Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.159
      1 /*	$NetBSD: subr_pool.c,v 1.159 2008/04/28 15:36:01 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000, 2002, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.159 2008/04/28 15:36:01 ad Exp $");
     42 
     43 #include "opt_ddb.h"
     44 #include "opt_pool.h"
     45 #include "opt_poollog.h"
     46 #include "opt_lockdebug.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/bitops.h>
     51 #include <sys/proc.h>
     52 #include <sys/errno.h>
     53 #include <sys/kernel.h>
     54 #include <sys/malloc.h>
     55 #include <sys/pool.h>
     56 #include <sys/syslog.h>
     57 #include <sys/debug.h>
     58 #include <sys/lockdebug.h>
     59 #include <sys/xcall.h>
     60 #include <sys/cpu.h>
     61 #include <sys/atomic.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 /*
     66  * Pool resource management utility.
     67  *
     68  * Memory is allocated in pages which are split into pieces according to
     69  * the pool item size. Each page is kept on one of three lists in the
     70  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     71  * for empty, full and partially-full pages respectively. The individual
     72  * pool items are on a linked list headed by `ph_itemlist' in each page
     73  * header. The memory for building the page list is either taken from
     74  * the allocated pages themselves (for small pool items) or taken from
     75  * an internal pool of page headers (`phpool').
     76  */
     77 
     78 /* List of all pools */
     79 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     80 
     81 /* Private pool for page header structures */
     82 #define	PHPOOL_MAX	8
     83 static struct pool phpool[PHPOOL_MAX];
     84 #define	PHPOOL_FREELIST_NELEM(idx) \
     85 	(((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
     86 
     87 #ifdef POOL_SUBPAGE
     88 /* Pool of subpages for use by normal pools. */
     89 static struct pool psppool;
     90 #endif
     91 
     92 static SLIST_HEAD(, pool_allocator) pa_deferinitq =
     93     SLIST_HEAD_INITIALIZER(pa_deferinitq);
     94 
     95 static void *pool_page_alloc_meta(struct pool *, int);
     96 static void pool_page_free_meta(struct pool *, void *);
     97 
     98 /* allocator for pool metadata */
     99 struct pool_allocator pool_allocator_meta = {
    100 	pool_page_alloc_meta, pool_page_free_meta,
    101 	.pa_backingmapptr = &kmem_map,
    102 };
    103 
    104 /* # of seconds to retain page after last use */
    105 int pool_inactive_time = 10;
    106 
    107 /* Next candidate for drainage (see pool_drain()) */
    108 static struct pool	*drainpp;
    109 
    110 /* This lock protects both pool_head and drainpp. */
    111 static kmutex_t pool_head_lock;
    112 static kcondvar_t pool_busy;
    113 
    114 typedef uint32_t pool_item_bitmap_t;
    115 #define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
    116 #define	BITMAP_MASK	(BITMAP_SIZE - 1)
    117 
    118 struct pool_item_header {
    119 	/* Page headers */
    120 	LIST_ENTRY(pool_item_header)
    121 				ph_pagelist;	/* pool page list */
    122 	SPLAY_ENTRY(pool_item_header)
    123 				ph_node;	/* Off-page page headers */
    124 	void *			ph_page;	/* this page's address */
    125 	uint32_t		ph_time;	/* last referenced */
    126 	uint16_t		ph_nmissing;	/* # of chunks in use */
    127 	uint16_t		ph_off;		/* start offset in page */
    128 	union {
    129 		/* !PR_NOTOUCH */
    130 		struct {
    131 			LIST_HEAD(, pool_item)
    132 				phu_itemlist;	/* chunk list for this page */
    133 		} phu_normal;
    134 		/* PR_NOTOUCH */
    135 		struct {
    136 			pool_item_bitmap_t phu_bitmap[1];
    137 		} phu_notouch;
    138 	} ph_u;
    139 };
    140 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    141 #define	ph_bitmap	ph_u.phu_notouch.phu_bitmap
    142 
    143 struct pool_item {
    144 #ifdef DIAGNOSTIC
    145 	u_int pi_magic;
    146 #endif
    147 #define	PI_MAGIC 0xdeaddeadU
    148 	/* Other entries use only this list entry */
    149 	LIST_ENTRY(pool_item)	pi_list;
    150 };
    151 
    152 #define	POOL_NEEDS_CATCHUP(pp)						\
    153 	((pp)->pr_nitems < (pp)->pr_minitems)
    154 
    155 /*
    156  * Pool cache management.
    157  *
    158  * Pool caches provide a way for constructed objects to be cached by the
    159  * pool subsystem.  This can lead to performance improvements by avoiding
    160  * needless object construction/destruction; it is deferred until absolutely
    161  * necessary.
    162  *
    163  * Caches are grouped into cache groups.  Each cache group references up
    164  * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
    165  * object from the pool, it calls the object's constructor and places it
    166  * into a cache group.  When a cache group frees an object back to the
    167  * pool, it first calls the object's destructor.  This allows the object
    168  * to persist in constructed form while freed to the cache.
    169  *
    170  * The pool references each cache, so that when a pool is drained by the
    171  * pagedaemon, it can drain each individual cache as well.  Each time a
    172  * cache is drained, the most idle cache group is freed to the pool in
    173  * its entirety.
    174  *
    175  * Pool caches are layed on top of pools.  By layering them, we can avoid
    176  * the complexity of cache management for pools which would not benefit
    177  * from it.
    178  */
    179 
    180 static struct pool pcg_normal_pool;
    181 static struct pool pcg_large_pool;
    182 static struct pool cache_pool;
    183 static struct pool cache_cpu_pool;
    184 
    185 /* List of all caches. */
    186 TAILQ_HEAD(,pool_cache) pool_cache_head =
    187     TAILQ_HEAD_INITIALIZER(pool_cache_head);
    188 
    189 int pool_cache_disable;
    190 
    191 
    192 static pool_cache_cpu_t *pool_cache_put_slow(pool_cache_cpu_t *, int *,
    193 					     void *, paddr_t);
    194 static pool_cache_cpu_t *pool_cache_get_slow(pool_cache_cpu_t *, int *,
    195 					     void **, paddr_t *, int);
    196 static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
    197 static void	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
    198 static void	pool_cache_xcall(pool_cache_t);
    199 
    200 static int	pool_catchup(struct pool *);
    201 static void	pool_prime_page(struct pool *, void *,
    202 		    struct pool_item_header *);
    203 static void	pool_update_curpage(struct pool *);
    204 
    205 static int	pool_grow(struct pool *, int);
    206 static void	*pool_allocator_alloc(struct pool *, int);
    207 static void	pool_allocator_free(struct pool *, void *);
    208 
    209 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    210 	void (*)(const char *, ...));
    211 static void pool_print1(struct pool *, const char *,
    212 	void (*)(const char *, ...));
    213 
    214 static int pool_chk_page(struct pool *, const char *,
    215 			 struct pool_item_header *);
    216 
    217 /*
    218  * Pool log entry. An array of these is allocated in pool_init().
    219  */
    220 struct pool_log {
    221 	const char	*pl_file;
    222 	long		pl_line;
    223 	int		pl_action;
    224 #define	PRLOG_GET	1
    225 #define	PRLOG_PUT	2
    226 	void		*pl_addr;
    227 };
    228 
    229 #ifdef POOL_DIAGNOSTIC
    230 /* Number of entries in pool log buffers */
    231 #ifndef POOL_LOGSIZE
    232 #define	POOL_LOGSIZE	10
    233 #endif
    234 
    235 int pool_logsize = POOL_LOGSIZE;
    236 
    237 static inline void
    238 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    239 {
    240 	int n = pp->pr_curlogentry;
    241 	struct pool_log *pl;
    242 
    243 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    244 		return;
    245 
    246 	/*
    247 	 * Fill in the current entry. Wrap around and overwrite
    248 	 * the oldest entry if necessary.
    249 	 */
    250 	pl = &pp->pr_log[n];
    251 	pl->pl_file = file;
    252 	pl->pl_line = line;
    253 	pl->pl_action = action;
    254 	pl->pl_addr = v;
    255 	if (++n >= pp->pr_logsize)
    256 		n = 0;
    257 	pp->pr_curlogentry = n;
    258 }
    259 
    260 static void
    261 pr_printlog(struct pool *pp, struct pool_item *pi,
    262     void (*pr)(const char *, ...))
    263 {
    264 	int i = pp->pr_logsize;
    265 	int n = pp->pr_curlogentry;
    266 
    267 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    268 		return;
    269 
    270 	/*
    271 	 * Print all entries in this pool's log.
    272 	 */
    273 	while (i-- > 0) {
    274 		struct pool_log *pl = &pp->pr_log[n];
    275 		if (pl->pl_action != 0) {
    276 			if (pi == NULL || pi == pl->pl_addr) {
    277 				(*pr)("\tlog entry %d:\n", i);
    278 				(*pr)("\t\taction = %s, addr = %p\n",
    279 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    280 				    pl->pl_addr);
    281 				(*pr)("\t\tfile: %s at line %lu\n",
    282 				    pl->pl_file, pl->pl_line);
    283 			}
    284 		}
    285 		if (++n >= pp->pr_logsize)
    286 			n = 0;
    287 	}
    288 }
    289 
    290 static inline void
    291 pr_enter(struct pool *pp, const char *file, long line)
    292 {
    293 
    294 	if (__predict_false(pp->pr_entered_file != NULL)) {
    295 		printf("pool %s: reentrancy at file %s line %ld\n",
    296 		    pp->pr_wchan, file, line);
    297 		printf("         previous entry at file %s line %ld\n",
    298 		    pp->pr_entered_file, pp->pr_entered_line);
    299 		panic("pr_enter");
    300 	}
    301 
    302 	pp->pr_entered_file = file;
    303 	pp->pr_entered_line = line;
    304 }
    305 
    306 static inline void
    307 pr_leave(struct pool *pp)
    308 {
    309 
    310 	if (__predict_false(pp->pr_entered_file == NULL)) {
    311 		printf("pool %s not entered?\n", pp->pr_wchan);
    312 		panic("pr_leave");
    313 	}
    314 
    315 	pp->pr_entered_file = NULL;
    316 	pp->pr_entered_line = 0;
    317 }
    318 
    319 static inline void
    320 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    321 {
    322 
    323 	if (pp->pr_entered_file != NULL)
    324 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    325 		    pp->pr_entered_file, pp->pr_entered_line);
    326 }
    327 #else
    328 #define	pr_log(pp, v, action, file, line)
    329 #define	pr_printlog(pp, pi, pr)
    330 #define	pr_enter(pp, file, line)
    331 #define	pr_leave(pp)
    332 #define	pr_enter_check(pp, pr)
    333 #endif /* POOL_DIAGNOSTIC */
    334 
    335 static inline unsigned int
    336 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    337     const void *v)
    338 {
    339 	const char *cp = v;
    340 	unsigned int idx;
    341 
    342 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    343 	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
    344 	KASSERT(idx < pp->pr_itemsperpage);
    345 	return idx;
    346 }
    347 
    348 static inline void
    349 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    350     void *obj)
    351 {
    352 	unsigned int idx = pr_item_notouch_index(pp, ph, obj);
    353 	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
    354 	pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
    355 
    356 	KASSERT((*bitmap & mask) == 0);
    357 	*bitmap |= mask;
    358 }
    359 
    360 static inline void *
    361 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    362 {
    363 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    364 	unsigned int idx;
    365 	int i;
    366 
    367 	for (i = 0; ; i++) {
    368 		int bit;
    369 
    370 		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
    371 		bit = ffs32(bitmap[i]);
    372 		if (bit) {
    373 			pool_item_bitmap_t mask;
    374 
    375 			bit--;
    376 			idx = (i * BITMAP_SIZE) + bit;
    377 			mask = 1 << bit;
    378 			KASSERT((bitmap[i] & mask) != 0);
    379 			bitmap[i] &= ~mask;
    380 			break;
    381 		}
    382 	}
    383 	KASSERT(idx < pp->pr_itemsperpage);
    384 	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
    385 }
    386 
    387 static inline void
    388 pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph)
    389 {
    390 	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
    391 	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
    392 	int i;
    393 
    394 	for (i = 0; i < n; i++) {
    395 		bitmap[i] = (pool_item_bitmap_t)-1;
    396 	}
    397 }
    398 
    399 static inline int
    400 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    401 {
    402 
    403 	/*
    404 	 * we consider pool_item_header with smaller ph_page bigger.
    405 	 * (this unnatural ordering is for the benefit of pr_find_pagehead.)
