subr_pool.c revision 1.158.2.3 1 /* $NetBSD: subr_pool.c,v 1.158.2.3 2009/09/16 13:38:01 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.158.2.3 2009/09/16 13:38:01 yamt Exp $");
35
36 #include "opt_ddb.h"
37 #include "opt_pool.h"
38 #include "opt_poollog.h"
39 #include "opt_lockdebug.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bitops.h>
44 #include <sys/proc.h>
45 #include <sys/errno.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/pool.h>
49 #include <sys/syslog.h>
50 #include <sys/debug.h>
51 #include <sys/lockdebug.h>
52 #include <sys/xcall.h>
53 #include <sys/cpu.h>
54 #include <sys/atomic.h>
55
56 #include <uvm/uvm.h>
57
58 /*
59 * Pool resource management utility.
60 *
61 * Memory is allocated in pages which are split into pieces according to
62 * the pool item size. Each page is kept on one of three lists in the
63 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
64 * for empty, full and partially-full pages respectively. The individual
65 * pool items are on a linked list headed by `ph_itemlist' in each page
66 * header. The memory for building the page list is either taken from
67 * the allocated pages themselves (for small pool items) or taken from
68 * an internal pool of page headers (`phpool').
69 */
70
71 /* List of all pools */
72 static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
73
74 /* Private pool for page header structures */
75 #define PHPOOL_MAX 8
76 static struct pool phpool[PHPOOL_MAX];
77 #define PHPOOL_FREELIST_NELEM(idx) \
78 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
79
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84
85 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
86 SLIST_HEAD_INITIALIZER(pa_deferinitq);
87
88 static void *pool_page_alloc_meta(struct pool *, int);
89 static void pool_page_free_meta(struct pool *, void *);
90
91 /* allocator for pool metadata */
92 struct pool_allocator pool_allocator_meta = {
93 pool_page_alloc_meta, pool_page_free_meta,
94 .pa_backingmapptr = &kmem_map,
95 };
96
97 /* # of seconds to retain page after last use */
98 int pool_inactive_time = 10;
99
100 /* Next candidate for drainage (see pool_drain()) */
101 static struct pool *drainpp;
102
103 /* This lock protects both pool_head and drainpp. */
104 static kmutex_t pool_head_lock;
105 static kcondvar_t pool_busy;
106
107 typedef uint32_t pool_item_bitmap_t;
108 #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
109 #define BITMAP_MASK (BITMAP_SIZE - 1)
110
111 struct pool_item_header {
112 /* Page headers */
113 LIST_ENTRY(pool_item_header)
114 ph_pagelist; /* pool page list */
115 SPLAY_ENTRY(pool_item_header)
116 ph_node; /* Off-page page headers */
117 void * ph_page; /* this page's address */
118 uint32_t ph_time; /* last referenced */
119 uint16_t ph_nmissing; /* # of chunks in use */
120 uint16_t ph_off; /* start offset in page */
121 union {
122 /* !PR_NOTOUCH */
123 struct {
124 LIST_HEAD(, pool_item)
125 phu_itemlist; /* chunk list for this page */
126 } phu_normal;
127 /* PR_NOTOUCH */
128 struct {
129 pool_item_bitmap_t phu_bitmap[1];
130 } phu_notouch;
131 } ph_u;
132 };
133 #define ph_itemlist ph_u.phu_normal.phu_itemlist
134 #define ph_bitmap ph_u.phu_notouch.phu_bitmap
135
136 struct pool_item {
137 #ifdef DIAGNOSTIC
138 u_int pi_magic;
139 #endif
140 #define PI_MAGIC 0xdeaddeadU
141 /* Other entries use only this list entry */
142 LIST_ENTRY(pool_item) pi_list;
143 };
144
145 #define POOL_NEEDS_CATCHUP(pp) \
146 ((pp)->pr_nitems < (pp)->pr_minitems)
147
148 /*
149 * Pool cache management.
150 *
151 * Pool caches provide a way for constructed objects to be cached by the
152 * pool subsystem. This can lead to performance improvements by avoiding
153 * needless object construction/destruction; it is deferred until absolutely
154 * necessary.
155 *
156 * Caches are grouped into cache groups. Each cache group references up
157 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
158 * object from the pool, it calls the object's constructor and places it
159 * into a cache group. When a cache group frees an object back to the
160 * pool, it first calls the object's destructor. This allows the object
161 * to persist in constructed form while freed to the cache.
162 *
163 * The pool references each cache, so that when a pool is drained by the
164 * pagedaemon, it can drain each individual cache as well. Each time a
165 * cache is drained, the most idle cache group is freed to the pool in
166 * its entirety.
167 *
168 * Pool caches are layed on top of pools. By layering them, we can avoid
169 * the complexity of cache management for pools which would not benefit
170 * from it.
171 */
172
173 static struct pool pcg_normal_pool;
174 static struct pool pcg_large_pool;
175 static struct pool cache_pool;
176 static struct pool cache_cpu_pool;
177
178 /* List of all caches. */
179 TAILQ_HEAD(,pool_cache) pool_cache_head =
180 TAILQ_HEAD_INITIALIZER(pool_cache_head);
181
182 int pool_cache_disable; /* global disable for caching */
183 static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
184
185 static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
186 void *);
187 static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
188 void **, paddr_t *, int);
189 static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
190 static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
191 static void pool_cache_xcall(pool_cache_t);
192
193 static int pool_catchup(struct pool *);
194 static void pool_prime_page(struct pool *, void *,
195 struct pool_item_header *);
196 static void pool_update_curpage(struct pool *);
197
198 static int pool_grow(struct pool *, int);
199 static void *pool_allocator_alloc(struct pool *, int);
200 static void pool_allocator_free(struct pool *, void *);
201
202 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
203 void (*)(const char *, ...));
204 static void pool_print1(struct pool *, const char *,
205 void (*)(const char *, ...));
206
207 static int pool_chk_page(struct pool *, const char *,
208 struct pool_item_header *);
209
210 /*
211 * Pool log entry. An array of these is allocated in pool_init().
212 */
213 struct pool_log {
214 const char *pl_file;
215 long pl_line;
216 int pl_action;
217 #define PRLOG_GET 1
218 #define PRLOG_PUT 2
219 void *pl_addr;
220 };
221
222 #ifdef POOL_DIAGNOSTIC
223 /* Number of entries in pool log buffers */
224 #ifndef POOL_LOGSIZE
225 #define POOL_LOGSIZE 10
226 #endif
227
228 int pool_logsize = POOL_LOGSIZE;
229
230 static inline void
231 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
232 {
233 int n = pp->pr_curlogentry;
234 struct pool_log *pl;
235
236 if ((pp->pr_roflags & PR_LOGGING) == 0)
237 return;
238
239 /*
240 * Fill in the current entry. Wrap around and overwrite
241 * the oldest entry if necessary.
242 */
243 pl = &pp->pr_log[n];
244 pl->pl_file = file;
245 pl->pl_line = line;
246 pl->pl_action = action;
247 pl->pl_addr = v;
248 if (++n >= pp->pr_logsize)
249 n = 0;
250 pp->pr_curlogentry = n;
251 }
252
253 static void
254 pr_printlog(struct pool *pp, struct pool_item *pi,
255 void (*pr)(const char *, ...))
256 {
257 int i = pp->pr_logsize;
258 int n = pp->pr_curlogentry;
259
260 if ((pp->pr_roflags & PR_LOGGING) == 0)
261 return;
262
263 /*
264 * Print all entries in this pool's log.
265 */
266 while (i-- > 0) {
267 struct pool_log *pl = &pp->pr_log[n];
268 if (pl->pl_action != 0) {
269 if (pi == NULL || pi == pl->pl_addr) {
270 (*pr)("\tlog entry %d:\n", i);
271 (*pr)("\t\taction = %s, addr = %p\n",
272 pl->pl_action == PRLOG_GET ? "get" : "put",
273 pl->pl_addr);
274 (*pr)("\t\tfile: %s at line %lu\n",
275 pl->pl_file, pl->pl_line);
276 }
277 }
278 if (++n >= pp->pr_logsize)
279 n = 0;
280 }
281 }
282
283 static inline void
284 pr_enter(struct pool *pp, const char *file, long line)
285 {
286
287 if (__predict_false(pp->pr_entered_file != NULL)) {
288 printf("pool %s: reentrancy at file %s line %ld\n",
289 pp->pr_wchan, file, line);
290 printf(" previous entry at file %s line %ld\n",
291 pp->pr_entered_file, pp->pr_entered_line);
292 panic("pr_enter");
293 }
294
295 pp->pr_entered_file = file;
296 pp->pr_entered_line = line;
297 }
298
299 static inline void
300 pr_leave(struct pool *pp)
301 {
302
303 if (__predict_false(pp->pr_entered_file == NULL)) {
304 printf("pool %s not entered?\n", pp->pr_wchan);
305 panic("pr_leave");
306 }
307
308 pp->pr_entered_file = NULL;
309 pp->pr_entered_line = 0;
310 }
311
312 static inline void
313 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
314 {
315
316 if (pp->pr_entered_file != NULL)
317 (*pr)("\n\tcurrently entered from file %s line %ld\n",
318 pp->pr_entered_file, pp->pr_entered_line);
319 }
320 #else
321 #define pr_log(pp, v, action, file, line)
322 #define pr_printlog(pp, pi, pr)
323 #define pr_enter(pp, file, line)
324 #define pr_leave(pp)
325 #define pr_enter_check(pp, pr)
326 #endif /* POOL_DIAGNOSTIC */
327
328 static inline unsigned int
329 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
330 const void *v)
331 {
332 const char *cp = v;
333 unsigned int idx;
334
335 KASSERT(pp->pr_roflags & PR_NOTOUCH);
336 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
337 KASSERT(idx < pp->pr_itemsperpage);
338 return idx;
339 }
340
341 static inline void
342 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
343 void *obj)
344 {
345 unsigned int idx = pr_item_notouch_index(pp, ph, obj);
346 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
347 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
348
349 KASSERT((*bitmap & mask) == 0);
350 *bitmap |= mask;
351 }
352
353 static inline void *
354 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
355 {
356 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
357 unsigned int idx;
358 int i;
359
360 for (i = 0; ; i++) {
361 int bit;
362
363 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
364 bit = ffs32(bitmap[i]);
365 if (bit) {
366 pool_item_bitmap_t mask;
367
368 bit--;
369 idx = (i * BITMAP_SIZE) + bit;
370 mask = 1 << bit;
371 KASSERT((bitmap[i] & mask) != 0);
372 bitmap[i] &= ~mask;
373 break;
374 }
375 }
376 KASSERT(idx < pp->pr_itemsperpage);
377 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
378 }
379
380 static inline void
381 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
382 {
383 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
384 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
385 int i;
386
387 for (i = 0; i < n; i++) {
388 bitmap[i] = (pool_item_bitmap_t)-1;
389 }
390 }
391
392 static inline int
393 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
394 {
395
396 /*
397 * we consider pool_item_header with smaller ph_page bigger.
