   1894 		}
   1895 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1896 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1897 		    pc->pc_hits, pc->pc_misses);
   1898 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1899 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1900 		    pc->pc_contended);
   1901 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1902 		    pc->pc_nempty, pc->pc_nfull);
   1903 		if (print_cache) {
   1904 			(*pr)("\tfull cache groups:\n");
   1905 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1906 			    pcg = pcg->pcg_next) {
   1907 				PR_GROUPLIST(pcg);
   1908 			}
   1909 			(*pr)("\tempty cache groups:\n");
   1910 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1911 			    pcg = pcg->pcg_next) {
   1912 				PR_GROUPLIST(pcg);
   1913 			}
   1914 		}
   1915 	}
   1916 #undef PR_GROUPLIST
   1917 
   1918 	pr_enter_check(pp, pr);
   1919 }
   1920 
   1921 static int
   1922 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1923 {
   1924 	struct pool_item *pi;
   1925 	void *page;
   1926 	int n;
   1927 
   1928 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1929 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1930 		if (page != ph->ph_page &&
   1931 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1932 			if (label != NULL)
   1933 				printf("%s: ", label);
   1934 			printf("pool(%p:%s): page inconsistency: page %p;"
   1935 			       " at page head addr %p (p %p)\n", pp,
   1936 				pp->pr_wchan, ph->ph_page,
   1937 				ph, page);
   1938 			return 1;
   1939 		}
   1940 	}
   1941 
   1942 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1943 		return 0;
   1944 
   1945 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1946 	     pi != NULL;
   1947 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1948 
   1949 #ifdef DIAGNOSTIC
   1950 		if (pi->pi_magic != PI_MAGIC) {
   1951 			if (label != NULL)
   1952 				printf("%s: ", label);
   1953 			printf("pool(%s): free list modified: magic=%x;"
   1954 			       " page %p; item ordinal %d; addr %p\n",
   1955 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1956 				n, pi);
   1957 			panic("pool");
   1958 		}
   1959 #endif
   1960 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1961 			continue;
   1962 		}
   1963 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1964 		if (page == ph->ph_page)
   1965 			continue;
   1966 
   1967 		if (label != NULL)
   1968 			printf("%s: ", label);
   1969 		printf("pool(%p:%s): page inconsistency: page %p;"
   1970 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1971 			pp->pr_wchan, ph->ph_page,
   1972 			n, pi, page);
   1973 		return 1;
   1974 	}
   1975 	return 0;
   1976 }
   1977 
   1978 
   1979 int
   1980 pool_chk(struct pool *pp, const char *label)
   1981 {
   1982 	struct pool_item_header *ph;
   1983 	int r = 0;
   1984 
   1985 	mutex_enter(&pp->pr_lock);
   1986 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1987 		r = pool_chk_page(pp, label, ph);
   1988 		if (r) {
   1989 			goto out;
   1990 		}
   1991 	}
   1992 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1993 		r = pool_chk_page(pp, label, ph);
   1994 		if (r) {
   1995 			goto out;
   1996 		}
   1997 	}
   1998 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1999 		r = pool_chk_page(pp, label, ph);
   2000 		if (r) {
   2001 			goto out;
   2002 		}
   2003 	}
   2004 
   2005 out:
   2006 	mutex_exit(&pp->pr_lock);
   2007 	return (r);
   2008 }
   2009 
   2010 /*
   2011  * pool_cache_init:
   2012  *
   2013  *	Initialize a pool cache.
   2014  */
   2015 pool_cache_t
   2016 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2017     const char *wchan, struct pool_allocator *palloc, int ipl,
   2018     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2019 {
   2020 	pool_cache_t pc;
   2021 
   2022 	pc = pool_get(&cache_pool, PR_WAITOK);
   2023 	if (pc == NULL)
   2024 		return NULL;
   2025 
   2026 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2027 	   palloc, ipl, ctor, dtor, arg);
   2028 
   2029 	return pc;
   2030 }
   2031 
   2032 /*
   2033  * pool_cache_bootstrap:
   2034  *
   2035  *	Kernel-private version of pool_cache_init().  The caller
   2036  *	provides initial storage.