    406 	 */
    407 
    408 	if (a->ph_page < b->ph_page)
    409 		return (1);
    410 	else if (a->ph_page > b->ph_page)
    411 		return (-1);
    412 	else
    413 		return (0);
    414 }
    415 
    416 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    417 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    418 
    419 static inline struct pool_item_header *
    420 pr_find_pagehead_noalign(struct pool *pp, void *v)
    421 {
    422 	struct pool_item_header *ph, tmp;
    423 
    424 	tmp.ph_page = (void *)(uintptr_t)v;
    425 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    426 	if (ph == NULL) {
    427 		ph = SPLAY_ROOT(&pp->pr_phtree);
    428 		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
    429 			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
    430 		}
    431 		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
    432 	}
    433 
    434 	return ph;
    435 }
    436 
    437 /*
    438  * Return the pool page header based on item address.
    439  */
    440 static inline struct pool_item_header *
    441 pr_find_pagehead(struct pool *pp, void *v)
    442 {
    443 	struct pool_item_header *ph, tmp;
    444 
    445 	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
    446 		ph = pr_find_pagehead_noalign(pp, v);
    447 	} else {
    448 		void *page =
    449 		    (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
    450 
    451 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    452 			ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset);
    453 		} else {
    454 			tmp.ph_page = page;
    455 			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    456 		}
    457 	}
    458 
    459 	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
    460 	    ((char *)ph->ph_page <= (char *)v &&
    461 	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
    462 	return ph;
    463 }
    464 
    465 static void
    466 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    467 {
    468 	struct pool_item_header *ph;
    469 
    470 	while ((ph = LIST_FIRST(pq)) != NULL) {
    471 		LIST_REMOVE(ph, ph_pagelist);
    472 		pool_allocator_free(pp, ph->ph_page);
    473 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    474 			pool_put(pp->pr_phpool, ph);
    475 	}
    476 }
    477 
    478 /*
    479  * Remove a page from the pool.
    480  */
    481 static inline void
    482 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    483      struct pool_pagelist *pq)
    484 {
    485 
    486 	KASSERT(mutex_owned(&pp->pr_lock));
    487 
    488 	/*
    489 	 * If the page was idle, decrement the idle page count.
    490 	 */
    491 	if (ph->ph_nmissing == 0) {
    492 #ifdef DIAGNOSTIC
    493 		if (pp->pr_nidle == 0)
    494 			panic("pr_rmpage: nidle inconsistent");
    495 		if (pp->pr_nitems < pp->pr_itemsperpage)
    496 			panic("pr_rmpage: nitems inconsistent");
    497 #endif
    498 		pp->pr_nidle--;
    499 	}
    500 
    501 	pp->pr_nitems -= pp->pr_itemsperpage;
    502 
    503 	/*
    504 	 * Unlink the page from the pool and queue it for release.
    505 	 */
    506 	LIST_REMOVE(ph, ph_pagelist);
    507 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    508 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    509 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    510 
    511 	pp->pr_npages--;
    512 	pp->pr_npagefree++;
    513 
    514 	pool_update_curpage(pp);
    515 }
    516 
    517 static bool
    518 pa_starved_p(struct pool_allocator *pa)
    519 {
    520 
    521 	if (pa->pa_backingmap != NULL) {
    522 		return vm_map_starved_p(pa->pa_backingmap);
    523 	}
    524 	return false;
    525 }
    526 
    527 static int
    528 pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    529 {
    530 	struct pool *pp = obj;
    531 	struct pool_allocator *pa = pp->pr_alloc;
    532 
    533 	KASSERT(&pp->pr_reclaimerentry == ce);
    534 	pool_reclaim(pp);
    535 	if (!pa_starved_p(pa)) {
    536 		return CALLBACK_CHAIN_ABORT;
    537 	}
    538 	return CALLBACK_CHAIN_CONTINUE;
    539 }
    540 
    541 static void
    542 pool_reclaim_register(struct pool *pp)
    543 {
    544 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    545 	int s;
    546 
    547 	if (map == NULL) {
    548 		return;
    549 	}
    550 
    551 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    552 	callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    553 	    &pp->pr_reclaimerentry, pp, pool_reclaim_callback);
    554 	splx(s);
    555 }
    556 
    557 static void
    558 pool_reclaim_unregister(struct pool *pp)
    559 {
    560 	struct vm_map *map = pp->pr_alloc->pa_backingmap;
    561 	int s;
    562 
    563 	if (map == NULL) {
    564 		return;
    565 	}
    566 
    567 	s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
    568 	callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
    569 	    &pp->pr_reclaimerentry);
    570 	splx(s);
    571 }
    572 
    573 static void
    574 pa_reclaim_register(struct pool_allocator *pa)
    575 {
    576 	struct vm_map *map = *pa->pa_backingmapptr;
    577 	struct pool *pp;
    578 
    579 	KASSERT(pa->pa_backingmap == NULL);
    580 	if (map == NULL) {
    581 		SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
    582 		return;
    583 	}
    584 	pa->pa_backingmap = map;
    585 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
    586 		pool_reclaim_register(pp);
    587 	}
    588 }
    589 
    590 /*
    591  * Initialize all the pools listed in the "pools" link set.
    592  */
    593 void
    594 pool_subsystem_init(void)
    595 {
    596 	struct pool_allocator *pa;
    597 	__link_set_decl(pools, struct link_pool_init);
    598 	struct link_pool_init * const *pi;
    599 
    600 	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
    601 	cv_init(&pool_busy, "poolbusy");
    602 
    603 	__link_set_foreach(pi, pools)
    604 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    605 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    606 		    (*pi)->palloc, (*pi)->ipl);
    607 
    608 	while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
    609 		KASSERT(pa->pa_backingmapptr != NULL);
    610 		KASSERT(*pa->pa_backingmapptr != NULL);
    611 		SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
    612 		pa_reclaim_register(pa);
    613 	}
    614 
    615 	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
    616 	    0, 0, "pcache", &pool_allocator_nointr, IPL_NONE);
    617 
    618 	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
    619 	    0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE);
    620 }
    621 
    622 /*
    623  * Initialize the given pool resource structure.
    624  *
    625  * We export this routine to allow other kernel parts to declare
    626  * static pools that must be initialized before malloc() is available.
    627  */
    628 void
    629 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    630     const char *wchan, struct pool_allocator *palloc, int ipl)
    631 {
    632 	struct pool *pp1;
    633 	size_t trysize, phsize;
    634 	int off, slack;
    635 
    636 #ifdef DEBUG
    637 	/*
    638 	 * Check that the pool hasn't already been initialised and
    639 	 * added to the list of all pools.
    640 	 */
    641 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    642 		if (pp == pp1)
    643 			panic("pool_init: pool %s already initialised",
    644 			    wchan);
    645 	}
    646 #endif
    647 
    648 #ifdef POOL_DIAGNOSTIC
    649 	/*
    650 	 * Always log if POOL_DIAGNOSTIC is defined.
    651 	 */
    652 	if (pool_logsize != 0)
    653 		flags |= PR_LOGGING;
    654 #endif
    655 
    656 	if (palloc == NULL)
    657 		palloc = &pool_allocator_kmem;
    658 #ifdef POOL_SUBPAGE
    659 	if (size > palloc->pa_pagesz) {
    660 		if (palloc == &pool_allocator_kmem)
    661 			palloc = &pool_allocator_kmem_fullpage;
    662 		else if (palloc == &pool_allocator_nointr)
    663 			palloc = &pool_allocator_nointr_fullpage;
    664 	}
    665 #endif /* POOL_SUBPAGE */
    666 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    667 		if (palloc->pa_pagesz == 0)
    668 			palloc->pa_pagesz = PAGE_SIZE;
    669 
    670 		TAILQ_INIT(&palloc->pa_list);
    671 
    672 		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
    673 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    674 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    675 
    676 		if (palloc->pa_backingmapptr != NULL) {
    677 			pa_reclaim_register(palloc);
    678 		}
    679 		palloc->pa_flags |= PA_INITIALIZED;
    680 	}
    681 
    682 	if (align == 0)
    683 		align = ALIGN(1);
    684 
    685 	if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
    686 		size = sizeof(struct pool_item);
    687 
    688 	size = roundup(size, align);
    689 #ifdef DIAGNOSTIC
    690 	if (size > palloc->pa_pagesz)
    691 		panic("pool_init: pool item size (%zu) too large", size);
    692 #endif
    693 
    694 	/*
    695 	 * Initialize the pool structure.
    696 	 */
    697 	LIST_INIT(&pp->pr_emptypages);
    698 	LIST_INIT(&pp->pr_fullpages);
    699 	LIST_INIT(&pp->pr_partpages);
    700 	pp->pr_cache = NULL;
    701 	pp->pr_curpage = NULL;
    702 	pp->pr_npages = 0;
    703 	pp->pr_minitems = 0;
    704 	pp->pr_minpages = 0;
    705 	pp->pr_maxpages = UINT_MAX;
    706 	pp->pr_roflags = flags;
    707 	pp->pr_flags = 0;
    708 	pp->pr_size = size;
    709 	pp->pr_align = align;
    710 	pp->pr_wchan = wchan;
    711 	pp->pr_alloc = palloc;
    712 	pp->pr_nitems = 0;
    713 	pp->pr_nout = 0;
    714 	pp->pr_hardlimit = UINT_MAX;
    715 	pp->pr_hardlimit_warning = NULL;
    716 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    717 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    718 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    719 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    720 	pp->pr_drain_hook = NULL;
    721 	pp->pr_drain_hook_arg = NULL;
    722 	pp->pr_freecheck = NULL;
    723 
    724 	/*
    725 	 * Decide whether to put the page header off page to avoid
    726 	 * wasting too large a part of the page or too big item.
    727 	 * Off-page page headers go on a hash table, so we can match
    728 	 * a returned item with its header based on the page address.
    729 	 * We use 1/16 of the page size and about 8 times of the item
    730 	 * size as the threshold (XXX: tune)
    731 	 *
    732 	 * However, we'll put the header into the page if we can put
    733 	 * it without wasting any items.
    734 	 *
    735 	 * Silently enforce `0 <= ioff < align'.
    736 	 */
    737 	pp->pr_itemoffset = ioff %= align;
    738 	/* See the comment below about reserved bytes. */
    739 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    740 	phsize = ALIGN(sizeof(struct pool_item_header));
    741 	if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
    742 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    743 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    744 		/* Use the end of the page for the page header */
    745 		pp->pr_roflags |= PR_PHINPAGE;
    746 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    747 	} else {
    748 		/* The page header will be taken from our page header pool */
    749 		pp->pr_phoffset = 0;
    750 		off = palloc->pa_pagesz;
    751 		SPLAY_INIT(&pp->pr_phtree);
    752 	}
    753 
    754 	/*
    755 	 * Alignment is to take place at `ioff' within the item. This means
    756 	 * we must reserve up to `align - 1' bytes on the page to allow
    757 	 * appropriate positioning of each item.
    758 	 */
    759 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    760 	KASSERT(pp->pr_itemsperpage != 0);
    761 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    762 		int idx;
    763 
    764 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    765 		    idx++) {
    766 			/* nothing */
    767 		}
    768 		if (idx >= PHPOOL_MAX) {
    769 			/*
    770 			 * if you see this panic, consider to tweak
    771 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    772 			 */
    773 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    774 			    pp->pr_wchan, pp->pr_itemsperpage);
    775 		}
    776 		pp->pr_phpool = &phpool[idx];
    777 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    778 		pp->pr_phpool = &phpool[0];
    779 	}
    780 #if defined(DIAGNOSTIC)
    781 	else {
    782 		pp->pr_phpool = NULL;
    783 	}
    784 #endif
    785 
    786 	/*
    787 	 * Use the slack between the chunks and the page header
    788 	 * for "cache coloring".
    789 	 */
    790 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    791 	pp->pr_maxcolor = (slack / align) * align;
    792 	pp->pr_curcolor = 0;
    793 
    794 	pp->pr_nget = 0;
    795 	pp->pr_nfail = 0;
    796 	pp->pr_nput = 0;
    797 	pp->pr_npagealloc = 0;
    798 	pp->pr_npagefree = 0;
    799 	pp->pr_hiwat = 0;
    800 	pp->pr_nidle = 0;
    801 	pp->pr_refcnt = 0;
    802 
    803 #ifdef POOL_DIAGNOSTIC
    804 	if (flags & PR_LOGGING) {
    805 		if (kmem_map == NULL ||
    806 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    807 		     M_TEMP, M_NOWAIT)) == NULL)
    808 			pp->pr_roflags &= ~PR_LOGGING;
    809 		pp->pr_curlogentry = 0;
    810 		pp->pr_logsize = pool_logsize;
    811 	}
    812 #endif
    813 
    814 	pp->pr_entered_file = NULL;
    815 	pp->pr_entered_line = 0;
    816 
    817 	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
    818 	cv_init(&pp->pr_cv, wchan);
    819 	pp->pr_ipl = ipl;
    820 
    821 	/*
    822 	 * Initialize private page header pool and cache magazine pool if we
    823 	 * haven't done so yet.