398 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
399 */
400
401 if (a->ph_page < b->ph_page)
402 return (1);
403 else if (a->ph_page > b->ph_page)
404 return (-1);
405 else
406 return (0);
407 }
408
409 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
410 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
411
412 static inline struct pool_item_header *
413 pr_find_pagehead_noalign(struct pool *pp, void *v)
414 {
415 struct pool_item_header *ph, tmp;
416
417 tmp.ph_page = (void *)(uintptr_t)v;
418 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
419 if (ph == NULL) {
420 ph = SPLAY_ROOT(&pp->pr_phtree);
421 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
422 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
423 }
424 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
425 }
426
427 return ph;
428 }
429
430 /*
431 * Return the pool page header based on item address.
432 */
433 static inline struct pool_item_header *
434 pr_find_pagehead(struct pool *pp, void *v)
435 {
436 struct pool_item_header *ph, tmp;
437
438 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
439 ph = pr_find_pagehead_noalign(pp, v);
440 } else {
441 void *page =
442 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
443
444 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
445 ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
446 } else {
447 tmp.ph_page = page;
448 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
449 }
450 }
451
452 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
453 ((char *)ph->ph_page <= (char *)v &&
454 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
455 return ph;
456 }
457
458 static void
459 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
460 {
461 struct pool_item_header *ph;
462
463 while ((ph = LIST_FIRST(pq)) != NULL) {
464 LIST_REMOVE(ph, ph_pagelist);
465 pool_allocator_free(pp, ph->ph_page);
466 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
467 pool_put(pp->pr_phpool, ph);
468 }
469 }
470
471 /*
472 * Remove a page from the pool.
473 */
474 static inline void
475 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
476 struct pool_pagelist *pq)
477 {
478
479 KASSERT(mutex_owned(&pp->pr_lock));
480
481 /*
482 * If the page was idle, decrement the idle page count.
483 */
484 if (ph->ph_nmissing == 0) {
485 #ifdef DIAGNOSTIC
486 if (pp->pr_nidle == 0)
487 panic("pr_rmpage: nidle inconsistent");
488 if (pp->pr_nitems < pp->pr_itemsperpage)
489 panic("pr_rmpage: nitems inconsistent");
490 #endif
491 pp->pr_nidle--;
492 }
493
494 pp->pr_nitems -= pp->pr_itemsperpage;
495
496 /*
497 * Unlink the page from the pool and queue it for release.
498 */
499 LIST_REMOVE(ph, ph_pagelist);
500 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
501 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
502 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
503
504 pp->pr_npages--;
505 pp->pr_npagefree++;
506
507 pool_update_curpage(pp);
508 }
509
510 static bool
511 pa_starved_p(struct pool_allocator *pa)
512 {
513
514 if (pa->pa_backingmap != NULL) {
515 return vm_map_starved_p(pa->pa_backingmap);
516 }
517 return false;
518 }
519
520 static int
521 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
522 {
523 struct pool *pp = obj;
524 struct pool_allocator *pa = pp->pr_alloc;
525
526 KASSERT(&pp->pr_reclaimerentry == ce);
527 pool_reclaim(pp);
528 if (!pa_starved_p(pa)) {
529 return CALLBACK_CHAIN_ABORT;
530 }
531 return CALLBACK_CHAIN_CONTINUE;
532 }
533
534 static void
535 pool_reclaim_register(struct pool *pp)
536 {
537 struct vm_map *map = pp->pr_alloc->pa_backingmap;
538 int s;
539
540 if (map == NULL) {
541 return;
542 }
543
544 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
545 callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
546 &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
547 splx(s);
548 }
549
550 static void
551 pool_reclaim_unregister(struct pool *pp)
552 {
553 struct vm_map *map = pp->pr_alloc->pa_backingmap;
554 int s;
555
556 if (map == NULL) {
557 return;
558 }
559
560 s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
561 callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
562 &pp->pr_reclaimerentry);
563 splx(s);
564 }
565
566 static void
567 pa_reclaim_register(struct pool_allocator *pa)
568 {
569 struct vm_map *map = *pa->pa_backingmapptr;
570 struct pool *pp;
571
572 KASSERT(pa->pa_backingmap == NULL);
573 if (map == NULL) {
574 SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
575 return;
576 }
577 pa->pa_backingmap = map;
578 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
579 pool_reclaim_register(pp);
580 }
581 }
582
583 /*
584 * Initialize all the pools listed in the "pools" link set.
585 */
586 void
587 pool_subsystem_init(void)
588 {
589 struct pool_allocator *pa;
590
591 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
592 cv_init(&pool_busy, "poolbusy");
593
594 while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
595 KASSERT(pa->pa_backingmapptr != NULL);
596 KASSERT(*pa->pa_backingmapptr != NULL);
597 SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
598 pa_reclaim_register(pa);
599 }
600
601 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
602 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
603
604 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
605 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
606 }
607
608 /*
609 * Initialize the given pool resource structure.
610 *
611 * We export this routine to allow other kernel parts to declare
612 * static pools that must be initialized before malloc() is available.
613 */
614 void
615 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
616 const char *wchan, struct pool_allocator *palloc, int ipl)
617 {
618 struct pool *pp1;
619 size_t trysize, phsize;
620 int off, slack;
621
622 #ifdef DEBUG
623 /*
624 * Check that the pool hasn't already been initialised and
625 * added to the list of all pools.
626 */
627 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
628 if (pp == pp1)
629 panic("pool_init: pool %s already initialised",
630 wchan);
631 }
632 #endif
633
634 #ifdef POOL_DIAGNOSTIC
635 /*
636 * Always log if POOL_DIAGNOSTIC is defined.
637 */
638 if (pool_logsize != 0)
639 flags |= PR_LOGGING;
640 #endif
641
642 if (palloc == NULL)
643 palloc = &pool_allocator_kmem;
644 #ifdef POOL_SUBPAGE
645 if (size > palloc->pa_pagesz) {
646 if (palloc == &pool_allocator_kmem)
647 palloc = &pool_allocator_kmem_fullpage;
648 else if (palloc == &pool_allocator_nointr)
649 palloc = &pool_allocator_nointr_fullpage;
650 }
651 #endif /* POOL_SUBPAGE */
652 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
653 if (palloc->pa_pagesz == 0)
654 palloc->pa_pagesz = PAGE_SIZE;
655
656 TAILQ_INIT(&palloc->pa_list);
657
658 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
659 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
660 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
661
662 if (palloc->pa_backingmapptr != NULL) {
663 pa_reclaim_register(palloc);
664 }
665 palloc->pa_flags |= PA_INITIALIZED;
666 }
667
668 if (align == 0)
669 align = ALIGN(1);
670
671 if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
672 size = sizeof(struct pool_item);
673
674 size = roundup(size, align);
675 #ifdef DIAGNOSTIC
676 if (size > palloc->pa_pagesz)
677 panic("pool_init: pool item size (%zu) too large", size);
678 #endif
679
680 /*
681 * Initialize the pool structure.
682 */
683 LIST_INIT(&pp->pr_emptypages);
684 LIST_INIT(&pp->pr_fullpages);
685 LIST_INIT(&pp->pr_partpages);
686 pp->pr_cache = NULL;
687 pp->pr_curpage = NULL;
688 pp->pr_npages = 0;
689 pp->pr_minitems = 0;
690 pp->pr_minpages = 0;
691 pp->pr_maxpages = UINT_MAX;
692 pp->pr_roflags = flags;
693 pp->pr_flags = 0;
694 pp->pr_size = size;
695 pp->pr_align = align;
696 pp->pr_wchan = wchan;
697 pp->pr_alloc = palloc;
698 pp->pr_nitems = 0;
699 pp->pr_nout = 0;
700 pp->pr_hardlimit = UINT_MAX;
701 pp->pr_hardlimit_warning = NULL;
702 pp->pr_hardlimit_ratecap.tv_sec = 0;
703 pp->pr_hardlimit_ratecap.tv_usec = 0;
704 pp->pr_hardlimit_warning_last.tv_sec = 0;
705 pp->pr_hardlimit_warning_last.tv_usec = 0;
706 pp->pr_drain_hook = NULL;
707 pp->pr_drain_hook_arg = NULL;
708 pp->pr_freecheck = NULL;
709
710 /*
711 * Decide whether to put the page header off page to avoid
712 * wasting too large a part of the page or too big item.
713 * Off-page page headers go on a hash table, so we can match
714 * a returned item with its header based on the page address.
715 * We use 1/16 of the page size and about 8 times of the item
716 * size as the threshold (XXX: tune)
717 *
718 * However, we'll put the header into the page if we can put
719 * it without wasting any items.
720 *
721 * Silently enforce `0 <= ioff < align'.
722 */
723 pp->pr_itemoffset = ioff %= align;
724 /* See the comment below about reserved bytes. */
725 trysize = palloc->pa_pagesz - ((align - ioff) % align);
726 phsize = ALIGN(sizeof(struct pool_item_header));
727 if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
728 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
729 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
730 /* Use the end of the page for the page header */
731 pp->pr_roflags |= PR_PHINPAGE;
732 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
733 } else {
734 /* The page header will be taken from our page header pool */
735 pp->pr_phoffset = 0;
736 off = palloc->pa_pagesz;
737 SPLAY_INIT(&pp->pr_phtree);
738 }
739
740 /*
741 * Alignment is to take place at `ioff' within the item. This means
742 * we must reserve up to `align - 1' bytes on the page to allow
743 * appropriate positioning of each item.
744 */
745 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
746 KASSERT(pp->pr_itemsperpage != 0);
747 if ((pp->pr_roflags & PR_NOTOUCH)) {
748 int idx;
749
750 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
751 idx++) {
752 /* nothing */
753 }
754 if (idx >= PHPOOL_MAX) {
755 /*
756 * if you see this panic, consider to tweak
757 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
758 */
759 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
760 pp->pr_wchan, pp->pr_itemsperpage);
761 }
762 pp->pr_phpool = &phpool[idx];
763 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
764 pp->pr_phpool = &phpool[0];
765 }
766 #if defined(DIAGNOSTIC)
767 else {
768 pp->pr_phpool = NULL;
769 }
770 #endif
771
772 /*
773 * Use the slack between the chunks and the page header
774 * for "cache coloring".