   2037  */
   2038 void
   2039 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2040     u_int align_offset, u_int flags, const char *wchan,
   2041     struct pool_allocator *palloc, int ipl,
   2042     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2043     void *arg)
   2044 {
   2045 	CPU_INFO_ITERATOR cii;
   2046 	pool_cache_t pc1;
   2047 	struct cpu_info *ci;
   2048 	struct pool *pp;
   2049 
   2050 	pp = &pc->pc_pool;
   2051 	if (palloc == NULL && ipl == IPL_NONE)
   2052 		palloc = &pool_allocator_nointr;
   2053 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2054 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2055 
   2056 	if (ctor == NULL) {
   2057 		ctor = (int (*)(void *, void *, int))nullop;
   2058 	}
   2059 	if (dtor == NULL) {
   2060 		dtor = (void (*)(void *, void *))nullop;
   2061 	}
   2062 
   2063 	pc->pc_emptygroups = NULL;
   2064 	pc->pc_fullgroups = NULL;
   2065 	pc->pc_partgroups = NULL;
   2066 	pc->pc_ctor = ctor;
   2067 	pc->pc_dtor = dtor;
   2068 	pc->pc_arg  = arg;
   2069 	pc->pc_hits  = 0;
   2070 	pc->pc_misses = 0;
   2071 	pc->pc_nempty = 0;
   2072 	pc->pc_npart = 0;
   2073 	pc->pc_nfull = 0;
   2074 	pc->pc_contended = 0;
   2075 	pc->pc_refcnt = 0;
   2076 	pc->pc_freecheck = NULL;
   2077 
   2078 	if ((flags & PR_LARGECACHE) != 0) {
   2079 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2080 		pc->pc_pcgpool = &pcg_large_pool;
   2081 	} else {
   2082 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2083 		pc->pc_pcgpool = &pcg_normal_pool;
   2084 	}
   2085 
   2086 	/* Allocate per-CPU caches. */
   2087 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2088 	pc->pc_ncpu = 0;
   2089 	if (ncpu < 2) {
   2090 		/* XXX For sparc: boot CPU is not attached yet. */
   2091 		pool_cache_cpu_init1(curcpu(), pc);
   2092 	} else {
   2093 		for (CPU_INFO_FOREACH(cii, ci)) {
   2094 			pool_cache_cpu_init1(ci, pc);
   2095 		}
   2096 	}
   2097 
   2098 	/* Add to list of all pools. */
   2099 	if (__predict_true(!cold))
   2100 		mutex_enter(&pool_head_lock);
   2101 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2102 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2103 			break;
   2104 	}
   2105 	if (pc1 == NULL)
   2106 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2107 	else
   2108 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2109 	if (__predict_true(!cold))
   2110 		mutex_exit(&pool_head_lock);
   2111 
   2112 	membar_sync();
   2113 	pp->pr_cache = pc;
   2114 }
   2115 
   2116 /*
   2117  * pool_cache_destroy:
   2118  *
   2119  *	Destroy a pool cache.
   2120  */
   2121 void
   2122 pool_cache_destroy(pool_cache_t pc)
   2123 {
   2124 	struct pool *pp = &pc->pc_pool;
   2125 	pool_cache_cpu_t *cc;
   2126 	pcg_t *pcg;
   2127 	int i;
   2128 
   2129 	/* Remove it from the global list. */
   2130 	mutex_enter(&pool_head_lock);
   2131 	while (pc->pc_refcnt != 0)
   2132 		cv_wait(&pool_busy, &pool_head_lock);
   2133 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2134 	mutex_exit(&pool_head_lock);
   2135 
   2136 	/* First, invalidate the entire cache. */
   2137 	pool_cache_invalidate(pc);
   2138 
   2139 	/* Disassociate it from the pool. */
   2140 	mutex_enter(&pp->pr_lock);
   2141 	pp->pr_cache = NULL;
   2142 	mutex_exit(&pp->pr_lock);
   2143 
   2144 	/* Destroy per-CPU data */
   2145 	for (i = 0; i < MAXCPUS; i++) {
   2146 		if ((cc = pc->pc_cpus[i]) == NULL)
   2147 			continue;
   2148 		if ((pcg = cc->cc_current) != &pcg_dummy) {
   2149 			pcg->pcg_next = NULL;
   2150 			pool_cache_invalidate_groups(pc, pcg);
   2151 		}
   2152 		if ((pcg = cc->cc_previous) != &pcg_dummy) {
   2153 			pcg->pcg_next = NULL;
   2154 			pool_cache_invalidate_groups(pc, pcg);
   2155 		}
   2156 		if (cc != &pc->pc_cpu0)
   2157 			pool_put(&cache_cpu_pool, cc);
   2158 	}
   2159 
   2160 	/* Finally, destroy it. */
   2161 	mutex_destroy(&pc->pc_lock);
   2162 	pool_destroy(pp);
   2163 	pool_put(&cache_pool, pc);
   2164 }
   2165 
   2166 /*
   2167  * pool_cache_cpu_init1:
   2168  *
   2169  *	Called for each pool_cache whenever a new CPU is attached.