    824 	 * XXX LOCKING.
    825 	 */
    826 	if (phpool[0].pr_size == 0) {
    827 		int idx;
    828 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    829 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    830 			int nelem;
    831 			size_t sz;
    832 
    833 			nelem = PHPOOL_FREELIST_NELEM(idx);
    834 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    835 			    "phpool-%d", nelem);
    836 			sz = sizeof(struct pool_item_header);
    837 			if (nelem) {
    838 				sz = offsetof(struct pool_item_header,
    839 				    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
    840 			}
    841 			pool_init(&phpool[idx], sz, 0, 0, 0,
    842 			    phpool_names[idx], &pool_allocator_meta, IPL_VM);
    843 		}
    844 #ifdef POOL_SUBPAGE
    845 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    846 		    PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM);
    847 #endif
    848 
    849 		size = sizeof(pcg_t) +
    850 		    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
    851 		pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
    852 		    "pcgnormal", &pool_allocator_meta, IPL_VM);
    853 
    854 		size = sizeof(pcg_t) +
    855 		    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
    856 		pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
    857 		    "pcglarge", &pool_allocator_meta, IPL_VM);
    858 	}
    859 
    860 	/* Insert into the list of all pools. */
    861 	if (__predict_true(!cold))
    862 		mutex_enter(&pool_head_lock);
    863 	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
    864 		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
    865 			break;
    866 	}
    867 	if (pp1 == NULL)
    868 		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    869 	else
    870 		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
    871 	if (__predict_true(!cold))
    872 		mutex_exit(&pool_head_lock);
    873 
    874 		/* Insert this into the list of pools using this allocator. */
    875 	if (__predict_true(!cold))
    876 		mutex_enter(&palloc->pa_lock);
    877 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    878 	if (__predict_true(!cold))
    879 		mutex_exit(&palloc->pa_lock);
    880 
    881 	pool_reclaim_register(pp);
    882 }
    883 
    884 /*
    885  * De-commision a pool resource.
    886  */
    887 void
    888 pool_destroy(struct pool *pp)
    889 {
    890 	struct pool_pagelist pq;
    891 	struct pool_item_header *ph;
    892 
    893 	/* Remove from global pool list */
    894 	mutex_enter(&pool_head_lock);
    895 	while (pp->pr_refcnt != 0)
    896 		cv_wait(&pool_busy, &pool_head_lock);
    897 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    898 	if (drainpp == pp)
    899 		drainpp = NULL;
    900 	mutex_exit(&pool_head_lock);
    901 
    902 	/* Remove this pool from its allocator's list of pools. */
    903 	pool_reclaim_unregister(pp);
    904 	mutex_enter(&pp->pr_alloc->pa_lock);
    905 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    906 	mutex_exit(&pp->pr_alloc->pa_lock);
    907 
    908 	mutex_enter(&pp->pr_lock);
    909 
    910 	KASSERT(pp->pr_cache == NULL);
    911 
    912 #ifdef DIAGNOSTIC
    913 	if (pp->pr_nout != 0) {
    914 		pr_printlog(pp, NULL, printf);
    915 		panic("pool_destroy: pool busy: still out: %u",
    916 		    pp->pr_nout);
    917 	}
    918 #endif
    919 
    920 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    921 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    922 
    923 	/* Remove all pages */
    924 	LIST_INIT(&pq);
    925 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    926 		pr_rmpage(pp, ph, &pq);
    927 
    928 	mutex_exit(&pp->pr_lock);
    929 
    930 	pr_pagelist_free(pp, &pq);
    931 
    932 #ifdef POOL_DIAGNOSTIC
    933 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    934 		free(pp->pr_log, M_TEMP);
    935 #endif
    936 
    937 	cv_destroy(&pp->pr_cv);
    938 	mutex_destroy(&pp->pr_lock);
    939 }
    940 
    941 void
    942 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    943 {
    944 
    945 	/* XXX no locking -- must be used just after pool_init() */
    946 #ifdef DIAGNOSTIC
    947 	if (pp->pr_drain_hook != NULL)
    948 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    949 #endif
    950 	pp->pr_drain_hook = fn;
    951 	pp->pr_drain_hook_arg = arg;
    952 }
    953 
    954 static struct pool_item_header *
    955 pool_alloc_item_header(struct pool *pp, void *storage, int flags)
    956 {
    957 	struct pool_item_header *ph;
    958 
    959 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    960 		ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset);
    961 	else
    962 		ph = pool_get(pp->pr_phpool, flags);
    963 
    964 	return (ph);
    965 }
    966 
    967 /*
    968  * Grab an item from the pool.
    969  */
    970 void *
    971 #ifdef POOL_DIAGNOSTIC
    972 _pool_get(struct pool *pp, int flags, const char *file, long line)
    973 #else
    974 pool_get(struct pool *pp, int flags)
    975 #endif
    976 {
    977 	struct pool_item *pi;
    978 	struct pool_item_header *ph;
    979 	void *v;
    980 
    981 #ifdef DIAGNOSTIC
    982 	if (__predict_false(pp->pr_itemsperpage == 0))
    983 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    984 		    "pool not initialized?", pp);
    985 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    986 			    (flags & PR_WAITOK) != 0))
    987 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    988 
    989 #endif /* DIAGNOSTIC */
    990 #ifdef LOCKDEBUG
    991 	if (flags & PR_WAITOK) {
    992 		ASSERT_SLEEPABLE();
    993 	}
    994 #endif
    995 
    996 	mutex_enter(&pp->pr_lock);
    997 	pr_enter(pp, file, line);
    998 
    999  startover:
   1000 	/*
   1001 	 * Check to see if we've reached the hard limit.  If we have,
   1002 	 * and we can wait, then wait until an item has been returned to
   1003 	 * the pool.
   1004 	 */
   1005 #ifdef DIAGNOSTIC
   1006 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
   1007 		pr_leave(pp);
   1008 		mutex_exit(&pp->pr_lock);
   1009 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
   1010 	}
   1011 #endif
   1012 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
   1013 		if (pp->pr_drain_hook != NULL) {
   1014 			/*
   1015 			 * Since the drain hook is going to free things
   1016 			 * back to the pool, unlock, call the hook, re-lock,
   1017 			 * and check the hardlimit condition again.
   1018 			 */
   1019 			pr_leave(pp);
   1020 			mutex_exit(&pp->pr_lock);
   1021 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   1022 			mutex_enter(&pp->pr_lock);
   1023 			pr_enter(pp, file, line);
   1024 			if (pp->pr_nout < pp->pr_hardlimit)
   1025 				goto startover;
   1026 		}
   1027 
   1028 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
   1029 			/*
   1030 			 * XXX: A warning isn't logged in this case.  Should
   1031 			 * it be?
   1032 			 */
   1033 			pp->pr_flags |= PR_WANTED;
   1034 			pr_leave(pp);
   1035 			cv_wait(&pp->pr_cv, &pp->pr_lock);
   1036 			pr_enter(pp, file, line);
   1037 			goto startover;
   1038 		}
   1039 
   1040 		/*
   1041 		 * Log a message that the hard limit has been hit.
   1042 		 */
   1043 		if (pp->pr_hardlimit_warning != NULL &&
   1044 		    ratecheck(&pp->pr_hardlimit_warning_last,
   1045 			      &pp->pr_hardlimit_ratecap))
   1046 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
   1047 
   1048 		pp->pr_nfail++;
   1049 
   1050 		pr_leave(pp);
   1051 		mutex_exit(&pp->pr_lock);
   1052 		return (NULL);
   1053 	}
   1054 
   1055 	/*
   1056 	 * The convention we use is that if `curpage' is not NULL, then
   1057 	 * it points at a non-empty bucket. In particular, `curpage'
   1058 	 * never points at a page header which has PR_PHINPAGE set and
   1059 	 * has no items in its bucket.
   1060 	 */
   1061 	if ((ph = pp->pr_curpage) == NULL) {
   1062 		int error;
   1063 
   1064 #ifdef DIAGNOSTIC
   1065 		if (pp->pr_nitems != 0) {
   1066 			mutex_exit(&pp->pr_lock);
   1067 			printf("pool_get: %s: curpage NULL, nitems %u\n",
   1068 			    pp->pr_wchan, pp->pr_nitems);
   1069 			panic("pool_get: nitems inconsistent");
   1070 		}
   1071 #endif
   1072 
   1073 		/*
   1074 		 * Call the back-end page allocator for more memory.
   1075 		 * Release the pool lock, as the back-end page allocator
   1076 		 * may block.
   1077 		 */
   1078 		pr_leave(pp);
   1079 		error = pool_grow(pp, flags);
   1080 		pr_enter(pp, file, line);
   1081 		if (error != 0) {
   1082 			/*
   1083 			 * We were unable to allocate a page or item
   1084 			 * header, but we released the lock during
   1085 			 * allocation, so perhaps items were freed
   1086 			 * back to the pool.  Check for this case.
   1087 			 */
   1088 			if (pp->pr_curpage != NULL)
   1089 				goto startover;
   1090 
   1091 			pp->pr_nfail++;
   1092 			pr_leave(pp);
   1093 			mutex_exit(&pp->pr_lock);
   1094 			return (NULL);
   1095 		}
   1096 
   1097 		/* Start the allocation process over. */
   1098 		goto startover;
   1099 	}
   1100 	if (pp->pr_roflags & PR_NOTOUCH) {
   1101 #ifdef DIAGNOSTIC
   1102 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
   1103 			pr_leave(pp);
   1104 			mutex_exit(&pp->pr_lock);
   1105 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1106 		}
   1107 #endif
   1108 		v = pr_item_notouch_get(pp, ph);
   1109 #ifdef POOL_DIAGNOSTIC
   1110 		pr_log(pp, v, PRLOG_GET, file, line);
   1111 #endif
   1112 	} else {
   1113 		v = pi = LIST_FIRST(&ph->ph_itemlist);
   1114 		if (__predict_false(v == NULL)) {
   1115 			pr_leave(pp);
   1116 			mutex_exit(&pp->pr_lock);
   1117 			panic("pool_get: %s: page empty", pp->pr_wchan);
   1118 		}
   1119 #ifdef DIAGNOSTIC
   1120 		if (__predict_false(pp->pr_nitems == 0)) {
   1121 			pr_leave(pp);
   1122 			mutex_exit(&pp->pr_lock);
   1123 			printf("pool_get: %s: items on itemlist, nitems %u\n",
   1124 			    pp->pr_wchan, pp->pr_nitems);
   1125 			panic("pool_get: nitems inconsistent");
   1126 		}
   1127 #endif
   1128 
   1129 #ifdef POOL_DIAGNOSTIC
   1130 		pr_log(pp, v, PRLOG_GET, file, line);
   1131 #endif
   1132 
   1133 #ifdef DIAGNOSTIC
   1134 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
   1135 			pr_printlog(pp, pi, printf);
   1136 			panic("pool_get(%s): free list modified: "
   1137 			    "magic=%x; page %p; item addr %p\n",
   1138 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
   1139 		}
   1140 #endif
   1141 
   1142 		/*
   1143 		 * Remove from item list.
   1144 		 */
   1145 		LIST_REMOVE(pi, pi_list);
   1146 	}
   1147 	pp->pr_nitems--;
   1148 	pp->pr_nout++;
   1149 	if (ph->ph_nmissing == 0) {
   1150 #ifdef DIAGNOSTIC
   1151 		if (__predict_false(pp->pr_nidle == 0))
   1152 			panic("pool_get: nidle inconsistent");
   1153 #endif
   1154 		pp->pr_nidle--;
   1155 
   1156 		/*
   1157 		 * This page was previously empty.  Move it to the list of
   1158 		 * partially-full pages.  This page is already curpage.
   1159 		 */
   1160 		LIST_REMOVE(ph, ph_pagelist);
   1161 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1162 	}
   1163 	ph->ph_nmissing++;
   1164 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
   1165 #ifdef DIAGNOSTIC
   1166 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1167 		    !LIST_EMPTY(&ph->ph_itemlist))) {
   1168 			pr_leave(pp);
   1169 			mutex_exit(&pp->pr_lock);
   1170 			panic("pool_get: %s: nmissing inconsistent",
   1171 			    pp->pr_wchan);
   1172 		}
   1173 #endif
   1174 		/*
   1175 		 * This page is now full.  Move it to the full list
   1176 		 * and select a new current page.
   1177 		 */
   1178 		LIST_REMOVE(ph, ph_pagelist);
   1179 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1180 		pool_update_curpage(pp);
   1181 	}
   1182 
   1183 	pp->pr_nget++;
   1184 	pr_leave(pp);
   1185 
   1186 	/*
   1187 	 * If we have a low water mark and we are now below that low
   1188 	 * water mark, add more items to the pool.