775 */
776 slack = off - pp->pr_itemsperpage * pp->pr_size;
777 pp->pr_maxcolor = (slack / align) * align;
778 pp->pr_curcolor = 0;
779
780 pp->pr_nget = 0;
781 pp->pr_nfail = 0;
782 pp->pr_nput = 0;
783 pp->pr_npagealloc = 0;
784 pp->pr_npagefree = 0;
785 pp->pr_hiwat = 0;
786 pp->pr_nidle = 0;
787 pp->pr_refcnt = 0;
788
789 #ifdef POOL_DIAGNOSTIC
790 if (flags & PR_LOGGING) {
791 if (kmem_map == NULL ||
792 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
793 M_TEMP, M_NOWAIT)) == NULL)
794 pp->pr_roflags &= ~PR_LOGGING;
795 pp->pr_curlogentry = 0;
796 pp->pr_logsize = pool_logsize;
797 }
798 #endif
799
800 pp->pr_entered_file = NULL;
801 pp->pr_entered_line = 0;
802
803 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
804 cv_init(&pp->pr_cv, wchan);
805 pp->pr_ipl = ipl;
806
807 /*
808 * Initialize private page header pool and cache magazine pool if we
809 * haven't done so yet.
810 * XXX LOCKING.
811 */
812 if (phpool[0].pr_size == 0) {
813 int idx;
814 for (idx = 0; idx < PHPOOL_MAX; idx++) {
815 static char phpool_names[PHPOOL_MAX][6+1+6+1];
816 int nelem;
817 size_t sz;
818
819 nelem = PHPOOL_FREELIST_NELEM(idx);
820 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
821 "phpool-%d", nelem);
822 sz = sizeof(struct pool_item_header);
823 if (nelem) {
824 sz = offsetof(struct pool_item_header,
825 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
826 }
827 pool_init(&phpool[idx], sz, 0, 0, 0,
828 phpool_names[idx], &pool_allocator_meta, IPL_VM);
829 }
830 #ifdef POOL_SUBPAGE
831 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
832 PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
833 #endif
834
835 size = sizeof(pcg_t) +
836 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
837 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
838 "pcgnormal", &pool_allocator_meta, IPL_VM);
839
840 size = sizeof(pcg_t) +
841 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
842 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
843 "pcglarge", &pool_allocator_meta, IPL_VM);
844 }
845
846 /* Insert into the list of all pools. */
847 if (__predict_true(!cold))
848 mutex_enter(&pool_head_lock);
849 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
850 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
851 break;
852 }
853 if (pp1 == NULL)
854 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
855 else
856 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
857 if (__predict_true(!cold))
858 mutex_exit(&pool_head_lock);
859
860 /* Insert this into the list of pools using this allocator. */
861 if (__predict_true(!cold))
862 mutex_enter(&palloc->pa_lock);
863 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
864 if (__predict_true(!cold))
865 mutex_exit(&palloc->pa_lock);
866
867 pool_reclaim_register(pp);
868 }
869
870 /*
871 * De-commision a pool resource.
872 */
873 void
874 pool_destroy(struct pool *pp)
875 {
876 struct pool_pagelist pq;
877 struct pool_item_header *ph;
878
879 /* Remove from global pool list */
880 mutex_enter(&pool_head_lock);
881 while (pp->pr_refcnt != 0)
882 cv_wait(&pool_busy, &pool_head_lock);
883 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
884 if (drainpp == pp)
885 drainpp = NULL;
886 mutex_exit(&pool_head_lock);
887
888 /* Remove this pool from its allocator's list of pools. */
889 pool_reclaim_unregister(pp);
890 mutex_enter(&pp->pr_alloc->pa_lock);
891 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
892 mutex_exit(&pp->pr_alloc->pa_lock);
893
894 mutex_enter(&pp->pr_lock);
895
896 KASSERT(pp->pr_cache == NULL);
897
898 #ifdef DIAGNOSTIC
899 if (pp->pr_nout != 0) {
900 pr_printlog(pp, NULL, printf);
901 panic("pool_destroy: pool busy: still out: %u",
902 pp->pr_nout);
903 }
904 #endif
905
906 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
907 KASSERT(LIST_EMPTY(&pp->pr_partpages));
908
909 /* Remove all pages */
910 LIST_INIT(&pq);
911 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
912 pr_rmpage(pp, ph, &pq);
913
914 mutex_exit(&pp->pr_lock);
915
916 pr_pagelist_free(pp, &pq);
917
918 #ifdef POOL_DIAGNOSTIC
919 if ((pp->pr_roflags & PR_LOGGING) != 0)
920 free(pp->pr_log, M_TEMP);
921 #endif
922
923 cv_destroy(&pp->pr_cv);
924 mutex_destroy(&pp->pr_lock);
925 }
926
927 void
928 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
929 {
930
931 /* XXX no locking -- must be used just after pool_init() */
932 #ifdef DIAGNOSTIC
933 if (pp->pr_drain_hook != NULL)
934 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
935 #endif
936 pp->pr_drain_hook = fn;
937 pp->pr_drain_hook_arg = arg;
938 }
939
940 static struct pool_item_header *
941 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
942 {
943 struct pool_item_header *ph;
944
945 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
946 ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
947 else
948 ph = pool_get(pp->pr_phpool, flags);
949
950 return (ph);
951 }
952
953 /*
954 * Grab an item from the pool.
955 */
956 void *
957 #ifdef POOL_DIAGNOSTIC
958 _pool_get(struct pool *pp, int flags, const char *file, long line)
959 #else
960 pool_get(struct pool *pp, int flags)
961 #endif
962 {
963 struct pool_item *pi;
964 struct pool_item_header *ph;
965 void *v;
966
967 #ifdef DIAGNOSTIC
968 if (__predict_false(pp->pr_itemsperpage == 0))
969 panic("pool_get: pool %p: pr_itemsperpage is zero, "
970 "pool not initialized?", pp);
971 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
972 (flags & PR_WAITOK) != 0))
973 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
974
975 #endif /* DIAGNOSTIC */
976 #ifdef LOCKDEBUG
977 if (flags & PR_WAITOK) {
978 ASSERT_SLEEPABLE();
979 }
980 #endif
981
982 mutex_enter(&pp->pr_lock);
983 pr_enter(pp, file, line);
984
985 startover:
986 /*
987 * Check to see if we've reached the hard limit. If we have,
988 * and we can wait, then wait until an item has been returned to
989 * the pool.
990 */
991 #ifdef DIAGNOSTIC
992 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
993 pr_leave(pp);
994 mutex_exit(&pp->pr_lock);
995 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
996 }
997 #endif
998 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
999 if (pp->pr_drain_hook != NULL) {
1000 /*
1001 * Since the drain hook is going to free things
1002 * back to the pool, unlock, call the hook, re-lock,
1003 * and check the hardlimit condition again.
1004 */
1005 pr_leave(pp);
1006 mutex_exit(&pp->pr_lock);
1007 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1008 mutex_enter(&pp->pr_lock);
1009 pr_enter(pp, file, line);
1010 if (pp->pr_nout < pp->pr_hardlimit)
1011 goto startover;
1012 }
1013
1014 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1015 /*
1016 * XXX: A warning isn't logged in this case. Should
1017 * it be?
1018 */
1019 pp->pr_flags |= PR_WANTED;
1020 pr_leave(pp);
1021 cv_wait(&pp->pr_cv, &pp->pr_lock);
1022 pr_enter(pp, file, line);
1023 goto startover;
1024 }
1025
1026 /*
1027 * Log a message that the hard limit has been hit.
1028 */
1029 if (pp->pr_hardlimit_warning != NULL &&
1030 ratecheck(&pp->pr_hardlimit_warning_last,
1031 &pp->pr_hardlimit_ratecap))
1032 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1033
1034 pp->pr_nfail++;
1035
1036 pr_leave(pp);
1037 mutex_exit(&pp->pr_lock);
1038 return (NULL);
1039 }
1040
1041 /*
1042 * The convention we use is that if `curpage' is not NULL, then
1043 * it points at a non-empty bucket. In particular, `curpage'
1044 * never points at a page header which has PR_PHINPAGE set and
1045 * has no items in its bucket.
1046 */
1047 if ((ph = pp->pr_curpage) == NULL) {
1048 int error;
1049
1050 #ifdef DIAGNOSTIC
1051 if (pp->pr_nitems != 0) {
1052 mutex_exit(&pp->pr_lock);
1053 printf("pool_get: %s: curpage NULL, nitems %u\n",
1054 pp->pr_wchan, pp->pr_nitems);
1055 panic("pool_get: nitems inconsistent");
1056 }
1057 #endif
1058
1059 /*
1060 * Call the back-end page allocator for more memory.
1061 * Release the pool lock, as the back-end page allocator
1062 * may block.
1063 */
1064 pr_leave(pp);
1065 error = pool_grow(pp, flags);
1066 pr_enter(pp, file, line);
1067 if (error != 0) {
1068 /*
1069 * We were unable to allocate a page or item
1070 * header, but we released the lock during
1071 * allocation, so perhaps items were freed
1072 * back to the pool. Check for this case.
1073 */
1074 if (pp->pr_curpage != NULL)
1075 goto startover;
1076
1077 pp->pr_nfail++;
1078 pr_leave(pp);
1079 mutex_exit(&pp->pr_lock);
1080 return (NULL);
1081 }
1082
1083 /* Start the allocation process over. */
1084 goto startover;
1085 }
1086 if (pp->pr_roflags & PR_NOTOUCH) {
1087 #ifdef DIAGNOSTIC
1088 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
1089 pr_leave(pp);
1090 mutex_exit(&pp->pr_lock);
1091 panic("pool_get: %s: page empty", pp->pr_wchan);
1092 }
1093 #endif
1094 v = pr_item_notouch_get(pp, ph);
1095 #ifdef POOL_DIAGNOSTIC
1096 pr_log(pp, v, PRLOG_GET, file, line);
1097 #endif
1098 } else {
1099 v = pi = LIST_FIRST(&ph->ph_itemlist);
1100 if (__predict_false(v == NULL)) {
1101 pr_leave(pp);
1102 mutex_exit(&pp->pr_lock);
1103 panic("pool_get: %s: page empty", pp->pr_wchan);
1104 }
1105 #ifdef DIAGNOSTIC
1106 if (__predict_false(pp->pr_nitems == 0)) {
1107 pr_leave(pp);
1108 mutex_exit(&pp->pr_lock);
1109 printf("pool_get: %s: items on itemlist, nitems %u\n",
1110 pp->pr_wchan, pp->pr_nitems);
1111 panic("pool_get: nitems inconsistent");
1112 }
1113 #endif
1114
1115 #ifdef POOL_DIAGNOSTIC
1116 pr_log(pp, v, PRLOG_GET, file, line);
1117 #endif
1118
1119 #ifdef DIAGNOSTIC
1120 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
1121 pr_printlog(pp, pi, printf);
1122 panic("pool_get(%s): free list modified: "
1123 "magic=%x; page %p; item addr %p\n",
1124 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
1125 }
1126 #endif
1127
1128 /*
1129 * Remove from item list.
1130 */
1131 LIST_REMOVE(pi, pi_list);
1132 }
1133 pp->pr_nitems--;
1134 pp->pr_nout++;
1135 if (ph->ph_nmissing == 0) {
1136 #ifdef DIAGNOSTIC
1137 if (__predict_false(pp->pr_nidle == 0))
1138 panic("pool_get: nidle inconsistent");
1139 #endif
1140 pp->pr_nidle--;
1141
1142 /*
1143 * This page was previously empty. Move it to the list of
1144 * partially-full pages. This page is already curpage.