   2170  */
   2171 static void
   2172 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2173 {
   2174 	pool_cache_cpu_t *cc;
   2175 	int index;
   2176 
   2177 	index = ci->ci_index;
   2178 
   2179 	KASSERT(index < MAXCPUS);
   2180 
   2181 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2182 		KASSERT(cc->cc_cpuindex == index);
   2183 		return;
   2184 	}
   2185 
   2186 	/*
   2187 	 * The first CPU is 'free'.  This needs to be the case for
   2188 	 * bootstrap - we may not be able to allocate yet.
   2189 	 */
   2190 	if (pc->pc_ncpu == 0) {
   2191 		cc = &pc->pc_cpu0;
   2192 		pc->pc_ncpu = 1;
   2193 	} else {
   2194 		mutex_enter(&pc->pc_lock);
   2195 		pc->pc_ncpu++;
   2196 		mutex_exit(&pc->pc_lock);
   2197 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2198 	}
   2199 
   2200 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2201 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2202 	cc->cc_cache = pc;
   2203 	cc->cc_cpuindex = index;
   2204 	cc->cc_hits = 0;
   2205 	cc->cc_misses = 0;
   2206 	cc->cc_current = __UNCONST(&pcg_dummy);
   2207 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2208 
   2209 	pc->pc_cpus[index] = cc;
   2210 }
   2211 
   2212 /*
   2213  * pool_cache_cpu_init:
   2214  *
   2215  *	Called whenever a new CPU is attached.
   2216  */
   2217 void
   2218 pool_cache_cpu_init(struct cpu_info *ci)
   2219 {
   2220 	pool_cache_t pc;
   2221 
   2222 	mutex_enter(&pool_head_lock);
   2223 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2224 		pc->pc_refcnt++;
   2225 		mutex_exit(&pool_head_lock);
   2226 
   2227 		pool_cache_cpu_init1(ci, pc);
   2228 
   2229 		mutex_enter(&pool_head_lock);
   2230 		pc->pc_refcnt--;
   2231 		cv_broadcast(&pool_busy);
   2232 	}
   2233 	mutex_exit(&pool_head_lock);
   2234 }
   2235 
   2236 /*
   2237  * pool_cache_reclaim:
   2238  *
   2239  *	Reclaim memory from a pool cache.
   2240  */
   2241 bool
   2242 pool_cache_reclaim(pool_cache_t pc)
   2243 {
   2244 
   2245 	return pool_reclaim(&pc->pc_pool);
   2246 }
   2247 
   2248 static void
   2249 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2250 {
   2251 
   2252 	(*pc->pc_dtor)(pc->pc_arg, object);
   2253 	pool_put(&pc->pc_pool, object);
   2254 }
   2255 
   2256 /*
   2257  * pool_cache_destruct_object:
   2258  *
   2259  *	Force destruction of an object and its release back into
   2260  *	the pool.
   2261  */
   2262 void
   2263 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2264 {
   2265 
   2266 	FREECHECK_IN(&pc->pc_freecheck, object);
   2267 
   2268 	pool_cache_destruct_object1(pc, object);
   2269 }
   2270 
   2271 /*
   2272  * pool_cache_invalidate_groups:
   2273  *
   2274  *	Invalidate a chain of groups and destruct all objects.
   2275  */
   2276 static void
   2277 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2278 {
   2279 	void *object;
   2280 	pcg_t *next;
   2281 	int i;
   2282 
   2283 	for (; pcg != NULL; pcg = next) {
   2284 		next = pcg->pcg_next;
   2285 
   2286 		for (i = 0; i < pcg->pcg_avail; i++) {
   2287 			object = pcg->pcg_objects[i].pcgo_va;
   2288 			pool_cache_destruct_object1(pc, object);
   2289 		}
   2290 
   2291 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2292 			pool_put(&pcg_large_pool, pcg);
   2293 		} else {
   2294 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2295 			pool_put(&pcg_normal_pool, pcg);
   2296 		}
   2297 	}
   2298 }
   2299 
   2300 /*
   2301  * pool_cache_invalidate:
   2302  *
   2303  *	Invalidate a pool cache (destruct and release all of the
   2304  *	cached objects).  Does not reclaim objects from the pool.