   1189 	 */
   1190 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1191 		/*
   1192 		 * XXX: Should we log a warning?  Should we set up a timeout
   1193 		 * to try again in a second or so?  The latter could break
   1194 		 * a caller's assumptions about interrupt protection, etc.
   1195 		 */
   1196 	}
   1197 
   1198 	mutex_exit(&pp->pr_lock);
   1199 	KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
   1200 	FREECHECK_OUT(&pp->pr_freecheck, v);
   1201 	return (v);
   1202 }
   1203 
   1204 /*
   1205  * Internal version of pool_put().  Pool is already locked/entered.
   1206  */
   1207 static void
   1208 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1209 {
   1210 	struct pool_item *pi = v;
   1211 	struct pool_item_header *ph;
   1212 
   1213 	KASSERT(mutex_owned(&pp->pr_lock));
   1214 	FREECHECK_IN(&pp->pr_freecheck, v);
   1215 	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
   1216 
   1217 #ifdef DIAGNOSTIC
   1218 	if (__predict_false(pp->pr_nout == 0)) {
   1219 		printf("pool %s: putting with none out\n",
   1220 		    pp->pr_wchan);
   1221 		panic("pool_put");
   1222 	}
   1223 #endif
   1224 
   1225 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
   1226 		pr_printlog(pp, NULL, printf);
   1227 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1228 	}
   1229 
   1230 	/*
   1231 	 * Return to item list.
   1232 	 */
   1233 	if (pp->pr_roflags & PR_NOTOUCH) {
   1234 		pr_item_notouch_put(pp, ph, v);
   1235 	} else {
   1236 #ifdef DIAGNOSTIC
   1237 		pi->pi_magic = PI_MAGIC;
   1238 #endif
   1239 #ifdef DEBUG
   1240 		{
   1241 			int i, *ip = v;
   1242 
   1243 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1244 				*ip++ = PI_MAGIC;
   1245 			}
   1246 		}
   1247 #endif
   1248 
   1249 		LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1250 	}
   1251 	KDASSERT(ph->ph_nmissing != 0);
   1252 	ph->ph_nmissing--;
   1253 	pp->pr_nput++;
   1254 	pp->pr_nitems++;
   1255 	pp->pr_nout--;
   1256 
   1257 	/* Cancel "pool empty" condition if it exists */
   1258 	if (pp->pr_curpage == NULL)
   1259 		pp->pr_curpage = ph;
   1260 
   1261 	if (pp->pr_flags & PR_WANTED) {
   1262 		pp->pr_flags &= ~PR_WANTED;
   1263 		if (ph->ph_nmissing == 0)
   1264 			pp->pr_nidle++;
   1265 		cv_broadcast(&pp->pr_cv);
   1266 		return;
   1267 	}
   1268 
   1269 	/*
   1270 	 * If this page is now empty, do one of two things:
   1271 	 *
   1272 	 *	(1) If we have more pages than the page high water mark,
   1273 	 *	    free the page back to the system.  ONLY CONSIDER
   1274 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1275 	 *	    CLAIM.
   1276 	 *
   1277 	 *	(2) Otherwise, move the page to the empty page list.
   1278 	 *
   1279 	 * Either way, select a new current page (so we use a partially-full
   1280 	 * page if one is available).
   1281 	 */
   1282 	if (ph->ph_nmissing == 0) {
   1283 		pp->pr_nidle++;
   1284 		if (pp->pr_npages > pp->pr_minpages &&
   1285 		    pp->pr_npages > pp->pr_maxpages) {
   1286 			pr_rmpage(pp, ph, pq);
   1287 		} else {
   1288 			LIST_REMOVE(ph, ph_pagelist);
   1289 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1290 
   1291 			/*
   1292 			 * Update the timestamp on the page.  A page must
   1293 			 * be idle for some period of time before it can
   1294 			 * be reclaimed by the pagedaemon.  This minimizes
   1295 			 * ping-pong'ing for memory.
   1296 			 *
   1297 			 * note for 64-bit time_t: truncating to 32-bit is not
   1298 			 * a problem for our usage.
   1299 			 */
   1300 			ph->ph_time = time_uptime;
   1301 		}
   1302 		pool_update_curpage(pp);
   1303 	}
   1304 
   1305 	/*
   1306 	 * If the page was previously completely full, move it to the
   1307 	 * partially-full list and make it the current page.  The next
   1308 	 * allocation will get the item from this page, instead of
   1309 	 * further fragmenting the pool.
   1310 	 */
   1311 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1312 		LIST_REMOVE(ph, ph_pagelist);
   1313 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1314 		pp->pr_curpage = ph;
   1315 	}
   1316 }
   1317 
   1318 /*
   1319  * Return resource to the pool.
   1320  */
   1321 #ifdef POOL_DIAGNOSTIC
   1322 void
   1323 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1324 {
   1325 	struct pool_pagelist pq;
   1326 
   1327 	LIST_INIT(&pq);
   1328 
   1329 	mutex_enter(&pp->pr_lock);
   1330 	pr_enter(pp, file, line);
   1331 
   1332 	pr_log(pp, v, PRLOG_PUT, file, line);
   1333 
   1334 	pool_do_put(pp, v, &pq);
   1335 
   1336 	pr_leave(pp);
   1337 	mutex_exit(&pp->pr_lock);
   1338 
   1339 	pr_pagelist_free(pp, &pq);
   1340 }
   1341 #undef pool_put
   1342 #endif /* POOL_DIAGNOSTIC */
   1343 
   1344 void
   1345 pool_put(struct pool *pp, void *v)
   1346 {
   1347 	struct pool_pagelist pq;
   1348 
   1349 	LIST_INIT(&pq);
   1350 
   1351 	mutex_enter(&pp->pr_lock);
   1352 	pool_do_put(pp, v, &pq);
   1353 	mutex_exit(&pp->pr_lock);
   1354 
   1355 	pr_pagelist_free(pp, &pq);
   1356 }
   1357 
   1358 #ifdef POOL_DIAGNOSTIC
   1359 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1360 #endif
   1361 
   1362 /*
   1363  * pool_grow: grow a pool by a page.
   1364  *
   1365  * => called with pool locked.
   1366  * => unlock and relock the pool.
   1367  * => return with pool locked.
   1368  */
   1369 
   1370 static int
   1371 pool_grow(struct pool *pp, int flags)
   1372 {
   1373 	struct pool_item_header *ph = NULL;
   1374 	char *cp;
   1375 
   1376 	mutex_exit(&pp->pr_lock);
   1377 	cp = pool_allocator_alloc(pp, flags);
   1378 	if (__predict_true(cp != NULL)) {
   1379 		ph = pool_alloc_item_header(pp, cp, flags);
   1380 	}
   1381 	if (__predict_false(cp == NULL || ph == NULL)) {
   1382 		if (cp != NULL) {
   1383 			pool_allocator_free(pp, cp);
   1384 		}
   1385 		mutex_enter(&pp->pr_lock);
   1386 		return ENOMEM;
   1387 	}
   1388 
   1389 	mutex_enter(&pp->pr_lock);
   1390 	pool_prime_page(pp, cp, ph);
   1391 	pp->pr_npagealloc++;
   1392 	return 0;
   1393 }
   1394 
   1395 /*
   1396  * Add N items to the pool.
   1397  */
   1398 int
   1399 pool_prime(struct pool *pp, int n)
   1400 {
   1401 	int newpages;
   1402 	int error = 0;
   1403 
   1404 	mutex_enter(&pp->pr_lock);
   1405 
   1406 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1407 
   1408 	while (newpages-- > 0) {
   1409 		error = pool_grow(pp, PR_NOWAIT);
   1410 		if (error) {
   1411 			break;
   1412 		}
   1413 		pp->pr_minpages++;
   1414 	}
   1415 
   1416 	if (pp->pr_minpages >= pp->pr_maxpages)
   1417 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1418 
   1419 	mutex_exit(&pp->pr_lock);
   1420 	return error;
   1421 }
   1422 
   1423 /*
   1424  * Add a page worth of items to the pool.
   1425  *
   1426  * Note, we must be called with the pool descriptor LOCKED.
   1427  */
   1428 static void
   1429 pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
   1430 {
   1431 	struct pool_item *pi;
   1432 	void *cp = storage;
   1433 	const unsigned int align = pp->pr_align;
   1434 	const unsigned int ioff = pp->pr_itemoffset;
   1435 	int n;
   1436 
   1437 	KASSERT(mutex_owned(&pp->pr_lock));
   1438 
   1439 #ifdef DIAGNOSTIC
   1440 	if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
   1441 	    ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1442 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1443 #endif
   1444 
   1445 	/*
   1446 	 * Insert page header.
   1447 	 */
   1448 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1449 	LIST_INIT(&ph->ph_itemlist);
   1450 	ph->ph_page = storage;
   1451 	ph->ph_nmissing = 0;
   1452 	ph->ph_time = time_uptime;
   1453 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1454 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1455 
   1456 	pp->pr_nidle++;
   1457 
   1458 	/*
   1459 	 * Color this page.
   1460 	 */
   1461 	ph->ph_off = pp->pr_curcolor;
   1462 	cp = (char *)cp + ph->ph_off;
   1463 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1464 		pp->pr_curcolor = 0;
   1465 
   1466 	/*
   1467 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1468 	 */
   1469 	if (ioff != 0)
   1470 		cp = (char *)cp + align - ioff;
   1471 
   1472 	KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1473 
   1474 	/*
   1475 	 * Insert remaining chunks on the bucket list.
   1476 	 */
   1477 	n = pp->pr_itemsperpage;
   1478 	pp->pr_nitems += n;
   1479 
   1480 	if (pp->pr_roflags & PR_NOTOUCH) {
   1481 		pr_item_notouch_init(pp, ph);
   1482 	} else {
   1483 		while (n--) {
   1484 			pi = (struct pool_item *)cp;
   1485 
   1486 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1487 
   1488 			/* Insert on page list */
   1489 			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1490 #ifdef DIAGNOSTIC
   1491 			pi->pi_magic = PI_MAGIC;
   1492 #endif
   1493 			cp = (char *)cp + pp->pr_size;
   1494 
   1495 			KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
   1496 		}
   1497 	}
   1498 
   1499 	/*
   1500 	 * If the pool was depleted, point at the new page.
   1501 	 */
   1502 	if (pp->pr_curpage == NULL)
   1503 		pp->pr_curpage = ph;
   1504 
   1505 	if (++pp->pr_npages > pp->pr_hiwat)
   1506 		pp->pr_hiwat = pp->pr_npages;
   1507 }
   1508 
   1509 /*
   1510  * Used by pool_get() when nitems drops below the low water mark.  This
   1511  * is used to catch up pr_nitems with the low water mark.
   1512  *
   1513  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1514  *
   1515  * Note 2, we must be called with the pool already locked, and we return
   1516  * with it locked.
   1517  */
   1518 static int
   1519 pool_catchup(struct pool *pp)
   1520 {
   1521 	int error = 0;
   1522 
   1523 	while (POOL_NEEDS_CATCHUP(pp)) {
   1524 		error = pool_grow(pp, PR_NOWAIT);
   1525 		if (error) {
   1526 			break;
   1527 		}
   1528 	}
   1529 	return error;
   1530 }
   1531 
   1532 static void
   1533 pool_update_curpage(struct pool *pp)
   1534 {
   1535 
   1536 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1537 	if (pp->pr_curpage == NULL) {
   1538 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1539 	}
   1540 }
   1541 
   1542 void
   1543 pool_setlowat(struct pool *pp, int n)
   1544 {
   1545 
   1546 	mutex_enter(&pp->pr_lock);
   1547 
   1548 	pp->pr_minitems = n;
   1549 	pp->pr_minpages = (n == 0)
   1550 		? 0
   1551 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1552 
   1553 	/* Make sure we're caught up with the newly-set low water mark. */
   1554 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1555 		/*
   1556 		 * XXX: Should we log a warning?  Should we set up a timeout
   1557 		 * to try again in a second or so?  The latter could break
   1558 		 * a caller's assumptions about interrupt protection, etc.
   1559 		 */
   1560 	}
   1561 
   1562 	mutex_exit(&pp->pr_lock);
   1563 }
   1564 
   1565 void
   1566 pool_sethiwat(struct pool *pp, int n)
   1567 {
   1568 
   1569 	mutex_enter(&pp->pr_lock);
   1570 
   1571 	pp->pr_maxpages = (n == 0)
   1572 		? 0
   1573 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1574 
   1575 	mutex_exit(&pp->pr_lock);
   1576 }
   1577 
   1578 void
   1579 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1580 {
   1581 
   1582 	mutex_enter(&pp->pr_lock);
   1583 
   1584 	pp->pr_hardlimit = n;
   1585 	pp->pr_hardlimit_warning = warnmess;
   1586 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1587 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1588 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1589 
   1590 	/*
   1591 	 * In-line version of pool_sethiwat(), because we don't want to
   1592 	 * release the lock.