1145 */
1146 LIST_REMOVE(ph, ph_pagelist);
1147 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1148 }
1149 ph->ph_nmissing++;
1150 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1151 #ifdef DIAGNOSTIC
1152 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
1153 !LIST_EMPTY(&ph->ph_itemlist))) {
1154 pr_leave(pp);
1155 mutex_exit(&pp->pr_lock);
1156 panic("pool_get: %s: nmissing inconsistent",
1157 pp->pr_wchan);
1158 }
1159 #endif
1160 /*
1161 * This page is now full. Move it to the full list
1162 * and select a new current page.
1163 */
1164 LIST_REMOVE(ph, ph_pagelist);
1165 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1166 pool_update_curpage(pp);
1167 }
1168
1169 pp->pr_nget++;
1170 pr_leave(pp);
1171
1172 /*
1173 * If we have a low water mark and we are now below that low
1174 * water mark, add more items to the pool.
1175 */
1176 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1177 /*
1178 * XXX: Should we log a warning? Should we set up a timeout
1179 * to try again in a second or so? The latter could break
1180 * a caller's assumptions about interrupt protection, etc.
1181 */
1182 }
1183
1184 mutex_exit(&pp->pr_lock);
1185 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
1186 FREECHECK_OUT(&pp->pr_freecheck, v);
1187 return (v);
1188 }
1189
1190 /*
1191 * Internal version of pool_put(). Pool is already locked/entered.
1192 */
1193 static void
1194 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1195 {
1196 struct pool_item *pi = v;
1197 struct pool_item_header *ph;
1198
1199 KASSERT(mutex_owned(&pp->pr_lock));
1200 FREECHECK_IN(&pp->pr_freecheck, v);
1201 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1202
1203 #ifdef DIAGNOSTIC
1204 if (__predict_false(pp->pr_nout == 0)) {
1205 printf("pool %s: putting with none out\n",
1206 pp->pr_wchan);
1207 panic("pool_put");
1208 }
1209 #endif
1210
1211 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1212 pr_printlog(pp, NULL, printf);
1213 panic("pool_put: %s: page header missing", pp->pr_wchan);
1214 }
1215
1216 /*
1217 * Return to item list.
1218 */
1219 if (pp->pr_roflags & PR_NOTOUCH) {
1220 pr_item_notouch_put(pp, ph, v);
1221 } else {
1222 #ifdef DIAGNOSTIC
1223 pi->pi_magic = PI_MAGIC;
1224 #endif
1225 #ifdef DEBUG
1226 {
1227 int i, *ip = v;
1228
1229 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1230 *ip++ = PI_MAGIC;
1231 }
1232 }
1233 #endif
1234
1235 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1236 }
1237 KDASSERT(ph->ph_nmissing != 0);
1238 ph->ph_nmissing--;
1239 pp->pr_nput++;
1240 pp->pr_nitems++;
1241 pp->pr_nout--;
1242
1243 /* Cancel "pool empty" condition if it exists */
1244 if (pp->pr_curpage == NULL)
1245 pp->pr_curpage = ph;
1246
1247 if (pp->pr_flags & PR_WANTED) {
1248 pp->pr_flags &= ~PR_WANTED;
1249 cv_broadcast(&pp->pr_cv);
1250 }
1251
1252 /*
1253 * If this page is now empty, do one of two things:
1254 *
1255 * (1) If we have more pages than the page high water mark,
1256 * free the page back to the system. ONLY CONSIDER
1257 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1258 * CLAIM.
1259 *
1260 * (2) Otherwise, move the page to the empty page list.
1261 *
1262 * Either way, select a new current page (so we use a partially-full
1263 * page if one is available).
1264 */
1265 if (ph->ph_nmissing == 0) {
1266 pp->pr_nidle++;
1267 if (pp->pr_npages > pp->pr_minpages &&
1268 pp->pr_npages > pp->pr_maxpages) {
1269 pr_rmpage(pp, ph, pq);
1270 } else {
1271 LIST_REMOVE(ph, ph_pagelist);
1272 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1273
1274 /*
1275 * Update the timestamp on the page. A page must
1276 * be idle for some period of time before it can
1277 * be reclaimed by the pagedaemon. This minimizes
1278 * ping-pong'ing for memory.
1279 *
1280 * note for 64-bit time_t: truncating to 32-bit is not
1281 * a problem for our usage.
1282 */
1283 ph->ph_time = time_uptime;
1284 }
1285 pool_update_curpage(pp);
1286 }
1287
1288 /*
1289 * If the page was previously completely full, move it to the
1290 * partially-full list and make it the current page. The next
1291 * allocation will get the item from this page, instead of
1292 * further fragmenting the pool.
1293 */
1294 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1295 LIST_REMOVE(ph, ph_pagelist);
1296 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1297 pp->pr_curpage = ph;
1298 }
1299 }
1300
1301 /*
1302 * Return resource to the pool.
1303 */
1304 #ifdef POOL_DIAGNOSTIC
1305 void
1306 _pool_put(struct pool *pp, void *v, const char *file, long line)
1307 {
1308 struct pool_pagelist pq;
1309
1310 LIST_INIT(&pq);
1311
1312 mutex_enter(&pp->pr_lock);
1313 pr_enter(pp, file, line);
1314
1315 pr_log(pp, v, PRLOG_PUT, file, line);
1316
1317 pool_do_put(pp, v, &pq);
1318
1319 pr_leave(pp);
1320 mutex_exit(&pp->pr_lock);
1321
1322 pr_pagelist_free(pp, &pq);
1323 }
1324 #undef pool_put
1325 #endif /* POOL_DIAGNOSTIC */
1326
1327 void
1328 pool_put(struct pool *pp, void *v)
1329 {
1330 struct pool_pagelist pq;
1331
1332 LIST_INIT(&pq);
1333
1334 mutex_enter(&pp->pr_lock);
1335 pool_do_put(pp, v, &pq);
1336 mutex_exit(&pp->pr_lock);
1337
1338 pr_pagelist_free(pp, &pq);
1339 }
1340
1341 #ifdef POOL_DIAGNOSTIC
1342 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1343 #endif
1344
1345 /*
1346 * pool_grow: grow a pool by a page.
1347 *
1348 * => called with pool locked.
1349 * => unlock and relock the pool.
1350 * => return with pool locked.
1351 */
1352
1353 static int
1354 pool_grow(struct pool *pp, int flags)
1355 {
1356 struct pool_item_header *ph = NULL;
1357 char *cp;
1358
1359 mutex_exit(&pp->pr_lock);
1360 cp = pool_allocator_alloc(pp, flags);
1361 if (__predict_true(cp != NULL)) {
1362 ph = pool_alloc_item_header(pp, cp, flags);
1363 }
1364 if (__predict_false(cp == NULL || ph == NULL)) {
1365 if (cp != NULL) {
1366 pool_allocator_free(pp, cp);
1367 }
1368 mutex_enter(&pp->pr_lock);
1369 return ENOMEM;
1370 }
1371
1372 mutex_enter(&pp->pr_lock);
1373 pool_prime_page(pp, cp, ph);
1374 pp->pr_npagealloc++;
1375 return 0;
1376 }
1377
1378 /*
1379 * Add N items to the pool.
1380 */
1381 int
1382 pool_prime(struct pool *pp, int n)
1383 {
1384 int newpages;
1385 int error = 0;
1386
1387 mutex_enter(&pp->pr_lock);
1388
1389 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1390
1391 while (newpages-- > 0) {
1392 error = pool_grow(pp, PR_NOWAIT);
1393 if (error) {
1394 break;
1395 }
1396 pp->pr_minpages++;
1397 }
1398
1399 if (pp->pr_minpages >= pp->pr_maxpages)
1400 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1401
1402 mutex_exit(&pp->pr_lock);
1403 return error;
1404 }
1405
1406 /*
1407 * Add a page worth of items to the pool.
1408 *
1409 * Note, we must be called with the pool descriptor LOCKED.
1410 */
1411 static void
1412 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1413 {
1414 struct pool_item *pi;
1415 void *cp = storage;
1416 const unsigned int align = pp->pr_align;
1417 const unsigned int ioff = pp->pr_itemoffset;
1418 int n;
1419
1420 KASSERT(mutex_owned(&pp->pr_lock));
1421
1422 #ifdef DIAGNOSTIC
1423 if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
1424 ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1425 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1426 #endif
1427
1428 /*
1429 * Insert page header.
1430 */
1431 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1432 LIST_INIT(&ph->ph_itemlist);
1433 ph->ph_page = storage;
1434 ph->ph_nmissing = 0;
1435 ph->ph_time = time_uptime;
1436 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1437 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1438
1439 pp->pr_nidle++;
1440
1441 /*
1442 * Color this page.
1443 */
1444 ph->ph_off = pp->pr_curcolor;
1445 cp = (char *)cp + ph->ph_off;
1446 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1447 pp->pr_curcolor = 0;
1448
1449 /*
1450 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1451 */
1452 if (ioff != 0)
1453 cp = (char *)cp + align - ioff;
1454
1455 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1456
1457 /*
1458 * Insert remaining chunks on the bucket list.
1459 */
1460 n = pp->pr_itemsperpage;
1461 pp->pr_nitems += n;
1462
1463 if (pp->pr_roflags & PR_NOTOUCH) {
1464 pr_item_notouch_init(pp, ph);
1465 } else {
1466 while (n--) {
1467 pi = (struct pool_item *)cp;
1468
1469 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1470
1471 /* Insert on page list */
1472 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1473 #ifdef DIAGNOSTIC
1474 pi->pi_magic = PI_MAGIC;
1475 #endif
1476 cp = (char *)cp + pp->pr_size;
1477
1478 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1479 }
1480 }
1481
1482 /*
1483 * If the pool was depleted, point at the new page.
1484 */
1485 if (pp->pr_curpage == NULL)
1486 pp->pr_curpage = ph;
1487
1488 if (++pp->pr_npages > pp->pr_hiwat)
1489 pp->pr_hiwat = pp->pr_npages;
1490 }
1491
1492 /*
1493 * Used by pool_get() when nitems drops below the low water mark. This
1494 * is used to catch up pr_nitems with the low water mark.
1495 *
1496 * Note 1, we never wait for memory here, we let the caller decide what to do.
1497 *
1498 * Note 2, we must be called with the pool already locked, and we return
1499 * with it locked.