   2305  */
   2306 void
   2307 pool_cache_invalidate(pool_cache_t pc)
   2308 {
   2309 	pcg_t *full, *empty, *part;
   2310 
   2311 	mutex_enter(&pc->pc_lock);
   2312 	full = pc->pc_fullgroups;
   2313 	empty = pc->pc_emptygroups;
   2314 	part = pc->pc_partgroups;
   2315 	pc->pc_fullgroups = NULL;
   2316 	pc->pc_emptygroups = NULL;
   2317 	pc->pc_partgroups = NULL;
   2318 	pc->pc_nfull = 0;
   2319 	pc->pc_nempty = 0;
   2320 	pc->pc_npart = 0;
   2321 	mutex_exit(&pc->pc_lock);
   2322 
   2323 	pool_cache_invalidate_groups(pc, full);
   2324 	pool_cache_invalidate_groups(pc, empty);
   2325 	pool_cache_invalidate_groups(pc, part);
   2326 }
   2327 
   2328 void
   2329 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2330 {
   2331 
   2332 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2333 }
   2334 
   2335 void
   2336 pool_cache_setlowat(pool_cache_t pc, int n)
   2337 {
   2338 
   2339 	pool_setlowat(&pc->pc_pool, n);
   2340 }
   2341 
   2342 void
   2343 pool_cache_sethiwat(pool_cache_t pc, int n)
   2344 {
   2345 
   2346 	pool_sethiwat(&pc->pc_pool, n);
   2347 }
   2348 
   2349 void
   2350 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2351 {
   2352 
   2353 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2354 }
   2355 
   2356 static bool __noinline
   2357 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
   2358 		    paddr_t *pap, int flags)
   2359 {
   2360 	pcg_t *pcg, *cur;
   2361 	uint64_t ncsw;
   2362 	pool_cache_t pc;
   2363 	void *object;
   2364 
   2365 	KASSERT(cc->cc_current->pcg_avail == 0);
   2366 	KASSERT(cc->cc_previous->pcg_avail == 0);
   2367 
   2368 	pc = cc->cc_cache;
   2369 	cc->cc_misses++;
   2370 
   2371 	/*
   2372 	 * Nothing was available locally.  Try and grab a group
   2373 	 * from the cache.
   2374 	 */
   2375 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2376 		ncsw = curlwp->l_ncsw;
   2377 		mutex_enter(&pc->pc_lock);
   2378 		pc->pc_contended++;
   2379 
   2380 		/*
   2381 		 * If we context switched while locking, then
   2382 		 * our view of the per-CPU data is invalid:
   2383 		 * retry.
   2384 		 */
   2385 		if (curlwp->l_ncsw != ncsw) {
   2386 			mutex_exit(&pc->pc_lock);
   2387 			return true;
   2388 		}
   2389 	}
   2390 
   2391 	if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
   2392 		/*
   2393 		 * If there's a full group, release our empty
   2394 		 * group back to the cache.  Install the full
   2395 		 * group as cc_current and return.
   2396 		 */
   2397 		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
   2398 			KASSERT(cur->pcg_avail == 0);
   2399 			cur->pcg_next = pc->pc_emptygroups;
   2400 			pc->pc_emptygroups = cur;
   2401 			pc->pc_nempty++;
   2402 		}
   2403 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2404 		cc->cc_current = pcg;
   2405 		pc->pc_fullgroups = pcg->pcg_next;
   2406 		pc->pc_hits++;
   2407 		pc->pc_nfull--;
   2408 		mutex_exit(&pc->pc_lock);
   2409 		return true;
   2410 	}
   2411 
   2412 	/*
   2413 	 * Nothing available locally or in cache.  Take the slow
   2414 	 * path: fetch a new object from the pool and construct
   2415 	 * it.
   2416 	 */
   2417 	pc->pc_misses++;
   2418 	mutex_exit(&pc->pc_lock);
   2419 	splx(s);
   2420 
   2421 	object = pool_get(&pc->pc_pool, flags);
   2422 	*objectp = object;
   2423 	if (__predict_false(object == NULL))
   2424 		return false;
   2425 
   2426 	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
   2427 		pool_put(&pc->pc_pool, object);
   2428 		*objectp = NULL;
   2429 		return false;
   2430 	}
   2431 
   2432 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2433 	    (pc->pc_pool.pr_align - 1)) == 0);
   2434 
   2435 	if (pap != NULL) {
   2436 #ifdef POOL_VTOPHYS
   2437 		*pap = POOL_VTOPHYS(object);
   2438 #else
   2439 		*pap = POOL_PADDR_INVALID;
   2440 #endif
   2441 	}
   2442 
   2443 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2444 	return false;
   2445 }
   2446 
   2447 /*
   2448  * pool_cache_get{,_paddr}:
   2449  *
   2450  *	Get an object from a pool cache (optionally returning
   2451  *	the physical address of the object).