   1593 	 */
   1594 	pp->pr_maxpages = (n == 0)
   1595 		? 0
   1596 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1597 
   1598 	mutex_exit(&pp->pr_lock);
   1599 }
   1600 
   1601 /*
   1602  * Release all complete pages that have not been used recently.
   1603  */
   1604 int
   1605 #ifdef POOL_DIAGNOSTIC
   1606 _pool_reclaim(struct pool *pp, const char *file, long line)
   1607 #else
   1608 pool_reclaim(struct pool *pp)
   1609 #endif
   1610 {
   1611 	struct pool_item_header *ph, *phnext;
   1612 	struct pool_pagelist pq;
   1613 	uint32_t curtime;
   1614 	bool klock;
   1615 	int rv;
   1616 
   1617 	if (pp->pr_drain_hook != NULL) {
   1618 		/*
   1619 		 * The drain hook must be called with the pool unlocked.
   1620 		 */
   1621 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1622 	}
   1623 
   1624 	/*
   1625 	 * XXXSMP Because we do not want to cause non-MPSAFE code
   1626 	 * to block.
   1627 	 */
   1628 	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
   1629 	    pp->pr_ipl == IPL_SOFTSERIAL) {
   1630 		KERNEL_LOCK(1, NULL);
   1631 		klock = true;
   1632 	} else
   1633 		klock = false;
   1634 
   1635 	/* Reclaim items from the pool's cache (if any). */
   1636 	if (pp->pr_cache != NULL)
   1637 		pool_cache_invalidate(pp->pr_cache);
   1638 
   1639 	if (mutex_tryenter(&pp->pr_lock) == 0) {
   1640 		if (klock) {
   1641 			KERNEL_UNLOCK_ONE(NULL);
   1642 		}
   1643 		return (0);
   1644 	}
   1645 	pr_enter(pp, file, line);
   1646 
   1647 	LIST_INIT(&pq);
   1648 
   1649 	curtime = time_uptime;
   1650 
   1651 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1652 		phnext = LIST_NEXT(ph, ph_pagelist);
   1653 
   1654 		/* Check our minimum page claim */
   1655 		if (pp->pr_npages <= pp->pr_minpages)
   1656 			break;
   1657 
   1658 		KASSERT(ph->ph_nmissing == 0);
   1659 		if (curtime - ph->ph_time < pool_inactive_time
   1660 		    && !pa_starved_p(pp->pr_alloc))
   1661 			continue;
   1662 
   1663 		/*
   1664 		 * If freeing this page would put us below
   1665 		 * the low water mark, stop now.
   1666 		 */
   1667 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1668 		    pp->pr_minitems)
   1669 			break;
   1670 
   1671 		pr_rmpage(pp, ph, &pq);
   1672 	}
   1673 
   1674 	pr_leave(pp);
   1675 	mutex_exit(&pp->pr_lock);
   1676 
   1677 	if (LIST_EMPTY(&pq))
   1678 		rv = 0;
   1679 	else {
   1680 		pr_pagelist_free(pp, &pq);
   1681 		rv = 1;
   1682 	}
   1683 
   1684 	if (klock) {
   1685 		KERNEL_UNLOCK_ONE(NULL);
   1686 	}
   1687 
   1688 	return (rv);
   1689 }
   1690 
   1691 /*
   1692  * Drain pools, one at a time.  This is a two stage process;
   1693  * drain_start kicks off a cross call to drain CPU-level caches
   1694  * if the pool has an associated pool_cache.  drain_end waits
   1695  * for those cross calls to finish, and then drains the cache
   1696  * (if any) and pool.
   1697  *
   1698  * Note, must never be called from interrupt context.
   1699  */
   1700 void
   1701 pool_drain_start(struct pool **ppp, uint64_t *wp)
   1702 {
   1703 	struct pool *pp;
   1704 
   1705 	KASSERT(!TAILQ_EMPTY(&pool_head));
   1706 
   1707 	pp = NULL;
   1708 
   1709 	/* Find next pool to drain, and add a reference. */
   1710 	mutex_enter(&pool_head_lock);
   1711 	do {
   1712 		if (drainpp == NULL) {
   1713 			drainpp = TAILQ_FIRST(&pool_head);
   1714 		}
   1715 		if (drainpp != NULL) {
   1716 			pp = drainpp;
   1717 			drainpp = TAILQ_NEXT(pp, pr_poollist);
   1718 		}
   1719 		/*
   1720 		 * Skip completely idle pools.  We depend on at least
   1721 		 * one pool in the system being active.
   1722 		 */
   1723 	} while (pp == NULL || pp->pr_npages == 0);
   1724 	pp->pr_refcnt++;
   1725 	mutex_exit(&pool_head_lock);
   1726 
   1727 	/* If there is a pool_cache, drain CPU level caches. */
   1728 	*ppp = pp;
   1729 	if (pp->pr_cache != NULL) {
   1730 		*wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall,
   1731 		    pp->pr_cache, NULL);
   1732 	}
   1733 }
   1734 
   1735 void
   1736 pool_drain_end(struct pool *pp, uint64_t where)
   1737 {
   1738 
   1739 	if (pp == NULL)
   1740 		return;
   1741 
   1742 	KASSERT(pp->pr_refcnt > 0);
   1743 
   1744 	/* Wait for remote draining to complete. */
   1745 	if (pp->pr_cache != NULL)
   1746 		xc_wait(where);
   1747 
   1748 	/* Drain the cache (if any) and pool.. */
   1749 	pool_reclaim(pp);
   1750 
   1751 	/* Finally, unlock the pool. */
   1752 	mutex_enter(&pool_head_lock);
   1753 	pp->pr_refcnt--;
   1754 	cv_broadcast(&pool_busy);
   1755 	mutex_exit(&pool_head_lock);
   1756 }
   1757 
   1758 /*
   1759  * Diagnostic helpers.
   1760  */
   1761 void
   1762 pool_print(struct pool *pp, const char *modif)
   1763 {
   1764 
   1765 	pool_print1(pp, modif, printf);
   1766 }
   1767 
   1768 void
   1769 pool_printall(const char *modif, void (*pr)(const char *, ...))
   1770 {
   1771 	struct pool *pp;
   1772 
   1773 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   1774 		pool_printit(pp, modif, pr);
   1775 	}
   1776 }
   1777 
   1778 void
   1779 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1780 {
   1781 
   1782 	if (pp == NULL) {
   1783 		(*pr)("Must specify a pool to print.\n");
   1784 		return;
   1785 	}
   1786 
   1787 	pool_print1(pp, modif, pr);
   1788 }
   1789 
   1790 static void
   1791 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1792     void (*pr)(const char *, ...))
   1793 {
   1794 	struct pool_item_header *ph;
   1795 #ifdef DIAGNOSTIC
   1796 	struct pool_item *pi;
   1797 #endif
   1798 
   1799 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1800 		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
   1801 		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
   1802 #ifdef DIAGNOSTIC
   1803 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1804 			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1805 				if (pi->pi_magic != PI_MAGIC) {
   1806 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1807 					    pi, pi->pi_magic);
   1808 				}
   1809 			}
   1810 		}
   1811 #endif
   1812 	}
   1813 }
   1814 
   1815 static void
   1816 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1817 {
   1818 	struct pool_item_header *ph;
   1819 	pool_cache_t pc;
   1820 	pcg_t *pcg;
   1821 	pool_cache_cpu_t *cc;
   1822 	uint64_t cpuhit, cpumiss;
   1823 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1824 	char c;
   1825 
   1826 	while ((c = *modif++) != '\0') {
   1827 		if (c == 'l')
   1828 			print_log = 1;
   1829 		if (c == 'p')
   1830 			print_pagelist = 1;
   1831 		if (c == 'c')
   1832 			print_cache = 1;
   1833 	}
   1834 
   1835 	if ((pc = pp->pr_cache) != NULL) {
   1836 		(*pr)("POOL CACHE");
   1837 	} else {
   1838 		(*pr)("POOL");
   1839 	}
   1840 
   1841 	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1842 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1843 	    pp->pr_roflags);
   1844 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1845 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1846 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1847 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1848 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1849 
   1850 	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
   1851 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1852 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1853 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1854 
   1855 	if (print_pagelist == 0)
   1856 		goto skip_pagelist;
   1857 
   1858 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1859 		(*pr)("\n\tempty page list:\n");
   1860 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1861 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1862 		(*pr)("\n\tfull page list:\n");
   1863 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1864 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1865 		(*pr)("\n\tpartial-page list:\n");
   1866 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1867 
   1868 	if (pp->pr_curpage == NULL)
   1869 		(*pr)("\tno current page\n");
   1870 	else
   1871 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1872 
   1873  skip_pagelist:
   1874 	if (print_log == 0)
   1875 		goto skip_log;
   1876 
   1877 	(*pr)("\n");
   1878 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1879 		(*pr)("\tno log\n");
   1880 	else {
   1881 		pr_printlog(pp, NULL, pr);
   1882 	}
   1883 
   1884  skip_log:
   1885 
   1886 #define PR_GROUPLIST(pcg)						\
   1887 	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
   1888 	for (i = 0; i < pcg->pcg_size; i++) {				\
   1889 		if (pcg->pcg_objects[i].pcgo_pa !=			\
   1890 		    POOL_PADDR_INVALID) {				\
   1891 			(*pr)("\t\t\t%p, 0x%llx\n",			\
   1892 			    pcg->pcg_objects[i].pcgo_va,		\
   1893 			    (unsigned long long)			\
   1894 			    pcg->pcg_objects[i].pcgo_pa);		\
   1895 		} else {						\
   1896 			(*pr)("\t\t\t%p\n",				\
   1897 			    pcg->pcg_objects[i].pcgo_va);		\
   1898 		}							\
   1899 	}
   1900 
   1901 	if (pc != NULL) {
   1902 		cpuhit = 0;
   1903 		cpumiss = 0;
   1904 		for (i = 0; i < MAXCPUS; i++) {
   1905 			if ((cc = pc->pc_cpus[i]) == NULL)
   1906 				continue;
   1907 			cpuhit += cc->cc_hits;
   1908 			cpumiss += cc->cc_misses;
   1909 		}
   1910 		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
   1911 		(*pr)("\tcache layer hits %llu misses %llu\n",
   1912 		    pc->pc_hits, pc->pc_misses);
   1913 		(*pr)("\tcache layer entry uncontended %llu contended %llu\n",
   1914 		    pc->pc_hits + pc->pc_misses - pc->pc_contended,
   1915 		    pc->pc_contended);
   1916 		(*pr)("\tcache layer empty groups %u full groups %u\n",
   1917 		    pc->pc_nempty, pc->pc_nfull);
   1918 		if (print_cache) {
   1919 			(*pr)("\tfull cache groups:\n");
   1920 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   1921 			    pcg = pcg->pcg_next) {
   1922 				PR_GROUPLIST(pcg);
   1923 			}
   1924 			(*pr)("\tempty cache groups:\n");
   1925 			for (pcg = pc->pc_emptygroups; pcg != NULL;
   1926 			    pcg = pcg->pcg_next) {
   1927 				PR_GROUPLIST(pcg);
   1928 			}
   1929 		}
   1930 	}
   1931 #undef PR_GROUPLIST
   1932 
   1933 	pr_enter_check(pp, pr);
   1934 }
   1935 
   1936 static int
   1937 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1938 {
   1939 	struct pool_item *pi;
   1940 	void *page;
   1941 	int n;
   1942 
   1943 	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
   1944 		page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
   1945 		if (page != ph->ph_page &&
   1946 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1947 			if (label != NULL)
   1948 				printf("%s: ", label);
   1949 			printf("pool(%p:%s): page inconsistency: page %p;"
   1950 			       " at page head addr %p (p %p)\n", pp,
   1951 				pp->pr_wchan, ph->ph_page,
   1952 				ph, page);
   1953 			return 1;
   1954 		}
   1955 	}
   1956 
   1957 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1958 		return 0;
   1959 
   1960 	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
   1961 	     pi != NULL;
   1962 	     pi = LIST_NEXT(pi,pi_list), n++) {
   1963 
   1964 #ifdef DIAGNOSTIC
   1965 		if (pi->pi_magic != PI_MAGIC) {
   1966 			if (label != NULL)
   1967 				printf("%s: ", label);
   1968 			printf("pool(%s): free list modified: magic=%x;"
   1969 			       " page %p; item ordinal %d; addr %p\n",
   1970 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1971 				n, pi);
   1972 			panic("pool");
   1973 		}
   1974 #endif
   1975 		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
   1976 			continue;
   1977 		}
   1978 		page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
   1979 		if (page == ph->ph_page)
   1980 			continue;
   1981 
   1982 		if (label != NULL)
   1983 			printf("%s: ", label);
   1984 		printf("pool(%p:%s): page inconsistency: page %p;"
   1985 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1986 			pp->pr_wchan, ph->ph_page,
   1987 			n, pi, page);
   1988 		return 1;
   1989 	}
   1990 	return 0;
   1991 }
   1992 
   1993 
   1994 int
   1995 pool_chk(struct pool *pp, const char *label)
   1996 {
   1997 	struct pool_item_header *ph;
   1998 	int r = 0;
   1999 
   2000 	mutex_enter(&pp->pr_lock);
   2001 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   2002 		r = pool_chk_page(pp, label, ph);
   2003 		if (r) {
   2004 			goto out;
   2005 		}
   2006 	}
   2007 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2008 		r = pool_chk_page(pp, label, ph);
   2009 		if (r) {
   2010 			goto out;
   2011 		}
   2012 	}
   2013 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   2014 		r = pool_chk_page(pp, label, ph);
   2015 		if (r) {
   2016 			goto out;
   2017 		}
   2018 	}
   2019 
   2020 out:
   2021 	mutex_exit(&pp->pr_lock);
   2022 	return (r);
   2023 }
   2024 
   2025 /*
   2026  * pool_cache_init:
   2027  *
   2028  *	Initialize a pool cache.