1500 */
1501 static int
1502 pool_catchup(struct pool *pp)
1503 {
1504 int error = 0;
1505
1506 while (POOL_NEEDS_CATCHUP(pp)) {
1507 error = pool_grow(pp, PR_NOWAIT);
1508 if (error) {
1509 break;
1510 }
1511 }
1512 return error;
1513 }
1514
1515 static void
1516 pool_update_curpage(struct pool *pp)
1517 {
1518
1519 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1520 if (pp->pr_curpage == NULL) {
1521 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1522 }
1523 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1524 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1525 }
1526
1527 void
1528 pool_setlowat(struct pool *pp, int n)
1529 {
1530
1531 mutex_enter(&pp->pr_lock);
1532
1533 pp->pr_minitems = n;
1534 pp->pr_minpages = (n == 0)
1535 ? 0
1536 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1537
1538 /* Make sure we're caught up with the newly-set low water mark. */
1539 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1540 /*
1541 * XXX: Should we log a warning? Should we set up a timeout
1542 * to try again in a second or so? The latter could break
1543 * a caller's assumptions about interrupt protection, etc.
1544 */
1545 }
1546
1547 mutex_exit(&pp->pr_lock);
1548 }
1549
1550 void
1551 pool_sethiwat(struct pool *pp, int n)
1552 {
1553
1554 mutex_enter(&pp->pr_lock);
1555
1556 pp->pr_maxpages = (n == 0)
1557 ? 0
1558 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1559
1560 mutex_exit(&pp->pr_lock);
1561 }
1562
1563 void
1564 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1565 {
1566
1567 mutex_enter(&pp->pr_lock);
1568
1569 pp->pr_hardlimit = n;
1570 pp->pr_hardlimit_warning = warnmess;
1571 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1572 pp->pr_hardlimit_warning_last.tv_sec = 0;
1573 pp->pr_hardlimit_warning_last.tv_usec = 0;
1574
1575 /*
1576 * In-line version of pool_sethiwat(), because we don't want to
1577 * release the lock.
1578 */
1579 pp->pr_maxpages = (n == 0)
1580 ? 0
1581 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1582
1583 mutex_exit(&pp->pr_lock);
1584 }
1585
1586 /*
1587 * Release all complete pages that have not been used recently.
1588 */
1589 int
1590 #ifdef POOL_DIAGNOSTIC
1591 _pool_reclaim(struct pool *pp, const char *file, long line)
1592 #else
1593 pool_reclaim(struct pool *pp)
1594 #endif
1595 {
1596 struct pool_item_header *ph, *phnext;
1597 struct pool_pagelist pq;
1598 uint32_t curtime;
1599 bool klock;
1600 int rv;
1601
1602 if (pp->pr_drain_hook != NULL) {
1603 /*
1604 * The drain hook must be called with the pool unlocked.
1605 */
1606 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1607 }
1608
1609 /*
1610 * XXXSMP Because we do not want to cause non-MPSAFE code
1611 * to block.
1612 */
1613 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1614 pp->pr_ipl == IPL_SOFTSERIAL) {
1615 KERNEL_LOCK(1, NULL);
1616 klock = true;
1617 } else
1618 klock = false;
1619
1620 /* Reclaim items from the pool's cache (if any). */
1621 if (pp->pr_cache != NULL)
1622 pool_cache_invalidate(pp->pr_cache);
1623
1624 if (mutex_tryenter(&pp->pr_lock) == 0) {
1625 if (klock) {
1626 KERNEL_UNLOCK_ONE(NULL);
1627 }
1628 return (0);
1629 }
1630 pr_enter(pp, file, line);
1631
1632 LIST_INIT(&pq);
1633
1634 curtime = time_uptime;
1635
1636 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1637 phnext = LIST_NEXT(ph, ph_pagelist);
1638
1639 /* Check our minimum page claim */
1640 if (pp->pr_npages <= pp->pr_minpages)
1641 break;
1642
1643 KASSERT(ph->ph_nmissing == 0);
1644 if (curtime - ph->ph_time < pool_inactive_time
1645 && !pa_starved_p(pp->pr_alloc))
1646 continue;
1647
1648 /*
1649 * If freeing this page would put us below
1650 * the low water mark, stop now.
1651 */
1652 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1653 pp->pr_minitems)
1654 break;
1655
1656 pr_rmpage(pp, ph, &pq);
1657 }
1658
1659 pr_leave(pp);
1660 mutex_exit(&pp->pr_lock);
1661
1662 if (LIST_EMPTY(&pq))
1663 rv = 0;
1664 else {
1665 pr_pagelist_free(pp, &pq);
1666 rv = 1;
1667 }
1668
1669 if (klock) {
1670 KERNEL_UNLOCK_ONE(NULL);
1671 }
1672
1673 return (rv);
1674 }
1675
1676 /*
1677 * Drain pools, one at a time. This is a two stage process;
1678 * drain_start kicks off a cross call to drain CPU-level caches
1679 * if the pool has an associated pool_cache. drain_end waits
1680 * for those cross calls to finish, and then drains the cache
1681 * (if any) and pool.
1682 *
1683 * Note, must never be called from interrupt context.
1684 */
1685 void
1686 pool_drain_start(struct pool **ppp, uint64_t *wp)
1687 {
1688 struct pool *pp;
1689
1690 KASSERT(!TAILQ_EMPTY(&pool_head));
1691
1692 pp = NULL;
1693
1694 /* Find next pool to drain, and add a reference. */
1695 mutex_enter(&pool_head_lock);
1696 do {
1697 if (drainpp == NULL) {
1698 drainpp = TAILQ_FIRST(&pool_head);
1699 }
1700 if (drainpp != NULL) {
1701 pp = drainpp;
1702 drainpp = TAILQ_NEXT(pp, pr_poollist);
1703 }
1704 /*
1705 * Skip completely idle pools. We depend on at least
1706 * one pool in the system being active.
1707 */
1708 } while (pp == NULL || pp->pr_npages == 0);
1709 pp->pr_refcnt++;
1710 mutex_exit(&pool_head_lock);
1711
1712 /* If there is a pool_cache, drain CPU level caches. */
1713 *ppp = pp;
1714 if (pp->pr_cache != NULL) {
1715 *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
1716 pp->pr_cache, NULL);
1717 }
1718 }
1719
1720 void
1721 pool_drain_end(struct pool *pp, uint64_t where)
1722 {
1723
1724 if (pp == NULL)
1725 return;
1726
1727 KASSERT(pp->pr_refcnt > 0);
1728
1729 /* Wait for remote draining to complete. */
1730 if (pp->pr_cache != NULL)
1731 xc_wait(where);
1732
1733 /* Drain the cache (if any) and pool.. */
1734 pool_reclaim(pp);
1735
1736 /* Finally, unlock the pool. */
1737 mutex_enter(&pool_head_lock);
1738 pp->pr_refcnt--;
1739 cv_broadcast(&pool_busy);
1740 mutex_exit(&pool_head_lock);
1741 }
1742
1743 /*
1744 * Diagnostic helpers.
1745 */
1746 void
1747 pool_print(struct pool *pp, const char *modif)
1748 {
1749
1750 pool_print1(pp, modif, printf);
1751 }
1752
1753 void
1754 pool_printall(const char *modif, void (*pr)(const char *, ...))
1755 {
1756 struct pool *pp;
1757
1758 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1759 pool_printit(pp, modif, pr);
1760 }
1761 }
1762
1763 void
1764 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1765 {
1766
1767 if (pp == NULL) {
1768 (*pr)("Must specify a pool to print.\n");
1769 return;
1770 }
1771
1772 pool_print1(pp, modif, pr);
1773 }
1774
1775 static void
1776 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1777 void (*pr)(const char *, ...))
1778 {
1779 struct pool_item_header *ph;
1780 #ifdef DIAGNOSTIC
1781 struct pool_item *pi;
1782 #endif
1783
1784 LIST_FOREACH(ph, pl, ph_pagelist) {
1785 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1786 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1787 #ifdef DIAGNOSTIC
1788 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1789 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1790 if (pi->pi_magic != PI_MAGIC) {
1791 (*pr)("\t\t\titem %p, magic 0x%x\n",
1792 pi, pi->pi_magic);
1793 }
1794 }
1795 }
1796 #endif
1797 }
1798 }
1799
1800 static void
1801 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1802 {
1803 struct pool_item_header *ph;
1804 pool_cache_t pc;
1805 pcg_t *pcg;
1806 pool_cache_cpu_t *cc;
1807 uint64_t cpuhit, cpumiss;
1808 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1809 char c;
1810
1811 while ((c = *modif++) != '\0') {
1812 if (c == 'l')
1813 print_log = 1;
1814 if (c == 'p')
1815 print_pagelist = 1;
1816 if (c == 'c')
1817 print_cache = 1;
1818 }
1819
1820 if ((pc = pp->pr_cache) != NULL) {
1821 (*pr)("POOL CACHE");
1822 } else {
1823 (*pr)("POOL");
1824 }
1825
1826 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1827 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1828 pp->pr_roflags);
1829 (*pr)("\talloc %p\n", pp->pr_alloc);
1830 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1831 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1832 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1833 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1834
1835 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1836 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1837 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1838 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1839
1840 if (print_pagelist == 0)
1841 goto skip_pagelist;
1842
1843 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1844 (*pr)("\n\tempty page list:\n");
1845 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1846 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1847 (*pr)("\n\tfull page list:\n");
1848 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1849 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1850 (*pr)("\n\tpartial-page list:\n");
1851 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1852
1853 if (pp->pr_curpage == NULL)
1854 (*pr)("\tno current page\n");
1855 else
1856 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1857
1858 skip_pagelist:
1859 if (print_log == 0)
1860 goto skip_log;
1861
1862 (*pr)("\n");
1863 if ((pp->pr_roflags & PR_LOGGING) == 0)
1864 (*pr)("\tno log\n");
1865 else {
1866 pr_printlog(pp, NULL, pr);
1867 }
1868
1869 skip_log:
1870
1871 #define PR_GROUPLIST(pcg) \
1872 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1873 for (i = 0; i < pcg->pcg_size; i++) { \
1874 if (pcg->pcg_objects[i].pcgo_pa != \
1875 POOL_PADDR_INVALID) { \
1876 (*pr)("\t\t\t%p, 0x%llx\n", \
1877 pcg->pcg_objects[i].pcgo_va, \
1878 (unsigned long long) \
1879 pcg->pcg_objects[i].pcgo_pa); \
1880 } else { \
1881 (*pr)("\t\t\t%p\n", \
1882 pcg->pcg_objects[i].pcgo_va); \
1883 } \
1884 }
1885
1886 if (pc != NULL) {
1887 cpuhit = 0;
1888 cpumiss = 0;
1889 for (i = 0; i < MAXCPUS; i++) {
1890 if ((cc = pc->pc_cpus[i]) == NULL)
1891 continue;
1892 cpuhit += cc->cc_hits;
1893 cpumiss += cc->cc_misses;
1894 }
1895 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1896 (*pr)("\tcache layer hits %llu misses %llu\n",
1897 pc->pc_hits, pc->pc_misses);
1898 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1899 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1900 pc->pc_contended);
1901 (*pr)("\tcache layer empty groups %u full groups %u\n",
1902 pc->pc_nempty, pc->pc_nfull);
1903 if (print_cache) {
1904 (*pr)("\tfull cache groups:\n");
1905 for (pcg = pc->pc_fullgroups; pcg != NULL;
1906 pcg = pcg->pcg_next) {
1907 PR_GROUPLIST(pcg);
1908 }
1909 (*pr)("\tempty cache groups:\n");
1910 for (pcg = pc->pc_emptygroups; pcg != NULL;
1911 pcg = pcg->pcg_next) {
1912 PR_GROUPLIST(pcg);
1913 }
1914 }
1915 }
1916 #undef PR_GROUPLIST
1917
1918 pr_enter_check(pp, pr);
1919 }
1920
1921 static int
1922 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1923 {
1924 struct pool_item *pi;
1925 void *page;
1926 int n;
1927
1928 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1929 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1930 if (page != ph->ph_page &&
1931 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1932 if (label != NULL)
1933 printf("%s: ", label);
1934 printf("pool(%p:%s): page inconsistency: page %p;"
1935 " at page head addr %p (p %p)\n", pp,
1936 pp->pr_wchan, ph->ph_page,
1937 ph, page);
1938 return 1;
1939 }
1940 }
1941
1942 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1943 return 0;
1944
1945 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1946 pi != NULL;
1947 pi = LIST_NEXT(pi,pi_list), n++) {
1948
1949 #ifdef DIAGNOSTIC
1950 if (pi->pi_magic != PI_MAGIC) {
1951 if (label != NULL)
1952 printf("%s: ", label);
1953 printf("pool(%s): free list modified: magic=%x;"
1954 " page %p; item ordinal %d; addr %p\n",
1955 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1956 n, pi);
1957 panic("pool");
1958 }
1959 #endif
1960 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1961 continue;
1962 }
1963 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1964 if (page == ph->ph_page)
1965 continue;
1966
1967 if (label != NULL)
1968 printf("%s: ", label);
1969 printf("pool(%p:%s): page inconsistency: page %p;"
1970 " item ordinal %d; addr %p (p %p)\n", pp,
1971 pp->pr_wchan, ph->ph_page,
1972 n, pi, page);
1973 return 1;
1974 }
1975 return 0;
1976 }
1977
1978
1979 int
1980 pool_chk(struct pool *pp, const char *label)
1981 {
1982 struct pool_item_header *ph;
1983 int r = 0;
1984
1985 mutex_enter(&pp->pr_lock);
1986 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1987 r = pool_chk_page(pp, label, ph);
1988 if (r) {
1989 goto out;
1990 }
1991 }
1992 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1993 r = pool_chk_page(pp, label, ph);
1994 if (r) {
1995 goto out;
1996 }
1997 }
1998 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1999 r = pool_chk_page(pp, label, ph);
2000 if (r) {
2001 goto out;
2002 }
2003 }
2004
2005 out:
2006 mutex_exit(&pp->pr_lock);
2007 return (r);
2008 }
2009
2010 /*
2011 * pool_cache_init:
2012 *
2013 * Initialize a pool cache.