   2452  */
   2453 void *
   2454 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2455 {
   2456 	pool_cache_cpu_t *cc;
   2457 	pcg_t *pcg;
   2458 	void *object;
   2459 	int s;
   2460 
   2461 #ifdef LOCKDEBUG
   2462 	if (flags & PR_WAITOK) {
   2463 		ASSERT_SLEEPABLE();
   2464 	}
   2465 #endif
   2466 
   2467 	/* Lock out interrupts and disable preemption. */
   2468 	s = splvm();
   2469 	while (/* CONSTCOND */ true) {
   2470 		/* Try and allocate an object from the current group. */
   2471 		cc = pc->pc_cpus[curcpu()->ci_index];
   2472 		KASSERT(cc->cc_cache == pc);
   2473 	 	pcg = cc->cc_current;
   2474 		if (__predict_true(pcg->pcg_avail > 0)) {
   2475 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2476 			if (__predict_false(pap != NULL))
   2477 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2478 #if defined(DIAGNOSTIC)
   2479 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2480 			KASSERT(pcg->pcg_avail < pcg->pcg_size);
   2481 			KASSERT(object != NULL);
   2482 #endif
   2483 			cc->cc_hits++;
   2484 			splx(s);
   2485 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2486 			return object;
   2487 		}
   2488 
   2489 		/*
   2490 		 * That failed.  If the previous group isn't empty, swap
   2491 		 * it with the current group and allocate from there.
   2492 		 */
   2493 		pcg = cc->cc_previous;
   2494 		if (__predict_true(pcg->pcg_avail > 0)) {
   2495 			cc->cc_previous = cc->cc_current;
   2496 			cc->cc_current = pcg;
   2497 			continue;
   2498 		}
   2499 
   2500 		/*
   2501 		 * Can't allocate from either group: try the slow path.
   2502 		 * If get_slow() allocated an object for us, or if
   2503 		 * no more objects are available, it will return false.
   2504 		 * Otherwise, we need to retry.
   2505 		 */
   2506 		if (!pool_cache_get_slow(cc, s, &object, pap, flags))
   2507 			break;
   2508 	}
   2509 
   2510 	return object;
   2511 }
   2512 
   2513 static bool __noinline
   2514 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
   2515 {
   2516 	pcg_t *pcg, *cur;
   2517 	uint64_t ncsw;
   2518 	pool_cache_t pc;
   2519 
   2520 	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
   2521 	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
   2522 
   2523 	pc = cc->cc_cache;
   2524 	pcg = NULL;
   2525 	cc->cc_misses++;
   2526 
   2527 	/*
   2528 	 * If there are no empty groups in the cache then allocate one
   2529 	 * while still unlocked.
   2530 	 */
   2531 	if (__predict_false(pc->pc_emptygroups == NULL)) {
   2532 		if (__predict_true(!pool_cache_disable)) {
   2533 			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
   2534 		}
   2535 		if (__predict_true(pcg != NULL)) {
   2536 			pcg->pcg_avail = 0;
   2537 			pcg->pcg_size = pc->pc_pcgsize;
   2538 		}
   2539 	}
   2540 
   2541 	/* Lock the cache. */
   2542 	if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
   2543 		ncsw = curlwp->l_ncsw;
   2544 		mutex_enter(&pc->pc_lock);
   2545 		pc->pc_contended++;
   2546 
   2547 		/*
   2548 		 * If we context switched while locking, then our view of
   2549 		 * the per-CPU data is invalid: retry.
   2550 		 */
   2551 		if (__predict_false(curlwp->l_ncsw != ncsw)) {
   2552 			mutex_exit(&pc->pc_lock);
   2553 			if (pcg != NULL) {
   2554 				pool_put(pc->pc_pcgpool, pcg);
   2555 			}
   2556 			return true;
   2557 		}
   2558 	}
   2559 
   2560 	/* If there are no empty groups in the cache then allocate one. */
   2561 	if (pcg == NULL && pc->pc_emptygroups != NULL) {
   2562 		pcg = pc->pc_emptygroups;
   2563 		pc->pc_emptygroups = pcg->pcg_next;
   2564 		pc->pc_nempty--;
   2565 	}
   2566 
   2567 	/*
   2568 	 * If there's a empty group, release our full group back
   2569 	 * to the cache.  Install the empty group to the local CPU
   2570 	 * and return.