   2029  */
   2030 pool_cache_t
   2031 pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
   2032     const char *wchan, struct pool_allocator *palloc, int ipl,
   2033     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
   2034 {
   2035 	pool_cache_t pc;
   2036 
   2037 	pc = pool_get(&cache_pool, PR_WAITOK);
   2038 	if (pc == NULL)
   2039 		return NULL;
   2040 
   2041 	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
   2042 	   palloc, ipl, ctor, dtor, arg);
   2043 
   2044 	return pc;
   2045 }
   2046 
   2047 /*
   2048  * pool_cache_bootstrap:
   2049  *
   2050  *	Kernel-private version of pool_cache_init().  The caller
   2051  *	provides initial storage.
   2052  */
   2053 void
   2054 pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
   2055     u_int align_offset, u_int flags, const char *wchan,
   2056     struct pool_allocator *palloc, int ipl,
   2057     int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
   2058     void *arg)
   2059 {
   2060 	CPU_INFO_ITERATOR cii;
   2061 	pool_cache_t pc1;
   2062 	struct cpu_info *ci;
   2063 	struct pool *pp;
   2064 
   2065 	pp = &pc->pc_pool;
   2066 	if (palloc == NULL && ipl == IPL_NONE)
   2067 		palloc = &pool_allocator_nointr;
   2068 	pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
   2069 	mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
   2070 
   2071 	if (ctor == NULL) {
   2072 		ctor = (int (*)(void *, void *, int))nullop;
   2073 	}
   2074 	if (dtor == NULL) {
   2075 		dtor = (void (*)(void *, void *))nullop;
   2076 	}
   2077 
   2078 	pc->pc_emptygroups = NULL;
   2079 	pc->pc_fullgroups = NULL;
   2080 	pc->pc_partgroups = NULL;
   2081 	pc->pc_ctor = ctor;
   2082 	pc->pc_dtor = dtor;
   2083 	pc->pc_arg  = arg;
   2084 	pc->pc_hits  = 0;
   2085 	pc->pc_misses = 0;
   2086 	pc->pc_nempty = 0;
   2087 	pc->pc_npart = 0;
   2088 	pc->pc_nfull = 0;
   2089 	pc->pc_contended = 0;
   2090 	pc->pc_refcnt = 0;
   2091 	pc->pc_freecheck = NULL;
   2092 
   2093 	if ((flags & PR_LARGECACHE) != 0) {
   2094 		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
   2095 	} else {
   2096 		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
   2097 	}
   2098 
   2099 	/* Allocate per-CPU caches. */
   2100 	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
   2101 	pc->pc_ncpu = 0;
   2102 	if (ncpu < 2) {
   2103 		/* XXX For sparc: boot CPU is not attached yet. */
   2104 		pool_cache_cpu_init1(curcpu(), pc);
   2105 	} else {
   2106 		for (CPU_INFO_FOREACH(cii, ci)) {
   2107 			pool_cache_cpu_init1(ci, pc);
   2108 		}
   2109 	}
   2110 
   2111 	/* Add to list of all pools. */
   2112 	if (__predict_true(!cold))
   2113 		mutex_enter(&pool_head_lock);
   2114 	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
   2115 		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
   2116 			break;
   2117 	}
   2118 	if (pc1 == NULL)
   2119 		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
   2120 	else
   2121 		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
   2122 	if (__predict_true(!cold))
   2123 		mutex_exit(&pool_head_lock);
   2124 
   2125 	membar_sync();
   2126 	pp->pr_cache = pc;
   2127 }
   2128 
   2129 /*
   2130  * pool_cache_destroy:
   2131  *
   2132  *	Destroy a pool cache.
   2133  */
   2134 void
   2135 pool_cache_destroy(pool_cache_t pc)
   2136 {
   2137 	struct pool *pp = &pc->pc_pool;
   2138 	pool_cache_cpu_t *cc;
   2139 	pcg_t *pcg;
   2140 	int i;
   2141 
   2142 	/* Remove it from the global list. */
   2143 	mutex_enter(&pool_head_lock);
   2144 	while (pc->pc_refcnt != 0)
   2145 		cv_wait(&pool_busy, &pool_head_lock);
   2146 	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
   2147 	mutex_exit(&pool_head_lock);
   2148 
   2149 	/* First, invalidate the entire cache. */
   2150 	pool_cache_invalidate(pc);
   2151 
   2152 	/* Disassociate it from the pool. */
   2153 	mutex_enter(&pp->pr_lock);
   2154 	pp->pr_cache = NULL;
   2155 	mutex_exit(&pp->pr_lock);
   2156 
   2157 	/* Destroy per-CPU data */
   2158 	for (i = 0; i < MAXCPUS; i++) {
   2159 		if ((cc = pc->pc_cpus[i]) == NULL)
   2160 			continue;
   2161 		if ((pcg = cc->cc_current) != NULL) {
   2162 			pcg->pcg_next = NULL;
   2163 			pool_cache_invalidate_groups(pc, pcg);
   2164 		}
   2165 		if ((pcg = cc->cc_previous) != NULL) {
   2166 			pcg->pcg_next = NULL;
   2167 			pool_cache_invalidate_groups(pc, pcg);
   2168 		}
   2169 		if (cc != &pc->pc_cpu0)
   2170 			pool_put(&cache_cpu_pool, cc);
   2171 	}
   2172 
   2173 	/* Finally, destroy it. */
   2174 	mutex_destroy(&pc->pc_lock);
   2175 	pool_destroy(pp);
   2176 	pool_put(&cache_pool, pc);
   2177 }
   2178 
   2179 /*
   2180  * pool_cache_cpu_init1:
   2181  *
   2182  *	Called for each pool_cache whenever a new CPU is attached.
   2183  */
   2184 static void
   2185 pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
   2186 {
   2187 	pool_cache_cpu_t *cc;
   2188 	int index;
   2189 
   2190 	index = ci->ci_index;
   2191 
   2192 	KASSERT(index < MAXCPUS);
   2193 
   2194 	if ((cc = pc->pc_cpus[index]) != NULL) {
   2195 		KASSERT(cc->cc_cpuindex == index);
   2196 		return;
   2197 	}
   2198 
   2199 	/*
   2200 	 * The first CPU is 'free'.  This needs to be the case for
   2201 	 * bootstrap - we may not be able to allocate yet.
   2202 	 */
   2203 	if (pc->pc_ncpu == 0) {
   2204 		cc = &pc->pc_cpu0;
   2205 		pc->pc_ncpu = 1;
   2206 	} else {
   2207 		mutex_enter(&pc->pc_lock);
   2208 		pc->pc_ncpu++;
   2209 		mutex_exit(&pc->pc_lock);
   2210 		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
   2211 	}
   2212 
   2213 	cc->cc_ipl = pc->pc_pool.pr_ipl;
   2214 	cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
   2215 	cc->cc_cache = pc;
   2216 	cc->cc_cpuindex = index;
   2217 	cc->cc_hits = 0;
   2218 	cc->cc_misses = 0;
   2219 	cc->cc_current = NULL;
   2220 	cc->cc_previous = NULL;
   2221 
   2222 	pc->pc_cpus[index] = cc;
   2223 }
   2224 
   2225 /*
   2226  * pool_cache_cpu_init:
   2227  *
   2228  *	Called whenever a new CPU is attached.
   2229  */
   2230 void
   2231 pool_cache_cpu_init(struct cpu_info *ci)
   2232 {
   2233 	pool_cache_t pc;
   2234 
   2235 	mutex_enter(&pool_head_lock);
   2236 	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
   2237 		pc->pc_refcnt++;
   2238 		mutex_exit(&pool_head_lock);
   2239 
   2240 		pool_cache_cpu_init1(ci, pc);
   2241 
   2242 		mutex_enter(&pool_head_lock);
   2243 		pc->pc_refcnt--;
   2244 		cv_broadcast(&pool_busy);
   2245 	}
   2246 	mutex_exit(&pool_head_lock);
   2247 }
   2248 
   2249 /*
   2250  * pool_cache_reclaim:
   2251  *
   2252  *	Reclaim memory from a pool cache.
   2253  */
   2254 bool
   2255 pool_cache_reclaim(pool_cache_t pc)
   2256 {
   2257 
   2258 	return pool_reclaim(&pc->pc_pool);
   2259 }
   2260 
   2261 static void
   2262 pool_cache_destruct_object1(pool_cache_t pc, void *object)
   2263 {
   2264 
   2265 	(*pc->pc_dtor)(pc->pc_arg, object);
   2266 	pool_put(&pc->pc_pool, object);
   2267 }
   2268 
   2269 /*
   2270  * pool_cache_destruct_object:
   2271  *
   2272  *	Force destruction of an object and its release back into
   2273  *	the pool.
   2274  */
   2275 void
   2276 pool_cache_destruct_object(pool_cache_t pc, void *object)
   2277 {
   2278 
   2279 	FREECHECK_IN(&pc->pc_freecheck, object);
   2280 
   2281 	pool_cache_destruct_object1(pc, object);
   2282 }
   2283 
   2284 /*
   2285  * pool_cache_invalidate_groups:
   2286  *
   2287  *	Invalidate a chain of groups and destruct all objects.
   2288  */
   2289 static void
   2290 pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
   2291 {
   2292 	void *object;
   2293 	pcg_t *next;
   2294 	int i;
   2295 
   2296 	for (; pcg != NULL; pcg = next) {
   2297 		next = pcg->pcg_next;
   2298 
   2299 		for (i = 0; i < pcg->pcg_avail; i++) {
   2300 			object = pcg->pcg_objects[i].pcgo_va;
   2301 			pool_cache_destruct_object1(pc, object);
   2302 		}
   2303 
   2304 		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
   2305 			pool_put(&pcg_large_pool, pcg);
   2306 		} else {
   2307 			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
   2308 			pool_put(&pcg_normal_pool, pcg);
   2309 		}
   2310 	}
   2311 }
   2312 
   2313 /*
   2314  * pool_cache_invalidate:
   2315  *
   2316  *	Invalidate a pool cache (destruct and release all of the
   2317  *	cached objects).  Does not reclaim objects from the pool.
   2318  */
   2319 void
   2320 pool_cache_invalidate(pool_cache_t pc)
   2321 {
   2322 	pcg_t *full, *empty, *part;
   2323 
   2324 	mutex_enter(&pc->pc_lock);
   2325 	full = pc->pc_fullgroups;
   2326 	empty = pc->pc_emptygroups;
   2327 	part = pc->pc_partgroups;
   2328 	pc->pc_fullgroups = NULL;
   2329 	pc->pc_emptygroups = NULL;
   2330 	pc->pc_partgroups = NULL;
   2331 	pc->pc_nfull = 0;
   2332 	pc->pc_nempty = 0;
   2333 	pc->pc_npart = 0;
   2334 	mutex_exit(&pc->pc_lock);
   2335 
   2336 	pool_cache_invalidate_groups(pc, full);
   2337 	pool_cache_invalidate_groups(pc, empty);
   2338 	pool_cache_invalidate_groups(pc, part);
   2339 }
   2340 
   2341 void
   2342 pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
   2343 {
   2344 
   2345 	pool_set_drain_hook(&pc->pc_pool, fn, arg);
   2346 }
   2347 
   2348 void
   2349 pool_cache_setlowat(pool_cache_t pc, int n)
   2350 {
   2351 
   2352 	pool_setlowat(&pc->pc_pool, n);
   2353 }
   2354 
   2355 void
   2356 pool_cache_sethiwat(pool_cache_t pc, int n)
   2357 {
   2358 
   2359 	pool_sethiwat(&pc->pc_pool, n);
   2360 }
   2361 
   2362 void
   2363 pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
   2364 {
   2365 
   2366 	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
   2367 }
   2368 
   2369 static inline pool_cache_cpu_t *
   2370 pool_cache_cpu_enter(pool_cache_t pc, int *s)
   2371 {
   2372 	pool_cache_cpu_t *cc;
   2373 
   2374 	/*
   2375 	 * Prevent other users of the cache from accessing our
   2376 	 * CPU-local data.  To avoid touching shared state, we
   2377 	 * pull the neccessary information from CPU local data.