2014 */
2015 pool_cache_t
2016 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2017 const char *wchan, struct pool_allocator *palloc, int ipl,
2018 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2019 {
2020 pool_cache_t pc;
2021
2022 pc = pool_get(&cache_pool, PR_WAITOK);
2023 if (pc == NULL)
2024 return NULL;
2025
2026 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2027 palloc, ipl, ctor, dtor, arg);
2028
2029 return pc;
2030 }
2031
2032 /*
2033 * pool_cache_bootstrap:
2034 *
2035 * Kernel-private version of pool_cache_init(). The caller
2036 * provides initial storage.
2037 */
2038 void
2039 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2040 u_int align_offset, u_int flags, const char *wchan,
2041 struct pool_allocator *palloc, int ipl,
2042 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2043 void *arg)
2044 {
2045 CPU_INFO_ITERATOR cii;
2046 pool_cache_t pc1;
2047 struct cpu_info *ci;
2048 struct pool *pp;
2049
2050 pp = &pc->pc_pool;
2051 if (palloc == NULL && ipl == IPL_NONE)
2052 palloc = &pool_allocator_nointr;
2053 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
2054 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
2055
2056 if (ctor == NULL) {
2057 ctor = (int (*)(void *, void *, int))nullop;
2058 }
2059 if (dtor == NULL) {
2060 dtor = (void (*)(void *, void *))nullop;
2061 }
2062
2063 pc->pc_emptygroups = NULL;
2064 pc->pc_fullgroups = NULL;
2065 pc->pc_partgroups = NULL;
2066 pc->pc_ctor = ctor;
2067 pc->pc_dtor = dtor;
2068 pc->pc_arg = arg;
2069 pc->pc_hits = 0;
2070 pc->pc_misses = 0;
2071 pc->pc_nempty = 0;
2072 pc->pc_npart = 0;
2073 pc->pc_nfull = 0;
2074 pc->pc_contended = 0;
2075 pc->pc_refcnt = 0;
2076 pc->pc_freecheck = NULL;
2077
2078 if ((flags & PR_LARGECACHE) != 0) {
2079 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2080 pc->pc_pcgpool = &pcg_large_pool;
2081 } else {
2082 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2083 pc->pc_pcgpool = &pcg_normal_pool;
2084 }
2085
2086 /* Allocate per-CPU caches. */
2087 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2088 pc->pc_ncpu = 0;
2089 if (ncpu < 2) {
2090 /* XXX For sparc: boot CPU is not attached yet. */
2091 pool_cache_cpu_init1(curcpu(), pc);
2092 } else {
2093 for (CPU_INFO_FOREACH(cii, ci)) {
2094 pool_cache_cpu_init1(ci, pc);
2095 }
2096 }
2097
2098 /* Add to list of all pools. */
2099 if (__predict_true(!cold))
2100 mutex_enter(&pool_head_lock);
2101 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2102 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2103 break;
2104 }
2105 if (pc1 == NULL)
2106 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2107 else
2108 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2109 if (__predict_true(!cold))
2110 mutex_exit(&pool_head_lock);
2111
2112 membar_sync();
2113 pp->pr_cache = pc;
2114 }
2115
2116 /*
2117 * pool_cache_destroy:
2118 *
2119 * Destroy a pool cache.
2120 */
2121 void
2122 pool_cache_destroy(pool_cache_t pc)
2123 {
2124 struct pool *pp = &pc->pc_pool;
2125 pool_cache_cpu_t *cc;
2126 pcg_t *pcg;
2127 int i;
2128
2129 /* Remove it from the global list. */
2130 mutex_enter(&pool_head_lock);
2131 while (pc->pc_refcnt != 0)
2132 cv_wait(&pool_busy, &pool_head_lock);
2133 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2134 mutex_exit(&pool_head_lock);
2135
2136 /* First, invalidate the entire cache. */
2137 pool_cache_invalidate(pc);
2138
2139 /* Disassociate it from the pool. */
2140 mutex_enter(&pp->pr_lock);
2141 pp->pr_cache = NULL;
2142 mutex_exit(&pp->pr_lock);
2143
2144 /* Destroy per-CPU data */
2145 for (i = 0; i < MAXCPUS; i++) {
2146 if ((cc = pc->pc_cpus[i]) == NULL)
2147 continue;
2148 if ((pcg = cc->cc_current) != &pcg_dummy) {
2149 pcg->pcg_next = NULL;
2150 pool_cache_invalidate_groups(pc, pcg);
2151 }
2152 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2153 pcg->pcg_next = NULL;
2154 pool_cache_invalidate_groups(pc, pcg);
2155 }
2156 if (cc != &pc->pc_cpu0)
2157 pool_put(&cache_cpu_pool, cc);
2158 }
2159
2160 /* Finally, destroy it. */
2161 mutex_destroy(&pc->pc_lock);
2162 pool_destroy(pp);
2163 pool_put(&cache_pool, pc);
2164 }
2165
2166 /*
2167 * pool_cache_cpu_init1:
2168 *
2169 * Called for each pool_cache whenever a new CPU is attached.
2170 */
2171 static void
2172 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2173 {
2174 pool_cache_cpu_t *cc;
2175 int index;
2176
2177 index = ci->ci_index;
2178
2179 KASSERT(index < MAXCPUS);
2180
2181 if ((cc = pc->pc_cpus[index]) != NULL) {
2182 KASSERT(cc->cc_cpuindex == index);
2183 return;
2184 }
2185
2186 /*
2187 * The first CPU is 'free'. This needs to be the case for
2188 * bootstrap - we may not be able to allocate yet.
2189 */
2190 if (pc->pc_ncpu == 0) {
2191 cc = &pc->pc_cpu0;
2192 pc->pc_ncpu = 1;
2193 } else {
2194 mutex_enter(&pc->pc_lock);
2195 pc->pc_ncpu++;
2196 mutex_exit(&pc->pc_lock);
2197 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2198 }
2199
2200 cc->cc_ipl = pc->pc_pool.pr_ipl;
2201 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2202 cc->cc_cache = pc;
2203 cc->cc_cpuindex = index;
2204 cc->cc_hits = 0;
2205 cc->cc_misses = 0;
2206 cc->cc_current = __UNCONST(&pcg_dummy);
2207 cc->cc_previous = __UNCONST(&pcg_dummy);
2208
2209 pc->pc_cpus[index] = cc;
2210 }
2211
2212 /*
2213 * pool_cache_cpu_init:
2214 *
2215 * Called whenever a new CPU is attached.
2216 */
2217 void
2218 pool_cache_cpu_init(struct cpu_info *ci)
2219 {
2220 pool_cache_t pc;
2221
2222 mutex_enter(&pool_head_lock);
2223 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2224 pc->pc_refcnt++;
2225 mutex_exit(&pool_head_lock);
2226
2227 pool_cache_cpu_init1(ci, pc);
2228
2229 mutex_enter(&pool_head_lock);
2230 pc->pc_refcnt--;
2231 cv_broadcast(&pool_busy);
2232 }
2233 mutex_exit(&pool_head_lock);
2234 }
2235
2236 /*
2237 * pool_cache_reclaim:
2238 *
2239 * Reclaim memory from a pool cache.
2240 */
2241 bool
2242 pool_cache_reclaim(pool_cache_t pc)
2243 {
2244
2245 return pool_reclaim(&pc->pc_pool);
2246 }
2247
2248 static void
2249 pool_cache_destruct_object1(pool_cache_t pc, void *object)
2250 {
2251
2252 (*pc->pc_dtor)(pc->pc_arg, object);
2253 pool_put(&pc->pc_pool, object);
2254 }
2255
2256 /*
2257 * pool_cache_destruct_object:
2258 *
2259 * Force destruction of an object and its release back into
2260 * the pool.