   2571 	 */
   2572 	if (pcg != NULL) {
   2573 		KASSERT(pcg->pcg_avail == 0);
   2574 		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
   2575 			cc->cc_previous = pcg;
   2576 		} else {
   2577 			cur = cc->cc_current;
   2578 			if (__predict_true(cur != &pcg_dummy)) {
   2579 				KASSERT(cur->pcg_avail == cur->pcg_size);
   2580 				cur->pcg_next = pc->pc_fullgroups;
   2581 				pc->pc_fullgroups = cur;
   2582 				pc->pc_nfull++;
   2583 			}
   2584 			cc->cc_current = pcg;
   2585 		}
   2586 		pc->pc_hits++;
   2587 		mutex_exit(&pc->pc_lock);
   2588 		return true;
   2589 	}
   2590 
   2591 	/*
   2592 	 * Nothing available locally or in cache, and we didn't
   2593 	 * allocate an empty group.  Take the slow path and destroy
   2594 	 * the object here and now.
   2595 	 */
   2596 	pc->pc_misses++;
   2597 	mutex_exit(&pc->pc_lock);
   2598 	splx(s);
   2599 	pool_cache_destruct_object(pc, object);
   2600 
   2601 	return false;
   2602 }
   2603 
   2604 /*
   2605  * pool_cache_put{,_paddr}:
   2606  *
   2607  *	Put an object back to the pool cache (optionally caching the
   2608  *	physical address of the object).
   2609  */
   2610 void
   2611 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2612 {
   2613 	pool_cache_cpu_t *cc;
   2614 	pcg_t *pcg;
   2615 	int s;
   2616 
   2617 	KASSERT(object != NULL);
   2618 	FREECHECK_IN(&pc->pc_freecheck, object);
   2619 
   2620 	/* Lock out interrupts and disable preemption. */
   2621 	s = splvm();
   2622 	while (/* CONSTCOND */ true) {
   2623 		/* If the current group isn't full, release it there. */
   2624 		cc = pc->pc_cpus[curcpu()->ci_index];
   2625 		KASSERT(cc->cc_cache == pc);
   2626 	 	pcg = cc->cc_current;
   2627 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2628 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2629 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2630 			pcg->pcg_avail++;
   2631 			cc->cc_hits++;
   2632 			splx(s);
   2633 			return;
   2634 		}
   2635 
   2636 		/*
   2637 		 * That failed.  If the previous group isn't full, swap
   2638 		 * it with the current group and try again.
   2639 		 */
   2640 		pcg = cc->cc_previous;
   2641 		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
   2642 			cc->cc_previous = cc->cc_current;
   2643 			cc->cc_current = pcg;
   2644 			continue;
   2645 		}
   2646 
   2647 		/*
   2648 		 * Can't free to either group: try the slow path.
   2649 		 * If put_slow() releases the object for us, it
   2650 		 * will return false.  Otherwise we need to retry.
   2651 		 */
   2652 		if (!pool_cache_put_slow(cc, s, object))
   2653 			break;
   2654 	}
   2655 }
   2656 
   2657 /*
   2658  * pool_cache_xcall:
   2659  *
   2660  *	Transfer objects from the per-CPU cache to the global cache.
   2661  *	Run within a cross-call thread.
   2662  */
   2663 static void
   2664 pool_cache_xcall(pool_cache_t pc)
   2665 {
   2666 	pool_cache_cpu_t *cc;
   2667 	pcg_t *prev, *cur, **list;
   2668 	int s;
   2669 
   2670 	s = splvm();
   2671 	mutex_enter(&pc->pc_lock);
   2672 	cc = pc->pc_cpus[curcpu()->ci_index];
   2673 	cur = cc->cc_current;
   2674 	cc->cc_current = __UNCONST(&pcg_dummy);
   2675 	prev = cc->cc_previous;
   2676 	cc->cc_previous = __UNCONST(&pcg_dummy);
   2677 	if (cur != &pcg_dummy) {
   2678 		if (cur->pcg_avail == cur->pcg_size) {
   2679 			list = &pc->pc_fullgroups;
   2680 			pc->pc_nfull++;
   2681 		} else if (cur->pcg_avail == 0) {
   2682 			list = &pc->pc_emptygroups;
   2683 			pc->pc_nempty++;
   2684 		} else {
   2685 			list = &pc->pc_partgroups;
   2686 			pc->pc_npart++;
   2687 		}
   2688 		cur->pcg_next = *list;
   2689 		*list = cur;
   2690 	}
   2691 	if (prev != &pcg_dummy) {
   2692 		if (prev->pcg_avail == prev->pcg_size) {
   2693 			list = &pc->pc_fullgroups;
   2694 			pc->pc_nfull++;
   2695 		} else if (prev->pcg_avail == 0) {
   2696 			list = &pc->pc_emptygroups;
   2697 			pc->pc_nempty++;
   2698 		} else {
   2699 			list = &pc->pc_partgroups;
   2700 			pc->pc_npart++;
   2701 		}
   2702 		prev->pcg_next = *list;
   2703 		*list = prev;
   2704 	}
   2705 	mutex_exit(&pc->pc_lock);
   2706 	splx(s);
   2707 }
   2708 
   2709 /*
   2710  * Pool backend allocators.