   2378 	 */
   2379 	KPREEMPT_DISABLE(curlwp);
   2380 	cc = pc->pc_cpus[curcpu()->ci_index];
   2381 	KASSERT(cc->cc_cache == pc);
   2382 	if (cc->cc_ipl != IPL_NONE) {
   2383 		*s = splraiseipl(cc->cc_iplcookie);
   2384 	}
   2385 
   2386 	return cc;
   2387 }
   2388 
   2389 static inline void
   2390 pool_cache_cpu_exit(pool_cache_cpu_t *cc, int *s)
   2391 {
   2392 
   2393 	/* No longer need exclusive access to the per-CPU data. */
   2394 	if (cc->cc_ipl != IPL_NONE) {
   2395 		splx(*s);
   2396 	}
   2397 	KPREEMPT_ENABLE(curlwp);
   2398 }
   2399 
   2400 #if __GNUC_PREREQ__(3, 0)
   2401 __attribute ((noinline))
   2402 #endif
   2403 pool_cache_cpu_t *
   2404 pool_cache_get_slow(pool_cache_cpu_t *cc, int *s, void **objectp,
   2405 		    paddr_t *pap, int flags)
   2406 {
   2407 	pcg_t *pcg, *cur;
   2408 	uint64_t ncsw;
   2409 	pool_cache_t pc;
   2410 	void *object;
   2411 
   2412 	pc = cc->cc_cache;
   2413 	cc->cc_misses++;
   2414 
   2415 	/*
   2416 	 * Nothing was available locally.  Try and grab a group
   2417 	 * from the cache.
   2418 	 */
   2419 	if (!mutex_tryenter(&pc->pc_lock)) {
   2420 		ncsw = curlwp->l_ncsw;
   2421 		mutex_enter(&pc->pc_lock);
   2422 		pc->pc_contended++;
   2423 
   2424 		/*
   2425 		 * If we context switched while locking, then
   2426 		 * our view of the per-CPU data is invalid:
   2427 		 * retry.
   2428 		 */
   2429 		if (curlwp->l_ncsw != ncsw) {
   2430 			mutex_exit(&pc->pc_lock);
   2431 			pool_cache_cpu_exit(cc, s);
   2432 			return pool_cache_cpu_enter(pc, s);
   2433 		}
   2434 	}
   2435 
   2436 	if ((pcg = pc->pc_fullgroups) != NULL) {
   2437 		/*
   2438 		 * If there's a full group, release our empty
   2439 		 * group back to the cache.  Install the full
   2440 		 * group as cc_current and return.
   2441 		 */
   2442 		if ((cur = cc->cc_current) != NULL) {
   2443 			KASSERT(cur->pcg_avail == 0);
   2444 			cur->pcg_next = pc->pc_emptygroups;
   2445 			pc->pc_emptygroups = cur;
   2446 			pc->pc_nempty++;
   2447 		}
   2448 		KASSERT(pcg->pcg_avail == pcg->pcg_size);
   2449 		cc->cc_current = pcg;
   2450 		pc->pc_fullgroups = pcg->pcg_next;
   2451 		pc->pc_hits++;
   2452 		pc->pc_nfull--;
   2453 		mutex_exit(&pc->pc_lock);
   2454 		return cc;
   2455 	}
   2456 
   2457 	/*
   2458 	 * Nothing available locally or in cache.  Take the slow
   2459 	 * path: fetch a new object from the pool and construct
   2460 	 * it.
   2461 	 */
   2462 	pc->pc_misses++;
   2463 	mutex_exit(&pc->pc_lock);
   2464 	pool_cache_cpu_exit(cc, s);
   2465 
   2466 	object = pool_get(&pc->pc_pool, flags);
   2467 	*objectp = object;
   2468 	if (object == NULL)
   2469 		return NULL;
   2470 
   2471 	if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   2472 		pool_put(&pc->pc_pool, object);
   2473 		*objectp = NULL;
   2474 		return NULL;
   2475 	}
   2476 
   2477 	KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) &
   2478 	    (pc->pc_pool.pr_align - 1)) == 0);
   2479 
   2480 	if (pap != NULL) {
   2481 #ifdef POOL_VTOPHYS
   2482 		*pap = POOL_VTOPHYS(object);
   2483 #else
   2484 		*pap = POOL_PADDR_INVALID;
   2485 #endif
   2486 	}
   2487 
   2488 	FREECHECK_OUT(&pc->pc_freecheck, object);
   2489 	return NULL;
   2490 }
   2491 
   2492 /*
   2493  * pool_cache_get{,_paddr}:
   2494  *
   2495  *	Get an object from a pool cache (optionally returning
   2496  *	the physical address of the object).
   2497  */
   2498 void *
   2499 pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
   2500 {
   2501 	pool_cache_cpu_t *cc;
   2502 	pcg_t *pcg;
   2503 	void *object;
   2504 	int s;
   2505 
   2506 #ifdef LOCKDEBUG
   2507 	if (flags & PR_WAITOK) {
   2508 		ASSERT_SLEEPABLE();
   2509 	}
   2510 #endif
   2511 
   2512 	cc = pool_cache_cpu_enter(pc, &s);
   2513 	do {
   2514 		/* Try and allocate an object from the current group. */
   2515 	 	pcg = cc->cc_current;
   2516 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2517 			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
   2518 			if (pap != NULL)
   2519 				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
   2520 #if defined(DIAGNOSTIC)
   2521 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
   2522 #endif /* defined(DIAGNOSTIC) */
   2523 			KASSERT(pcg->pcg_avail <= pcg->pcg_size);
   2524 			KASSERT(object != NULL);
   2525 			cc->cc_hits++;
   2526 			pool_cache_cpu_exit(cc, &s);
   2527 			FREECHECK_OUT(&pc->pc_freecheck, object);
   2528 			return object;
   2529 		}
   2530 
   2531 		/*
   2532 		 * That failed.  If the previous group isn't empty, swap
   2533 		 * it with the current group and allocate from there.
   2534 		 */
   2535 		pcg = cc->cc_previous;
   2536 		if (pcg != NULL && pcg->pcg_avail > 0) {
   2537 			cc->cc_previous = cc->cc_current;
   2538 			cc->cc_current = pcg;
   2539 			continue;
   2540 		}
   2541 
   2542 		/*
   2543 		 * Can't allocate from either group: try the slow path.
   2544 		 * If get_slow() allocated an object for us, or if
   2545 		 * no more objects are available, it will return NULL.
   2546 		 * Otherwise, we need to retry.
   2547 		 */
   2548 		cc = pool_cache_get_slow(cc, &s, &object, pap, flags);
   2549 	} while (cc != NULL);
   2550 
   2551 	return object;
   2552 }
   2553 
   2554 #if __GNUC_PREREQ__(3, 0)
   2555 __attribute ((noinline))
   2556 #endif
   2557 pool_cache_cpu_t *
   2558 pool_cache_put_slow(pool_cache_cpu_t *cc, int *s, void *object, paddr_t pa)
   2559 {
   2560 	pcg_t *pcg, *cur;
   2561 	uint64_t ncsw;
   2562 	pool_cache_t pc;
   2563 	u_int nobj;
   2564 
   2565 	pc = cc->cc_cache;
   2566 	cc->cc_misses++;
   2567 
   2568 	/*
   2569 	 * No free slots locally.  Try to grab an empty, unused
   2570 	 * group from the cache.
   2571 	 */
   2572 	if (!mutex_tryenter(&pc->pc_lock)) {
   2573 		ncsw = curlwp->l_ncsw;
   2574 		mutex_enter(&pc->pc_lock);
   2575 		pc->pc_contended++;
   2576 
   2577 		/*
   2578 		 * If we context switched while locking, then
   2579 		 * our view of the per-CPU data is invalid:
   2580 		 * retry.
   2581 		 */
   2582 		if (curlwp->l_ncsw != ncsw) {
   2583 			mutex_exit(&pc->pc_lock);
   2584 			pool_cache_cpu_exit(cc, s);
   2585 			return pool_cache_cpu_enter(pc, s);
   2586 		}
   2587 	}
   2588 
   2589 	if ((pcg = pc->pc_emptygroups) != NULL) {
   2590 		/*
   2591 		 * If there's a empty group, release our full
   2592 		 * group back to the cache.  Install the empty
   2593 		 * group and return.
   2594 		 */
   2595 		KASSERT(pcg->pcg_avail == 0);
   2596 		pc->pc_emptygroups = pcg->pcg_next;
   2597 		if (cc->cc_previous == NULL) {
   2598 			cc->cc_previous = pcg;
   2599 		} else {
   2600 			if ((cur = cc->cc_current) != NULL) {
   2601 				KASSERT(cur->pcg_avail == pcg->pcg_size);
   2602 				cur->pcg_next = pc->pc_fullgroups;
   2603 				pc->pc_fullgroups = cur;
   2604 				pc->pc_nfull++;
   2605 			}
   2606 			cc->cc_current = pcg;
   2607 		}
   2608 		pc->pc_hits++;
   2609 		pc->pc_nempty--;
   2610 		mutex_exit(&pc->pc_lock);
   2611 		return cc;
   2612 	}
   2613 
   2614 	/*
   2615 	 * Nothing available locally or in cache.  Take the
   2616 	 * slow path and try to allocate a new group that we
   2617 	 * can release to.
   2618 	 */
   2619 	pc->pc_misses++;
   2620 	mutex_exit(&pc->pc_lock);
   2621 	pool_cache_cpu_exit(cc, s);
   2622 
   2623 	/*
   2624 	 * If we can't allocate a new group, just throw the
   2625 	 * object away.
   2626 	 */
   2627 	nobj = pc->pc_pcgsize;
   2628 	if (pool_cache_disable) {
   2629 		pcg = NULL;
   2630 	} else if (nobj == PCG_NOBJECTS_LARGE) {
   2631 		pcg = pool_get(&pcg_large_pool, PR_NOWAIT);
   2632 	} else {
   2633 		pcg = pool_get(&pcg_normal_pool, PR_NOWAIT);
   2634 	}
   2635 	if (pcg == NULL) {
   2636 		pool_cache_destruct_object(pc, object);
   2637 		return NULL;
   2638 	}
   2639 	pcg->pcg_avail = 0;
   2640 	pcg->pcg_size = nobj;
   2641 
   2642 	/*
   2643 	 * Add the empty group to the cache and try again.
   2644 	 */
   2645 	mutex_enter(&pc->pc_lock);
   2646 	pcg->pcg_next = pc->pc_emptygroups;
   2647 	pc->pc_emptygroups = pcg;
   2648 	pc->pc_nempty++;
   2649 	mutex_exit(&pc->pc_lock);
   2650 
   2651 	return pool_cache_cpu_enter(pc, s);
   2652 }
   2653 
   2654 /*
   2655  * pool_cache_put{,_paddr}:
   2656  *
   2657  *	Put an object back to the pool cache (optionally caching the
   2658  *	physical address of the object).
   2659  */
   2660 void
   2661 pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
   2662 {
   2663 	pool_cache_cpu_t *cc;
   2664 	pcg_t *pcg;
   2665 	int s;
   2666 
   2667 	FREECHECK_IN(&pc->pc_freecheck, object);
   2668 
   2669 	cc = pool_cache_cpu_enter(pc, &s);
   2670 	do {
   2671 		/* If the current group isn't full, release it there. */
   2672 	 	pcg = cc->cc_current;
   2673 		if (pcg != NULL && pcg->pcg_avail < pcg->pcg_size) {
   2674 			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
   2675 			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
   2676 			pcg->pcg_avail++;
   2677 			cc->cc_hits++;
   2678 			pool_cache_cpu_exit(cc, &s);
   2679 			return;
   2680 		}
   2681 
   2682 		/*
   2683 		 * That failed.  If the previous group is empty, swap
   2684 		 * it with the current group and try again.