2261 */
2262 void
2263 pool_cache_destruct_object(pool_cache_t pc, void *object)
2264 {
2265
2266 FREECHECK_IN(&pc->pc_freecheck, object);
2267
2268 pool_cache_destruct_object1(pc, object);
2269 }
2270
2271 /*
2272 * pool_cache_invalidate_groups:
2273 *
2274 * Invalidate a chain of groups and destruct all objects.
2275 */
2276 static void
2277 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2278 {
2279 void *object;
2280 pcg_t *next;
2281 int i;
2282
2283 for (; pcg != NULL; pcg = next) {
2284 next = pcg->pcg_next;
2285
2286 for (i = 0; i < pcg->pcg_avail; i++) {
2287 object = pcg->pcg_objects[i].pcgo_va;
2288 pool_cache_destruct_object1(pc, object);
2289 }
2290
2291 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2292 pool_put(&pcg_large_pool, pcg);
2293 } else {
2294 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2295 pool_put(&pcg_normal_pool, pcg);
2296 }
2297 }
2298 }
2299
2300 /*
2301 * pool_cache_invalidate:
2302 *
2303 * Invalidate a pool cache (destruct and release all of the
2304 * cached objects). Does not reclaim objects from the pool.
2305 */
2306 void
2307 pool_cache_invalidate(pool_cache_t pc)
2308 {
2309 pcg_t *full, *empty, *part;
2310
2311 mutex_enter(&pc->pc_lock);
2312 full = pc->pc_fullgroups;
2313 empty = pc->pc_emptygroups;
2314 part = pc->pc_partgroups;
2315 pc->pc_fullgroups = NULL;
2316 pc->pc_emptygroups = NULL;
2317 pc->pc_partgroups = NULL;
2318 pc->pc_nfull = 0;
2319 pc->pc_nempty = 0;
2320 pc->pc_npart = 0;
2321 mutex_exit(&pc->pc_lock);
2322
2323 pool_cache_invalidate_groups(pc, full);
2324 pool_cache_invalidate_groups(pc, empty);
2325 pool_cache_invalidate_groups(pc, part);
2326 }
2327
2328 void
2329 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2330 {
2331
2332 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2333 }
2334
2335 void
2336 pool_cache_setlowat(pool_cache_t pc, int n)
2337 {
2338
2339 pool_setlowat(&pc->pc_pool, n);
2340 }
2341
2342 void
2343 pool_cache_sethiwat(pool_cache_t pc, int n)
2344 {
2345
2346 pool_sethiwat(&pc->pc_pool, n);
2347 }
2348
2349 void
2350 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2351 {
2352
2353 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2354 }
2355
2356 static bool __noinline
2357 pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2358 paddr_t *pap, int flags)
2359 {
2360 pcg_t *pcg, *cur;
2361 uint64_t ncsw;
2362 pool_cache_t pc;
2363 void *object;
2364
2365 KASSERT(cc->cc_current->pcg_avail == 0);
2366 KASSERT(cc->cc_previous->pcg_avail == 0);
2367
2368 pc = cc->cc_cache;
2369 cc->cc_misses++;
2370
2371 /*
2372 * Nothing was available locally. Try and grab a group
2373 * from the cache.
2374 */
2375 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2376 ncsw = curlwp->l_ncsw;
2377 mutex_enter(&pc->pc_lock);
2378 pc->pc_contended++;
2379
2380 /*
2381 * If we context switched while locking, then
2382 * our view of the per-CPU data is invalid:
2383 * retry.
2384 */
2385 if (curlwp->l_ncsw != ncsw) {
2386 mutex_exit(&pc->pc_lock);
2387 return true;
2388 }
2389 }
2390
2391 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2392 /*
2393 * If there's a full group, release our empty
2394 * group back to the cache. Install the full
2395 * group as cc_current and return.
2396 */
2397 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2398 KASSERT(cur->pcg_avail == 0);
2399 cur->pcg_next = pc->pc_emptygroups;
2400 pc->pc_emptygroups = cur;
2401 pc->pc_nempty++;
2402 }
2403 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2404 cc->cc_current = pcg;
2405 pc->pc_fullgroups = pcg->pcg_next;
2406 pc->pc_hits++;
2407 pc->pc_nfull--;
2408 mutex_exit(&pc->pc_lock);
2409 return true;
2410 }
2411
2412 /*
2413 * Nothing available locally or in cache. Take the slow
2414 * path: fetch a new object from the pool and construct
2415 * it.
2416 */
2417 pc->pc_misses++;
2418 mutex_exit(&pc->pc_lock);
2419 splx(s);
2420
2421 object = pool_get(&pc->pc_pool, flags);
2422 *objectp = object;
2423 if (__predict_false(object == NULL))
2424 return false;
2425
2426 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2427 pool_put(&pc->pc_pool, object);
2428 *objectp = NULL;
2429 return false;
2430 }
2431
2432 KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
2433 (pc->pc_pool.pr_align - 1)) == 0);
2434
2435 if (pap != NULL) {
2436 #ifdef POOL_VTOPHYS
2437 *pap = POOL_VTOPHYS(object);
2438 #else
2439 *pap = POOL_PADDR_INVALID;
2440 #endif
2441 }
2442
2443 FREECHECK_OUT(&pc->pc_freecheck, object);
2444 return false;
2445 }
2446
2447 /*
2448 * pool_cache_get{,_paddr}:
2449 *
2450 * Get an object from a pool cache (optionally returning
2451 * the physical address of the object).
2452 */
2453 void *
2454 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2455 {
2456 pool_cache_cpu_t *cc;
2457 pcg_t *pcg;
2458 void *object;
2459 int s;
2460
2461 #ifdef LOCKDEBUG
2462 if (flags & PR_WAITOK) {
2463 ASSERT_SLEEPABLE();
2464 }
2465 #endif
2466
2467 /* Lock out interrupts and disable preemption. */
2468 s = splvm();
2469 while (/* CONSTCOND */ true) {
2470 /* Try and allocate an object from the current group. */
2471 cc = pc->pc_cpus[curcpu()->ci_index];
2472 KASSERT(cc->cc_cache == pc);
2473 pcg = cc->cc_current;
2474 if (__predict_true(pcg->pcg_avail > 0)) {
2475 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2476 if (__predict_false(pap != NULL))
2477 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2478 #if defined(DIAGNOSTIC)
2479 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2480 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2481 KASSERT(object != NULL);
2482 #endif
2483 cc->cc_hits++;
2484 splx(s);
2485 FREECHECK_OUT(&pc->pc_freecheck, object);
2486 return object;
2487 }
2488
2489 /*
2490 * That failed. If the previous group isn't empty, swap
2491 * it with the current group and allocate from there.
2492 */
2493 pcg = cc->cc_previous;
2494 if (__predict_true(pcg->pcg_avail > 0)) {
2495 cc->cc_previous = cc->cc_current;
2496 cc->cc_current = pcg;
2497 continue;
2498 }
2499
2500 /*
2501 * Can't allocate from either group: try the slow path.
2502 * If get_slow() allocated an object for us, or if
2503 * no more objects are available, it will return false.
2504 * Otherwise, we need to retry.
2505 */
2506 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2507 break;
2508 }
2509
2510 return object;
2511 }
2512
2513 static bool __noinline
2514 pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2515 {
2516 pcg_t *pcg, *cur;
2517 uint64_t ncsw;
2518 pool_cache_t pc;
2519
2520 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2521 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2522
2523 pc = cc->cc_cache;
2524 pcg = NULL;
2525 cc->cc_misses++;
2526
2527 /*
2528 * If there are no empty groups in the cache then allocate one
2529 * while still unlocked.
2530 */
2531 if (__predict_false(pc->pc_emptygroups == NULL)) {
2532 if (__predict_true(!pool_cache_disable)) {
2533 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2534 }
2535 if (__predict_true(pcg != NULL)) {
2536 pcg->pcg_avail = 0;
2537 pcg->pcg_size = pc->pc_pcgsize;
2538 }
2539 }
2540
2541 /* Lock the cache. */
2542 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2543 ncsw = curlwp->l_ncsw;
2544 mutex_enter(&pc->pc_lock);
2545 pc->pc_contended++;
2546
2547 /*
2548 * If we context switched while locking, then our view of
2549 * the per-CPU data is invalid: retry.
2550 */
2551 if (__predict_false(curlwp->l_ncsw != ncsw)) {
2552 mutex_exit(&pc->pc_lock);
2553 if (pcg != NULL) {
2554 pool_put(pc->pc_pcgpool, pcg);
2555 }
2556 return true;
2557 }
2558 }
2559
2560 /* If there are no empty groups in the cache then allocate one. */
2561 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2562 pcg = pc->pc_emptygroups;
2563 pc->pc_emptygroups = pcg->pcg_next;
2564 pc->pc_nempty--;
2565 }
2566
2567 /*
2568 * If there's a empty group, release our full group back
2569 * to the cache. Install the empty group to the local CPU
2570 * and return.
2571 */
2572 if (pcg != NULL) {
2573 KASSERT(pcg->pcg_avail == 0);
2574 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2575 cc->cc_previous = pcg;
2576 } else {
2577 cur = cc->cc_current;
2578 if (__predict_true(cur != &pcg_dummy)) {
2579 KASSERT(cur->pcg_avail == cur->pcg_size);
2580 cur->pcg_next = pc->pc_fullgroups;
2581 pc->pc_fullgroups = cur;
2582 pc->pc_nfull++;
2583 }
2584 cc->cc_current = pcg;
2585 }
2586 pc->pc_hits++;
2587 mutex_exit(&pc->pc_lock);
2588 return true;
2589 }
2590
2591 /*
2592 * Nothing available locally or in cache, and we didn't
2593 * allocate an empty group. Take the slow path and destroy
2594 * the object here and now.
2595 */
2596 pc->pc_misses++;
2597 mutex_exit(&pc->pc_lock);
2598 splx(s);
2599 pool_cache_destruct_object(pc, object);
2600
2601 return false;
2602 }
2603
2604 /*
2605 * pool_cache_put{,_paddr}:
2606 *
2607 * Put an object back to the pool cache (optionally caching the
2608 * physical address of the object).
2609 */
2610 void
2611 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2612 {
2613 pool_cache_cpu_t *cc;
2614 pcg_t *pcg;
2615 int s;
2616
2617 KASSERT(object != NULL);
2618 FREECHECK_IN(&pc->pc_freecheck, object);
2619
2620 /* Lock out interrupts and disable preemption. */
2621 s = splvm();
2622 while (/* CONSTCOND */ true) {
2623 /* If the current group isn't full, release it there. */
2624 cc = pc->pc_cpus[curcpu()->ci_index];
2625 KASSERT(cc->cc_cache == pc);
2626 pcg = cc->cc_current;
2627 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2628 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2629 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2630 pcg->pcg_avail++;
2631 cc->cc_hits++;
2632 splx(s);
2633 return;
2634 }
2635
2636 /*
2637 * That failed. If the previous group isn't full, swap
2638 * it with the current group and try again.