   2711  *
   2712  * Each pool has a backend allocator that handles allocation, deallocation,
   2713  * and any additional draining that might be needed.
   2714  *
   2715  * We provide two standard allocators:
   2716  *
   2717  *	pool_allocator_kmem - the default when no allocator is specified
   2718  *
   2719  *	pool_allocator_nointr - used for pools that will not be accessed
   2720  *	in interrupt context.
   2721  */
   2722 void	*pool_page_alloc(struct pool *, int);
   2723 void	pool_page_free(struct pool *, void *);
   2724 
   2725 #ifdef POOL_SUBPAGE
   2726 struct pool_allocator pool_allocator_kmem_fullpage = {
   2727 	pool_page_alloc, pool_page_free, 0,
   2728 	.pa_backingmapptr = &kmem_map,
   2729 };
   2730 #else
   2731 struct pool_allocator pool_allocator_kmem = {
   2732 	pool_page_alloc, pool_page_free, 0,
   2733 	.pa_backingmapptr = &kmem_map,
   2734 };
   2735 #endif
   2736 
   2737 void	*pool_page_alloc_nointr(struct pool *, int);
   2738 void	pool_page_free_nointr(struct pool *, void *);
   2739 
   2740 #ifdef POOL_SUBPAGE
   2741 struct pool_allocator pool_allocator_nointr_fullpage = {
   2742 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2743 	.pa_backingmapptr = &kernel_map,
   2744 };
   2745 #else
   2746 struct pool_allocator pool_allocator_nointr = {
   2747 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2748 	.pa_backingmapptr = &kernel_map,
   2749 };
   2750 #endif
   2751 
   2752 #ifdef POOL_SUBPAGE
   2753 void	*pool_subpage_alloc(struct pool *, int);
   2754 void	pool_subpage_free(struct pool *, void *);
   2755 
   2756 struct pool_allocator pool_allocator_kmem = {
   2757 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2758 	.pa_backingmapptr = &kmem_map,
   2759 };
   2760 
   2761 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2762 void	pool_subpage_free_nointr(struct pool *, void *);
   2763 
   2764 struct pool_allocator pool_allocator_nointr = {
   2765 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2766 	.pa_backingmapptr = &kmem_map,
   2767 };
   2768 #endif /* POOL_SUBPAGE */
   2769 
   2770 static void *
   2771 pool_allocator_alloc(struct pool *pp, int flags)
   2772 {
   2773 	struct pool_allocator *pa = pp->pr_alloc;
   2774 	void *res;
   2775 
   2776 	res = (*pa->pa_alloc)(pp, flags);
   2777 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2778 		/*
   2779 		 * We only run the drain hook here if PR_NOWAIT.
   2780 		 * In other cases, the hook will be run in
   2781 		 * pool_reclaim().
   2782 		 */
   2783 		if (pp->pr_drain_hook != NULL) {
   2784 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2785 			res = (*pa->pa_alloc)(pp, flags);
   2786 		}
   2787 	}
   2788 	return res;
   2789 }
   2790 
   2791 static void
   2792 pool_allocator_free(struct pool *pp, void *v)
   2793 {
   2794 	struct pool_allocator *pa = pp->pr_alloc;
   2795 
   2796 	(*pa->pa_free)(pp, v);
   2797 }
   2798 
   2799 void *
   2800 pool_page_alloc(struct pool *pp, int flags)
   2801 {
   2802 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2803 
   2804 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2805 }
   2806 
   2807 void
   2808 pool_page_free(struct pool *pp, void *v)
   2809 {
   2810 
   2811 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2812 }
   2813 
   2814 static void *
   2815 pool_page_alloc_meta(struct pool *pp, int flags)
   2816 {
   2817 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2818 
   2819 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2820 }
   2821 
   2822 static void
   2823 pool_page_free_meta(struct pool *pp, void *v)
   2824 {
   2825 
   2826 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2827 }
   2828 
   2829 #ifdef POOL_SUBPAGE
   2830 /* Sub-page allocator, for machines with large hardware pages. */
   2831 void *
   2832 pool_subpage_alloc(struct pool *pp, int flags)
   2833 {
   2834 	return pool_get(&psppool, flags);
   2835 }
   2836 
   2837 void
   2838 pool_subpage_free(struct pool *pp, void *v)
   2839 {
   2840 	pool_put(&psppool, v);
   2841 }
   2842 
   2843 /* We don't provide a real nointr allocator.  Maybe later. */
   2844 void *
   2845 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2846 {
   2847 
   2848 	return (pool_subpage_alloc(pp, flags));
   2849 }
   2850 
   2851 void
   2852 pool_subpage_free_nointr(struct pool *pp, void *v)
   2853 {
   2854 
   2855 	pool_subpage_free(pp, v);
   2856 }
   2857 #endif /* POOL_SUBPAGE */
   2858 void *
   2859 pool_page_alloc_nointr(struct pool *pp, int flags)