   2685 		 */
   2686 		pcg = cc->cc_previous;
   2687 		if (pcg != NULL && pcg->pcg_avail == 0) {
   2688 			cc->cc_previous = cc->cc_current;
   2689 			cc->cc_current = pcg;
   2690 			continue;
   2691 		}
   2692 
   2693 		/*
   2694 		 * Can't free to either group: try the slow path.
   2695 		 * If put_slow() releases the object for us, it
   2696 		 * will return NULL.  Otherwise we need to retry.
   2697 		 */
   2698 		cc = pool_cache_put_slow(cc, &s, object, pa);
   2699 	} while (cc != NULL);
   2700 }
   2701 
   2702 /*
   2703  * pool_cache_xcall:
   2704  *
   2705  *	Transfer objects from the per-CPU cache to the global cache.
   2706  *	Run within a cross-call thread.
   2707  */
   2708 static void
   2709 pool_cache_xcall(pool_cache_t pc)
   2710 {
   2711 	pool_cache_cpu_t *cc;
   2712 	pcg_t *prev, *cur, **list;
   2713 	int s = 0; /* XXXgcc */
   2714 
   2715 	cc = pool_cache_cpu_enter(pc, &s);
   2716 	cur = cc->cc_current;
   2717 	cc->cc_current = NULL;
   2718 	prev = cc->cc_previous;
   2719 	cc->cc_previous = NULL;
   2720 	pool_cache_cpu_exit(cc, &s);
   2721 
   2722 	/*
   2723 	 * XXXSMP Go to splvm to prevent kernel_lock from being taken,
   2724 	 * because locks at IPL_SOFTXXX are still spinlocks.  Does not
   2725 	 * apply to IPL_SOFTBIO.  Cross-call threads do not take the
   2726 	 * kernel_lock.
   2727 	 */
   2728 	s = splvm();
   2729 	mutex_enter(&pc->pc_lock);
   2730 	if (cur != NULL) {
   2731 		if (cur->pcg_avail == cur->pcg_size) {
   2732 			list = &pc->pc_fullgroups;
   2733 			pc->pc_nfull++;
   2734 		} else if (cur->pcg_avail == 0) {
   2735 			list = &pc->pc_emptygroups;
   2736 			pc->pc_nempty++;
   2737 		} else {
   2738 			list = &pc->pc_partgroups;
   2739 			pc->pc_npart++;
   2740 		}
   2741 		cur->pcg_next = *list;
   2742 		*list = cur;
   2743 	}
   2744 	if (prev != NULL) {
   2745 		if (prev->pcg_avail == prev->pcg_size) {
   2746 			list = &pc->pc_fullgroups;
   2747 			pc->pc_nfull++;
   2748 		} else if (prev->pcg_avail == 0) {
   2749 			list = &pc->pc_emptygroups;
   2750 			pc->pc_nempty++;
   2751 		} else {
   2752 			list = &pc->pc_partgroups;
   2753 			pc->pc_npart++;
   2754 		}
   2755 		prev->pcg_next = *list;
   2756 		*list = prev;
   2757 	}
   2758 	mutex_exit(&pc->pc_lock);
   2759 	splx(s);
   2760 }
   2761 
   2762 /*
   2763  * Pool backend allocators.
   2764  *
   2765  * Each pool has a backend allocator that handles allocation, deallocation,
   2766  * and any additional draining that might be needed.
   2767  *
   2768  * We provide two standard allocators:
   2769  *
   2770  *	pool_allocator_kmem - the default when no allocator is specified
   2771  *
   2772  *	pool_allocator_nointr - used for pools that will not be accessed
   2773  *	in interrupt context.
   2774  */
   2775 void	*pool_page_alloc(struct pool *, int);
   2776 void	pool_page_free(struct pool *, void *);
   2777 
   2778 #ifdef POOL_SUBPAGE
   2779 struct pool_allocator pool_allocator_kmem_fullpage = {
   2780 	pool_page_alloc, pool_page_free, 0,
   2781 	.pa_backingmapptr = &kmem_map,
   2782 };
   2783 #else
   2784 struct pool_allocator pool_allocator_kmem = {
   2785 	pool_page_alloc, pool_page_free, 0,
   2786 	.pa_backingmapptr = &kmem_map,
   2787 };
   2788 #endif
   2789 
   2790 void	*pool_page_alloc_nointr(struct pool *, int);
   2791 void	pool_page_free_nointr(struct pool *, void *);
   2792 
   2793 #ifdef POOL_SUBPAGE
   2794 struct pool_allocator pool_allocator_nointr_fullpage = {
   2795 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2796 	.pa_backingmapptr = &kernel_map,
   2797 };
   2798 #else
   2799 struct pool_allocator pool_allocator_nointr = {
   2800 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2801 	.pa_backingmapptr = &kernel_map,
   2802 };
   2803 #endif
   2804 
   2805 #ifdef POOL_SUBPAGE
   2806 void	*pool_subpage_alloc(struct pool *, int);
   2807 void	pool_subpage_free(struct pool *, void *);
   2808 
   2809 struct pool_allocator pool_allocator_kmem = {
   2810 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2811 	.pa_backingmapptr = &kmem_map,
   2812 };
   2813 
   2814 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2815 void	pool_subpage_free_nointr(struct pool *, void *);
   2816 
   2817 struct pool_allocator pool_allocator_nointr = {
   2818 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2819 	.pa_backingmapptr = &kmem_map,
   2820 };
   2821 #endif /* POOL_SUBPAGE */
   2822 
   2823 static void *
   2824 pool_allocator_alloc(struct pool *pp, int flags)
   2825 {
   2826 	struct pool_allocator *pa = pp->pr_alloc;
   2827 	void *res;
   2828 
   2829 	res = (*pa->pa_alloc)(pp, flags);
   2830 	if (res == NULL && (flags & PR_WAITOK) == 0) {
   2831 		/*
   2832 		 * We only run the drain hook here if PR_NOWAIT.
   2833 		 * In other cases, the hook will be run in
   2834 		 * pool_reclaim().
   2835 		 */
   2836 		if (pp->pr_drain_hook != NULL) {
   2837 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
   2838 			res = (*pa->pa_alloc)(pp, flags);
   2839 		}
   2840 	}
   2841 	return res;
   2842 }
   2843 
   2844 static void
   2845 pool_allocator_free(struct pool *pp, void *v)
   2846 {
   2847 	struct pool_allocator *pa = pp->pr_alloc;
   2848 
   2849 	(*pa->pa_free)(pp, v);
   2850 }
   2851 
   2852 void *
   2853 pool_page_alloc(struct pool *pp, int flags)
   2854 {
   2855 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2856 
   2857 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
   2858 }
   2859 
   2860 void
   2861 pool_page_free(struct pool *pp, void *v)
   2862 {
   2863 
   2864 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2865 }
   2866 
   2867 static void *
   2868 pool_page_alloc_meta(struct pool *pp, int flags)
   2869 {
   2870 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2871 
   2872 	return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
   2873 }
   2874 
   2875 static void
   2876 pool_page_free_meta(struct pool *pp, void *v)
   2877 {
   2878 
   2879 	uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
   2880 }
   2881 
   2882 #ifdef POOL_SUBPAGE
   2883 /* Sub-page allocator, for machines with large hardware pages. */
   2884 void *
   2885 pool_subpage_alloc(struct pool *pp, int flags)
   2886 {
   2887 	return pool_get(&psppool, flags);
   2888 }
   2889 
   2890 void
   2891 pool_subpage_free(struct pool *pp, void *v)
   2892 {
   2893 	pool_put(&psppool, v);
   2894 }
   2895 
   2896 /* We don't provide a real nointr allocator.  Maybe later. */
   2897 void *
   2898 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2899 {
   2900 
   2901 	return (pool_subpage_alloc(pp, flags));
   2902 }
   2903 
   2904 void
   2905 pool_subpage_free_nointr(struct pool *pp, void *v)
   2906 {
   2907 
   2908 	pool_subpage_free(pp, v);
   2909 }
   2910 #endif /* POOL_SUBPAGE */
   2911 void *
   2912 pool_page_alloc_nointr(struct pool *pp, int flags)
   2913 {
   2914 	bool waitok = (flags & PR_WAITOK) ? true : false;
   2915 
   2916 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
   2917 }
   2918 
   2919 void
   2920 pool_page_free_nointr(struct pool *pp, void *v)
   2921 {
   2922 
   2923 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2924 }
   2925 
   2926 #if defined(DDB)
   2927 static bool
   2928 pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2929 {
   2930 
   2931 	return (uintptr_t)ph->ph_page <= addr &&
   2932 	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
   2933 }
   2934 
   2935 static bool
   2936 pool_in_item(struct pool *pp, void *item, uintptr_t addr)
   2937 {
   2938 
   2939 	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
   2940 }
   2941 
   2942 static bool
   2943 pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
   2944 {
   2945 	int i;
   2946 
   2947 	if (pcg == NULL) {
   2948 		return false;
   2949 	}
   2950 	for (i = 0; i < pcg->pcg_avail; i++) {
   2951 		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
   2952 			return true;
   2953 		}
   2954 	}
   2955 	return false;
   2956 }
   2957 
   2958 static bool
   2959 pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
   2960 {
   2961 
   2962 	if ((pp->pr_roflags & PR_NOTOUCH) != 0) {
   2963 		unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr);
   2964 		pool_item_bitmap_t *bitmap =
   2965 		    ph->ph_bitmap + (idx / BITMAP_SIZE);
   2966 		pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK);
   2967 
   2968 		return (*bitmap & mask) == 0;
   2969 	} else {
   2970 		struct pool_item *pi;
   2971 
   2972 		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   2973 			if (pool_in_item(pp, pi, addr)) {
   2974 				return false;
   2975 			}
   2976 		}
   2977 		return true;
   2978 	}
   2979 }
   2980 
   2981 void
   2982 pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2983 {
   2984 	struct pool *pp;
   2985 
   2986 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
   2987 		struct pool_item_header *ph;
   2988 		uintptr_t item;
   2989 		bool allocated = true;
   2990 		bool incache = false;
   2991 		bool incpucache = false;
   2992 		char cpucachestr[32];
   2993 
   2994 		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   2995 			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   2996 				if (pool_in_page(pp, ph, addr)) {
   2997 					goto found;
   2998 				}
   2999 			}
   3000 			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   3001 				if (pool_in_page(pp, ph, addr)) {
   3002 					allocated =
   3003 					    pool_allocated(pp, ph, addr);
   3004 					goto found;
   3005 				}
   3006 			}
   3007 			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   3008 				if (pool_in_page(pp, ph, addr)) {
   3009 					allocated = false;
   3010 					goto found;
   3011 				}
   3012 			}
   3013 			continue;
   3014 		} else {
   3015 			ph = pr_find_pagehead_noalign(pp, (void *)addr);
   3016 			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
   3017 				continue;
   3018 			}
   3019 			allocated = pool_allocated(pp, ph, addr);
   3020 		}
   3021 found:
   3022 		if (allocated && pp->pr_cache) {
   3023 			pool_cache_t pc = pp->pr_cache;
   3024 			struct pool_cache_group *pcg;
   3025 			int i;
   3026 
   3027 			for (pcg = pc->pc_fullgroups; pcg != NULL;
   3028 			    pcg = pcg->pcg_next) {
   3029 				if (pool_in_cg(pp, pcg, addr)) {
   3030 					incache = true;
   3031 					goto print;
   3032 				}
   3033 			}
   3034 			for (i = 0; i < MAXCPUS; i++) {
   3035 				pool_cache_cpu_t *cc;
   3036 
   3037 				if ((cc = pc->pc_cpus[i]) == NULL) {
   3038 					continue;
   3039 				}
   3040 				if (pool_in_cg(pp, cc->cc_current, addr) ||
   3041 				    pool_in_cg(pp, cc->cc_previous, addr)) {
   3042 					struct cpu_info *ci =
   3043 					    cpu_lookup_byindex(i);
   3044 
   3045 					incpucache = true;
   3046 					snprintf(cpucachestr,
   3047 					    sizeof(cpucachestr),
   3048 					    "cached by CPU %u",
   3049 					    ci->ci_index);
   3050 					goto print;
   3051 				}
   3052 			}
   3053 		}
   3054 print:
   3055 		item = (uintptr_t)ph->ph_page + ph->ph_off;
   3056 		item = item + rounddown(addr - item, pp->pr_size);
   3057 		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
   3058 		    (void *)addr, item, (size_t)(addr - item),
   3059 		    pp->pr_wchan,
   3060 		    incpucache ? cpucachestr :
   3061 		    incache ? "cached" : allocated ? "allocated" : "free");
   3062 	}
   3063 }
   3064 #endif /* defined(DDB) */
   3065