2639 */
2640 pcg = cc->cc_previous;
2641 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2642 cc->cc_previous = cc->cc_current;
2643 cc->cc_current = pcg;
2644 continue;
2645 }
2646
2647 /*
2648 * Can't free to either group: try the slow path.
2649 * If put_slow() releases the object for us, it
2650 * will return false. Otherwise we need to retry.
2651 */
2652 if (!pool_cache_put_slow(cc, s, object))
2653 break;
2654 }
2655 }
2656
2657 /*
2658 * pool_cache_xcall:
2659 *
2660 * Transfer objects from the per-CPU cache to the global cache.
2661 * Run within a cross-call thread.
2662 */
2663 static void
2664 pool_cache_xcall(pool_cache_t pc)
2665 {
2666 pool_cache_cpu_t *cc;
2667 pcg_t *prev, *cur, **list;
2668 int s;
2669
2670 s = splvm();
2671 mutex_enter(&pc->pc_lock);
2672 cc = pc->pc_cpus[curcpu()->ci_index];
2673 cur = cc->cc_current;
2674 cc->cc_current = __UNCONST(&pcg_dummy);
2675 prev = cc->cc_previous;
2676 cc->cc_previous = __UNCONST(&pcg_dummy);
2677 if (cur != &pcg_dummy) {
2678 if (cur->pcg_avail == cur->pcg_size) {
2679 list = &pc->pc_fullgroups;
2680 pc->pc_nfull++;
2681 } else if (cur->pcg_avail == 0) {
2682 list = &pc->pc_emptygroups;
2683 pc->pc_nempty++;
2684 } else {
2685 list = &pc->pc_partgroups;
2686 pc->pc_npart++;
2687 }
2688 cur->pcg_next = *list;
2689 *list = cur;
2690 }
2691 if (prev != &pcg_dummy) {
2692 if (prev->pcg_avail == prev->pcg_size) {
2693 list = &pc->pc_fullgroups;
2694 pc->pc_nfull++;
2695 } else if (prev->pcg_avail == 0) {
2696 list = &pc->pc_emptygroups;
2697 pc->pc_nempty++;
2698 } else {
2699 list = &pc->pc_partgroups;
2700 pc->pc_npart++;
2701 }
2702 prev->pcg_next = *list;
2703 *list = prev;
2704 }
2705 mutex_exit(&pc->pc_lock);
2706 splx(s);
2707 }
2708
2709 /*
2710 * Pool backend allocators.
2711 *
2712 * Each pool has a backend allocator that handles allocation, deallocation,
2713 * and any additional draining that might be needed.
2714 *
2715 * We provide two standard allocators:
2716 *
2717 * pool_allocator_kmem - the default when no allocator is specified
2718 *
2719 * pool_allocator_nointr - used for pools that will not be accessed
2720 * in interrupt context.
2721 */
2722 void *pool_page_alloc(struct pool *, int);
2723 void pool_page_free(struct pool *, void *);
2724
2725 #ifdef POOL_SUBPAGE
2726 struct pool_allocator pool_allocator_kmem_fullpage = {
2727 pool_page_alloc, pool_page_free, 0,
2728 .pa_backingmapptr = &kmem_map,
2729 };
2730 #else
2731 struct pool_allocator pool_allocator_kmem = {
2732 pool_page_alloc, pool_page_free, 0,
2733 .pa_backingmapptr = &kmem_map,
2734 };
2735 #endif
2736
2737 void *pool_page_alloc_nointr(struct pool *, int);
2738 void pool_page_free_nointr(struct pool *, void *);
2739
2740 #ifdef POOL_SUBPAGE
2741 struct pool_allocator pool_allocator_nointr_fullpage = {
2742 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2743 .pa_backingmapptr = &kernel_map,
2744 };
2745 #else
2746 struct pool_allocator pool_allocator_nointr = {
2747 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2748 .pa_backingmapptr = &kernel_map,
2749 };
2750 #endif
2751
2752 #ifdef POOL_SUBPAGE
2753 void *pool_subpage_alloc(struct pool *, int);
2754 void pool_subpage_free(struct pool *, void *);
2755
2756 struct pool_allocator pool_allocator_kmem = {
2757 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2758 .pa_backingmapptr = &kmem_map,
2759 };
2760
2761 void *pool_subpage_alloc_nointr(struct pool *, int);
2762 void pool_subpage_free_nointr(struct pool *, void *);
2763
2764 struct pool_allocator pool_allocator_nointr = {
2765 pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
2766 .pa_backingmapptr = &kmem_map,
2767 };
2768 #endif /* POOL_SUBPAGE */
2769
2770 static void *
2771 pool_allocator_alloc(struct pool *pp, int flags)
2772 {
2773 struct pool_allocator *pa = pp->pr_alloc;
2774 void *res;
2775
2776 res = (*pa->pa_alloc)(pp, flags);
2777 if (res == NULL && (flags & PR_WAITOK) == 0) {
2778 /*
2779 * We only run the drain hook here if PR_NOWAIT.
2780 * In other cases, the hook will be run in
2781 * pool_reclaim().
2782 */
2783 if (pp->pr_drain_hook != NULL) {
2784 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2785 res = (*pa->pa_alloc)(pp, flags);
2786 }
2787 }
2788 return res;
2789 }
2790
2791 static void
2792 pool_allocator_free(struct pool *pp, void *v)
2793 {
2794 struct pool_allocator *pa = pp->pr_alloc;
2795
2796 (*pa->pa_free)(pp, v);
2797 }
2798
2799 void *
2800 pool_page_alloc(struct pool *pp, int flags)
2801 {
2802 bool waitok = (flags & PR_WAITOK) ? true : false;
2803
2804 return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
2805 }
2806
2807 void
2808 pool_page_free(struct pool *pp, void *v)
2809 {
2810
2811 uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
2812 }
2813
2814 static void *
2815 pool_page_alloc_meta(struct pool *pp, int flags)
2816 {
2817 bool waitok = (flags & PR_WAITOK) ? true : false;
2818
2819 return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
2820 }
2821
2822 static void
2823 pool_page_free_meta(struct pool *pp, void *v)
2824 {
2825
2826 uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
2827 }
2828
2829 #ifdef POOL_SUBPAGE
2830 /* Sub-page allocator, for machines with large hardware pages. */
2831 void *
2832 pool_subpage_alloc(struct pool *pp, int flags)
2833 {
2834 return pool_get(&psppool, flags);
2835 }
2836
2837 void
2838 pool_subpage_free(struct pool *pp, void *v)
2839 {
2840 pool_put(&psppool, v);
2841 }
2842
2843 /* We don't provide a real nointr allocator. Maybe later. */
2844 void *
2845 pool_subpage_alloc_nointr(struct pool *pp, int flags)
2846 {
2847
2848 return (pool_subpage_alloc(pp, flags));
2849 }
2850
2851 void
2852 pool_subpage_free_nointr(struct pool *pp, void *v)
2853 {
2854
2855 pool_subpage_free(pp, v);
2856 }
2857 #endif /* POOL_SUBPAGE */
2858 void *
2859 pool_page_alloc_nointr(struct pool *pp, int flags)
2860 {
2861 bool waitok = (flags & PR_WAITOK) ? true : false;
2862
2863 return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
2864 }
2865
2866 void
2867 pool_page_free_nointr(struct pool *pp, void *v)
2868 {
2869
2870 uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
2871 }
2872
2873 #if defined(DDB)
2874 static bool
2875 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2876 {
2877
2878 return (uintptr_t)ph->ph_page <= addr &&
2879 addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
2880 }
2881
2882 static bool
2883 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
2884 {
2885
2886 return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
2887 }
2888
2889 static bool
2890 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
2891 {
2892 int i;
2893
2894 if (pcg == NULL) {
2895 return false;
2896 }
2897 for (i = 0; i < pcg->pcg_avail; i++) {
2898 if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
2899 return true;
2900 }
2901 }
2902 return false;
2903 }
2904
2905 static bool
2906 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
2907 {
2908
2909 if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
2910 unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
2911 pool_item_bitmap_t *bitmap =
2912 ph->ph_bitmap + (idx / BITMAP_SIZE);
2913 pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
2914
2915 return (*bitmap & mask) == 0;
2916 } else {
2917 struct pool_item *pi;
2918
2919 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
2920 if (pool_in_item(pp, pi, addr)) {
2921 return false;
2922 }
2923 }
2924 return true;
2925 }
2926 }
2927
2928 void
2929 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2930 {
2931 struct pool *pp;
2932
2933 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
2934 struct pool_item_header *ph;
2935 uintptr_t item;
2936 bool allocated = true;
2937 bool incache = false;
2938 bool incpucache = false;
2939 char cpucachestr[32];
2940
2941 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
2942 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2943 if (pool_in_page(pp, ph, addr)) {
2944 goto found;
2945 }
2946 }
2947 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2948 if (pool_in_page(pp, ph, addr)) {
2949 allocated =
2950 pool_allocated(pp, ph, addr);
2951 goto found;
2952 }
2953 }
2954 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2955 if (pool_in_page(pp, ph, addr)) {
2956 allocated = false;
2957 goto found;
2958 }
2959 }
2960 continue;
2961 } else {
2962 ph = pr_find_pagehead_noalign(pp, (void *)addr);
2963 if (ph == NULL || !pool_in_page(pp, ph, addr)) {
2964 continue;
2965 }
2966 allocated = pool_allocated(pp, ph, addr);
2967 }
2968 found:
2969 if (allocated && pp->pr_cache) {
2970 pool_cache_t pc = pp->pr_cache;
2971 struct pool_cache_group *pcg;
2972 int i;
2973
2974 for (pcg = pc->pc_fullgroups; pcg != NULL;
2975 pcg = pcg->pcg_next) {
2976 if (pool_in_cg(pp, pcg, addr)) {
2977 incache = true;
2978 goto print;
2979 }
2980 }
2981 for (i = 0; i < MAXCPUS; i++) {
2982 pool_cache_cpu_t *cc;
2983
2984 if ((cc = pc->pc_cpus[i]) == NULL) {
2985 continue;
2986 }
2987 if (pool_in_cg(pp, cc->cc_current, addr) ||
2988 pool_in_cg(pp, cc->cc_previous, addr)) {
2989 struct cpu_info *ci =
2990 cpu_lookup(i);
2991
2992 incpucache = true;
2993 snprintf(cpucachestr,
2994 sizeof(cpucachestr),
2995 "cached by CPU %u",
2996 ci->ci_index);
2997 goto print;
2998 }
2999 }
3000 }
3001 print:
3002 item = (uintptr_t)ph->ph_page + ph->ph_off;
3003 item = item + rounddown(addr - item, pp->pr_size);
3004 (*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3005 (void *)addr, item, (size_t)(addr - item),
3006 pp->pr_wchan,
3007 incpucache ? cpucachestr :
3008 incache ? "cached" : allocated ? "allocated" : "free");
3009 }
3010 }
3011 #endif /* defined(DDB) */
3012