   2860 {
   2861 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2862 
   2863 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2864 }
   2865 
   2866 void
   2867 pool_page_free_nointr(struct pool *pp, void *v)
   2868 {
   2869 
   2870 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2871 }
   2872 
   2873 #if defined(DDB)
   2874 static bool
   2875 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2876 {
   2877 
   2878 	return (uintptr_t)ph->ph_page <= addr &&
   2879 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2880 }
   2881 
   2882 static bool
   2883 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2884 {
   2885 
   2886 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2887 }
   2888 
   2889 static bool
   2890 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2891 {
   2892 	int i;
   2893 
   2894 	if (pcg == NULL) {
   2895 		return false;
   2896 	}
   2897 	for (i = 0; i < pcg->pcg_avail; i++) {
   2898 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2899 			return true;
   2900 		}
   2901 	}
   2902 	return false;
   2903 }
   2904 
   2905 static bool
   2906 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2907 {
   2908 
   2909 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2910 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2911 		pool_item_bitmap_t *bitmap =
   2912 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2913 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2914 
   2915 		return (*bitmap & mask) == 0;
   2916 	} else {
   2917 		struct pool_item *pi;
   2918 
   2919 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2920 			if (pool_in_item(pp, pi, addr)) {
   2921 				return false;
   2922 			}
   2923 		}
   2924 		return true;
   2925 	}
   2926 }
   2927 
   2928 void
   2929 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2930 {
   2931 	struct pool *pp;
   2932 
   2933 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2934 		struct pool_item_header *ph;
   2935 		uintptr_t item;
   2936 		bool allocated = true;
   2937 		bool incache = false;
   2938 		bool incpucache = false;
   2939 		char cpucachestr[32];
   2940 
   2941 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2942 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2943 				if (pool_in_page(pp, ph, addr)) {
   2944 					goto found;
   2945 				}
   2946 			}
   2947 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2948 				if (pool_in_page(pp, ph, addr)) {
   2949 					allocated =
   2950 					    pool_allocated(pp, ph, addr);
   2951 					goto found;
   2952 				}
   2953 			}
   2954 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2955 				if (pool_in_page(pp, ph, addr)) {
   2956 					allocated = false;
   2957 					goto found;
   2958 				}
   2959 			}
   2960 			continue;
   2961 		} else {
   2962 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   2963 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   2964 				continue;
   2965 			}
   2966 			allocated = pool_allocated(pp, ph, addr);
   2967 		}
   2968 found:
   2969 		if (allocated && pp->pr_cache) {
   2970 			pool_cache_t pc = pp->pr_cache;
   2971 			struct pool_cache_group *pcg;
   2972 			int i;
   2973 
   2974 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   2975 			    pcg = pcg->pcg_next) {
   2976 				if (pool_in_cg(pp, pcg, addr)) {
   2977 					incache = true;
   2978 					goto print;
   2979 				}
   2980 			}
   2981 			for (i = 0; i < MAXCPUS; i++) {
   2982 				pool_cache_cpu_t *cc;
   2983 
   2984 				if ((cc = pc->pc_cpus[i]) == NULL) {
   2985 					continue;
   2986 				}
   2987 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   2988 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   2989 					struct cpu_info *ci =
   2990 					    cpu_lookup(i);
   2991 
   2992 					incpucache = true;
   2993 					snprintf(cpucachestr,
   2994 					    sizeof(cpucachestr),
   2995 					    "cached by CPU %u",
   2996 					    ci->ci_index);
   2997 					goto print;
   2998 				}
   2999 			}
   3000 		}
   3001 print:
   3002 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3003 		item = item + rounddown(addr - item, pp->pr_size);
   3004 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3005 		    (void *)addr, item, (size_t)(addr - item),
   3006 		    pp->pr_wchan,
   3007 		    incpucache ? cpucachestr :
   3008 		    incache ? "cached" : allocated ? "allocated" : "free");
   3009 	}
   3010 }
   3011 #endif /* defined(DDB) */
   3012